Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2005-2007 Red Hat GmbH
  4 *
  5 * A target that delays reads and/or writes and can send
  6 * them to different devices.
  7 *
  8 * This file is released under the GPL.
  9 */
 10
 11#include <linux/module.h>
 12#include <linux/init.h>
 13#include <linux/blkdev.h>
 14#include <linux/bio.h>
 15#include <linux/slab.h>
 16#include <linux/kthread.h>
 17
 18#include <linux/device-mapper.h>
 19
 20#define DM_MSG_PREFIX "delay"
 21
 22struct delay_class {
 23	struct dm_dev *dev;
 24	sector_t start;
 25	unsigned int delay;
 26	unsigned int ops;
 27};
 28
 29struct delay_c {
 30	struct timer_list delay_timer;
 31	struct mutex timer_lock;
 32	struct workqueue_struct *kdelayd_wq;
 33	struct work_struct flush_expired_bios;
 34	struct list_head delayed_bios;
 35	struct task_struct *worker;
 36	bool may_delay;
 37
 38	struct delay_class read;
 39	struct delay_class write;
 40	struct delay_class flush;
 41
 42	int argc;
 43};
 44
 45struct dm_delay_info {
 46	struct delay_c *context;
 47	struct delay_class *class;
 48	struct list_head list;
 49	unsigned long expires;
 50};
 51
 52static DEFINE_MUTEX(delayed_bios_lock);
 53
 54static void handle_delayed_timer(struct timer_list *t)
 55{
 56	struct delay_c *dc = from_timer(dc, t, delay_timer);
 57
 58	queue_work(dc->kdelayd_wq, &dc->flush_expired_bios);
 59}
 60
 61static void queue_timeout(struct delay_c *dc, unsigned long expires)
 62{
 63	mutex_lock(&dc->timer_lock);
 64
 65	if (!timer_pending(&dc->delay_timer) || expires < dc->delay_timer.expires)
 66		mod_timer(&dc->delay_timer, expires);
 67
 68	mutex_unlock(&dc->timer_lock);
 69}
 70
 71static inline bool delay_is_fast(struct delay_c *dc)
 72{
 73	return !!dc->worker;
 74}
 75
 76static void flush_bios(struct bio *bio)
 77{
 78	struct bio *n;
 79
 80	while (bio) {
 81		n = bio->bi_next;
 82		bio->bi_next = NULL;
 83		dm_submit_bio_remap(bio, NULL);
 84		bio = n;
 85	}
 86}
 87
 88static void flush_delayed_bios(struct delay_c *dc, bool flush_all)
 89{
 90	struct dm_delay_info *delayed, *next;
 91	struct bio_list flush_bio_list;
 92	unsigned long next_expires = 0;
 93	bool start_timer = false;
 94	bio_list_init(&flush_bio_list);
 95
 96	mutex_lock(&delayed_bios_lock);
 97	list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) {
 98		cond_resched();
 99		if (flush_all || time_after_eq(jiffies, delayed->expires)) {
100			struct bio *bio = dm_bio_from_per_bio_data(delayed,
101						sizeof(struct dm_delay_info));
102			list_del(&delayed->list);
103			bio_list_add(&flush_bio_list, bio);
104			delayed->class->ops--;
105			continue;
106		}
107
108		if (!delay_is_fast(dc)) {
109			if (!start_timer) {
110				start_timer = true;
111				next_expires = delayed->expires;
112			} else {
113				next_expires = min(next_expires, delayed->expires);
114			}
115		}
116	}
117	mutex_unlock(&delayed_bios_lock);
118
119	if (start_timer)
120		queue_timeout(dc, next_expires);
121
122	flush_bios(bio_list_get(&flush_bio_list));
123}
124
125static int flush_worker_fn(void *data)
126{
127	struct delay_c *dc = data;
128
129	while (!kthread_should_stop()) {
130		flush_delayed_bios(dc, false);
131		mutex_lock(&delayed_bios_lock);
132		if (unlikely(list_empty(&dc->delayed_bios))) {
133			set_current_state(TASK_INTERRUPTIBLE);
134			mutex_unlock(&delayed_bios_lock);
135			schedule();
136		} else {
137			mutex_unlock(&delayed_bios_lock);
138			cond_resched();
139		}
140	}
141
142	return 0;
143}
144
145static void flush_expired_bios(struct work_struct *work)
146{
147	struct delay_c *dc;
148
149	dc = container_of(work, struct delay_c, flush_expired_bios);
150	flush_delayed_bios(dc, false);
151}
152
153static void delay_dtr(struct dm_target *ti)
154{
155	struct delay_c *dc = ti->private;
156
157	if (dc->kdelayd_wq)
158		destroy_workqueue(dc->kdelayd_wq);
159
160	if (dc->read.dev)
161		dm_put_device(ti, dc->read.dev);
162	if (dc->write.dev)
163		dm_put_device(ti, dc->write.dev);
164	if (dc->flush.dev)
165		dm_put_device(ti, dc->flush.dev);
166	if (dc->worker)
167		kthread_stop(dc->worker);
168
169	mutex_destroy(&dc->timer_lock);
170
171	kfree(dc);
172}
173
174static int delay_class_ctr(struct dm_target *ti, struct delay_class *c, char **argv)
175{
176	int ret;
177	unsigned long long tmpll;
178	char dummy;
179
180	if (sscanf(argv[1], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
181		ti->error = "Invalid device sector";
182		return -EINVAL;
183	}
184	c->start = tmpll;
185
186	if (sscanf(argv[2], "%u%c", &c->delay, &dummy) != 1) {
187		ti->error = "Invalid delay";
188		return -EINVAL;
189	}
190
191	ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &c->dev);
192	if (ret) {
193		ti->error = "Device lookup failed";
194		return ret;
195	}
196
197	return 0;
198}
199
200/*
201 * Mapping parameters:
202 *    <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
203 *
204 * With separate write parameters, the first set is only used for reads.
205 * Offsets are specified in sectors.
206 * Delays are specified in milliseconds.
207 */
208static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv)
209{
210	struct delay_c *dc;
211	int ret;
212	unsigned int max_delay;
213
214	if (argc != 3 && argc != 6 && argc != 9) {
215		ti->error = "Requires exactly 3, 6 or 9 arguments";
216		return -EINVAL;
217	}
218
219	dc = kzalloc(sizeof(*dc), GFP_KERNEL);
220	if (!dc) {
221		ti->error = "Cannot allocate context";
222		return -ENOMEM;
223	}
224
225	ti->private = dc;
 
 
226	INIT_LIST_HEAD(&dc->delayed_bios);
227	mutex_init(&dc->timer_lock);
228	dc->may_delay = true;
229	dc->argc = argc;
230
231	ret = delay_class_ctr(ti, &dc->read, argv);
232	if (ret)
233		goto bad;
234	max_delay = dc->read.delay;
235
236	if (argc == 3) {
237		ret = delay_class_ctr(ti, &dc->write, argv);
238		if (ret)
239			goto bad;
240		ret = delay_class_ctr(ti, &dc->flush, argv);
241		if (ret)
242			goto bad;
243		max_delay = max(max_delay, dc->write.delay);
244		max_delay = max(max_delay, dc->flush.delay);
245		goto out;
246	}
247
248	ret = delay_class_ctr(ti, &dc->write, argv + 3);
249	if (ret)
250		goto bad;
251	if (argc == 6) {
252		ret = delay_class_ctr(ti, &dc->flush, argv + 3);
253		if (ret)
254			goto bad;
255		max_delay = max(max_delay, dc->flush.delay);
256		goto out;
257	}
258
259	ret = delay_class_ctr(ti, &dc->flush, argv + 6);
260	if (ret)
261		goto bad;
262	max_delay = max(max_delay, dc->flush.delay);
263
264out:
265	if (max_delay < 50) {
266		/*
267		 * In case of small requested delays, use kthread instead of
268		 * timers and workqueue to achieve better latency.
269		 */
270		dc->worker = kthread_create(&flush_worker_fn, dc,
271					    "dm-delay-flush-worker");
272		if (IS_ERR(dc->worker)) {
273			ret = PTR_ERR(dc->worker);
274			dc->worker = NULL;
275			goto bad;
276		}
277	} else {
278		timer_setup(&dc->delay_timer, handle_delayed_timer, 0);
279		INIT_WORK(&dc->flush_expired_bios, flush_expired_bios);
280		dc->kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0);
281		if (!dc->kdelayd_wq) {
282			ret = -EINVAL;
283			DMERR("Couldn't start kdelayd");
284			goto bad;
285		}
286	}
287
288	ti->num_flush_bios = 1;
289	ti->num_discard_bios = 1;
290	ti->accounts_remapped_io = true;
291	ti->per_io_data_size = sizeof(struct dm_delay_info);
292	return 0;
293
294bad:
295	delay_dtr(ti);
296	return ret;
297}
298
299static int delay_bio(struct delay_c *dc, struct delay_class *c, struct bio *bio)
300{
301	struct dm_delay_info *delayed;
302	unsigned long expires = 0;
303
304	if (!c->delay)
305		return DM_MAPIO_REMAPPED;
306
307	delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
308
309	delayed->context = dc;
310	delayed->expires = expires = jiffies + msecs_to_jiffies(c->delay);
311
312	mutex_lock(&delayed_bios_lock);
313	if (unlikely(!dc->may_delay)) {
314		mutex_unlock(&delayed_bios_lock);
315		return DM_MAPIO_REMAPPED;
316	}
317	c->ops++;
318	list_add_tail(&delayed->list, &dc->delayed_bios);
319	mutex_unlock(&delayed_bios_lock);
320
321	if (delay_is_fast(dc))
322		wake_up_process(dc->worker);
323	else
324		queue_timeout(dc, expires);
325
326	return DM_MAPIO_SUBMITTED;
327}
328
329static void delay_presuspend(struct dm_target *ti)
330{
331	struct delay_c *dc = ti->private;
332
333	mutex_lock(&delayed_bios_lock);
334	dc->may_delay = false;
335	mutex_unlock(&delayed_bios_lock);
336
337	if (!delay_is_fast(dc))
338		del_timer_sync(&dc->delay_timer);
339	flush_delayed_bios(dc, true);
340}
341
342static void delay_resume(struct dm_target *ti)
343{
344	struct delay_c *dc = ti->private;
345
346	dc->may_delay = true;
347}
348
349static int delay_map(struct dm_target *ti, struct bio *bio)
350{
351	struct delay_c *dc = ti->private;
352	struct delay_class *c;
353	struct dm_delay_info *delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
354
355	if (bio_data_dir(bio) == WRITE) {
356		if (unlikely(bio->bi_opf & REQ_PREFLUSH))
357			c = &dc->flush;
358		else
359			c = &dc->write;
360	} else {
361		c = &dc->read;
362	}
363	delayed->class = c;
364	bio_set_dev(bio, c->dev->bdev);
365	bio->bi_iter.bi_sector = c->start + dm_target_offset(ti, bio->bi_iter.bi_sector);
 
366
367	return delay_bio(dc, c, bio);
368}
369
370#define DMEMIT_DELAY_CLASS(c) \
371	DMEMIT("%s %llu %u", (c)->dev->name, (unsigned long long)(c)->start, (c)->delay)
372
373static void delay_status(struct dm_target *ti, status_type_t type,
374			 unsigned int status_flags, char *result, unsigned int maxlen)
375{
376	struct delay_c *dc = ti->private;
377	int sz = 0;
378
379	switch (type) {
380	case STATUSTYPE_INFO:
381		DMEMIT("%u %u %u", dc->read.ops, dc->write.ops, dc->flush.ops);
382		break;
383
384	case STATUSTYPE_TABLE:
385		DMEMIT_DELAY_CLASS(&dc->read);
386		if (dc->argc >= 6) {
387			DMEMIT(" ");
388			DMEMIT_DELAY_CLASS(&dc->write);
389		}
390		if (dc->argc >= 9) {
391			DMEMIT(" ");
392			DMEMIT_DELAY_CLASS(&dc->flush);
393		}
394		break;
395
396	case STATUSTYPE_IMA:
397		*result = '\0';
398		break;
399	}
400}
401
402static int delay_iterate_devices(struct dm_target *ti,
403				 iterate_devices_callout_fn fn, void *data)
404{
405	struct delay_c *dc = ti->private;
406	int ret = 0;
407
408	ret = fn(ti, dc->read.dev, dc->read.start, ti->len, data);
409	if (ret)
410		goto out;
411	ret = fn(ti, dc->write.dev, dc->write.start, ti->len, data);
412	if (ret)
413		goto out;
414	ret = fn(ti, dc->flush.dev, dc->flush.start, ti->len, data);
415	if (ret)
416		goto out;
417
418out:
419	return ret;
420}
421
422static struct target_type delay_target = {
423	.name	     = "delay",
424	.version     = {1, 4, 0},
425	.features    = DM_TARGET_PASSES_INTEGRITY,
426	.module      = THIS_MODULE,
427	.ctr	     = delay_ctr,
428	.dtr	     = delay_dtr,
429	.map	     = delay_map,
430	.presuspend  = delay_presuspend,
431	.resume	     = delay_resume,
432	.status	     = delay_status,
433	.iterate_devices = delay_iterate_devices,
434};
435module_dm(delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436
437MODULE_DESCRIPTION(DM_NAME " delay target");
438MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>");
439MODULE_LICENSE("GPL");
v5.9
 
  1/*
  2 * Copyright (C) 2005-2007 Red Hat GmbH
  3 *
  4 * A target that delays reads and/or writes and can send
  5 * them to different devices.
  6 *
  7 * This file is released under the GPL.
  8 */
  9
 10#include <linux/module.h>
 11#include <linux/init.h>
 12#include <linux/blkdev.h>
 13#include <linux/bio.h>
 14#include <linux/slab.h>
 
 15
 16#include <linux/device-mapper.h>
 17
 18#define DM_MSG_PREFIX "delay"
 19
 20struct delay_class {
 21	struct dm_dev *dev;
 22	sector_t start;
 23	unsigned delay;
 24	unsigned ops;
 25};
 26
 27struct delay_c {
 28	struct timer_list delay_timer;
 29	struct mutex timer_lock;
 30	struct workqueue_struct *kdelayd_wq;
 31	struct work_struct flush_expired_bios;
 32	struct list_head delayed_bios;
 33	atomic_t may_delay;
 
 34
 35	struct delay_class read;
 36	struct delay_class write;
 37	struct delay_class flush;
 38
 39	int argc;
 40};
 41
 42struct dm_delay_info {
 43	struct delay_c *context;
 44	struct delay_class *class;
 45	struct list_head list;
 46	unsigned long expires;
 47};
 48
 49static DEFINE_MUTEX(delayed_bios_lock);
 50
 51static void handle_delayed_timer(struct timer_list *t)
 52{
 53	struct delay_c *dc = from_timer(dc, t, delay_timer);
 54
 55	queue_work(dc->kdelayd_wq, &dc->flush_expired_bios);
 56}
 57
 58static void queue_timeout(struct delay_c *dc, unsigned long expires)
 59{
 60	mutex_lock(&dc->timer_lock);
 61
 62	if (!timer_pending(&dc->delay_timer) || expires < dc->delay_timer.expires)
 63		mod_timer(&dc->delay_timer, expires);
 64
 65	mutex_unlock(&dc->timer_lock);
 66}
 67
 
 
 
 
 
 68static void flush_bios(struct bio *bio)
 69{
 70	struct bio *n;
 71
 72	while (bio) {
 73		n = bio->bi_next;
 74		bio->bi_next = NULL;
 75		submit_bio_noacct(bio);
 76		bio = n;
 77	}
 78}
 79
 80static struct bio *flush_delayed_bios(struct delay_c *dc, int flush_all)
 81{
 82	struct dm_delay_info *delayed, *next;
 
 83	unsigned long next_expires = 0;
 84	unsigned long start_timer = 0;
 85	struct bio_list flush_bios = { };
 86
 87	mutex_lock(&delayed_bios_lock);
 88	list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) {
 
 89		if (flush_all || time_after_eq(jiffies, delayed->expires)) {
 90			struct bio *bio = dm_bio_from_per_bio_data(delayed,
 91						sizeof(struct dm_delay_info));
 92			list_del(&delayed->list);
 93			bio_list_add(&flush_bios, bio);
 94			delayed->class->ops--;
 95			continue;
 96		}
 97
 98		if (!start_timer) {
 99			start_timer = 1;
100			next_expires = delayed->expires;
101		} else
102			next_expires = min(next_expires, delayed->expires);
 
 
 
103	}
104	mutex_unlock(&delayed_bios_lock);
105
106	if (start_timer)
107		queue_timeout(dc, next_expires);
108
109	return bio_list_get(&flush_bios);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110}
111
112static void flush_expired_bios(struct work_struct *work)
113{
114	struct delay_c *dc;
115
116	dc = container_of(work, struct delay_c, flush_expired_bios);
117	flush_bios(flush_delayed_bios(dc, 0));
118}
119
120static void delay_dtr(struct dm_target *ti)
121{
122	struct delay_c *dc = ti->private;
123
124	if (dc->kdelayd_wq)
125		destroy_workqueue(dc->kdelayd_wq);
126
127	if (dc->read.dev)
128		dm_put_device(ti, dc->read.dev);
129	if (dc->write.dev)
130		dm_put_device(ti, dc->write.dev);
131	if (dc->flush.dev)
132		dm_put_device(ti, dc->flush.dev);
 
 
133
134	mutex_destroy(&dc->timer_lock);
135
136	kfree(dc);
137}
138
139static int delay_class_ctr(struct dm_target *ti, struct delay_class *c, char **argv)
140{
141	int ret;
142	unsigned long long tmpll;
143	char dummy;
144
145	if (sscanf(argv[1], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
146		ti->error = "Invalid device sector";
147		return -EINVAL;
148	}
149	c->start = tmpll;
150
151	if (sscanf(argv[2], "%u%c", &c->delay, &dummy) != 1) {
152		ti->error = "Invalid delay";
153		return -EINVAL;
154	}
155
156	ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &c->dev);
157	if (ret) {
158		ti->error = "Device lookup failed";
159		return ret;
160	}
161
162	return 0;
163}
164
165/*
166 * Mapping parameters:
167 *    <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
168 *
169 * With separate write parameters, the first set is only used for reads.
170 * Offsets are specified in sectors.
171 * Delays are specified in milliseconds.
172 */
173static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv)
174{
175	struct delay_c *dc;
176	int ret;
 
177
178	if (argc != 3 && argc != 6 && argc != 9) {
179		ti->error = "Requires exactly 3, 6 or 9 arguments";
180		return -EINVAL;
181	}
182
183	dc = kzalloc(sizeof(*dc), GFP_KERNEL);
184	if (!dc) {
185		ti->error = "Cannot allocate context";
186		return -ENOMEM;
187	}
188
189	ti->private = dc;
190	timer_setup(&dc->delay_timer, handle_delayed_timer, 0);
191	INIT_WORK(&dc->flush_expired_bios, flush_expired_bios);
192	INIT_LIST_HEAD(&dc->delayed_bios);
193	mutex_init(&dc->timer_lock);
194	atomic_set(&dc->may_delay, 1);
195	dc->argc = argc;
196
197	ret = delay_class_ctr(ti, &dc->read, argv);
198	if (ret)
199		goto bad;
 
200
201	if (argc == 3) {
202		ret = delay_class_ctr(ti, &dc->write, argv);
203		if (ret)
204			goto bad;
205		ret = delay_class_ctr(ti, &dc->flush, argv);
206		if (ret)
207			goto bad;
 
 
208		goto out;
209	}
210
211	ret = delay_class_ctr(ti, &dc->write, argv + 3);
212	if (ret)
213		goto bad;
214	if (argc == 6) {
215		ret = delay_class_ctr(ti, &dc->flush, argv + 3);
216		if (ret)
217			goto bad;
 
218		goto out;
219	}
220
221	ret = delay_class_ctr(ti, &dc->flush, argv + 6);
222	if (ret)
223		goto bad;
 
224
225out:
226	dc->kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0);
227	if (!dc->kdelayd_wq) {
228		ret = -EINVAL;
229		DMERR("Couldn't start kdelayd");
230		goto bad;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231	}
232
233	ti->num_flush_bios = 1;
234	ti->num_discard_bios = 1;
 
235	ti->per_io_data_size = sizeof(struct dm_delay_info);
236	return 0;
237
238bad:
239	delay_dtr(ti);
240	return ret;
241}
242
243static int delay_bio(struct delay_c *dc, struct delay_class *c, struct bio *bio)
244{
245	struct dm_delay_info *delayed;
246	unsigned long expires = 0;
247
248	if (!c->delay || !atomic_read(&dc->may_delay))
249		return DM_MAPIO_REMAPPED;
250
251	delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
252
253	delayed->context = dc;
254	delayed->expires = expires = jiffies + msecs_to_jiffies(c->delay);
255
256	mutex_lock(&delayed_bios_lock);
 
 
 
 
257	c->ops++;
258	list_add_tail(&delayed->list, &dc->delayed_bios);
259	mutex_unlock(&delayed_bios_lock);
260
261	queue_timeout(dc, expires);
 
 
 
262
263	return DM_MAPIO_SUBMITTED;
264}
265
266static void delay_presuspend(struct dm_target *ti)
267{
268	struct delay_c *dc = ti->private;
269
270	atomic_set(&dc->may_delay, 0);
271	del_timer_sync(&dc->delay_timer);
272	flush_bios(flush_delayed_bios(dc, 1));
 
 
 
 
273}
274
275static void delay_resume(struct dm_target *ti)
276{
277	struct delay_c *dc = ti->private;
278
279	atomic_set(&dc->may_delay, 1);
280}
281
282static int delay_map(struct dm_target *ti, struct bio *bio)
283{
284	struct delay_c *dc = ti->private;
285	struct delay_class *c;
286	struct dm_delay_info *delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
287
288	if (bio_data_dir(bio) == WRITE) {
289		if (unlikely(bio->bi_opf & REQ_PREFLUSH))
290			c = &dc->flush;
291		else
292			c = &dc->write;
293	} else {
294		c = &dc->read;
295	}
296	delayed->class = c;
297	bio_set_dev(bio, c->dev->bdev);
298	if (bio_sectors(bio))
299		bio->bi_iter.bi_sector = c->start + dm_target_offset(ti, bio->bi_iter.bi_sector);
300
301	return delay_bio(dc, c, bio);
302}
303
304#define DMEMIT_DELAY_CLASS(c) \
305	DMEMIT("%s %llu %u", (c)->dev->name, (unsigned long long)(c)->start, (c)->delay)
306
307static void delay_status(struct dm_target *ti, status_type_t type,
308			 unsigned status_flags, char *result, unsigned maxlen)
309{
310	struct delay_c *dc = ti->private;
311	int sz = 0;
312
313	switch (type) {
314	case STATUSTYPE_INFO:
315		DMEMIT("%u %u %u", dc->read.ops, dc->write.ops, dc->flush.ops);
316		break;
317
318	case STATUSTYPE_TABLE:
319		DMEMIT_DELAY_CLASS(&dc->read);
320		if (dc->argc >= 6) {
321			DMEMIT(" ");
322			DMEMIT_DELAY_CLASS(&dc->write);
323		}
324		if (dc->argc >= 9) {
325			DMEMIT(" ");
326			DMEMIT_DELAY_CLASS(&dc->flush);
327		}
328		break;
 
 
 
 
329	}
330}
331
332static int delay_iterate_devices(struct dm_target *ti,
333				 iterate_devices_callout_fn fn, void *data)
334{
335	struct delay_c *dc = ti->private;
336	int ret = 0;
337
338	ret = fn(ti, dc->read.dev, dc->read.start, ti->len, data);
339	if (ret)
340		goto out;
341	ret = fn(ti, dc->write.dev, dc->write.start, ti->len, data);
342	if (ret)
343		goto out;
344	ret = fn(ti, dc->flush.dev, dc->flush.start, ti->len, data);
345	if (ret)
346		goto out;
347
348out:
349	return ret;
350}
351
352static struct target_type delay_target = {
353	.name	     = "delay",
354	.version     = {1, 2, 1},
355	.features    = DM_TARGET_PASSES_INTEGRITY,
356	.module      = THIS_MODULE,
357	.ctr	     = delay_ctr,
358	.dtr	     = delay_dtr,
359	.map	     = delay_map,
360	.presuspend  = delay_presuspend,
361	.resume	     = delay_resume,
362	.status	     = delay_status,
363	.iterate_devices = delay_iterate_devices,
364};
365
366static int __init dm_delay_init(void)
367{
368	int r;
369
370	r = dm_register_target(&delay_target);
371	if (r < 0) {
372		DMERR("register failed %d", r);
373		goto bad_register;
374	}
375
376	return 0;
377
378bad_register:
379	return r;
380}
381
382static void __exit dm_delay_exit(void)
383{
384	dm_unregister_target(&delay_target);
385}
386
387/* Module hooks */
388module_init(dm_delay_init);
389module_exit(dm_delay_exit);
390
391MODULE_DESCRIPTION(DM_NAME " delay target");
392MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>");
393MODULE_LICENSE("GPL");