Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * AMCC SoC PPC4xx Crypto Driver
   4 *
   5 * Copyright (c) 2008 Applied Micro Circuits Corporation.
   6 * All rights reserved. James Hsiao <jhsiao@amcc.com>
   7 *
   8 * This file implements AMCC crypto offload Linux device driver for use with
   9 * Linux CryptoAPI.
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/interrupt.h>
  14#include <linux/spinlock_types.h>
  15#include <linux/random.h>
  16#include <linux/scatterlist.h>
  17#include <linux/crypto.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/platform_device.h>
  20#include <linux/init.h>
  21#include <linux/module.h>
  22#include <linux/of_address.h>
  23#include <linux/of_irq.h>
  24#include <linux/of_platform.h>
  25#include <linux/slab.h>
  26#include <asm/dcr.h>
  27#include <asm/dcr-regs.h>
  28#include <asm/cacheflush.h>
  29#include <crypto/aead.h>
  30#include <crypto/aes.h>
  31#include <crypto/ctr.h>
  32#include <crypto/gcm.h>
  33#include <crypto/sha1.h>
  34#include <crypto/rng.h>
  35#include <crypto/scatterwalk.h>
  36#include <crypto/skcipher.h>
  37#include <crypto/internal/aead.h>
  38#include <crypto/internal/rng.h>
  39#include <crypto/internal/skcipher.h>
  40#include "crypto4xx_reg_def.h"
  41#include "crypto4xx_core.h"
  42#include "crypto4xx_sa.h"
  43#include "crypto4xx_trng.h"
  44
  45#define PPC4XX_SEC_VERSION_STR			"0.5"
  46
  47/*
  48 * PPC4xx Crypto Engine Initialization Routine
  49 */
  50static void crypto4xx_hw_init(struct crypto4xx_device *dev)
  51{
  52	union ce_ring_size ring_size;
  53	union ce_ring_control ring_ctrl;
  54	union ce_part_ring_size part_ring_size;
  55	union ce_io_threshold io_threshold;
  56	u32 rand_num;
  57	union ce_pe_dma_cfg pe_dma_cfg;
  58	u32 device_ctrl;
  59
  60	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
  61	/* setup pe dma, include reset sg, pdr and pe, then release reset */
  62	pe_dma_cfg.w = 0;
  63	pe_dma_cfg.bf.bo_sgpd_en = 1;
  64	pe_dma_cfg.bf.bo_data_en = 0;
  65	pe_dma_cfg.bf.bo_sa_en = 1;
  66	pe_dma_cfg.bf.bo_pd_en = 1;
  67	pe_dma_cfg.bf.dynamic_sa_en = 1;
  68	pe_dma_cfg.bf.reset_sg = 1;
  69	pe_dma_cfg.bf.reset_pdr = 1;
  70	pe_dma_cfg.bf.reset_pe = 1;
  71	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
  72	/* un reset pe,sg and pdr */
  73	pe_dma_cfg.bf.pe_mode = 0;
  74	pe_dma_cfg.bf.reset_sg = 0;
  75	pe_dma_cfg.bf.reset_pdr = 0;
  76	pe_dma_cfg.bf.reset_pe = 0;
  77	pe_dma_cfg.bf.bo_td_en = 0;
  78	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
  79	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
  80	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
  81	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
  82	get_random_bytes(&rand_num, sizeof(rand_num));
  83	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
  84	get_random_bytes(&rand_num, sizeof(rand_num));
  85	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
  86	ring_size.w = 0;
  87	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
  88	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
  89	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
  90	ring_ctrl.w = 0;
  91	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
  92	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
  93	device_ctrl |= PPC4XX_DC_3DES_EN;
  94	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
  95	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
  96	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
  97	part_ring_size.w = 0;
  98	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
  99	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
 100	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
 101	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
 102	io_threshold.w = 0;
 103	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
 104	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
 105	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
 106	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
 107	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
 108	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
 109	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
 110	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
 111	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
 112	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
 113	/* un reset pe,sg and pdr */
 114	pe_dma_cfg.bf.pe_mode = 1;
 115	pe_dma_cfg.bf.reset_sg = 0;
 116	pe_dma_cfg.bf.reset_pdr = 0;
 117	pe_dma_cfg.bf.reset_pe = 0;
 118	pe_dma_cfg.bf.bo_td_en = 0;
 119	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
 120	/*clear all pending interrupt*/
 121	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
 122	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
 123	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
 124	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
 125	if (dev->is_revb) {
 126		writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
 127		       dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
 128		writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
 129		       dev->ce_base + CRYPTO4XX_INT_EN);
 130	} else {
 131		writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
 132	}
 133}
 134
 135int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
 136{
 137	ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
 138	if (ctx->sa_in == NULL)
 139		return -ENOMEM;
 140
 141	ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
 142	if (ctx->sa_out == NULL) {
 143		kfree(ctx->sa_in);
 144		ctx->sa_in = NULL;
 145		return -ENOMEM;
 146	}
 147
 148	ctx->sa_len = size;
 149
 150	return 0;
 151}
 152
 153void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
 154{
 155	kfree(ctx->sa_in);
 156	ctx->sa_in = NULL;
 157	kfree(ctx->sa_out);
 158	ctx->sa_out = NULL;
 159	ctx->sa_len = 0;
 160}
 161
 162/*
 163 * alloc memory for the gather ring
 164 * no need to alloc buf for the ring
 165 * gdr_tail, gdr_head and gdr_count are initialized by this function
 166 */
 167static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
 168{
 169	int i;
 170	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
 171				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 172				      &dev->pdr_pa, GFP_KERNEL);
 173	if (!dev->pdr)
 174		return -ENOMEM;
 175
 176	dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
 177				 GFP_KERNEL);
 178	if (!dev->pdr_uinfo) {
 179		dma_free_coherent(dev->core_dev->device,
 180				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 181				  dev->pdr,
 182				  dev->pdr_pa);
 183		return -ENOMEM;
 184	}
 185	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
 186				   sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
 187				   &dev->shadow_sa_pool_pa,
 188				   GFP_KERNEL);
 189	if (!dev->shadow_sa_pool)
 190		return -ENOMEM;
 191
 192	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
 193			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
 194			 &dev->shadow_sr_pool_pa, GFP_KERNEL);
 195	if (!dev->shadow_sr_pool)
 196		return -ENOMEM;
 197	for (i = 0; i < PPC4XX_NUM_PD; i++) {
 198		struct ce_pd *pd = &dev->pdr[i];
 199		struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
 200
 201		pd->sa = dev->shadow_sa_pool_pa +
 202			sizeof(union shadow_sa_buf) * i;
 203
 204		/* alloc 256 bytes which is enough for any kind of dynamic sa */
 205		pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
 206
 207		/* alloc state record */
 208		pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
 209		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
 210		    sizeof(struct sa_state_record) * i;
 211	}
 212
 213	return 0;
 214}
 215
 216static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
 217{
 218	if (dev->pdr)
 219		dma_free_coherent(dev->core_dev->device,
 220				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 221				  dev->pdr, dev->pdr_pa);
 222
 223	if (dev->shadow_sa_pool)
 224		dma_free_coherent(dev->core_dev->device,
 225			sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
 226			dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
 227
 228	if (dev->shadow_sr_pool)
 229		dma_free_coherent(dev->core_dev->device,
 230			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
 231			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
 232
 233	kfree(dev->pdr_uinfo);
 234}
 235
 236static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
 237{
 238	u32 retval;
 239	u32 tmp;
 240
 241	retval = dev->pdr_head;
 242	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
 243
 244	if (tmp == dev->pdr_tail)
 245		return ERING_WAS_FULL;
 246
 247	dev->pdr_head = tmp;
 248
 249	return retval;
 250}
 251
 252static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
 253{
 254	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
 255	u32 tail;
 256	unsigned long flags;
 257
 258	spin_lock_irqsave(&dev->core_dev->lock, flags);
 259	pd_uinfo->state = PD_ENTRY_FREE;
 260
 261	if (dev->pdr_tail != PPC4XX_LAST_PD)
 262		dev->pdr_tail++;
 263	else
 264		dev->pdr_tail = 0;
 265	tail = dev->pdr_tail;
 266	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 267
 268	return tail;
 269}
 270
 271/*
 272 * alloc memory for the gather ring
 273 * no need to alloc buf for the ring
 274 * gdr_tail, gdr_head and gdr_count are initialized by this function
 275 */
 276static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
 277{
 278	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
 279				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
 280				      &dev->gdr_pa, GFP_KERNEL);
 281	if (!dev->gdr)
 282		return -ENOMEM;
 283
 284	return 0;
 285}
 286
 287static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
 288{
 289	if (dev->gdr)
 290		dma_free_coherent(dev->core_dev->device,
 291			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
 292			  dev->gdr, dev->gdr_pa);
 293}
 294
 295/*
 296 * when this function is called.
 297 * preemption or interrupt must be disabled
 298 */
 299static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
 300{
 301	u32 retval;
 302	u32 tmp;
 303
 304	if (n >= PPC4XX_NUM_GD)
 305		return ERING_WAS_FULL;
 306
 307	retval = dev->gdr_head;
 308	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
 309	if (dev->gdr_head > dev->gdr_tail) {
 310		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
 311			return ERING_WAS_FULL;
 312	} else if (dev->gdr_head < dev->gdr_tail) {
 313		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
 314			return ERING_WAS_FULL;
 315	}
 316	dev->gdr_head = tmp;
 317
 318	return retval;
 319}
 320
 321static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
 322{
 323	unsigned long flags;
 324
 325	spin_lock_irqsave(&dev->core_dev->lock, flags);
 326	if (dev->gdr_tail == dev->gdr_head) {
 327		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 328		return 0;
 329	}
 330
 331	if (dev->gdr_tail != PPC4XX_LAST_GD)
 332		dev->gdr_tail++;
 333	else
 334		dev->gdr_tail = 0;
 335
 336	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 337
 338	return 0;
 339}
 340
 341static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
 342					      dma_addr_t *gd_dma, u32 idx)
 343{
 344	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
 345
 346	return &dev->gdr[idx];
 347}
 348
 349/*
 350 * alloc memory for the scatter ring
 351 * need to alloc buf for the ring
 352 * sdr_tail, sdr_head and sdr_count are initialized by this function
 353 */
 354static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
 355{
 356	int i;
 357
 358	dev->scatter_buffer_va =
 359		dma_alloc_coherent(dev->core_dev->device,
 360			PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
 361			&dev->scatter_buffer_pa, GFP_KERNEL);
 362	if (!dev->scatter_buffer_va)
 363		return -ENOMEM;
 364
 365	/* alloc memory for scatter descriptor ring */
 366	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
 367				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
 368				      &dev->sdr_pa, GFP_KERNEL);
 369	if (!dev->sdr)
 370		return -ENOMEM;
 371
 372	for (i = 0; i < PPC4XX_NUM_SD; i++) {
 373		dev->sdr[i].ptr = dev->scatter_buffer_pa +
 374				  PPC4XX_SD_BUFFER_SIZE * i;
 375	}
 376
 377	return 0;
 378}
 379
 380static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
 381{
 382	if (dev->sdr)
 383		dma_free_coherent(dev->core_dev->device,
 384				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
 385				  dev->sdr, dev->sdr_pa);
 386
 387	if (dev->scatter_buffer_va)
 388		dma_free_coherent(dev->core_dev->device,
 389				  PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
 390				  dev->scatter_buffer_va,
 391				  dev->scatter_buffer_pa);
 392}
 393
 394/*
 395 * when this function is called.
 396 * preemption or interrupt must be disabled
 397 */
 398static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
 399{
 400	u32 retval;
 401	u32 tmp;
 402
 403	if (n >= PPC4XX_NUM_SD)
 404		return ERING_WAS_FULL;
 405
 406	retval = dev->sdr_head;
 407	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
 408	if (dev->sdr_head > dev->gdr_tail) {
 409		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
 410			return ERING_WAS_FULL;
 411	} else if (dev->sdr_head < dev->sdr_tail) {
 412		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
 413			return ERING_WAS_FULL;
 414	} /* the head = tail, or empty case is already take cared */
 415	dev->sdr_head = tmp;
 416
 417	return retval;
 418}
 419
 420static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
 421{
 422	unsigned long flags;
 423
 424	spin_lock_irqsave(&dev->core_dev->lock, flags);
 425	if (dev->sdr_tail == dev->sdr_head) {
 426		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 427		return 0;
 428	}
 429	if (dev->sdr_tail != PPC4XX_LAST_SD)
 430		dev->sdr_tail++;
 431	else
 432		dev->sdr_tail = 0;
 433	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 434
 435	return 0;
 436}
 437
 438static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
 439					      dma_addr_t *sd_dma, u32 idx)
 440{
 441	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
 442
 443	return &dev->sdr[idx];
 444}
 445
 446static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
 447				      struct ce_pd *pd,
 448				      struct pd_uinfo *pd_uinfo,
 449				      u32 nbytes,
 450				      struct scatterlist *dst)
 451{
 452	unsigned int first_sd = pd_uinfo->first_sd;
 453	unsigned int last_sd;
 454	unsigned int overflow = 0;
 455	unsigned int to_copy;
 456	unsigned int dst_start = 0;
 457
 458	/*
 459	 * Because the scatter buffers are all neatly organized in one
 460	 * big continuous ringbuffer; scatterwalk_map_and_copy() can
 461	 * be instructed to copy a range of buffers in one go.
 462	 */
 463
 464	last_sd = (first_sd + pd_uinfo->num_sd);
 465	if (last_sd > PPC4XX_LAST_SD) {
 466		last_sd = PPC4XX_LAST_SD;
 467		overflow = last_sd % PPC4XX_NUM_SD;
 468	}
 469
 470	while (nbytes) {
 471		void *buf = dev->scatter_buffer_va +
 472			first_sd * PPC4XX_SD_BUFFER_SIZE;
 473
 474		to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
 475				      (1 + last_sd - first_sd));
 476		scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
 477		nbytes -= to_copy;
 478
 479		if (overflow) {
 480			first_sd = 0;
 481			last_sd = overflow;
 482			dst_start += to_copy;
 483			overflow = 0;
 484		}
 485	}
 486}
 487
 488static void crypto4xx_copy_digest_to_dst(void *dst,
 489					struct pd_uinfo *pd_uinfo,
 490					struct crypto4xx_ctx *ctx)
 491{
 492	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
 493
 494	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
 495		memcpy(dst, pd_uinfo->sr_va->save_digest,
 496		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
 497	}
 498}
 499
 500static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
 501				  struct pd_uinfo *pd_uinfo)
 502{
 503	int i;
 504	if (pd_uinfo->num_gd) {
 505		for (i = 0; i < pd_uinfo->num_gd; i++)
 506			crypto4xx_put_gd_to_gdr(dev);
 507		pd_uinfo->first_gd = 0xffffffff;
 508		pd_uinfo->num_gd = 0;
 509	}
 510	if (pd_uinfo->num_sd) {
 511		for (i = 0; i < pd_uinfo->num_sd; i++)
 512			crypto4xx_put_sd_to_sdr(dev);
 513
 514		pd_uinfo->first_sd = 0xffffffff;
 515		pd_uinfo->num_sd = 0;
 516	}
 517}
 518
 519static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
 520				     struct pd_uinfo *pd_uinfo,
 521				     struct ce_pd *pd)
 522{
 523	struct skcipher_request *req;
 524	struct scatterlist *dst;
 525
 526	req = skcipher_request_cast(pd_uinfo->async_req);
 527
 528	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
 529		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
 530					  req->cryptlen, req->dst);
 531	} else {
 532		dst = pd_uinfo->dest_va;
 533		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
 534			       DMA_FROM_DEVICE);
 535	}
 536
 537	if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
 538		struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 539
 540		crypto4xx_memcpy_from_le32((u32 *)req->iv,
 541			pd_uinfo->sr_va->save_iv,
 542			crypto_skcipher_ivsize(skcipher));
 543	}
 544
 545	crypto4xx_ret_sg_desc(dev, pd_uinfo);
 546
 547	if (pd_uinfo->state & PD_ENTRY_BUSY)
 548		skcipher_request_complete(req, -EINPROGRESS);
 549	skcipher_request_complete(req, 0);
 550}
 551
 552static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
 553				struct pd_uinfo *pd_uinfo)
 554{
 555	struct crypto4xx_ctx *ctx;
 556	struct ahash_request *ahash_req;
 557
 558	ahash_req = ahash_request_cast(pd_uinfo->async_req);
 559	ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(ahash_req));
 560
 561	crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo, ctx);
 562	crypto4xx_ret_sg_desc(dev, pd_uinfo);
 563
 564	if (pd_uinfo->state & PD_ENTRY_BUSY)
 565		ahash_request_complete(ahash_req, -EINPROGRESS);
 566	ahash_request_complete(ahash_req, 0);
 567}
 568
 569static void crypto4xx_aead_done(struct crypto4xx_device *dev,
 570				struct pd_uinfo *pd_uinfo,
 571				struct ce_pd *pd)
 572{
 573	struct aead_request *aead_req = container_of(pd_uinfo->async_req,
 574		struct aead_request, base);
 575	struct scatterlist *dst = pd_uinfo->dest_va;
 576	size_t cp_len = crypto_aead_authsize(
 577		crypto_aead_reqtfm(aead_req));
 578	u32 icv[AES_BLOCK_SIZE];
 579	int err = 0;
 580
 581	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
 582		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
 583					  pd->pd_ctl_len.bf.pkt_len,
 584					  dst);
 585	} else {
 586		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
 587				DMA_FROM_DEVICE);
 588	}
 589
 590	if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
 591		/* append icv at the end */
 592		crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
 593					   sizeof(icv));
 594
 595		scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
 596					 cp_len, 1);
 597	} else {
 598		/* check icv at the end */
 599		scatterwalk_map_and_copy(icv, aead_req->src,
 600			aead_req->assoclen + aead_req->cryptlen -
 601			cp_len, cp_len, 0);
 602
 603		crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
 604
 605		if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
 606			err = -EBADMSG;
 607	}
 608
 609	crypto4xx_ret_sg_desc(dev, pd_uinfo);
 610
 611	if (pd->pd_ctl.bf.status & 0xff) {
 612		if (!__ratelimit(&dev->aead_ratelimit)) {
 613			if (pd->pd_ctl.bf.status & 2)
 614				pr_err("pad fail error\n");
 615			if (pd->pd_ctl.bf.status & 4)
 616				pr_err("seqnum fail\n");
 617			if (pd->pd_ctl.bf.status & 8)
 618				pr_err("error _notify\n");
 619			pr_err("aead return err status = 0x%02x\n",
 620				pd->pd_ctl.bf.status & 0xff);
 621			pr_err("pd pad_ctl = 0x%08x\n",
 622				pd->pd_ctl.bf.pd_pad_ctl);
 623		}
 624		err = -EINVAL;
 625	}
 626
 627	if (pd_uinfo->state & PD_ENTRY_BUSY)
 628		aead_request_complete(aead_req, -EINPROGRESS);
 629
 630	aead_request_complete(aead_req, err);
 631}
 632
 633static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
 634{
 635	struct ce_pd *pd = &dev->pdr[idx];
 636	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
 637
 638	switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
 639	case CRYPTO_ALG_TYPE_SKCIPHER:
 640		crypto4xx_cipher_done(dev, pd_uinfo, pd);
 641		break;
 642	case CRYPTO_ALG_TYPE_AEAD:
 643		crypto4xx_aead_done(dev, pd_uinfo, pd);
 644		break;
 645	case CRYPTO_ALG_TYPE_AHASH:
 646		crypto4xx_ahash_done(dev, pd_uinfo);
 647		break;
 648	}
 649}
 650
 651static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
 652{
 653	crypto4xx_destroy_pdr(core_dev->dev);
 654	crypto4xx_destroy_gdr(core_dev->dev);
 655	crypto4xx_destroy_sdr(core_dev->dev);
 656	iounmap(core_dev->dev->ce_base);
 657	kfree(core_dev->dev);
 658	kfree(core_dev);
 659}
 660
 661static u32 get_next_gd(u32 current)
 662{
 663	if (current != PPC4XX_LAST_GD)
 664		return current + 1;
 665	else
 666		return 0;
 667}
 668
 669static u32 get_next_sd(u32 current)
 670{
 671	if (current != PPC4XX_LAST_SD)
 672		return current + 1;
 673	else
 674		return 0;
 675}
 676
 677int crypto4xx_build_pd(struct crypto_async_request *req,
 678		       struct crypto4xx_ctx *ctx,
 679		       struct scatterlist *src,
 680		       struct scatterlist *dst,
 681		       const unsigned int datalen,
 682		       const __le32 *iv, const u32 iv_len,
 683		       const struct dynamic_sa_ctl *req_sa,
 684		       const unsigned int sa_len,
 685		       const unsigned int assoclen,
 686		       struct scatterlist *_dst)
 687{
 688	struct crypto4xx_device *dev = ctx->dev;
 689	struct dynamic_sa_ctl *sa;
 690	struct ce_gd *gd;
 691	struct ce_pd *pd;
 692	u32 num_gd, num_sd;
 693	u32 fst_gd = 0xffffffff;
 694	u32 fst_sd = 0xffffffff;
 695	u32 pd_entry;
 696	unsigned long flags;
 697	struct pd_uinfo *pd_uinfo;
 698	unsigned int nbytes = datalen;
 699	size_t offset_to_sr_ptr;
 700	u32 gd_idx = 0;
 701	int tmp;
 702	bool is_busy, force_sd;
 703
 704	/*
 705	 * There's a very subtile/disguised "bug" in the hardware that
 706	 * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
 707	 * of the hardware spec:
 708	 * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
 709	 * operation modes for >>> "Block ciphers" <<<.
 710	 *
 711	 * To workaround this issue and stop the hardware from causing
 712	 * "overran dst buffer" on crypttexts that are not a multiple
 713	 * of 16 (AES_BLOCK_SIZE), we force the driver to use the
 714	 * scatter buffers.
 715	 */
 716	force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
 717		|| req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
 718		&& (datalen % AES_BLOCK_SIZE);
 719
 720	/* figure how many gd are needed */
 721	tmp = sg_nents_for_len(src, assoclen + datalen);
 722	if (tmp < 0) {
 723		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
 724		return tmp;
 725	}
 726	if (tmp == 1)
 727		tmp = 0;
 728	num_gd = tmp;
 729
 730	if (assoclen) {
 731		nbytes += assoclen;
 732		dst = scatterwalk_ffwd(_dst, dst, assoclen);
 733	}
 734
 735	/* figure how many sd are needed */
 736	if (sg_is_last(dst) && force_sd == false) {
 737		num_sd = 0;
 738	} else {
 739		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
 740			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
 741			if (datalen % PPC4XX_SD_BUFFER_SIZE)
 742				num_sd++;
 743		} else {
 744			num_sd = 1;
 745		}
 746	}
 747
 748	/*
 749	 * The follow section of code needs to be protected
 750	 * The gather ring and scatter ring needs to be consecutive
 751	 * In case of run out of any kind of descriptor, the descriptor
 752	 * already got must be return the original place.
 753	 */
 754	spin_lock_irqsave(&dev->core_dev->lock, flags);
 755	/*
 756	 * Let the caller know to slow down, once more than 13/16ths = 81%
 757	 * of the available data contexts are being used simultaneously.
 758	 *
 759	 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
 760	 * 31 more contexts. Before new requests have to be rejected.
 761	 */
 762	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
 763		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
 764			((PPC4XX_NUM_PD * 13) / 16);
 765	} else {
 766		/*
 767		 * To fix contention issues between ipsec (no blacklog) and
 768		 * dm-crypto (backlog) reserve 32 entries for "no backlog"
 769		 * data contexts.
 770		 */
 771		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
 772			((PPC4XX_NUM_PD * 15) / 16);
 773
 774		if (is_busy) {
 775			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 776			return -EBUSY;
 777		}
 778	}
 779
 780	if (num_gd) {
 781		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
 782		if (fst_gd == ERING_WAS_FULL) {
 783			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 784			return -EAGAIN;
 785		}
 786	}
 787	if (num_sd) {
 788		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
 789		if (fst_sd == ERING_WAS_FULL) {
 790			if (num_gd)
 791				dev->gdr_head = fst_gd;
 792			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 793			return -EAGAIN;
 794		}
 795	}
 796	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
 797	if (pd_entry == ERING_WAS_FULL) {
 798		if (num_gd)
 799			dev->gdr_head = fst_gd;
 800		if (num_sd)
 801			dev->sdr_head = fst_sd;
 802		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 803		return -EAGAIN;
 804	}
 805	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 806
 807	pd = &dev->pdr[pd_entry];
 808	pd->sa_len = sa_len;
 809
 810	pd_uinfo = &dev->pdr_uinfo[pd_entry];
 811	pd_uinfo->num_gd = num_gd;
 812	pd_uinfo->num_sd = num_sd;
 813	pd_uinfo->dest_va = dst;
 814	pd_uinfo->async_req = req;
 815
 816	if (iv_len)
 817		memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
 818
 819	sa = pd_uinfo->sa_va;
 820	memcpy(sa, req_sa, sa_len * 4);
 821
 822	sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
 823	offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
 824	*(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
 825
 826	if (num_gd) {
 827		dma_addr_t gd_dma;
 828		struct scatterlist *sg;
 829
 830		/* get first gd we are going to use */
 831		gd_idx = fst_gd;
 832		pd_uinfo->first_gd = fst_gd;
 833		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
 834		pd->src = gd_dma;
 835		/* enable gather */
 836		sa->sa_command_0.bf.gather = 1;
 837		/* walk the sg, and setup gather array */
 838
 839		sg = src;
 840		while (nbytes) {
 841			size_t len;
 842
 843			len = min(sg->length, nbytes);
 844			gd->ptr = dma_map_page(dev->core_dev->device,
 845				sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
 846			gd->ctl_len.len = len;
 847			gd->ctl_len.done = 0;
 848			gd->ctl_len.ready = 1;
 849			if (len >= nbytes)
 850				break;
 851
 852			nbytes -= sg->length;
 853			gd_idx = get_next_gd(gd_idx);
 854			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
 855			sg = sg_next(sg);
 856		}
 857	} else {
 858		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
 859				src->offset, min(nbytes, src->length),
 860				DMA_TO_DEVICE);
 861		/*
 862		 * Disable gather in sa command
 863		 */
 864		sa->sa_command_0.bf.gather = 0;
 865		/*
 866		 * Indicate gather array is not used
 867		 */
 868		pd_uinfo->first_gd = 0xffffffff;
 869	}
 870	if (!num_sd) {
 871		/*
 872		 * we know application give us dst a whole piece of memory
 873		 * no need to use scatter ring.
 874		 */
 875		pd_uinfo->first_sd = 0xffffffff;
 876		sa->sa_command_0.bf.scatter = 0;
 877		pd->dest = (u32)dma_map_page(dev->core_dev->device,
 878					     sg_page(dst), dst->offset,
 879					     min(datalen, dst->length),
 880					     DMA_TO_DEVICE);
 881	} else {
 882		dma_addr_t sd_dma;
 883		struct ce_sd *sd = NULL;
 884
 885		u32 sd_idx = fst_sd;
 886		nbytes = datalen;
 887		sa->sa_command_0.bf.scatter = 1;
 888		pd_uinfo->first_sd = fst_sd;
 889		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
 890		pd->dest = sd_dma;
 891		/* setup scatter descriptor */
 892		sd->ctl.done = 0;
 893		sd->ctl.rdy = 1;
 894		/* sd->ptr should be setup by sd_init routine*/
 895		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
 896			nbytes -= PPC4XX_SD_BUFFER_SIZE;
 897		else
 898			nbytes = 0;
 899		while (nbytes) {
 900			sd_idx = get_next_sd(sd_idx);
 901			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
 902			/* setup scatter descriptor */
 903			sd->ctl.done = 0;
 904			sd->ctl.rdy = 1;
 905			if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
 906				nbytes -= PPC4XX_SD_BUFFER_SIZE;
 907			} else {
 908				/*
 909				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
 910				 * which is more than nbytes, so done.
 911				 */
 912				nbytes = 0;
 913			}
 914		}
 915	}
 916
 917	pd->pd_ctl.w = PD_CTL_HOST_READY |
 918		((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) ||
 919		 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
 920			PD_CTL_HASH_FINAL : 0);
 921	pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
 922	pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
 923
 924	wmb();
 925	/* write any value to push engine to read a pd */
 926	writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
 927	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
 928	return is_busy ? -EBUSY : -EINPROGRESS;
 929}
 930
 931/*
 932 * Algorithm Registration Functions
 933 */
 934static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
 935			       struct crypto4xx_ctx *ctx)
 936{
 937	ctx->dev = amcc_alg->dev;
 938	ctx->sa_in = NULL;
 939	ctx->sa_out = NULL;
 940	ctx->sa_len = 0;
 941}
 942
 943static int crypto4xx_sk_init(struct crypto_skcipher *sk)
 944{
 945	struct skcipher_alg *alg = crypto_skcipher_alg(sk);
 946	struct crypto4xx_alg *amcc_alg;
 947	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
 948
 949	if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
 950		ctx->sw_cipher.cipher =
 951			crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
 952					      CRYPTO_ALG_NEED_FALLBACK);
 953		if (IS_ERR(ctx->sw_cipher.cipher))
 954			return PTR_ERR(ctx->sw_cipher.cipher);
 955	}
 956
 957	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
 958	crypto4xx_ctx_init(amcc_alg, ctx);
 959	return 0;
 960}
 961
 962static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
 963{
 964	crypto4xx_free_sa(ctx);
 965}
 966
 967static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
 968{
 969	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
 970
 971	crypto4xx_common_exit(ctx);
 972	if (ctx->sw_cipher.cipher)
 973		crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
 974}
 975
 976static int crypto4xx_aead_init(struct crypto_aead *tfm)
 977{
 978	struct aead_alg *alg = crypto_aead_alg(tfm);
 979	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
 980	struct crypto4xx_alg *amcc_alg;
 981
 982	ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
 983						CRYPTO_ALG_NEED_FALLBACK |
 984						CRYPTO_ALG_ASYNC);
 985	if (IS_ERR(ctx->sw_cipher.aead))
 986		return PTR_ERR(ctx->sw_cipher.aead);
 987
 988	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
 989	crypto4xx_ctx_init(amcc_alg, ctx);
 990	crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
 991				crypto_aead_reqsize(ctx->sw_cipher.aead),
 992				sizeof(struct crypto4xx_aead_reqctx)));
 993	return 0;
 994}
 995
 996static void crypto4xx_aead_exit(struct crypto_aead *tfm)
 997{
 998	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
 999
1000	crypto4xx_common_exit(ctx);
1001	crypto_free_aead(ctx->sw_cipher.aead);
1002}
1003
1004static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1005				  struct crypto4xx_alg_common *crypto_alg,
1006				  int array_size)
1007{
1008	struct crypto4xx_alg *alg;
1009	int i;
1010	int rc = 0;
1011
1012	for (i = 0; i < array_size; i++) {
1013		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1014		if (!alg)
1015			return -ENOMEM;
1016
1017		alg->alg = crypto_alg[i];
1018		alg->dev = sec_dev;
1019
1020		switch (alg->alg.type) {
1021		case CRYPTO_ALG_TYPE_AEAD:
1022			rc = crypto_register_aead(&alg->alg.u.aead);
1023			break;
1024
1025		case CRYPTO_ALG_TYPE_AHASH:
1026			rc = crypto_register_ahash(&alg->alg.u.hash);
1027			break;
1028
1029		case CRYPTO_ALG_TYPE_RNG:
1030			rc = crypto_register_rng(&alg->alg.u.rng);
1031			break;
1032
1033		default:
1034			rc = crypto_register_skcipher(&alg->alg.u.cipher);
1035			break;
1036		}
1037
1038		if (rc)
1039			kfree(alg);
1040		else
1041			list_add_tail(&alg->entry, &sec_dev->alg_list);
1042	}
1043
1044	return 0;
1045}
1046
1047static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1048{
1049	struct crypto4xx_alg *alg, *tmp;
1050
1051	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1052		list_del(&alg->entry);
1053		switch (alg->alg.type) {
1054		case CRYPTO_ALG_TYPE_AHASH:
1055			crypto_unregister_ahash(&alg->alg.u.hash);
1056			break;
1057
1058		case CRYPTO_ALG_TYPE_AEAD:
1059			crypto_unregister_aead(&alg->alg.u.aead);
1060			break;
1061
1062		case CRYPTO_ALG_TYPE_RNG:
1063			crypto_unregister_rng(&alg->alg.u.rng);
1064			break;
1065
1066		default:
1067			crypto_unregister_skcipher(&alg->alg.u.cipher);
1068		}
1069		kfree(alg);
1070	}
1071}
1072
1073static void crypto4xx_bh_tasklet_cb(unsigned long data)
1074{
1075	struct device *dev = (struct device *)data;
1076	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1077	struct pd_uinfo *pd_uinfo;
1078	struct ce_pd *pd;
1079	u32 tail = core_dev->dev->pdr_tail;
1080	u32 head = core_dev->dev->pdr_head;
1081
1082	do {
1083		pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1084		pd = &core_dev->dev->pdr[tail];
1085		if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1086		     ((READ_ONCE(pd->pd_ctl.w) &
1087		       (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1088		       PD_CTL_PE_DONE)) {
1089			crypto4xx_pd_done(core_dev->dev, tail);
1090			tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1091		} else {
1092			/* if tail not done, break */
1093			break;
1094		}
1095	} while (head != tail);
1096}
1097
1098/*
1099 * Top Half of isr.
1100 */
1101static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1102						      u32 clr_val)
1103{
1104	struct device *dev = data;
1105	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1106
1107	writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1108	tasklet_schedule(&core_dev->tasklet);
1109
1110	return IRQ_HANDLED;
1111}
1112
1113static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1114{
1115	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1116}
1117
1118static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1119{
1120	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1121		PPC4XX_TMO_ERR_INT);
1122}
1123
1124static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1125				 u8 *data, unsigned int max)
1126{
1127	unsigned int i, curr = 0;
1128	u32 val[2];
1129
1130	do {
1131		/* trigger PRN generation */
1132		writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1133		       dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1134
1135		for (i = 0; i < 1024; i++) {
1136			/* usually 19 iterations are enough */
1137			if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1138			     CRYPTO4XX_PRNG_STAT_BUSY))
1139				continue;
1140
1141			val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1142			val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1143			break;
1144		}
1145		if (i == 1024)
1146			return -ETIMEDOUT;
1147
1148		if ((max - curr) >= 8) {
1149			memcpy(data, &val, 8);
1150			data += 8;
1151			curr += 8;
1152		} else {
1153			/* copy only remaining bytes */
1154			memcpy(data, &val, max - curr);
1155			break;
1156		}
1157	} while (curr < max);
1158
1159	return curr;
1160}
1161
1162static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1163				   const u8 *src, unsigned int slen,
1164				   u8 *dstn, unsigned int dlen)
1165{
1166	struct rng_alg *alg = crypto_rng_alg(tfm);
1167	struct crypto4xx_alg *amcc_alg;
1168	struct crypto4xx_device *dev;
1169	int ret;
1170
1171	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1172	dev = amcc_alg->dev;
1173
1174	mutex_lock(&dev->core_dev->rng_lock);
1175	ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1176	mutex_unlock(&dev->core_dev->rng_lock);
1177	return ret;
1178}
1179
1180
1181static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1182			unsigned int slen)
1183{
1184	return 0;
1185}
1186
1187/*
1188 * Supported Crypto Algorithms
1189 */
1190static struct crypto4xx_alg_common crypto4xx_alg[] = {
1191	/* Crypto AES modes */
1192	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1193		.base = {
1194			.cra_name = "cbc(aes)",
1195			.cra_driver_name = "cbc-aes-ppc4xx",
1196			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1197			.cra_flags = CRYPTO_ALG_ASYNC |
1198				CRYPTO_ALG_KERN_DRIVER_ONLY,
1199			.cra_blocksize = AES_BLOCK_SIZE,
1200			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1201			.cra_module = THIS_MODULE,
1202		},
1203		.min_keysize = AES_MIN_KEY_SIZE,
1204		.max_keysize = AES_MAX_KEY_SIZE,
1205		.ivsize	= AES_IV_SIZE,
1206		.setkey = crypto4xx_setkey_aes_cbc,
1207		.encrypt = crypto4xx_encrypt_iv_block,
1208		.decrypt = crypto4xx_decrypt_iv_block,
1209		.init = crypto4xx_sk_init,
1210		.exit = crypto4xx_sk_exit,
1211	} },
1212	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1213		.base = {
1214			.cra_name = "ctr(aes)",
1215			.cra_driver_name = "ctr-aes-ppc4xx",
1216			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1217			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1218				CRYPTO_ALG_ASYNC |
1219				CRYPTO_ALG_KERN_DRIVER_ONLY,
1220			.cra_blocksize = 1,
1221			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1222			.cra_module = THIS_MODULE,
1223		},
1224		.min_keysize = AES_MIN_KEY_SIZE,
1225		.max_keysize = AES_MAX_KEY_SIZE,
1226		.ivsize	= AES_IV_SIZE,
1227		.setkey	= crypto4xx_setkey_aes_ctr,
1228		.encrypt = crypto4xx_encrypt_ctr,
1229		.decrypt = crypto4xx_decrypt_ctr,
1230		.init = crypto4xx_sk_init,
1231		.exit = crypto4xx_sk_exit,
1232	} },
1233	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1234		.base = {
1235			.cra_name = "rfc3686(ctr(aes))",
1236			.cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1237			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1238			.cra_flags = CRYPTO_ALG_ASYNC |
1239				CRYPTO_ALG_KERN_DRIVER_ONLY,
1240			.cra_blocksize = 1,
1241			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1242			.cra_module = THIS_MODULE,
1243		},
1244		.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1245		.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1246		.ivsize	= CTR_RFC3686_IV_SIZE,
1247		.setkey = crypto4xx_setkey_rfc3686,
1248		.encrypt = crypto4xx_rfc3686_encrypt,
1249		.decrypt = crypto4xx_rfc3686_decrypt,
1250		.init = crypto4xx_sk_init,
1251		.exit = crypto4xx_sk_exit,
1252	} },
1253	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1254		.base = {
1255			.cra_name = "ecb(aes)",
1256			.cra_driver_name = "ecb-aes-ppc4xx",
1257			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1258			.cra_flags = CRYPTO_ALG_ASYNC |
1259				CRYPTO_ALG_KERN_DRIVER_ONLY,
1260			.cra_blocksize = AES_BLOCK_SIZE,
1261			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1262			.cra_module = THIS_MODULE,
1263		},
1264		.min_keysize = AES_MIN_KEY_SIZE,
1265		.max_keysize = AES_MAX_KEY_SIZE,
1266		.setkey	= crypto4xx_setkey_aes_ecb,
1267		.encrypt = crypto4xx_encrypt_noiv_block,
1268		.decrypt = crypto4xx_decrypt_noiv_block,
1269		.init = crypto4xx_sk_init,
1270		.exit = crypto4xx_sk_exit,
1271	} },
1272
1273	/* AEAD */
1274	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1275		.setkey		= crypto4xx_setkey_aes_ccm,
1276		.setauthsize	= crypto4xx_setauthsize_aead,
1277		.encrypt	= crypto4xx_encrypt_aes_ccm,
1278		.decrypt	= crypto4xx_decrypt_aes_ccm,
1279		.init		= crypto4xx_aead_init,
1280		.exit		= crypto4xx_aead_exit,
1281		.ivsize		= AES_BLOCK_SIZE,
1282		.maxauthsize    = 16,
1283		.base = {
1284			.cra_name	= "ccm(aes)",
1285			.cra_driver_name = "ccm-aes-ppc4xx",
1286			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1287			.cra_flags	= CRYPTO_ALG_ASYNC |
1288					  CRYPTO_ALG_NEED_FALLBACK |
1289					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1290			.cra_blocksize	= 1,
1291			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1292			.cra_module	= THIS_MODULE,
1293		},
1294	} },
1295	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1296		.setkey		= crypto4xx_setkey_aes_gcm,
1297		.setauthsize	= crypto4xx_setauthsize_aead,
1298		.encrypt	= crypto4xx_encrypt_aes_gcm,
1299		.decrypt	= crypto4xx_decrypt_aes_gcm,
1300		.init		= crypto4xx_aead_init,
1301		.exit		= crypto4xx_aead_exit,
1302		.ivsize		= GCM_AES_IV_SIZE,
1303		.maxauthsize	= 16,
1304		.base = {
1305			.cra_name	= "gcm(aes)",
1306			.cra_driver_name = "gcm-aes-ppc4xx",
1307			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1308			.cra_flags	= CRYPTO_ALG_ASYNC |
1309					  CRYPTO_ALG_NEED_FALLBACK |
1310					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1311			.cra_blocksize	= 1,
1312			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1313			.cra_module	= THIS_MODULE,
1314		},
1315	} },
1316	{ .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1317		.base = {
1318			.cra_name		= "stdrng",
1319			.cra_driver_name        = "crypto4xx_rng",
1320			.cra_priority		= 300,
1321			.cra_ctxsize		= 0,
1322			.cra_module		= THIS_MODULE,
1323		},
1324		.generate               = crypto4xx_prng_generate,
1325		.seed                   = crypto4xx_prng_seed,
1326		.seedsize               = 0,
1327	} },
1328};
1329
1330/*
1331 * Module Initialization Routine
1332 */
1333static int crypto4xx_probe(struct platform_device *ofdev)
1334{
1335	int rc;
1336	struct resource res;
1337	struct device *dev = &ofdev->dev;
1338	struct crypto4xx_core_device *core_dev;
1339	struct device_node *np;
1340	u32 pvr;
1341	bool is_revb = true;
1342
1343	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1344	if (rc)
1345		return -ENODEV;
1346
1347	np = of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto");
1348	if (np) {
1349		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1350		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1351		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1352		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1353	} else {
1354		np = of_find_compatible_node(NULL, NULL, "amcc,ppc405ex-crypto");
1355		if (np) {
1356			mtdcri(SDR0, PPC405EX_SDR0_SRST,
1357				   mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1358			mtdcri(SDR0, PPC405EX_SDR0_SRST,
1359				   mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1360			is_revb = false;
1361		} else {
1362			np = of_find_compatible_node(NULL, NULL, "amcc,ppc460sx-crypto");
1363			if (np) {
1364				mtdcri(SDR0, PPC460SX_SDR0_SRST,
1365					mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1366				mtdcri(SDR0, PPC460SX_SDR0_SRST,
1367					mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1368			} else {
1369				printk(KERN_ERR "Crypto Function Not supported!\n");
1370				return -EINVAL;
1371			}
1372		}
1373	}
1374
1375	of_node_put(np);
1376
1377	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
 
1378	if (!core_dev)
1379		return -ENOMEM;
1380
1381	dev_set_drvdata(dev, core_dev);
1382	core_dev->ofdev = ofdev;
1383	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1384	rc = -ENOMEM;
1385	if (!core_dev->dev)
1386		goto err_alloc_dev;
1387
1388	/*
1389	 * Older version of 460EX/GT have a hardware bug.
1390	 * Hence they do not support H/W based security intr coalescing
1391	 */
1392	pvr = mfspr(SPRN_PVR);
1393	if (is_revb && ((pvr >> 4) == 0x130218A)) {
1394		u32 min = PVR_MIN(pvr);
1395
1396		if (min < 4) {
1397			dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1398			is_revb = false;
1399		}
1400	}
1401
1402	core_dev->dev->core_dev = core_dev;
1403	core_dev->dev->is_revb = is_revb;
1404	core_dev->device = dev;
1405	mutex_init(&core_dev->rng_lock);
 
 
1406	spin_lock_init(&core_dev->lock);
1407	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1408	ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1409	rc = crypto4xx_build_sdr(core_dev->dev);
1410	if (rc)
1411		goto err_build_sdr;
1412	rc = crypto4xx_build_pdr(core_dev->dev);
1413	if (rc)
1414		goto err_build_sdr;
1415
1416	rc = crypto4xx_build_gdr(core_dev->dev);
1417	if (rc)
1418		goto err_build_sdr;
1419
1420	/* Init tasklet for bottom half processing */
1421	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1422		     (unsigned long) dev);
1423
1424	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1425	if (!core_dev->dev->ce_base) {
1426		dev_err(dev, "failed to of_iomap\n");
1427		rc = -ENOMEM;
1428		goto err_iomap;
1429	}
1430
1431	/* Register for Crypto isr, Crypto Engine IRQ */
1432	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1433	rc = request_irq(core_dev->irq, is_revb ?
1434			 crypto4xx_ce_interrupt_handler_revb :
1435			 crypto4xx_ce_interrupt_handler, 0,
1436			 KBUILD_MODNAME, dev);
1437	if (rc)
1438		goto err_request_irq;
1439
1440	/* need to setup pdr, rdr, gdr and sdr before this */
1441	crypto4xx_hw_init(core_dev->dev);
1442
1443	/* Register security algorithms with Linux CryptoAPI */
1444	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1445			       ARRAY_SIZE(crypto4xx_alg));
1446	if (rc)
1447		goto err_start_dev;
1448
1449	ppc4xx_trng_probe(core_dev);
1450	return 0;
1451
1452err_start_dev:
1453	free_irq(core_dev->irq, dev);
1454err_request_irq:
1455	irq_dispose_mapping(core_dev->irq);
1456	iounmap(core_dev->dev->ce_base);
1457err_iomap:
1458	tasklet_kill(&core_dev->tasklet);
1459err_build_sdr:
1460	crypto4xx_destroy_sdr(core_dev->dev);
1461	crypto4xx_destroy_gdr(core_dev->dev);
1462	crypto4xx_destroy_pdr(core_dev->dev);
1463	kfree(core_dev->dev);
1464err_alloc_dev:
1465	kfree(core_dev);
1466
1467	return rc;
1468}
1469
1470static void crypto4xx_remove(struct platform_device *ofdev)
1471{
1472	struct device *dev = &ofdev->dev;
1473	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1474
1475	ppc4xx_trng_remove(core_dev);
1476
1477	free_irq(core_dev->irq, dev);
1478	irq_dispose_mapping(core_dev->irq);
1479
1480	tasklet_kill(&core_dev->tasklet);
1481	/* Un-register with Linux CryptoAPI */
1482	crypto4xx_unregister_alg(core_dev->dev);
1483	mutex_destroy(&core_dev->rng_lock);
1484	/* Free all allocated memory */
1485	crypto4xx_stop_all(core_dev);
1486}
1487
1488static const struct of_device_id crypto4xx_match[] = {
1489	{ .compatible      = "amcc,ppc4xx-crypto",},
1490	{ },
1491};
1492MODULE_DEVICE_TABLE(of, crypto4xx_match);
1493
1494static struct platform_driver crypto4xx_driver = {
1495	.driver = {
1496		.name = KBUILD_MODNAME,
1497		.of_match_table = crypto4xx_match,
1498	},
1499	.probe		= crypto4xx_probe,
1500	.remove_new	= crypto4xx_remove,
1501};
1502
1503module_platform_driver(crypto4xx_driver);
1504
1505MODULE_LICENSE("GPL");
1506MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1507MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * AMCC SoC PPC4xx Crypto Driver
   4 *
   5 * Copyright (c) 2008 Applied Micro Circuits Corporation.
   6 * All rights reserved. James Hsiao <jhsiao@amcc.com>
   7 *
   8 * This file implements AMCC crypto offload Linux device driver for use with
   9 * Linux CryptoAPI.
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/interrupt.h>
  14#include <linux/spinlock_types.h>
  15#include <linux/random.h>
  16#include <linux/scatterlist.h>
  17#include <linux/crypto.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/platform_device.h>
  20#include <linux/init.h>
  21#include <linux/module.h>
  22#include <linux/of_address.h>
  23#include <linux/of_irq.h>
  24#include <linux/of_platform.h>
  25#include <linux/slab.h>
  26#include <asm/dcr.h>
  27#include <asm/dcr-regs.h>
  28#include <asm/cacheflush.h>
  29#include <crypto/aead.h>
  30#include <crypto/aes.h>
  31#include <crypto/ctr.h>
  32#include <crypto/gcm.h>
  33#include <crypto/sha1.h>
  34#include <crypto/rng.h>
  35#include <crypto/scatterwalk.h>
  36#include <crypto/skcipher.h>
  37#include <crypto/internal/aead.h>
  38#include <crypto/internal/rng.h>
  39#include <crypto/internal/skcipher.h>
  40#include "crypto4xx_reg_def.h"
  41#include "crypto4xx_core.h"
  42#include "crypto4xx_sa.h"
  43#include "crypto4xx_trng.h"
  44
  45#define PPC4XX_SEC_VERSION_STR			"0.5"
  46
  47/*
  48 * PPC4xx Crypto Engine Initialization Routine
  49 */
  50static void crypto4xx_hw_init(struct crypto4xx_device *dev)
  51{
  52	union ce_ring_size ring_size;
  53	union ce_ring_control ring_ctrl;
  54	union ce_part_ring_size part_ring_size;
  55	union ce_io_threshold io_threshold;
  56	u32 rand_num;
  57	union ce_pe_dma_cfg pe_dma_cfg;
  58	u32 device_ctrl;
  59
  60	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
  61	/* setup pe dma, include reset sg, pdr and pe, then release reset */
  62	pe_dma_cfg.w = 0;
  63	pe_dma_cfg.bf.bo_sgpd_en = 1;
  64	pe_dma_cfg.bf.bo_data_en = 0;
  65	pe_dma_cfg.bf.bo_sa_en = 1;
  66	pe_dma_cfg.bf.bo_pd_en = 1;
  67	pe_dma_cfg.bf.dynamic_sa_en = 1;
  68	pe_dma_cfg.bf.reset_sg = 1;
  69	pe_dma_cfg.bf.reset_pdr = 1;
  70	pe_dma_cfg.bf.reset_pe = 1;
  71	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
  72	/* un reset pe,sg and pdr */
  73	pe_dma_cfg.bf.pe_mode = 0;
  74	pe_dma_cfg.bf.reset_sg = 0;
  75	pe_dma_cfg.bf.reset_pdr = 0;
  76	pe_dma_cfg.bf.reset_pe = 0;
  77	pe_dma_cfg.bf.bo_td_en = 0;
  78	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
  79	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
  80	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
  81	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
  82	get_random_bytes(&rand_num, sizeof(rand_num));
  83	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
  84	get_random_bytes(&rand_num, sizeof(rand_num));
  85	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
  86	ring_size.w = 0;
  87	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
  88	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
  89	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
  90	ring_ctrl.w = 0;
  91	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
  92	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
  93	device_ctrl |= PPC4XX_DC_3DES_EN;
  94	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
  95	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
  96	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
  97	part_ring_size.w = 0;
  98	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
  99	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
 100	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
 101	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
 102	io_threshold.w = 0;
 103	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
 104	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
 105	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
 106	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
 107	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
 108	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
 109	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
 110	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
 111	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
 112	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
 113	/* un reset pe,sg and pdr */
 114	pe_dma_cfg.bf.pe_mode = 1;
 115	pe_dma_cfg.bf.reset_sg = 0;
 116	pe_dma_cfg.bf.reset_pdr = 0;
 117	pe_dma_cfg.bf.reset_pe = 0;
 118	pe_dma_cfg.bf.bo_td_en = 0;
 119	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
 120	/*clear all pending interrupt*/
 121	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
 122	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
 123	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
 124	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
 125	if (dev->is_revb) {
 126		writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
 127		       dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
 128		writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
 129		       dev->ce_base + CRYPTO4XX_INT_EN);
 130	} else {
 131		writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
 132	}
 133}
 134
 135int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
 136{
 137	ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
 138	if (ctx->sa_in == NULL)
 139		return -ENOMEM;
 140
 141	ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
 142	if (ctx->sa_out == NULL) {
 143		kfree(ctx->sa_in);
 144		ctx->sa_in = NULL;
 145		return -ENOMEM;
 146	}
 147
 148	ctx->sa_len = size;
 149
 150	return 0;
 151}
 152
 153void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
 154{
 155	kfree(ctx->sa_in);
 156	ctx->sa_in = NULL;
 157	kfree(ctx->sa_out);
 158	ctx->sa_out = NULL;
 159	ctx->sa_len = 0;
 160}
 161
 162/*
 163 * alloc memory for the gather ring
 164 * no need to alloc buf for the ring
 165 * gdr_tail, gdr_head and gdr_count are initialized by this function
 166 */
 167static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
 168{
 169	int i;
 170	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
 171				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 172				      &dev->pdr_pa, GFP_KERNEL);
 173	if (!dev->pdr)
 174		return -ENOMEM;
 175
 176	dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
 177				 GFP_KERNEL);
 178	if (!dev->pdr_uinfo) {
 179		dma_free_coherent(dev->core_dev->device,
 180				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 181				  dev->pdr,
 182				  dev->pdr_pa);
 183		return -ENOMEM;
 184	}
 185	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
 186				   sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
 187				   &dev->shadow_sa_pool_pa,
 188				   GFP_KERNEL);
 189	if (!dev->shadow_sa_pool)
 190		return -ENOMEM;
 191
 192	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
 193			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
 194			 &dev->shadow_sr_pool_pa, GFP_KERNEL);
 195	if (!dev->shadow_sr_pool)
 196		return -ENOMEM;
 197	for (i = 0; i < PPC4XX_NUM_PD; i++) {
 198		struct ce_pd *pd = &dev->pdr[i];
 199		struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
 200
 201		pd->sa = dev->shadow_sa_pool_pa +
 202			sizeof(union shadow_sa_buf) * i;
 203
 204		/* alloc 256 bytes which is enough for any kind of dynamic sa */
 205		pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
 206
 207		/* alloc state record */
 208		pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
 209		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
 210		    sizeof(struct sa_state_record) * i;
 211	}
 212
 213	return 0;
 214}
 215
 216static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
 217{
 218	if (dev->pdr)
 219		dma_free_coherent(dev->core_dev->device,
 220				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
 221				  dev->pdr, dev->pdr_pa);
 222
 223	if (dev->shadow_sa_pool)
 224		dma_free_coherent(dev->core_dev->device,
 225			sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
 226			dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
 227
 228	if (dev->shadow_sr_pool)
 229		dma_free_coherent(dev->core_dev->device,
 230			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
 231			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
 232
 233	kfree(dev->pdr_uinfo);
 234}
 235
 236static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
 237{
 238	u32 retval;
 239	u32 tmp;
 240
 241	retval = dev->pdr_head;
 242	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
 243
 244	if (tmp == dev->pdr_tail)
 245		return ERING_WAS_FULL;
 246
 247	dev->pdr_head = tmp;
 248
 249	return retval;
 250}
 251
 252static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
 253{
 254	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
 255	u32 tail;
 256	unsigned long flags;
 257
 258	spin_lock_irqsave(&dev->core_dev->lock, flags);
 259	pd_uinfo->state = PD_ENTRY_FREE;
 260
 261	if (dev->pdr_tail != PPC4XX_LAST_PD)
 262		dev->pdr_tail++;
 263	else
 264		dev->pdr_tail = 0;
 265	tail = dev->pdr_tail;
 266	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 267
 268	return tail;
 269}
 270
 271/*
 272 * alloc memory for the gather ring
 273 * no need to alloc buf for the ring
 274 * gdr_tail, gdr_head and gdr_count are initialized by this function
 275 */
 276static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
 277{
 278	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
 279				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
 280				      &dev->gdr_pa, GFP_KERNEL);
 281	if (!dev->gdr)
 282		return -ENOMEM;
 283
 284	return 0;
 285}
 286
 287static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
 288{
 289	if (dev->gdr)
 290		dma_free_coherent(dev->core_dev->device,
 291			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
 292			  dev->gdr, dev->gdr_pa);
 293}
 294
 295/*
 296 * when this function is called.
 297 * preemption or interrupt must be disabled
 298 */
 299static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
 300{
 301	u32 retval;
 302	u32 tmp;
 303
 304	if (n >= PPC4XX_NUM_GD)
 305		return ERING_WAS_FULL;
 306
 307	retval = dev->gdr_head;
 308	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
 309	if (dev->gdr_head > dev->gdr_tail) {
 310		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
 311			return ERING_WAS_FULL;
 312	} else if (dev->gdr_head < dev->gdr_tail) {
 313		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
 314			return ERING_WAS_FULL;
 315	}
 316	dev->gdr_head = tmp;
 317
 318	return retval;
 319}
 320
 321static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
 322{
 323	unsigned long flags;
 324
 325	spin_lock_irqsave(&dev->core_dev->lock, flags);
 326	if (dev->gdr_tail == dev->gdr_head) {
 327		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 328		return 0;
 329	}
 330
 331	if (dev->gdr_tail != PPC4XX_LAST_GD)
 332		dev->gdr_tail++;
 333	else
 334		dev->gdr_tail = 0;
 335
 336	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 337
 338	return 0;
 339}
 340
 341static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
 342					      dma_addr_t *gd_dma, u32 idx)
 343{
 344	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
 345
 346	return &dev->gdr[idx];
 347}
 348
 349/*
 350 * alloc memory for the scatter ring
 351 * need to alloc buf for the ring
 352 * sdr_tail, sdr_head and sdr_count are initialized by this function
 353 */
 354static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
 355{
 356	int i;
 357
 358	dev->scatter_buffer_va =
 359		dma_alloc_coherent(dev->core_dev->device,
 360			PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
 361			&dev->scatter_buffer_pa, GFP_KERNEL);
 362	if (!dev->scatter_buffer_va)
 363		return -ENOMEM;
 364
 365	/* alloc memory for scatter descriptor ring */
 366	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
 367				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
 368				      &dev->sdr_pa, GFP_KERNEL);
 369	if (!dev->sdr)
 370		return -ENOMEM;
 371
 372	for (i = 0; i < PPC4XX_NUM_SD; i++) {
 373		dev->sdr[i].ptr = dev->scatter_buffer_pa +
 374				  PPC4XX_SD_BUFFER_SIZE * i;
 375	}
 376
 377	return 0;
 378}
 379
 380static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
 381{
 382	if (dev->sdr)
 383		dma_free_coherent(dev->core_dev->device,
 384				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
 385				  dev->sdr, dev->sdr_pa);
 386
 387	if (dev->scatter_buffer_va)
 388		dma_free_coherent(dev->core_dev->device,
 389				  PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
 390				  dev->scatter_buffer_va,
 391				  dev->scatter_buffer_pa);
 392}
 393
 394/*
 395 * when this function is called.
 396 * preemption or interrupt must be disabled
 397 */
 398static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
 399{
 400	u32 retval;
 401	u32 tmp;
 402
 403	if (n >= PPC4XX_NUM_SD)
 404		return ERING_WAS_FULL;
 405
 406	retval = dev->sdr_head;
 407	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
 408	if (dev->sdr_head > dev->gdr_tail) {
 409		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
 410			return ERING_WAS_FULL;
 411	} else if (dev->sdr_head < dev->sdr_tail) {
 412		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
 413			return ERING_WAS_FULL;
 414	} /* the head = tail, or empty case is already take cared */
 415	dev->sdr_head = tmp;
 416
 417	return retval;
 418}
 419
 420static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
 421{
 422	unsigned long flags;
 423
 424	spin_lock_irqsave(&dev->core_dev->lock, flags);
 425	if (dev->sdr_tail == dev->sdr_head) {
 426		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 427		return 0;
 428	}
 429	if (dev->sdr_tail != PPC4XX_LAST_SD)
 430		dev->sdr_tail++;
 431	else
 432		dev->sdr_tail = 0;
 433	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 434
 435	return 0;
 436}
 437
 438static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
 439					      dma_addr_t *sd_dma, u32 idx)
 440{
 441	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
 442
 443	return &dev->sdr[idx];
 444}
 445
 446static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
 447				      struct ce_pd *pd,
 448				      struct pd_uinfo *pd_uinfo,
 449				      u32 nbytes,
 450				      struct scatterlist *dst)
 451{
 452	unsigned int first_sd = pd_uinfo->first_sd;
 453	unsigned int last_sd;
 454	unsigned int overflow = 0;
 455	unsigned int to_copy;
 456	unsigned int dst_start = 0;
 457
 458	/*
 459	 * Because the scatter buffers are all neatly organized in one
 460	 * big continuous ringbuffer; scatterwalk_map_and_copy() can
 461	 * be instructed to copy a range of buffers in one go.
 462	 */
 463
 464	last_sd = (first_sd + pd_uinfo->num_sd);
 465	if (last_sd > PPC4XX_LAST_SD) {
 466		last_sd = PPC4XX_LAST_SD;
 467		overflow = last_sd % PPC4XX_NUM_SD;
 468	}
 469
 470	while (nbytes) {
 471		void *buf = dev->scatter_buffer_va +
 472			first_sd * PPC4XX_SD_BUFFER_SIZE;
 473
 474		to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
 475				      (1 + last_sd - first_sd));
 476		scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
 477		nbytes -= to_copy;
 478
 479		if (overflow) {
 480			first_sd = 0;
 481			last_sd = overflow;
 482			dst_start += to_copy;
 483			overflow = 0;
 484		}
 485	}
 486}
 487
 488static void crypto4xx_copy_digest_to_dst(void *dst,
 489					struct pd_uinfo *pd_uinfo,
 490					struct crypto4xx_ctx *ctx)
 491{
 492	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
 493
 494	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
 495		memcpy(dst, pd_uinfo->sr_va->save_digest,
 496		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
 497	}
 498}
 499
 500static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
 501				  struct pd_uinfo *pd_uinfo)
 502{
 503	int i;
 504	if (pd_uinfo->num_gd) {
 505		for (i = 0; i < pd_uinfo->num_gd; i++)
 506			crypto4xx_put_gd_to_gdr(dev);
 507		pd_uinfo->first_gd = 0xffffffff;
 508		pd_uinfo->num_gd = 0;
 509	}
 510	if (pd_uinfo->num_sd) {
 511		for (i = 0; i < pd_uinfo->num_sd; i++)
 512			crypto4xx_put_sd_to_sdr(dev);
 513
 514		pd_uinfo->first_sd = 0xffffffff;
 515		pd_uinfo->num_sd = 0;
 516	}
 517}
 518
 519static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
 520				     struct pd_uinfo *pd_uinfo,
 521				     struct ce_pd *pd)
 522{
 523	struct skcipher_request *req;
 524	struct scatterlist *dst;
 525
 526	req = skcipher_request_cast(pd_uinfo->async_req);
 527
 528	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
 529		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
 530					  req->cryptlen, req->dst);
 531	} else {
 532		dst = pd_uinfo->dest_va;
 533		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
 534			       DMA_FROM_DEVICE);
 535	}
 536
 537	if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
 538		struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 539
 540		crypto4xx_memcpy_from_le32((u32 *)req->iv,
 541			pd_uinfo->sr_va->save_iv,
 542			crypto_skcipher_ivsize(skcipher));
 543	}
 544
 545	crypto4xx_ret_sg_desc(dev, pd_uinfo);
 546
 547	if (pd_uinfo->state & PD_ENTRY_BUSY)
 548		skcipher_request_complete(req, -EINPROGRESS);
 549	skcipher_request_complete(req, 0);
 550}
 551
 552static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
 553				struct pd_uinfo *pd_uinfo)
 554{
 555	struct crypto4xx_ctx *ctx;
 556	struct ahash_request *ahash_req;
 557
 558	ahash_req = ahash_request_cast(pd_uinfo->async_req);
 559	ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(ahash_req));
 560
 561	crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo, ctx);
 562	crypto4xx_ret_sg_desc(dev, pd_uinfo);
 563
 564	if (pd_uinfo->state & PD_ENTRY_BUSY)
 565		ahash_request_complete(ahash_req, -EINPROGRESS);
 566	ahash_request_complete(ahash_req, 0);
 567}
 568
 569static void crypto4xx_aead_done(struct crypto4xx_device *dev,
 570				struct pd_uinfo *pd_uinfo,
 571				struct ce_pd *pd)
 572{
 573	struct aead_request *aead_req = container_of(pd_uinfo->async_req,
 574		struct aead_request, base);
 575	struct scatterlist *dst = pd_uinfo->dest_va;
 576	size_t cp_len = crypto_aead_authsize(
 577		crypto_aead_reqtfm(aead_req));
 578	u32 icv[AES_BLOCK_SIZE];
 579	int err = 0;
 580
 581	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
 582		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
 583					  pd->pd_ctl_len.bf.pkt_len,
 584					  dst);
 585	} else {
 586		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
 587				DMA_FROM_DEVICE);
 588	}
 589
 590	if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
 591		/* append icv at the end */
 592		crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
 593					   sizeof(icv));
 594
 595		scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
 596					 cp_len, 1);
 597	} else {
 598		/* check icv at the end */
 599		scatterwalk_map_and_copy(icv, aead_req->src,
 600			aead_req->assoclen + aead_req->cryptlen -
 601			cp_len, cp_len, 0);
 602
 603		crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
 604
 605		if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
 606			err = -EBADMSG;
 607	}
 608
 609	crypto4xx_ret_sg_desc(dev, pd_uinfo);
 610
 611	if (pd->pd_ctl.bf.status & 0xff) {
 612		if (!__ratelimit(&dev->aead_ratelimit)) {
 613			if (pd->pd_ctl.bf.status & 2)
 614				pr_err("pad fail error\n");
 615			if (pd->pd_ctl.bf.status & 4)
 616				pr_err("seqnum fail\n");
 617			if (pd->pd_ctl.bf.status & 8)
 618				pr_err("error _notify\n");
 619			pr_err("aead return err status = 0x%02x\n",
 620				pd->pd_ctl.bf.status & 0xff);
 621			pr_err("pd pad_ctl = 0x%08x\n",
 622				pd->pd_ctl.bf.pd_pad_ctl);
 623		}
 624		err = -EINVAL;
 625	}
 626
 627	if (pd_uinfo->state & PD_ENTRY_BUSY)
 628		aead_request_complete(aead_req, -EINPROGRESS);
 629
 630	aead_request_complete(aead_req, err);
 631}
 632
 633static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
 634{
 635	struct ce_pd *pd = &dev->pdr[idx];
 636	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
 637
 638	switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
 639	case CRYPTO_ALG_TYPE_SKCIPHER:
 640		crypto4xx_cipher_done(dev, pd_uinfo, pd);
 641		break;
 642	case CRYPTO_ALG_TYPE_AEAD:
 643		crypto4xx_aead_done(dev, pd_uinfo, pd);
 644		break;
 645	case CRYPTO_ALG_TYPE_AHASH:
 646		crypto4xx_ahash_done(dev, pd_uinfo);
 647		break;
 648	}
 649}
 650
 651static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
 652{
 653	crypto4xx_destroy_pdr(core_dev->dev);
 654	crypto4xx_destroy_gdr(core_dev->dev);
 655	crypto4xx_destroy_sdr(core_dev->dev);
 
 
 
 656}
 657
 658static u32 get_next_gd(u32 current)
 659{
 660	if (current != PPC4XX_LAST_GD)
 661		return current + 1;
 662	else
 663		return 0;
 664}
 665
 666static u32 get_next_sd(u32 current)
 667{
 668	if (current != PPC4XX_LAST_SD)
 669		return current + 1;
 670	else
 671		return 0;
 672}
 673
 674int crypto4xx_build_pd(struct crypto_async_request *req,
 675		       struct crypto4xx_ctx *ctx,
 676		       struct scatterlist *src,
 677		       struct scatterlist *dst,
 678		       const unsigned int datalen,
 679		       const __le32 *iv, const u32 iv_len,
 680		       const struct dynamic_sa_ctl *req_sa,
 681		       const unsigned int sa_len,
 682		       const unsigned int assoclen,
 683		       struct scatterlist *_dst)
 684{
 685	struct crypto4xx_device *dev = ctx->dev;
 686	struct dynamic_sa_ctl *sa;
 687	struct ce_gd *gd;
 688	struct ce_pd *pd;
 689	u32 num_gd, num_sd;
 690	u32 fst_gd = 0xffffffff;
 691	u32 fst_sd = 0xffffffff;
 692	u32 pd_entry;
 693	unsigned long flags;
 694	struct pd_uinfo *pd_uinfo;
 695	unsigned int nbytes = datalen;
 696	size_t offset_to_sr_ptr;
 697	u32 gd_idx = 0;
 698	int tmp;
 699	bool is_busy, force_sd;
 700
 701	/*
 702	 * There's a very subtile/disguised "bug" in the hardware that
 703	 * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
 704	 * of the hardware spec:
 705	 * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
 706	 * operation modes for >>> "Block ciphers" <<<.
 707	 *
 708	 * To workaround this issue and stop the hardware from causing
 709	 * "overran dst buffer" on crypttexts that are not a multiple
 710	 * of 16 (AES_BLOCK_SIZE), we force the driver to use the
 711	 * scatter buffers.
 712	 */
 713	force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
 714		|| req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
 715		&& (datalen % AES_BLOCK_SIZE);
 716
 717	/* figure how many gd are needed */
 718	tmp = sg_nents_for_len(src, assoclen + datalen);
 719	if (tmp < 0) {
 720		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
 721		return tmp;
 722	}
 723	if (tmp == 1)
 724		tmp = 0;
 725	num_gd = tmp;
 726
 727	if (assoclen) {
 728		nbytes += assoclen;
 729		dst = scatterwalk_ffwd(_dst, dst, assoclen);
 730	}
 731
 732	/* figure how many sd are needed */
 733	if (sg_is_last(dst) && force_sd == false) {
 734		num_sd = 0;
 735	} else {
 736		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
 737			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
 738			if (datalen % PPC4XX_SD_BUFFER_SIZE)
 739				num_sd++;
 740		} else {
 741			num_sd = 1;
 742		}
 743	}
 744
 745	/*
 746	 * The follow section of code needs to be protected
 747	 * The gather ring and scatter ring needs to be consecutive
 748	 * In case of run out of any kind of descriptor, the descriptor
 749	 * already got must be return the original place.
 750	 */
 751	spin_lock_irqsave(&dev->core_dev->lock, flags);
 752	/*
 753	 * Let the caller know to slow down, once more than 13/16ths = 81%
 754	 * of the available data contexts are being used simultaneously.
 755	 *
 756	 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
 757	 * 31 more contexts. Before new requests have to be rejected.
 758	 */
 759	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
 760		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
 761			((PPC4XX_NUM_PD * 13) / 16);
 762	} else {
 763		/*
 764		 * To fix contention issues between ipsec (no blacklog) and
 765		 * dm-crypto (backlog) reserve 32 entries for "no backlog"
 766		 * data contexts.
 767		 */
 768		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
 769			((PPC4XX_NUM_PD * 15) / 16);
 770
 771		if (is_busy) {
 772			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 773			return -EBUSY;
 774		}
 775	}
 776
 777	if (num_gd) {
 778		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
 779		if (fst_gd == ERING_WAS_FULL) {
 780			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 781			return -EAGAIN;
 782		}
 783	}
 784	if (num_sd) {
 785		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
 786		if (fst_sd == ERING_WAS_FULL) {
 787			if (num_gd)
 788				dev->gdr_head = fst_gd;
 789			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 790			return -EAGAIN;
 791		}
 792	}
 793	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
 794	if (pd_entry == ERING_WAS_FULL) {
 795		if (num_gd)
 796			dev->gdr_head = fst_gd;
 797		if (num_sd)
 798			dev->sdr_head = fst_sd;
 799		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 800		return -EAGAIN;
 801	}
 802	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
 803
 804	pd = &dev->pdr[pd_entry];
 805	pd->sa_len = sa_len;
 806
 807	pd_uinfo = &dev->pdr_uinfo[pd_entry];
 808	pd_uinfo->num_gd = num_gd;
 809	pd_uinfo->num_sd = num_sd;
 810	pd_uinfo->dest_va = dst;
 811	pd_uinfo->async_req = req;
 812
 813	if (iv_len)
 814		memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
 815
 816	sa = pd_uinfo->sa_va;
 817	memcpy(sa, req_sa, sa_len * 4);
 818
 819	sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
 820	offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
 821	*(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
 822
 823	if (num_gd) {
 824		dma_addr_t gd_dma;
 825		struct scatterlist *sg;
 826
 827		/* get first gd we are going to use */
 828		gd_idx = fst_gd;
 829		pd_uinfo->first_gd = fst_gd;
 830		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
 831		pd->src = gd_dma;
 832		/* enable gather */
 833		sa->sa_command_0.bf.gather = 1;
 834		/* walk the sg, and setup gather array */
 835
 836		sg = src;
 837		while (nbytes) {
 838			size_t len;
 839
 840			len = min(sg->length, nbytes);
 841			gd->ptr = dma_map_page(dev->core_dev->device,
 842				sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
 843			gd->ctl_len.len = len;
 844			gd->ctl_len.done = 0;
 845			gd->ctl_len.ready = 1;
 846			if (len >= nbytes)
 847				break;
 848
 849			nbytes -= sg->length;
 850			gd_idx = get_next_gd(gd_idx);
 851			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
 852			sg = sg_next(sg);
 853		}
 854	} else {
 855		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
 856				src->offset, min(nbytes, src->length),
 857				DMA_TO_DEVICE);
 858		/*
 859		 * Disable gather in sa command
 860		 */
 861		sa->sa_command_0.bf.gather = 0;
 862		/*
 863		 * Indicate gather array is not used
 864		 */
 865		pd_uinfo->first_gd = 0xffffffff;
 866	}
 867	if (!num_sd) {
 868		/*
 869		 * we know application give us dst a whole piece of memory
 870		 * no need to use scatter ring.
 871		 */
 872		pd_uinfo->first_sd = 0xffffffff;
 873		sa->sa_command_0.bf.scatter = 0;
 874		pd->dest = (u32)dma_map_page(dev->core_dev->device,
 875					     sg_page(dst), dst->offset,
 876					     min(datalen, dst->length),
 877					     DMA_TO_DEVICE);
 878	} else {
 879		dma_addr_t sd_dma;
 880		struct ce_sd *sd = NULL;
 881
 882		u32 sd_idx = fst_sd;
 883		nbytes = datalen;
 884		sa->sa_command_0.bf.scatter = 1;
 885		pd_uinfo->first_sd = fst_sd;
 886		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
 887		pd->dest = sd_dma;
 888		/* setup scatter descriptor */
 889		sd->ctl.done = 0;
 890		sd->ctl.rdy = 1;
 891		/* sd->ptr should be setup by sd_init routine*/
 892		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
 893			nbytes -= PPC4XX_SD_BUFFER_SIZE;
 894		else
 895			nbytes = 0;
 896		while (nbytes) {
 897			sd_idx = get_next_sd(sd_idx);
 898			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
 899			/* setup scatter descriptor */
 900			sd->ctl.done = 0;
 901			sd->ctl.rdy = 1;
 902			if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
 903				nbytes -= PPC4XX_SD_BUFFER_SIZE;
 904			} else {
 905				/*
 906				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
 907				 * which is more than nbytes, so done.
 908				 */
 909				nbytes = 0;
 910			}
 911		}
 912	}
 913
 914	pd->pd_ctl.w = PD_CTL_HOST_READY |
 915		((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) ||
 916		 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
 917			PD_CTL_HASH_FINAL : 0);
 918	pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
 919	pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
 920
 921	wmb();
 922	/* write any value to push engine to read a pd */
 923	writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
 924	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
 925	return is_busy ? -EBUSY : -EINPROGRESS;
 926}
 927
 928/*
 929 * Algorithm Registration Functions
 930 */
 931static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
 932			       struct crypto4xx_ctx *ctx)
 933{
 934	ctx->dev = amcc_alg->dev;
 935	ctx->sa_in = NULL;
 936	ctx->sa_out = NULL;
 937	ctx->sa_len = 0;
 938}
 939
 940static int crypto4xx_sk_init(struct crypto_skcipher *sk)
 941{
 942	struct skcipher_alg *alg = crypto_skcipher_alg(sk);
 943	struct crypto4xx_alg *amcc_alg;
 944	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
 945
 946	if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
 947		ctx->sw_cipher.cipher =
 948			crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
 949					      CRYPTO_ALG_NEED_FALLBACK);
 950		if (IS_ERR(ctx->sw_cipher.cipher))
 951			return PTR_ERR(ctx->sw_cipher.cipher);
 952	}
 953
 954	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
 955	crypto4xx_ctx_init(amcc_alg, ctx);
 956	return 0;
 957}
 958
 959static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
 960{
 961	crypto4xx_free_sa(ctx);
 962}
 963
 964static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
 965{
 966	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
 967
 968	crypto4xx_common_exit(ctx);
 969	if (ctx->sw_cipher.cipher)
 970		crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
 971}
 972
 973static int crypto4xx_aead_init(struct crypto_aead *tfm)
 974{
 975	struct aead_alg *alg = crypto_aead_alg(tfm);
 976	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
 977	struct crypto4xx_alg *amcc_alg;
 978
 979	ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
 980						CRYPTO_ALG_NEED_FALLBACK |
 981						CRYPTO_ALG_ASYNC);
 982	if (IS_ERR(ctx->sw_cipher.aead))
 983		return PTR_ERR(ctx->sw_cipher.aead);
 984
 985	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
 986	crypto4xx_ctx_init(amcc_alg, ctx);
 987	crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
 988				crypto_aead_reqsize(ctx->sw_cipher.aead),
 989				sizeof(struct crypto4xx_aead_reqctx)));
 990	return 0;
 991}
 992
 993static void crypto4xx_aead_exit(struct crypto_aead *tfm)
 994{
 995	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
 996
 997	crypto4xx_common_exit(ctx);
 998	crypto_free_aead(ctx->sw_cipher.aead);
 999}
1000
1001static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1002				  struct crypto4xx_alg_common *crypto_alg,
1003				  int array_size)
1004{
1005	struct crypto4xx_alg *alg;
1006	int i;
1007	int rc = 0;
1008
1009	for (i = 0; i < array_size; i++) {
1010		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1011		if (!alg)
1012			return -ENOMEM;
1013
1014		alg->alg = crypto_alg[i];
1015		alg->dev = sec_dev;
1016
1017		switch (alg->alg.type) {
1018		case CRYPTO_ALG_TYPE_AEAD:
1019			rc = crypto_register_aead(&alg->alg.u.aead);
1020			break;
1021
1022		case CRYPTO_ALG_TYPE_AHASH:
1023			rc = crypto_register_ahash(&alg->alg.u.hash);
1024			break;
1025
1026		case CRYPTO_ALG_TYPE_RNG:
1027			rc = crypto_register_rng(&alg->alg.u.rng);
1028			break;
1029
1030		default:
1031			rc = crypto_register_skcipher(&alg->alg.u.cipher);
1032			break;
1033		}
1034
1035		if (rc)
1036			kfree(alg);
1037		else
1038			list_add_tail(&alg->entry, &sec_dev->alg_list);
1039	}
1040
1041	return 0;
1042}
1043
1044static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1045{
1046	struct crypto4xx_alg *alg, *tmp;
1047
1048	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1049		list_del(&alg->entry);
1050		switch (alg->alg.type) {
1051		case CRYPTO_ALG_TYPE_AHASH:
1052			crypto_unregister_ahash(&alg->alg.u.hash);
1053			break;
1054
1055		case CRYPTO_ALG_TYPE_AEAD:
1056			crypto_unregister_aead(&alg->alg.u.aead);
1057			break;
1058
1059		case CRYPTO_ALG_TYPE_RNG:
1060			crypto_unregister_rng(&alg->alg.u.rng);
1061			break;
1062
1063		default:
1064			crypto_unregister_skcipher(&alg->alg.u.cipher);
1065		}
1066		kfree(alg);
1067	}
1068}
1069
1070static void crypto4xx_bh_tasklet_cb(unsigned long data)
1071{
1072	struct device *dev = (struct device *)data;
1073	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1074	struct pd_uinfo *pd_uinfo;
1075	struct ce_pd *pd;
1076	u32 tail = core_dev->dev->pdr_tail;
1077	u32 head = core_dev->dev->pdr_head;
1078
1079	do {
1080		pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1081		pd = &core_dev->dev->pdr[tail];
1082		if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1083		     ((READ_ONCE(pd->pd_ctl.w) &
1084		       (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1085		       PD_CTL_PE_DONE)) {
1086			crypto4xx_pd_done(core_dev->dev, tail);
1087			tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1088		} else {
1089			/* if tail not done, break */
1090			break;
1091		}
1092	} while (head != tail);
1093}
1094
1095/*
1096 * Top Half of isr.
1097 */
1098static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1099						      u32 clr_val)
1100{
1101	struct device *dev = data;
1102	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1103
1104	writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1105	tasklet_schedule(&core_dev->tasklet);
1106
1107	return IRQ_HANDLED;
1108}
1109
1110static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1111{
1112	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1113}
1114
1115static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1116{
1117	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1118		PPC4XX_TMO_ERR_INT);
1119}
1120
1121static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1122				 u8 *data, unsigned int max)
1123{
1124	unsigned int i, curr = 0;
1125	u32 val[2];
1126
1127	do {
1128		/* trigger PRN generation */
1129		writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1130		       dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1131
1132		for (i = 0; i < 1024; i++) {
1133			/* usually 19 iterations are enough */
1134			if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1135			     CRYPTO4XX_PRNG_STAT_BUSY))
1136				continue;
1137
1138			val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1139			val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1140			break;
1141		}
1142		if (i == 1024)
1143			return -ETIMEDOUT;
1144
1145		if ((max - curr) >= 8) {
1146			memcpy(data, &val, 8);
1147			data += 8;
1148			curr += 8;
1149		} else {
1150			/* copy only remaining bytes */
1151			memcpy(data, &val, max - curr);
1152			break;
1153		}
1154	} while (curr < max);
1155
1156	return curr;
1157}
1158
1159static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1160				   const u8 *src, unsigned int slen,
1161				   u8 *dstn, unsigned int dlen)
1162{
1163	struct rng_alg *alg = crypto_rng_alg(tfm);
1164	struct crypto4xx_alg *amcc_alg;
1165	struct crypto4xx_device *dev;
1166	int ret;
1167
1168	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1169	dev = amcc_alg->dev;
1170
1171	mutex_lock(&dev->core_dev->rng_lock);
1172	ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1173	mutex_unlock(&dev->core_dev->rng_lock);
1174	return ret;
1175}
1176
1177
1178static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1179			unsigned int slen)
1180{
1181	return 0;
1182}
1183
1184/*
1185 * Supported Crypto Algorithms
1186 */
1187static struct crypto4xx_alg_common crypto4xx_alg[] = {
1188	/* Crypto AES modes */
1189	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1190		.base = {
1191			.cra_name = "cbc(aes)",
1192			.cra_driver_name = "cbc-aes-ppc4xx",
1193			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1194			.cra_flags = CRYPTO_ALG_ASYNC |
1195				CRYPTO_ALG_KERN_DRIVER_ONLY,
1196			.cra_blocksize = AES_BLOCK_SIZE,
1197			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1198			.cra_module = THIS_MODULE,
1199		},
1200		.min_keysize = AES_MIN_KEY_SIZE,
1201		.max_keysize = AES_MAX_KEY_SIZE,
1202		.ivsize	= AES_IV_SIZE,
1203		.setkey = crypto4xx_setkey_aes_cbc,
1204		.encrypt = crypto4xx_encrypt_iv_block,
1205		.decrypt = crypto4xx_decrypt_iv_block,
1206		.init = crypto4xx_sk_init,
1207		.exit = crypto4xx_sk_exit,
1208	} },
1209	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1210		.base = {
1211			.cra_name = "ctr(aes)",
1212			.cra_driver_name = "ctr-aes-ppc4xx",
1213			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1214			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1215				CRYPTO_ALG_ASYNC |
1216				CRYPTO_ALG_KERN_DRIVER_ONLY,
1217			.cra_blocksize = 1,
1218			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1219			.cra_module = THIS_MODULE,
1220		},
1221		.min_keysize = AES_MIN_KEY_SIZE,
1222		.max_keysize = AES_MAX_KEY_SIZE,
1223		.ivsize	= AES_IV_SIZE,
1224		.setkey	= crypto4xx_setkey_aes_ctr,
1225		.encrypt = crypto4xx_encrypt_ctr,
1226		.decrypt = crypto4xx_decrypt_ctr,
1227		.init = crypto4xx_sk_init,
1228		.exit = crypto4xx_sk_exit,
1229	} },
1230	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1231		.base = {
1232			.cra_name = "rfc3686(ctr(aes))",
1233			.cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1234			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1235			.cra_flags = CRYPTO_ALG_ASYNC |
1236				CRYPTO_ALG_KERN_DRIVER_ONLY,
1237			.cra_blocksize = 1,
1238			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1239			.cra_module = THIS_MODULE,
1240		},
1241		.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1242		.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1243		.ivsize	= CTR_RFC3686_IV_SIZE,
1244		.setkey = crypto4xx_setkey_rfc3686,
1245		.encrypt = crypto4xx_rfc3686_encrypt,
1246		.decrypt = crypto4xx_rfc3686_decrypt,
1247		.init = crypto4xx_sk_init,
1248		.exit = crypto4xx_sk_exit,
1249	} },
1250	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1251		.base = {
1252			.cra_name = "ecb(aes)",
1253			.cra_driver_name = "ecb-aes-ppc4xx",
1254			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1255			.cra_flags = CRYPTO_ALG_ASYNC |
1256				CRYPTO_ALG_KERN_DRIVER_ONLY,
1257			.cra_blocksize = AES_BLOCK_SIZE,
1258			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1259			.cra_module = THIS_MODULE,
1260		},
1261		.min_keysize = AES_MIN_KEY_SIZE,
1262		.max_keysize = AES_MAX_KEY_SIZE,
1263		.setkey	= crypto4xx_setkey_aes_ecb,
1264		.encrypt = crypto4xx_encrypt_noiv_block,
1265		.decrypt = crypto4xx_decrypt_noiv_block,
1266		.init = crypto4xx_sk_init,
1267		.exit = crypto4xx_sk_exit,
1268	} },
1269
1270	/* AEAD */
1271	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1272		.setkey		= crypto4xx_setkey_aes_ccm,
1273		.setauthsize	= crypto4xx_setauthsize_aead,
1274		.encrypt	= crypto4xx_encrypt_aes_ccm,
1275		.decrypt	= crypto4xx_decrypt_aes_ccm,
1276		.init		= crypto4xx_aead_init,
1277		.exit		= crypto4xx_aead_exit,
1278		.ivsize		= AES_BLOCK_SIZE,
1279		.maxauthsize    = 16,
1280		.base = {
1281			.cra_name	= "ccm(aes)",
1282			.cra_driver_name = "ccm-aes-ppc4xx",
1283			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1284			.cra_flags	= CRYPTO_ALG_ASYNC |
1285					  CRYPTO_ALG_NEED_FALLBACK |
1286					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1287			.cra_blocksize	= 1,
1288			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1289			.cra_module	= THIS_MODULE,
1290		},
1291	} },
1292	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1293		.setkey		= crypto4xx_setkey_aes_gcm,
1294		.setauthsize	= crypto4xx_setauthsize_aead,
1295		.encrypt	= crypto4xx_encrypt_aes_gcm,
1296		.decrypt	= crypto4xx_decrypt_aes_gcm,
1297		.init		= crypto4xx_aead_init,
1298		.exit		= crypto4xx_aead_exit,
1299		.ivsize		= GCM_AES_IV_SIZE,
1300		.maxauthsize	= 16,
1301		.base = {
1302			.cra_name	= "gcm(aes)",
1303			.cra_driver_name = "gcm-aes-ppc4xx",
1304			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1305			.cra_flags	= CRYPTO_ALG_ASYNC |
1306					  CRYPTO_ALG_NEED_FALLBACK |
1307					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1308			.cra_blocksize	= 1,
1309			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1310			.cra_module	= THIS_MODULE,
1311		},
1312	} },
1313	{ .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1314		.base = {
1315			.cra_name		= "stdrng",
1316			.cra_driver_name        = "crypto4xx_rng",
1317			.cra_priority		= 300,
1318			.cra_ctxsize		= 0,
1319			.cra_module		= THIS_MODULE,
1320		},
1321		.generate               = crypto4xx_prng_generate,
1322		.seed                   = crypto4xx_prng_seed,
1323		.seedsize               = 0,
1324	} },
1325};
1326
1327/*
1328 * Module Initialization Routine
1329 */
1330static int crypto4xx_probe(struct platform_device *ofdev)
1331{
1332	int rc;
 
1333	struct device *dev = &ofdev->dev;
1334	struct crypto4xx_core_device *core_dev;
1335	struct device_node *np;
1336	u32 pvr;
1337	bool is_revb = true;
1338
 
 
 
 
1339	np = of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto");
1340	if (np) {
1341		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1342		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1343		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1344		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1345	} else {
1346		np = of_find_compatible_node(NULL, NULL, "amcc,ppc405ex-crypto");
1347		if (np) {
1348			mtdcri(SDR0, PPC405EX_SDR0_SRST,
1349				   mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1350			mtdcri(SDR0, PPC405EX_SDR0_SRST,
1351				   mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1352			is_revb = false;
1353		} else {
1354			np = of_find_compatible_node(NULL, NULL, "amcc,ppc460sx-crypto");
1355			if (np) {
1356				mtdcri(SDR0, PPC460SX_SDR0_SRST,
1357					mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1358				mtdcri(SDR0, PPC460SX_SDR0_SRST,
1359					mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1360			} else {
1361				printk(KERN_ERR "Crypto Function Not supported!\n");
1362				return -EINVAL;
1363			}
1364		}
1365	}
1366
1367	of_node_put(np);
1368
1369	core_dev = devm_kzalloc(
1370		&ofdev->dev, sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1371	if (!core_dev)
1372		return -ENOMEM;
1373
1374	dev_set_drvdata(dev, core_dev);
1375	core_dev->ofdev = ofdev;
1376	core_dev->dev = devm_kzalloc(
1377		&ofdev->dev, sizeof(struct crypto4xx_device), GFP_KERNEL);
1378	if (!core_dev->dev)
1379		return -ENOMEM;
1380
1381	/*
1382	 * Older version of 460EX/GT have a hardware bug.
1383	 * Hence they do not support H/W based security intr coalescing
1384	 */
1385	pvr = mfspr(SPRN_PVR);
1386	if (is_revb && ((pvr >> 4) == 0x130218A)) {
1387		u32 min = PVR_MIN(pvr);
1388
1389		if (min < 4) {
1390			dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1391			is_revb = false;
1392		}
1393	}
1394
1395	core_dev->dev->core_dev = core_dev;
1396	core_dev->dev->is_revb = is_revb;
1397	core_dev->device = dev;
1398	rc = devm_mutex_init(&ofdev->dev, &core_dev->rng_lock);
1399	if (rc)
1400		return rc;
1401	spin_lock_init(&core_dev->lock);
1402	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1403	ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1404	rc = crypto4xx_build_sdr(core_dev->dev);
1405	if (rc)
1406		goto err_build_sdr;
1407	rc = crypto4xx_build_pdr(core_dev->dev);
1408	if (rc)
1409		goto err_build_sdr;
1410
1411	rc = crypto4xx_build_gdr(core_dev->dev);
1412	if (rc)
1413		goto err_build_sdr;
1414
1415	/* Init tasklet for bottom half processing */
1416	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1417		     (unsigned long) dev);
1418
1419	core_dev->dev->ce_base = devm_platform_ioremap_resource(ofdev, 0);
1420	if (IS_ERR(core_dev->dev->ce_base)) {
1421		dev_err(&ofdev->dev, "failed to ioremap resource");
1422		rc = PTR_ERR(core_dev->dev->ce_base);
1423		goto err_build_sdr;
1424	}
1425
1426	/* Register for Crypto isr, Crypto Engine IRQ */
1427	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1428	rc = devm_request_irq(&ofdev->dev, core_dev->irq,
1429			      is_revb ? crypto4xx_ce_interrupt_handler_revb :
1430					crypto4xx_ce_interrupt_handler,
1431			      0, KBUILD_MODNAME, dev);
1432	if (rc)
1433		goto err_iomap;
1434
1435	/* need to setup pdr, rdr, gdr and sdr before this */
1436	crypto4xx_hw_init(core_dev->dev);
1437
1438	/* Register security algorithms with Linux CryptoAPI */
1439	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1440			       ARRAY_SIZE(crypto4xx_alg));
1441	if (rc)
1442		goto err_iomap;
1443
1444	ppc4xx_trng_probe(core_dev);
1445	return 0;
1446
 
 
 
 
 
1447err_iomap:
1448	tasklet_kill(&core_dev->tasklet);
1449err_build_sdr:
1450	crypto4xx_destroy_sdr(core_dev->dev);
1451	crypto4xx_destroy_gdr(core_dev->dev);
1452	crypto4xx_destroy_pdr(core_dev->dev);
 
 
 
 
1453	return rc;
1454}
1455
1456static void crypto4xx_remove(struct platform_device *ofdev)
1457{
1458	struct device *dev = &ofdev->dev;
1459	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1460
1461	ppc4xx_trng_remove(core_dev);
1462
 
 
 
1463	tasklet_kill(&core_dev->tasklet);
1464	/* Un-register with Linux CryptoAPI */
1465	crypto4xx_unregister_alg(core_dev->dev);
 
1466	/* Free all allocated memory */
1467	crypto4xx_stop_all(core_dev);
1468}
1469
1470static const struct of_device_id crypto4xx_match[] = {
1471	{ .compatible      = "amcc,ppc4xx-crypto",},
1472	{ },
1473};
1474MODULE_DEVICE_TABLE(of, crypto4xx_match);
1475
1476static struct platform_driver crypto4xx_driver = {
1477	.driver = {
1478		.name = KBUILD_MODNAME,
1479		.of_match_table = crypto4xx_match,
1480	},
1481	.probe		= crypto4xx_probe,
1482	.remove		= crypto4xx_remove,
1483};
1484
1485module_platform_driver(crypto4xx_driver);
1486
1487MODULE_LICENSE("GPL");
1488MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1489MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");