Loading...
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#include <linux/errno.h>
40#include <linux/err.h>
41#include <linux/export.h>
42#include <linux/string.h>
43#include <linux/slab.h>
44#include <linux/in.h>
45#include <linux/in6.h>
46#include <net/addrconf.h>
47#include <linux/security.h>
48
49#include <rdma/ib_verbs.h>
50#include <rdma/ib_cache.h>
51#include <rdma/ib_addr.h>
52#include <rdma/rw.h>
53#include <rdma/lag.h>
54
55#include "core_priv.h"
56#include <trace/events/rdma_core.h>
57
58static int ib_resolve_eth_dmac(struct ib_device *device,
59 struct rdma_ah_attr *ah_attr);
60
61static const char * const ib_events[] = {
62 [IB_EVENT_CQ_ERR] = "CQ error",
63 [IB_EVENT_QP_FATAL] = "QP fatal error",
64 [IB_EVENT_QP_REQ_ERR] = "QP request error",
65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
66 [IB_EVENT_COMM_EST] = "communication established",
67 [IB_EVENT_SQ_DRAINED] = "send queue drained",
68 [IB_EVENT_PATH_MIG] = "path migration successful",
69 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
70 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
71 [IB_EVENT_PORT_ACTIVE] = "port active",
72 [IB_EVENT_PORT_ERR] = "port error",
73 [IB_EVENT_LID_CHANGE] = "LID change",
74 [IB_EVENT_PKEY_CHANGE] = "P_key change",
75 [IB_EVENT_SM_CHANGE] = "SM change",
76 [IB_EVENT_SRQ_ERR] = "SRQ error",
77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
80 [IB_EVENT_GID_CHANGE] = "GID changed",
81};
82
83const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84{
85 size_t index = event;
86
87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 ib_events[index] : "unrecognized event";
89}
90EXPORT_SYMBOL(ib_event_msg);
91
92static const char * const wc_statuses[] = {
93 [IB_WC_SUCCESS] = "success",
94 [IB_WC_LOC_LEN_ERR] = "local length error",
95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
97 [IB_WC_LOC_PROT_ERR] = "local protection error",
98 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
99 [IB_WC_MW_BIND_ERR] = "memory bind operation error",
100 [IB_WC_BAD_RESP_ERR] = "bad response error",
101 [IB_WC_LOC_ACCESS_ERR] = "local access error",
102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error",
103 [IB_WC_REM_ACCESS_ERR] = "remote access error",
104 [IB_WC_REM_OP_ERR] = "remote operation error",
105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
109 [IB_WC_REM_ABORT_ERR] = "operation aborted",
110 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
112 [IB_WC_FATAL_ERR] = "fatal error",
113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
114 [IB_WC_GENERAL_ERR] = "general error",
115};
116
117const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118{
119 size_t index = status;
120
121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 wc_statuses[index] : "unrecognized status";
123}
124EXPORT_SYMBOL(ib_wc_status_msg);
125
126__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127{
128 switch (rate) {
129 case IB_RATE_2_5_GBPS: return 1;
130 case IB_RATE_5_GBPS: return 2;
131 case IB_RATE_10_GBPS: return 4;
132 case IB_RATE_20_GBPS: return 8;
133 case IB_RATE_30_GBPS: return 12;
134 case IB_RATE_40_GBPS: return 16;
135 case IB_RATE_60_GBPS: return 24;
136 case IB_RATE_80_GBPS: return 32;
137 case IB_RATE_120_GBPS: return 48;
138 case IB_RATE_14_GBPS: return 6;
139 case IB_RATE_56_GBPS: return 22;
140 case IB_RATE_112_GBPS: return 45;
141 case IB_RATE_168_GBPS: return 67;
142 case IB_RATE_25_GBPS: return 10;
143 case IB_RATE_100_GBPS: return 40;
144 case IB_RATE_200_GBPS: return 80;
145 case IB_RATE_300_GBPS: return 120;
146 case IB_RATE_28_GBPS: return 11;
147 case IB_RATE_50_GBPS: return 20;
148 case IB_RATE_400_GBPS: return 160;
149 case IB_RATE_600_GBPS: return 240;
150 case IB_RATE_800_GBPS: return 320;
151 default: return -1;
152 }
153}
154EXPORT_SYMBOL(ib_rate_to_mult);
155
156__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
157{
158 switch (mult) {
159 case 1: return IB_RATE_2_5_GBPS;
160 case 2: return IB_RATE_5_GBPS;
161 case 4: return IB_RATE_10_GBPS;
162 case 8: return IB_RATE_20_GBPS;
163 case 12: return IB_RATE_30_GBPS;
164 case 16: return IB_RATE_40_GBPS;
165 case 24: return IB_RATE_60_GBPS;
166 case 32: return IB_RATE_80_GBPS;
167 case 48: return IB_RATE_120_GBPS;
168 case 6: return IB_RATE_14_GBPS;
169 case 22: return IB_RATE_56_GBPS;
170 case 45: return IB_RATE_112_GBPS;
171 case 67: return IB_RATE_168_GBPS;
172 case 10: return IB_RATE_25_GBPS;
173 case 40: return IB_RATE_100_GBPS;
174 case 80: return IB_RATE_200_GBPS;
175 case 120: return IB_RATE_300_GBPS;
176 case 11: return IB_RATE_28_GBPS;
177 case 20: return IB_RATE_50_GBPS;
178 case 160: return IB_RATE_400_GBPS;
179 case 240: return IB_RATE_600_GBPS;
180 case 320: return IB_RATE_800_GBPS;
181 default: return IB_RATE_PORT_CURRENT;
182 }
183}
184EXPORT_SYMBOL(mult_to_ib_rate);
185
186__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
187{
188 switch (rate) {
189 case IB_RATE_2_5_GBPS: return 2500;
190 case IB_RATE_5_GBPS: return 5000;
191 case IB_RATE_10_GBPS: return 10000;
192 case IB_RATE_20_GBPS: return 20000;
193 case IB_RATE_30_GBPS: return 30000;
194 case IB_RATE_40_GBPS: return 40000;
195 case IB_RATE_60_GBPS: return 60000;
196 case IB_RATE_80_GBPS: return 80000;
197 case IB_RATE_120_GBPS: return 120000;
198 case IB_RATE_14_GBPS: return 14062;
199 case IB_RATE_56_GBPS: return 56250;
200 case IB_RATE_112_GBPS: return 112500;
201 case IB_RATE_168_GBPS: return 168750;
202 case IB_RATE_25_GBPS: return 25781;
203 case IB_RATE_100_GBPS: return 103125;
204 case IB_RATE_200_GBPS: return 206250;
205 case IB_RATE_300_GBPS: return 309375;
206 case IB_RATE_28_GBPS: return 28125;
207 case IB_RATE_50_GBPS: return 53125;
208 case IB_RATE_400_GBPS: return 425000;
209 case IB_RATE_600_GBPS: return 637500;
210 case IB_RATE_800_GBPS: return 850000;
211 default: return -1;
212 }
213}
214EXPORT_SYMBOL(ib_rate_to_mbps);
215
216__attribute_const__ enum rdma_transport_type
217rdma_node_get_transport(unsigned int node_type)
218{
219
220 if (node_type == RDMA_NODE_USNIC)
221 return RDMA_TRANSPORT_USNIC;
222 if (node_type == RDMA_NODE_USNIC_UDP)
223 return RDMA_TRANSPORT_USNIC_UDP;
224 if (node_type == RDMA_NODE_RNIC)
225 return RDMA_TRANSPORT_IWARP;
226 if (node_type == RDMA_NODE_UNSPECIFIED)
227 return RDMA_TRANSPORT_UNSPECIFIED;
228
229 return RDMA_TRANSPORT_IB;
230}
231EXPORT_SYMBOL(rdma_node_get_transport);
232
233enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
234 u32 port_num)
235{
236 enum rdma_transport_type lt;
237 if (device->ops.get_link_layer)
238 return device->ops.get_link_layer(device, port_num);
239
240 lt = rdma_node_get_transport(device->node_type);
241 if (lt == RDMA_TRANSPORT_IB)
242 return IB_LINK_LAYER_INFINIBAND;
243
244 return IB_LINK_LAYER_ETHERNET;
245}
246EXPORT_SYMBOL(rdma_port_get_link_layer);
247
248/* Protection domains */
249
250/**
251 * __ib_alloc_pd - Allocates an unused protection domain.
252 * @device: The device on which to allocate the protection domain.
253 * @flags: protection domain flags
254 * @caller: caller's build-time module name
255 *
256 * A protection domain object provides an association between QPs, shared
257 * receive queues, address handles, memory regions, and memory windows.
258 *
259 * Every PD has a local_dma_lkey which can be used as the lkey value for local
260 * memory operations.
261 */
262struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
263 const char *caller)
264{
265 struct ib_pd *pd;
266 int mr_access_flags = 0;
267 int ret;
268
269 pd = rdma_zalloc_drv_obj(device, ib_pd);
270 if (!pd)
271 return ERR_PTR(-ENOMEM);
272
273 pd->device = device;
274 pd->flags = flags;
275
276 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
277 rdma_restrack_set_name(&pd->res, caller);
278
279 ret = device->ops.alloc_pd(pd, NULL);
280 if (ret) {
281 rdma_restrack_put(&pd->res);
282 kfree(pd);
283 return ERR_PTR(ret);
284 }
285 rdma_restrack_add(&pd->res);
286
287 if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
288 pd->local_dma_lkey = device->local_dma_lkey;
289 else
290 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
291
292 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
293 pr_warn("%s: enabling unsafe global rkey\n", caller);
294 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
295 }
296
297 if (mr_access_flags) {
298 struct ib_mr *mr;
299
300 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
301 if (IS_ERR(mr)) {
302 ib_dealloc_pd(pd);
303 return ERR_CAST(mr);
304 }
305
306 mr->device = pd->device;
307 mr->pd = pd;
308 mr->type = IB_MR_TYPE_DMA;
309 mr->uobject = NULL;
310 mr->need_inval = false;
311
312 pd->__internal_mr = mr;
313
314 if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
315 pd->local_dma_lkey = pd->__internal_mr->lkey;
316
317 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
318 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
319 }
320
321 return pd;
322}
323EXPORT_SYMBOL(__ib_alloc_pd);
324
325/**
326 * ib_dealloc_pd_user - Deallocates a protection domain.
327 * @pd: The protection domain to deallocate.
328 * @udata: Valid user data or NULL for kernel object
329 *
330 * It is an error to call this function while any resources in the pd still
331 * exist. The caller is responsible to synchronously destroy them and
332 * guarantee no new allocations will happen.
333 */
334int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
335{
336 int ret;
337
338 if (pd->__internal_mr) {
339 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
340 WARN_ON(ret);
341 pd->__internal_mr = NULL;
342 }
343
344 ret = pd->device->ops.dealloc_pd(pd, udata);
345 if (ret)
346 return ret;
347
348 rdma_restrack_del(&pd->res);
349 kfree(pd);
350 return ret;
351}
352EXPORT_SYMBOL(ib_dealloc_pd_user);
353
354/* Address handles */
355
356/**
357 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
358 * @dest: Pointer to destination ah_attr. Contents of the destination
359 * pointer is assumed to be invalid and attribute are overwritten.
360 * @src: Pointer to source ah_attr.
361 */
362void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
363 const struct rdma_ah_attr *src)
364{
365 *dest = *src;
366 if (dest->grh.sgid_attr)
367 rdma_hold_gid_attr(dest->grh.sgid_attr);
368}
369EXPORT_SYMBOL(rdma_copy_ah_attr);
370
371/**
372 * rdma_replace_ah_attr - Replace valid ah_attr with new one.
373 * @old: Pointer to existing ah_attr which needs to be replaced.
374 * old is assumed to be valid or zero'd
375 * @new: Pointer to the new ah_attr.
376 *
377 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
378 * old the ah_attr is valid; after that it copies the new attribute and holds
379 * the reference to the replaced ah_attr.
380 */
381void rdma_replace_ah_attr(struct rdma_ah_attr *old,
382 const struct rdma_ah_attr *new)
383{
384 rdma_destroy_ah_attr(old);
385 *old = *new;
386 if (old->grh.sgid_attr)
387 rdma_hold_gid_attr(old->grh.sgid_attr);
388}
389EXPORT_SYMBOL(rdma_replace_ah_attr);
390
391/**
392 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
393 * @dest: Pointer to destination ah_attr to copy to.
394 * dest is assumed to be valid or zero'd
395 * @src: Pointer to the new ah_attr.
396 *
397 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
398 * if it is valid. This also transfers ownership of internal references from
399 * src to dest, making src invalid in the process. No new reference of the src
400 * ah_attr is taken.
401 */
402void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
403{
404 rdma_destroy_ah_attr(dest);
405 *dest = *src;
406 src->grh.sgid_attr = NULL;
407}
408EXPORT_SYMBOL(rdma_move_ah_attr);
409
410/*
411 * Validate that the rdma_ah_attr is valid for the device before passing it
412 * off to the driver.
413 */
414static int rdma_check_ah_attr(struct ib_device *device,
415 struct rdma_ah_attr *ah_attr)
416{
417 if (!rdma_is_port_valid(device, ah_attr->port_num))
418 return -EINVAL;
419
420 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
421 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
422 !(ah_attr->ah_flags & IB_AH_GRH))
423 return -EINVAL;
424
425 if (ah_attr->grh.sgid_attr) {
426 /*
427 * Make sure the passed sgid_attr is consistent with the
428 * parameters
429 */
430 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
431 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
432 return -EINVAL;
433 }
434 return 0;
435}
436
437/*
438 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
439 * On success the caller is responsible to call rdma_unfill_sgid_attr().
440 */
441static int rdma_fill_sgid_attr(struct ib_device *device,
442 struct rdma_ah_attr *ah_attr,
443 const struct ib_gid_attr **old_sgid_attr)
444{
445 const struct ib_gid_attr *sgid_attr;
446 struct ib_global_route *grh;
447 int ret;
448
449 *old_sgid_attr = ah_attr->grh.sgid_attr;
450
451 ret = rdma_check_ah_attr(device, ah_attr);
452 if (ret)
453 return ret;
454
455 if (!(ah_attr->ah_flags & IB_AH_GRH))
456 return 0;
457
458 grh = rdma_ah_retrieve_grh(ah_attr);
459 if (grh->sgid_attr)
460 return 0;
461
462 sgid_attr =
463 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
464 if (IS_ERR(sgid_attr))
465 return PTR_ERR(sgid_attr);
466
467 /* Move ownerhip of the kref into the ah_attr */
468 grh->sgid_attr = sgid_attr;
469 return 0;
470}
471
472static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
473 const struct ib_gid_attr *old_sgid_attr)
474{
475 /*
476 * Fill didn't change anything, the caller retains ownership of
477 * whatever it passed
478 */
479 if (ah_attr->grh.sgid_attr == old_sgid_attr)
480 return;
481
482 /*
483 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
484 * doesn't see any change in the rdma_ah_attr. If we get here
485 * old_sgid_attr is NULL.
486 */
487 rdma_destroy_ah_attr(ah_attr);
488}
489
490static const struct ib_gid_attr *
491rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
492 const struct ib_gid_attr *old_attr)
493{
494 if (old_attr)
495 rdma_put_gid_attr(old_attr);
496 if (ah_attr->ah_flags & IB_AH_GRH) {
497 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
498 return ah_attr->grh.sgid_attr;
499 }
500 return NULL;
501}
502
503static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
504 struct rdma_ah_attr *ah_attr,
505 u32 flags,
506 struct ib_udata *udata,
507 struct net_device *xmit_slave)
508{
509 struct rdma_ah_init_attr init_attr = {};
510 struct ib_device *device = pd->device;
511 struct ib_ah *ah;
512 int ret;
513
514 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
515
516 if (!udata && !device->ops.create_ah)
517 return ERR_PTR(-EOPNOTSUPP);
518
519 ah = rdma_zalloc_drv_obj_gfp(
520 device, ib_ah,
521 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
522 if (!ah)
523 return ERR_PTR(-ENOMEM);
524
525 ah->device = device;
526 ah->pd = pd;
527 ah->type = ah_attr->type;
528 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
529 init_attr.ah_attr = ah_attr;
530 init_attr.flags = flags;
531 init_attr.xmit_slave = xmit_slave;
532
533 if (udata)
534 ret = device->ops.create_user_ah(ah, &init_attr, udata);
535 else
536 ret = device->ops.create_ah(ah, &init_attr, NULL);
537 if (ret) {
538 if (ah->sgid_attr)
539 rdma_put_gid_attr(ah->sgid_attr);
540 kfree(ah);
541 return ERR_PTR(ret);
542 }
543
544 atomic_inc(&pd->usecnt);
545 return ah;
546}
547
548/**
549 * rdma_create_ah - Creates an address handle for the
550 * given address vector.
551 * @pd: The protection domain associated with the address handle.
552 * @ah_attr: The attributes of the address vector.
553 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
554 *
555 * It returns 0 on success and returns appropriate error code on error.
556 * The address handle is used to reference a local or global destination
557 * in all UD QP post sends.
558 */
559struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
560 u32 flags)
561{
562 const struct ib_gid_attr *old_sgid_attr;
563 struct net_device *slave;
564 struct ib_ah *ah;
565 int ret;
566
567 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
568 if (ret)
569 return ERR_PTR(ret);
570 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
571 (flags & RDMA_CREATE_AH_SLEEPABLE) ?
572 GFP_KERNEL : GFP_ATOMIC);
573 if (IS_ERR(slave)) {
574 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
575 return (void *)slave;
576 }
577 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
578 rdma_lag_put_ah_roce_slave(slave);
579 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
580 return ah;
581}
582EXPORT_SYMBOL(rdma_create_ah);
583
584/**
585 * rdma_create_user_ah - Creates an address handle for the
586 * given address vector.
587 * It resolves destination mac address for ah attribute of RoCE type.
588 * @pd: The protection domain associated with the address handle.
589 * @ah_attr: The attributes of the address vector.
590 * @udata: pointer to user's input output buffer information need by
591 * provider driver.
592 *
593 * It returns 0 on success and returns appropriate error code on error.
594 * The address handle is used to reference a local or global destination
595 * in all UD QP post sends.
596 */
597struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
598 struct rdma_ah_attr *ah_attr,
599 struct ib_udata *udata)
600{
601 const struct ib_gid_attr *old_sgid_attr;
602 struct ib_ah *ah;
603 int err;
604
605 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
606 if (err)
607 return ERR_PTR(err);
608
609 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
610 err = ib_resolve_eth_dmac(pd->device, ah_attr);
611 if (err) {
612 ah = ERR_PTR(err);
613 goto out;
614 }
615 }
616
617 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
618 udata, NULL);
619
620out:
621 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
622 return ah;
623}
624EXPORT_SYMBOL(rdma_create_user_ah);
625
626int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
627{
628 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
629 struct iphdr ip4h_checked;
630 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
631
632 /* If it's IPv6, the version must be 6, otherwise, the first
633 * 20 bytes (before the IPv4 header) are garbled.
634 */
635 if (ip6h->version != 6)
636 return (ip4h->version == 4) ? 4 : 0;
637 /* version may be 6 or 4 because the first 20 bytes could be garbled */
638
639 /* RoCE v2 requires no options, thus header length
640 * must be 5 words
641 */
642 if (ip4h->ihl != 5)
643 return 6;
644
645 /* Verify checksum.
646 * We can't write on scattered buffers so we need to copy to
647 * temp buffer.
648 */
649 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
650 ip4h_checked.check = 0;
651 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
652 /* if IPv4 header checksum is OK, believe it */
653 if (ip4h->check == ip4h_checked.check)
654 return 4;
655 return 6;
656}
657EXPORT_SYMBOL(ib_get_rdma_header_version);
658
659static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
660 u32 port_num,
661 const struct ib_grh *grh)
662{
663 int grh_version;
664
665 if (rdma_protocol_ib(device, port_num))
666 return RDMA_NETWORK_IB;
667
668 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
669
670 if (grh_version == 4)
671 return RDMA_NETWORK_IPV4;
672
673 if (grh->next_hdr == IPPROTO_UDP)
674 return RDMA_NETWORK_IPV6;
675
676 return RDMA_NETWORK_ROCE_V1;
677}
678
679struct find_gid_index_context {
680 u16 vlan_id;
681 enum ib_gid_type gid_type;
682};
683
684static bool find_gid_index(const union ib_gid *gid,
685 const struct ib_gid_attr *gid_attr,
686 void *context)
687{
688 struct find_gid_index_context *ctx = context;
689 u16 vlan_id = 0xffff;
690 int ret;
691
692 if (ctx->gid_type != gid_attr->gid_type)
693 return false;
694
695 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
696 if (ret)
697 return false;
698
699 return ctx->vlan_id == vlan_id;
700}
701
702static const struct ib_gid_attr *
703get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
704 u16 vlan_id, const union ib_gid *sgid,
705 enum ib_gid_type gid_type)
706{
707 struct find_gid_index_context context = {.vlan_id = vlan_id,
708 .gid_type = gid_type};
709
710 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
711 &context);
712}
713
714int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
715 enum rdma_network_type net_type,
716 union ib_gid *sgid, union ib_gid *dgid)
717{
718 struct sockaddr_in src_in;
719 struct sockaddr_in dst_in;
720 __be32 src_saddr, dst_saddr;
721
722 if (!sgid || !dgid)
723 return -EINVAL;
724
725 if (net_type == RDMA_NETWORK_IPV4) {
726 memcpy(&src_in.sin_addr.s_addr,
727 &hdr->roce4grh.saddr, 4);
728 memcpy(&dst_in.sin_addr.s_addr,
729 &hdr->roce4grh.daddr, 4);
730 src_saddr = src_in.sin_addr.s_addr;
731 dst_saddr = dst_in.sin_addr.s_addr;
732 ipv6_addr_set_v4mapped(src_saddr,
733 (struct in6_addr *)sgid);
734 ipv6_addr_set_v4mapped(dst_saddr,
735 (struct in6_addr *)dgid);
736 return 0;
737 } else if (net_type == RDMA_NETWORK_IPV6 ||
738 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
739 *dgid = hdr->ibgrh.dgid;
740 *sgid = hdr->ibgrh.sgid;
741 return 0;
742 } else {
743 return -EINVAL;
744 }
745}
746EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
747
748/* Resolve destination mac address and hop limit for unicast destination
749 * GID entry, considering the source GID entry as well.
750 * ah_attribute must have valid port_num, sgid_index.
751 */
752static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
753 struct rdma_ah_attr *ah_attr)
754{
755 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
756 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
757 int hop_limit = 0xff;
758 int ret = 0;
759
760 /* If destination is link local and source GID is RoCEv1,
761 * IP stack is not used.
762 */
763 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
764 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
765 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
766 ah_attr->roce.dmac);
767 return ret;
768 }
769
770 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
771 ah_attr->roce.dmac,
772 sgid_attr, &hop_limit);
773
774 grh->hop_limit = hop_limit;
775 return ret;
776}
777
778/*
779 * This function initializes address handle attributes from the incoming packet.
780 * Incoming packet has dgid of the receiver node on which this code is
781 * getting executed and, sgid contains the GID of the sender.
782 *
783 * When resolving mac address of destination, the arrived dgid is used
784 * as sgid and, sgid is used as dgid because sgid contains destinations
785 * GID whom to respond to.
786 *
787 * On success the caller is responsible to call rdma_destroy_ah_attr on the
788 * attr.
789 */
790int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
791 const struct ib_wc *wc, const struct ib_grh *grh,
792 struct rdma_ah_attr *ah_attr)
793{
794 u32 flow_class;
795 int ret;
796 enum rdma_network_type net_type = RDMA_NETWORK_IB;
797 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
798 const struct ib_gid_attr *sgid_attr;
799 int hoplimit = 0xff;
800 union ib_gid dgid;
801 union ib_gid sgid;
802
803 might_sleep();
804
805 memset(ah_attr, 0, sizeof *ah_attr);
806 ah_attr->type = rdma_ah_find_type(device, port_num);
807 if (rdma_cap_eth_ah(device, port_num)) {
808 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
809 net_type = wc->network_hdr_type;
810 else
811 net_type = ib_get_net_type_by_grh(device, port_num, grh);
812 gid_type = ib_network_to_gid_type(net_type);
813 }
814 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
815 &sgid, &dgid);
816 if (ret)
817 return ret;
818
819 rdma_ah_set_sl(ah_attr, wc->sl);
820 rdma_ah_set_port_num(ah_attr, port_num);
821
822 if (rdma_protocol_roce(device, port_num)) {
823 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
824 wc->vlan_id : 0xffff;
825
826 if (!(wc->wc_flags & IB_WC_GRH))
827 return -EPROTOTYPE;
828
829 sgid_attr = get_sgid_attr_from_eth(device, port_num,
830 vlan_id, &dgid,
831 gid_type);
832 if (IS_ERR(sgid_attr))
833 return PTR_ERR(sgid_attr);
834
835 flow_class = be32_to_cpu(grh->version_tclass_flow);
836 rdma_move_grh_sgid_attr(ah_attr,
837 &sgid,
838 flow_class & 0xFFFFF,
839 hoplimit,
840 (flow_class >> 20) & 0xFF,
841 sgid_attr);
842
843 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
844 if (ret)
845 rdma_destroy_ah_attr(ah_attr);
846
847 return ret;
848 } else {
849 rdma_ah_set_dlid(ah_attr, wc->slid);
850 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
851
852 if ((wc->wc_flags & IB_WC_GRH) == 0)
853 return 0;
854
855 if (dgid.global.interface_id !=
856 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
857 sgid_attr = rdma_find_gid_by_port(
858 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
859 } else
860 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
861
862 if (IS_ERR(sgid_attr))
863 return PTR_ERR(sgid_attr);
864 flow_class = be32_to_cpu(grh->version_tclass_flow);
865 rdma_move_grh_sgid_attr(ah_attr,
866 &sgid,
867 flow_class & 0xFFFFF,
868 hoplimit,
869 (flow_class >> 20) & 0xFF,
870 sgid_attr);
871
872 return 0;
873 }
874}
875EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
876
877/**
878 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
879 * of the reference
880 *
881 * @attr: Pointer to AH attribute structure
882 * @dgid: Destination GID
883 * @flow_label: Flow label
884 * @hop_limit: Hop limit
885 * @traffic_class: traffic class
886 * @sgid_attr: Pointer to SGID attribute
887 *
888 * This takes ownership of the sgid_attr reference. The caller must ensure
889 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
890 * calling this function.
891 */
892void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
893 u32 flow_label, u8 hop_limit, u8 traffic_class,
894 const struct ib_gid_attr *sgid_attr)
895{
896 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
897 traffic_class);
898 attr->grh.sgid_attr = sgid_attr;
899}
900EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
901
902/**
903 * rdma_destroy_ah_attr - Release reference to SGID attribute of
904 * ah attribute.
905 * @ah_attr: Pointer to ah attribute
906 *
907 * Release reference to the SGID attribute of the ah attribute if it is
908 * non NULL. It is safe to call this multiple times, and safe to call it on
909 * a zero initialized ah_attr.
910 */
911void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
912{
913 if (ah_attr->grh.sgid_attr) {
914 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
915 ah_attr->grh.sgid_attr = NULL;
916 }
917}
918EXPORT_SYMBOL(rdma_destroy_ah_attr);
919
920struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
921 const struct ib_grh *grh, u32 port_num)
922{
923 struct rdma_ah_attr ah_attr;
924 struct ib_ah *ah;
925 int ret;
926
927 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
928 if (ret)
929 return ERR_PTR(ret);
930
931 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
932
933 rdma_destroy_ah_attr(&ah_attr);
934 return ah;
935}
936EXPORT_SYMBOL(ib_create_ah_from_wc);
937
938int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
939{
940 const struct ib_gid_attr *old_sgid_attr;
941 int ret;
942
943 if (ah->type != ah_attr->type)
944 return -EINVAL;
945
946 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
947 if (ret)
948 return ret;
949
950 ret = ah->device->ops.modify_ah ?
951 ah->device->ops.modify_ah(ah, ah_attr) :
952 -EOPNOTSUPP;
953
954 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
955 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
956 return ret;
957}
958EXPORT_SYMBOL(rdma_modify_ah);
959
960int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
961{
962 ah_attr->grh.sgid_attr = NULL;
963
964 return ah->device->ops.query_ah ?
965 ah->device->ops.query_ah(ah, ah_attr) :
966 -EOPNOTSUPP;
967}
968EXPORT_SYMBOL(rdma_query_ah);
969
970int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
971{
972 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
973 struct ib_pd *pd;
974 int ret;
975
976 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
977
978 pd = ah->pd;
979
980 ret = ah->device->ops.destroy_ah(ah, flags);
981 if (ret)
982 return ret;
983
984 atomic_dec(&pd->usecnt);
985 if (sgid_attr)
986 rdma_put_gid_attr(sgid_attr);
987
988 kfree(ah);
989 return ret;
990}
991EXPORT_SYMBOL(rdma_destroy_ah_user);
992
993/* Shared receive queues */
994
995/**
996 * ib_create_srq_user - Creates a SRQ associated with the specified protection
997 * domain.
998 * @pd: The protection domain associated with the SRQ.
999 * @srq_init_attr: A list of initial attributes required to create the
1000 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1001 * the actual capabilities of the created SRQ.
1002 * @uobject: uobject pointer if this is not a kernel SRQ
1003 * @udata: udata pointer if this is not a kernel SRQ
1004 *
1005 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1006 * requested size of the SRQ, and set to the actual values allocated
1007 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1008 * will always be at least as large as the requested values.
1009 */
1010struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1011 struct ib_srq_init_attr *srq_init_attr,
1012 struct ib_usrq_object *uobject,
1013 struct ib_udata *udata)
1014{
1015 struct ib_srq *srq;
1016 int ret;
1017
1018 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1019 if (!srq)
1020 return ERR_PTR(-ENOMEM);
1021
1022 srq->device = pd->device;
1023 srq->pd = pd;
1024 srq->event_handler = srq_init_attr->event_handler;
1025 srq->srq_context = srq_init_attr->srq_context;
1026 srq->srq_type = srq_init_attr->srq_type;
1027 srq->uobject = uobject;
1028
1029 if (ib_srq_has_cq(srq->srq_type)) {
1030 srq->ext.cq = srq_init_attr->ext.cq;
1031 atomic_inc(&srq->ext.cq->usecnt);
1032 }
1033 if (srq->srq_type == IB_SRQT_XRC) {
1034 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1035 if (srq->ext.xrc.xrcd)
1036 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1037 }
1038 atomic_inc(&pd->usecnt);
1039
1040 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1041 rdma_restrack_parent_name(&srq->res, &pd->res);
1042
1043 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1044 if (ret) {
1045 rdma_restrack_put(&srq->res);
1046 atomic_dec(&pd->usecnt);
1047 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1048 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1049 if (ib_srq_has_cq(srq->srq_type))
1050 atomic_dec(&srq->ext.cq->usecnt);
1051 kfree(srq);
1052 return ERR_PTR(ret);
1053 }
1054
1055 rdma_restrack_add(&srq->res);
1056
1057 return srq;
1058}
1059EXPORT_SYMBOL(ib_create_srq_user);
1060
1061int ib_modify_srq(struct ib_srq *srq,
1062 struct ib_srq_attr *srq_attr,
1063 enum ib_srq_attr_mask srq_attr_mask)
1064{
1065 return srq->device->ops.modify_srq ?
1066 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1067 NULL) : -EOPNOTSUPP;
1068}
1069EXPORT_SYMBOL(ib_modify_srq);
1070
1071int ib_query_srq(struct ib_srq *srq,
1072 struct ib_srq_attr *srq_attr)
1073{
1074 return srq->device->ops.query_srq ?
1075 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1076}
1077EXPORT_SYMBOL(ib_query_srq);
1078
1079int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1080{
1081 int ret;
1082
1083 if (atomic_read(&srq->usecnt))
1084 return -EBUSY;
1085
1086 ret = srq->device->ops.destroy_srq(srq, udata);
1087 if (ret)
1088 return ret;
1089
1090 atomic_dec(&srq->pd->usecnt);
1091 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1092 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1093 if (ib_srq_has_cq(srq->srq_type))
1094 atomic_dec(&srq->ext.cq->usecnt);
1095 rdma_restrack_del(&srq->res);
1096 kfree(srq);
1097
1098 return ret;
1099}
1100EXPORT_SYMBOL(ib_destroy_srq_user);
1101
1102/* Queue pairs */
1103
1104static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1105{
1106 struct ib_qp *qp = context;
1107 unsigned long flags;
1108
1109 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1110 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1111 if (event->element.qp->event_handler)
1112 event->element.qp->event_handler(event, event->element.qp->qp_context);
1113 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1114}
1115
1116static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1117 void (*event_handler)(struct ib_event *, void *),
1118 void *qp_context)
1119{
1120 struct ib_qp *qp;
1121 unsigned long flags;
1122 int err;
1123
1124 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1125 if (!qp)
1126 return ERR_PTR(-ENOMEM);
1127
1128 qp->real_qp = real_qp;
1129 err = ib_open_shared_qp_security(qp, real_qp->device);
1130 if (err) {
1131 kfree(qp);
1132 return ERR_PTR(err);
1133 }
1134
1135 qp->real_qp = real_qp;
1136 atomic_inc(&real_qp->usecnt);
1137 qp->device = real_qp->device;
1138 qp->event_handler = event_handler;
1139 qp->qp_context = qp_context;
1140 qp->qp_num = real_qp->qp_num;
1141 qp->qp_type = real_qp->qp_type;
1142
1143 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1144 list_add(&qp->open_list, &real_qp->open_list);
1145 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1146
1147 return qp;
1148}
1149
1150struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1151 struct ib_qp_open_attr *qp_open_attr)
1152{
1153 struct ib_qp *qp, *real_qp;
1154
1155 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1156 return ERR_PTR(-EINVAL);
1157
1158 down_read(&xrcd->tgt_qps_rwsem);
1159 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1160 if (!real_qp) {
1161 up_read(&xrcd->tgt_qps_rwsem);
1162 return ERR_PTR(-EINVAL);
1163 }
1164 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1165 qp_open_attr->qp_context);
1166 up_read(&xrcd->tgt_qps_rwsem);
1167 return qp;
1168}
1169EXPORT_SYMBOL(ib_open_qp);
1170
1171static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1172 struct ib_qp_init_attr *qp_init_attr)
1173{
1174 struct ib_qp *real_qp = qp;
1175 int err;
1176
1177 qp->event_handler = __ib_shared_qp_event_handler;
1178 qp->qp_context = qp;
1179 qp->pd = NULL;
1180 qp->send_cq = qp->recv_cq = NULL;
1181 qp->srq = NULL;
1182 qp->xrcd = qp_init_attr->xrcd;
1183 atomic_inc(&qp_init_attr->xrcd->usecnt);
1184 INIT_LIST_HEAD(&qp->open_list);
1185
1186 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1187 qp_init_attr->qp_context);
1188 if (IS_ERR(qp))
1189 return qp;
1190
1191 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1192 real_qp, GFP_KERNEL));
1193 if (err) {
1194 ib_close_qp(qp);
1195 return ERR_PTR(err);
1196 }
1197 return qp;
1198}
1199
1200static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1201 struct ib_qp_init_attr *attr,
1202 struct ib_udata *udata,
1203 struct ib_uqp_object *uobj, const char *caller)
1204{
1205 struct ib_udata dummy = {};
1206 struct ib_qp *qp;
1207 int ret;
1208
1209 if (!dev->ops.create_qp)
1210 return ERR_PTR(-EOPNOTSUPP);
1211
1212 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1213 if (!qp)
1214 return ERR_PTR(-ENOMEM);
1215
1216 qp->device = dev;
1217 qp->pd = pd;
1218 qp->uobject = uobj;
1219 qp->real_qp = qp;
1220
1221 qp->qp_type = attr->qp_type;
1222 qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1223 qp->srq = attr->srq;
1224 qp->event_handler = attr->event_handler;
1225 qp->port = attr->port_num;
1226 qp->qp_context = attr->qp_context;
1227
1228 spin_lock_init(&qp->mr_lock);
1229 INIT_LIST_HEAD(&qp->rdma_mrs);
1230 INIT_LIST_HEAD(&qp->sig_mrs);
1231
1232 qp->send_cq = attr->send_cq;
1233 qp->recv_cq = attr->recv_cq;
1234
1235 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1236 WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1237 rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1238 ret = dev->ops.create_qp(qp, attr, udata);
1239 if (ret)
1240 goto err_create;
1241
1242 /*
1243 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1244 * Unfortunately, it is not an easy task to fix that driver.
1245 */
1246 qp->send_cq = attr->send_cq;
1247 qp->recv_cq = attr->recv_cq;
1248
1249 ret = ib_create_qp_security(qp, dev);
1250 if (ret)
1251 goto err_security;
1252
1253 rdma_restrack_add(&qp->res);
1254 return qp;
1255
1256err_security:
1257 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1258err_create:
1259 rdma_restrack_put(&qp->res);
1260 kfree(qp);
1261 return ERR_PTR(ret);
1262
1263}
1264
1265/**
1266 * ib_create_qp_user - Creates a QP associated with the specified protection
1267 * domain.
1268 * @dev: IB device
1269 * @pd: The protection domain associated with the QP.
1270 * @attr: A list of initial attributes required to create the
1271 * QP. If QP creation succeeds, then the attributes are updated to
1272 * the actual capabilities of the created QP.
1273 * @udata: User data
1274 * @uobj: uverbs obect
1275 * @caller: caller's build-time module name
1276 */
1277struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1278 struct ib_qp_init_attr *attr,
1279 struct ib_udata *udata,
1280 struct ib_uqp_object *uobj, const char *caller)
1281{
1282 struct ib_qp *qp, *xrc_qp;
1283
1284 if (attr->qp_type == IB_QPT_XRC_TGT)
1285 qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1286 else
1287 qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1288 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1289 return qp;
1290
1291 xrc_qp = create_xrc_qp_user(qp, attr);
1292 if (IS_ERR(xrc_qp)) {
1293 ib_destroy_qp(qp);
1294 return xrc_qp;
1295 }
1296
1297 xrc_qp->uobject = uobj;
1298 return xrc_qp;
1299}
1300EXPORT_SYMBOL(ib_create_qp_user);
1301
1302void ib_qp_usecnt_inc(struct ib_qp *qp)
1303{
1304 if (qp->pd)
1305 atomic_inc(&qp->pd->usecnt);
1306 if (qp->send_cq)
1307 atomic_inc(&qp->send_cq->usecnt);
1308 if (qp->recv_cq)
1309 atomic_inc(&qp->recv_cq->usecnt);
1310 if (qp->srq)
1311 atomic_inc(&qp->srq->usecnt);
1312 if (qp->rwq_ind_tbl)
1313 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1314}
1315EXPORT_SYMBOL(ib_qp_usecnt_inc);
1316
1317void ib_qp_usecnt_dec(struct ib_qp *qp)
1318{
1319 if (qp->rwq_ind_tbl)
1320 atomic_dec(&qp->rwq_ind_tbl->usecnt);
1321 if (qp->srq)
1322 atomic_dec(&qp->srq->usecnt);
1323 if (qp->recv_cq)
1324 atomic_dec(&qp->recv_cq->usecnt);
1325 if (qp->send_cq)
1326 atomic_dec(&qp->send_cq->usecnt);
1327 if (qp->pd)
1328 atomic_dec(&qp->pd->usecnt);
1329}
1330EXPORT_SYMBOL(ib_qp_usecnt_dec);
1331
1332struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1333 struct ib_qp_init_attr *qp_init_attr,
1334 const char *caller)
1335{
1336 struct ib_device *device = pd->device;
1337 struct ib_qp *qp;
1338 int ret;
1339
1340 /*
1341 * If the callers is using the RDMA API calculate the resources
1342 * needed for the RDMA READ/WRITE operations.
1343 *
1344 * Note that these callers need to pass in a port number.
1345 */
1346 if (qp_init_attr->cap.max_rdma_ctxs)
1347 rdma_rw_init_qp(device, qp_init_attr);
1348
1349 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1350 if (IS_ERR(qp))
1351 return qp;
1352
1353 ib_qp_usecnt_inc(qp);
1354
1355 if (qp_init_attr->cap.max_rdma_ctxs) {
1356 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1357 if (ret)
1358 goto err;
1359 }
1360
1361 /*
1362 * Note: all hw drivers guarantee that max_send_sge is lower than
1363 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1364 * max_send_sge <= max_sge_rd.
1365 */
1366 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1367 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1368 device->attrs.max_sge_rd);
1369 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1370 qp->integrity_en = true;
1371
1372 return qp;
1373
1374err:
1375 ib_destroy_qp(qp);
1376 return ERR_PTR(ret);
1377
1378}
1379EXPORT_SYMBOL(ib_create_qp_kernel);
1380
1381static const struct {
1382 int valid;
1383 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1384 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1385} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1386 [IB_QPS_RESET] = {
1387 [IB_QPS_RESET] = { .valid = 1 },
1388 [IB_QPS_INIT] = {
1389 .valid = 1,
1390 .req_param = {
1391 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1392 IB_QP_PORT |
1393 IB_QP_QKEY),
1394 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1395 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1396 IB_QP_PORT |
1397 IB_QP_ACCESS_FLAGS),
1398 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1399 IB_QP_PORT |
1400 IB_QP_ACCESS_FLAGS),
1401 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1402 IB_QP_PORT |
1403 IB_QP_ACCESS_FLAGS),
1404 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1405 IB_QP_PORT |
1406 IB_QP_ACCESS_FLAGS),
1407 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1408 IB_QP_QKEY),
1409 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1410 IB_QP_QKEY),
1411 }
1412 },
1413 },
1414 [IB_QPS_INIT] = {
1415 [IB_QPS_RESET] = { .valid = 1 },
1416 [IB_QPS_ERR] = { .valid = 1 },
1417 [IB_QPS_INIT] = {
1418 .valid = 1,
1419 .opt_param = {
1420 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1421 IB_QP_PORT |
1422 IB_QP_QKEY),
1423 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1424 IB_QP_PORT |
1425 IB_QP_ACCESS_FLAGS),
1426 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1427 IB_QP_PORT |
1428 IB_QP_ACCESS_FLAGS),
1429 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1430 IB_QP_PORT |
1431 IB_QP_ACCESS_FLAGS),
1432 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1433 IB_QP_PORT |
1434 IB_QP_ACCESS_FLAGS),
1435 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1436 IB_QP_QKEY),
1437 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1438 IB_QP_QKEY),
1439 }
1440 },
1441 [IB_QPS_RTR] = {
1442 .valid = 1,
1443 .req_param = {
1444 [IB_QPT_UC] = (IB_QP_AV |
1445 IB_QP_PATH_MTU |
1446 IB_QP_DEST_QPN |
1447 IB_QP_RQ_PSN),
1448 [IB_QPT_RC] = (IB_QP_AV |
1449 IB_QP_PATH_MTU |
1450 IB_QP_DEST_QPN |
1451 IB_QP_RQ_PSN |
1452 IB_QP_MAX_DEST_RD_ATOMIC |
1453 IB_QP_MIN_RNR_TIMER),
1454 [IB_QPT_XRC_INI] = (IB_QP_AV |
1455 IB_QP_PATH_MTU |
1456 IB_QP_DEST_QPN |
1457 IB_QP_RQ_PSN),
1458 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1459 IB_QP_PATH_MTU |
1460 IB_QP_DEST_QPN |
1461 IB_QP_RQ_PSN |
1462 IB_QP_MAX_DEST_RD_ATOMIC |
1463 IB_QP_MIN_RNR_TIMER),
1464 },
1465 .opt_param = {
1466 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1467 IB_QP_QKEY),
1468 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1469 IB_QP_ACCESS_FLAGS |
1470 IB_QP_PKEY_INDEX),
1471 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1472 IB_QP_ACCESS_FLAGS |
1473 IB_QP_PKEY_INDEX),
1474 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1475 IB_QP_ACCESS_FLAGS |
1476 IB_QP_PKEY_INDEX),
1477 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1478 IB_QP_ACCESS_FLAGS |
1479 IB_QP_PKEY_INDEX),
1480 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1481 IB_QP_QKEY),
1482 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1483 IB_QP_QKEY),
1484 },
1485 },
1486 },
1487 [IB_QPS_RTR] = {
1488 [IB_QPS_RESET] = { .valid = 1 },
1489 [IB_QPS_ERR] = { .valid = 1 },
1490 [IB_QPS_RTS] = {
1491 .valid = 1,
1492 .req_param = {
1493 [IB_QPT_UD] = IB_QP_SQ_PSN,
1494 [IB_QPT_UC] = IB_QP_SQ_PSN,
1495 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1496 IB_QP_RETRY_CNT |
1497 IB_QP_RNR_RETRY |
1498 IB_QP_SQ_PSN |
1499 IB_QP_MAX_QP_RD_ATOMIC),
1500 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1501 IB_QP_RETRY_CNT |
1502 IB_QP_RNR_RETRY |
1503 IB_QP_SQ_PSN |
1504 IB_QP_MAX_QP_RD_ATOMIC),
1505 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1506 IB_QP_SQ_PSN),
1507 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1508 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1509 },
1510 .opt_param = {
1511 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1512 IB_QP_QKEY),
1513 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1514 IB_QP_ALT_PATH |
1515 IB_QP_ACCESS_FLAGS |
1516 IB_QP_PATH_MIG_STATE),
1517 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1518 IB_QP_ALT_PATH |
1519 IB_QP_ACCESS_FLAGS |
1520 IB_QP_MIN_RNR_TIMER |
1521 IB_QP_PATH_MIG_STATE),
1522 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1523 IB_QP_ALT_PATH |
1524 IB_QP_ACCESS_FLAGS |
1525 IB_QP_PATH_MIG_STATE),
1526 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1527 IB_QP_ALT_PATH |
1528 IB_QP_ACCESS_FLAGS |
1529 IB_QP_MIN_RNR_TIMER |
1530 IB_QP_PATH_MIG_STATE),
1531 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1532 IB_QP_QKEY),
1533 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1534 IB_QP_QKEY),
1535 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1536 }
1537 }
1538 },
1539 [IB_QPS_RTS] = {
1540 [IB_QPS_RESET] = { .valid = 1 },
1541 [IB_QPS_ERR] = { .valid = 1 },
1542 [IB_QPS_RTS] = {
1543 .valid = 1,
1544 .opt_param = {
1545 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1546 IB_QP_QKEY),
1547 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1548 IB_QP_ACCESS_FLAGS |
1549 IB_QP_ALT_PATH |
1550 IB_QP_PATH_MIG_STATE),
1551 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1552 IB_QP_ACCESS_FLAGS |
1553 IB_QP_ALT_PATH |
1554 IB_QP_PATH_MIG_STATE |
1555 IB_QP_MIN_RNR_TIMER),
1556 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1557 IB_QP_ACCESS_FLAGS |
1558 IB_QP_ALT_PATH |
1559 IB_QP_PATH_MIG_STATE),
1560 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1561 IB_QP_ACCESS_FLAGS |
1562 IB_QP_ALT_PATH |
1563 IB_QP_PATH_MIG_STATE |
1564 IB_QP_MIN_RNR_TIMER),
1565 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1566 IB_QP_QKEY),
1567 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1568 IB_QP_QKEY),
1569 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1570 }
1571 },
1572 [IB_QPS_SQD] = {
1573 .valid = 1,
1574 .opt_param = {
1575 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1576 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1577 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1578 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1579 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1580 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1581 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1582 }
1583 },
1584 },
1585 [IB_QPS_SQD] = {
1586 [IB_QPS_RESET] = { .valid = 1 },
1587 [IB_QPS_ERR] = { .valid = 1 },
1588 [IB_QPS_RTS] = {
1589 .valid = 1,
1590 .opt_param = {
1591 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1592 IB_QP_QKEY),
1593 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1594 IB_QP_ALT_PATH |
1595 IB_QP_ACCESS_FLAGS |
1596 IB_QP_PATH_MIG_STATE),
1597 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1598 IB_QP_ALT_PATH |
1599 IB_QP_ACCESS_FLAGS |
1600 IB_QP_MIN_RNR_TIMER |
1601 IB_QP_PATH_MIG_STATE),
1602 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1603 IB_QP_ALT_PATH |
1604 IB_QP_ACCESS_FLAGS |
1605 IB_QP_PATH_MIG_STATE),
1606 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1607 IB_QP_ALT_PATH |
1608 IB_QP_ACCESS_FLAGS |
1609 IB_QP_MIN_RNR_TIMER |
1610 IB_QP_PATH_MIG_STATE),
1611 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1612 IB_QP_QKEY),
1613 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1614 IB_QP_QKEY),
1615 }
1616 },
1617 [IB_QPS_SQD] = {
1618 .valid = 1,
1619 .opt_param = {
1620 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1621 IB_QP_QKEY),
1622 [IB_QPT_UC] = (IB_QP_AV |
1623 IB_QP_ALT_PATH |
1624 IB_QP_ACCESS_FLAGS |
1625 IB_QP_PKEY_INDEX |
1626 IB_QP_PATH_MIG_STATE),
1627 [IB_QPT_RC] = (IB_QP_PORT |
1628 IB_QP_AV |
1629 IB_QP_TIMEOUT |
1630 IB_QP_RETRY_CNT |
1631 IB_QP_RNR_RETRY |
1632 IB_QP_MAX_QP_RD_ATOMIC |
1633 IB_QP_MAX_DEST_RD_ATOMIC |
1634 IB_QP_ALT_PATH |
1635 IB_QP_ACCESS_FLAGS |
1636 IB_QP_PKEY_INDEX |
1637 IB_QP_MIN_RNR_TIMER |
1638 IB_QP_PATH_MIG_STATE),
1639 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1640 IB_QP_AV |
1641 IB_QP_TIMEOUT |
1642 IB_QP_RETRY_CNT |
1643 IB_QP_RNR_RETRY |
1644 IB_QP_MAX_QP_RD_ATOMIC |
1645 IB_QP_ALT_PATH |
1646 IB_QP_ACCESS_FLAGS |
1647 IB_QP_PKEY_INDEX |
1648 IB_QP_PATH_MIG_STATE),
1649 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1650 IB_QP_AV |
1651 IB_QP_TIMEOUT |
1652 IB_QP_MAX_DEST_RD_ATOMIC |
1653 IB_QP_ALT_PATH |
1654 IB_QP_ACCESS_FLAGS |
1655 IB_QP_PKEY_INDEX |
1656 IB_QP_MIN_RNR_TIMER |
1657 IB_QP_PATH_MIG_STATE),
1658 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1659 IB_QP_QKEY),
1660 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1661 IB_QP_QKEY),
1662 }
1663 }
1664 },
1665 [IB_QPS_SQE] = {
1666 [IB_QPS_RESET] = { .valid = 1 },
1667 [IB_QPS_ERR] = { .valid = 1 },
1668 [IB_QPS_RTS] = {
1669 .valid = 1,
1670 .opt_param = {
1671 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1672 IB_QP_QKEY),
1673 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1674 IB_QP_ACCESS_FLAGS),
1675 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1676 IB_QP_QKEY),
1677 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1678 IB_QP_QKEY),
1679 }
1680 }
1681 },
1682 [IB_QPS_ERR] = {
1683 [IB_QPS_RESET] = { .valid = 1 },
1684 [IB_QPS_ERR] = { .valid = 1 }
1685 }
1686};
1687
1688bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1689 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1690{
1691 enum ib_qp_attr_mask req_param, opt_param;
1692
1693 if (mask & IB_QP_CUR_STATE &&
1694 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1695 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1696 return false;
1697
1698 if (!qp_state_table[cur_state][next_state].valid)
1699 return false;
1700
1701 req_param = qp_state_table[cur_state][next_state].req_param[type];
1702 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1703
1704 if ((mask & req_param) != req_param)
1705 return false;
1706
1707 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1708 return false;
1709
1710 return true;
1711}
1712EXPORT_SYMBOL(ib_modify_qp_is_ok);
1713
1714/**
1715 * ib_resolve_eth_dmac - Resolve destination mac address
1716 * @device: Device to consider
1717 * @ah_attr: address handle attribute which describes the
1718 * source and destination parameters
1719 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1720 * returns 0 on success or appropriate error code. It initializes the
1721 * necessary ah_attr fields when call is successful.
1722 */
1723static int ib_resolve_eth_dmac(struct ib_device *device,
1724 struct rdma_ah_attr *ah_attr)
1725{
1726 int ret = 0;
1727
1728 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1729 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1730 __be32 addr = 0;
1731
1732 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1733 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1734 } else {
1735 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1736 (char *)ah_attr->roce.dmac);
1737 }
1738 } else {
1739 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1740 }
1741 return ret;
1742}
1743
1744static bool is_qp_type_connected(const struct ib_qp *qp)
1745{
1746 return (qp->qp_type == IB_QPT_UC ||
1747 qp->qp_type == IB_QPT_RC ||
1748 qp->qp_type == IB_QPT_XRC_INI ||
1749 qp->qp_type == IB_QPT_XRC_TGT);
1750}
1751
1752/*
1753 * IB core internal function to perform QP attributes modification.
1754 */
1755static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1756 int attr_mask, struct ib_udata *udata)
1757{
1758 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1759 const struct ib_gid_attr *old_sgid_attr_av;
1760 const struct ib_gid_attr *old_sgid_attr_alt_av;
1761 int ret;
1762
1763 attr->xmit_slave = NULL;
1764 if (attr_mask & IB_QP_AV) {
1765 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1766 &old_sgid_attr_av);
1767 if (ret)
1768 return ret;
1769
1770 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1771 is_qp_type_connected(qp)) {
1772 struct net_device *slave;
1773
1774 /*
1775 * If the user provided the qp_attr then we have to
1776 * resolve it. Kerne users have to provide already
1777 * resolved rdma_ah_attr's.
1778 */
1779 if (udata) {
1780 ret = ib_resolve_eth_dmac(qp->device,
1781 &attr->ah_attr);
1782 if (ret)
1783 goto out_av;
1784 }
1785 slave = rdma_lag_get_ah_roce_slave(qp->device,
1786 &attr->ah_attr,
1787 GFP_KERNEL);
1788 if (IS_ERR(slave)) {
1789 ret = PTR_ERR(slave);
1790 goto out_av;
1791 }
1792 attr->xmit_slave = slave;
1793 }
1794 }
1795 if (attr_mask & IB_QP_ALT_PATH) {
1796 /*
1797 * FIXME: This does not track the migration state, so if the
1798 * user loads a new alternate path after the HW has migrated
1799 * from primary->alternate we will keep the wrong
1800 * references. This is OK for IB because the reference
1801 * counting does not serve any functional purpose.
1802 */
1803 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1804 &old_sgid_attr_alt_av);
1805 if (ret)
1806 goto out_av;
1807
1808 /*
1809 * Today the core code can only handle alternate paths and APM
1810 * for IB. Ban them in roce mode.
1811 */
1812 if (!(rdma_protocol_ib(qp->device,
1813 attr->alt_ah_attr.port_num) &&
1814 rdma_protocol_ib(qp->device, port))) {
1815 ret = -EINVAL;
1816 goto out;
1817 }
1818 }
1819
1820 if (rdma_ib_or_roce(qp->device, port)) {
1821 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1822 dev_warn(&qp->device->dev,
1823 "%s rq_psn overflow, masking to 24 bits\n",
1824 __func__);
1825 attr->rq_psn &= 0xffffff;
1826 }
1827
1828 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1829 dev_warn(&qp->device->dev,
1830 " %s sq_psn overflow, masking to 24 bits\n",
1831 __func__);
1832 attr->sq_psn &= 0xffffff;
1833 }
1834 }
1835
1836 /*
1837 * Bind this qp to a counter automatically based on the rdma counter
1838 * rules. This only set in RST2INIT with port specified
1839 */
1840 if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1841 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1842 rdma_counter_bind_qp_auto(qp, attr->port_num);
1843
1844 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1845 if (ret)
1846 goto out;
1847
1848 if (attr_mask & IB_QP_PORT)
1849 qp->port = attr->port_num;
1850 if (attr_mask & IB_QP_AV)
1851 qp->av_sgid_attr =
1852 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1853 if (attr_mask & IB_QP_ALT_PATH)
1854 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1855 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1856
1857out:
1858 if (attr_mask & IB_QP_ALT_PATH)
1859 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1860out_av:
1861 if (attr_mask & IB_QP_AV) {
1862 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1863 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1864 }
1865 return ret;
1866}
1867
1868/**
1869 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1870 * @ib_qp: The QP to modify.
1871 * @attr: On input, specifies the QP attributes to modify. On output,
1872 * the current values of selected QP attributes are returned.
1873 * @attr_mask: A bit-mask used to specify which attributes of the QP
1874 * are being modified.
1875 * @udata: pointer to user's input output buffer information
1876 * are being modified.
1877 * It returns 0 on success and returns appropriate error code on error.
1878 */
1879int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1880 int attr_mask, struct ib_udata *udata)
1881{
1882 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1883}
1884EXPORT_SYMBOL(ib_modify_qp_with_udata);
1885
1886static void ib_get_width_and_speed(u32 netdev_speed, u32 lanes,
1887 u16 *speed, u8 *width)
1888{
1889 if (!lanes) {
1890 if (netdev_speed <= SPEED_1000) {
1891 *width = IB_WIDTH_1X;
1892 *speed = IB_SPEED_SDR;
1893 } else if (netdev_speed <= SPEED_10000) {
1894 *width = IB_WIDTH_1X;
1895 *speed = IB_SPEED_FDR10;
1896 } else if (netdev_speed <= SPEED_20000) {
1897 *width = IB_WIDTH_4X;
1898 *speed = IB_SPEED_DDR;
1899 } else if (netdev_speed <= SPEED_25000) {
1900 *width = IB_WIDTH_1X;
1901 *speed = IB_SPEED_EDR;
1902 } else if (netdev_speed <= SPEED_40000) {
1903 *width = IB_WIDTH_4X;
1904 *speed = IB_SPEED_FDR10;
1905 } else if (netdev_speed <= SPEED_50000) {
1906 *width = IB_WIDTH_2X;
1907 *speed = IB_SPEED_EDR;
1908 } else if (netdev_speed <= SPEED_100000) {
1909 *width = IB_WIDTH_4X;
1910 *speed = IB_SPEED_EDR;
1911 } else if (netdev_speed <= SPEED_200000) {
1912 *width = IB_WIDTH_4X;
1913 *speed = IB_SPEED_HDR;
1914 } else {
1915 *width = IB_WIDTH_4X;
1916 *speed = IB_SPEED_NDR;
1917 }
1918
1919 return;
1920 }
1921
1922 switch (lanes) {
1923 case 1:
1924 *width = IB_WIDTH_1X;
1925 break;
1926 case 2:
1927 *width = IB_WIDTH_2X;
1928 break;
1929 case 4:
1930 *width = IB_WIDTH_4X;
1931 break;
1932 case 8:
1933 *width = IB_WIDTH_8X;
1934 break;
1935 case 12:
1936 *width = IB_WIDTH_12X;
1937 break;
1938 default:
1939 *width = IB_WIDTH_1X;
1940 }
1941
1942 switch (netdev_speed / lanes) {
1943 case SPEED_2500:
1944 *speed = IB_SPEED_SDR;
1945 break;
1946 case SPEED_5000:
1947 *speed = IB_SPEED_DDR;
1948 break;
1949 case SPEED_10000:
1950 *speed = IB_SPEED_FDR10;
1951 break;
1952 case SPEED_14000:
1953 *speed = IB_SPEED_FDR;
1954 break;
1955 case SPEED_25000:
1956 *speed = IB_SPEED_EDR;
1957 break;
1958 case SPEED_50000:
1959 *speed = IB_SPEED_HDR;
1960 break;
1961 case SPEED_100000:
1962 *speed = IB_SPEED_NDR;
1963 break;
1964 default:
1965 *speed = IB_SPEED_SDR;
1966 }
1967}
1968
1969int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1970{
1971 int rc;
1972 u32 netdev_speed;
1973 struct net_device *netdev;
1974 struct ethtool_link_ksettings lksettings = {};
1975
1976 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1977 return -EINVAL;
1978
1979 netdev = ib_device_get_netdev(dev, port_num);
1980 if (!netdev)
1981 return -ENODEV;
1982
1983 rtnl_lock();
1984 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1985 rtnl_unlock();
1986
1987 dev_put(netdev);
1988
1989 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1990 netdev_speed = lksettings.base.speed;
1991 } else {
1992 netdev_speed = SPEED_1000;
1993 if (rc)
1994 pr_warn("%s speed is unknown, defaulting to %u\n",
1995 netdev->name, netdev_speed);
1996 }
1997
1998 ib_get_width_and_speed(netdev_speed, lksettings.lanes,
1999 speed, width);
2000
2001 return 0;
2002}
2003EXPORT_SYMBOL(ib_get_eth_speed);
2004
2005int ib_modify_qp(struct ib_qp *qp,
2006 struct ib_qp_attr *qp_attr,
2007 int qp_attr_mask)
2008{
2009 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
2010}
2011EXPORT_SYMBOL(ib_modify_qp);
2012
2013int ib_query_qp(struct ib_qp *qp,
2014 struct ib_qp_attr *qp_attr,
2015 int qp_attr_mask,
2016 struct ib_qp_init_attr *qp_init_attr)
2017{
2018 qp_attr->ah_attr.grh.sgid_attr = NULL;
2019 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
2020
2021 return qp->device->ops.query_qp ?
2022 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
2023 qp_init_attr) : -EOPNOTSUPP;
2024}
2025EXPORT_SYMBOL(ib_query_qp);
2026
2027int ib_close_qp(struct ib_qp *qp)
2028{
2029 struct ib_qp *real_qp;
2030 unsigned long flags;
2031
2032 real_qp = qp->real_qp;
2033 if (real_qp == qp)
2034 return -EINVAL;
2035
2036 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
2037 list_del(&qp->open_list);
2038 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
2039
2040 atomic_dec(&real_qp->usecnt);
2041 if (qp->qp_sec)
2042 ib_close_shared_qp_security(qp->qp_sec);
2043 kfree(qp);
2044
2045 return 0;
2046}
2047EXPORT_SYMBOL(ib_close_qp);
2048
2049static int __ib_destroy_shared_qp(struct ib_qp *qp)
2050{
2051 struct ib_xrcd *xrcd;
2052 struct ib_qp *real_qp;
2053 int ret;
2054
2055 real_qp = qp->real_qp;
2056 xrcd = real_qp->xrcd;
2057 down_write(&xrcd->tgt_qps_rwsem);
2058 ib_close_qp(qp);
2059 if (atomic_read(&real_qp->usecnt) == 0)
2060 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
2061 else
2062 real_qp = NULL;
2063 up_write(&xrcd->tgt_qps_rwsem);
2064
2065 if (real_qp) {
2066 ret = ib_destroy_qp(real_qp);
2067 if (!ret)
2068 atomic_dec(&xrcd->usecnt);
2069 }
2070
2071 return 0;
2072}
2073
2074int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2075{
2076 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2077 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2078 struct ib_qp_security *sec;
2079 int ret;
2080
2081 WARN_ON_ONCE(qp->mrs_used > 0);
2082
2083 if (atomic_read(&qp->usecnt))
2084 return -EBUSY;
2085
2086 if (qp->real_qp != qp)
2087 return __ib_destroy_shared_qp(qp);
2088
2089 sec = qp->qp_sec;
2090 if (sec)
2091 ib_destroy_qp_security_begin(sec);
2092
2093 if (!qp->uobject)
2094 rdma_rw_cleanup_mrs(qp);
2095
2096 rdma_counter_unbind_qp(qp, true);
2097 ret = qp->device->ops.destroy_qp(qp, udata);
2098 if (ret) {
2099 if (sec)
2100 ib_destroy_qp_security_abort(sec);
2101 return ret;
2102 }
2103
2104 if (alt_path_sgid_attr)
2105 rdma_put_gid_attr(alt_path_sgid_attr);
2106 if (av_sgid_attr)
2107 rdma_put_gid_attr(av_sgid_attr);
2108
2109 ib_qp_usecnt_dec(qp);
2110 if (sec)
2111 ib_destroy_qp_security_end(sec);
2112
2113 rdma_restrack_del(&qp->res);
2114 kfree(qp);
2115 return ret;
2116}
2117EXPORT_SYMBOL(ib_destroy_qp_user);
2118
2119/* Completion queues */
2120
2121struct ib_cq *__ib_create_cq(struct ib_device *device,
2122 ib_comp_handler comp_handler,
2123 void (*event_handler)(struct ib_event *, void *),
2124 void *cq_context,
2125 const struct ib_cq_init_attr *cq_attr,
2126 const char *caller)
2127{
2128 struct ib_cq *cq;
2129 int ret;
2130
2131 cq = rdma_zalloc_drv_obj(device, ib_cq);
2132 if (!cq)
2133 return ERR_PTR(-ENOMEM);
2134
2135 cq->device = device;
2136 cq->uobject = NULL;
2137 cq->comp_handler = comp_handler;
2138 cq->event_handler = event_handler;
2139 cq->cq_context = cq_context;
2140 atomic_set(&cq->usecnt, 0);
2141
2142 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2143 rdma_restrack_set_name(&cq->res, caller);
2144
2145 ret = device->ops.create_cq(cq, cq_attr, NULL);
2146 if (ret) {
2147 rdma_restrack_put(&cq->res);
2148 kfree(cq);
2149 return ERR_PTR(ret);
2150 }
2151
2152 rdma_restrack_add(&cq->res);
2153 return cq;
2154}
2155EXPORT_SYMBOL(__ib_create_cq);
2156
2157int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2158{
2159 if (cq->shared)
2160 return -EOPNOTSUPP;
2161
2162 return cq->device->ops.modify_cq ?
2163 cq->device->ops.modify_cq(cq, cq_count,
2164 cq_period) : -EOPNOTSUPP;
2165}
2166EXPORT_SYMBOL(rdma_set_cq_moderation);
2167
2168int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2169{
2170 int ret;
2171
2172 if (WARN_ON_ONCE(cq->shared))
2173 return -EOPNOTSUPP;
2174
2175 if (atomic_read(&cq->usecnt))
2176 return -EBUSY;
2177
2178 ret = cq->device->ops.destroy_cq(cq, udata);
2179 if (ret)
2180 return ret;
2181
2182 rdma_restrack_del(&cq->res);
2183 kfree(cq);
2184 return ret;
2185}
2186EXPORT_SYMBOL(ib_destroy_cq_user);
2187
2188int ib_resize_cq(struct ib_cq *cq, int cqe)
2189{
2190 if (cq->shared)
2191 return -EOPNOTSUPP;
2192
2193 return cq->device->ops.resize_cq ?
2194 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2195}
2196EXPORT_SYMBOL(ib_resize_cq);
2197
2198/* Memory regions */
2199
2200struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2201 u64 virt_addr, int access_flags)
2202{
2203 struct ib_mr *mr;
2204
2205 if (access_flags & IB_ACCESS_ON_DEMAND) {
2206 if (!(pd->device->attrs.kernel_cap_flags &
2207 IBK_ON_DEMAND_PAGING)) {
2208 pr_debug("ODP support not available\n");
2209 return ERR_PTR(-EINVAL);
2210 }
2211 }
2212
2213 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2214 access_flags, NULL);
2215
2216 if (IS_ERR(mr))
2217 return mr;
2218
2219 mr->device = pd->device;
2220 mr->type = IB_MR_TYPE_USER;
2221 mr->pd = pd;
2222 mr->dm = NULL;
2223 atomic_inc(&pd->usecnt);
2224 mr->iova = virt_addr;
2225 mr->length = length;
2226
2227 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2228 rdma_restrack_parent_name(&mr->res, &pd->res);
2229 rdma_restrack_add(&mr->res);
2230
2231 return mr;
2232}
2233EXPORT_SYMBOL(ib_reg_user_mr);
2234
2235int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2236 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2237{
2238 if (!pd->device->ops.advise_mr)
2239 return -EOPNOTSUPP;
2240
2241 if (!num_sge)
2242 return 0;
2243
2244 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2245 NULL);
2246}
2247EXPORT_SYMBOL(ib_advise_mr);
2248
2249int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2250{
2251 struct ib_pd *pd = mr->pd;
2252 struct ib_dm *dm = mr->dm;
2253 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2254 int ret;
2255
2256 trace_mr_dereg(mr);
2257 rdma_restrack_del(&mr->res);
2258 ret = mr->device->ops.dereg_mr(mr, udata);
2259 if (!ret) {
2260 atomic_dec(&pd->usecnt);
2261 if (dm)
2262 atomic_dec(&dm->usecnt);
2263 kfree(sig_attrs);
2264 }
2265
2266 return ret;
2267}
2268EXPORT_SYMBOL(ib_dereg_mr_user);
2269
2270/**
2271 * ib_alloc_mr() - Allocates a memory region
2272 * @pd: protection domain associated with the region
2273 * @mr_type: memory region type
2274 * @max_num_sg: maximum sg entries available for registration.
2275 *
2276 * Notes:
2277 * Memory registeration page/sg lists must not exceed max_num_sg.
2278 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2279 * max_num_sg * used_page_size.
2280 *
2281 */
2282struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2283 u32 max_num_sg)
2284{
2285 struct ib_mr *mr;
2286
2287 if (!pd->device->ops.alloc_mr) {
2288 mr = ERR_PTR(-EOPNOTSUPP);
2289 goto out;
2290 }
2291
2292 if (mr_type == IB_MR_TYPE_INTEGRITY) {
2293 WARN_ON_ONCE(1);
2294 mr = ERR_PTR(-EINVAL);
2295 goto out;
2296 }
2297
2298 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2299 if (IS_ERR(mr))
2300 goto out;
2301
2302 mr->device = pd->device;
2303 mr->pd = pd;
2304 mr->dm = NULL;
2305 mr->uobject = NULL;
2306 atomic_inc(&pd->usecnt);
2307 mr->need_inval = false;
2308 mr->type = mr_type;
2309 mr->sig_attrs = NULL;
2310
2311 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2312 rdma_restrack_parent_name(&mr->res, &pd->res);
2313 rdma_restrack_add(&mr->res);
2314out:
2315 trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2316 return mr;
2317}
2318EXPORT_SYMBOL(ib_alloc_mr);
2319
2320/**
2321 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2322 * @pd: protection domain associated with the region
2323 * @max_num_data_sg: maximum data sg entries available for registration
2324 * @max_num_meta_sg: maximum metadata sg entries available for
2325 * registration
2326 *
2327 * Notes:
2328 * Memory registration page/sg lists must not exceed max_num_sg,
2329 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2330 *
2331 */
2332struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2333 u32 max_num_data_sg,
2334 u32 max_num_meta_sg)
2335{
2336 struct ib_mr *mr;
2337 struct ib_sig_attrs *sig_attrs;
2338
2339 if (!pd->device->ops.alloc_mr_integrity ||
2340 !pd->device->ops.map_mr_sg_pi) {
2341 mr = ERR_PTR(-EOPNOTSUPP);
2342 goto out;
2343 }
2344
2345 if (!max_num_meta_sg) {
2346 mr = ERR_PTR(-EINVAL);
2347 goto out;
2348 }
2349
2350 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2351 if (!sig_attrs) {
2352 mr = ERR_PTR(-ENOMEM);
2353 goto out;
2354 }
2355
2356 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2357 max_num_meta_sg);
2358 if (IS_ERR(mr)) {
2359 kfree(sig_attrs);
2360 goto out;
2361 }
2362
2363 mr->device = pd->device;
2364 mr->pd = pd;
2365 mr->dm = NULL;
2366 mr->uobject = NULL;
2367 atomic_inc(&pd->usecnt);
2368 mr->need_inval = false;
2369 mr->type = IB_MR_TYPE_INTEGRITY;
2370 mr->sig_attrs = sig_attrs;
2371
2372 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2373 rdma_restrack_parent_name(&mr->res, &pd->res);
2374 rdma_restrack_add(&mr->res);
2375out:
2376 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2377 return mr;
2378}
2379EXPORT_SYMBOL(ib_alloc_mr_integrity);
2380
2381/* Multicast groups */
2382
2383static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2384{
2385 struct ib_qp_init_attr init_attr = {};
2386 struct ib_qp_attr attr = {};
2387 int num_eth_ports = 0;
2388 unsigned int port;
2389
2390 /* If QP state >= init, it is assigned to a port and we can check this
2391 * port only.
2392 */
2393 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2394 if (attr.qp_state >= IB_QPS_INIT) {
2395 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2396 IB_LINK_LAYER_INFINIBAND)
2397 return true;
2398 goto lid_check;
2399 }
2400 }
2401
2402 /* Can't get a quick answer, iterate over all ports */
2403 rdma_for_each_port(qp->device, port)
2404 if (rdma_port_get_link_layer(qp->device, port) !=
2405 IB_LINK_LAYER_INFINIBAND)
2406 num_eth_ports++;
2407
2408 /* If we have at lease one Ethernet port, RoCE annex declares that
2409 * multicast LID should be ignored. We can't tell at this step if the
2410 * QP belongs to an IB or Ethernet port.
2411 */
2412 if (num_eth_ports)
2413 return true;
2414
2415 /* If all the ports are IB, we can check according to IB spec. */
2416lid_check:
2417 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2418 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2419}
2420
2421int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2422{
2423 int ret;
2424
2425 if (!qp->device->ops.attach_mcast)
2426 return -EOPNOTSUPP;
2427
2428 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2429 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2430 return -EINVAL;
2431
2432 ret = qp->device->ops.attach_mcast(qp, gid, lid);
2433 if (!ret)
2434 atomic_inc(&qp->usecnt);
2435 return ret;
2436}
2437EXPORT_SYMBOL(ib_attach_mcast);
2438
2439int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2440{
2441 int ret;
2442
2443 if (!qp->device->ops.detach_mcast)
2444 return -EOPNOTSUPP;
2445
2446 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2447 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2448 return -EINVAL;
2449
2450 ret = qp->device->ops.detach_mcast(qp, gid, lid);
2451 if (!ret)
2452 atomic_dec(&qp->usecnt);
2453 return ret;
2454}
2455EXPORT_SYMBOL(ib_detach_mcast);
2456
2457/**
2458 * ib_alloc_xrcd_user - Allocates an XRC domain.
2459 * @device: The device on which to allocate the XRC domain.
2460 * @inode: inode to connect XRCD
2461 * @udata: Valid user data or NULL for kernel object
2462 */
2463struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2464 struct inode *inode, struct ib_udata *udata)
2465{
2466 struct ib_xrcd *xrcd;
2467 int ret;
2468
2469 if (!device->ops.alloc_xrcd)
2470 return ERR_PTR(-EOPNOTSUPP);
2471
2472 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2473 if (!xrcd)
2474 return ERR_PTR(-ENOMEM);
2475
2476 xrcd->device = device;
2477 xrcd->inode = inode;
2478 atomic_set(&xrcd->usecnt, 0);
2479 init_rwsem(&xrcd->tgt_qps_rwsem);
2480 xa_init(&xrcd->tgt_qps);
2481
2482 ret = device->ops.alloc_xrcd(xrcd, udata);
2483 if (ret)
2484 goto err;
2485 return xrcd;
2486err:
2487 kfree(xrcd);
2488 return ERR_PTR(ret);
2489}
2490EXPORT_SYMBOL(ib_alloc_xrcd_user);
2491
2492/**
2493 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2494 * @xrcd: The XRC domain to deallocate.
2495 * @udata: Valid user data or NULL for kernel object
2496 */
2497int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2498{
2499 int ret;
2500
2501 if (atomic_read(&xrcd->usecnt))
2502 return -EBUSY;
2503
2504 WARN_ON(!xa_empty(&xrcd->tgt_qps));
2505 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2506 if (ret)
2507 return ret;
2508 kfree(xrcd);
2509 return ret;
2510}
2511EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2512
2513/**
2514 * ib_create_wq - Creates a WQ associated with the specified protection
2515 * domain.
2516 * @pd: The protection domain associated with the WQ.
2517 * @wq_attr: A list of initial attributes required to create the
2518 * WQ. If WQ creation succeeds, then the attributes are updated to
2519 * the actual capabilities of the created WQ.
2520 *
2521 * wq_attr->max_wr and wq_attr->max_sge determine
2522 * the requested size of the WQ, and set to the actual values allocated
2523 * on return.
2524 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2525 * at least as large as the requested values.
2526 */
2527struct ib_wq *ib_create_wq(struct ib_pd *pd,
2528 struct ib_wq_init_attr *wq_attr)
2529{
2530 struct ib_wq *wq;
2531
2532 if (!pd->device->ops.create_wq)
2533 return ERR_PTR(-EOPNOTSUPP);
2534
2535 wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2536 if (!IS_ERR(wq)) {
2537 wq->event_handler = wq_attr->event_handler;
2538 wq->wq_context = wq_attr->wq_context;
2539 wq->wq_type = wq_attr->wq_type;
2540 wq->cq = wq_attr->cq;
2541 wq->device = pd->device;
2542 wq->pd = pd;
2543 wq->uobject = NULL;
2544 atomic_inc(&pd->usecnt);
2545 atomic_inc(&wq_attr->cq->usecnt);
2546 atomic_set(&wq->usecnt, 0);
2547 }
2548 return wq;
2549}
2550EXPORT_SYMBOL(ib_create_wq);
2551
2552/**
2553 * ib_destroy_wq_user - Destroys the specified user WQ.
2554 * @wq: The WQ to destroy.
2555 * @udata: Valid user data
2556 */
2557int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2558{
2559 struct ib_cq *cq = wq->cq;
2560 struct ib_pd *pd = wq->pd;
2561 int ret;
2562
2563 if (atomic_read(&wq->usecnt))
2564 return -EBUSY;
2565
2566 ret = wq->device->ops.destroy_wq(wq, udata);
2567 if (ret)
2568 return ret;
2569
2570 atomic_dec(&pd->usecnt);
2571 atomic_dec(&cq->usecnt);
2572 return ret;
2573}
2574EXPORT_SYMBOL(ib_destroy_wq_user);
2575
2576int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2577 struct ib_mr_status *mr_status)
2578{
2579 if (!mr->device->ops.check_mr_status)
2580 return -EOPNOTSUPP;
2581
2582 return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2583}
2584EXPORT_SYMBOL(ib_check_mr_status);
2585
2586int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2587 int state)
2588{
2589 if (!device->ops.set_vf_link_state)
2590 return -EOPNOTSUPP;
2591
2592 return device->ops.set_vf_link_state(device, vf, port, state);
2593}
2594EXPORT_SYMBOL(ib_set_vf_link_state);
2595
2596int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2597 struct ifla_vf_info *info)
2598{
2599 if (!device->ops.get_vf_config)
2600 return -EOPNOTSUPP;
2601
2602 return device->ops.get_vf_config(device, vf, port, info);
2603}
2604EXPORT_SYMBOL(ib_get_vf_config);
2605
2606int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2607 struct ifla_vf_stats *stats)
2608{
2609 if (!device->ops.get_vf_stats)
2610 return -EOPNOTSUPP;
2611
2612 return device->ops.get_vf_stats(device, vf, port, stats);
2613}
2614EXPORT_SYMBOL(ib_get_vf_stats);
2615
2616int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2617 int type)
2618{
2619 if (!device->ops.set_vf_guid)
2620 return -EOPNOTSUPP;
2621
2622 return device->ops.set_vf_guid(device, vf, port, guid, type);
2623}
2624EXPORT_SYMBOL(ib_set_vf_guid);
2625
2626int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2627 struct ifla_vf_guid *node_guid,
2628 struct ifla_vf_guid *port_guid)
2629{
2630 if (!device->ops.get_vf_guid)
2631 return -EOPNOTSUPP;
2632
2633 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2634}
2635EXPORT_SYMBOL(ib_get_vf_guid);
2636/**
2637 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2638 * information) and set an appropriate memory region for registration.
2639 * @mr: memory region
2640 * @data_sg: dma mapped scatterlist for data
2641 * @data_sg_nents: number of entries in data_sg
2642 * @data_sg_offset: offset in bytes into data_sg
2643 * @meta_sg: dma mapped scatterlist for metadata
2644 * @meta_sg_nents: number of entries in meta_sg
2645 * @meta_sg_offset: offset in bytes into meta_sg
2646 * @page_size: page vector desired page size
2647 *
2648 * Constraints:
2649 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2650 *
2651 * Return: 0 on success.
2652 *
2653 * After this completes successfully, the memory region
2654 * is ready for registration.
2655 */
2656int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2657 int data_sg_nents, unsigned int *data_sg_offset,
2658 struct scatterlist *meta_sg, int meta_sg_nents,
2659 unsigned int *meta_sg_offset, unsigned int page_size)
2660{
2661 if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2662 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2663 return -EOPNOTSUPP;
2664
2665 mr->page_size = page_size;
2666
2667 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2668 data_sg_offset, meta_sg,
2669 meta_sg_nents, meta_sg_offset);
2670}
2671EXPORT_SYMBOL(ib_map_mr_sg_pi);
2672
2673/**
2674 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2675 * and set it the memory region.
2676 * @mr: memory region
2677 * @sg: dma mapped scatterlist
2678 * @sg_nents: number of entries in sg
2679 * @sg_offset: offset in bytes into sg
2680 * @page_size: page vector desired page size
2681 *
2682 * Constraints:
2683 *
2684 * - The first sg element is allowed to have an offset.
2685 * - Each sg element must either be aligned to page_size or virtually
2686 * contiguous to the previous element. In case an sg element has a
2687 * non-contiguous offset, the mapping prefix will not include it.
2688 * - The last sg element is allowed to have length less than page_size.
2689 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2690 * then only max_num_sg entries will be mapped.
2691 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2692 * constraints holds and the page_size argument is ignored.
2693 *
2694 * Returns the number of sg elements that were mapped to the memory region.
2695 *
2696 * After this completes successfully, the memory region
2697 * is ready for registration.
2698 */
2699int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2700 unsigned int *sg_offset, unsigned int page_size)
2701{
2702 if (unlikely(!mr->device->ops.map_mr_sg))
2703 return -EOPNOTSUPP;
2704
2705 mr->page_size = page_size;
2706
2707 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2708}
2709EXPORT_SYMBOL(ib_map_mr_sg);
2710
2711/**
2712 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2713 * to a page vector
2714 * @mr: memory region
2715 * @sgl: dma mapped scatterlist
2716 * @sg_nents: number of entries in sg
2717 * @sg_offset_p: ==== =======================================================
2718 * IN start offset in bytes into sg
2719 * OUT offset in bytes for element n of the sg of the first
2720 * byte that has not been processed where n is the return
2721 * value of this function.
2722 * ==== =======================================================
2723 * @set_page: driver page assignment function pointer
2724 *
2725 * Core service helper for drivers to convert the largest
2726 * prefix of given sg list to a page vector. The sg list
2727 * prefix converted is the prefix that meet the requirements
2728 * of ib_map_mr_sg.
2729 *
2730 * Returns the number of sg elements that were assigned to
2731 * a page vector.
2732 */
2733int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2734 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2735{
2736 struct scatterlist *sg;
2737 u64 last_end_dma_addr = 0;
2738 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2739 unsigned int last_page_off = 0;
2740 u64 page_mask = ~((u64)mr->page_size - 1);
2741 int i, ret;
2742
2743 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2744 return -EINVAL;
2745
2746 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2747 mr->length = 0;
2748
2749 for_each_sg(sgl, sg, sg_nents, i) {
2750 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2751 u64 prev_addr = dma_addr;
2752 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2753 u64 end_dma_addr = dma_addr + dma_len;
2754 u64 page_addr = dma_addr & page_mask;
2755
2756 /*
2757 * For the second and later elements, check whether either the
2758 * end of element i-1 or the start of element i is not aligned
2759 * on a page boundary.
2760 */
2761 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2762 /* Stop mapping if there is a gap. */
2763 if (last_end_dma_addr != dma_addr)
2764 break;
2765
2766 /*
2767 * Coalesce this element with the last. If it is small
2768 * enough just update mr->length. Otherwise start
2769 * mapping from the next page.
2770 */
2771 goto next_page;
2772 }
2773
2774 do {
2775 ret = set_page(mr, page_addr);
2776 if (unlikely(ret < 0)) {
2777 sg_offset = prev_addr - sg_dma_address(sg);
2778 mr->length += prev_addr - dma_addr;
2779 if (sg_offset_p)
2780 *sg_offset_p = sg_offset;
2781 return i || sg_offset ? i : ret;
2782 }
2783 prev_addr = page_addr;
2784next_page:
2785 page_addr += mr->page_size;
2786 } while (page_addr < end_dma_addr);
2787
2788 mr->length += dma_len;
2789 last_end_dma_addr = end_dma_addr;
2790 last_page_off = end_dma_addr & ~page_mask;
2791
2792 sg_offset = 0;
2793 }
2794
2795 if (sg_offset_p)
2796 *sg_offset_p = 0;
2797 return i;
2798}
2799EXPORT_SYMBOL(ib_sg_to_pages);
2800
2801struct ib_drain_cqe {
2802 struct ib_cqe cqe;
2803 struct completion done;
2804};
2805
2806static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2807{
2808 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2809 cqe);
2810
2811 complete(&cqe->done);
2812}
2813
2814/*
2815 * Post a WR and block until its completion is reaped for the SQ.
2816 */
2817static void __ib_drain_sq(struct ib_qp *qp)
2818{
2819 struct ib_cq *cq = qp->send_cq;
2820 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2821 struct ib_drain_cqe sdrain;
2822 struct ib_rdma_wr swr = {
2823 .wr = {
2824 .next = NULL,
2825 { .wr_cqe = &sdrain.cqe, },
2826 .opcode = IB_WR_RDMA_WRITE,
2827 },
2828 };
2829 int ret;
2830
2831 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2832 if (ret) {
2833 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2834 return;
2835 }
2836
2837 sdrain.cqe.done = ib_drain_qp_done;
2838 init_completion(&sdrain.done);
2839
2840 ret = ib_post_send(qp, &swr.wr, NULL);
2841 if (ret) {
2842 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2843 return;
2844 }
2845
2846 if (cq->poll_ctx == IB_POLL_DIRECT)
2847 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2848 ib_process_cq_direct(cq, -1);
2849 else
2850 wait_for_completion(&sdrain.done);
2851}
2852
2853/*
2854 * Post a WR and block until its completion is reaped for the RQ.
2855 */
2856static void __ib_drain_rq(struct ib_qp *qp)
2857{
2858 struct ib_cq *cq = qp->recv_cq;
2859 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2860 struct ib_drain_cqe rdrain;
2861 struct ib_recv_wr rwr = {};
2862 int ret;
2863
2864 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2865 if (ret) {
2866 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2867 return;
2868 }
2869
2870 rwr.wr_cqe = &rdrain.cqe;
2871 rdrain.cqe.done = ib_drain_qp_done;
2872 init_completion(&rdrain.done);
2873
2874 ret = ib_post_recv(qp, &rwr, NULL);
2875 if (ret) {
2876 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2877 return;
2878 }
2879
2880 if (cq->poll_ctx == IB_POLL_DIRECT)
2881 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2882 ib_process_cq_direct(cq, -1);
2883 else
2884 wait_for_completion(&rdrain.done);
2885}
2886
2887/**
2888 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2889 * application.
2890 * @qp: queue pair to drain
2891 *
2892 * If the device has a provider-specific drain function, then
2893 * call that. Otherwise call the generic drain function
2894 * __ib_drain_sq().
2895 *
2896 * The caller must:
2897 *
2898 * ensure there is room in the CQ and SQ for the drain work request and
2899 * completion.
2900 *
2901 * allocate the CQ using ib_alloc_cq().
2902 *
2903 * ensure that there are no other contexts that are posting WRs concurrently.
2904 * Otherwise the drain is not guaranteed.
2905 */
2906void ib_drain_sq(struct ib_qp *qp)
2907{
2908 if (qp->device->ops.drain_sq)
2909 qp->device->ops.drain_sq(qp);
2910 else
2911 __ib_drain_sq(qp);
2912 trace_cq_drain_complete(qp->send_cq);
2913}
2914EXPORT_SYMBOL(ib_drain_sq);
2915
2916/**
2917 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2918 * application.
2919 * @qp: queue pair to drain
2920 *
2921 * If the device has a provider-specific drain function, then
2922 * call that. Otherwise call the generic drain function
2923 * __ib_drain_rq().
2924 *
2925 * The caller must:
2926 *
2927 * ensure there is room in the CQ and RQ for the drain work request and
2928 * completion.
2929 *
2930 * allocate the CQ using ib_alloc_cq().
2931 *
2932 * ensure that there are no other contexts that are posting WRs concurrently.
2933 * Otherwise the drain is not guaranteed.
2934 */
2935void ib_drain_rq(struct ib_qp *qp)
2936{
2937 if (qp->device->ops.drain_rq)
2938 qp->device->ops.drain_rq(qp);
2939 else
2940 __ib_drain_rq(qp);
2941 trace_cq_drain_complete(qp->recv_cq);
2942}
2943EXPORT_SYMBOL(ib_drain_rq);
2944
2945/**
2946 * ib_drain_qp() - Block until all CQEs have been consumed by the
2947 * application on both the RQ and SQ.
2948 * @qp: queue pair to drain
2949 *
2950 * The caller must:
2951 *
2952 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2953 * and completions.
2954 *
2955 * allocate the CQs using ib_alloc_cq().
2956 *
2957 * ensure that there are no other contexts that are posting WRs concurrently.
2958 * Otherwise the drain is not guaranteed.
2959 */
2960void ib_drain_qp(struct ib_qp *qp)
2961{
2962 ib_drain_sq(qp);
2963 if (!qp->srq)
2964 ib_drain_rq(qp);
2965}
2966EXPORT_SYMBOL(ib_drain_qp);
2967
2968struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
2969 enum rdma_netdev_t type, const char *name,
2970 unsigned char name_assign_type,
2971 void (*setup)(struct net_device *))
2972{
2973 struct rdma_netdev_alloc_params params;
2974 struct net_device *netdev;
2975 int rc;
2976
2977 if (!device->ops.rdma_netdev_get_params)
2978 return ERR_PTR(-EOPNOTSUPP);
2979
2980 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2981 ¶ms);
2982 if (rc)
2983 return ERR_PTR(rc);
2984
2985 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2986 setup, params.txqs, params.rxqs);
2987 if (!netdev)
2988 return ERR_PTR(-ENOMEM);
2989
2990 return netdev;
2991}
2992EXPORT_SYMBOL(rdma_alloc_netdev);
2993
2994int rdma_init_netdev(struct ib_device *device, u32 port_num,
2995 enum rdma_netdev_t type, const char *name,
2996 unsigned char name_assign_type,
2997 void (*setup)(struct net_device *),
2998 struct net_device *netdev)
2999{
3000 struct rdma_netdev_alloc_params params;
3001 int rc;
3002
3003 if (!device->ops.rdma_netdev_get_params)
3004 return -EOPNOTSUPP;
3005
3006 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3007 ¶ms);
3008 if (rc)
3009 return rc;
3010
3011 return params.initialize_rdma_netdev(device, port_num,
3012 netdev, params.param);
3013}
3014EXPORT_SYMBOL(rdma_init_netdev);
3015
3016void __rdma_block_iter_start(struct ib_block_iter *biter,
3017 struct scatterlist *sglist, unsigned int nents,
3018 unsigned long pgsz)
3019{
3020 memset(biter, 0, sizeof(struct ib_block_iter));
3021 biter->__sg = sglist;
3022 biter->__sg_nents = nents;
3023
3024 /* Driver provides best block size to use */
3025 biter->__pg_bit = __fls(pgsz);
3026}
3027EXPORT_SYMBOL(__rdma_block_iter_start);
3028
3029bool __rdma_block_iter_next(struct ib_block_iter *biter)
3030{
3031 unsigned int block_offset;
3032 unsigned int sg_delta;
3033
3034 if (!biter->__sg_nents || !biter->__sg)
3035 return false;
3036
3037 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
3038 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
3039 sg_delta = BIT_ULL(biter->__pg_bit) - block_offset;
3040
3041 if (sg_dma_len(biter->__sg) - biter->__sg_advance > sg_delta) {
3042 biter->__sg_advance += sg_delta;
3043 } else {
3044 biter->__sg_advance = 0;
3045 biter->__sg = sg_next(biter->__sg);
3046 biter->__sg_nents--;
3047 }
3048
3049 return true;
3050}
3051EXPORT_SYMBOL(__rdma_block_iter_next);
3052
3053/**
3054 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
3055 * for the drivers.
3056 * @descs: array of static descriptors
3057 * @num_counters: number of elements in array
3058 * @lifespan: milliseconds between updates
3059 */
3060struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
3061 const struct rdma_stat_desc *descs, int num_counters,
3062 unsigned long lifespan)
3063{
3064 struct rdma_hw_stats *stats;
3065
3066 stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
3067 if (!stats)
3068 return NULL;
3069
3070 stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
3071 sizeof(*stats->is_disabled), GFP_KERNEL);
3072 if (!stats->is_disabled)
3073 goto err;
3074
3075 stats->descs = descs;
3076 stats->num_counters = num_counters;
3077 stats->lifespan = msecs_to_jiffies(lifespan);
3078 mutex_init(&stats->lock);
3079
3080 return stats;
3081
3082err:
3083 kfree(stats);
3084 return NULL;
3085}
3086EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
3087
3088/**
3089 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
3090 * @stats: statistics to release
3091 */
3092void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
3093{
3094 if (!stats)
3095 return;
3096
3097 kfree(stats->is_disabled);
3098 kfree(stats);
3099}
3100EXPORT_SYMBOL(rdma_free_hw_stats_struct);
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#include <linux/errno.h>
40#include <linux/err.h>
41#include <linux/export.h>
42#include <linux/string.h>
43#include <linux/slab.h>
44#include <linux/in.h>
45#include <linux/in6.h>
46#include <net/addrconf.h>
47#include <linux/security.h>
48
49#include <rdma/ib_verbs.h>
50#include <rdma/ib_cache.h>
51#include <rdma/ib_addr.h>
52#include <rdma/rw.h>
53#include <rdma/lag.h>
54
55#include "core_priv.h"
56#include <trace/events/rdma_core.h>
57
58static int ib_resolve_eth_dmac(struct ib_device *device,
59 struct rdma_ah_attr *ah_attr);
60
61static const char * const ib_events[] = {
62 [IB_EVENT_CQ_ERR] = "CQ error",
63 [IB_EVENT_QP_FATAL] = "QP fatal error",
64 [IB_EVENT_QP_REQ_ERR] = "QP request error",
65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
66 [IB_EVENT_COMM_EST] = "communication established",
67 [IB_EVENT_SQ_DRAINED] = "send queue drained",
68 [IB_EVENT_PATH_MIG] = "path migration successful",
69 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
70 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
71 [IB_EVENT_PORT_ACTIVE] = "port active",
72 [IB_EVENT_PORT_ERR] = "port error",
73 [IB_EVENT_LID_CHANGE] = "LID change",
74 [IB_EVENT_PKEY_CHANGE] = "P_key change",
75 [IB_EVENT_SM_CHANGE] = "SM change",
76 [IB_EVENT_SRQ_ERR] = "SRQ error",
77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
80 [IB_EVENT_GID_CHANGE] = "GID changed",
81};
82
83const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84{
85 size_t index = event;
86
87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 ib_events[index] : "unrecognized event";
89}
90EXPORT_SYMBOL(ib_event_msg);
91
92static const char * const wc_statuses[] = {
93 [IB_WC_SUCCESS] = "success",
94 [IB_WC_LOC_LEN_ERR] = "local length error",
95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
97 [IB_WC_LOC_PROT_ERR] = "local protection error",
98 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
99 [IB_WC_MW_BIND_ERR] = "memory bind operation error",
100 [IB_WC_BAD_RESP_ERR] = "bad response error",
101 [IB_WC_LOC_ACCESS_ERR] = "local access error",
102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error",
103 [IB_WC_REM_ACCESS_ERR] = "remote access error",
104 [IB_WC_REM_OP_ERR] = "remote operation error",
105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
109 [IB_WC_REM_ABORT_ERR] = "operation aborted",
110 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
112 [IB_WC_FATAL_ERR] = "fatal error",
113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
114 [IB_WC_GENERAL_ERR] = "general error",
115};
116
117const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118{
119 size_t index = status;
120
121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 wc_statuses[index] : "unrecognized status";
123}
124EXPORT_SYMBOL(ib_wc_status_msg);
125
126__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127{
128 switch (rate) {
129 case IB_RATE_2_5_GBPS: return 1;
130 case IB_RATE_5_GBPS: return 2;
131 case IB_RATE_10_GBPS: return 4;
132 case IB_RATE_20_GBPS: return 8;
133 case IB_RATE_30_GBPS: return 12;
134 case IB_RATE_40_GBPS: return 16;
135 case IB_RATE_60_GBPS: return 24;
136 case IB_RATE_80_GBPS: return 32;
137 case IB_RATE_120_GBPS: return 48;
138 case IB_RATE_14_GBPS: return 6;
139 case IB_RATE_56_GBPS: return 22;
140 case IB_RATE_112_GBPS: return 45;
141 case IB_RATE_168_GBPS: return 67;
142 case IB_RATE_25_GBPS: return 10;
143 case IB_RATE_100_GBPS: return 40;
144 case IB_RATE_200_GBPS: return 80;
145 case IB_RATE_300_GBPS: return 120;
146 case IB_RATE_28_GBPS: return 11;
147 case IB_RATE_50_GBPS: return 20;
148 case IB_RATE_400_GBPS: return 160;
149 case IB_RATE_600_GBPS: return 240;
150 default: return -1;
151 }
152}
153EXPORT_SYMBOL(ib_rate_to_mult);
154
155__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156{
157 switch (mult) {
158 case 1: return IB_RATE_2_5_GBPS;
159 case 2: return IB_RATE_5_GBPS;
160 case 4: return IB_RATE_10_GBPS;
161 case 8: return IB_RATE_20_GBPS;
162 case 12: return IB_RATE_30_GBPS;
163 case 16: return IB_RATE_40_GBPS;
164 case 24: return IB_RATE_60_GBPS;
165 case 32: return IB_RATE_80_GBPS;
166 case 48: return IB_RATE_120_GBPS;
167 case 6: return IB_RATE_14_GBPS;
168 case 22: return IB_RATE_56_GBPS;
169 case 45: return IB_RATE_112_GBPS;
170 case 67: return IB_RATE_168_GBPS;
171 case 10: return IB_RATE_25_GBPS;
172 case 40: return IB_RATE_100_GBPS;
173 case 80: return IB_RATE_200_GBPS;
174 case 120: return IB_RATE_300_GBPS;
175 case 11: return IB_RATE_28_GBPS;
176 case 20: return IB_RATE_50_GBPS;
177 case 160: return IB_RATE_400_GBPS;
178 case 240: return IB_RATE_600_GBPS;
179 default: return IB_RATE_PORT_CURRENT;
180 }
181}
182EXPORT_SYMBOL(mult_to_ib_rate);
183
184__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185{
186 switch (rate) {
187 case IB_RATE_2_5_GBPS: return 2500;
188 case IB_RATE_5_GBPS: return 5000;
189 case IB_RATE_10_GBPS: return 10000;
190 case IB_RATE_20_GBPS: return 20000;
191 case IB_RATE_30_GBPS: return 30000;
192 case IB_RATE_40_GBPS: return 40000;
193 case IB_RATE_60_GBPS: return 60000;
194 case IB_RATE_80_GBPS: return 80000;
195 case IB_RATE_120_GBPS: return 120000;
196 case IB_RATE_14_GBPS: return 14062;
197 case IB_RATE_56_GBPS: return 56250;
198 case IB_RATE_112_GBPS: return 112500;
199 case IB_RATE_168_GBPS: return 168750;
200 case IB_RATE_25_GBPS: return 25781;
201 case IB_RATE_100_GBPS: return 103125;
202 case IB_RATE_200_GBPS: return 206250;
203 case IB_RATE_300_GBPS: return 309375;
204 case IB_RATE_28_GBPS: return 28125;
205 case IB_RATE_50_GBPS: return 53125;
206 case IB_RATE_400_GBPS: return 425000;
207 case IB_RATE_600_GBPS: return 637500;
208 default: return -1;
209 }
210}
211EXPORT_SYMBOL(ib_rate_to_mbps);
212
213__attribute_const__ enum rdma_transport_type
214rdma_node_get_transport(unsigned int node_type)
215{
216
217 if (node_type == RDMA_NODE_USNIC)
218 return RDMA_TRANSPORT_USNIC;
219 if (node_type == RDMA_NODE_USNIC_UDP)
220 return RDMA_TRANSPORT_USNIC_UDP;
221 if (node_type == RDMA_NODE_RNIC)
222 return RDMA_TRANSPORT_IWARP;
223 if (node_type == RDMA_NODE_UNSPECIFIED)
224 return RDMA_TRANSPORT_UNSPECIFIED;
225
226 return RDMA_TRANSPORT_IB;
227}
228EXPORT_SYMBOL(rdma_node_get_transport);
229
230enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
231 u32 port_num)
232{
233 enum rdma_transport_type lt;
234 if (device->ops.get_link_layer)
235 return device->ops.get_link_layer(device, port_num);
236
237 lt = rdma_node_get_transport(device->node_type);
238 if (lt == RDMA_TRANSPORT_IB)
239 return IB_LINK_LAYER_INFINIBAND;
240
241 return IB_LINK_LAYER_ETHERNET;
242}
243EXPORT_SYMBOL(rdma_port_get_link_layer);
244
245/* Protection domains */
246
247/**
248 * __ib_alloc_pd - Allocates an unused protection domain.
249 * @device: The device on which to allocate the protection domain.
250 * @flags: protection domain flags
251 * @caller: caller's build-time module name
252 *
253 * A protection domain object provides an association between QPs, shared
254 * receive queues, address handles, memory regions, and memory windows.
255 *
256 * Every PD has a local_dma_lkey which can be used as the lkey value for local
257 * memory operations.
258 */
259struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
260 const char *caller)
261{
262 struct ib_pd *pd;
263 int mr_access_flags = 0;
264 int ret;
265
266 pd = rdma_zalloc_drv_obj(device, ib_pd);
267 if (!pd)
268 return ERR_PTR(-ENOMEM);
269
270 pd->device = device;
271 pd->flags = flags;
272
273 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
274 rdma_restrack_set_name(&pd->res, caller);
275
276 ret = device->ops.alloc_pd(pd, NULL);
277 if (ret) {
278 rdma_restrack_put(&pd->res);
279 kfree(pd);
280 return ERR_PTR(ret);
281 }
282 rdma_restrack_add(&pd->res);
283
284 if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
285 pd->local_dma_lkey = device->local_dma_lkey;
286 else
287 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
288
289 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
290 pr_warn("%s: enabling unsafe global rkey\n", caller);
291 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
292 }
293
294 if (mr_access_flags) {
295 struct ib_mr *mr;
296
297 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
298 if (IS_ERR(mr)) {
299 ib_dealloc_pd(pd);
300 return ERR_CAST(mr);
301 }
302
303 mr->device = pd->device;
304 mr->pd = pd;
305 mr->type = IB_MR_TYPE_DMA;
306 mr->uobject = NULL;
307 mr->need_inval = false;
308
309 pd->__internal_mr = mr;
310
311 if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
312 pd->local_dma_lkey = pd->__internal_mr->lkey;
313
314 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
315 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
316 }
317
318 return pd;
319}
320EXPORT_SYMBOL(__ib_alloc_pd);
321
322/**
323 * ib_dealloc_pd_user - Deallocates a protection domain.
324 * @pd: The protection domain to deallocate.
325 * @udata: Valid user data or NULL for kernel object
326 *
327 * It is an error to call this function while any resources in the pd still
328 * exist. The caller is responsible to synchronously destroy them and
329 * guarantee no new allocations will happen.
330 */
331int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
332{
333 int ret;
334
335 if (pd->__internal_mr) {
336 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
337 WARN_ON(ret);
338 pd->__internal_mr = NULL;
339 }
340
341 ret = pd->device->ops.dealloc_pd(pd, udata);
342 if (ret)
343 return ret;
344
345 rdma_restrack_del(&pd->res);
346 kfree(pd);
347 return ret;
348}
349EXPORT_SYMBOL(ib_dealloc_pd_user);
350
351/* Address handles */
352
353/**
354 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
355 * @dest: Pointer to destination ah_attr. Contents of the destination
356 * pointer is assumed to be invalid and attribute are overwritten.
357 * @src: Pointer to source ah_attr.
358 */
359void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
360 const struct rdma_ah_attr *src)
361{
362 *dest = *src;
363 if (dest->grh.sgid_attr)
364 rdma_hold_gid_attr(dest->grh.sgid_attr);
365}
366EXPORT_SYMBOL(rdma_copy_ah_attr);
367
368/**
369 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
370 * @old: Pointer to existing ah_attr which needs to be replaced.
371 * old is assumed to be valid or zero'd
372 * @new: Pointer to the new ah_attr.
373 *
374 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
375 * old the ah_attr is valid; after that it copies the new attribute and holds
376 * the reference to the replaced ah_attr.
377 */
378void rdma_replace_ah_attr(struct rdma_ah_attr *old,
379 const struct rdma_ah_attr *new)
380{
381 rdma_destroy_ah_attr(old);
382 *old = *new;
383 if (old->grh.sgid_attr)
384 rdma_hold_gid_attr(old->grh.sgid_attr);
385}
386EXPORT_SYMBOL(rdma_replace_ah_attr);
387
388/**
389 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
390 * @dest: Pointer to destination ah_attr to copy to.
391 * dest is assumed to be valid or zero'd
392 * @src: Pointer to the new ah_attr.
393 *
394 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
395 * if it is valid. This also transfers ownership of internal references from
396 * src to dest, making src invalid in the process. No new reference of the src
397 * ah_attr is taken.
398 */
399void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
400{
401 rdma_destroy_ah_attr(dest);
402 *dest = *src;
403 src->grh.sgid_attr = NULL;
404}
405EXPORT_SYMBOL(rdma_move_ah_attr);
406
407/*
408 * Validate that the rdma_ah_attr is valid for the device before passing it
409 * off to the driver.
410 */
411static int rdma_check_ah_attr(struct ib_device *device,
412 struct rdma_ah_attr *ah_attr)
413{
414 if (!rdma_is_port_valid(device, ah_attr->port_num))
415 return -EINVAL;
416
417 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
418 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
419 !(ah_attr->ah_flags & IB_AH_GRH))
420 return -EINVAL;
421
422 if (ah_attr->grh.sgid_attr) {
423 /*
424 * Make sure the passed sgid_attr is consistent with the
425 * parameters
426 */
427 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
428 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
429 return -EINVAL;
430 }
431 return 0;
432}
433
434/*
435 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
436 * On success the caller is responsible to call rdma_unfill_sgid_attr().
437 */
438static int rdma_fill_sgid_attr(struct ib_device *device,
439 struct rdma_ah_attr *ah_attr,
440 const struct ib_gid_attr **old_sgid_attr)
441{
442 const struct ib_gid_attr *sgid_attr;
443 struct ib_global_route *grh;
444 int ret;
445
446 *old_sgid_attr = ah_attr->grh.sgid_attr;
447
448 ret = rdma_check_ah_attr(device, ah_attr);
449 if (ret)
450 return ret;
451
452 if (!(ah_attr->ah_flags & IB_AH_GRH))
453 return 0;
454
455 grh = rdma_ah_retrieve_grh(ah_attr);
456 if (grh->sgid_attr)
457 return 0;
458
459 sgid_attr =
460 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
461 if (IS_ERR(sgid_attr))
462 return PTR_ERR(sgid_attr);
463
464 /* Move ownerhip of the kref into the ah_attr */
465 grh->sgid_attr = sgid_attr;
466 return 0;
467}
468
469static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
470 const struct ib_gid_attr *old_sgid_attr)
471{
472 /*
473 * Fill didn't change anything, the caller retains ownership of
474 * whatever it passed
475 */
476 if (ah_attr->grh.sgid_attr == old_sgid_attr)
477 return;
478
479 /*
480 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
481 * doesn't see any change in the rdma_ah_attr. If we get here
482 * old_sgid_attr is NULL.
483 */
484 rdma_destroy_ah_attr(ah_attr);
485}
486
487static const struct ib_gid_attr *
488rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
489 const struct ib_gid_attr *old_attr)
490{
491 if (old_attr)
492 rdma_put_gid_attr(old_attr);
493 if (ah_attr->ah_flags & IB_AH_GRH) {
494 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
495 return ah_attr->grh.sgid_attr;
496 }
497 return NULL;
498}
499
500static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
501 struct rdma_ah_attr *ah_attr,
502 u32 flags,
503 struct ib_udata *udata,
504 struct net_device *xmit_slave)
505{
506 struct rdma_ah_init_attr init_attr = {};
507 struct ib_device *device = pd->device;
508 struct ib_ah *ah;
509 int ret;
510
511 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
512
513 if (!udata && !device->ops.create_ah)
514 return ERR_PTR(-EOPNOTSUPP);
515
516 ah = rdma_zalloc_drv_obj_gfp(
517 device, ib_ah,
518 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
519 if (!ah)
520 return ERR_PTR(-ENOMEM);
521
522 ah->device = device;
523 ah->pd = pd;
524 ah->type = ah_attr->type;
525 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
526 init_attr.ah_attr = ah_attr;
527 init_attr.flags = flags;
528 init_attr.xmit_slave = xmit_slave;
529
530 if (udata)
531 ret = device->ops.create_user_ah(ah, &init_attr, udata);
532 else
533 ret = device->ops.create_ah(ah, &init_attr, NULL);
534 if (ret) {
535 kfree(ah);
536 return ERR_PTR(ret);
537 }
538
539 atomic_inc(&pd->usecnt);
540 return ah;
541}
542
543/**
544 * rdma_create_ah - Creates an address handle for the
545 * given address vector.
546 * @pd: The protection domain associated with the address handle.
547 * @ah_attr: The attributes of the address vector.
548 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
549 *
550 * It returns 0 on success and returns appropriate error code on error.
551 * The address handle is used to reference a local or global destination
552 * in all UD QP post sends.
553 */
554struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
555 u32 flags)
556{
557 const struct ib_gid_attr *old_sgid_attr;
558 struct net_device *slave;
559 struct ib_ah *ah;
560 int ret;
561
562 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
563 if (ret)
564 return ERR_PTR(ret);
565 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
566 (flags & RDMA_CREATE_AH_SLEEPABLE) ?
567 GFP_KERNEL : GFP_ATOMIC);
568 if (IS_ERR(slave)) {
569 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
570 return (void *)slave;
571 }
572 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
573 rdma_lag_put_ah_roce_slave(slave);
574 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
575 return ah;
576}
577EXPORT_SYMBOL(rdma_create_ah);
578
579/**
580 * rdma_create_user_ah - Creates an address handle for the
581 * given address vector.
582 * It resolves destination mac address for ah attribute of RoCE type.
583 * @pd: The protection domain associated with the address handle.
584 * @ah_attr: The attributes of the address vector.
585 * @udata: pointer to user's input output buffer information need by
586 * provider driver.
587 *
588 * It returns 0 on success and returns appropriate error code on error.
589 * The address handle is used to reference a local or global destination
590 * in all UD QP post sends.
591 */
592struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
593 struct rdma_ah_attr *ah_attr,
594 struct ib_udata *udata)
595{
596 const struct ib_gid_attr *old_sgid_attr;
597 struct ib_ah *ah;
598 int err;
599
600 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
601 if (err)
602 return ERR_PTR(err);
603
604 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
605 err = ib_resolve_eth_dmac(pd->device, ah_attr);
606 if (err) {
607 ah = ERR_PTR(err);
608 goto out;
609 }
610 }
611
612 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
613 udata, NULL);
614
615out:
616 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
617 return ah;
618}
619EXPORT_SYMBOL(rdma_create_user_ah);
620
621int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
622{
623 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
624 struct iphdr ip4h_checked;
625 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
626
627 /* If it's IPv6, the version must be 6, otherwise, the first
628 * 20 bytes (before the IPv4 header) are garbled.
629 */
630 if (ip6h->version != 6)
631 return (ip4h->version == 4) ? 4 : 0;
632 /* version may be 6 or 4 because the first 20 bytes could be garbled */
633
634 /* RoCE v2 requires no options, thus header length
635 * must be 5 words
636 */
637 if (ip4h->ihl != 5)
638 return 6;
639
640 /* Verify checksum.
641 * We can't write on scattered buffers so we need to copy to
642 * temp buffer.
643 */
644 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
645 ip4h_checked.check = 0;
646 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
647 /* if IPv4 header checksum is OK, believe it */
648 if (ip4h->check == ip4h_checked.check)
649 return 4;
650 return 6;
651}
652EXPORT_SYMBOL(ib_get_rdma_header_version);
653
654static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
655 u32 port_num,
656 const struct ib_grh *grh)
657{
658 int grh_version;
659
660 if (rdma_protocol_ib(device, port_num))
661 return RDMA_NETWORK_IB;
662
663 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
664
665 if (grh_version == 4)
666 return RDMA_NETWORK_IPV4;
667
668 if (grh->next_hdr == IPPROTO_UDP)
669 return RDMA_NETWORK_IPV6;
670
671 return RDMA_NETWORK_ROCE_V1;
672}
673
674struct find_gid_index_context {
675 u16 vlan_id;
676 enum ib_gid_type gid_type;
677};
678
679static bool find_gid_index(const union ib_gid *gid,
680 const struct ib_gid_attr *gid_attr,
681 void *context)
682{
683 struct find_gid_index_context *ctx = context;
684 u16 vlan_id = 0xffff;
685 int ret;
686
687 if (ctx->gid_type != gid_attr->gid_type)
688 return false;
689
690 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
691 if (ret)
692 return false;
693
694 return ctx->vlan_id == vlan_id;
695}
696
697static const struct ib_gid_attr *
698get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
699 u16 vlan_id, const union ib_gid *sgid,
700 enum ib_gid_type gid_type)
701{
702 struct find_gid_index_context context = {.vlan_id = vlan_id,
703 .gid_type = gid_type};
704
705 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
706 &context);
707}
708
709int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
710 enum rdma_network_type net_type,
711 union ib_gid *sgid, union ib_gid *dgid)
712{
713 struct sockaddr_in src_in;
714 struct sockaddr_in dst_in;
715 __be32 src_saddr, dst_saddr;
716
717 if (!sgid || !dgid)
718 return -EINVAL;
719
720 if (net_type == RDMA_NETWORK_IPV4) {
721 memcpy(&src_in.sin_addr.s_addr,
722 &hdr->roce4grh.saddr, 4);
723 memcpy(&dst_in.sin_addr.s_addr,
724 &hdr->roce4grh.daddr, 4);
725 src_saddr = src_in.sin_addr.s_addr;
726 dst_saddr = dst_in.sin_addr.s_addr;
727 ipv6_addr_set_v4mapped(src_saddr,
728 (struct in6_addr *)sgid);
729 ipv6_addr_set_v4mapped(dst_saddr,
730 (struct in6_addr *)dgid);
731 return 0;
732 } else if (net_type == RDMA_NETWORK_IPV6 ||
733 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
734 *dgid = hdr->ibgrh.dgid;
735 *sgid = hdr->ibgrh.sgid;
736 return 0;
737 } else {
738 return -EINVAL;
739 }
740}
741EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
742
743/* Resolve destination mac address and hop limit for unicast destination
744 * GID entry, considering the source GID entry as well.
745 * ah_attribute must have have valid port_num, sgid_index.
746 */
747static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
748 struct rdma_ah_attr *ah_attr)
749{
750 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
751 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
752 int hop_limit = 0xff;
753 int ret = 0;
754
755 /* If destination is link local and source GID is RoCEv1,
756 * IP stack is not used.
757 */
758 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
759 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
760 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
761 ah_attr->roce.dmac);
762 return ret;
763 }
764
765 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
766 ah_attr->roce.dmac,
767 sgid_attr, &hop_limit);
768
769 grh->hop_limit = hop_limit;
770 return ret;
771}
772
773/*
774 * This function initializes address handle attributes from the incoming packet.
775 * Incoming packet has dgid of the receiver node on which this code is
776 * getting executed and, sgid contains the GID of the sender.
777 *
778 * When resolving mac address of destination, the arrived dgid is used
779 * as sgid and, sgid is used as dgid because sgid contains destinations
780 * GID whom to respond to.
781 *
782 * On success the caller is responsible to call rdma_destroy_ah_attr on the
783 * attr.
784 */
785int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
786 const struct ib_wc *wc, const struct ib_grh *grh,
787 struct rdma_ah_attr *ah_attr)
788{
789 u32 flow_class;
790 int ret;
791 enum rdma_network_type net_type = RDMA_NETWORK_IB;
792 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
793 const struct ib_gid_attr *sgid_attr;
794 int hoplimit = 0xff;
795 union ib_gid dgid;
796 union ib_gid sgid;
797
798 might_sleep();
799
800 memset(ah_attr, 0, sizeof *ah_attr);
801 ah_attr->type = rdma_ah_find_type(device, port_num);
802 if (rdma_cap_eth_ah(device, port_num)) {
803 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
804 net_type = wc->network_hdr_type;
805 else
806 net_type = ib_get_net_type_by_grh(device, port_num, grh);
807 gid_type = ib_network_to_gid_type(net_type);
808 }
809 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
810 &sgid, &dgid);
811 if (ret)
812 return ret;
813
814 rdma_ah_set_sl(ah_attr, wc->sl);
815 rdma_ah_set_port_num(ah_attr, port_num);
816
817 if (rdma_protocol_roce(device, port_num)) {
818 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
819 wc->vlan_id : 0xffff;
820
821 if (!(wc->wc_flags & IB_WC_GRH))
822 return -EPROTOTYPE;
823
824 sgid_attr = get_sgid_attr_from_eth(device, port_num,
825 vlan_id, &dgid,
826 gid_type);
827 if (IS_ERR(sgid_attr))
828 return PTR_ERR(sgid_attr);
829
830 flow_class = be32_to_cpu(grh->version_tclass_flow);
831 rdma_move_grh_sgid_attr(ah_attr,
832 &sgid,
833 flow_class & 0xFFFFF,
834 hoplimit,
835 (flow_class >> 20) & 0xFF,
836 sgid_attr);
837
838 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
839 if (ret)
840 rdma_destroy_ah_attr(ah_attr);
841
842 return ret;
843 } else {
844 rdma_ah_set_dlid(ah_attr, wc->slid);
845 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
846
847 if ((wc->wc_flags & IB_WC_GRH) == 0)
848 return 0;
849
850 if (dgid.global.interface_id !=
851 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
852 sgid_attr = rdma_find_gid_by_port(
853 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
854 } else
855 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
856
857 if (IS_ERR(sgid_attr))
858 return PTR_ERR(sgid_attr);
859 flow_class = be32_to_cpu(grh->version_tclass_flow);
860 rdma_move_grh_sgid_attr(ah_attr,
861 &sgid,
862 flow_class & 0xFFFFF,
863 hoplimit,
864 (flow_class >> 20) & 0xFF,
865 sgid_attr);
866
867 return 0;
868 }
869}
870EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
871
872/**
873 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
874 * of the reference
875 *
876 * @attr: Pointer to AH attribute structure
877 * @dgid: Destination GID
878 * @flow_label: Flow label
879 * @hop_limit: Hop limit
880 * @traffic_class: traffic class
881 * @sgid_attr: Pointer to SGID attribute
882 *
883 * This takes ownership of the sgid_attr reference. The caller must ensure
884 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
885 * calling this function.
886 */
887void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
888 u32 flow_label, u8 hop_limit, u8 traffic_class,
889 const struct ib_gid_attr *sgid_attr)
890{
891 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
892 traffic_class);
893 attr->grh.sgid_attr = sgid_attr;
894}
895EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
896
897/**
898 * rdma_destroy_ah_attr - Release reference to SGID attribute of
899 * ah attribute.
900 * @ah_attr: Pointer to ah attribute
901 *
902 * Release reference to the SGID attribute of the ah attribute if it is
903 * non NULL. It is safe to call this multiple times, and safe to call it on
904 * a zero initialized ah_attr.
905 */
906void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
907{
908 if (ah_attr->grh.sgid_attr) {
909 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
910 ah_attr->grh.sgid_attr = NULL;
911 }
912}
913EXPORT_SYMBOL(rdma_destroy_ah_attr);
914
915struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
916 const struct ib_grh *grh, u32 port_num)
917{
918 struct rdma_ah_attr ah_attr;
919 struct ib_ah *ah;
920 int ret;
921
922 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
923 if (ret)
924 return ERR_PTR(ret);
925
926 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
927
928 rdma_destroy_ah_attr(&ah_attr);
929 return ah;
930}
931EXPORT_SYMBOL(ib_create_ah_from_wc);
932
933int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
934{
935 const struct ib_gid_attr *old_sgid_attr;
936 int ret;
937
938 if (ah->type != ah_attr->type)
939 return -EINVAL;
940
941 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
942 if (ret)
943 return ret;
944
945 ret = ah->device->ops.modify_ah ?
946 ah->device->ops.modify_ah(ah, ah_attr) :
947 -EOPNOTSUPP;
948
949 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
950 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
951 return ret;
952}
953EXPORT_SYMBOL(rdma_modify_ah);
954
955int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
956{
957 ah_attr->grh.sgid_attr = NULL;
958
959 return ah->device->ops.query_ah ?
960 ah->device->ops.query_ah(ah, ah_attr) :
961 -EOPNOTSUPP;
962}
963EXPORT_SYMBOL(rdma_query_ah);
964
965int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
966{
967 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
968 struct ib_pd *pd;
969 int ret;
970
971 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
972
973 pd = ah->pd;
974
975 ret = ah->device->ops.destroy_ah(ah, flags);
976 if (ret)
977 return ret;
978
979 atomic_dec(&pd->usecnt);
980 if (sgid_attr)
981 rdma_put_gid_attr(sgid_attr);
982
983 kfree(ah);
984 return ret;
985}
986EXPORT_SYMBOL(rdma_destroy_ah_user);
987
988/* Shared receive queues */
989
990/**
991 * ib_create_srq_user - Creates a SRQ associated with the specified protection
992 * domain.
993 * @pd: The protection domain associated with the SRQ.
994 * @srq_init_attr: A list of initial attributes required to create the
995 * SRQ. If SRQ creation succeeds, then the attributes are updated to
996 * the actual capabilities of the created SRQ.
997 * @uobject: uobject pointer if this is not a kernel SRQ
998 * @udata: udata pointer if this is not a kernel SRQ
999 *
1000 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1001 * requested size of the SRQ, and set to the actual values allocated
1002 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1003 * will always be at least as large as the requested values.
1004 */
1005struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1006 struct ib_srq_init_attr *srq_init_attr,
1007 struct ib_usrq_object *uobject,
1008 struct ib_udata *udata)
1009{
1010 struct ib_srq *srq;
1011 int ret;
1012
1013 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1014 if (!srq)
1015 return ERR_PTR(-ENOMEM);
1016
1017 srq->device = pd->device;
1018 srq->pd = pd;
1019 srq->event_handler = srq_init_attr->event_handler;
1020 srq->srq_context = srq_init_attr->srq_context;
1021 srq->srq_type = srq_init_attr->srq_type;
1022 srq->uobject = uobject;
1023
1024 if (ib_srq_has_cq(srq->srq_type)) {
1025 srq->ext.cq = srq_init_attr->ext.cq;
1026 atomic_inc(&srq->ext.cq->usecnt);
1027 }
1028 if (srq->srq_type == IB_SRQT_XRC) {
1029 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1030 if (srq->ext.xrc.xrcd)
1031 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1032 }
1033 atomic_inc(&pd->usecnt);
1034
1035 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1036 rdma_restrack_parent_name(&srq->res, &pd->res);
1037
1038 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1039 if (ret) {
1040 rdma_restrack_put(&srq->res);
1041 atomic_dec(&pd->usecnt);
1042 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1043 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1044 if (ib_srq_has_cq(srq->srq_type))
1045 atomic_dec(&srq->ext.cq->usecnt);
1046 kfree(srq);
1047 return ERR_PTR(ret);
1048 }
1049
1050 rdma_restrack_add(&srq->res);
1051
1052 return srq;
1053}
1054EXPORT_SYMBOL(ib_create_srq_user);
1055
1056int ib_modify_srq(struct ib_srq *srq,
1057 struct ib_srq_attr *srq_attr,
1058 enum ib_srq_attr_mask srq_attr_mask)
1059{
1060 return srq->device->ops.modify_srq ?
1061 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1062 NULL) : -EOPNOTSUPP;
1063}
1064EXPORT_SYMBOL(ib_modify_srq);
1065
1066int ib_query_srq(struct ib_srq *srq,
1067 struct ib_srq_attr *srq_attr)
1068{
1069 return srq->device->ops.query_srq ?
1070 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1071}
1072EXPORT_SYMBOL(ib_query_srq);
1073
1074int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1075{
1076 int ret;
1077
1078 if (atomic_read(&srq->usecnt))
1079 return -EBUSY;
1080
1081 ret = srq->device->ops.destroy_srq(srq, udata);
1082 if (ret)
1083 return ret;
1084
1085 atomic_dec(&srq->pd->usecnt);
1086 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1087 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1088 if (ib_srq_has_cq(srq->srq_type))
1089 atomic_dec(&srq->ext.cq->usecnt);
1090 rdma_restrack_del(&srq->res);
1091 kfree(srq);
1092
1093 return ret;
1094}
1095EXPORT_SYMBOL(ib_destroy_srq_user);
1096
1097/* Queue pairs */
1098
1099static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1100{
1101 struct ib_qp *qp = context;
1102 unsigned long flags;
1103
1104 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1105 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1106 if (event->element.qp->event_handler)
1107 event->element.qp->event_handler(event, event->element.qp->qp_context);
1108 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1109}
1110
1111static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1112 void (*event_handler)(struct ib_event *, void *),
1113 void *qp_context)
1114{
1115 struct ib_qp *qp;
1116 unsigned long flags;
1117 int err;
1118
1119 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1120 if (!qp)
1121 return ERR_PTR(-ENOMEM);
1122
1123 qp->real_qp = real_qp;
1124 err = ib_open_shared_qp_security(qp, real_qp->device);
1125 if (err) {
1126 kfree(qp);
1127 return ERR_PTR(err);
1128 }
1129
1130 qp->real_qp = real_qp;
1131 atomic_inc(&real_qp->usecnt);
1132 qp->device = real_qp->device;
1133 qp->event_handler = event_handler;
1134 qp->qp_context = qp_context;
1135 qp->qp_num = real_qp->qp_num;
1136 qp->qp_type = real_qp->qp_type;
1137
1138 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1139 list_add(&qp->open_list, &real_qp->open_list);
1140 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1141
1142 return qp;
1143}
1144
1145struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1146 struct ib_qp_open_attr *qp_open_attr)
1147{
1148 struct ib_qp *qp, *real_qp;
1149
1150 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1151 return ERR_PTR(-EINVAL);
1152
1153 down_read(&xrcd->tgt_qps_rwsem);
1154 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1155 if (!real_qp) {
1156 up_read(&xrcd->tgt_qps_rwsem);
1157 return ERR_PTR(-EINVAL);
1158 }
1159 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1160 qp_open_attr->qp_context);
1161 up_read(&xrcd->tgt_qps_rwsem);
1162 return qp;
1163}
1164EXPORT_SYMBOL(ib_open_qp);
1165
1166static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1167 struct ib_qp_init_attr *qp_init_attr)
1168{
1169 struct ib_qp *real_qp = qp;
1170 int err;
1171
1172 qp->event_handler = __ib_shared_qp_event_handler;
1173 qp->qp_context = qp;
1174 qp->pd = NULL;
1175 qp->send_cq = qp->recv_cq = NULL;
1176 qp->srq = NULL;
1177 qp->xrcd = qp_init_attr->xrcd;
1178 atomic_inc(&qp_init_attr->xrcd->usecnt);
1179 INIT_LIST_HEAD(&qp->open_list);
1180
1181 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1182 qp_init_attr->qp_context);
1183 if (IS_ERR(qp))
1184 return qp;
1185
1186 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1187 real_qp, GFP_KERNEL));
1188 if (err) {
1189 ib_close_qp(qp);
1190 return ERR_PTR(err);
1191 }
1192 return qp;
1193}
1194
1195static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1196 struct ib_qp_init_attr *attr,
1197 struct ib_udata *udata,
1198 struct ib_uqp_object *uobj, const char *caller)
1199{
1200 struct ib_udata dummy = {};
1201 struct ib_qp *qp;
1202 int ret;
1203
1204 if (!dev->ops.create_qp)
1205 return ERR_PTR(-EOPNOTSUPP);
1206
1207 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1208 if (!qp)
1209 return ERR_PTR(-ENOMEM);
1210
1211 qp->device = dev;
1212 qp->pd = pd;
1213 qp->uobject = uobj;
1214 qp->real_qp = qp;
1215
1216 qp->qp_type = attr->qp_type;
1217 qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1218 qp->srq = attr->srq;
1219 qp->event_handler = attr->event_handler;
1220 qp->port = attr->port_num;
1221 qp->qp_context = attr->qp_context;
1222
1223 spin_lock_init(&qp->mr_lock);
1224 INIT_LIST_HEAD(&qp->rdma_mrs);
1225 INIT_LIST_HEAD(&qp->sig_mrs);
1226
1227 qp->send_cq = attr->send_cq;
1228 qp->recv_cq = attr->recv_cq;
1229
1230 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1231 WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1232 rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1233 ret = dev->ops.create_qp(qp, attr, udata);
1234 if (ret)
1235 goto err_create;
1236
1237 /*
1238 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1239 * Unfortunately, it is not an easy task to fix that driver.
1240 */
1241 qp->send_cq = attr->send_cq;
1242 qp->recv_cq = attr->recv_cq;
1243
1244 ret = ib_create_qp_security(qp, dev);
1245 if (ret)
1246 goto err_security;
1247
1248 rdma_restrack_add(&qp->res);
1249 return qp;
1250
1251err_security:
1252 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1253err_create:
1254 rdma_restrack_put(&qp->res);
1255 kfree(qp);
1256 return ERR_PTR(ret);
1257
1258}
1259
1260/**
1261 * ib_create_qp_user - Creates a QP associated with the specified protection
1262 * domain.
1263 * @dev: IB device
1264 * @pd: The protection domain associated with the QP.
1265 * @attr: A list of initial attributes required to create the
1266 * QP. If QP creation succeeds, then the attributes are updated to
1267 * the actual capabilities of the created QP.
1268 * @udata: User data
1269 * @uobj: uverbs obect
1270 * @caller: caller's build-time module name
1271 */
1272struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1273 struct ib_qp_init_attr *attr,
1274 struct ib_udata *udata,
1275 struct ib_uqp_object *uobj, const char *caller)
1276{
1277 struct ib_qp *qp, *xrc_qp;
1278
1279 if (attr->qp_type == IB_QPT_XRC_TGT)
1280 qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1281 else
1282 qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1283 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1284 return qp;
1285
1286 xrc_qp = create_xrc_qp_user(qp, attr);
1287 if (IS_ERR(xrc_qp)) {
1288 ib_destroy_qp(qp);
1289 return xrc_qp;
1290 }
1291
1292 xrc_qp->uobject = uobj;
1293 return xrc_qp;
1294}
1295EXPORT_SYMBOL(ib_create_qp_user);
1296
1297void ib_qp_usecnt_inc(struct ib_qp *qp)
1298{
1299 if (qp->pd)
1300 atomic_inc(&qp->pd->usecnt);
1301 if (qp->send_cq)
1302 atomic_inc(&qp->send_cq->usecnt);
1303 if (qp->recv_cq)
1304 atomic_inc(&qp->recv_cq->usecnt);
1305 if (qp->srq)
1306 atomic_inc(&qp->srq->usecnt);
1307 if (qp->rwq_ind_tbl)
1308 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1309}
1310EXPORT_SYMBOL(ib_qp_usecnt_inc);
1311
1312void ib_qp_usecnt_dec(struct ib_qp *qp)
1313{
1314 if (qp->rwq_ind_tbl)
1315 atomic_dec(&qp->rwq_ind_tbl->usecnt);
1316 if (qp->srq)
1317 atomic_dec(&qp->srq->usecnt);
1318 if (qp->recv_cq)
1319 atomic_dec(&qp->recv_cq->usecnt);
1320 if (qp->send_cq)
1321 atomic_dec(&qp->send_cq->usecnt);
1322 if (qp->pd)
1323 atomic_dec(&qp->pd->usecnt);
1324}
1325EXPORT_SYMBOL(ib_qp_usecnt_dec);
1326
1327struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1328 struct ib_qp_init_attr *qp_init_attr,
1329 const char *caller)
1330{
1331 struct ib_device *device = pd->device;
1332 struct ib_qp *qp;
1333 int ret;
1334
1335 /*
1336 * If the callers is using the RDMA API calculate the resources
1337 * needed for the RDMA READ/WRITE operations.
1338 *
1339 * Note that these callers need to pass in a port number.
1340 */
1341 if (qp_init_attr->cap.max_rdma_ctxs)
1342 rdma_rw_init_qp(device, qp_init_attr);
1343
1344 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1345 if (IS_ERR(qp))
1346 return qp;
1347
1348 ib_qp_usecnt_inc(qp);
1349
1350 if (qp_init_attr->cap.max_rdma_ctxs) {
1351 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1352 if (ret)
1353 goto err;
1354 }
1355
1356 /*
1357 * Note: all hw drivers guarantee that max_send_sge is lower than
1358 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1359 * max_send_sge <= max_sge_rd.
1360 */
1361 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1362 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1363 device->attrs.max_sge_rd);
1364 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1365 qp->integrity_en = true;
1366
1367 return qp;
1368
1369err:
1370 ib_destroy_qp(qp);
1371 return ERR_PTR(ret);
1372
1373}
1374EXPORT_SYMBOL(ib_create_qp_kernel);
1375
1376static const struct {
1377 int valid;
1378 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1379 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1380} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1381 [IB_QPS_RESET] = {
1382 [IB_QPS_RESET] = { .valid = 1 },
1383 [IB_QPS_INIT] = {
1384 .valid = 1,
1385 .req_param = {
1386 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1387 IB_QP_PORT |
1388 IB_QP_QKEY),
1389 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1390 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1391 IB_QP_PORT |
1392 IB_QP_ACCESS_FLAGS),
1393 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1394 IB_QP_PORT |
1395 IB_QP_ACCESS_FLAGS),
1396 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1397 IB_QP_PORT |
1398 IB_QP_ACCESS_FLAGS),
1399 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1400 IB_QP_PORT |
1401 IB_QP_ACCESS_FLAGS),
1402 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1403 IB_QP_QKEY),
1404 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1405 IB_QP_QKEY),
1406 }
1407 },
1408 },
1409 [IB_QPS_INIT] = {
1410 [IB_QPS_RESET] = { .valid = 1 },
1411 [IB_QPS_ERR] = { .valid = 1 },
1412 [IB_QPS_INIT] = {
1413 .valid = 1,
1414 .opt_param = {
1415 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1416 IB_QP_PORT |
1417 IB_QP_QKEY),
1418 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1419 IB_QP_PORT |
1420 IB_QP_ACCESS_FLAGS),
1421 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1422 IB_QP_PORT |
1423 IB_QP_ACCESS_FLAGS),
1424 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1425 IB_QP_PORT |
1426 IB_QP_ACCESS_FLAGS),
1427 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1428 IB_QP_PORT |
1429 IB_QP_ACCESS_FLAGS),
1430 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1431 IB_QP_QKEY),
1432 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1433 IB_QP_QKEY),
1434 }
1435 },
1436 [IB_QPS_RTR] = {
1437 .valid = 1,
1438 .req_param = {
1439 [IB_QPT_UC] = (IB_QP_AV |
1440 IB_QP_PATH_MTU |
1441 IB_QP_DEST_QPN |
1442 IB_QP_RQ_PSN),
1443 [IB_QPT_RC] = (IB_QP_AV |
1444 IB_QP_PATH_MTU |
1445 IB_QP_DEST_QPN |
1446 IB_QP_RQ_PSN |
1447 IB_QP_MAX_DEST_RD_ATOMIC |
1448 IB_QP_MIN_RNR_TIMER),
1449 [IB_QPT_XRC_INI] = (IB_QP_AV |
1450 IB_QP_PATH_MTU |
1451 IB_QP_DEST_QPN |
1452 IB_QP_RQ_PSN),
1453 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1454 IB_QP_PATH_MTU |
1455 IB_QP_DEST_QPN |
1456 IB_QP_RQ_PSN |
1457 IB_QP_MAX_DEST_RD_ATOMIC |
1458 IB_QP_MIN_RNR_TIMER),
1459 },
1460 .opt_param = {
1461 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1462 IB_QP_QKEY),
1463 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1464 IB_QP_ACCESS_FLAGS |
1465 IB_QP_PKEY_INDEX),
1466 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1467 IB_QP_ACCESS_FLAGS |
1468 IB_QP_PKEY_INDEX),
1469 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1470 IB_QP_ACCESS_FLAGS |
1471 IB_QP_PKEY_INDEX),
1472 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1473 IB_QP_ACCESS_FLAGS |
1474 IB_QP_PKEY_INDEX),
1475 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1476 IB_QP_QKEY),
1477 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1478 IB_QP_QKEY),
1479 },
1480 },
1481 },
1482 [IB_QPS_RTR] = {
1483 [IB_QPS_RESET] = { .valid = 1 },
1484 [IB_QPS_ERR] = { .valid = 1 },
1485 [IB_QPS_RTS] = {
1486 .valid = 1,
1487 .req_param = {
1488 [IB_QPT_UD] = IB_QP_SQ_PSN,
1489 [IB_QPT_UC] = IB_QP_SQ_PSN,
1490 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1491 IB_QP_RETRY_CNT |
1492 IB_QP_RNR_RETRY |
1493 IB_QP_SQ_PSN |
1494 IB_QP_MAX_QP_RD_ATOMIC),
1495 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1496 IB_QP_RETRY_CNT |
1497 IB_QP_RNR_RETRY |
1498 IB_QP_SQ_PSN |
1499 IB_QP_MAX_QP_RD_ATOMIC),
1500 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1501 IB_QP_SQ_PSN),
1502 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1503 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1504 },
1505 .opt_param = {
1506 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1507 IB_QP_QKEY),
1508 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1509 IB_QP_ALT_PATH |
1510 IB_QP_ACCESS_FLAGS |
1511 IB_QP_PATH_MIG_STATE),
1512 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1513 IB_QP_ALT_PATH |
1514 IB_QP_ACCESS_FLAGS |
1515 IB_QP_MIN_RNR_TIMER |
1516 IB_QP_PATH_MIG_STATE),
1517 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1518 IB_QP_ALT_PATH |
1519 IB_QP_ACCESS_FLAGS |
1520 IB_QP_PATH_MIG_STATE),
1521 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1522 IB_QP_ALT_PATH |
1523 IB_QP_ACCESS_FLAGS |
1524 IB_QP_MIN_RNR_TIMER |
1525 IB_QP_PATH_MIG_STATE),
1526 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1527 IB_QP_QKEY),
1528 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1529 IB_QP_QKEY),
1530 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1531 }
1532 }
1533 },
1534 [IB_QPS_RTS] = {
1535 [IB_QPS_RESET] = { .valid = 1 },
1536 [IB_QPS_ERR] = { .valid = 1 },
1537 [IB_QPS_RTS] = {
1538 .valid = 1,
1539 .opt_param = {
1540 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1541 IB_QP_QKEY),
1542 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1543 IB_QP_ACCESS_FLAGS |
1544 IB_QP_ALT_PATH |
1545 IB_QP_PATH_MIG_STATE),
1546 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1547 IB_QP_ACCESS_FLAGS |
1548 IB_QP_ALT_PATH |
1549 IB_QP_PATH_MIG_STATE |
1550 IB_QP_MIN_RNR_TIMER),
1551 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1552 IB_QP_ACCESS_FLAGS |
1553 IB_QP_ALT_PATH |
1554 IB_QP_PATH_MIG_STATE),
1555 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1556 IB_QP_ACCESS_FLAGS |
1557 IB_QP_ALT_PATH |
1558 IB_QP_PATH_MIG_STATE |
1559 IB_QP_MIN_RNR_TIMER),
1560 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1561 IB_QP_QKEY),
1562 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1563 IB_QP_QKEY),
1564 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1565 }
1566 },
1567 [IB_QPS_SQD] = {
1568 .valid = 1,
1569 .opt_param = {
1570 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1571 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1572 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1573 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1574 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1575 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1576 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1577 }
1578 },
1579 },
1580 [IB_QPS_SQD] = {
1581 [IB_QPS_RESET] = { .valid = 1 },
1582 [IB_QPS_ERR] = { .valid = 1 },
1583 [IB_QPS_RTS] = {
1584 .valid = 1,
1585 .opt_param = {
1586 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1587 IB_QP_QKEY),
1588 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1589 IB_QP_ALT_PATH |
1590 IB_QP_ACCESS_FLAGS |
1591 IB_QP_PATH_MIG_STATE),
1592 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1593 IB_QP_ALT_PATH |
1594 IB_QP_ACCESS_FLAGS |
1595 IB_QP_MIN_RNR_TIMER |
1596 IB_QP_PATH_MIG_STATE),
1597 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1598 IB_QP_ALT_PATH |
1599 IB_QP_ACCESS_FLAGS |
1600 IB_QP_PATH_MIG_STATE),
1601 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1602 IB_QP_ALT_PATH |
1603 IB_QP_ACCESS_FLAGS |
1604 IB_QP_MIN_RNR_TIMER |
1605 IB_QP_PATH_MIG_STATE),
1606 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1607 IB_QP_QKEY),
1608 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1609 IB_QP_QKEY),
1610 }
1611 },
1612 [IB_QPS_SQD] = {
1613 .valid = 1,
1614 .opt_param = {
1615 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1616 IB_QP_QKEY),
1617 [IB_QPT_UC] = (IB_QP_AV |
1618 IB_QP_ALT_PATH |
1619 IB_QP_ACCESS_FLAGS |
1620 IB_QP_PKEY_INDEX |
1621 IB_QP_PATH_MIG_STATE),
1622 [IB_QPT_RC] = (IB_QP_PORT |
1623 IB_QP_AV |
1624 IB_QP_TIMEOUT |
1625 IB_QP_RETRY_CNT |
1626 IB_QP_RNR_RETRY |
1627 IB_QP_MAX_QP_RD_ATOMIC |
1628 IB_QP_MAX_DEST_RD_ATOMIC |
1629 IB_QP_ALT_PATH |
1630 IB_QP_ACCESS_FLAGS |
1631 IB_QP_PKEY_INDEX |
1632 IB_QP_MIN_RNR_TIMER |
1633 IB_QP_PATH_MIG_STATE),
1634 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1635 IB_QP_AV |
1636 IB_QP_TIMEOUT |
1637 IB_QP_RETRY_CNT |
1638 IB_QP_RNR_RETRY |
1639 IB_QP_MAX_QP_RD_ATOMIC |
1640 IB_QP_ALT_PATH |
1641 IB_QP_ACCESS_FLAGS |
1642 IB_QP_PKEY_INDEX |
1643 IB_QP_PATH_MIG_STATE),
1644 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1645 IB_QP_AV |
1646 IB_QP_TIMEOUT |
1647 IB_QP_MAX_DEST_RD_ATOMIC |
1648 IB_QP_ALT_PATH |
1649 IB_QP_ACCESS_FLAGS |
1650 IB_QP_PKEY_INDEX |
1651 IB_QP_MIN_RNR_TIMER |
1652 IB_QP_PATH_MIG_STATE),
1653 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1654 IB_QP_QKEY),
1655 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1656 IB_QP_QKEY),
1657 }
1658 }
1659 },
1660 [IB_QPS_SQE] = {
1661 [IB_QPS_RESET] = { .valid = 1 },
1662 [IB_QPS_ERR] = { .valid = 1 },
1663 [IB_QPS_RTS] = {
1664 .valid = 1,
1665 .opt_param = {
1666 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1667 IB_QP_QKEY),
1668 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1669 IB_QP_ACCESS_FLAGS),
1670 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1671 IB_QP_QKEY),
1672 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1673 IB_QP_QKEY),
1674 }
1675 }
1676 },
1677 [IB_QPS_ERR] = {
1678 [IB_QPS_RESET] = { .valid = 1 },
1679 [IB_QPS_ERR] = { .valid = 1 }
1680 }
1681};
1682
1683bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1684 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1685{
1686 enum ib_qp_attr_mask req_param, opt_param;
1687
1688 if (mask & IB_QP_CUR_STATE &&
1689 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1690 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1691 return false;
1692
1693 if (!qp_state_table[cur_state][next_state].valid)
1694 return false;
1695
1696 req_param = qp_state_table[cur_state][next_state].req_param[type];
1697 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1698
1699 if ((mask & req_param) != req_param)
1700 return false;
1701
1702 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1703 return false;
1704
1705 return true;
1706}
1707EXPORT_SYMBOL(ib_modify_qp_is_ok);
1708
1709/**
1710 * ib_resolve_eth_dmac - Resolve destination mac address
1711 * @device: Device to consider
1712 * @ah_attr: address handle attribute which describes the
1713 * source and destination parameters
1714 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1715 * returns 0 on success or appropriate error code. It initializes the
1716 * necessary ah_attr fields when call is successful.
1717 */
1718static int ib_resolve_eth_dmac(struct ib_device *device,
1719 struct rdma_ah_attr *ah_attr)
1720{
1721 int ret = 0;
1722
1723 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1724 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1725 __be32 addr = 0;
1726
1727 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1728 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1729 } else {
1730 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1731 (char *)ah_attr->roce.dmac);
1732 }
1733 } else {
1734 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1735 }
1736 return ret;
1737}
1738
1739static bool is_qp_type_connected(const struct ib_qp *qp)
1740{
1741 return (qp->qp_type == IB_QPT_UC ||
1742 qp->qp_type == IB_QPT_RC ||
1743 qp->qp_type == IB_QPT_XRC_INI ||
1744 qp->qp_type == IB_QPT_XRC_TGT);
1745}
1746
1747/*
1748 * IB core internal function to perform QP attributes modification.
1749 */
1750static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1751 int attr_mask, struct ib_udata *udata)
1752{
1753 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1754 const struct ib_gid_attr *old_sgid_attr_av;
1755 const struct ib_gid_attr *old_sgid_attr_alt_av;
1756 int ret;
1757
1758 attr->xmit_slave = NULL;
1759 if (attr_mask & IB_QP_AV) {
1760 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1761 &old_sgid_attr_av);
1762 if (ret)
1763 return ret;
1764
1765 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1766 is_qp_type_connected(qp)) {
1767 struct net_device *slave;
1768
1769 /*
1770 * If the user provided the qp_attr then we have to
1771 * resolve it. Kerne users have to provide already
1772 * resolved rdma_ah_attr's.
1773 */
1774 if (udata) {
1775 ret = ib_resolve_eth_dmac(qp->device,
1776 &attr->ah_attr);
1777 if (ret)
1778 goto out_av;
1779 }
1780 slave = rdma_lag_get_ah_roce_slave(qp->device,
1781 &attr->ah_attr,
1782 GFP_KERNEL);
1783 if (IS_ERR(slave)) {
1784 ret = PTR_ERR(slave);
1785 goto out_av;
1786 }
1787 attr->xmit_slave = slave;
1788 }
1789 }
1790 if (attr_mask & IB_QP_ALT_PATH) {
1791 /*
1792 * FIXME: This does not track the migration state, so if the
1793 * user loads a new alternate path after the HW has migrated
1794 * from primary->alternate we will keep the wrong
1795 * references. This is OK for IB because the reference
1796 * counting does not serve any functional purpose.
1797 */
1798 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1799 &old_sgid_attr_alt_av);
1800 if (ret)
1801 goto out_av;
1802
1803 /*
1804 * Today the core code can only handle alternate paths and APM
1805 * for IB. Ban them in roce mode.
1806 */
1807 if (!(rdma_protocol_ib(qp->device,
1808 attr->alt_ah_attr.port_num) &&
1809 rdma_protocol_ib(qp->device, port))) {
1810 ret = -EINVAL;
1811 goto out;
1812 }
1813 }
1814
1815 if (rdma_ib_or_roce(qp->device, port)) {
1816 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1817 dev_warn(&qp->device->dev,
1818 "%s rq_psn overflow, masking to 24 bits\n",
1819 __func__);
1820 attr->rq_psn &= 0xffffff;
1821 }
1822
1823 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1824 dev_warn(&qp->device->dev,
1825 " %s sq_psn overflow, masking to 24 bits\n",
1826 __func__);
1827 attr->sq_psn &= 0xffffff;
1828 }
1829 }
1830
1831 /*
1832 * Bind this qp to a counter automatically based on the rdma counter
1833 * rules. This only set in RST2INIT with port specified
1834 */
1835 if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1836 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1837 rdma_counter_bind_qp_auto(qp, attr->port_num);
1838
1839 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1840 if (ret)
1841 goto out;
1842
1843 if (attr_mask & IB_QP_PORT)
1844 qp->port = attr->port_num;
1845 if (attr_mask & IB_QP_AV)
1846 qp->av_sgid_attr =
1847 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1848 if (attr_mask & IB_QP_ALT_PATH)
1849 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1850 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1851
1852out:
1853 if (attr_mask & IB_QP_ALT_PATH)
1854 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1855out_av:
1856 if (attr_mask & IB_QP_AV) {
1857 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1858 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1859 }
1860 return ret;
1861}
1862
1863/**
1864 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1865 * @ib_qp: The QP to modify.
1866 * @attr: On input, specifies the QP attributes to modify. On output,
1867 * the current values of selected QP attributes are returned.
1868 * @attr_mask: A bit-mask used to specify which attributes of the QP
1869 * are being modified.
1870 * @udata: pointer to user's input output buffer information
1871 * are being modified.
1872 * It returns 0 on success and returns appropriate error code on error.
1873 */
1874int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1875 int attr_mask, struct ib_udata *udata)
1876{
1877 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1878}
1879EXPORT_SYMBOL(ib_modify_qp_with_udata);
1880
1881int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1882{
1883 int rc;
1884 u32 netdev_speed;
1885 struct net_device *netdev;
1886 struct ethtool_link_ksettings lksettings;
1887
1888 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1889 return -EINVAL;
1890
1891 netdev = ib_device_get_netdev(dev, port_num);
1892 if (!netdev)
1893 return -ENODEV;
1894
1895 rtnl_lock();
1896 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1897 rtnl_unlock();
1898
1899 dev_put(netdev);
1900
1901 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1902 netdev_speed = lksettings.base.speed;
1903 } else {
1904 netdev_speed = SPEED_1000;
1905 pr_warn("%s speed is unknown, defaulting to %u\n", netdev->name,
1906 netdev_speed);
1907 }
1908
1909 if (netdev_speed <= SPEED_1000) {
1910 *width = IB_WIDTH_1X;
1911 *speed = IB_SPEED_SDR;
1912 } else if (netdev_speed <= SPEED_10000) {
1913 *width = IB_WIDTH_1X;
1914 *speed = IB_SPEED_FDR10;
1915 } else if (netdev_speed <= SPEED_20000) {
1916 *width = IB_WIDTH_4X;
1917 *speed = IB_SPEED_DDR;
1918 } else if (netdev_speed <= SPEED_25000) {
1919 *width = IB_WIDTH_1X;
1920 *speed = IB_SPEED_EDR;
1921 } else if (netdev_speed <= SPEED_40000) {
1922 *width = IB_WIDTH_4X;
1923 *speed = IB_SPEED_FDR10;
1924 } else {
1925 *width = IB_WIDTH_4X;
1926 *speed = IB_SPEED_EDR;
1927 }
1928
1929 return 0;
1930}
1931EXPORT_SYMBOL(ib_get_eth_speed);
1932
1933int ib_modify_qp(struct ib_qp *qp,
1934 struct ib_qp_attr *qp_attr,
1935 int qp_attr_mask)
1936{
1937 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1938}
1939EXPORT_SYMBOL(ib_modify_qp);
1940
1941int ib_query_qp(struct ib_qp *qp,
1942 struct ib_qp_attr *qp_attr,
1943 int qp_attr_mask,
1944 struct ib_qp_init_attr *qp_init_attr)
1945{
1946 qp_attr->ah_attr.grh.sgid_attr = NULL;
1947 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1948
1949 return qp->device->ops.query_qp ?
1950 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1951 qp_init_attr) : -EOPNOTSUPP;
1952}
1953EXPORT_SYMBOL(ib_query_qp);
1954
1955int ib_close_qp(struct ib_qp *qp)
1956{
1957 struct ib_qp *real_qp;
1958 unsigned long flags;
1959
1960 real_qp = qp->real_qp;
1961 if (real_qp == qp)
1962 return -EINVAL;
1963
1964 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1965 list_del(&qp->open_list);
1966 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1967
1968 atomic_dec(&real_qp->usecnt);
1969 if (qp->qp_sec)
1970 ib_close_shared_qp_security(qp->qp_sec);
1971 kfree(qp);
1972
1973 return 0;
1974}
1975EXPORT_SYMBOL(ib_close_qp);
1976
1977static int __ib_destroy_shared_qp(struct ib_qp *qp)
1978{
1979 struct ib_xrcd *xrcd;
1980 struct ib_qp *real_qp;
1981 int ret;
1982
1983 real_qp = qp->real_qp;
1984 xrcd = real_qp->xrcd;
1985 down_write(&xrcd->tgt_qps_rwsem);
1986 ib_close_qp(qp);
1987 if (atomic_read(&real_qp->usecnt) == 0)
1988 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
1989 else
1990 real_qp = NULL;
1991 up_write(&xrcd->tgt_qps_rwsem);
1992
1993 if (real_qp) {
1994 ret = ib_destroy_qp(real_qp);
1995 if (!ret)
1996 atomic_dec(&xrcd->usecnt);
1997 }
1998
1999 return 0;
2000}
2001
2002int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2003{
2004 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2005 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2006 struct ib_qp_security *sec;
2007 int ret;
2008
2009 WARN_ON_ONCE(qp->mrs_used > 0);
2010
2011 if (atomic_read(&qp->usecnt))
2012 return -EBUSY;
2013
2014 if (qp->real_qp != qp)
2015 return __ib_destroy_shared_qp(qp);
2016
2017 sec = qp->qp_sec;
2018 if (sec)
2019 ib_destroy_qp_security_begin(sec);
2020
2021 if (!qp->uobject)
2022 rdma_rw_cleanup_mrs(qp);
2023
2024 rdma_counter_unbind_qp(qp, true);
2025 ret = qp->device->ops.destroy_qp(qp, udata);
2026 if (ret) {
2027 if (sec)
2028 ib_destroy_qp_security_abort(sec);
2029 return ret;
2030 }
2031
2032 if (alt_path_sgid_attr)
2033 rdma_put_gid_attr(alt_path_sgid_attr);
2034 if (av_sgid_attr)
2035 rdma_put_gid_attr(av_sgid_attr);
2036
2037 ib_qp_usecnt_dec(qp);
2038 if (sec)
2039 ib_destroy_qp_security_end(sec);
2040
2041 rdma_restrack_del(&qp->res);
2042 kfree(qp);
2043 return ret;
2044}
2045EXPORT_SYMBOL(ib_destroy_qp_user);
2046
2047/* Completion queues */
2048
2049struct ib_cq *__ib_create_cq(struct ib_device *device,
2050 ib_comp_handler comp_handler,
2051 void (*event_handler)(struct ib_event *, void *),
2052 void *cq_context,
2053 const struct ib_cq_init_attr *cq_attr,
2054 const char *caller)
2055{
2056 struct ib_cq *cq;
2057 int ret;
2058
2059 cq = rdma_zalloc_drv_obj(device, ib_cq);
2060 if (!cq)
2061 return ERR_PTR(-ENOMEM);
2062
2063 cq->device = device;
2064 cq->uobject = NULL;
2065 cq->comp_handler = comp_handler;
2066 cq->event_handler = event_handler;
2067 cq->cq_context = cq_context;
2068 atomic_set(&cq->usecnt, 0);
2069
2070 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2071 rdma_restrack_set_name(&cq->res, caller);
2072
2073 ret = device->ops.create_cq(cq, cq_attr, NULL);
2074 if (ret) {
2075 rdma_restrack_put(&cq->res);
2076 kfree(cq);
2077 return ERR_PTR(ret);
2078 }
2079
2080 rdma_restrack_add(&cq->res);
2081 return cq;
2082}
2083EXPORT_SYMBOL(__ib_create_cq);
2084
2085int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2086{
2087 if (cq->shared)
2088 return -EOPNOTSUPP;
2089
2090 return cq->device->ops.modify_cq ?
2091 cq->device->ops.modify_cq(cq, cq_count,
2092 cq_period) : -EOPNOTSUPP;
2093}
2094EXPORT_SYMBOL(rdma_set_cq_moderation);
2095
2096int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2097{
2098 int ret;
2099
2100 if (WARN_ON_ONCE(cq->shared))
2101 return -EOPNOTSUPP;
2102
2103 if (atomic_read(&cq->usecnt))
2104 return -EBUSY;
2105
2106 ret = cq->device->ops.destroy_cq(cq, udata);
2107 if (ret)
2108 return ret;
2109
2110 rdma_restrack_del(&cq->res);
2111 kfree(cq);
2112 return ret;
2113}
2114EXPORT_SYMBOL(ib_destroy_cq_user);
2115
2116int ib_resize_cq(struct ib_cq *cq, int cqe)
2117{
2118 if (cq->shared)
2119 return -EOPNOTSUPP;
2120
2121 return cq->device->ops.resize_cq ?
2122 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2123}
2124EXPORT_SYMBOL(ib_resize_cq);
2125
2126/* Memory regions */
2127
2128struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2129 u64 virt_addr, int access_flags)
2130{
2131 struct ib_mr *mr;
2132
2133 if (access_flags & IB_ACCESS_ON_DEMAND) {
2134 if (!(pd->device->attrs.kernel_cap_flags &
2135 IBK_ON_DEMAND_PAGING)) {
2136 pr_debug("ODP support not available\n");
2137 return ERR_PTR(-EINVAL);
2138 }
2139 }
2140
2141 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2142 access_flags, NULL);
2143
2144 if (IS_ERR(mr))
2145 return mr;
2146
2147 mr->device = pd->device;
2148 mr->type = IB_MR_TYPE_USER;
2149 mr->pd = pd;
2150 mr->dm = NULL;
2151 atomic_inc(&pd->usecnt);
2152 mr->iova = virt_addr;
2153 mr->length = length;
2154
2155 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2156 rdma_restrack_parent_name(&mr->res, &pd->res);
2157 rdma_restrack_add(&mr->res);
2158
2159 return mr;
2160}
2161EXPORT_SYMBOL(ib_reg_user_mr);
2162
2163int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2164 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2165{
2166 if (!pd->device->ops.advise_mr)
2167 return -EOPNOTSUPP;
2168
2169 if (!num_sge)
2170 return 0;
2171
2172 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2173 NULL);
2174}
2175EXPORT_SYMBOL(ib_advise_mr);
2176
2177int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2178{
2179 struct ib_pd *pd = mr->pd;
2180 struct ib_dm *dm = mr->dm;
2181 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2182 int ret;
2183
2184 trace_mr_dereg(mr);
2185 rdma_restrack_del(&mr->res);
2186 ret = mr->device->ops.dereg_mr(mr, udata);
2187 if (!ret) {
2188 atomic_dec(&pd->usecnt);
2189 if (dm)
2190 atomic_dec(&dm->usecnt);
2191 kfree(sig_attrs);
2192 }
2193
2194 return ret;
2195}
2196EXPORT_SYMBOL(ib_dereg_mr_user);
2197
2198/**
2199 * ib_alloc_mr() - Allocates a memory region
2200 * @pd: protection domain associated with the region
2201 * @mr_type: memory region type
2202 * @max_num_sg: maximum sg entries available for registration.
2203 *
2204 * Notes:
2205 * Memory registeration page/sg lists must not exceed max_num_sg.
2206 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2207 * max_num_sg * used_page_size.
2208 *
2209 */
2210struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2211 u32 max_num_sg)
2212{
2213 struct ib_mr *mr;
2214
2215 if (!pd->device->ops.alloc_mr) {
2216 mr = ERR_PTR(-EOPNOTSUPP);
2217 goto out;
2218 }
2219
2220 if (mr_type == IB_MR_TYPE_INTEGRITY) {
2221 WARN_ON_ONCE(1);
2222 mr = ERR_PTR(-EINVAL);
2223 goto out;
2224 }
2225
2226 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2227 if (IS_ERR(mr))
2228 goto out;
2229
2230 mr->device = pd->device;
2231 mr->pd = pd;
2232 mr->dm = NULL;
2233 mr->uobject = NULL;
2234 atomic_inc(&pd->usecnt);
2235 mr->need_inval = false;
2236 mr->type = mr_type;
2237 mr->sig_attrs = NULL;
2238
2239 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2240 rdma_restrack_parent_name(&mr->res, &pd->res);
2241 rdma_restrack_add(&mr->res);
2242out:
2243 trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2244 return mr;
2245}
2246EXPORT_SYMBOL(ib_alloc_mr);
2247
2248/**
2249 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2250 * @pd: protection domain associated with the region
2251 * @max_num_data_sg: maximum data sg entries available for registration
2252 * @max_num_meta_sg: maximum metadata sg entries available for
2253 * registration
2254 *
2255 * Notes:
2256 * Memory registration page/sg lists must not exceed max_num_sg,
2257 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2258 *
2259 */
2260struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2261 u32 max_num_data_sg,
2262 u32 max_num_meta_sg)
2263{
2264 struct ib_mr *mr;
2265 struct ib_sig_attrs *sig_attrs;
2266
2267 if (!pd->device->ops.alloc_mr_integrity ||
2268 !pd->device->ops.map_mr_sg_pi) {
2269 mr = ERR_PTR(-EOPNOTSUPP);
2270 goto out;
2271 }
2272
2273 if (!max_num_meta_sg) {
2274 mr = ERR_PTR(-EINVAL);
2275 goto out;
2276 }
2277
2278 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2279 if (!sig_attrs) {
2280 mr = ERR_PTR(-ENOMEM);
2281 goto out;
2282 }
2283
2284 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2285 max_num_meta_sg);
2286 if (IS_ERR(mr)) {
2287 kfree(sig_attrs);
2288 goto out;
2289 }
2290
2291 mr->device = pd->device;
2292 mr->pd = pd;
2293 mr->dm = NULL;
2294 mr->uobject = NULL;
2295 atomic_inc(&pd->usecnt);
2296 mr->need_inval = false;
2297 mr->type = IB_MR_TYPE_INTEGRITY;
2298 mr->sig_attrs = sig_attrs;
2299
2300 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2301 rdma_restrack_parent_name(&mr->res, &pd->res);
2302 rdma_restrack_add(&mr->res);
2303out:
2304 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2305 return mr;
2306}
2307EXPORT_SYMBOL(ib_alloc_mr_integrity);
2308
2309/* Multicast groups */
2310
2311static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2312{
2313 struct ib_qp_init_attr init_attr = {};
2314 struct ib_qp_attr attr = {};
2315 int num_eth_ports = 0;
2316 unsigned int port;
2317
2318 /* If QP state >= init, it is assigned to a port and we can check this
2319 * port only.
2320 */
2321 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2322 if (attr.qp_state >= IB_QPS_INIT) {
2323 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2324 IB_LINK_LAYER_INFINIBAND)
2325 return true;
2326 goto lid_check;
2327 }
2328 }
2329
2330 /* Can't get a quick answer, iterate over all ports */
2331 rdma_for_each_port(qp->device, port)
2332 if (rdma_port_get_link_layer(qp->device, port) !=
2333 IB_LINK_LAYER_INFINIBAND)
2334 num_eth_ports++;
2335
2336 /* If we have at lease one Ethernet port, RoCE annex declares that
2337 * multicast LID should be ignored. We can't tell at this step if the
2338 * QP belongs to an IB or Ethernet port.
2339 */
2340 if (num_eth_ports)
2341 return true;
2342
2343 /* If all the ports are IB, we can check according to IB spec. */
2344lid_check:
2345 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2346 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2347}
2348
2349int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2350{
2351 int ret;
2352
2353 if (!qp->device->ops.attach_mcast)
2354 return -EOPNOTSUPP;
2355
2356 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2357 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2358 return -EINVAL;
2359
2360 ret = qp->device->ops.attach_mcast(qp, gid, lid);
2361 if (!ret)
2362 atomic_inc(&qp->usecnt);
2363 return ret;
2364}
2365EXPORT_SYMBOL(ib_attach_mcast);
2366
2367int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2368{
2369 int ret;
2370
2371 if (!qp->device->ops.detach_mcast)
2372 return -EOPNOTSUPP;
2373
2374 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2375 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2376 return -EINVAL;
2377
2378 ret = qp->device->ops.detach_mcast(qp, gid, lid);
2379 if (!ret)
2380 atomic_dec(&qp->usecnt);
2381 return ret;
2382}
2383EXPORT_SYMBOL(ib_detach_mcast);
2384
2385/**
2386 * ib_alloc_xrcd_user - Allocates an XRC domain.
2387 * @device: The device on which to allocate the XRC domain.
2388 * @inode: inode to connect XRCD
2389 * @udata: Valid user data or NULL for kernel object
2390 */
2391struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2392 struct inode *inode, struct ib_udata *udata)
2393{
2394 struct ib_xrcd *xrcd;
2395 int ret;
2396
2397 if (!device->ops.alloc_xrcd)
2398 return ERR_PTR(-EOPNOTSUPP);
2399
2400 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2401 if (!xrcd)
2402 return ERR_PTR(-ENOMEM);
2403
2404 xrcd->device = device;
2405 xrcd->inode = inode;
2406 atomic_set(&xrcd->usecnt, 0);
2407 init_rwsem(&xrcd->tgt_qps_rwsem);
2408 xa_init(&xrcd->tgt_qps);
2409
2410 ret = device->ops.alloc_xrcd(xrcd, udata);
2411 if (ret)
2412 goto err;
2413 return xrcd;
2414err:
2415 kfree(xrcd);
2416 return ERR_PTR(ret);
2417}
2418EXPORT_SYMBOL(ib_alloc_xrcd_user);
2419
2420/**
2421 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2422 * @xrcd: The XRC domain to deallocate.
2423 * @udata: Valid user data or NULL for kernel object
2424 */
2425int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2426{
2427 int ret;
2428
2429 if (atomic_read(&xrcd->usecnt))
2430 return -EBUSY;
2431
2432 WARN_ON(!xa_empty(&xrcd->tgt_qps));
2433 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2434 if (ret)
2435 return ret;
2436 kfree(xrcd);
2437 return ret;
2438}
2439EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2440
2441/**
2442 * ib_create_wq - Creates a WQ associated with the specified protection
2443 * domain.
2444 * @pd: The protection domain associated with the WQ.
2445 * @wq_attr: A list of initial attributes required to create the
2446 * WQ. If WQ creation succeeds, then the attributes are updated to
2447 * the actual capabilities of the created WQ.
2448 *
2449 * wq_attr->max_wr and wq_attr->max_sge determine
2450 * the requested size of the WQ, and set to the actual values allocated
2451 * on return.
2452 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2453 * at least as large as the requested values.
2454 */
2455struct ib_wq *ib_create_wq(struct ib_pd *pd,
2456 struct ib_wq_init_attr *wq_attr)
2457{
2458 struct ib_wq *wq;
2459
2460 if (!pd->device->ops.create_wq)
2461 return ERR_PTR(-EOPNOTSUPP);
2462
2463 wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2464 if (!IS_ERR(wq)) {
2465 wq->event_handler = wq_attr->event_handler;
2466 wq->wq_context = wq_attr->wq_context;
2467 wq->wq_type = wq_attr->wq_type;
2468 wq->cq = wq_attr->cq;
2469 wq->device = pd->device;
2470 wq->pd = pd;
2471 wq->uobject = NULL;
2472 atomic_inc(&pd->usecnt);
2473 atomic_inc(&wq_attr->cq->usecnt);
2474 atomic_set(&wq->usecnt, 0);
2475 }
2476 return wq;
2477}
2478EXPORT_SYMBOL(ib_create_wq);
2479
2480/**
2481 * ib_destroy_wq_user - Destroys the specified user WQ.
2482 * @wq: The WQ to destroy.
2483 * @udata: Valid user data
2484 */
2485int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2486{
2487 struct ib_cq *cq = wq->cq;
2488 struct ib_pd *pd = wq->pd;
2489 int ret;
2490
2491 if (atomic_read(&wq->usecnt))
2492 return -EBUSY;
2493
2494 ret = wq->device->ops.destroy_wq(wq, udata);
2495 if (ret)
2496 return ret;
2497
2498 atomic_dec(&pd->usecnt);
2499 atomic_dec(&cq->usecnt);
2500 return ret;
2501}
2502EXPORT_SYMBOL(ib_destroy_wq_user);
2503
2504int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2505 struct ib_mr_status *mr_status)
2506{
2507 if (!mr->device->ops.check_mr_status)
2508 return -EOPNOTSUPP;
2509
2510 return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2511}
2512EXPORT_SYMBOL(ib_check_mr_status);
2513
2514int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2515 int state)
2516{
2517 if (!device->ops.set_vf_link_state)
2518 return -EOPNOTSUPP;
2519
2520 return device->ops.set_vf_link_state(device, vf, port, state);
2521}
2522EXPORT_SYMBOL(ib_set_vf_link_state);
2523
2524int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2525 struct ifla_vf_info *info)
2526{
2527 if (!device->ops.get_vf_config)
2528 return -EOPNOTSUPP;
2529
2530 return device->ops.get_vf_config(device, vf, port, info);
2531}
2532EXPORT_SYMBOL(ib_get_vf_config);
2533
2534int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2535 struct ifla_vf_stats *stats)
2536{
2537 if (!device->ops.get_vf_stats)
2538 return -EOPNOTSUPP;
2539
2540 return device->ops.get_vf_stats(device, vf, port, stats);
2541}
2542EXPORT_SYMBOL(ib_get_vf_stats);
2543
2544int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2545 int type)
2546{
2547 if (!device->ops.set_vf_guid)
2548 return -EOPNOTSUPP;
2549
2550 return device->ops.set_vf_guid(device, vf, port, guid, type);
2551}
2552EXPORT_SYMBOL(ib_set_vf_guid);
2553
2554int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2555 struct ifla_vf_guid *node_guid,
2556 struct ifla_vf_guid *port_guid)
2557{
2558 if (!device->ops.get_vf_guid)
2559 return -EOPNOTSUPP;
2560
2561 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2562}
2563EXPORT_SYMBOL(ib_get_vf_guid);
2564/**
2565 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2566 * information) and set an appropriate memory region for registration.
2567 * @mr: memory region
2568 * @data_sg: dma mapped scatterlist for data
2569 * @data_sg_nents: number of entries in data_sg
2570 * @data_sg_offset: offset in bytes into data_sg
2571 * @meta_sg: dma mapped scatterlist for metadata
2572 * @meta_sg_nents: number of entries in meta_sg
2573 * @meta_sg_offset: offset in bytes into meta_sg
2574 * @page_size: page vector desired page size
2575 *
2576 * Constraints:
2577 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2578 *
2579 * Return: 0 on success.
2580 *
2581 * After this completes successfully, the memory region
2582 * is ready for registration.
2583 */
2584int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2585 int data_sg_nents, unsigned int *data_sg_offset,
2586 struct scatterlist *meta_sg, int meta_sg_nents,
2587 unsigned int *meta_sg_offset, unsigned int page_size)
2588{
2589 if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2590 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2591 return -EOPNOTSUPP;
2592
2593 mr->page_size = page_size;
2594
2595 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2596 data_sg_offset, meta_sg,
2597 meta_sg_nents, meta_sg_offset);
2598}
2599EXPORT_SYMBOL(ib_map_mr_sg_pi);
2600
2601/**
2602 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2603 * and set it the memory region.
2604 * @mr: memory region
2605 * @sg: dma mapped scatterlist
2606 * @sg_nents: number of entries in sg
2607 * @sg_offset: offset in bytes into sg
2608 * @page_size: page vector desired page size
2609 *
2610 * Constraints:
2611 *
2612 * - The first sg element is allowed to have an offset.
2613 * - Each sg element must either be aligned to page_size or virtually
2614 * contiguous to the previous element. In case an sg element has a
2615 * non-contiguous offset, the mapping prefix will not include it.
2616 * - The last sg element is allowed to have length less than page_size.
2617 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2618 * then only max_num_sg entries will be mapped.
2619 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2620 * constraints holds and the page_size argument is ignored.
2621 *
2622 * Returns the number of sg elements that were mapped to the memory region.
2623 *
2624 * After this completes successfully, the memory region
2625 * is ready for registration.
2626 */
2627int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2628 unsigned int *sg_offset, unsigned int page_size)
2629{
2630 if (unlikely(!mr->device->ops.map_mr_sg))
2631 return -EOPNOTSUPP;
2632
2633 mr->page_size = page_size;
2634
2635 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2636}
2637EXPORT_SYMBOL(ib_map_mr_sg);
2638
2639/**
2640 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2641 * to a page vector
2642 * @mr: memory region
2643 * @sgl: dma mapped scatterlist
2644 * @sg_nents: number of entries in sg
2645 * @sg_offset_p: ==== =======================================================
2646 * IN start offset in bytes into sg
2647 * OUT offset in bytes for element n of the sg of the first
2648 * byte that has not been processed where n is the return
2649 * value of this function.
2650 * ==== =======================================================
2651 * @set_page: driver page assignment function pointer
2652 *
2653 * Core service helper for drivers to convert the largest
2654 * prefix of given sg list to a page vector. The sg list
2655 * prefix converted is the prefix that meet the requirements
2656 * of ib_map_mr_sg.
2657 *
2658 * Returns the number of sg elements that were assigned to
2659 * a page vector.
2660 */
2661int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2662 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2663{
2664 struct scatterlist *sg;
2665 u64 last_end_dma_addr = 0;
2666 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2667 unsigned int last_page_off = 0;
2668 u64 page_mask = ~((u64)mr->page_size - 1);
2669 int i, ret;
2670
2671 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2672 return -EINVAL;
2673
2674 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2675 mr->length = 0;
2676
2677 for_each_sg(sgl, sg, sg_nents, i) {
2678 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2679 u64 prev_addr = dma_addr;
2680 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2681 u64 end_dma_addr = dma_addr + dma_len;
2682 u64 page_addr = dma_addr & page_mask;
2683
2684 /*
2685 * For the second and later elements, check whether either the
2686 * end of element i-1 or the start of element i is not aligned
2687 * on a page boundary.
2688 */
2689 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2690 /* Stop mapping if there is a gap. */
2691 if (last_end_dma_addr != dma_addr)
2692 break;
2693
2694 /*
2695 * Coalesce this element with the last. If it is small
2696 * enough just update mr->length. Otherwise start
2697 * mapping from the next page.
2698 */
2699 goto next_page;
2700 }
2701
2702 do {
2703 ret = set_page(mr, page_addr);
2704 if (unlikely(ret < 0)) {
2705 sg_offset = prev_addr - sg_dma_address(sg);
2706 mr->length += prev_addr - dma_addr;
2707 if (sg_offset_p)
2708 *sg_offset_p = sg_offset;
2709 return i || sg_offset ? i : ret;
2710 }
2711 prev_addr = page_addr;
2712next_page:
2713 page_addr += mr->page_size;
2714 } while (page_addr < end_dma_addr);
2715
2716 mr->length += dma_len;
2717 last_end_dma_addr = end_dma_addr;
2718 last_page_off = end_dma_addr & ~page_mask;
2719
2720 sg_offset = 0;
2721 }
2722
2723 if (sg_offset_p)
2724 *sg_offset_p = 0;
2725 return i;
2726}
2727EXPORT_SYMBOL(ib_sg_to_pages);
2728
2729struct ib_drain_cqe {
2730 struct ib_cqe cqe;
2731 struct completion done;
2732};
2733
2734static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2735{
2736 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2737 cqe);
2738
2739 complete(&cqe->done);
2740}
2741
2742/*
2743 * Post a WR and block until its completion is reaped for the SQ.
2744 */
2745static void __ib_drain_sq(struct ib_qp *qp)
2746{
2747 struct ib_cq *cq = qp->send_cq;
2748 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2749 struct ib_drain_cqe sdrain;
2750 struct ib_rdma_wr swr = {
2751 .wr = {
2752 .next = NULL,
2753 { .wr_cqe = &sdrain.cqe, },
2754 .opcode = IB_WR_RDMA_WRITE,
2755 },
2756 };
2757 int ret;
2758
2759 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2760 if (ret) {
2761 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2762 return;
2763 }
2764
2765 sdrain.cqe.done = ib_drain_qp_done;
2766 init_completion(&sdrain.done);
2767
2768 ret = ib_post_send(qp, &swr.wr, NULL);
2769 if (ret) {
2770 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2771 return;
2772 }
2773
2774 if (cq->poll_ctx == IB_POLL_DIRECT)
2775 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2776 ib_process_cq_direct(cq, -1);
2777 else
2778 wait_for_completion(&sdrain.done);
2779}
2780
2781/*
2782 * Post a WR and block until its completion is reaped for the RQ.
2783 */
2784static void __ib_drain_rq(struct ib_qp *qp)
2785{
2786 struct ib_cq *cq = qp->recv_cq;
2787 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2788 struct ib_drain_cqe rdrain;
2789 struct ib_recv_wr rwr = {};
2790 int ret;
2791
2792 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2793 if (ret) {
2794 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2795 return;
2796 }
2797
2798 rwr.wr_cqe = &rdrain.cqe;
2799 rdrain.cqe.done = ib_drain_qp_done;
2800 init_completion(&rdrain.done);
2801
2802 ret = ib_post_recv(qp, &rwr, NULL);
2803 if (ret) {
2804 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2805 return;
2806 }
2807
2808 if (cq->poll_ctx == IB_POLL_DIRECT)
2809 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2810 ib_process_cq_direct(cq, -1);
2811 else
2812 wait_for_completion(&rdrain.done);
2813}
2814
2815/**
2816 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2817 * application.
2818 * @qp: queue pair to drain
2819 *
2820 * If the device has a provider-specific drain function, then
2821 * call that. Otherwise call the generic drain function
2822 * __ib_drain_sq().
2823 *
2824 * The caller must:
2825 *
2826 * ensure there is room in the CQ and SQ for the drain work request and
2827 * completion.
2828 *
2829 * allocate the CQ using ib_alloc_cq().
2830 *
2831 * ensure that there are no other contexts that are posting WRs concurrently.
2832 * Otherwise the drain is not guaranteed.
2833 */
2834void ib_drain_sq(struct ib_qp *qp)
2835{
2836 if (qp->device->ops.drain_sq)
2837 qp->device->ops.drain_sq(qp);
2838 else
2839 __ib_drain_sq(qp);
2840 trace_cq_drain_complete(qp->send_cq);
2841}
2842EXPORT_SYMBOL(ib_drain_sq);
2843
2844/**
2845 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2846 * application.
2847 * @qp: queue pair to drain
2848 *
2849 * If the device has a provider-specific drain function, then
2850 * call that. Otherwise call the generic drain function
2851 * __ib_drain_rq().
2852 *
2853 * The caller must:
2854 *
2855 * ensure there is room in the CQ and RQ for the drain work request and
2856 * completion.
2857 *
2858 * allocate the CQ using ib_alloc_cq().
2859 *
2860 * ensure that there are no other contexts that are posting WRs concurrently.
2861 * Otherwise the drain is not guaranteed.
2862 */
2863void ib_drain_rq(struct ib_qp *qp)
2864{
2865 if (qp->device->ops.drain_rq)
2866 qp->device->ops.drain_rq(qp);
2867 else
2868 __ib_drain_rq(qp);
2869 trace_cq_drain_complete(qp->recv_cq);
2870}
2871EXPORT_SYMBOL(ib_drain_rq);
2872
2873/**
2874 * ib_drain_qp() - Block until all CQEs have been consumed by the
2875 * application on both the RQ and SQ.
2876 * @qp: queue pair to drain
2877 *
2878 * The caller must:
2879 *
2880 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2881 * and completions.
2882 *
2883 * allocate the CQs using ib_alloc_cq().
2884 *
2885 * ensure that there are no other contexts that are posting WRs concurrently.
2886 * Otherwise the drain is not guaranteed.
2887 */
2888void ib_drain_qp(struct ib_qp *qp)
2889{
2890 ib_drain_sq(qp);
2891 if (!qp->srq)
2892 ib_drain_rq(qp);
2893}
2894EXPORT_SYMBOL(ib_drain_qp);
2895
2896struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
2897 enum rdma_netdev_t type, const char *name,
2898 unsigned char name_assign_type,
2899 void (*setup)(struct net_device *))
2900{
2901 struct rdma_netdev_alloc_params params;
2902 struct net_device *netdev;
2903 int rc;
2904
2905 if (!device->ops.rdma_netdev_get_params)
2906 return ERR_PTR(-EOPNOTSUPP);
2907
2908 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2909 ¶ms);
2910 if (rc)
2911 return ERR_PTR(rc);
2912
2913 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2914 setup, params.txqs, params.rxqs);
2915 if (!netdev)
2916 return ERR_PTR(-ENOMEM);
2917
2918 return netdev;
2919}
2920EXPORT_SYMBOL(rdma_alloc_netdev);
2921
2922int rdma_init_netdev(struct ib_device *device, u32 port_num,
2923 enum rdma_netdev_t type, const char *name,
2924 unsigned char name_assign_type,
2925 void (*setup)(struct net_device *),
2926 struct net_device *netdev)
2927{
2928 struct rdma_netdev_alloc_params params;
2929 int rc;
2930
2931 if (!device->ops.rdma_netdev_get_params)
2932 return -EOPNOTSUPP;
2933
2934 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2935 ¶ms);
2936 if (rc)
2937 return rc;
2938
2939 return params.initialize_rdma_netdev(device, port_num,
2940 netdev, params.param);
2941}
2942EXPORT_SYMBOL(rdma_init_netdev);
2943
2944void __rdma_block_iter_start(struct ib_block_iter *biter,
2945 struct scatterlist *sglist, unsigned int nents,
2946 unsigned long pgsz)
2947{
2948 memset(biter, 0, sizeof(struct ib_block_iter));
2949 biter->__sg = sglist;
2950 biter->__sg_nents = nents;
2951
2952 /* Driver provides best block size to use */
2953 biter->__pg_bit = __fls(pgsz);
2954}
2955EXPORT_SYMBOL(__rdma_block_iter_start);
2956
2957bool __rdma_block_iter_next(struct ib_block_iter *biter)
2958{
2959 unsigned int block_offset;
2960 unsigned int sg_delta;
2961
2962 if (!biter->__sg_nents || !biter->__sg)
2963 return false;
2964
2965 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2966 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2967 sg_delta = BIT_ULL(biter->__pg_bit) - block_offset;
2968
2969 if (sg_dma_len(biter->__sg) - biter->__sg_advance > sg_delta) {
2970 biter->__sg_advance += sg_delta;
2971 } else {
2972 biter->__sg_advance = 0;
2973 biter->__sg = sg_next(biter->__sg);
2974 biter->__sg_nents--;
2975 }
2976
2977 return true;
2978}
2979EXPORT_SYMBOL(__rdma_block_iter_next);
2980
2981/**
2982 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
2983 * for the drivers.
2984 * @descs: array of static descriptors
2985 * @num_counters: number of elements in array
2986 * @lifespan: milliseconds between updates
2987 */
2988struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
2989 const struct rdma_stat_desc *descs, int num_counters,
2990 unsigned long lifespan)
2991{
2992 struct rdma_hw_stats *stats;
2993
2994 stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
2995 if (!stats)
2996 return NULL;
2997
2998 stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
2999 sizeof(*stats->is_disabled), GFP_KERNEL);
3000 if (!stats->is_disabled)
3001 goto err;
3002
3003 stats->descs = descs;
3004 stats->num_counters = num_counters;
3005 stats->lifespan = msecs_to_jiffies(lifespan);
3006 mutex_init(&stats->lock);
3007
3008 return stats;
3009
3010err:
3011 kfree(stats);
3012 return NULL;
3013}
3014EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
3015
3016/**
3017 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
3018 * @stats: statistics to release
3019 */
3020void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
3021{
3022 if (!stats)
3023 return;
3024
3025 kfree(stats->is_disabled);
3026 kfree(stats);
3027}
3028EXPORT_SYMBOL(rdma_free_hw_stats_struct);