Loading...
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#include <linux/errno.h>
40#include <linux/err.h>
41#include <linux/export.h>
42#include <linux/string.h>
43#include <linux/slab.h>
44#include <linux/in.h>
45#include <linux/in6.h>
46#include <net/addrconf.h>
47#include <linux/security.h>
48
49#include <rdma/ib_verbs.h>
50#include <rdma/ib_cache.h>
51#include <rdma/ib_addr.h>
52#include <rdma/rw.h>
53#include <rdma/lag.h>
54
55#include "core_priv.h"
56#include <trace/events/rdma_core.h>
57
58static int ib_resolve_eth_dmac(struct ib_device *device,
59 struct rdma_ah_attr *ah_attr);
60
61static const char * const ib_events[] = {
62 [IB_EVENT_CQ_ERR] = "CQ error",
63 [IB_EVENT_QP_FATAL] = "QP fatal error",
64 [IB_EVENT_QP_REQ_ERR] = "QP request error",
65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
66 [IB_EVENT_COMM_EST] = "communication established",
67 [IB_EVENT_SQ_DRAINED] = "send queue drained",
68 [IB_EVENT_PATH_MIG] = "path migration successful",
69 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
70 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
71 [IB_EVENT_PORT_ACTIVE] = "port active",
72 [IB_EVENT_PORT_ERR] = "port error",
73 [IB_EVENT_LID_CHANGE] = "LID change",
74 [IB_EVENT_PKEY_CHANGE] = "P_key change",
75 [IB_EVENT_SM_CHANGE] = "SM change",
76 [IB_EVENT_SRQ_ERR] = "SRQ error",
77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
80 [IB_EVENT_GID_CHANGE] = "GID changed",
81};
82
83const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84{
85 size_t index = event;
86
87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 ib_events[index] : "unrecognized event";
89}
90EXPORT_SYMBOL(ib_event_msg);
91
92static const char * const wc_statuses[] = {
93 [IB_WC_SUCCESS] = "success",
94 [IB_WC_LOC_LEN_ERR] = "local length error",
95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
97 [IB_WC_LOC_PROT_ERR] = "local protection error",
98 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
99 [IB_WC_MW_BIND_ERR] = "memory bind operation error",
100 [IB_WC_BAD_RESP_ERR] = "bad response error",
101 [IB_WC_LOC_ACCESS_ERR] = "local access error",
102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error",
103 [IB_WC_REM_ACCESS_ERR] = "remote access error",
104 [IB_WC_REM_OP_ERR] = "remote operation error",
105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
109 [IB_WC_REM_ABORT_ERR] = "operation aborted",
110 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
112 [IB_WC_FATAL_ERR] = "fatal error",
113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
114 [IB_WC_GENERAL_ERR] = "general error",
115};
116
117const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118{
119 size_t index = status;
120
121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 wc_statuses[index] : "unrecognized status";
123}
124EXPORT_SYMBOL(ib_wc_status_msg);
125
126__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127{
128 switch (rate) {
129 case IB_RATE_2_5_GBPS: return 1;
130 case IB_RATE_5_GBPS: return 2;
131 case IB_RATE_10_GBPS: return 4;
132 case IB_RATE_20_GBPS: return 8;
133 case IB_RATE_30_GBPS: return 12;
134 case IB_RATE_40_GBPS: return 16;
135 case IB_RATE_60_GBPS: return 24;
136 case IB_RATE_80_GBPS: return 32;
137 case IB_RATE_120_GBPS: return 48;
138 case IB_RATE_14_GBPS: return 6;
139 case IB_RATE_56_GBPS: return 22;
140 case IB_RATE_112_GBPS: return 45;
141 case IB_RATE_168_GBPS: return 67;
142 case IB_RATE_25_GBPS: return 10;
143 case IB_RATE_100_GBPS: return 40;
144 case IB_RATE_200_GBPS: return 80;
145 case IB_RATE_300_GBPS: return 120;
146 case IB_RATE_28_GBPS: return 11;
147 case IB_RATE_50_GBPS: return 20;
148 case IB_RATE_400_GBPS: return 160;
149 case IB_RATE_600_GBPS: return 240;
150 case IB_RATE_800_GBPS: return 320;
151 default: return -1;
152 }
153}
154EXPORT_SYMBOL(ib_rate_to_mult);
155
156__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
157{
158 switch (mult) {
159 case 1: return IB_RATE_2_5_GBPS;
160 case 2: return IB_RATE_5_GBPS;
161 case 4: return IB_RATE_10_GBPS;
162 case 8: return IB_RATE_20_GBPS;
163 case 12: return IB_RATE_30_GBPS;
164 case 16: return IB_RATE_40_GBPS;
165 case 24: return IB_RATE_60_GBPS;
166 case 32: return IB_RATE_80_GBPS;
167 case 48: return IB_RATE_120_GBPS;
168 case 6: return IB_RATE_14_GBPS;
169 case 22: return IB_RATE_56_GBPS;
170 case 45: return IB_RATE_112_GBPS;
171 case 67: return IB_RATE_168_GBPS;
172 case 10: return IB_RATE_25_GBPS;
173 case 40: return IB_RATE_100_GBPS;
174 case 80: return IB_RATE_200_GBPS;
175 case 120: return IB_RATE_300_GBPS;
176 case 11: return IB_RATE_28_GBPS;
177 case 20: return IB_RATE_50_GBPS;
178 case 160: return IB_RATE_400_GBPS;
179 case 240: return IB_RATE_600_GBPS;
180 case 320: return IB_RATE_800_GBPS;
181 default: return IB_RATE_PORT_CURRENT;
182 }
183}
184EXPORT_SYMBOL(mult_to_ib_rate);
185
186__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
187{
188 switch (rate) {
189 case IB_RATE_2_5_GBPS: return 2500;
190 case IB_RATE_5_GBPS: return 5000;
191 case IB_RATE_10_GBPS: return 10000;
192 case IB_RATE_20_GBPS: return 20000;
193 case IB_RATE_30_GBPS: return 30000;
194 case IB_RATE_40_GBPS: return 40000;
195 case IB_RATE_60_GBPS: return 60000;
196 case IB_RATE_80_GBPS: return 80000;
197 case IB_RATE_120_GBPS: return 120000;
198 case IB_RATE_14_GBPS: return 14062;
199 case IB_RATE_56_GBPS: return 56250;
200 case IB_RATE_112_GBPS: return 112500;
201 case IB_RATE_168_GBPS: return 168750;
202 case IB_RATE_25_GBPS: return 25781;
203 case IB_RATE_100_GBPS: return 103125;
204 case IB_RATE_200_GBPS: return 206250;
205 case IB_RATE_300_GBPS: return 309375;
206 case IB_RATE_28_GBPS: return 28125;
207 case IB_RATE_50_GBPS: return 53125;
208 case IB_RATE_400_GBPS: return 425000;
209 case IB_RATE_600_GBPS: return 637500;
210 case IB_RATE_800_GBPS: return 850000;
211 default: return -1;
212 }
213}
214EXPORT_SYMBOL(ib_rate_to_mbps);
215
216__attribute_const__ enum rdma_transport_type
217rdma_node_get_transport(unsigned int node_type)
218{
219
220 if (node_type == RDMA_NODE_USNIC)
221 return RDMA_TRANSPORT_USNIC;
222 if (node_type == RDMA_NODE_USNIC_UDP)
223 return RDMA_TRANSPORT_USNIC_UDP;
224 if (node_type == RDMA_NODE_RNIC)
225 return RDMA_TRANSPORT_IWARP;
226 if (node_type == RDMA_NODE_UNSPECIFIED)
227 return RDMA_TRANSPORT_UNSPECIFIED;
228
229 return RDMA_TRANSPORT_IB;
230}
231EXPORT_SYMBOL(rdma_node_get_transport);
232
233enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
234 u32 port_num)
235{
236 enum rdma_transport_type lt;
237 if (device->ops.get_link_layer)
238 return device->ops.get_link_layer(device, port_num);
239
240 lt = rdma_node_get_transport(device->node_type);
241 if (lt == RDMA_TRANSPORT_IB)
242 return IB_LINK_LAYER_INFINIBAND;
243
244 return IB_LINK_LAYER_ETHERNET;
245}
246EXPORT_SYMBOL(rdma_port_get_link_layer);
247
248/* Protection domains */
249
250/**
251 * __ib_alloc_pd - Allocates an unused protection domain.
252 * @device: The device on which to allocate the protection domain.
253 * @flags: protection domain flags
254 * @caller: caller's build-time module name
255 *
256 * A protection domain object provides an association between QPs, shared
257 * receive queues, address handles, memory regions, and memory windows.
258 *
259 * Every PD has a local_dma_lkey which can be used as the lkey value for local
260 * memory operations.
261 */
262struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
263 const char *caller)
264{
265 struct ib_pd *pd;
266 int mr_access_flags = 0;
267 int ret;
268
269 pd = rdma_zalloc_drv_obj(device, ib_pd);
270 if (!pd)
271 return ERR_PTR(-ENOMEM);
272
273 pd->device = device;
274 pd->flags = flags;
275
276 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
277 rdma_restrack_set_name(&pd->res, caller);
278
279 ret = device->ops.alloc_pd(pd, NULL);
280 if (ret) {
281 rdma_restrack_put(&pd->res);
282 kfree(pd);
283 return ERR_PTR(ret);
284 }
285 rdma_restrack_add(&pd->res);
286
287 if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
288 pd->local_dma_lkey = device->local_dma_lkey;
289 else
290 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
291
292 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
293 pr_warn("%s: enabling unsafe global rkey\n", caller);
294 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
295 }
296
297 if (mr_access_flags) {
298 struct ib_mr *mr;
299
300 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
301 if (IS_ERR(mr)) {
302 ib_dealloc_pd(pd);
303 return ERR_CAST(mr);
304 }
305
306 mr->device = pd->device;
307 mr->pd = pd;
308 mr->type = IB_MR_TYPE_DMA;
309 mr->uobject = NULL;
310 mr->need_inval = false;
311
312 pd->__internal_mr = mr;
313
314 if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
315 pd->local_dma_lkey = pd->__internal_mr->lkey;
316
317 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
318 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
319 }
320
321 return pd;
322}
323EXPORT_SYMBOL(__ib_alloc_pd);
324
325/**
326 * ib_dealloc_pd_user - Deallocates a protection domain.
327 * @pd: The protection domain to deallocate.
328 * @udata: Valid user data or NULL for kernel object
329 *
330 * It is an error to call this function while any resources in the pd still
331 * exist. The caller is responsible to synchronously destroy them and
332 * guarantee no new allocations will happen.
333 */
334int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
335{
336 int ret;
337
338 if (pd->__internal_mr) {
339 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
340 WARN_ON(ret);
341 pd->__internal_mr = NULL;
342 }
343
344 ret = pd->device->ops.dealloc_pd(pd, udata);
345 if (ret)
346 return ret;
347
348 rdma_restrack_del(&pd->res);
349 kfree(pd);
350 return ret;
351}
352EXPORT_SYMBOL(ib_dealloc_pd_user);
353
354/* Address handles */
355
356/**
357 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
358 * @dest: Pointer to destination ah_attr. Contents of the destination
359 * pointer is assumed to be invalid and attribute are overwritten.
360 * @src: Pointer to source ah_attr.
361 */
362void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
363 const struct rdma_ah_attr *src)
364{
365 *dest = *src;
366 if (dest->grh.sgid_attr)
367 rdma_hold_gid_attr(dest->grh.sgid_attr);
368}
369EXPORT_SYMBOL(rdma_copy_ah_attr);
370
371/**
372 * rdma_replace_ah_attr - Replace valid ah_attr with new one.
373 * @old: Pointer to existing ah_attr which needs to be replaced.
374 * old is assumed to be valid or zero'd
375 * @new: Pointer to the new ah_attr.
376 *
377 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
378 * old the ah_attr is valid; after that it copies the new attribute and holds
379 * the reference to the replaced ah_attr.
380 */
381void rdma_replace_ah_attr(struct rdma_ah_attr *old,
382 const struct rdma_ah_attr *new)
383{
384 rdma_destroy_ah_attr(old);
385 *old = *new;
386 if (old->grh.sgid_attr)
387 rdma_hold_gid_attr(old->grh.sgid_attr);
388}
389EXPORT_SYMBOL(rdma_replace_ah_attr);
390
391/**
392 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
393 * @dest: Pointer to destination ah_attr to copy to.
394 * dest is assumed to be valid or zero'd
395 * @src: Pointer to the new ah_attr.
396 *
397 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
398 * if it is valid. This also transfers ownership of internal references from
399 * src to dest, making src invalid in the process. No new reference of the src
400 * ah_attr is taken.
401 */
402void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
403{
404 rdma_destroy_ah_attr(dest);
405 *dest = *src;
406 src->grh.sgid_attr = NULL;
407}
408EXPORT_SYMBOL(rdma_move_ah_attr);
409
410/*
411 * Validate that the rdma_ah_attr is valid for the device before passing it
412 * off to the driver.
413 */
414static int rdma_check_ah_attr(struct ib_device *device,
415 struct rdma_ah_attr *ah_attr)
416{
417 if (!rdma_is_port_valid(device, ah_attr->port_num))
418 return -EINVAL;
419
420 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
421 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
422 !(ah_attr->ah_flags & IB_AH_GRH))
423 return -EINVAL;
424
425 if (ah_attr->grh.sgid_attr) {
426 /*
427 * Make sure the passed sgid_attr is consistent with the
428 * parameters
429 */
430 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
431 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
432 return -EINVAL;
433 }
434 return 0;
435}
436
437/*
438 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
439 * On success the caller is responsible to call rdma_unfill_sgid_attr().
440 */
441static int rdma_fill_sgid_attr(struct ib_device *device,
442 struct rdma_ah_attr *ah_attr,
443 const struct ib_gid_attr **old_sgid_attr)
444{
445 const struct ib_gid_attr *sgid_attr;
446 struct ib_global_route *grh;
447 int ret;
448
449 *old_sgid_attr = ah_attr->grh.sgid_attr;
450
451 ret = rdma_check_ah_attr(device, ah_attr);
452 if (ret)
453 return ret;
454
455 if (!(ah_attr->ah_flags & IB_AH_GRH))
456 return 0;
457
458 grh = rdma_ah_retrieve_grh(ah_attr);
459 if (grh->sgid_attr)
460 return 0;
461
462 sgid_attr =
463 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
464 if (IS_ERR(sgid_attr))
465 return PTR_ERR(sgid_attr);
466
467 /* Move ownerhip of the kref into the ah_attr */
468 grh->sgid_attr = sgid_attr;
469 return 0;
470}
471
472static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
473 const struct ib_gid_attr *old_sgid_attr)
474{
475 /*
476 * Fill didn't change anything, the caller retains ownership of
477 * whatever it passed
478 */
479 if (ah_attr->grh.sgid_attr == old_sgid_attr)
480 return;
481
482 /*
483 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
484 * doesn't see any change in the rdma_ah_attr. If we get here
485 * old_sgid_attr is NULL.
486 */
487 rdma_destroy_ah_attr(ah_attr);
488}
489
490static const struct ib_gid_attr *
491rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
492 const struct ib_gid_attr *old_attr)
493{
494 if (old_attr)
495 rdma_put_gid_attr(old_attr);
496 if (ah_attr->ah_flags & IB_AH_GRH) {
497 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
498 return ah_attr->grh.sgid_attr;
499 }
500 return NULL;
501}
502
503static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
504 struct rdma_ah_attr *ah_attr,
505 u32 flags,
506 struct ib_udata *udata,
507 struct net_device *xmit_slave)
508{
509 struct rdma_ah_init_attr init_attr = {};
510 struct ib_device *device = pd->device;
511 struct ib_ah *ah;
512 int ret;
513
514 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
515
516 if (!udata && !device->ops.create_ah)
517 return ERR_PTR(-EOPNOTSUPP);
518
519 ah = rdma_zalloc_drv_obj_gfp(
520 device, ib_ah,
521 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
522 if (!ah)
523 return ERR_PTR(-ENOMEM);
524
525 ah->device = device;
526 ah->pd = pd;
527 ah->type = ah_attr->type;
528 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
529 init_attr.ah_attr = ah_attr;
530 init_attr.flags = flags;
531 init_attr.xmit_slave = xmit_slave;
532
533 if (udata)
534 ret = device->ops.create_user_ah(ah, &init_attr, udata);
535 else
536 ret = device->ops.create_ah(ah, &init_attr, NULL);
537 if (ret) {
538 if (ah->sgid_attr)
539 rdma_put_gid_attr(ah->sgid_attr);
540 kfree(ah);
541 return ERR_PTR(ret);
542 }
543
544 atomic_inc(&pd->usecnt);
545 return ah;
546}
547
548/**
549 * rdma_create_ah - Creates an address handle for the
550 * given address vector.
551 * @pd: The protection domain associated with the address handle.
552 * @ah_attr: The attributes of the address vector.
553 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
554 *
555 * It returns 0 on success and returns appropriate error code on error.
556 * The address handle is used to reference a local or global destination
557 * in all UD QP post sends.
558 */
559struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
560 u32 flags)
561{
562 const struct ib_gid_attr *old_sgid_attr;
563 struct net_device *slave;
564 struct ib_ah *ah;
565 int ret;
566
567 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
568 if (ret)
569 return ERR_PTR(ret);
570 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
571 (flags & RDMA_CREATE_AH_SLEEPABLE) ?
572 GFP_KERNEL : GFP_ATOMIC);
573 if (IS_ERR(slave)) {
574 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
575 return (void *)slave;
576 }
577 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
578 rdma_lag_put_ah_roce_slave(slave);
579 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
580 return ah;
581}
582EXPORT_SYMBOL(rdma_create_ah);
583
584/**
585 * rdma_create_user_ah - Creates an address handle for the
586 * given address vector.
587 * It resolves destination mac address for ah attribute of RoCE type.
588 * @pd: The protection domain associated with the address handle.
589 * @ah_attr: The attributes of the address vector.
590 * @udata: pointer to user's input output buffer information need by
591 * provider driver.
592 *
593 * It returns 0 on success and returns appropriate error code on error.
594 * The address handle is used to reference a local or global destination
595 * in all UD QP post sends.
596 */
597struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
598 struct rdma_ah_attr *ah_attr,
599 struct ib_udata *udata)
600{
601 const struct ib_gid_attr *old_sgid_attr;
602 struct ib_ah *ah;
603 int err;
604
605 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
606 if (err)
607 return ERR_PTR(err);
608
609 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
610 err = ib_resolve_eth_dmac(pd->device, ah_attr);
611 if (err) {
612 ah = ERR_PTR(err);
613 goto out;
614 }
615 }
616
617 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
618 udata, NULL);
619
620out:
621 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
622 return ah;
623}
624EXPORT_SYMBOL(rdma_create_user_ah);
625
626int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
627{
628 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
629 struct iphdr ip4h_checked;
630 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
631
632 /* If it's IPv6, the version must be 6, otherwise, the first
633 * 20 bytes (before the IPv4 header) are garbled.
634 */
635 if (ip6h->version != 6)
636 return (ip4h->version == 4) ? 4 : 0;
637 /* version may be 6 or 4 because the first 20 bytes could be garbled */
638
639 /* RoCE v2 requires no options, thus header length
640 * must be 5 words
641 */
642 if (ip4h->ihl != 5)
643 return 6;
644
645 /* Verify checksum.
646 * We can't write on scattered buffers so we need to copy to
647 * temp buffer.
648 */
649 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
650 ip4h_checked.check = 0;
651 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
652 /* if IPv4 header checksum is OK, believe it */
653 if (ip4h->check == ip4h_checked.check)
654 return 4;
655 return 6;
656}
657EXPORT_SYMBOL(ib_get_rdma_header_version);
658
659static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
660 u32 port_num,
661 const struct ib_grh *grh)
662{
663 int grh_version;
664
665 if (rdma_protocol_ib(device, port_num))
666 return RDMA_NETWORK_IB;
667
668 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
669
670 if (grh_version == 4)
671 return RDMA_NETWORK_IPV4;
672
673 if (grh->next_hdr == IPPROTO_UDP)
674 return RDMA_NETWORK_IPV6;
675
676 return RDMA_NETWORK_ROCE_V1;
677}
678
679struct find_gid_index_context {
680 u16 vlan_id;
681 enum ib_gid_type gid_type;
682};
683
684static bool find_gid_index(const union ib_gid *gid,
685 const struct ib_gid_attr *gid_attr,
686 void *context)
687{
688 struct find_gid_index_context *ctx = context;
689 u16 vlan_id = 0xffff;
690 int ret;
691
692 if (ctx->gid_type != gid_attr->gid_type)
693 return false;
694
695 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
696 if (ret)
697 return false;
698
699 return ctx->vlan_id == vlan_id;
700}
701
702static const struct ib_gid_attr *
703get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
704 u16 vlan_id, const union ib_gid *sgid,
705 enum ib_gid_type gid_type)
706{
707 struct find_gid_index_context context = {.vlan_id = vlan_id,
708 .gid_type = gid_type};
709
710 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
711 &context);
712}
713
714int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
715 enum rdma_network_type net_type,
716 union ib_gid *sgid, union ib_gid *dgid)
717{
718 struct sockaddr_in src_in;
719 struct sockaddr_in dst_in;
720 __be32 src_saddr, dst_saddr;
721
722 if (!sgid || !dgid)
723 return -EINVAL;
724
725 if (net_type == RDMA_NETWORK_IPV4) {
726 memcpy(&src_in.sin_addr.s_addr,
727 &hdr->roce4grh.saddr, 4);
728 memcpy(&dst_in.sin_addr.s_addr,
729 &hdr->roce4grh.daddr, 4);
730 src_saddr = src_in.sin_addr.s_addr;
731 dst_saddr = dst_in.sin_addr.s_addr;
732 ipv6_addr_set_v4mapped(src_saddr,
733 (struct in6_addr *)sgid);
734 ipv6_addr_set_v4mapped(dst_saddr,
735 (struct in6_addr *)dgid);
736 return 0;
737 } else if (net_type == RDMA_NETWORK_IPV6 ||
738 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
739 *dgid = hdr->ibgrh.dgid;
740 *sgid = hdr->ibgrh.sgid;
741 return 0;
742 } else {
743 return -EINVAL;
744 }
745}
746EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
747
748/* Resolve destination mac address and hop limit for unicast destination
749 * GID entry, considering the source GID entry as well.
750 * ah_attribute must have valid port_num, sgid_index.
751 */
752static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
753 struct rdma_ah_attr *ah_attr)
754{
755 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
756 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
757 int hop_limit = 0xff;
758 int ret = 0;
759
760 /* If destination is link local and source GID is RoCEv1,
761 * IP stack is not used.
762 */
763 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
764 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
765 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
766 ah_attr->roce.dmac);
767 return ret;
768 }
769
770 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
771 ah_attr->roce.dmac,
772 sgid_attr, &hop_limit);
773
774 grh->hop_limit = hop_limit;
775 return ret;
776}
777
778/*
779 * This function initializes address handle attributes from the incoming packet.
780 * Incoming packet has dgid of the receiver node on which this code is
781 * getting executed and, sgid contains the GID of the sender.
782 *
783 * When resolving mac address of destination, the arrived dgid is used
784 * as sgid and, sgid is used as dgid because sgid contains destinations
785 * GID whom to respond to.
786 *
787 * On success the caller is responsible to call rdma_destroy_ah_attr on the
788 * attr.
789 */
790int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
791 const struct ib_wc *wc, const struct ib_grh *grh,
792 struct rdma_ah_attr *ah_attr)
793{
794 u32 flow_class;
795 int ret;
796 enum rdma_network_type net_type = RDMA_NETWORK_IB;
797 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
798 const struct ib_gid_attr *sgid_attr;
799 int hoplimit = 0xff;
800 union ib_gid dgid;
801 union ib_gid sgid;
802
803 might_sleep();
804
805 memset(ah_attr, 0, sizeof *ah_attr);
806 ah_attr->type = rdma_ah_find_type(device, port_num);
807 if (rdma_cap_eth_ah(device, port_num)) {
808 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
809 net_type = wc->network_hdr_type;
810 else
811 net_type = ib_get_net_type_by_grh(device, port_num, grh);
812 gid_type = ib_network_to_gid_type(net_type);
813 }
814 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
815 &sgid, &dgid);
816 if (ret)
817 return ret;
818
819 rdma_ah_set_sl(ah_attr, wc->sl);
820 rdma_ah_set_port_num(ah_attr, port_num);
821
822 if (rdma_protocol_roce(device, port_num)) {
823 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
824 wc->vlan_id : 0xffff;
825
826 if (!(wc->wc_flags & IB_WC_GRH))
827 return -EPROTOTYPE;
828
829 sgid_attr = get_sgid_attr_from_eth(device, port_num,
830 vlan_id, &dgid,
831 gid_type);
832 if (IS_ERR(sgid_attr))
833 return PTR_ERR(sgid_attr);
834
835 flow_class = be32_to_cpu(grh->version_tclass_flow);
836 rdma_move_grh_sgid_attr(ah_attr,
837 &sgid,
838 flow_class & 0xFFFFF,
839 hoplimit,
840 (flow_class >> 20) & 0xFF,
841 sgid_attr);
842
843 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
844 if (ret)
845 rdma_destroy_ah_attr(ah_attr);
846
847 return ret;
848 } else {
849 rdma_ah_set_dlid(ah_attr, wc->slid);
850 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
851
852 if ((wc->wc_flags & IB_WC_GRH) == 0)
853 return 0;
854
855 if (dgid.global.interface_id !=
856 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
857 sgid_attr = rdma_find_gid_by_port(
858 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
859 } else
860 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
861
862 if (IS_ERR(sgid_attr))
863 return PTR_ERR(sgid_attr);
864 flow_class = be32_to_cpu(grh->version_tclass_flow);
865 rdma_move_grh_sgid_attr(ah_attr,
866 &sgid,
867 flow_class & 0xFFFFF,
868 hoplimit,
869 (flow_class >> 20) & 0xFF,
870 sgid_attr);
871
872 return 0;
873 }
874}
875EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
876
877/**
878 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
879 * of the reference
880 *
881 * @attr: Pointer to AH attribute structure
882 * @dgid: Destination GID
883 * @flow_label: Flow label
884 * @hop_limit: Hop limit
885 * @traffic_class: traffic class
886 * @sgid_attr: Pointer to SGID attribute
887 *
888 * This takes ownership of the sgid_attr reference. The caller must ensure
889 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
890 * calling this function.
891 */
892void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
893 u32 flow_label, u8 hop_limit, u8 traffic_class,
894 const struct ib_gid_attr *sgid_attr)
895{
896 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
897 traffic_class);
898 attr->grh.sgid_attr = sgid_attr;
899}
900EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
901
902/**
903 * rdma_destroy_ah_attr - Release reference to SGID attribute of
904 * ah attribute.
905 * @ah_attr: Pointer to ah attribute
906 *
907 * Release reference to the SGID attribute of the ah attribute if it is
908 * non NULL. It is safe to call this multiple times, and safe to call it on
909 * a zero initialized ah_attr.
910 */
911void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
912{
913 if (ah_attr->grh.sgid_attr) {
914 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
915 ah_attr->grh.sgid_attr = NULL;
916 }
917}
918EXPORT_SYMBOL(rdma_destroy_ah_attr);
919
920struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
921 const struct ib_grh *grh, u32 port_num)
922{
923 struct rdma_ah_attr ah_attr;
924 struct ib_ah *ah;
925 int ret;
926
927 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
928 if (ret)
929 return ERR_PTR(ret);
930
931 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
932
933 rdma_destroy_ah_attr(&ah_attr);
934 return ah;
935}
936EXPORT_SYMBOL(ib_create_ah_from_wc);
937
938int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
939{
940 const struct ib_gid_attr *old_sgid_attr;
941 int ret;
942
943 if (ah->type != ah_attr->type)
944 return -EINVAL;
945
946 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
947 if (ret)
948 return ret;
949
950 ret = ah->device->ops.modify_ah ?
951 ah->device->ops.modify_ah(ah, ah_attr) :
952 -EOPNOTSUPP;
953
954 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
955 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
956 return ret;
957}
958EXPORT_SYMBOL(rdma_modify_ah);
959
960int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
961{
962 ah_attr->grh.sgid_attr = NULL;
963
964 return ah->device->ops.query_ah ?
965 ah->device->ops.query_ah(ah, ah_attr) :
966 -EOPNOTSUPP;
967}
968EXPORT_SYMBOL(rdma_query_ah);
969
970int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
971{
972 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
973 struct ib_pd *pd;
974 int ret;
975
976 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
977
978 pd = ah->pd;
979
980 ret = ah->device->ops.destroy_ah(ah, flags);
981 if (ret)
982 return ret;
983
984 atomic_dec(&pd->usecnt);
985 if (sgid_attr)
986 rdma_put_gid_attr(sgid_attr);
987
988 kfree(ah);
989 return ret;
990}
991EXPORT_SYMBOL(rdma_destroy_ah_user);
992
993/* Shared receive queues */
994
995/**
996 * ib_create_srq_user - Creates a SRQ associated with the specified protection
997 * domain.
998 * @pd: The protection domain associated with the SRQ.
999 * @srq_init_attr: A list of initial attributes required to create the
1000 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1001 * the actual capabilities of the created SRQ.
1002 * @uobject: uobject pointer if this is not a kernel SRQ
1003 * @udata: udata pointer if this is not a kernel SRQ
1004 *
1005 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1006 * requested size of the SRQ, and set to the actual values allocated
1007 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1008 * will always be at least as large as the requested values.
1009 */
1010struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1011 struct ib_srq_init_attr *srq_init_attr,
1012 struct ib_usrq_object *uobject,
1013 struct ib_udata *udata)
1014{
1015 struct ib_srq *srq;
1016 int ret;
1017
1018 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1019 if (!srq)
1020 return ERR_PTR(-ENOMEM);
1021
1022 srq->device = pd->device;
1023 srq->pd = pd;
1024 srq->event_handler = srq_init_attr->event_handler;
1025 srq->srq_context = srq_init_attr->srq_context;
1026 srq->srq_type = srq_init_attr->srq_type;
1027 srq->uobject = uobject;
1028
1029 if (ib_srq_has_cq(srq->srq_type)) {
1030 srq->ext.cq = srq_init_attr->ext.cq;
1031 atomic_inc(&srq->ext.cq->usecnt);
1032 }
1033 if (srq->srq_type == IB_SRQT_XRC) {
1034 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1035 if (srq->ext.xrc.xrcd)
1036 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1037 }
1038 atomic_inc(&pd->usecnt);
1039
1040 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1041 rdma_restrack_parent_name(&srq->res, &pd->res);
1042
1043 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1044 if (ret) {
1045 rdma_restrack_put(&srq->res);
1046 atomic_dec(&pd->usecnt);
1047 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1048 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1049 if (ib_srq_has_cq(srq->srq_type))
1050 atomic_dec(&srq->ext.cq->usecnt);
1051 kfree(srq);
1052 return ERR_PTR(ret);
1053 }
1054
1055 rdma_restrack_add(&srq->res);
1056
1057 return srq;
1058}
1059EXPORT_SYMBOL(ib_create_srq_user);
1060
1061int ib_modify_srq(struct ib_srq *srq,
1062 struct ib_srq_attr *srq_attr,
1063 enum ib_srq_attr_mask srq_attr_mask)
1064{
1065 return srq->device->ops.modify_srq ?
1066 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1067 NULL) : -EOPNOTSUPP;
1068}
1069EXPORT_SYMBOL(ib_modify_srq);
1070
1071int ib_query_srq(struct ib_srq *srq,
1072 struct ib_srq_attr *srq_attr)
1073{
1074 return srq->device->ops.query_srq ?
1075 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1076}
1077EXPORT_SYMBOL(ib_query_srq);
1078
1079int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1080{
1081 int ret;
1082
1083 if (atomic_read(&srq->usecnt))
1084 return -EBUSY;
1085
1086 ret = srq->device->ops.destroy_srq(srq, udata);
1087 if (ret)
1088 return ret;
1089
1090 atomic_dec(&srq->pd->usecnt);
1091 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1092 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1093 if (ib_srq_has_cq(srq->srq_type))
1094 atomic_dec(&srq->ext.cq->usecnt);
1095 rdma_restrack_del(&srq->res);
1096 kfree(srq);
1097
1098 return ret;
1099}
1100EXPORT_SYMBOL(ib_destroy_srq_user);
1101
1102/* Queue pairs */
1103
1104static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1105{
1106 struct ib_qp *qp = context;
1107 unsigned long flags;
1108
1109 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1110 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1111 if (event->element.qp->event_handler)
1112 event->element.qp->event_handler(event, event->element.qp->qp_context);
1113 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1114}
1115
1116static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1117 void (*event_handler)(struct ib_event *, void *),
1118 void *qp_context)
1119{
1120 struct ib_qp *qp;
1121 unsigned long flags;
1122 int err;
1123
1124 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1125 if (!qp)
1126 return ERR_PTR(-ENOMEM);
1127
1128 qp->real_qp = real_qp;
1129 err = ib_open_shared_qp_security(qp, real_qp->device);
1130 if (err) {
1131 kfree(qp);
1132 return ERR_PTR(err);
1133 }
1134
1135 qp->real_qp = real_qp;
1136 atomic_inc(&real_qp->usecnt);
1137 qp->device = real_qp->device;
1138 qp->event_handler = event_handler;
1139 qp->qp_context = qp_context;
1140 qp->qp_num = real_qp->qp_num;
1141 qp->qp_type = real_qp->qp_type;
1142
1143 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1144 list_add(&qp->open_list, &real_qp->open_list);
1145 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1146
1147 return qp;
1148}
1149
1150struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1151 struct ib_qp_open_attr *qp_open_attr)
1152{
1153 struct ib_qp *qp, *real_qp;
1154
1155 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1156 return ERR_PTR(-EINVAL);
1157
1158 down_read(&xrcd->tgt_qps_rwsem);
1159 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1160 if (!real_qp) {
1161 up_read(&xrcd->tgt_qps_rwsem);
1162 return ERR_PTR(-EINVAL);
1163 }
1164 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1165 qp_open_attr->qp_context);
1166 up_read(&xrcd->tgt_qps_rwsem);
1167 return qp;
1168}
1169EXPORT_SYMBOL(ib_open_qp);
1170
1171static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1172 struct ib_qp_init_attr *qp_init_attr)
1173{
1174 struct ib_qp *real_qp = qp;
1175 int err;
1176
1177 qp->event_handler = __ib_shared_qp_event_handler;
1178 qp->qp_context = qp;
1179 qp->pd = NULL;
1180 qp->send_cq = qp->recv_cq = NULL;
1181 qp->srq = NULL;
1182 qp->xrcd = qp_init_attr->xrcd;
1183 atomic_inc(&qp_init_attr->xrcd->usecnt);
1184 INIT_LIST_HEAD(&qp->open_list);
1185
1186 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1187 qp_init_attr->qp_context);
1188 if (IS_ERR(qp))
1189 return qp;
1190
1191 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1192 real_qp, GFP_KERNEL));
1193 if (err) {
1194 ib_close_qp(qp);
1195 return ERR_PTR(err);
1196 }
1197 return qp;
1198}
1199
1200static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1201 struct ib_qp_init_attr *attr,
1202 struct ib_udata *udata,
1203 struct ib_uqp_object *uobj, const char *caller)
1204{
1205 struct ib_udata dummy = {};
1206 struct ib_qp *qp;
1207 int ret;
1208
1209 if (!dev->ops.create_qp)
1210 return ERR_PTR(-EOPNOTSUPP);
1211
1212 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1213 if (!qp)
1214 return ERR_PTR(-ENOMEM);
1215
1216 qp->device = dev;
1217 qp->pd = pd;
1218 qp->uobject = uobj;
1219 qp->real_qp = qp;
1220
1221 qp->qp_type = attr->qp_type;
1222 qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1223 qp->srq = attr->srq;
1224 qp->event_handler = attr->event_handler;
1225 qp->port = attr->port_num;
1226 qp->qp_context = attr->qp_context;
1227
1228 spin_lock_init(&qp->mr_lock);
1229 INIT_LIST_HEAD(&qp->rdma_mrs);
1230 INIT_LIST_HEAD(&qp->sig_mrs);
1231
1232 qp->send_cq = attr->send_cq;
1233 qp->recv_cq = attr->recv_cq;
1234
1235 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1236 WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1237 rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1238 ret = dev->ops.create_qp(qp, attr, udata);
1239 if (ret)
1240 goto err_create;
1241
1242 /*
1243 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1244 * Unfortunately, it is not an easy task to fix that driver.
1245 */
1246 qp->send_cq = attr->send_cq;
1247 qp->recv_cq = attr->recv_cq;
1248
1249 ret = ib_create_qp_security(qp, dev);
1250 if (ret)
1251 goto err_security;
1252
1253 rdma_restrack_add(&qp->res);
1254 return qp;
1255
1256err_security:
1257 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1258err_create:
1259 rdma_restrack_put(&qp->res);
1260 kfree(qp);
1261 return ERR_PTR(ret);
1262
1263}
1264
1265/**
1266 * ib_create_qp_user - Creates a QP associated with the specified protection
1267 * domain.
1268 * @dev: IB device
1269 * @pd: The protection domain associated with the QP.
1270 * @attr: A list of initial attributes required to create the
1271 * QP. If QP creation succeeds, then the attributes are updated to
1272 * the actual capabilities of the created QP.
1273 * @udata: User data
1274 * @uobj: uverbs obect
1275 * @caller: caller's build-time module name
1276 */
1277struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1278 struct ib_qp_init_attr *attr,
1279 struct ib_udata *udata,
1280 struct ib_uqp_object *uobj, const char *caller)
1281{
1282 struct ib_qp *qp, *xrc_qp;
1283
1284 if (attr->qp_type == IB_QPT_XRC_TGT)
1285 qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1286 else
1287 qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1288 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1289 return qp;
1290
1291 xrc_qp = create_xrc_qp_user(qp, attr);
1292 if (IS_ERR(xrc_qp)) {
1293 ib_destroy_qp(qp);
1294 return xrc_qp;
1295 }
1296
1297 xrc_qp->uobject = uobj;
1298 return xrc_qp;
1299}
1300EXPORT_SYMBOL(ib_create_qp_user);
1301
1302void ib_qp_usecnt_inc(struct ib_qp *qp)
1303{
1304 if (qp->pd)
1305 atomic_inc(&qp->pd->usecnt);
1306 if (qp->send_cq)
1307 atomic_inc(&qp->send_cq->usecnt);
1308 if (qp->recv_cq)
1309 atomic_inc(&qp->recv_cq->usecnt);
1310 if (qp->srq)
1311 atomic_inc(&qp->srq->usecnt);
1312 if (qp->rwq_ind_tbl)
1313 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1314}
1315EXPORT_SYMBOL(ib_qp_usecnt_inc);
1316
1317void ib_qp_usecnt_dec(struct ib_qp *qp)
1318{
1319 if (qp->rwq_ind_tbl)
1320 atomic_dec(&qp->rwq_ind_tbl->usecnt);
1321 if (qp->srq)
1322 atomic_dec(&qp->srq->usecnt);
1323 if (qp->recv_cq)
1324 atomic_dec(&qp->recv_cq->usecnt);
1325 if (qp->send_cq)
1326 atomic_dec(&qp->send_cq->usecnt);
1327 if (qp->pd)
1328 atomic_dec(&qp->pd->usecnt);
1329}
1330EXPORT_SYMBOL(ib_qp_usecnt_dec);
1331
1332struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1333 struct ib_qp_init_attr *qp_init_attr,
1334 const char *caller)
1335{
1336 struct ib_device *device = pd->device;
1337 struct ib_qp *qp;
1338 int ret;
1339
1340 /*
1341 * If the callers is using the RDMA API calculate the resources
1342 * needed for the RDMA READ/WRITE operations.
1343 *
1344 * Note that these callers need to pass in a port number.
1345 */
1346 if (qp_init_attr->cap.max_rdma_ctxs)
1347 rdma_rw_init_qp(device, qp_init_attr);
1348
1349 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1350 if (IS_ERR(qp))
1351 return qp;
1352
1353 ib_qp_usecnt_inc(qp);
1354
1355 if (qp_init_attr->cap.max_rdma_ctxs) {
1356 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1357 if (ret)
1358 goto err;
1359 }
1360
1361 /*
1362 * Note: all hw drivers guarantee that max_send_sge is lower than
1363 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1364 * max_send_sge <= max_sge_rd.
1365 */
1366 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1367 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1368 device->attrs.max_sge_rd);
1369 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1370 qp->integrity_en = true;
1371
1372 return qp;
1373
1374err:
1375 ib_destroy_qp(qp);
1376 return ERR_PTR(ret);
1377
1378}
1379EXPORT_SYMBOL(ib_create_qp_kernel);
1380
1381static const struct {
1382 int valid;
1383 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1384 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1385} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1386 [IB_QPS_RESET] = {
1387 [IB_QPS_RESET] = { .valid = 1 },
1388 [IB_QPS_INIT] = {
1389 .valid = 1,
1390 .req_param = {
1391 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1392 IB_QP_PORT |
1393 IB_QP_QKEY),
1394 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1395 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1396 IB_QP_PORT |
1397 IB_QP_ACCESS_FLAGS),
1398 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1399 IB_QP_PORT |
1400 IB_QP_ACCESS_FLAGS),
1401 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1402 IB_QP_PORT |
1403 IB_QP_ACCESS_FLAGS),
1404 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1405 IB_QP_PORT |
1406 IB_QP_ACCESS_FLAGS),
1407 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1408 IB_QP_QKEY),
1409 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1410 IB_QP_QKEY),
1411 }
1412 },
1413 },
1414 [IB_QPS_INIT] = {
1415 [IB_QPS_RESET] = { .valid = 1 },
1416 [IB_QPS_ERR] = { .valid = 1 },
1417 [IB_QPS_INIT] = {
1418 .valid = 1,
1419 .opt_param = {
1420 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1421 IB_QP_PORT |
1422 IB_QP_QKEY),
1423 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1424 IB_QP_PORT |
1425 IB_QP_ACCESS_FLAGS),
1426 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1427 IB_QP_PORT |
1428 IB_QP_ACCESS_FLAGS),
1429 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1430 IB_QP_PORT |
1431 IB_QP_ACCESS_FLAGS),
1432 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1433 IB_QP_PORT |
1434 IB_QP_ACCESS_FLAGS),
1435 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1436 IB_QP_QKEY),
1437 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1438 IB_QP_QKEY),
1439 }
1440 },
1441 [IB_QPS_RTR] = {
1442 .valid = 1,
1443 .req_param = {
1444 [IB_QPT_UC] = (IB_QP_AV |
1445 IB_QP_PATH_MTU |
1446 IB_QP_DEST_QPN |
1447 IB_QP_RQ_PSN),
1448 [IB_QPT_RC] = (IB_QP_AV |
1449 IB_QP_PATH_MTU |
1450 IB_QP_DEST_QPN |
1451 IB_QP_RQ_PSN |
1452 IB_QP_MAX_DEST_RD_ATOMIC |
1453 IB_QP_MIN_RNR_TIMER),
1454 [IB_QPT_XRC_INI] = (IB_QP_AV |
1455 IB_QP_PATH_MTU |
1456 IB_QP_DEST_QPN |
1457 IB_QP_RQ_PSN),
1458 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1459 IB_QP_PATH_MTU |
1460 IB_QP_DEST_QPN |
1461 IB_QP_RQ_PSN |
1462 IB_QP_MAX_DEST_RD_ATOMIC |
1463 IB_QP_MIN_RNR_TIMER),
1464 },
1465 .opt_param = {
1466 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1467 IB_QP_QKEY),
1468 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1469 IB_QP_ACCESS_FLAGS |
1470 IB_QP_PKEY_INDEX),
1471 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1472 IB_QP_ACCESS_FLAGS |
1473 IB_QP_PKEY_INDEX),
1474 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1475 IB_QP_ACCESS_FLAGS |
1476 IB_QP_PKEY_INDEX),
1477 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1478 IB_QP_ACCESS_FLAGS |
1479 IB_QP_PKEY_INDEX),
1480 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1481 IB_QP_QKEY),
1482 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1483 IB_QP_QKEY),
1484 },
1485 },
1486 },
1487 [IB_QPS_RTR] = {
1488 [IB_QPS_RESET] = { .valid = 1 },
1489 [IB_QPS_ERR] = { .valid = 1 },
1490 [IB_QPS_RTS] = {
1491 .valid = 1,
1492 .req_param = {
1493 [IB_QPT_UD] = IB_QP_SQ_PSN,
1494 [IB_QPT_UC] = IB_QP_SQ_PSN,
1495 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1496 IB_QP_RETRY_CNT |
1497 IB_QP_RNR_RETRY |
1498 IB_QP_SQ_PSN |
1499 IB_QP_MAX_QP_RD_ATOMIC),
1500 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1501 IB_QP_RETRY_CNT |
1502 IB_QP_RNR_RETRY |
1503 IB_QP_SQ_PSN |
1504 IB_QP_MAX_QP_RD_ATOMIC),
1505 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1506 IB_QP_SQ_PSN),
1507 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1508 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1509 },
1510 .opt_param = {
1511 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1512 IB_QP_QKEY),
1513 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1514 IB_QP_ALT_PATH |
1515 IB_QP_ACCESS_FLAGS |
1516 IB_QP_PATH_MIG_STATE),
1517 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1518 IB_QP_ALT_PATH |
1519 IB_QP_ACCESS_FLAGS |
1520 IB_QP_MIN_RNR_TIMER |
1521 IB_QP_PATH_MIG_STATE),
1522 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1523 IB_QP_ALT_PATH |
1524 IB_QP_ACCESS_FLAGS |
1525 IB_QP_PATH_MIG_STATE),
1526 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1527 IB_QP_ALT_PATH |
1528 IB_QP_ACCESS_FLAGS |
1529 IB_QP_MIN_RNR_TIMER |
1530 IB_QP_PATH_MIG_STATE),
1531 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1532 IB_QP_QKEY),
1533 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1534 IB_QP_QKEY),
1535 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1536 }
1537 }
1538 },
1539 [IB_QPS_RTS] = {
1540 [IB_QPS_RESET] = { .valid = 1 },
1541 [IB_QPS_ERR] = { .valid = 1 },
1542 [IB_QPS_RTS] = {
1543 .valid = 1,
1544 .opt_param = {
1545 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1546 IB_QP_QKEY),
1547 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1548 IB_QP_ACCESS_FLAGS |
1549 IB_QP_ALT_PATH |
1550 IB_QP_PATH_MIG_STATE),
1551 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1552 IB_QP_ACCESS_FLAGS |
1553 IB_QP_ALT_PATH |
1554 IB_QP_PATH_MIG_STATE |
1555 IB_QP_MIN_RNR_TIMER),
1556 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1557 IB_QP_ACCESS_FLAGS |
1558 IB_QP_ALT_PATH |
1559 IB_QP_PATH_MIG_STATE),
1560 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1561 IB_QP_ACCESS_FLAGS |
1562 IB_QP_ALT_PATH |
1563 IB_QP_PATH_MIG_STATE |
1564 IB_QP_MIN_RNR_TIMER),
1565 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1566 IB_QP_QKEY),
1567 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1568 IB_QP_QKEY),
1569 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1570 }
1571 },
1572 [IB_QPS_SQD] = {
1573 .valid = 1,
1574 .opt_param = {
1575 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1576 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1577 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1578 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1579 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1580 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1581 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1582 }
1583 },
1584 },
1585 [IB_QPS_SQD] = {
1586 [IB_QPS_RESET] = { .valid = 1 },
1587 [IB_QPS_ERR] = { .valid = 1 },
1588 [IB_QPS_RTS] = {
1589 .valid = 1,
1590 .opt_param = {
1591 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1592 IB_QP_QKEY),
1593 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1594 IB_QP_ALT_PATH |
1595 IB_QP_ACCESS_FLAGS |
1596 IB_QP_PATH_MIG_STATE),
1597 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1598 IB_QP_ALT_PATH |
1599 IB_QP_ACCESS_FLAGS |
1600 IB_QP_MIN_RNR_TIMER |
1601 IB_QP_PATH_MIG_STATE),
1602 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1603 IB_QP_ALT_PATH |
1604 IB_QP_ACCESS_FLAGS |
1605 IB_QP_PATH_MIG_STATE),
1606 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1607 IB_QP_ALT_PATH |
1608 IB_QP_ACCESS_FLAGS |
1609 IB_QP_MIN_RNR_TIMER |
1610 IB_QP_PATH_MIG_STATE),
1611 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1612 IB_QP_QKEY),
1613 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1614 IB_QP_QKEY),
1615 }
1616 },
1617 [IB_QPS_SQD] = {
1618 .valid = 1,
1619 .opt_param = {
1620 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1621 IB_QP_QKEY),
1622 [IB_QPT_UC] = (IB_QP_AV |
1623 IB_QP_ALT_PATH |
1624 IB_QP_ACCESS_FLAGS |
1625 IB_QP_PKEY_INDEX |
1626 IB_QP_PATH_MIG_STATE),
1627 [IB_QPT_RC] = (IB_QP_PORT |
1628 IB_QP_AV |
1629 IB_QP_TIMEOUT |
1630 IB_QP_RETRY_CNT |
1631 IB_QP_RNR_RETRY |
1632 IB_QP_MAX_QP_RD_ATOMIC |
1633 IB_QP_MAX_DEST_RD_ATOMIC |
1634 IB_QP_ALT_PATH |
1635 IB_QP_ACCESS_FLAGS |
1636 IB_QP_PKEY_INDEX |
1637 IB_QP_MIN_RNR_TIMER |
1638 IB_QP_PATH_MIG_STATE),
1639 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1640 IB_QP_AV |
1641 IB_QP_TIMEOUT |
1642 IB_QP_RETRY_CNT |
1643 IB_QP_RNR_RETRY |
1644 IB_QP_MAX_QP_RD_ATOMIC |
1645 IB_QP_ALT_PATH |
1646 IB_QP_ACCESS_FLAGS |
1647 IB_QP_PKEY_INDEX |
1648 IB_QP_PATH_MIG_STATE),
1649 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1650 IB_QP_AV |
1651 IB_QP_TIMEOUT |
1652 IB_QP_MAX_DEST_RD_ATOMIC |
1653 IB_QP_ALT_PATH |
1654 IB_QP_ACCESS_FLAGS |
1655 IB_QP_PKEY_INDEX |
1656 IB_QP_MIN_RNR_TIMER |
1657 IB_QP_PATH_MIG_STATE),
1658 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1659 IB_QP_QKEY),
1660 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1661 IB_QP_QKEY),
1662 }
1663 }
1664 },
1665 [IB_QPS_SQE] = {
1666 [IB_QPS_RESET] = { .valid = 1 },
1667 [IB_QPS_ERR] = { .valid = 1 },
1668 [IB_QPS_RTS] = {
1669 .valid = 1,
1670 .opt_param = {
1671 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1672 IB_QP_QKEY),
1673 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1674 IB_QP_ACCESS_FLAGS),
1675 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1676 IB_QP_QKEY),
1677 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1678 IB_QP_QKEY),
1679 }
1680 }
1681 },
1682 [IB_QPS_ERR] = {
1683 [IB_QPS_RESET] = { .valid = 1 },
1684 [IB_QPS_ERR] = { .valid = 1 }
1685 }
1686};
1687
1688bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1689 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1690{
1691 enum ib_qp_attr_mask req_param, opt_param;
1692
1693 if (mask & IB_QP_CUR_STATE &&
1694 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1695 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1696 return false;
1697
1698 if (!qp_state_table[cur_state][next_state].valid)
1699 return false;
1700
1701 req_param = qp_state_table[cur_state][next_state].req_param[type];
1702 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1703
1704 if ((mask & req_param) != req_param)
1705 return false;
1706
1707 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1708 return false;
1709
1710 return true;
1711}
1712EXPORT_SYMBOL(ib_modify_qp_is_ok);
1713
1714/**
1715 * ib_resolve_eth_dmac - Resolve destination mac address
1716 * @device: Device to consider
1717 * @ah_attr: address handle attribute which describes the
1718 * source and destination parameters
1719 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1720 * returns 0 on success or appropriate error code. It initializes the
1721 * necessary ah_attr fields when call is successful.
1722 */
1723static int ib_resolve_eth_dmac(struct ib_device *device,
1724 struct rdma_ah_attr *ah_attr)
1725{
1726 int ret = 0;
1727
1728 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1729 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1730 __be32 addr = 0;
1731
1732 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1733 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1734 } else {
1735 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1736 (char *)ah_attr->roce.dmac);
1737 }
1738 } else {
1739 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1740 }
1741 return ret;
1742}
1743
1744static bool is_qp_type_connected(const struct ib_qp *qp)
1745{
1746 return (qp->qp_type == IB_QPT_UC ||
1747 qp->qp_type == IB_QPT_RC ||
1748 qp->qp_type == IB_QPT_XRC_INI ||
1749 qp->qp_type == IB_QPT_XRC_TGT);
1750}
1751
1752/*
1753 * IB core internal function to perform QP attributes modification.
1754 */
1755static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1756 int attr_mask, struct ib_udata *udata)
1757{
1758 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1759 const struct ib_gid_attr *old_sgid_attr_av;
1760 const struct ib_gid_attr *old_sgid_attr_alt_av;
1761 int ret;
1762
1763 attr->xmit_slave = NULL;
1764 if (attr_mask & IB_QP_AV) {
1765 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1766 &old_sgid_attr_av);
1767 if (ret)
1768 return ret;
1769
1770 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1771 is_qp_type_connected(qp)) {
1772 struct net_device *slave;
1773
1774 /*
1775 * If the user provided the qp_attr then we have to
1776 * resolve it. Kerne users have to provide already
1777 * resolved rdma_ah_attr's.
1778 */
1779 if (udata) {
1780 ret = ib_resolve_eth_dmac(qp->device,
1781 &attr->ah_attr);
1782 if (ret)
1783 goto out_av;
1784 }
1785 slave = rdma_lag_get_ah_roce_slave(qp->device,
1786 &attr->ah_attr,
1787 GFP_KERNEL);
1788 if (IS_ERR(slave)) {
1789 ret = PTR_ERR(slave);
1790 goto out_av;
1791 }
1792 attr->xmit_slave = slave;
1793 }
1794 }
1795 if (attr_mask & IB_QP_ALT_PATH) {
1796 /*
1797 * FIXME: This does not track the migration state, so if the
1798 * user loads a new alternate path after the HW has migrated
1799 * from primary->alternate we will keep the wrong
1800 * references. This is OK for IB because the reference
1801 * counting does not serve any functional purpose.
1802 */
1803 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1804 &old_sgid_attr_alt_av);
1805 if (ret)
1806 goto out_av;
1807
1808 /*
1809 * Today the core code can only handle alternate paths and APM
1810 * for IB. Ban them in roce mode.
1811 */
1812 if (!(rdma_protocol_ib(qp->device,
1813 attr->alt_ah_attr.port_num) &&
1814 rdma_protocol_ib(qp->device, port))) {
1815 ret = -EINVAL;
1816 goto out;
1817 }
1818 }
1819
1820 if (rdma_ib_or_roce(qp->device, port)) {
1821 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1822 dev_warn(&qp->device->dev,
1823 "%s rq_psn overflow, masking to 24 bits\n",
1824 __func__);
1825 attr->rq_psn &= 0xffffff;
1826 }
1827
1828 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1829 dev_warn(&qp->device->dev,
1830 " %s sq_psn overflow, masking to 24 bits\n",
1831 __func__);
1832 attr->sq_psn &= 0xffffff;
1833 }
1834 }
1835
1836 /*
1837 * Bind this qp to a counter automatically based on the rdma counter
1838 * rules. This only set in RST2INIT with port specified
1839 */
1840 if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1841 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1842 rdma_counter_bind_qp_auto(qp, attr->port_num);
1843
1844 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1845 if (ret)
1846 goto out;
1847
1848 if (attr_mask & IB_QP_PORT)
1849 qp->port = attr->port_num;
1850 if (attr_mask & IB_QP_AV)
1851 qp->av_sgid_attr =
1852 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1853 if (attr_mask & IB_QP_ALT_PATH)
1854 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1855 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1856
1857out:
1858 if (attr_mask & IB_QP_ALT_PATH)
1859 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1860out_av:
1861 if (attr_mask & IB_QP_AV) {
1862 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1863 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1864 }
1865 return ret;
1866}
1867
1868/**
1869 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1870 * @ib_qp: The QP to modify.
1871 * @attr: On input, specifies the QP attributes to modify. On output,
1872 * the current values of selected QP attributes are returned.
1873 * @attr_mask: A bit-mask used to specify which attributes of the QP
1874 * are being modified.
1875 * @udata: pointer to user's input output buffer information
1876 * are being modified.
1877 * It returns 0 on success and returns appropriate error code on error.
1878 */
1879int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1880 int attr_mask, struct ib_udata *udata)
1881{
1882 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1883}
1884EXPORT_SYMBOL(ib_modify_qp_with_udata);
1885
1886static void ib_get_width_and_speed(u32 netdev_speed, u32 lanes,
1887 u16 *speed, u8 *width)
1888{
1889 if (!lanes) {
1890 if (netdev_speed <= SPEED_1000) {
1891 *width = IB_WIDTH_1X;
1892 *speed = IB_SPEED_SDR;
1893 } else if (netdev_speed <= SPEED_10000) {
1894 *width = IB_WIDTH_1X;
1895 *speed = IB_SPEED_FDR10;
1896 } else if (netdev_speed <= SPEED_20000) {
1897 *width = IB_WIDTH_4X;
1898 *speed = IB_SPEED_DDR;
1899 } else if (netdev_speed <= SPEED_25000) {
1900 *width = IB_WIDTH_1X;
1901 *speed = IB_SPEED_EDR;
1902 } else if (netdev_speed <= SPEED_40000) {
1903 *width = IB_WIDTH_4X;
1904 *speed = IB_SPEED_FDR10;
1905 } else if (netdev_speed <= SPEED_50000) {
1906 *width = IB_WIDTH_2X;
1907 *speed = IB_SPEED_EDR;
1908 } else if (netdev_speed <= SPEED_100000) {
1909 *width = IB_WIDTH_4X;
1910 *speed = IB_SPEED_EDR;
1911 } else if (netdev_speed <= SPEED_200000) {
1912 *width = IB_WIDTH_4X;
1913 *speed = IB_SPEED_HDR;
1914 } else {
1915 *width = IB_WIDTH_4X;
1916 *speed = IB_SPEED_NDR;
1917 }
1918
1919 return;
1920 }
1921
1922 switch (lanes) {
1923 case 1:
1924 *width = IB_WIDTH_1X;
1925 break;
1926 case 2:
1927 *width = IB_WIDTH_2X;
1928 break;
1929 case 4:
1930 *width = IB_WIDTH_4X;
1931 break;
1932 case 8:
1933 *width = IB_WIDTH_8X;
1934 break;
1935 case 12:
1936 *width = IB_WIDTH_12X;
1937 break;
1938 default:
1939 *width = IB_WIDTH_1X;
1940 }
1941
1942 switch (netdev_speed / lanes) {
1943 case SPEED_2500:
1944 *speed = IB_SPEED_SDR;
1945 break;
1946 case SPEED_5000:
1947 *speed = IB_SPEED_DDR;
1948 break;
1949 case SPEED_10000:
1950 *speed = IB_SPEED_FDR10;
1951 break;
1952 case SPEED_14000:
1953 *speed = IB_SPEED_FDR;
1954 break;
1955 case SPEED_25000:
1956 *speed = IB_SPEED_EDR;
1957 break;
1958 case SPEED_50000:
1959 *speed = IB_SPEED_HDR;
1960 break;
1961 case SPEED_100000:
1962 *speed = IB_SPEED_NDR;
1963 break;
1964 default:
1965 *speed = IB_SPEED_SDR;
1966 }
1967}
1968
1969int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1970{
1971 int rc;
1972 u32 netdev_speed;
1973 struct net_device *netdev;
1974 struct ethtool_link_ksettings lksettings = {};
1975
1976 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1977 return -EINVAL;
1978
1979 netdev = ib_device_get_netdev(dev, port_num);
1980 if (!netdev)
1981 return -ENODEV;
1982
1983 rtnl_lock();
1984 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1985 rtnl_unlock();
1986
1987 dev_put(netdev);
1988
1989 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1990 netdev_speed = lksettings.base.speed;
1991 } else {
1992 netdev_speed = SPEED_1000;
1993 if (rc)
1994 pr_warn("%s speed is unknown, defaulting to %u\n",
1995 netdev->name, netdev_speed);
1996 }
1997
1998 ib_get_width_and_speed(netdev_speed, lksettings.lanes,
1999 speed, width);
2000
2001 return 0;
2002}
2003EXPORT_SYMBOL(ib_get_eth_speed);
2004
2005int ib_modify_qp(struct ib_qp *qp,
2006 struct ib_qp_attr *qp_attr,
2007 int qp_attr_mask)
2008{
2009 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
2010}
2011EXPORT_SYMBOL(ib_modify_qp);
2012
2013int ib_query_qp(struct ib_qp *qp,
2014 struct ib_qp_attr *qp_attr,
2015 int qp_attr_mask,
2016 struct ib_qp_init_attr *qp_init_attr)
2017{
2018 qp_attr->ah_attr.grh.sgid_attr = NULL;
2019 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
2020
2021 return qp->device->ops.query_qp ?
2022 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
2023 qp_init_attr) : -EOPNOTSUPP;
2024}
2025EXPORT_SYMBOL(ib_query_qp);
2026
2027int ib_close_qp(struct ib_qp *qp)
2028{
2029 struct ib_qp *real_qp;
2030 unsigned long flags;
2031
2032 real_qp = qp->real_qp;
2033 if (real_qp == qp)
2034 return -EINVAL;
2035
2036 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
2037 list_del(&qp->open_list);
2038 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
2039
2040 atomic_dec(&real_qp->usecnt);
2041 if (qp->qp_sec)
2042 ib_close_shared_qp_security(qp->qp_sec);
2043 kfree(qp);
2044
2045 return 0;
2046}
2047EXPORT_SYMBOL(ib_close_qp);
2048
2049static int __ib_destroy_shared_qp(struct ib_qp *qp)
2050{
2051 struct ib_xrcd *xrcd;
2052 struct ib_qp *real_qp;
2053 int ret;
2054
2055 real_qp = qp->real_qp;
2056 xrcd = real_qp->xrcd;
2057 down_write(&xrcd->tgt_qps_rwsem);
2058 ib_close_qp(qp);
2059 if (atomic_read(&real_qp->usecnt) == 0)
2060 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
2061 else
2062 real_qp = NULL;
2063 up_write(&xrcd->tgt_qps_rwsem);
2064
2065 if (real_qp) {
2066 ret = ib_destroy_qp(real_qp);
2067 if (!ret)
2068 atomic_dec(&xrcd->usecnt);
2069 }
2070
2071 return 0;
2072}
2073
2074int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2075{
2076 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2077 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2078 struct ib_qp_security *sec;
2079 int ret;
2080
2081 WARN_ON_ONCE(qp->mrs_used > 0);
2082
2083 if (atomic_read(&qp->usecnt))
2084 return -EBUSY;
2085
2086 if (qp->real_qp != qp)
2087 return __ib_destroy_shared_qp(qp);
2088
2089 sec = qp->qp_sec;
2090 if (sec)
2091 ib_destroy_qp_security_begin(sec);
2092
2093 if (!qp->uobject)
2094 rdma_rw_cleanup_mrs(qp);
2095
2096 rdma_counter_unbind_qp(qp, true);
2097 ret = qp->device->ops.destroy_qp(qp, udata);
2098 if (ret) {
2099 if (sec)
2100 ib_destroy_qp_security_abort(sec);
2101 return ret;
2102 }
2103
2104 if (alt_path_sgid_attr)
2105 rdma_put_gid_attr(alt_path_sgid_attr);
2106 if (av_sgid_attr)
2107 rdma_put_gid_attr(av_sgid_attr);
2108
2109 ib_qp_usecnt_dec(qp);
2110 if (sec)
2111 ib_destroy_qp_security_end(sec);
2112
2113 rdma_restrack_del(&qp->res);
2114 kfree(qp);
2115 return ret;
2116}
2117EXPORT_SYMBOL(ib_destroy_qp_user);
2118
2119/* Completion queues */
2120
2121struct ib_cq *__ib_create_cq(struct ib_device *device,
2122 ib_comp_handler comp_handler,
2123 void (*event_handler)(struct ib_event *, void *),
2124 void *cq_context,
2125 const struct ib_cq_init_attr *cq_attr,
2126 const char *caller)
2127{
2128 struct ib_cq *cq;
2129 int ret;
2130
2131 cq = rdma_zalloc_drv_obj(device, ib_cq);
2132 if (!cq)
2133 return ERR_PTR(-ENOMEM);
2134
2135 cq->device = device;
2136 cq->uobject = NULL;
2137 cq->comp_handler = comp_handler;
2138 cq->event_handler = event_handler;
2139 cq->cq_context = cq_context;
2140 atomic_set(&cq->usecnt, 0);
2141
2142 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2143 rdma_restrack_set_name(&cq->res, caller);
2144
2145 ret = device->ops.create_cq(cq, cq_attr, NULL);
2146 if (ret) {
2147 rdma_restrack_put(&cq->res);
2148 kfree(cq);
2149 return ERR_PTR(ret);
2150 }
2151
2152 rdma_restrack_add(&cq->res);
2153 return cq;
2154}
2155EXPORT_SYMBOL(__ib_create_cq);
2156
2157int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2158{
2159 if (cq->shared)
2160 return -EOPNOTSUPP;
2161
2162 return cq->device->ops.modify_cq ?
2163 cq->device->ops.modify_cq(cq, cq_count,
2164 cq_period) : -EOPNOTSUPP;
2165}
2166EXPORT_SYMBOL(rdma_set_cq_moderation);
2167
2168int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2169{
2170 int ret;
2171
2172 if (WARN_ON_ONCE(cq->shared))
2173 return -EOPNOTSUPP;
2174
2175 if (atomic_read(&cq->usecnt))
2176 return -EBUSY;
2177
2178 ret = cq->device->ops.destroy_cq(cq, udata);
2179 if (ret)
2180 return ret;
2181
2182 rdma_restrack_del(&cq->res);
2183 kfree(cq);
2184 return ret;
2185}
2186EXPORT_SYMBOL(ib_destroy_cq_user);
2187
2188int ib_resize_cq(struct ib_cq *cq, int cqe)
2189{
2190 if (cq->shared)
2191 return -EOPNOTSUPP;
2192
2193 return cq->device->ops.resize_cq ?
2194 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2195}
2196EXPORT_SYMBOL(ib_resize_cq);
2197
2198/* Memory regions */
2199
2200struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2201 u64 virt_addr, int access_flags)
2202{
2203 struct ib_mr *mr;
2204
2205 if (access_flags & IB_ACCESS_ON_DEMAND) {
2206 if (!(pd->device->attrs.kernel_cap_flags &
2207 IBK_ON_DEMAND_PAGING)) {
2208 pr_debug("ODP support not available\n");
2209 return ERR_PTR(-EINVAL);
2210 }
2211 }
2212
2213 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2214 access_flags, NULL);
2215
2216 if (IS_ERR(mr))
2217 return mr;
2218
2219 mr->device = pd->device;
2220 mr->type = IB_MR_TYPE_USER;
2221 mr->pd = pd;
2222 mr->dm = NULL;
2223 atomic_inc(&pd->usecnt);
2224 mr->iova = virt_addr;
2225 mr->length = length;
2226
2227 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2228 rdma_restrack_parent_name(&mr->res, &pd->res);
2229 rdma_restrack_add(&mr->res);
2230
2231 return mr;
2232}
2233EXPORT_SYMBOL(ib_reg_user_mr);
2234
2235int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2236 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2237{
2238 if (!pd->device->ops.advise_mr)
2239 return -EOPNOTSUPP;
2240
2241 if (!num_sge)
2242 return 0;
2243
2244 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2245 NULL);
2246}
2247EXPORT_SYMBOL(ib_advise_mr);
2248
2249int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2250{
2251 struct ib_pd *pd = mr->pd;
2252 struct ib_dm *dm = mr->dm;
2253 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2254 int ret;
2255
2256 trace_mr_dereg(mr);
2257 rdma_restrack_del(&mr->res);
2258 ret = mr->device->ops.dereg_mr(mr, udata);
2259 if (!ret) {
2260 atomic_dec(&pd->usecnt);
2261 if (dm)
2262 atomic_dec(&dm->usecnt);
2263 kfree(sig_attrs);
2264 }
2265
2266 return ret;
2267}
2268EXPORT_SYMBOL(ib_dereg_mr_user);
2269
2270/**
2271 * ib_alloc_mr() - Allocates a memory region
2272 * @pd: protection domain associated with the region
2273 * @mr_type: memory region type
2274 * @max_num_sg: maximum sg entries available for registration.
2275 *
2276 * Notes:
2277 * Memory registeration page/sg lists must not exceed max_num_sg.
2278 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2279 * max_num_sg * used_page_size.
2280 *
2281 */
2282struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2283 u32 max_num_sg)
2284{
2285 struct ib_mr *mr;
2286
2287 if (!pd->device->ops.alloc_mr) {
2288 mr = ERR_PTR(-EOPNOTSUPP);
2289 goto out;
2290 }
2291
2292 if (mr_type == IB_MR_TYPE_INTEGRITY) {
2293 WARN_ON_ONCE(1);
2294 mr = ERR_PTR(-EINVAL);
2295 goto out;
2296 }
2297
2298 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2299 if (IS_ERR(mr))
2300 goto out;
2301
2302 mr->device = pd->device;
2303 mr->pd = pd;
2304 mr->dm = NULL;
2305 mr->uobject = NULL;
2306 atomic_inc(&pd->usecnt);
2307 mr->need_inval = false;
2308 mr->type = mr_type;
2309 mr->sig_attrs = NULL;
2310
2311 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2312 rdma_restrack_parent_name(&mr->res, &pd->res);
2313 rdma_restrack_add(&mr->res);
2314out:
2315 trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2316 return mr;
2317}
2318EXPORT_SYMBOL(ib_alloc_mr);
2319
2320/**
2321 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2322 * @pd: protection domain associated with the region
2323 * @max_num_data_sg: maximum data sg entries available for registration
2324 * @max_num_meta_sg: maximum metadata sg entries available for
2325 * registration
2326 *
2327 * Notes:
2328 * Memory registration page/sg lists must not exceed max_num_sg,
2329 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2330 *
2331 */
2332struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2333 u32 max_num_data_sg,
2334 u32 max_num_meta_sg)
2335{
2336 struct ib_mr *mr;
2337 struct ib_sig_attrs *sig_attrs;
2338
2339 if (!pd->device->ops.alloc_mr_integrity ||
2340 !pd->device->ops.map_mr_sg_pi) {
2341 mr = ERR_PTR(-EOPNOTSUPP);
2342 goto out;
2343 }
2344
2345 if (!max_num_meta_sg) {
2346 mr = ERR_PTR(-EINVAL);
2347 goto out;
2348 }
2349
2350 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2351 if (!sig_attrs) {
2352 mr = ERR_PTR(-ENOMEM);
2353 goto out;
2354 }
2355
2356 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2357 max_num_meta_sg);
2358 if (IS_ERR(mr)) {
2359 kfree(sig_attrs);
2360 goto out;
2361 }
2362
2363 mr->device = pd->device;
2364 mr->pd = pd;
2365 mr->dm = NULL;
2366 mr->uobject = NULL;
2367 atomic_inc(&pd->usecnt);
2368 mr->need_inval = false;
2369 mr->type = IB_MR_TYPE_INTEGRITY;
2370 mr->sig_attrs = sig_attrs;
2371
2372 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2373 rdma_restrack_parent_name(&mr->res, &pd->res);
2374 rdma_restrack_add(&mr->res);
2375out:
2376 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2377 return mr;
2378}
2379EXPORT_SYMBOL(ib_alloc_mr_integrity);
2380
2381/* Multicast groups */
2382
2383static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2384{
2385 struct ib_qp_init_attr init_attr = {};
2386 struct ib_qp_attr attr = {};
2387 int num_eth_ports = 0;
2388 unsigned int port;
2389
2390 /* If QP state >= init, it is assigned to a port and we can check this
2391 * port only.
2392 */
2393 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2394 if (attr.qp_state >= IB_QPS_INIT) {
2395 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2396 IB_LINK_LAYER_INFINIBAND)
2397 return true;
2398 goto lid_check;
2399 }
2400 }
2401
2402 /* Can't get a quick answer, iterate over all ports */
2403 rdma_for_each_port(qp->device, port)
2404 if (rdma_port_get_link_layer(qp->device, port) !=
2405 IB_LINK_LAYER_INFINIBAND)
2406 num_eth_ports++;
2407
2408 /* If we have at lease one Ethernet port, RoCE annex declares that
2409 * multicast LID should be ignored. We can't tell at this step if the
2410 * QP belongs to an IB or Ethernet port.
2411 */
2412 if (num_eth_ports)
2413 return true;
2414
2415 /* If all the ports are IB, we can check according to IB spec. */
2416lid_check:
2417 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2418 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2419}
2420
2421int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2422{
2423 int ret;
2424
2425 if (!qp->device->ops.attach_mcast)
2426 return -EOPNOTSUPP;
2427
2428 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2429 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2430 return -EINVAL;
2431
2432 ret = qp->device->ops.attach_mcast(qp, gid, lid);
2433 if (!ret)
2434 atomic_inc(&qp->usecnt);
2435 return ret;
2436}
2437EXPORT_SYMBOL(ib_attach_mcast);
2438
2439int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2440{
2441 int ret;
2442
2443 if (!qp->device->ops.detach_mcast)
2444 return -EOPNOTSUPP;
2445
2446 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2447 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2448 return -EINVAL;
2449
2450 ret = qp->device->ops.detach_mcast(qp, gid, lid);
2451 if (!ret)
2452 atomic_dec(&qp->usecnt);
2453 return ret;
2454}
2455EXPORT_SYMBOL(ib_detach_mcast);
2456
2457/**
2458 * ib_alloc_xrcd_user - Allocates an XRC domain.
2459 * @device: The device on which to allocate the XRC domain.
2460 * @inode: inode to connect XRCD
2461 * @udata: Valid user data or NULL for kernel object
2462 */
2463struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2464 struct inode *inode, struct ib_udata *udata)
2465{
2466 struct ib_xrcd *xrcd;
2467 int ret;
2468
2469 if (!device->ops.alloc_xrcd)
2470 return ERR_PTR(-EOPNOTSUPP);
2471
2472 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2473 if (!xrcd)
2474 return ERR_PTR(-ENOMEM);
2475
2476 xrcd->device = device;
2477 xrcd->inode = inode;
2478 atomic_set(&xrcd->usecnt, 0);
2479 init_rwsem(&xrcd->tgt_qps_rwsem);
2480 xa_init(&xrcd->tgt_qps);
2481
2482 ret = device->ops.alloc_xrcd(xrcd, udata);
2483 if (ret)
2484 goto err;
2485 return xrcd;
2486err:
2487 kfree(xrcd);
2488 return ERR_PTR(ret);
2489}
2490EXPORT_SYMBOL(ib_alloc_xrcd_user);
2491
2492/**
2493 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2494 * @xrcd: The XRC domain to deallocate.
2495 * @udata: Valid user data or NULL for kernel object
2496 */
2497int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2498{
2499 int ret;
2500
2501 if (atomic_read(&xrcd->usecnt))
2502 return -EBUSY;
2503
2504 WARN_ON(!xa_empty(&xrcd->tgt_qps));
2505 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2506 if (ret)
2507 return ret;
2508 kfree(xrcd);
2509 return ret;
2510}
2511EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2512
2513/**
2514 * ib_create_wq - Creates a WQ associated with the specified protection
2515 * domain.
2516 * @pd: The protection domain associated with the WQ.
2517 * @wq_attr: A list of initial attributes required to create the
2518 * WQ. If WQ creation succeeds, then the attributes are updated to
2519 * the actual capabilities of the created WQ.
2520 *
2521 * wq_attr->max_wr and wq_attr->max_sge determine
2522 * the requested size of the WQ, and set to the actual values allocated
2523 * on return.
2524 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2525 * at least as large as the requested values.
2526 */
2527struct ib_wq *ib_create_wq(struct ib_pd *pd,
2528 struct ib_wq_init_attr *wq_attr)
2529{
2530 struct ib_wq *wq;
2531
2532 if (!pd->device->ops.create_wq)
2533 return ERR_PTR(-EOPNOTSUPP);
2534
2535 wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2536 if (!IS_ERR(wq)) {
2537 wq->event_handler = wq_attr->event_handler;
2538 wq->wq_context = wq_attr->wq_context;
2539 wq->wq_type = wq_attr->wq_type;
2540 wq->cq = wq_attr->cq;
2541 wq->device = pd->device;
2542 wq->pd = pd;
2543 wq->uobject = NULL;
2544 atomic_inc(&pd->usecnt);
2545 atomic_inc(&wq_attr->cq->usecnt);
2546 atomic_set(&wq->usecnt, 0);
2547 }
2548 return wq;
2549}
2550EXPORT_SYMBOL(ib_create_wq);
2551
2552/**
2553 * ib_destroy_wq_user - Destroys the specified user WQ.
2554 * @wq: The WQ to destroy.
2555 * @udata: Valid user data
2556 */
2557int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2558{
2559 struct ib_cq *cq = wq->cq;
2560 struct ib_pd *pd = wq->pd;
2561 int ret;
2562
2563 if (atomic_read(&wq->usecnt))
2564 return -EBUSY;
2565
2566 ret = wq->device->ops.destroy_wq(wq, udata);
2567 if (ret)
2568 return ret;
2569
2570 atomic_dec(&pd->usecnt);
2571 atomic_dec(&cq->usecnt);
2572 return ret;
2573}
2574EXPORT_SYMBOL(ib_destroy_wq_user);
2575
2576int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2577 struct ib_mr_status *mr_status)
2578{
2579 if (!mr->device->ops.check_mr_status)
2580 return -EOPNOTSUPP;
2581
2582 return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2583}
2584EXPORT_SYMBOL(ib_check_mr_status);
2585
2586int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2587 int state)
2588{
2589 if (!device->ops.set_vf_link_state)
2590 return -EOPNOTSUPP;
2591
2592 return device->ops.set_vf_link_state(device, vf, port, state);
2593}
2594EXPORT_SYMBOL(ib_set_vf_link_state);
2595
2596int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2597 struct ifla_vf_info *info)
2598{
2599 if (!device->ops.get_vf_config)
2600 return -EOPNOTSUPP;
2601
2602 return device->ops.get_vf_config(device, vf, port, info);
2603}
2604EXPORT_SYMBOL(ib_get_vf_config);
2605
2606int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2607 struct ifla_vf_stats *stats)
2608{
2609 if (!device->ops.get_vf_stats)
2610 return -EOPNOTSUPP;
2611
2612 return device->ops.get_vf_stats(device, vf, port, stats);
2613}
2614EXPORT_SYMBOL(ib_get_vf_stats);
2615
2616int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2617 int type)
2618{
2619 if (!device->ops.set_vf_guid)
2620 return -EOPNOTSUPP;
2621
2622 return device->ops.set_vf_guid(device, vf, port, guid, type);
2623}
2624EXPORT_SYMBOL(ib_set_vf_guid);
2625
2626int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2627 struct ifla_vf_guid *node_guid,
2628 struct ifla_vf_guid *port_guid)
2629{
2630 if (!device->ops.get_vf_guid)
2631 return -EOPNOTSUPP;
2632
2633 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2634}
2635EXPORT_SYMBOL(ib_get_vf_guid);
2636/**
2637 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2638 * information) and set an appropriate memory region for registration.
2639 * @mr: memory region
2640 * @data_sg: dma mapped scatterlist for data
2641 * @data_sg_nents: number of entries in data_sg
2642 * @data_sg_offset: offset in bytes into data_sg
2643 * @meta_sg: dma mapped scatterlist for metadata
2644 * @meta_sg_nents: number of entries in meta_sg
2645 * @meta_sg_offset: offset in bytes into meta_sg
2646 * @page_size: page vector desired page size
2647 *
2648 * Constraints:
2649 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2650 *
2651 * Return: 0 on success.
2652 *
2653 * After this completes successfully, the memory region
2654 * is ready for registration.
2655 */
2656int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2657 int data_sg_nents, unsigned int *data_sg_offset,
2658 struct scatterlist *meta_sg, int meta_sg_nents,
2659 unsigned int *meta_sg_offset, unsigned int page_size)
2660{
2661 if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2662 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2663 return -EOPNOTSUPP;
2664
2665 mr->page_size = page_size;
2666
2667 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2668 data_sg_offset, meta_sg,
2669 meta_sg_nents, meta_sg_offset);
2670}
2671EXPORT_SYMBOL(ib_map_mr_sg_pi);
2672
2673/**
2674 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2675 * and set it the memory region.
2676 * @mr: memory region
2677 * @sg: dma mapped scatterlist
2678 * @sg_nents: number of entries in sg
2679 * @sg_offset: offset in bytes into sg
2680 * @page_size: page vector desired page size
2681 *
2682 * Constraints:
2683 *
2684 * - The first sg element is allowed to have an offset.
2685 * - Each sg element must either be aligned to page_size or virtually
2686 * contiguous to the previous element. In case an sg element has a
2687 * non-contiguous offset, the mapping prefix will not include it.
2688 * - The last sg element is allowed to have length less than page_size.
2689 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2690 * then only max_num_sg entries will be mapped.
2691 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2692 * constraints holds and the page_size argument is ignored.
2693 *
2694 * Returns the number of sg elements that were mapped to the memory region.
2695 *
2696 * After this completes successfully, the memory region
2697 * is ready for registration.
2698 */
2699int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2700 unsigned int *sg_offset, unsigned int page_size)
2701{
2702 if (unlikely(!mr->device->ops.map_mr_sg))
2703 return -EOPNOTSUPP;
2704
2705 mr->page_size = page_size;
2706
2707 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2708}
2709EXPORT_SYMBOL(ib_map_mr_sg);
2710
2711/**
2712 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2713 * to a page vector
2714 * @mr: memory region
2715 * @sgl: dma mapped scatterlist
2716 * @sg_nents: number of entries in sg
2717 * @sg_offset_p: ==== =======================================================
2718 * IN start offset in bytes into sg
2719 * OUT offset in bytes for element n of the sg of the first
2720 * byte that has not been processed where n is the return
2721 * value of this function.
2722 * ==== =======================================================
2723 * @set_page: driver page assignment function pointer
2724 *
2725 * Core service helper for drivers to convert the largest
2726 * prefix of given sg list to a page vector. The sg list
2727 * prefix converted is the prefix that meet the requirements
2728 * of ib_map_mr_sg.
2729 *
2730 * Returns the number of sg elements that were assigned to
2731 * a page vector.
2732 */
2733int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2734 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2735{
2736 struct scatterlist *sg;
2737 u64 last_end_dma_addr = 0;
2738 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2739 unsigned int last_page_off = 0;
2740 u64 page_mask = ~((u64)mr->page_size - 1);
2741 int i, ret;
2742
2743 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2744 return -EINVAL;
2745
2746 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2747 mr->length = 0;
2748
2749 for_each_sg(sgl, sg, sg_nents, i) {
2750 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2751 u64 prev_addr = dma_addr;
2752 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2753 u64 end_dma_addr = dma_addr + dma_len;
2754 u64 page_addr = dma_addr & page_mask;
2755
2756 /*
2757 * For the second and later elements, check whether either the
2758 * end of element i-1 or the start of element i is not aligned
2759 * on a page boundary.
2760 */
2761 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2762 /* Stop mapping if there is a gap. */
2763 if (last_end_dma_addr != dma_addr)
2764 break;
2765
2766 /*
2767 * Coalesce this element with the last. If it is small
2768 * enough just update mr->length. Otherwise start
2769 * mapping from the next page.
2770 */
2771 goto next_page;
2772 }
2773
2774 do {
2775 ret = set_page(mr, page_addr);
2776 if (unlikely(ret < 0)) {
2777 sg_offset = prev_addr - sg_dma_address(sg);
2778 mr->length += prev_addr - dma_addr;
2779 if (sg_offset_p)
2780 *sg_offset_p = sg_offset;
2781 return i || sg_offset ? i : ret;
2782 }
2783 prev_addr = page_addr;
2784next_page:
2785 page_addr += mr->page_size;
2786 } while (page_addr < end_dma_addr);
2787
2788 mr->length += dma_len;
2789 last_end_dma_addr = end_dma_addr;
2790 last_page_off = end_dma_addr & ~page_mask;
2791
2792 sg_offset = 0;
2793 }
2794
2795 if (sg_offset_p)
2796 *sg_offset_p = 0;
2797 return i;
2798}
2799EXPORT_SYMBOL(ib_sg_to_pages);
2800
2801struct ib_drain_cqe {
2802 struct ib_cqe cqe;
2803 struct completion done;
2804};
2805
2806static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2807{
2808 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2809 cqe);
2810
2811 complete(&cqe->done);
2812}
2813
2814/*
2815 * Post a WR and block until its completion is reaped for the SQ.
2816 */
2817static void __ib_drain_sq(struct ib_qp *qp)
2818{
2819 struct ib_cq *cq = qp->send_cq;
2820 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2821 struct ib_drain_cqe sdrain;
2822 struct ib_rdma_wr swr = {
2823 .wr = {
2824 .next = NULL,
2825 { .wr_cqe = &sdrain.cqe, },
2826 .opcode = IB_WR_RDMA_WRITE,
2827 },
2828 };
2829 int ret;
2830
2831 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2832 if (ret) {
2833 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2834 return;
2835 }
2836
2837 sdrain.cqe.done = ib_drain_qp_done;
2838 init_completion(&sdrain.done);
2839
2840 ret = ib_post_send(qp, &swr.wr, NULL);
2841 if (ret) {
2842 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2843 return;
2844 }
2845
2846 if (cq->poll_ctx == IB_POLL_DIRECT)
2847 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2848 ib_process_cq_direct(cq, -1);
2849 else
2850 wait_for_completion(&sdrain.done);
2851}
2852
2853/*
2854 * Post a WR and block until its completion is reaped for the RQ.
2855 */
2856static void __ib_drain_rq(struct ib_qp *qp)
2857{
2858 struct ib_cq *cq = qp->recv_cq;
2859 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2860 struct ib_drain_cqe rdrain;
2861 struct ib_recv_wr rwr = {};
2862 int ret;
2863
2864 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2865 if (ret) {
2866 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2867 return;
2868 }
2869
2870 rwr.wr_cqe = &rdrain.cqe;
2871 rdrain.cqe.done = ib_drain_qp_done;
2872 init_completion(&rdrain.done);
2873
2874 ret = ib_post_recv(qp, &rwr, NULL);
2875 if (ret) {
2876 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2877 return;
2878 }
2879
2880 if (cq->poll_ctx == IB_POLL_DIRECT)
2881 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2882 ib_process_cq_direct(cq, -1);
2883 else
2884 wait_for_completion(&rdrain.done);
2885}
2886
2887/**
2888 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2889 * application.
2890 * @qp: queue pair to drain
2891 *
2892 * If the device has a provider-specific drain function, then
2893 * call that. Otherwise call the generic drain function
2894 * __ib_drain_sq().
2895 *
2896 * The caller must:
2897 *
2898 * ensure there is room in the CQ and SQ for the drain work request and
2899 * completion.
2900 *
2901 * allocate the CQ using ib_alloc_cq().
2902 *
2903 * ensure that there are no other contexts that are posting WRs concurrently.
2904 * Otherwise the drain is not guaranteed.
2905 */
2906void ib_drain_sq(struct ib_qp *qp)
2907{
2908 if (qp->device->ops.drain_sq)
2909 qp->device->ops.drain_sq(qp);
2910 else
2911 __ib_drain_sq(qp);
2912 trace_cq_drain_complete(qp->send_cq);
2913}
2914EXPORT_SYMBOL(ib_drain_sq);
2915
2916/**
2917 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2918 * application.
2919 * @qp: queue pair to drain
2920 *
2921 * If the device has a provider-specific drain function, then
2922 * call that. Otherwise call the generic drain function
2923 * __ib_drain_rq().
2924 *
2925 * The caller must:
2926 *
2927 * ensure there is room in the CQ and RQ for the drain work request and
2928 * completion.
2929 *
2930 * allocate the CQ using ib_alloc_cq().
2931 *
2932 * ensure that there are no other contexts that are posting WRs concurrently.
2933 * Otherwise the drain is not guaranteed.
2934 */
2935void ib_drain_rq(struct ib_qp *qp)
2936{
2937 if (qp->device->ops.drain_rq)
2938 qp->device->ops.drain_rq(qp);
2939 else
2940 __ib_drain_rq(qp);
2941 trace_cq_drain_complete(qp->recv_cq);
2942}
2943EXPORT_SYMBOL(ib_drain_rq);
2944
2945/**
2946 * ib_drain_qp() - Block until all CQEs have been consumed by the
2947 * application on both the RQ and SQ.
2948 * @qp: queue pair to drain
2949 *
2950 * The caller must:
2951 *
2952 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2953 * and completions.
2954 *
2955 * allocate the CQs using ib_alloc_cq().
2956 *
2957 * ensure that there are no other contexts that are posting WRs concurrently.
2958 * Otherwise the drain is not guaranteed.
2959 */
2960void ib_drain_qp(struct ib_qp *qp)
2961{
2962 ib_drain_sq(qp);
2963 if (!qp->srq)
2964 ib_drain_rq(qp);
2965}
2966EXPORT_SYMBOL(ib_drain_qp);
2967
2968struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
2969 enum rdma_netdev_t type, const char *name,
2970 unsigned char name_assign_type,
2971 void (*setup)(struct net_device *))
2972{
2973 struct rdma_netdev_alloc_params params;
2974 struct net_device *netdev;
2975 int rc;
2976
2977 if (!device->ops.rdma_netdev_get_params)
2978 return ERR_PTR(-EOPNOTSUPP);
2979
2980 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2981 ¶ms);
2982 if (rc)
2983 return ERR_PTR(rc);
2984
2985 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2986 setup, params.txqs, params.rxqs);
2987 if (!netdev)
2988 return ERR_PTR(-ENOMEM);
2989
2990 return netdev;
2991}
2992EXPORT_SYMBOL(rdma_alloc_netdev);
2993
2994int rdma_init_netdev(struct ib_device *device, u32 port_num,
2995 enum rdma_netdev_t type, const char *name,
2996 unsigned char name_assign_type,
2997 void (*setup)(struct net_device *),
2998 struct net_device *netdev)
2999{
3000 struct rdma_netdev_alloc_params params;
3001 int rc;
3002
3003 if (!device->ops.rdma_netdev_get_params)
3004 return -EOPNOTSUPP;
3005
3006 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3007 ¶ms);
3008 if (rc)
3009 return rc;
3010
3011 return params.initialize_rdma_netdev(device, port_num,
3012 netdev, params.param);
3013}
3014EXPORT_SYMBOL(rdma_init_netdev);
3015
3016void __rdma_block_iter_start(struct ib_block_iter *biter,
3017 struct scatterlist *sglist, unsigned int nents,
3018 unsigned long pgsz)
3019{
3020 memset(biter, 0, sizeof(struct ib_block_iter));
3021 biter->__sg = sglist;
3022 biter->__sg_nents = nents;
3023
3024 /* Driver provides best block size to use */
3025 biter->__pg_bit = __fls(pgsz);
3026}
3027EXPORT_SYMBOL(__rdma_block_iter_start);
3028
3029bool __rdma_block_iter_next(struct ib_block_iter *biter)
3030{
3031 unsigned int block_offset;
3032 unsigned int sg_delta;
3033
3034 if (!biter->__sg_nents || !biter->__sg)
3035 return false;
3036
3037 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
3038 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
3039 sg_delta = BIT_ULL(biter->__pg_bit) - block_offset;
3040
3041 if (sg_dma_len(biter->__sg) - biter->__sg_advance > sg_delta) {
3042 biter->__sg_advance += sg_delta;
3043 } else {
3044 biter->__sg_advance = 0;
3045 biter->__sg = sg_next(biter->__sg);
3046 biter->__sg_nents--;
3047 }
3048
3049 return true;
3050}
3051EXPORT_SYMBOL(__rdma_block_iter_next);
3052
3053/**
3054 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
3055 * for the drivers.
3056 * @descs: array of static descriptors
3057 * @num_counters: number of elements in array
3058 * @lifespan: milliseconds between updates
3059 */
3060struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
3061 const struct rdma_stat_desc *descs, int num_counters,
3062 unsigned long lifespan)
3063{
3064 struct rdma_hw_stats *stats;
3065
3066 stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
3067 if (!stats)
3068 return NULL;
3069
3070 stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
3071 sizeof(*stats->is_disabled), GFP_KERNEL);
3072 if (!stats->is_disabled)
3073 goto err;
3074
3075 stats->descs = descs;
3076 stats->num_counters = num_counters;
3077 stats->lifespan = msecs_to_jiffies(lifespan);
3078 mutex_init(&stats->lock);
3079
3080 return stats;
3081
3082err:
3083 kfree(stats);
3084 return NULL;
3085}
3086EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
3087
3088/**
3089 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
3090 * @stats: statistics to release
3091 */
3092void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
3093{
3094 if (!stats)
3095 return;
3096
3097 kfree(stats->is_disabled);
3098 kfree(stats);
3099}
3100EXPORT_SYMBOL(rdma_free_hw_stats_struct);
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#include <linux/errno.h>
40#include <linux/err.h>
41#include <linux/export.h>
42#include <linux/string.h>
43#include <linux/slab.h>
44#include <linux/in.h>
45#include <linux/in6.h>
46#include <net/addrconf.h>
47#include <linux/security.h>
48
49#include <rdma/ib_verbs.h>
50#include <rdma/ib_cache.h>
51#include <rdma/ib_addr.h>
52#include <rdma/rw.h>
53#include <rdma/lag.h>
54
55#include "core_priv.h"
56#include <trace/events/rdma_core.h>
57
58static int ib_resolve_eth_dmac(struct ib_device *device,
59 struct rdma_ah_attr *ah_attr);
60
61static const char * const ib_events[] = {
62 [IB_EVENT_CQ_ERR] = "CQ error",
63 [IB_EVENT_QP_FATAL] = "QP fatal error",
64 [IB_EVENT_QP_REQ_ERR] = "QP request error",
65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
66 [IB_EVENT_COMM_EST] = "communication established",
67 [IB_EVENT_SQ_DRAINED] = "send queue drained",
68 [IB_EVENT_PATH_MIG] = "path migration successful",
69 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
70 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
71 [IB_EVENT_PORT_ACTIVE] = "port active",
72 [IB_EVENT_PORT_ERR] = "port error",
73 [IB_EVENT_LID_CHANGE] = "LID change",
74 [IB_EVENT_PKEY_CHANGE] = "P_key change",
75 [IB_EVENT_SM_CHANGE] = "SM change",
76 [IB_EVENT_SRQ_ERR] = "SRQ error",
77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
80 [IB_EVENT_GID_CHANGE] = "GID changed",
81};
82
83const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84{
85 size_t index = event;
86
87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 ib_events[index] : "unrecognized event";
89}
90EXPORT_SYMBOL(ib_event_msg);
91
92static const char * const wc_statuses[] = {
93 [IB_WC_SUCCESS] = "success",
94 [IB_WC_LOC_LEN_ERR] = "local length error",
95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
97 [IB_WC_LOC_PROT_ERR] = "local protection error",
98 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
99 [IB_WC_MW_BIND_ERR] = "memory bind operation error",
100 [IB_WC_BAD_RESP_ERR] = "bad response error",
101 [IB_WC_LOC_ACCESS_ERR] = "local access error",
102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error",
103 [IB_WC_REM_ACCESS_ERR] = "remote access error",
104 [IB_WC_REM_OP_ERR] = "remote operation error",
105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
109 [IB_WC_REM_ABORT_ERR] = "operation aborted",
110 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
112 [IB_WC_FATAL_ERR] = "fatal error",
113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
114 [IB_WC_GENERAL_ERR] = "general error",
115};
116
117const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118{
119 size_t index = status;
120
121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 wc_statuses[index] : "unrecognized status";
123}
124EXPORT_SYMBOL(ib_wc_status_msg);
125
126__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127{
128 switch (rate) {
129 case IB_RATE_2_5_GBPS: return 1;
130 case IB_RATE_5_GBPS: return 2;
131 case IB_RATE_10_GBPS: return 4;
132 case IB_RATE_20_GBPS: return 8;
133 case IB_RATE_30_GBPS: return 12;
134 case IB_RATE_40_GBPS: return 16;
135 case IB_RATE_60_GBPS: return 24;
136 case IB_RATE_80_GBPS: return 32;
137 case IB_RATE_120_GBPS: return 48;
138 case IB_RATE_14_GBPS: return 6;
139 case IB_RATE_56_GBPS: return 22;
140 case IB_RATE_112_GBPS: return 45;
141 case IB_RATE_168_GBPS: return 67;
142 case IB_RATE_25_GBPS: return 10;
143 case IB_RATE_100_GBPS: return 40;
144 case IB_RATE_200_GBPS: return 80;
145 case IB_RATE_300_GBPS: return 120;
146 case IB_RATE_28_GBPS: return 11;
147 case IB_RATE_50_GBPS: return 20;
148 case IB_RATE_400_GBPS: return 160;
149 case IB_RATE_600_GBPS: return 240;
150 case IB_RATE_800_GBPS: return 320;
151 default: return -1;
152 }
153}
154EXPORT_SYMBOL(ib_rate_to_mult);
155
156__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
157{
158 switch (mult) {
159 case 1: return IB_RATE_2_5_GBPS;
160 case 2: return IB_RATE_5_GBPS;
161 case 4: return IB_RATE_10_GBPS;
162 case 8: return IB_RATE_20_GBPS;
163 case 12: return IB_RATE_30_GBPS;
164 case 16: return IB_RATE_40_GBPS;
165 case 24: return IB_RATE_60_GBPS;
166 case 32: return IB_RATE_80_GBPS;
167 case 48: return IB_RATE_120_GBPS;
168 case 6: return IB_RATE_14_GBPS;
169 case 22: return IB_RATE_56_GBPS;
170 case 45: return IB_RATE_112_GBPS;
171 case 67: return IB_RATE_168_GBPS;
172 case 10: return IB_RATE_25_GBPS;
173 case 40: return IB_RATE_100_GBPS;
174 case 80: return IB_RATE_200_GBPS;
175 case 120: return IB_RATE_300_GBPS;
176 case 11: return IB_RATE_28_GBPS;
177 case 20: return IB_RATE_50_GBPS;
178 case 160: return IB_RATE_400_GBPS;
179 case 240: return IB_RATE_600_GBPS;
180 case 320: return IB_RATE_800_GBPS;
181 default: return IB_RATE_PORT_CURRENT;
182 }
183}
184EXPORT_SYMBOL(mult_to_ib_rate);
185
186__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
187{
188 switch (rate) {
189 case IB_RATE_2_5_GBPS: return 2500;
190 case IB_RATE_5_GBPS: return 5000;
191 case IB_RATE_10_GBPS: return 10000;
192 case IB_RATE_20_GBPS: return 20000;
193 case IB_RATE_30_GBPS: return 30000;
194 case IB_RATE_40_GBPS: return 40000;
195 case IB_RATE_60_GBPS: return 60000;
196 case IB_RATE_80_GBPS: return 80000;
197 case IB_RATE_120_GBPS: return 120000;
198 case IB_RATE_14_GBPS: return 14062;
199 case IB_RATE_56_GBPS: return 56250;
200 case IB_RATE_112_GBPS: return 112500;
201 case IB_RATE_168_GBPS: return 168750;
202 case IB_RATE_25_GBPS: return 25781;
203 case IB_RATE_100_GBPS: return 103125;
204 case IB_RATE_200_GBPS: return 206250;
205 case IB_RATE_300_GBPS: return 309375;
206 case IB_RATE_28_GBPS: return 28125;
207 case IB_RATE_50_GBPS: return 53125;
208 case IB_RATE_400_GBPS: return 425000;
209 case IB_RATE_600_GBPS: return 637500;
210 case IB_RATE_800_GBPS: return 850000;
211 default: return -1;
212 }
213}
214EXPORT_SYMBOL(ib_rate_to_mbps);
215
216__attribute_const__ enum rdma_transport_type
217rdma_node_get_transport(unsigned int node_type)
218{
219
220 if (node_type == RDMA_NODE_USNIC)
221 return RDMA_TRANSPORT_USNIC;
222 if (node_type == RDMA_NODE_USNIC_UDP)
223 return RDMA_TRANSPORT_USNIC_UDP;
224 if (node_type == RDMA_NODE_RNIC)
225 return RDMA_TRANSPORT_IWARP;
226 if (node_type == RDMA_NODE_UNSPECIFIED)
227 return RDMA_TRANSPORT_UNSPECIFIED;
228
229 return RDMA_TRANSPORT_IB;
230}
231EXPORT_SYMBOL(rdma_node_get_transport);
232
233enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
234 u32 port_num)
235{
236 enum rdma_transport_type lt;
237 if (device->ops.get_link_layer)
238 return device->ops.get_link_layer(device, port_num);
239
240 lt = rdma_node_get_transport(device->node_type);
241 if (lt == RDMA_TRANSPORT_IB)
242 return IB_LINK_LAYER_INFINIBAND;
243
244 return IB_LINK_LAYER_ETHERNET;
245}
246EXPORT_SYMBOL(rdma_port_get_link_layer);
247
248/* Protection domains */
249
250/**
251 * __ib_alloc_pd - Allocates an unused protection domain.
252 * @device: The device on which to allocate the protection domain.
253 * @flags: protection domain flags
254 * @caller: caller's build-time module name
255 *
256 * A protection domain object provides an association between QPs, shared
257 * receive queues, address handles, memory regions, and memory windows.
258 *
259 * Every PD has a local_dma_lkey which can be used as the lkey value for local
260 * memory operations.
261 */
262struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
263 const char *caller)
264{
265 struct ib_pd *pd;
266 int mr_access_flags = 0;
267 int ret;
268
269 pd = rdma_zalloc_drv_obj(device, ib_pd);
270 if (!pd)
271 return ERR_PTR(-ENOMEM);
272
273 pd->device = device;
274 pd->flags = flags;
275
276 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
277 rdma_restrack_set_name(&pd->res, caller);
278
279 ret = device->ops.alloc_pd(pd, NULL);
280 if (ret) {
281 rdma_restrack_put(&pd->res);
282 kfree(pd);
283 return ERR_PTR(ret);
284 }
285 rdma_restrack_add(&pd->res);
286
287 if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
288 pd->local_dma_lkey = device->local_dma_lkey;
289 else
290 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
291
292 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
293 pr_warn("%s: enabling unsafe global rkey\n", caller);
294 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
295 }
296
297 if (mr_access_flags) {
298 struct ib_mr *mr;
299
300 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
301 if (IS_ERR(mr)) {
302 ib_dealloc_pd(pd);
303 return ERR_CAST(mr);
304 }
305
306 mr->device = pd->device;
307 mr->pd = pd;
308 mr->type = IB_MR_TYPE_DMA;
309 mr->uobject = NULL;
310 mr->need_inval = false;
311
312 pd->__internal_mr = mr;
313
314 if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
315 pd->local_dma_lkey = pd->__internal_mr->lkey;
316
317 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
318 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
319 }
320
321 return pd;
322}
323EXPORT_SYMBOL(__ib_alloc_pd);
324
325/**
326 * ib_dealloc_pd_user - Deallocates a protection domain.
327 * @pd: The protection domain to deallocate.
328 * @udata: Valid user data or NULL for kernel object
329 *
330 * It is an error to call this function while any resources in the pd still
331 * exist. The caller is responsible to synchronously destroy them and
332 * guarantee no new allocations will happen.
333 */
334int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
335{
336 int ret;
337
338 if (pd->__internal_mr) {
339 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
340 WARN_ON(ret);
341 pd->__internal_mr = NULL;
342 }
343
344 ret = pd->device->ops.dealloc_pd(pd, udata);
345 if (ret)
346 return ret;
347
348 rdma_restrack_del(&pd->res);
349 kfree(pd);
350 return ret;
351}
352EXPORT_SYMBOL(ib_dealloc_pd_user);
353
354/* Address handles */
355
356/**
357 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
358 * @dest: Pointer to destination ah_attr. Contents of the destination
359 * pointer is assumed to be invalid and attribute are overwritten.
360 * @src: Pointer to source ah_attr.
361 */
362void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
363 const struct rdma_ah_attr *src)
364{
365 *dest = *src;
366 if (dest->grh.sgid_attr)
367 rdma_hold_gid_attr(dest->grh.sgid_attr);
368}
369EXPORT_SYMBOL(rdma_copy_ah_attr);
370
371/**
372 * rdma_replace_ah_attr - Replace valid ah_attr with new one.
373 * @old: Pointer to existing ah_attr which needs to be replaced.
374 * old is assumed to be valid or zero'd
375 * @new: Pointer to the new ah_attr.
376 *
377 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
378 * old the ah_attr is valid; after that it copies the new attribute and holds
379 * the reference to the replaced ah_attr.
380 */
381void rdma_replace_ah_attr(struct rdma_ah_attr *old,
382 const struct rdma_ah_attr *new)
383{
384 rdma_destroy_ah_attr(old);
385 *old = *new;
386 if (old->grh.sgid_attr)
387 rdma_hold_gid_attr(old->grh.sgid_attr);
388}
389EXPORT_SYMBOL(rdma_replace_ah_attr);
390
391/**
392 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
393 * @dest: Pointer to destination ah_attr to copy to.
394 * dest is assumed to be valid or zero'd
395 * @src: Pointer to the new ah_attr.
396 *
397 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
398 * if it is valid. This also transfers ownership of internal references from
399 * src to dest, making src invalid in the process. No new reference of the src
400 * ah_attr is taken.
401 */
402void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
403{
404 rdma_destroy_ah_attr(dest);
405 *dest = *src;
406 src->grh.sgid_attr = NULL;
407}
408EXPORT_SYMBOL(rdma_move_ah_attr);
409
410/*
411 * Validate that the rdma_ah_attr is valid for the device before passing it
412 * off to the driver.
413 */
414static int rdma_check_ah_attr(struct ib_device *device,
415 struct rdma_ah_attr *ah_attr)
416{
417 if (!rdma_is_port_valid(device, ah_attr->port_num))
418 return -EINVAL;
419
420 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
421 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
422 !(ah_attr->ah_flags & IB_AH_GRH))
423 return -EINVAL;
424
425 if (ah_attr->grh.sgid_attr) {
426 /*
427 * Make sure the passed sgid_attr is consistent with the
428 * parameters
429 */
430 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
431 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
432 return -EINVAL;
433 }
434 return 0;
435}
436
437/*
438 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
439 * On success the caller is responsible to call rdma_unfill_sgid_attr().
440 */
441static int rdma_fill_sgid_attr(struct ib_device *device,
442 struct rdma_ah_attr *ah_attr,
443 const struct ib_gid_attr **old_sgid_attr)
444{
445 const struct ib_gid_attr *sgid_attr;
446 struct ib_global_route *grh;
447 int ret;
448
449 *old_sgid_attr = ah_attr->grh.sgid_attr;
450
451 ret = rdma_check_ah_attr(device, ah_attr);
452 if (ret)
453 return ret;
454
455 if (!(ah_attr->ah_flags & IB_AH_GRH))
456 return 0;
457
458 grh = rdma_ah_retrieve_grh(ah_attr);
459 if (grh->sgid_attr)
460 return 0;
461
462 sgid_attr =
463 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
464 if (IS_ERR(sgid_attr))
465 return PTR_ERR(sgid_attr);
466
467 /* Move ownerhip of the kref into the ah_attr */
468 grh->sgid_attr = sgid_attr;
469 return 0;
470}
471
472static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
473 const struct ib_gid_attr *old_sgid_attr)
474{
475 /*
476 * Fill didn't change anything, the caller retains ownership of
477 * whatever it passed
478 */
479 if (ah_attr->grh.sgid_attr == old_sgid_attr)
480 return;
481
482 /*
483 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
484 * doesn't see any change in the rdma_ah_attr. If we get here
485 * old_sgid_attr is NULL.
486 */
487 rdma_destroy_ah_attr(ah_attr);
488}
489
490static const struct ib_gid_attr *
491rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
492 const struct ib_gid_attr *old_attr)
493{
494 if (old_attr)
495 rdma_put_gid_attr(old_attr);
496 if (ah_attr->ah_flags & IB_AH_GRH) {
497 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
498 return ah_attr->grh.sgid_attr;
499 }
500 return NULL;
501}
502
503static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
504 struct rdma_ah_attr *ah_attr,
505 u32 flags,
506 struct ib_udata *udata,
507 struct net_device *xmit_slave)
508{
509 struct rdma_ah_init_attr init_attr = {};
510 struct ib_device *device = pd->device;
511 struct ib_ah *ah;
512 int ret;
513
514 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
515
516 if (!udata && !device->ops.create_ah)
517 return ERR_PTR(-EOPNOTSUPP);
518
519 ah = rdma_zalloc_drv_obj_gfp(
520 device, ib_ah,
521 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
522 if (!ah)
523 return ERR_PTR(-ENOMEM);
524
525 ah->device = device;
526 ah->pd = pd;
527 ah->type = ah_attr->type;
528 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
529 init_attr.ah_attr = ah_attr;
530 init_attr.flags = flags;
531 init_attr.xmit_slave = xmit_slave;
532
533 if (udata)
534 ret = device->ops.create_user_ah(ah, &init_attr, udata);
535 else
536 ret = device->ops.create_ah(ah, &init_attr, NULL);
537 if (ret) {
538 if (ah->sgid_attr)
539 rdma_put_gid_attr(ah->sgid_attr);
540 kfree(ah);
541 return ERR_PTR(ret);
542 }
543
544 atomic_inc(&pd->usecnt);
545 return ah;
546}
547
548/**
549 * rdma_create_ah - Creates an address handle for the
550 * given address vector.
551 * @pd: The protection domain associated with the address handle.
552 * @ah_attr: The attributes of the address vector.
553 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
554 *
555 * It returns 0 on success and returns appropriate error code on error.
556 * The address handle is used to reference a local or global destination
557 * in all UD QP post sends.
558 */
559struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
560 u32 flags)
561{
562 const struct ib_gid_attr *old_sgid_attr;
563 struct net_device *slave;
564 struct ib_ah *ah;
565 int ret;
566
567 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
568 if (ret)
569 return ERR_PTR(ret);
570 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
571 (flags & RDMA_CREATE_AH_SLEEPABLE) ?
572 GFP_KERNEL : GFP_ATOMIC);
573 if (IS_ERR(slave)) {
574 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
575 return (void *)slave;
576 }
577 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
578 rdma_lag_put_ah_roce_slave(slave);
579 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
580 return ah;
581}
582EXPORT_SYMBOL(rdma_create_ah);
583
584/**
585 * rdma_create_user_ah - Creates an address handle for the
586 * given address vector.
587 * It resolves destination mac address for ah attribute of RoCE type.
588 * @pd: The protection domain associated with the address handle.
589 * @ah_attr: The attributes of the address vector.
590 * @udata: pointer to user's input output buffer information need by
591 * provider driver.
592 *
593 * It returns 0 on success and returns appropriate error code on error.
594 * The address handle is used to reference a local or global destination
595 * in all UD QP post sends.
596 */
597struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
598 struct rdma_ah_attr *ah_attr,
599 struct ib_udata *udata)
600{
601 const struct ib_gid_attr *old_sgid_attr;
602 struct ib_ah *ah;
603 int err;
604
605 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
606 if (err)
607 return ERR_PTR(err);
608
609 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
610 err = ib_resolve_eth_dmac(pd->device, ah_attr);
611 if (err) {
612 ah = ERR_PTR(err);
613 goto out;
614 }
615 }
616
617 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
618 udata, NULL);
619
620out:
621 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
622 return ah;
623}
624EXPORT_SYMBOL(rdma_create_user_ah);
625
626int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
627{
628 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
629 struct iphdr ip4h_checked;
630 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
631
632 /* If it's IPv6, the version must be 6, otherwise, the first
633 * 20 bytes (before the IPv4 header) are garbled.
634 */
635 if (ip6h->version != 6)
636 return (ip4h->version == 4) ? 4 : 0;
637 /* version may be 6 or 4 because the first 20 bytes could be garbled */
638
639 /* RoCE v2 requires no options, thus header length
640 * must be 5 words
641 */
642 if (ip4h->ihl != 5)
643 return 6;
644
645 /* Verify checksum.
646 * We can't write on scattered buffers so we need to copy to
647 * temp buffer.
648 */
649 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
650 ip4h_checked.check = 0;
651 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
652 /* if IPv4 header checksum is OK, believe it */
653 if (ip4h->check == ip4h_checked.check)
654 return 4;
655 return 6;
656}
657EXPORT_SYMBOL(ib_get_rdma_header_version);
658
659static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
660 u32 port_num,
661 const struct ib_grh *grh)
662{
663 int grh_version;
664
665 if (rdma_protocol_ib(device, port_num))
666 return RDMA_NETWORK_IB;
667
668 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
669
670 if (grh_version == 4)
671 return RDMA_NETWORK_IPV4;
672
673 if (grh->next_hdr == IPPROTO_UDP)
674 return RDMA_NETWORK_IPV6;
675
676 return RDMA_NETWORK_ROCE_V1;
677}
678
679struct find_gid_index_context {
680 u16 vlan_id;
681 enum ib_gid_type gid_type;
682};
683
684static bool find_gid_index(const union ib_gid *gid,
685 const struct ib_gid_attr *gid_attr,
686 void *context)
687{
688 struct find_gid_index_context *ctx = context;
689 u16 vlan_id = 0xffff;
690 int ret;
691
692 if (ctx->gid_type != gid_attr->gid_type)
693 return false;
694
695 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
696 if (ret)
697 return false;
698
699 return ctx->vlan_id == vlan_id;
700}
701
702static const struct ib_gid_attr *
703get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
704 u16 vlan_id, const union ib_gid *sgid,
705 enum ib_gid_type gid_type)
706{
707 struct find_gid_index_context context = {.vlan_id = vlan_id,
708 .gid_type = gid_type};
709
710 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
711 &context);
712}
713
714int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
715 enum rdma_network_type net_type,
716 union ib_gid *sgid, union ib_gid *dgid)
717{
718 struct sockaddr_in src_in;
719 struct sockaddr_in dst_in;
720 __be32 src_saddr, dst_saddr;
721
722 if (!sgid || !dgid)
723 return -EINVAL;
724
725 if (net_type == RDMA_NETWORK_IPV4) {
726 memcpy(&src_in.sin_addr.s_addr,
727 &hdr->roce4grh.saddr, 4);
728 memcpy(&dst_in.sin_addr.s_addr,
729 &hdr->roce4grh.daddr, 4);
730 src_saddr = src_in.sin_addr.s_addr;
731 dst_saddr = dst_in.sin_addr.s_addr;
732 ipv6_addr_set_v4mapped(src_saddr,
733 (struct in6_addr *)sgid);
734 ipv6_addr_set_v4mapped(dst_saddr,
735 (struct in6_addr *)dgid);
736 return 0;
737 } else if (net_type == RDMA_NETWORK_IPV6 ||
738 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
739 *dgid = hdr->ibgrh.dgid;
740 *sgid = hdr->ibgrh.sgid;
741 return 0;
742 } else {
743 return -EINVAL;
744 }
745}
746EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
747
748/* Resolve destination mac address and hop limit for unicast destination
749 * GID entry, considering the source GID entry as well.
750 * ah_attribute must have valid port_num, sgid_index.
751 */
752static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
753 struct rdma_ah_attr *ah_attr)
754{
755 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
756 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
757 int hop_limit = 0xff;
758 int ret = 0;
759
760 /* If destination is link local and source GID is RoCEv1,
761 * IP stack is not used.
762 */
763 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
764 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
765 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
766 ah_attr->roce.dmac);
767 return ret;
768 }
769
770 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
771 ah_attr->roce.dmac,
772 sgid_attr, &hop_limit);
773
774 grh->hop_limit = hop_limit;
775 return ret;
776}
777
778/*
779 * This function initializes address handle attributes from the incoming packet.
780 * Incoming packet has dgid of the receiver node on which this code is
781 * getting executed and, sgid contains the GID of the sender.
782 *
783 * When resolving mac address of destination, the arrived dgid is used
784 * as sgid and, sgid is used as dgid because sgid contains destinations
785 * GID whom to respond to.
786 *
787 * On success the caller is responsible to call rdma_destroy_ah_attr on the
788 * attr.
789 */
790int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
791 const struct ib_wc *wc, const struct ib_grh *grh,
792 struct rdma_ah_attr *ah_attr)
793{
794 u32 flow_class;
795 int ret;
796 enum rdma_network_type net_type = RDMA_NETWORK_IB;
797 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
798 const struct ib_gid_attr *sgid_attr;
799 int hoplimit = 0xff;
800 union ib_gid dgid;
801 union ib_gid sgid;
802
803 might_sleep();
804
805 memset(ah_attr, 0, sizeof *ah_attr);
806 ah_attr->type = rdma_ah_find_type(device, port_num);
807 if (rdma_cap_eth_ah(device, port_num)) {
808 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
809 net_type = wc->network_hdr_type;
810 else
811 net_type = ib_get_net_type_by_grh(device, port_num, grh);
812 gid_type = ib_network_to_gid_type(net_type);
813 }
814 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
815 &sgid, &dgid);
816 if (ret)
817 return ret;
818
819 rdma_ah_set_sl(ah_attr, wc->sl);
820 rdma_ah_set_port_num(ah_attr, port_num);
821
822 if (rdma_protocol_roce(device, port_num)) {
823 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
824 wc->vlan_id : 0xffff;
825
826 if (!(wc->wc_flags & IB_WC_GRH))
827 return -EPROTOTYPE;
828
829 sgid_attr = get_sgid_attr_from_eth(device, port_num,
830 vlan_id, &dgid,
831 gid_type);
832 if (IS_ERR(sgid_attr))
833 return PTR_ERR(sgid_attr);
834
835 flow_class = be32_to_cpu(grh->version_tclass_flow);
836 rdma_move_grh_sgid_attr(ah_attr,
837 &sgid,
838 flow_class & 0xFFFFF,
839 hoplimit,
840 (flow_class >> 20) & 0xFF,
841 sgid_attr);
842
843 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
844 if (ret)
845 rdma_destroy_ah_attr(ah_attr);
846
847 return ret;
848 } else {
849 rdma_ah_set_dlid(ah_attr, wc->slid);
850 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
851
852 if ((wc->wc_flags & IB_WC_GRH) == 0)
853 return 0;
854
855 if (dgid.global.interface_id !=
856 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
857 sgid_attr = rdma_find_gid_by_port(
858 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
859 } else
860 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
861
862 if (IS_ERR(sgid_attr))
863 return PTR_ERR(sgid_attr);
864 flow_class = be32_to_cpu(grh->version_tclass_flow);
865 rdma_move_grh_sgid_attr(ah_attr,
866 &sgid,
867 flow_class & 0xFFFFF,
868 hoplimit,
869 (flow_class >> 20) & 0xFF,
870 sgid_attr);
871
872 return 0;
873 }
874}
875EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
876
877/**
878 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
879 * of the reference
880 *
881 * @attr: Pointer to AH attribute structure
882 * @dgid: Destination GID
883 * @flow_label: Flow label
884 * @hop_limit: Hop limit
885 * @traffic_class: traffic class
886 * @sgid_attr: Pointer to SGID attribute
887 *
888 * This takes ownership of the sgid_attr reference. The caller must ensure
889 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
890 * calling this function.
891 */
892void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
893 u32 flow_label, u8 hop_limit, u8 traffic_class,
894 const struct ib_gid_attr *sgid_attr)
895{
896 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
897 traffic_class);
898 attr->grh.sgid_attr = sgid_attr;
899}
900EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
901
902/**
903 * rdma_destroy_ah_attr - Release reference to SGID attribute of
904 * ah attribute.
905 * @ah_attr: Pointer to ah attribute
906 *
907 * Release reference to the SGID attribute of the ah attribute if it is
908 * non NULL. It is safe to call this multiple times, and safe to call it on
909 * a zero initialized ah_attr.
910 */
911void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
912{
913 if (ah_attr->grh.sgid_attr) {
914 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
915 ah_attr->grh.sgid_attr = NULL;
916 }
917}
918EXPORT_SYMBOL(rdma_destroy_ah_attr);
919
920struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
921 const struct ib_grh *grh, u32 port_num)
922{
923 struct rdma_ah_attr ah_attr;
924 struct ib_ah *ah;
925 int ret;
926
927 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
928 if (ret)
929 return ERR_PTR(ret);
930
931 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
932
933 rdma_destroy_ah_attr(&ah_attr);
934 return ah;
935}
936EXPORT_SYMBOL(ib_create_ah_from_wc);
937
938int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
939{
940 const struct ib_gid_attr *old_sgid_attr;
941 int ret;
942
943 if (ah->type != ah_attr->type)
944 return -EINVAL;
945
946 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
947 if (ret)
948 return ret;
949
950 ret = ah->device->ops.modify_ah ?
951 ah->device->ops.modify_ah(ah, ah_attr) :
952 -EOPNOTSUPP;
953
954 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
955 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
956 return ret;
957}
958EXPORT_SYMBOL(rdma_modify_ah);
959
960int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
961{
962 ah_attr->grh.sgid_attr = NULL;
963
964 return ah->device->ops.query_ah ?
965 ah->device->ops.query_ah(ah, ah_attr) :
966 -EOPNOTSUPP;
967}
968EXPORT_SYMBOL(rdma_query_ah);
969
970int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
971{
972 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
973 struct ib_pd *pd;
974 int ret;
975
976 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
977
978 pd = ah->pd;
979
980 ret = ah->device->ops.destroy_ah(ah, flags);
981 if (ret)
982 return ret;
983
984 atomic_dec(&pd->usecnt);
985 if (sgid_attr)
986 rdma_put_gid_attr(sgid_attr);
987
988 kfree(ah);
989 return ret;
990}
991EXPORT_SYMBOL(rdma_destroy_ah_user);
992
993/* Shared receive queues */
994
995/**
996 * ib_create_srq_user - Creates a SRQ associated with the specified protection
997 * domain.
998 * @pd: The protection domain associated with the SRQ.
999 * @srq_init_attr: A list of initial attributes required to create the
1000 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1001 * the actual capabilities of the created SRQ.
1002 * @uobject: uobject pointer if this is not a kernel SRQ
1003 * @udata: udata pointer if this is not a kernel SRQ
1004 *
1005 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1006 * requested size of the SRQ, and set to the actual values allocated
1007 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1008 * will always be at least as large as the requested values.
1009 */
1010struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1011 struct ib_srq_init_attr *srq_init_attr,
1012 struct ib_usrq_object *uobject,
1013 struct ib_udata *udata)
1014{
1015 struct ib_srq *srq;
1016 int ret;
1017
1018 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1019 if (!srq)
1020 return ERR_PTR(-ENOMEM);
1021
1022 srq->device = pd->device;
1023 srq->pd = pd;
1024 srq->event_handler = srq_init_attr->event_handler;
1025 srq->srq_context = srq_init_attr->srq_context;
1026 srq->srq_type = srq_init_attr->srq_type;
1027 srq->uobject = uobject;
1028
1029 if (ib_srq_has_cq(srq->srq_type)) {
1030 srq->ext.cq = srq_init_attr->ext.cq;
1031 atomic_inc(&srq->ext.cq->usecnt);
1032 }
1033 if (srq->srq_type == IB_SRQT_XRC) {
1034 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1035 if (srq->ext.xrc.xrcd)
1036 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1037 }
1038 atomic_inc(&pd->usecnt);
1039
1040 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1041 rdma_restrack_parent_name(&srq->res, &pd->res);
1042
1043 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1044 if (ret) {
1045 rdma_restrack_put(&srq->res);
1046 atomic_dec(&pd->usecnt);
1047 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1048 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1049 if (ib_srq_has_cq(srq->srq_type))
1050 atomic_dec(&srq->ext.cq->usecnt);
1051 kfree(srq);
1052 return ERR_PTR(ret);
1053 }
1054
1055 rdma_restrack_add(&srq->res);
1056
1057 return srq;
1058}
1059EXPORT_SYMBOL(ib_create_srq_user);
1060
1061int ib_modify_srq(struct ib_srq *srq,
1062 struct ib_srq_attr *srq_attr,
1063 enum ib_srq_attr_mask srq_attr_mask)
1064{
1065 return srq->device->ops.modify_srq ?
1066 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1067 NULL) : -EOPNOTSUPP;
1068}
1069EXPORT_SYMBOL(ib_modify_srq);
1070
1071int ib_query_srq(struct ib_srq *srq,
1072 struct ib_srq_attr *srq_attr)
1073{
1074 return srq->device->ops.query_srq ?
1075 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1076}
1077EXPORT_SYMBOL(ib_query_srq);
1078
1079int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1080{
1081 int ret;
1082
1083 if (atomic_read(&srq->usecnt))
1084 return -EBUSY;
1085
1086 ret = srq->device->ops.destroy_srq(srq, udata);
1087 if (ret)
1088 return ret;
1089
1090 atomic_dec(&srq->pd->usecnt);
1091 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1092 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1093 if (ib_srq_has_cq(srq->srq_type))
1094 atomic_dec(&srq->ext.cq->usecnt);
1095 rdma_restrack_del(&srq->res);
1096 kfree(srq);
1097
1098 return ret;
1099}
1100EXPORT_SYMBOL(ib_destroy_srq_user);
1101
1102/* Queue pairs */
1103
1104static void __ib_qp_event_handler(struct ib_event *event, void *context)
1105{
1106 struct ib_qp *qp = event->element.qp;
1107
1108 if (event->event == IB_EVENT_QP_LAST_WQE_REACHED)
1109 complete(&qp->srq_completion);
1110 if (qp->registered_event_handler)
1111 qp->registered_event_handler(event, qp->qp_context);
1112}
1113
1114static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1115{
1116 struct ib_qp *qp = context;
1117 unsigned long flags;
1118
1119 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1120 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1121 if (event->element.qp->event_handler)
1122 event->element.qp->event_handler(event, event->element.qp->qp_context);
1123 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1124}
1125
1126static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1127 void (*event_handler)(struct ib_event *, void *),
1128 void *qp_context)
1129{
1130 struct ib_qp *qp;
1131 unsigned long flags;
1132 int err;
1133
1134 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1135 if (!qp)
1136 return ERR_PTR(-ENOMEM);
1137
1138 qp->real_qp = real_qp;
1139 err = ib_open_shared_qp_security(qp, real_qp->device);
1140 if (err) {
1141 kfree(qp);
1142 return ERR_PTR(err);
1143 }
1144
1145 qp->real_qp = real_qp;
1146 atomic_inc(&real_qp->usecnt);
1147 qp->device = real_qp->device;
1148 qp->event_handler = event_handler;
1149 qp->qp_context = qp_context;
1150 qp->qp_num = real_qp->qp_num;
1151 qp->qp_type = real_qp->qp_type;
1152
1153 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1154 list_add(&qp->open_list, &real_qp->open_list);
1155 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1156
1157 return qp;
1158}
1159
1160struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1161 struct ib_qp_open_attr *qp_open_attr)
1162{
1163 struct ib_qp *qp, *real_qp;
1164
1165 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1166 return ERR_PTR(-EINVAL);
1167
1168 down_read(&xrcd->tgt_qps_rwsem);
1169 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1170 if (!real_qp) {
1171 up_read(&xrcd->tgt_qps_rwsem);
1172 return ERR_PTR(-EINVAL);
1173 }
1174 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1175 qp_open_attr->qp_context);
1176 up_read(&xrcd->tgt_qps_rwsem);
1177 return qp;
1178}
1179EXPORT_SYMBOL(ib_open_qp);
1180
1181static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1182 struct ib_qp_init_attr *qp_init_attr)
1183{
1184 struct ib_qp *real_qp = qp;
1185 int err;
1186
1187 qp->event_handler = __ib_shared_qp_event_handler;
1188 qp->qp_context = qp;
1189 qp->pd = NULL;
1190 qp->send_cq = qp->recv_cq = NULL;
1191 qp->srq = NULL;
1192 qp->xrcd = qp_init_attr->xrcd;
1193 atomic_inc(&qp_init_attr->xrcd->usecnt);
1194 INIT_LIST_HEAD(&qp->open_list);
1195
1196 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1197 qp_init_attr->qp_context);
1198 if (IS_ERR(qp))
1199 return qp;
1200
1201 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1202 real_qp, GFP_KERNEL));
1203 if (err) {
1204 ib_close_qp(qp);
1205 return ERR_PTR(err);
1206 }
1207 return qp;
1208}
1209
1210static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1211 struct ib_qp_init_attr *attr,
1212 struct ib_udata *udata,
1213 struct ib_uqp_object *uobj, const char *caller)
1214{
1215 struct ib_udata dummy = {};
1216 struct ib_qp *qp;
1217 int ret;
1218
1219 if (!dev->ops.create_qp)
1220 return ERR_PTR(-EOPNOTSUPP);
1221
1222 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1223 if (!qp)
1224 return ERR_PTR(-ENOMEM);
1225
1226 qp->device = dev;
1227 qp->pd = pd;
1228 qp->uobject = uobj;
1229 qp->real_qp = qp;
1230
1231 qp->qp_type = attr->qp_type;
1232 qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1233 qp->srq = attr->srq;
1234 qp->event_handler = __ib_qp_event_handler;
1235 qp->registered_event_handler = attr->event_handler;
1236 qp->port = attr->port_num;
1237 qp->qp_context = attr->qp_context;
1238
1239 spin_lock_init(&qp->mr_lock);
1240 INIT_LIST_HEAD(&qp->rdma_mrs);
1241 INIT_LIST_HEAD(&qp->sig_mrs);
1242 init_completion(&qp->srq_completion);
1243
1244 qp->send_cq = attr->send_cq;
1245 qp->recv_cq = attr->recv_cq;
1246
1247 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1248 WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1249 rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1250 ret = dev->ops.create_qp(qp, attr, udata);
1251 if (ret)
1252 goto err_create;
1253
1254 /*
1255 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1256 * Unfortunately, it is not an easy task to fix that driver.
1257 */
1258 qp->send_cq = attr->send_cq;
1259 qp->recv_cq = attr->recv_cq;
1260
1261 ret = ib_create_qp_security(qp, dev);
1262 if (ret)
1263 goto err_security;
1264
1265 rdma_restrack_add(&qp->res);
1266 return qp;
1267
1268err_security:
1269 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1270err_create:
1271 rdma_restrack_put(&qp->res);
1272 kfree(qp);
1273 return ERR_PTR(ret);
1274
1275}
1276
1277/**
1278 * ib_create_qp_user - Creates a QP associated with the specified protection
1279 * domain.
1280 * @dev: IB device
1281 * @pd: The protection domain associated with the QP.
1282 * @attr: A list of initial attributes required to create the
1283 * QP. If QP creation succeeds, then the attributes are updated to
1284 * the actual capabilities of the created QP.
1285 * @udata: User data
1286 * @uobj: uverbs obect
1287 * @caller: caller's build-time module name
1288 */
1289struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1290 struct ib_qp_init_attr *attr,
1291 struct ib_udata *udata,
1292 struct ib_uqp_object *uobj, const char *caller)
1293{
1294 struct ib_qp *qp, *xrc_qp;
1295
1296 if (attr->qp_type == IB_QPT_XRC_TGT)
1297 qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1298 else
1299 qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1300 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1301 return qp;
1302
1303 xrc_qp = create_xrc_qp_user(qp, attr);
1304 if (IS_ERR(xrc_qp)) {
1305 ib_destroy_qp(qp);
1306 return xrc_qp;
1307 }
1308
1309 xrc_qp->uobject = uobj;
1310 return xrc_qp;
1311}
1312EXPORT_SYMBOL(ib_create_qp_user);
1313
1314void ib_qp_usecnt_inc(struct ib_qp *qp)
1315{
1316 if (qp->pd)
1317 atomic_inc(&qp->pd->usecnt);
1318 if (qp->send_cq)
1319 atomic_inc(&qp->send_cq->usecnt);
1320 if (qp->recv_cq)
1321 atomic_inc(&qp->recv_cq->usecnt);
1322 if (qp->srq)
1323 atomic_inc(&qp->srq->usecnt);
1324 if (qp->rwq_ind_tbl)
1325 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1326}
1327EXPORT_SYMBOL(ib_qp_usecnt_inc);
1328
1329void ib_qp_usecnt_dec(struct ib_qp *qp)
1330{
1331 if (qp->rwq_ind_tbl)
1332 atomic_dec(&qp->rwq_ind_tbl->usecnt);
1333 if (qp->srq)
1334 atomic_dec(&qp->srq->usecnt);
1335 if (qp->recv_cq)
1336 atomic_dec(&qp->recv_cq->usecnt);
1337 if (qp->send_cq)
1338 atomic_dec(&qp->send_cq->usecnt);
1339 if (qp->pd)
1340 atomic_dec(&qp->pd->usecnt);
1341}
1342EXPORT_SYMBOL(ib_qp_usecnt_dec);
1343
1344struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1345 struct ib_qp_init_attr *qp_init_attr,
1346 const char *caller)
1347{
1348 struct ib_device *device = pd->device;
1349 struct ib_qp *qp;
1350 int ret;
1351
1352 /*
1353 * If the callers is using the RDMA API calculate the resources
1354 * needed for the RDMA READ/WRITE operations.
1355 *
1356 * Note that these callers need to pass in a port number.
1357 */
1358 if (qp_init_attr->cap.max_rdma_ctxs)
1359 rdma_rw_init_qp(device, qp_init_attr);
1360
1361 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1362 if (IS_ERR(qp))
1363 return qp;
1364
1365 ib_qp_usecnt_inc(qp);
1366
1367 if (qp_init_attr->cap.max_rdma_ctxs) {
1368 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1369 if (ret)
1370 goto err;
1371 }
1372
1373 /*
1374 * Note: all hw drivers guarantee that max_send_sge is lower than
1375 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1376 * max_send_sge <= max_sge_rd.
1377 */
1378 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1379 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1380 device->attrs.max_sge_rd);
1381 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1382 qp->integrity_en = true;
1383
1384 return qp;
1385
1386err:
1387 ib_destroy_qp(qp);
1388 return ERR_PTR(ret);
1389
1390}
1391EXPORT_SYMBOL(ib_create_qp_kernel);
1392
1393static const struct {
1394 int valid;
1395 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1396 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1397} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1398 [IB_QPS_RESET] = {
1399 [IB_QPS_RESET] = { .valid = 1 },
1400 [IB_QPS_INIT] = {
1401 .valid = 1,
1402 .req_param = {
1403 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1404 IB_QP_PORT |
1405 IB_QP_QKEY),
1406 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1407 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1408 IB_QP_PORT |
1409 IB_QP_ACCESS_FLAGS),
1410 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1411 IB_QP_PORT |
1412 IB_QP_ACCESS_FLAGS),
1413 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1414 IB_QP_PORT |
1415 IB_QP_ACCESS_FLAGS),
1416 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1417 IB_QP_PORT |
1418 IB_QP_ACCESS_FLAGS),
1419 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1420 IB_QP_QKEY),
1421 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1422 IB_QP_QKEY),
1423 }
1424 },
1425 },
1426 [IB_QPS_INIT] = {
1427 [IB_QPS_RESET] = { .valid = 1 },
1428 [IB_QPS_ERR] = { .valid = 1 },
1429 [IB_QPS_INIT] = {
1430 .valid = 1,
1431 .opt_param = {
1432 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1433 IB_QP_PORT |
1434 IB_QP_QKEY),
1435 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1436 IB_QP_PORT |
1437 IB_QP_ACCESS_FLAGS),
1438 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1439 IB_QP_PORT |
1440 IB_QP_ACCESS_FLAGS),
1441 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1442 IB_QP_PORT |
1443 IB_QP_ACCESS_FLAGS),
1444 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1445 IB_QP_PORT |
1446 IB_QP_ACCESS_FLAGS),
1447 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1448 IB_QP_QKEY),
1449 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1450 IB_QP_QKEY),
1451 }
1452 },
1453 [IB_QPS_RTR] = {
1454 .valid = 1,
1455 .req_param = {
1456 [IB_QPT_UC] = (IB_QP_AV |
1457 IB_QP_PATH_MTU |
1458 IB_QP_DEST_QPN |
1459 IB_QP_RQ_PSN),
1460 [IB_QPT_RC] = (IB_QP_AV |
1461 IB_QP_PATH_MTU |
1462 IB_QP_DEST_QPN |
1463 IB_QP_RQ_PSN |
1464 IB_QP_MAX_DEST_RD_ATOMIC |
1465 IB_QP_MIN_RNR_TIMER),
1466 [IB_QPT_XRC_INI] = (IB_QP_AV |
1467 IB_QP_PATH_MTU |
1468 IB_QP_DEST_QPN |
1469 IB_QP_RQ_PSN),
1470 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1471 IB_QP_PATH_MTU |
1472 IB_QP_DEST_QPN |
1473 IB_QP_RQ_PSN |
1474 IB_QP_MAX_DEST_RD_ATOMIC |
1475 IB_QP_MIN_RNR_TIMER),
1476 },
1477 .opt_param = {
1478 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1479 IB_QP_QKEY),
1480 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1481 IB_QP_ACCESS_FLAGS |
1482 IB_QP_PKEY_INDEX),
1483 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1484 IB_QP_ACCESS_FLAGS |
1485 IB_QP_PKEY_INDEX),
1486 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1487 IB_QP_ACCESS_FLAGS |
1488 IB_QP_PKEY_INDEX),
1489 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1490 IB_QP_ACCESS_FLAGS |
1491 IB_QP_PKEY_INDEX),
1492 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1493 IB_QP_QKEY),
1494 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1495 IB_QP_QKEY),
1496 },
1497 },
1498 },
1499 [IB_QPS_RTR] = {
1500 [IB_QPS_RESET] = { .valid = 1 },
1501 [IB_QPS_ERR] = { .valid = 1 },
1502 [IB_QPS_RTS] = {
1503 .valid = 1,
1504 .req_param = {
1505 [IB_QPT_UD] = IB_QP_SQ_PSN,
1506 [IB_QPT_UC] = IB_QP_SQ_PSN,
1507 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1508 IB_QP_RETRY_CNT |
1509 IB_QP_RNR_RETRY |
1510 IB_QP_SQ_PSN |
1511 IB_QP_MAX_QP_RD_ATOMIC),
1512 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1513 IB_QP_RETRY_CNT |
1514 IB_QP_RNR_RETRY |
1515 IB_QP_SQ_PSN |
1516 IB_QP_MAX_QP_RD_ATOMIC),
1517 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1518 IB_QP_SQ_PSN),
1519 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1520 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1521 },
1522 .opt_param = {
1523 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1524 IB_QP_QKEY),
1525 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1526 IB_QP_ALT_PATH |
1527 IB_QP_ACCESS_FLAGS |
1528 IB_QP_PATH_MIG_STATE),
1529 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1530 IB_QP_ALT_PATH |
1531 IB_QP_ACCESS_FLAGS |
1532 IB_QP_MIN_RNR_TIMER |
1533 IB_QP_PATH_MIG_STATE),
1534 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1535 IB_QP_ALT_PATH |
1536 IB_QP_ACCESS_FLAGS |
1537 IB_QP_PATH_MIG_STATE),
1538 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1539 IB_QP_ALT_PATH |
1540 IB_QP_ACCESS_FLAGS |
1541 IB_QP_MIN_RNR_TIMER |
1542 IB_QP_PATH_MIG_STATE),
1543 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1544 IB_QP_QKEY),
1545 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1546 IB_QP_QKEY),
1547 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1548 }
1549 }
1550 },
1551 [IB_QPS_RTS] = {
1552 [IB_QPS_RESET] = { .valid = 1 },
1553 [IB_QPS_ERR] = { .valid = 1 },
1554 [IB_QPS_RTS] = {
1555 .valid = 1,
1556 .opt_param = {
1557 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1558 IB_QP_QKEY),
1559 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1560 IB_QP_ACCESS_FLAGS |
1561 IB_QP_ALT_PATH |
1562 IB_QP_PATH_MIG_STATE),
1563 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1564 IB_QP_ACCESS_FLAGS |
1565 IB_QP_ALT_PATH |
1566 IB_QP_PATH_MIG_STATE |
1567 IB_QP_MIN_RNR_TIMER),
1568 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1569 IB_QP_ACCESS_FLAGS |
1570 IB_QP_ALT_PATH |
1571 IB_QP_PATH_MIG_STATE),
1572 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1573 IB_QP_ACCESS_FLAGS |
1574 IB_QP_ALT_PATH |
1575 IB_QP_PATH_MIG_STATE |
1576 IB_QP_MIN_RNR_TIMER),
1577 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1578 IB_QP_QKEY),
1579 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1580 IB_QP_QKEY),
1581 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1582 }
1583 },
1584 [IB_QPS_SQD] = {
1585 .valid = 1,
1586 .opt_param = {
1587 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1588 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1589 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1590 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1591 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1592 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1593 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1594 }
1595 },
1596 },
1597 [IB_QPS_SQD] = {
1598 [IB_QPS_RESET] = { .valid = 1 },
1599 [IB_QPS_ERR] = { .valid = 1 },
1600 [IB_QPS_RTS] = {
1601 .valid = 1,
1602 .opt_param = {
1603 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1604 IB_QP_QKEY),
1605 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1606 IB_QP_ALT_PATH |
1607 IB_QP_ACCESS_FLAGS |
1608 IB_QP_PATH_MIG_STATE),
1609 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1610 IB_QP_ALT_PATH |
1611 IB_QP_ACCESS_FLAGS |
1612 IB_QP_MIN_RNR_TIMER |
1613 IB_QP_PATH_MIG_STATE),
1614 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1615 IB_QP_ALT_PATH |
1616 IB_QP_ACCESS_FLAGS |
1617 IB_QP_PATH_MIG_STATE),
1618 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1619 IB_QP_ALT_PATH |
1620 IB_QP_ACCESS_FLAGS |
1621 IB_QP_MIN_RNR_TIMER |
1622 IB_QP_PATH_MIG_STATE),
1623 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1624 IB_QP_QKEY),
1625 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1626 IB_QP_QKEY),
1627 }
1628 },
1629 [IB_QPS_SQD] = {
1630 .valid = 1,
1631 .opt_param = {
1632 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1633 IB_QP_QKEY),
1634 [IB_QPT_UC] = (IB_QP_AV |
1635 IB_QP_ALT_PATH |
1636 IB_QP_ACCESS_FLAGS |
1637 IB_QP_PKEY_INDEX |
1638 IB_QP_PATH_MIG_STATE),
1639 [IB_QPT_RC] = (IB_QP_PORT |
1640 IB_QP_AV |
1641 IB_QP_TIMEOUT |
1642 IB_QP_RETRY_CNT |
1643 IB_QP_RNR_RETRY |
1644 IB_QP_MAX_QP_RD_ATOMIC |
1645 IB_QP_MAX_DEST_RD_ATOMIC |
1646 IB_QP_ALT_PATH |
1647 IB_QP_ACCESS_FLAGS |
1648 IB_QP_PKEY_INDEX |
1649 IB_QP_MIN_RNR_TIMER |
1650 IB_QP_PATH_MIG_STATE),
1651 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1652 IB_QP_AV |
1653 IB_QP_TIMEOUT |
1654 IB_QP_RETRY_CNT |
1655 IB_QP_RNR_RETRY |
1656 IB_QP_MAX_QP_RD_ATOMIC |
1657 IB_QP_ALT_PATH |
1658 IB_QP_ACCESS_FLAGS |
1659 IB_QP_PKEY_INDEX |
1660 IB_QP_PATH_MIG_STATE),
1661 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1662 IB_QP_AV |
1663 IB_QP_TIMEOUT |
1664 IB_QP_MAX_DEST_RD_ATOMIC |
1665 IB_QP_ALT_PATH |
1666 IB_QP_ACCESS_FLAGS |
1667 IB_QP_PKEY_INDEX |
1668 IB_QP_MIN_RNR_TIMER |
1669 IB_QP_PATH_MIG_STATE),
1670 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1671 IB_QP_QKEY),
1672 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1673 IB_QP_QKEY),
1674 }
1675 }
1676 },
1677 [IB_QPS_SQE] = {
1678 [IB_QPS_RESET] = { .valid = 1 },
1679 [IB_QPS_ERR] = { .valid = 1 },
1680 [IB_QPS_RTS] = {
1681 .valid = 1,
1682 .opt_param = {
1683 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1684 IB_QP_QKEY),
1685 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1686 IB_QP_ACCESS_FLAGS),
1687 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1688 IB_QP_QKEY),
1689 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1690 IB_QP_QKEY),
1691 }
1692 }
1693 },
1694 [IB_QPS_ERR] = {
1695 [IB_QPS_RESET] = { .valid = 1 },
1696 [IB_QPS_ERR] = { .valid = 1 }
1697 }
1698};
1699
1700bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1701 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1702{
1703 enum ib_qp_attr_mask req_param, opt_param;
1704
1705 if (mask & IB_QP_CUR_STATE &&
1706 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1707 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1708 return false;
1709
1710 if (!qp_state_table[cur_state][next_state].valid)
1711 return false;
1712
1713 req_param = qp_state_table[cur_state][next_state].req_param[type];
1714 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1715
1716 if ((mask & req_param) != req_param)
1717 return false;
1718
1719 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1720 return false;
1721
1722 return true;
1723}
1724EXPORT_SYMBOL(ib_modify_qp_is_ok);
1725
1726/**
1727 * ib_resolve_eth_dmac - Resolve destination mac address
1728 * @device: Device to consider
1729 * @ah_attr: address handle attribute which describes the
1730 * source and destination parameters
1731 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1732 * returns 0 on success or appropriate error code. It initializes the
1733 * necessary ah_attr fields when call is successful.
1734 */
1735static int ib_resolve_eth_dmac(struct ib_device *device,
1736 struct rdma_ah_attr *ah_attr)
1737{
1738 int ret = 0;
1739
1740 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1741 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1742 __be32 addr = 0;
1743
1744 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1745 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1746 } else {
1747 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1748 (char *)ah_attr->roce.dmac);
1749 }
1750 } else {
1751 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1752 }
1753 return ret;
1754}
1755
1756static bool is_qp_type_connected(const struct ib_qp *qp)
1757{
1758 return (qp->qp_type == IB_QPT_UC ||
1759 qp->qp_type == IB_QPT_RC ||
1760 qp->qp_type == IB_QPT_XRC_INI ||
1761 qp->qp_type == IB_QPT_XRC_TGT);
1762}
1763
1764/*
1765 * IB core internal function to perform QP attributes modification.
1766 */
1767static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1768 int attr_mask, struct ib_udata *udata)
1769{
1770 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1771 const struct ib_gid_attr *old_sgid_attr_av;
1772 const struct ib_gid_attr *old_sgid_attr_alt_av;
1773 int ret;
1774
1775 attr->xmit_slave = NULL;
1776 if (attr_mask & IB_QP_AV) {
1777 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1778 &old_sgid_attr_av);
1779 if (ret)
1780 return ret;
1781
1782 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1783 is_qp_type_connected(qp)) {
1784 struct net_device *slave;
1785
1786 /*
1787 * If the user provided the qp_attr then we have to
1788 * resolve it. Kerne users have to provide already
1789 * resolved rdma_ah_attr's.
1790 */
1791 if (udata) {
1792 ret = ib_resolve_eth_dmac(qp->device,
1793 &attr->ah_attr);
1794 if (ret)
1795 goto out_av;
1796 }
1797 slave = rdma_lag_get_ah_roce_slave(qp->device,
1798 &attr->ah_attr,
1799 GFP_KERNEL);
1800 if (IS_ERR(slave)) {
1801 ret = PTR_ERR(slave);
1802 goto out_av;
1803 }
1804 attr->xmit_slave = slave;
1805 }
1806 }
1807 if (attr_mask & IB_QP_ALT_PATH) {
1808 /*
1809 * FIXME: This does not track the migration state, so if the
1810 * user loads a new alternate path after the HW has migrated
1811 * from primary->alternate we will keep the wrong
1812 * references. This is OK for IB because the reference
1813 * counting does not serve any functional purpose.
1814 */
1815 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1816 &old_sgid_attr_alt_av);
1817 if (ret)
1818 goto out_av;
1819
1820 /*
1821 * Today the core code can only handle alternate paths and APM
1822 * for IB. Ban them in roce mode.
1823 */
1824 if (!(rdma_protocol_ib(qp->device,
1825 attr->alt_ah_attr.port_num) &&
1826 rdma_protocol_ib(qp->device, port))) {
1827 ret = -EINVAL;
1828 goto out;
1829 }
1830 }
1831
1832 if (rdma_ib_or_roce(qp->device, port)) {
1833 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1834 dev_warn(&qp->device->dev,
1835 "%s rq_psn overflow, masking to 24 bits\n",
1836 __func__);
1837 attr->rq_psn &= 0xffffff;
1838 }
1839
1840 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1841 dev_warn(&qp->device->dev,
1842 " %s sq_psn overflow, masking to 24 bits\n",
1843 __func__);
1844 attr->sq_psn &= 0xffffff;
1845 }
1846 }
1847
1848 /*
1849 * Bind this qp to a counter automatically based on the rdma counter
1850 * rules. This only set in RST2INIT with port specified
1851 */
1852 if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1853 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1854 rdma_counter_bind_qp_auto(qp, attr->port_num);
1855
1856 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1857 if (ret)
1858 goto out;
1859
1860 if (attr_mask & IB_QP_PORT)
1861 qp->port = attr->port_num;
1862 if (attr_mask & IB_QP_AV)
1863 qp->av_sgid_attr =
1864 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1865 if (attr_mask & IB_QP_ALT_PATH)
1866 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1867 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1868
1869out:
1870 if (attr_mask & IB_QP_ALT_PATH)
1871 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1872out_av:
1873 if (attr_mask & IB_QP_AV) {
1874 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1875 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1876 }
1877 return ret;
1878}
1879
1880/**
1881 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1882 * @ib_qp: The QP to modify.
1883 * @attr: On input, specifies the QP attributes to modify. On output,
1884 * the current values of selected QP attributes are returned.
1885 * @attr_mask: A bit-mask used to specify which attributes of the QP
1886 * are being modified.
1887 * @udata: pointer to user's input output buffer information
1888 * are being modified.
1889 * It returns 0 on success and returns appropriate error code on error.
1890 */
1891int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1892 int attr_mask, struct ib_udata *udata)
1893{
1894 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1895}
1896EXPORT_SYMBOL(ib_modify_qp_with_udata);
1897
1898static void ib_get_width_and_speed(u32 netdev_speed, u32 lanes,
1899 u16 *speed, u8 *width)
1900{
1901 if (!lanes) {
1902 if (netdev_speed <= SPEED_1000) {
1903 *width = IB_WIDTH_1X;
1904 *speed = IB_SPEED_SDR;
1905 } else if (netdev_speed <= SPEED_10000) {
1906 *width = IB_WIDTH_1X;
1907 *speed = IB_SPEED_FDR10;
1908 } else if (netdev_speed <= SPEED_20000) {
1909 *width = IB_WIDTH_4X;
1910 *speed = IB_SPEED_DDR;
1911 } else if (netdev_speed <= SPEED_25000) {
1912 *width = IB_WIDTH_1X;
1913 *speed = IB_SPEED_EDR;
1914 } else if (netdev_speed <= SPEED_40000) {
1915 *width = IB_WIDTH_4X;
1916 *speed = IB_SPEED_FDR10;
1917 } else if (netdev_speed <= SPEED_50000) {
1918 *width = IB_WIDTH_2X;
1919 *speed = IB_SPEED_EDR;
1920 } else if (netdev_speed <= SPEED_100000) {
1921 *width = IB_WIDTH_4X;
1922 *speed = IB_SPEED_EDR;
1923 } else if (netdev_speed <= SPEED_200000) {
1924 *width = IB_WIDTH_4X;
1925 *speed = IB_SPEED_HDR;
1926 } else {
1927 *width = IB_WIDTH_4X;
1928 *speed = IB_SPEED_NDR;
1929 }
1930
1931 return;
1932 }
1933
1934 switch (lanes) {
1935 case 1:
1936 *width = IB_WIDTH_1X;
1937 break;
1938 case 2:
1939 *width = IB_WIDTH_2X;
1940 break;
1941 case 4:
1942 *width = IB_WIDTH_4X;
1943 break;
1944 case 8:
1945 *width = IB_WIDTH_8X;
1946 break;
1947 case 12:
1948 *width = IB_WIDTH_12X;
1949 break;
1950 default:
1951 *width = IB_WIDTH_1X;
1952 }
1953
1954 switch (netdev_speed / lanes) {
1955 case SPEED_2500:
1956 *speed = IB_SPEED_SDR;
1957 break;
1958 case SPEED_5000:
1959 *speed = IB_SPEED_DDR;
1960 break;
1961 case SPEED_10000:
1962 *speed = IB_SPEED_FDR10;
1963 break;
1964 case SPEED_14000:
1965 *speed = IB_SPEED_FDR;
1966 break;
1967 case SPEED_25000:
1968 *speed = IB_SPEED_EDR;
1969 break;
1970 case SPEED_50000:
1971 *speed = IB_SPEED_HDR;
1972 break;
1973 case SPEED_100000:
1974 *speed = IB_SPEED_NDR;
1975 break;
1976 default:
1977 *speed = IB_SPEED_SDR;
1978 }
1979}
1980
1981int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1982{
1983 int rc;
1984 u32 netdev_speed;
1985 struct net_device *netdev;
1986 struct ethtool_link_ksettings lksettings = {};
1987
1988 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1989 return -EINVAL;
1990
1991 netdev = ib_device_get_netdev(dev, port_num);
1992 if (!netdev)
1993 return -ENODEV;
1994
1995 rtnl_lock();
1996 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1997 rtnl_unlock();
1998
1999 dev_put(netdev);
2000
2001 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
2002 netdev_speed = lksettings.base.speed;
2003 } else {
2004 netdev_speed = SPEED_1000;
2005 if (rc)
2006 pr_warn("%s speed is unknown, defaulting to %u\n",
2007 netdev->name, netdev_speed);
2008 }
2009
2010 ib_get_width_and_speed(netdev_speed, lksettings.lanes,
2011 speed, width);
2012
2013 return 0;
2014}
2015EXPORT_SYMBOL(ib_get_eth_speed);
2016
2017int ib_modify_qp(struct ib_qp *qp,
2018 struct ib_qp_attr *qp_attr,
2019 int qp_attr_mask)
2020{
2021 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
2022}
2023EXPORT_SYMBOL(ib_modify_qp);
2024
2025int ib_query_qp(struct ib_qp *qp,
2026 struct ib_qp_attr *qp_attr,
2027 int qp_attr_mask,
2028 struct ib_qp_init_attr *qp_init_attr)
2029{
2030 qp_attr->ah_attr.grh.sgid_attr = NULL;
2031 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
2032
2033 return qp->device->ops.query_qp ?
2034 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
2035 qp_init_attr) : -EOPNOTSUPP;
2036}
2037EXPORT_SYMBOL(ib_query_qp);
2038
2039int ib_close_qp(struct ib_qp *qp)
2040{
2041 struct ib_qp *real_qp;
2042 unsigned long flags;
2043
2044 real_qp = qp->real_qp;
2045 if (real_qp == qp)
2046 return -EINVAL;
2047
2048 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
2049 list_del(&qp->open_list);
2050 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
2051
2052 atomic_dec(&real_qp->usecnt);
2053 if (qp->qp_sec)
2054 ib_close_shared_qp_security(qp->qp_sec);
2055 kfree(qp);
2056
2057 return 0;
2058}
2059EXPORT_SYMBOL(ib_close_qp);
2060
2061static int __ib_destroy_shared_qp(struct ib_qp *qp)
2062{
2063 struct ib_xrcd *xrcd;
2064 struct ib_qp *real_qp;
2065 int ret;
2066
2067 real_qp = qp->real_qp;
2068 xrcd = real_qp->xrcd;
2069 down_write(&xrcd->tgt_qps_rwsem);
2070 ib_close_qp(qp);
2071 if (atomic_read(&real_qp->usecnt) == 0)
2072 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
2073 else
2074 real_qp = NULL;
2075 up_write(&xrcd->tgt_qps_rwsem);
2076
2077 if (real_qp) {
2078 ret = ib_destroy_qp(real_qp);
2079 if (!ret)
2080 atomic_dec(&xrcd->usecnt);
2081 }
2082
2083 return 0;
2084}
2085
2086int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2087{
2088 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2089 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2090 struct ib_qp_security *sec;
2091 int ret;
2092
2093 WARN_ON_ONCE(qp->mrs_used > 0);
2094
2095 if (atomic_read(&qp->usecnt))
2096 return -EBUSY;
2097
2098 if (qp->real_qp != qp)
2099 return __ib_destroy_shared_qp(qp);
2100
2101 sec = qp->qp_sec;
2102 if (sec)
2103 ib_destroy_qp_security_begin(sec);
2104
2105 if (!qp->uobject)
2106 rdma_rw_cleanup_mrs(qp);
2107
2108 rdma_counter_unbind_qp(qp, true);
2109 ret = qp->device->ops.destroy_qp(qp, udata);
2110 if (ret) {
2111 if (sec)
2112 ib_destroy_qp_security_abort(sec);
2113 return ret;
2114 }
2115
2116 if (alt_path_sgid_attr)
2117 rdma_put_gid_attr(alt_path_sgid_attr);
2118 if (av_sgid_attr)
2119 rdma_put_gid_attr(av_sgid_attr);
2120
2121 ib_qp_usecnt_dec(qp);
2122 if (sec)
2123 ib_destroy_qp_security_end(sec);
2124
2125 rdma_restrack_del(&qp->res);
2126 kfree(qp);
2127 return ret;
2128}
2129EXPORT_SYMBOL(ib_destroy_qp_user);
2130
2131/* Completion queues */
2132
2133struct ib_cq *__ib_create_cq(struct ib_device *device,
2134 ib_comp_handler comp_handler,
2135 void (*event_handler)(struct ib_event *, void *),
2136 void *cq_context,
2137 const struct ib_cq_init_attr *cq_attr,
2138 const char *caller)
2139{
2140 struct ib_cq *cq;
2141 int ret;
2142
2143 cq = rdma_zalloc_drv_obj(device, ib_cq);
2144 if (!cq)
2145 return ERR_PTR(-ENOMEM);
2146
2147 cq->device = device;
2148 cq->uobject = NULL;
2149 cq->comp_handler = comp_handler;
2150 cq->event_handler = event_handler;
2151 cq->cq_context = cq_context;
2152 atomic_set(&cq->usecnt, 0);
2153
2154 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2155 rdma_restrack_set_name(&cq->res, caller);
2156
2157 ret = device->ops.create_cq(cq, cq_attr, NULL);
2158 if (ret) {
2159 rdma_restrack_put(&cq->res);
2160 kfree(cq);
2161 return ERR_PTR(ret);
2162 }
2163
2164 rdma_restrack_add(&cq->res);
2165 return cq;
2166}
2167EXPORT_SYMBOL(__ib_create_cq);
2168
2169int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2170{
2171 if (cq->shared)
2172 return -EOPNOTSUPP;
2173
2174 return cq->device->ops.modify_cq ?
2175 cq->device->ops.modify_cq(cq, cq_count,
2176 cq_period) : -EOPNOTSUPP;
2177}
2178EXPORT_SYMBOL(rdma_set_cq_moderation);
2179
2180int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2181{
2182 int ret;
2183
2184 if (WARN_ON_ONCE(cq->shared))
2185 return -EOPNOTSUPP;
2186
2187 if (atomic_read(&cq->usecnt))
2188 return -EBUSY;
2189
2190 ret = cq->device->ops.destroy_cq(cq, udata);
2191 if (ret)
2192 return ret;
2193
2194 rdma_restrack_del(&cq->res);
2195 kfree(cq);
2196 return ret;
2197}
2198EXPORT_SYMBOL(ib_destroy_cq_user);
2199
2200int ib_resize_cq(struct ib_cq *cq, int cqe)
2201{
2202 if (cq->shared)
2203 return -EOPNOTSUPP;
2204
2205 return cq->device->ops.resize_cq ?
2206 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2207}
2208EXPORT_SYMBOL(ib_resize_cq);
2209
2210/* Memory regions */
2211
2212struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2213 u64 virt_addr, int access_flags)
2214{
2215 struct ib_mr *mr;
2216
2217 if (access_flags & IB_ACCESS_ON_DEMAND) {
2218 if (!(pd->device->attrs.kernel_cap_flags &
2219 IBK_ON_DEMAND_PAGING)) {
2220 pr_debug("ODP support not available\n");
2221 return ERR_PTR(-EINVAL);
2222 }
2223 }
2224
2225 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2226 access_flags, NULL);
2227
2228 if (IS_ERR(mr))
2229 return mr;
2230
2231 mr->device = pd->device;
2232 mr->type = IB_MR_TYPE_USER;
2233 mr->pd = pd;
2234 mr->dm = NULL;
2235 atomic_inc(&pd->usecnt);
2236 mr->iova = virt_addr;
2237 mr->length = length;
2238
2239 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2240 rdma_restrack_parent_name(&mr->res, &pd->res);
2241 rdma_restrack_add(&mr->res);
2242
2243 return mr;
2244}
2245EXPORT_SYMBOL(ib_reg_user_mr);
2246
2247int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2248 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2249{
2250 if (!pd->device->ops.advise_mr)
2251 return -EOPNOTSUPP;
2252
2253 if (!num_sge)
2254 return 0;
2255
2256 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2257 NULL);
2258}
2259EXPORT_SYMBOL(ib_advise_mr);
2260
2261int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2262{
2263 struct ib_pd *pd = mr->pd;
2264 struct ib_dm *dm = mr->dm;
2265 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2266 int ret;
2267
2268 trace_mr_dereg(mr);
2269 rdma_restrack_del(&mr->res);
2270 ret = mr->device->ops.dereg_mr(mr, udata);
2271 if (!ret) {
2272 atomic_dec(&pd->usecnt);
2273 if (dm)
2274 atomic_dec(&dm->usecnt);
2275 kfree(sig_attrs);
2276 }
2277
2278 return ret;
2279}
2280EXPORT_SYMBOL(ib_dereg_mr_user);
2281
2282/**
2283 * ib_alloc_mr() - Allocates a memory region
2284 * @pd: protection domain associated with the region
2285 * @mr_type: memory region type
2286 * @max_num_sg: maximum sg entries available for registration.
2287 *
2288 * Notes:
2289 * Memory registeration page/sg lists must not exceed max_num_sg.
2290 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2291 * max_num_sg * used_page_size.
2292 *
2293 */
2294struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2295 u32 max_num_sg)
2296{
2297 struct ib_mr *mr;
2298
2299 if (!pd->device->ops.alloc_mr) {
2300 mr = ERR_PTR(-EOPNOTSUPP);
2301 goto out;
2302 }
2303
2304 if (mr_type == IB_MR_TYPE_INTEGRITY) {
2305 WARN_ON_ONCE(1);
2306 mr = ERR_PTR(-EINVAL);
2307 goto out;
2308 }
2309
2310 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2311 if (IS_ERR(mr))
2312 goto out;
2313
2314 mr->device = pd->device;
2315 mr->pd = pd;
2316 mr->dm = NULL;
2317 mr->uobject = NULL;
2318 atomic_inc(&pd->usecnt);
2319 mr->need_inval = false;
2320 mr->type = mr_type;
2321 mr->sig_attrs = NULL;
2322
2323 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2324 rdma_restrack_parent_name(&mr->res, &pd->res);
2325 rdma_restrack_add(&mr->res);
2326out:
2327 trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2328 return mr;
2329}
2330EXPORT_SYMBOL(ib_alloc_mr);
2331
2332/**
2333 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2334 * @pd: protection domain associated with the region
2335 * @max_num_data_sg: maximum data sg entries available for registration
2336 * @max_num_meta_sg: maximum metadata sg entries available for
2337 * registration
2338 *
2339 * Notes:
2340 * Memory registration page/sg lists must not exceed max_num_sg,
2341 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2342 *
2343 */
2344struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2345 u32 max_num_data_sg,
2346 u32 max_num_meta_sg)
2347{
2348 struct ib_mr *mr;
2349 struct ib_sig_attrs *sig_attrs;
2350
2351 if (!pd->device->ops.alloc_mr_integrity ||
2352 !pd->device->ops.map_mr_sg_pi) {
2353 mr = ERR_PTR(-EOPNOTSUPP);
2354 goto out;
2355 }
2356
2357 if (!max_num_meta_sg) {
2358 mr = ERR_PTR(-EINVAL);
2359 goto out;
2360 }
2361
2362 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2363 if (!sig_attrs) {
2364 mr = ERR_PTR(-ENOMEM);
2365 goto out;
2366 }
2367
2368 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2369 max_num_meta_sg);
2370 if (IS_ERR(mr)) {
2371 kfree(sig_attrs);
2372 goto out;
2373 }
2374
2375 mr->device = pd->device;
2376 mr->pd = pd;
2377 mr->dm = NULL;
2378 mr->uobject = NULL;
2379 atomic_inc(&pd->usecnt);
2380 mr->need_inval = false;
2381 mr->type = IB_MR_TYPE_INTEGRITY;
2382 mr->sig_attrs = sig_attrs;
2383
2384 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2385 rdma_restrack_parent_name(&mr->res, &pd->res);
2386 rdma_restrack_add(&mr->res);
2387out:
2388 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2389 return mr;
2390}
2391EXPORT_SYMBOL(ib_alloc_mr_integrity);
2392
2393/* Multicast groups */
2394
2395static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2396{
2397 struct ib_qp_init_attr init_attr = {};
2398 struct ib_qp_attr attr = {};
2399 int num_eth_ports = 0;
2400 unsigned int port;
2401
2402 /* If QP state >= init, it is assigned to a port and we can check this
2403 * port only.
2404 */
2405 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2406 if (attr.qp_state >= IB_QPS_INIT) {
2407 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2408 IB_LINK_LAYER_INFINIBAND)
2409 return true;
2410 goto lid_check;
2411 }
2412 }
2413
2414 /* Can't get a quick answer, iterate over all ports */
2415 rdma_for_each_port(qp->device, port)
2416 if (rdma_port_get_link_layer(qp->device, port) !=
2417 IB_LINK_LAYER_INFINIBAND)
2418 num_eth_ports++;
2419
2420 /* If we have at lease one Ethernet port, RoCE annex declares that
2421 * multicast LID should be ignored. We can't tell at this step if the
2422 * QP belongs to an IB or Ethernet port.
2423 */
2424 if (num_eth_ports)
2425 return true;
2426
2427 /* If all the ports are IB, we can check according to IB spec. */
2428lid_check:
2429 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2430 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2431}
2432
2433int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2434{
2435 int ret;
2436
2437 if (!qp->device->ops.attach_mcast)
2438 return -EOPNOTSUPP;
2439
2440 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2441 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2442 return -EINVAL;
2443
2444 ret = qp->device->ops.attach_mcast(qp, gid, lid);
2445 if (!ret)
2446 atomic_inc(&qp->usecnt);
2447 return ret;
2448}
2449EXPORT_SYMBOL(ib_attach_mcast);
2450
2451int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2452{
2453 int ret;
2454
2455 if (!qp->device->ops.detach_mcast)
2456 return -EOPNOTSUPP;
2457
2458 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2459 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2460 return -EINVAL;
2461
2462 ret = qp->device->ops.detach_mcast(qp, gid, lid);
2463 if (!ret)
2464 atomic_dec(&qp->usecnt);
2465 return ret;
2466}
2467EXPORT_SYMBOL(ib_detach_mcast);
2468
2469/**
2470 * ib_alloc_xrcd_user - Allocates an XRC domain.
2471 * @device: The device on which to allocate the XRC domain.
2472 * @inode: inode to connect XRCD
2473 * @udata: Valid user data or NULL for kernel object
2474 */
2475struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2476 struct inode *inode, struct ib_udata *udata)
2477{
2478 struct ib_xrcd *xrcd;
2479 int ret;
2480
2481 if (!device->ops.alloc_xrcd)
2482 return ERR_PTR(-EOPNOTSUPP);
2483
2484 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2485 if (!xrcd)
2486 return ERR_PTR(-ENOMEM);
2487
2488 xrcd->device = device;
2489 xrcd->inode = inode;
2490 atomic_set(&xrcd->usecnt, 0);
2491 init_rwsem(&xrcd->tgt_qps_rwsem);
2492 xa_init(&xrcd->tgt_qps);
2493
2494 ret = device->ops.alloc_xrcd(xrcd, udata);
2495 if (ret)
2496 goto err;
2497 return xrcd;
2498err:
2499 kfree(xrcd);
2500 return ERR_PTR(ret);
2501}
2502EXPORT_SYMBOL(ib_alloc_xrcd_user);
2503
2504/**
2505 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2506 * @xrcd: The XRC domain to deallocate.
2507 * @udata: Valid user data or NULL for kernel object
2508 */
2509int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2510{
2511 int ret;
2512
2513 if (atomic_read(&xrcd->usecnt))
2514 return -EBUSY;
2515
2516 WARN_ON(!xa_empty(&xrcd->tgt_qps));
2517 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2518 if (ret)
2519 return ret;
2520 kfree(xrcd);
2521 return ret;
2522}
2523EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2524
2525/**
2526 * ib_create_wq - Creates a WQ associated with the specified protection
2527 * domain.
2528 * @pd: The protection domain associated with the WQ.
2529 * @wq_attr: A list of initial attributes required to create the
2530 * WQ. If WQ creation succeeds, then the attributes are updated to
2531 * the actual capabilities of the created WQ.
2532 *
2533 * wq_attr->max_wr and wq_attr->max_sge determine
2534 * the requested size of the WQ, and set to the actual values allocated
2535 * on return.
2536 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2537 * at least as large as the requested values.
2538 */
2539struct ib_wq *ib_create_wq(struct ib_pd *pd,
2540 struct ib_wq_init_attr *wq_attr)
2541{
2542 struct ib_wq *wq;
2543
2544 if (!pd->device->ops.create_wq)
2545 return ERR_PTR(-EOPNOTSUPP);
2546
2547 wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2548 if (!IS_ERR(wq)) {
2549 wq->event_handler = wq_attr->event_handler;
2550 wq->wq_context = wq_attr->wq_context;
2551 wq->wq_type = wq_attr->wq_type;
2552 wq->cq = wq_attr->cq;
2553 wq->device = pd->device;
2554 wq->pd = pd;
2555 wq->uobject = NULL;
2556 atomic_inc(&pd->usecnt);
2557 atomic_inc(&wq_attr->cq->usecnt);
2558 atomic_set(&wq->usecnt, 0);
2559 }
2560 return wq;
2561}
2562EXPORT_SYMBOL(ib_create_wq);
2563
2564/**
2565 * ib_destroy_wq_user - Destroys the specified user WQ.
2566 * @wq: The WQ to destroy.
2567 * @udata: Valid user data
2568 */
2569int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2570{
2571 struct ib_cq *cq = wq->cq;
2572 struct ib_pd *pd = wq->pd;
2573 int ret;
2574
2575 if (atomic_read(&wq->usecnt))
2576 return -EBUSY;
2577
2578 ret = wq->device->ops.destroy_wq(wq, udata);
2579 if (ret)
2580 return ret;
2581
2582 atomic_dec(&pd->usecnt);
2583 atomic_dec(&cq->usecnt);
2584 return ret;
2585}
2586EXPORT_SYMBOL(ib_destroy_wq_user);
2587
2588int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2589 struct ib_mr_status *mr_status)
2590{
2591 if (!mr->device->ops.check_mr_status)
2592 return -EOPNOTSUPP;
2593
2594 return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2595}
2596EXPORT_SYMBOL(ib_check_mr_status);
2597
2598int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2599 int state)
2600{
2601 if (!device->ops.set_vf_link_state)
2602 return -EOPNOTSUPP;
2603
2604 return device->ops.set_vf_link_state(device, vf, port, state);
2605}
2606EXPORT_SYMBOL(ib_set_vf_link_state);
2607
2608int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2609 struct ifla_vf_info *info)
2610{
2611 if (!device->ops.get_vf_config)
2612 return -EOPNOTSUPP;
2613
2614 return device->ops.get_vf_config(device, vf, port, info);
2615}
2616EXPORT_SYMBOL(ib_get_vf_config);
2617
2618int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2619 struct ifla_vf_stats *stats)
2620{
2621 if (!device->ops.get_vf_stats)
2622 return -EOPNOTSUPP;
2623
2624 return device->ops.get_vf_stats(device, vf, port, stats);
2625}
2626EXPORT_SYMBOL(ib_get_vf_stats);
2627
2628int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2629 int type)
2630{
2631 if (!device->ops.set_vf_guid)
2632 return -EOPNOTSUPP;
2633
2634 return device->ops.set_vf_guid(device, vf, port, guid, type);
2635}
2636EXPORT_SYMBOL(ib_set_vf_guid);
2637
2638int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2639 struct ifla_vf_guid *node_guid,
2640 struct ifla_vf_guid *port_guid)
2641{
2642 if (!device->ops.get_vf_guid)
2643 return -EOPNOTSUPP;
2644
2645 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2646}
2647EXPORT_SYMBOL(ib_get_vf_guid);
2648/**
2649 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2650 * information) and set an appropriate memory region for registration.
2651 * @mr: memory region
2652 * @data_sg: dma mapped scatterlist for data
2653 * @data_sg_nents: number of entries in data_sg
2654 * @data_sg_offset: offset in bytes into data_sg
2655 * @meta_sg: dma mapped scatterlist for metadata
2656 * @meta_sg_nents: number of entries in meta_sg
2657 * @meta_sg_offset: offset in bytes into meta_sg
2658 * @page_size: page vector desired page size
2659 *
2660 * Constraints:
2661 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2662 *
2663 * Return: 0 on success.
2664 *
2665 * After this completes successfully, the memory region
2666 * is ready for registration.
2667 */
2668int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2669 int data_sg_nents, unsigned int *data_sg_offset,
2670 struct scatterlist *meta_sg, int meta_sg_nents,
2671 unsigned int *meta_sg_offset, unsigned int page_size)
2672{
2673 if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2674 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2675 return -EOPNOTSUPP;
2676
2677 mr->page_size = page_size;
2678
2679 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2680 data_sg_offset, meta_sg,
2681 meta_sg_nents, meta_sg_offset);
2682}
2683EXPORT_SYMBOL(ib_map_mr_sg_pi);
2684
2685/**
2686 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2687 * and set it the memory region.
2688 * @mr: memory region
2689 * @sg: dma mapped scatterlist
2690 * @sg_nents: number of entries in sg
2691 * @sg_offset: offset in bytes into sg
2692 * @page_size: page vector desired page size
2693 *
2694 * Constraints:
2695 *
2696 * - The first sg element is allowed to have an offset.
2697 * - Each sg element must either be aligned to page_size or virtually
2698 * contiguous to the previous element. In case an sg element has a
2699 * non-contiguous offset, the mapping prefix will not include it.
2700 * - The last sg element is allowed to have length less than page_size.
2701 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2702 * then only max_num_sg entries will be mapped.
2703 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2704 * constraints holds and the page_size argument is ignored.
2705 *
2706 * Returns the number of sg elements that were mapped to the memory region.
2707 *
2708 * After this completes successfully, the memory region
2709 * is ready for registration.
2710 */
2711int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2712 unsigned int *sg_offset, unsigned int page_size)
2713{
2714 if (unlikely(!mr->device->ops.map_mr_sg))
2715 return -EOPNOTSUPP;
2716
2717 mr->page_size = page_size;
2718
2719 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2720}
2721EXPORT_SYMBOL(ib_map_mr_sg);
2722
2723/**
2724 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2725 * to a page vector
2726 * @mr: memory region
2727 * @sgl: dma mapped scatterlist
2728 * @sg_nents: number of entries in sg
2729 * @sg_offset_p: ==== =======================================================
2730 * IN start offset in bytes into sg
2731 * OUT offset in bytes for element n of the sg of the first
2732 * byte that has not been processed where n is the return
2733 * value of this function.
2734 * ==== =======================================================
2735 * @set_page: driver page assignment function pointer
2736 *
2737 * Core service helper for drivers to convert the largest
2738 * prefix of given sg list to a page vector. The sg list
2739 * prefix converted is the prefix that meet the requirements
2740 * of ib_map_mr_sg.
2741 *
2742 * Returns the number of sg elements that were assigned to
2743 * a page vector.
2744 */
2745int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2746 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2747{
2748 struct scatterlist *sg;
2749 u64 last_end_dma_addr = 0;
2750 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2751 unsigned int last_page_off = 0;
2752 u64 page_mask = ~((u64)mr->page_size - 1);
2753 int i, ret;
2754
2755 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2756 return -EINVAL;
2757
2758 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2759 mr->length = 0;
2760
2761 for_each_sg(sgl, sg, sg_nents, i) {
2762 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2763 u64 prev_addr = dma_addr;
2764 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2765 u64 end_dma_addr = dma_addr + dma_len;
2766 u64 page_addr = dma_addr & page_mask;
2767
2768 /*
2769 * For the second and later elements, check whether either the
2770 * end of element i-1 or the start of element i is not aligned
2771 * on a page boundary.
2772 */
2773 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2774 /* Stop mapping if there is a gap. */
2775 if (last_end_dma_addr != dma_addr)
2776 break;
2777
2778 /*
2779 * Coalesce this element with the last. If it is small
2780 * enough just update mr->length. Otherwise start
2781 * mapping from the next page.
2782 */
2783 goto next_page;
2784 }
2785
2786 do {
2787 ret = set_page(mr, page_addr);
2788 if (unlikely(ret < 0)) {
2789 sg_offset = prev_addr - sg_dma_address(sg);
2790 mr->length += prev_addr - dma_addr;
2791 if (sg_offset_p)
2792 *sg_offset_p = sg_offset;
2793 return i || sg_offset ? i : ret;
2794 }
2795 prev_addr = page_addr;
2796next_page:
2797 page_addr += mr->page_size;
2798 } while (page_addr < end_dma_addr);
2799
2800 mr->length += dma_len;
2801 last_end_dma_addr = end_dma_addr;
2802 last_page_off = end_dma_addr & ~page_mask;
2803
2804 sg_offset = 0;
2805 }
2806
2807 if (sg_offset_p)
2808 *sg_offset_p = 0;
2809 return i;
2810}
2811EXPORT_SYMBOL(ib_sg_to_pages);
2812
2813struct ib_drain_cqe {
2814 struct ib_cqe cqe;
2815 struct completion done;
2816};
2817
2818static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2819{
2820 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2821 cqe);
2822
2823 complete(&cqe->done);
2824}
2825
2826/*
2827 * Post a WR and block until its completion is reaped for the SQ.
2828 */
2829static void __ib_drain_sq(struct ib_qp *qp)
2830{
2831 struct ib_cq *cq = qp->send_cq;
2832 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2833 struct ib_drain_cqe sdrain;
2834 struct ib_rdma_wr swr = {
2835 .wr = {
2836 .next = NULL,
2837 { .wr_cqe = &sdrain.cqe, },
2838 .opcode = IB_WR_RDMA_WRITE,
2839 },
2840 };
2841 int ret;
2842
2843 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2844 if (ret) {
2845 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2846 return;
2847 }
2848
2849 sdrain.cqe.done = ib_drain_qp_done;
2850 init_completion(&sdrain.done);
2851
2852 ret = ib_post_send(qp, &swr.wr, NULL);
2853 if (ret) {
2854 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2855 return;
2856 }
2857
2858 if (cq->poll_ctx == IB_POLL_DIRECT)
2859 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2860 ib_process_cq_direct(cq, -1);
2861 else
2862 wait_for_completion(&sdrain.done);
2863}
2864
2865/*
2866 * Post a WR and block until its completion is reaped for the RQ.
2867 */
2868static void __ib_drain_rq(struct ib_qp *qp)
2869{
2870 struct ib_cq *cq = qp->recv_cq;
2871 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2872 struct ib_drain_cqe rdrain;
2873 struct ib_recv_wr rwr = {};
2874 int ret;
2875
2876 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2877 if (ret) {
2878 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2879 return;
2880 }
2881
2882 rwr.wr_cqe = &rdrain.cqe;
2883 rdrain.cqe.done = ib_drain_qp_done;
2884 init_completion(&rdrain.done);
2885
2886 ret = ib_post_recv(qp, &rwr, NULL);
2887 if (ret) {
2888 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2889 return;
2890 }
2891
2892 if (cq->poll_ctx == IB_POLL_DIRECT)
2893 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2894 ib_process_cq_direct(cq, -1);
2895 else
2896 wait_for_completion(&rdrain.done);
2897}
2898
2899/*
2900 * __ib_drain_srq() - Block until Last WQE Reached event arrives, or timeout
2901 * expires.
2902 * @qp: queue pair associated with SRQ to drain
2903 *
2904 * Quoting 10.3.1 Queue Pair and EE Context States:
2905 *
2906 * Note, for QPs that are associated with an SRQ, the Consumer should take the
2907 * QP through the Error State before invoking a Destroy QP or a Modify QP to the
2908 * Reset State. The Consumer may invoke the Destroy QP without first performing
2909 * a Modify QP to the Error State and waiting for the Affiliated Asynchronous
2910 * Last WQE Reached Event. However, if the Consumer does not wait for the
2911 * Affiliated Asynchronous Last WQE Reached Event, then WQE and Data Segment
2912 * leakage may occur. Therefore, it is good programming practice to tear down a
2913 * QP that is associated with an SRQ by using the following process:
2914 *
2915 * - Put the QP in the Error State
2916 * - Wait for the Affiliated Asynchronous Last WQE Reached Event;
2917 * - either:
2918 * drain the CQ by invoking the Poll CQ verb and either wait for CQ
2919 * to be empty or the number of Poll CQ operations has exceeded
2920 * CQ capacity size;
2921 * - or
2922 * post another WR that completes on the same CQ and wait for this
2923 * WR to return as a WC;
2924 * - and then invoke a Destroy QP or Reset QP.
2925 *
2926 * We use the first option.
2927 */
2928static void __ib_drain_srq(struct ib_qp *qp)
2929{
2930 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2931 struct ib_cq *cq;
2932 int n, polled = 0;
2933 int ret;
2934
2935 if (!qp->srq) {
2936 WARN_ONCE(1, "QP 0x%p is not associated with SRQ\n", qp);
2937 return;
2938 }
2939
2940 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2941 if (ret) {
2942 WARN_ONCE(ret, "failed to drain shared recv queue: %d\n", ret);
2943 return;
2944 }
2945
2946 if (ib_srq_has_cq(qp->srq->srq_type)) {
2947 cq = qp->srq->ext.cq;
2948 } else if (qp->recv_cq) {
2949 cq = qp->recv_cq;
2950 } else {
2951 WARN_ONCE(1, "QP 0x%p has no CQ associated with SRQ\n", qp);
2952 return;
2953 }
2954
2955 if (wait_for_completion_timeout(&qp->srq_completion, 60 * HZ) > 0) {
2956 while (polled != cq->cqe) {
2957 n = ib_process_cq_direct(cq, cq->cqe - polled);
2958 if (!n)
2959 return;
2960 polled += n;
2961 }
2962 }
2963}
2964
2965/**
2966 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2967 * application.
2968 * @qp: queue pair to drain
2969 *
2970 * If the device has a provider-specific drain function, then
2971 * call that. Otherwise call the generic drain function
2972 * __ib_drain_sq().
2973 *
2974 * The caller must:
2975 *
2976 * ensure there is room in the CQ and SQ for the drain work request and
2977 * completion.
2978 *
2979 * allocate the CQ using ib_alloc_cq().
2980 *
2981 * ensure that there are no other contexts that are posting WRs concurrently.
2982 * Otherwise the drain is not guaranteed.
2983 */
2984void ib_drain_sq(struct ib_qp *qp)
2985{
2986 if (qp->device->ops.drain_sq)
2987 qp->device->ops.drain_sq(qp);
2988 else
2989 __ib_drain_sq(qp);
2990 trace_cq_drain_complete(qp->send_cq);
2991}
2992EXPORT_SYMBOL(ib_drain_sq);
2993
2994/**
2995 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2996 * application.
2997 * @qp: queue pair to drain
2998 *
2999 * If the device has a provider-specific drain function, then
3000 * call that. Otherwise call the generic drain function
3001 * __ib_drain_rq().
3002 *
3003 * The caller must:
3004 *
3005 * ensure there is room in the CQ and RQ for the drain work request and
3006 * completion.
3007 *
3008 * allocate the CQ using ib_alloc_cq().
3009 *
3010 * ensure that there are no other contexts that are posting WRs concurrently.
3011 * Otherwise the drain is not guaranteed.
3012 */
3013void ib_drain_rq(struct ib_qp *qp)
3014{
3015 if (qp->device->ops.drain_rq)
3016 qp->device->ops.drain_rq(qp);
3017 else
3018 __ib_drain_rq(qp);
3019 trace_cq_drain_complete(qp->recv_cq);
3020}
3021EXPORT_SYMBOL(ib_drain_rq);
3022
3023/**
3024 * ib_drain_qp() - Block until all CQEs have been consumed by the
3025 * application on both the RQ and SQ.
3026 * @qp: queue pair to drain
3027 *
3028 * The caller must:
3029 *
3030 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
3031 * and completions.
3032 *
3033 * allocate the CQs using ib_alloc_cq().
3034 *
3035 * ensure that there are no other contexts that are posting WRs concurrently.
3036 * Otherwise the drain is not guaranteed.
3037 */
3038void ib_drain_qp(struct ib_qp *qp)
3039{
3040 ib_drain_sq(qp);
3041 if (!qp->srq)
3042 ib_drain_rq(qp);
3043 else
3044 __ib_drain_srq(qp);
3045}
3046EXPORT_SYMBOL(ib_drain_qp);
3047
3048struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
3049 enum rdma_netdev_t type, const char *name,
3050 unsigned char name_assign_type,
3051 void (*setup)(struct net_device *))
3052{
3053 struct rdma_netdev_alloc_params params;
3054 struct net_device *netdev;
3055 int rc;
3056
3057 if (!device->ops.rdma_netdev_get_params)
3058 return ERR_PTR(-EOPNOTSUPP);
3059
3060 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3061 ¶ms);
3062 if (rc)
3063 return ERR_PTR(rc);
3064
3065 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
3066 setup, params.txqs, params.rxqs);
3067 if (!netdev)
3068 return ERR_PTR(-ENOMEM);
3069
3070 return netdev;
3071}
3072EXPORT_SYMBOL(rdma_alloc_netdev);
3073
3074int rdma_init_netdev(struct ib_device *device, u32 port_num,
3075 enum rdma_netdev_t type, const char *name,
3076 unsigned char name_assign_type,
3077 void (*setup)(struct net_device *),
3078 struct net_device *netdev)
3079{
3080 struct rdma_netdev_alloc_params params;
3081 int rc;
3082
3083 if (!device->ops.rdma_netdev_get_params)
3084 return -EOPNOTSUPP;
3085
3086 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3087 ¶ms);
3088 if (rc)
3089 return rc;
3090
3091 return params.initialize_rdma_netdev(device, port_num,
3092 netdev, params.param);
3093}
3094EXPORT_SYMBOL(rdma_init_netdev);
3095
3096void __rdma_block_iter_start(struct ib_block_iter *biter,
3097 struct scatterlist *sglist, unsigned int nents,
3098 unsigned long pgsz)
3099{
3100 memset(biter, 0, sizeof(struct ib_block_iter));
3101 biter->__sg = sglist;
3102 biter->__sg_nents = nents;
3103
3104 /* Driver provides best block size to use */
3105 biter->__pg_bit = __fls(pgsz);
3106}
3107EXPORT_SYMBOL(__rdma_block_iter_start);
3108
3109bool __rdma_block_iter_next(struct ib_block_iter *biter)
3110{
3111 unsigned int block_offset;
3112 unsigned int sg_delta;
3113
3114 if (!biter->__sg_nents || !biter->__sg)
3115 return false;
3116
3117 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
3118 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
3119 sg_delta = BIT_ULL(biter->__pg_bit) - block_offset;
3120
3121 if (sg_dma_len(biter->__sg) - biter->__sg_advance > sg_delta) {
3122 biter->__sg_advance += sg_delta;
3123 } else {
3124 biter->__sg_advance = 0;
3125 biter->__sg = sg_next(biter->__sg);
3126 biter->__sg_nents--;
3127 }
3128
3129 return true;
3130}
3131EXPORT_SYMBOL(__rdma_block_iter_next);
3132
3133/**
3134 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
3135 * for the drivers.
3136 * @descs: array of static descriptors
3137 * @num_counters: number of elements in array
3138 * @lifespan: milliseconds between updates
3139 */
3140struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
3141 const struct rdma_stat_desc *descs, int num_counters,
3142 unsigned long lifespan)
3143{
3144 struct rdma_hw_stats *stats;
3145
3146 stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
3147 if (!stats)
3148 return NULL;
3149
3150 stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
3151 sizeof(*stats->is_disabled), GFP_KERNEL);
3152 if (!stats->is_disabled)
3153 goto err;
3154
3155 stats->descs = descs;
3156 stats->num_counters = num_counters;
3157 stats->lifespan = msecs_to_jiffies(lifespan);
3158 mutex_init(&stats->lock);
3159
3160 return stats;
3161
3162err:
3163 kfree(stats);
3164 return NULL;
3165}
3166EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
3167
3168/**
3169 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
3170 * @stats: statistics to release
3171 */
3172void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
3173{
3174 if (!stats)
3175 return;
3176
3177 kfree(stats->is_disabled);
3178 kfree(stats);
3179}
3180EXPORT_SYMBOL(rdma_free_hw_stats_struct);