Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// regmap based irq_chip
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/interrupt.h>
  12#include <linux/irq.h>
  13#include <linux/irqdomain.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/regmap.h>
  16#include <linux/slab.h>
  17
  18#include "internal.h"
  19
  20struct regmap_irq_chip_data {
  21	struct mutex lock;
  22	struct irq_chip irq_chip;
  23
  24	struct regmap *map;
  25	const struct regmap_irq_chip *chip;
  26
  27	int irq_base;
  28	struct irq_domain *domain;
  29
  30	int irq;
  31	int wake_count;
  32
  33	void *status_reg_buf;
  34	unsigned int *main_status_buf;
  35	unsigned int *status_buf;
  36	unsigned int *mask_buf;
  37	unsigned int *mask_buf_def;
  38	unsigned int *wake_buf;
  39	unsigned int *type_buf;
  40	unsigned int *type_buf_def;
  41	unsigned int **config_buf;
  42
  43	unsigned int irq_reg_stride;
  44
  45	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
  46				    unsigned int base, int index);
  47
  48	unsigned int clear_status:1;
  49};
  50
  51static inline const
  52struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
  53				     int irq)
  54{
  55	return &data->chip->irqs[irq];
  56}
  57
  58static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
  59{
  60	struct regmap *map = data->map;
  61
  62	/*
  63	 * While possible that a user-defined ->get_irq_reg() callback might
  64	 * be linear enough to support bulk reads, most of the time it won't.
  65	 * Therefore only allow them if the default callback is being used.
  66	 */
  67	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
  68	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
  69	       !map->use_single_read;
  70}
  71
  72static void regmap_irq_lock(struct irq_data *data)
  73{
  74	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  75
  76	mutex_lock(&d->lock);
  77}
  78
  79static void regmap_irq_sync_unlock(struct irq_data *data)
  80{
  81	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  82	struct regmap *map = d->map;
  83	int i, j, ret;
  84	u32 reg;
  85	u32 val;
  86
  87	if (d->chip->runtime_pm) {
  88		ret = pm_runtime_get_sync(map->dev);
  89		if (ret < 0)
  90			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
  91				ret);
  92	}
  93
  94	if (d->clear_status) {
  95		for (i = 0; i < d->chip->num_regs; i++) {
  96			reg = d->get_irq_reg(d, d->chip->status_base, i);
  97
  98			ret = regmap_read(map, reg, &val);
  99			if (ret)
 100				dev_err(d->map->dev,
 101					"Failed to clear the interrupt status bits\n");
 102		}
 103
 104		d->clear_status = false;
 105	}
 106
 107	/*
 108	 * If there's been a change in the mask write it back to the
 109	 * hardware.  We rely on the use of the regmap core cache to
 110	 * suppress pointless writes.
 111	 */
 112	for (i = 0; i < d->chip->num_regs; i++) {
 113		if (d->chip->handle_mask_sync)
 114			d->chip->handle_mask_sync(i, d->mask_buf_def[i],
 115						  d->mask_buf[i],
 116						  d->chip->irq_drv_data);
 117
 118		if (d->chip->mask_base && !d->chip->handle_mask_sync) {
 119			reg = d->get_irq_reg(d, d->chip->mask_base, i);
 120			ret = regmap_update_bits(d->map, reg,
 121						 d->mask_buf_def[i],
 122						 d->mask_buf[i]);
 123			if (ret)
 124				dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
 125		}
 126
 127		if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
 128			reg = d->get_irq_reg(d, d->chip->unmask_base, i);
 129			ret = regmap_update_bits(d->map, reg,
 130					d->mask_buf_def[i], ~d->mask_buf[i]);
 131			if (ret)
 132				dev_err(d->map->dev, "Failed to sync masks in %x\n",
 133					reg);
 134		}
 135
 136		reg = d->get_irq_reg(d, d->chip->wake_base, i);
 137		if (d->wake_buf) {
 138			if (d->chip->wake_invert)
 139				ret = regmap_update_bits(d->map, reg,
 140							 d->mask_buf_def[i],
 141							 ~d->wake_buf[i]);
 142			else
 143				ret = regmap_update_bits(d->map, reg,
 144							 d->mask_buf_def[i],
 145							 d->wake_buf[i]);
 146			if (ret != 0)
 147				dev_err(d->map->dev,
 148					"Failed to sync wakes in %x: %d\n",
 149					reg, ret);
 150		}
 151
 152		if (!d->chip->init_ack_masked)
 153			continue;
 154		/*
 155		 * Ack all the masked interrupts unconditionally,
 156		 * OR if there is masked interrupt which hasn't been Acked,
 157		 * it'll be ignored in irq handler, then may introduce irq storm
 158		 */
 159		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
 160			reg = d->get_irq_reg(d, d->chip->ack_base, i);
 161
 162			/* some chips ack by write 0 */
 163			if (d->chip->ack_invert)
 164				ret = regmap_write(map, reg, ~d->mask_buf[i]);
 165			else
 166				ret = regmap_write(map, reg, d->mask_buf[i]);
 167			if (d->chip->clear_ack) {
 168				if (d->chip->ack_invert && !ret)
 169					ret = regmap_write(map, reg, UINT_MAX);
 170				else if (!ret)
 171					ret = regmap_write(map, reg, 0);
 172			}
 173			if (ret != 0)
 174				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
 175					reg, ret);
 176		}
 177	}
 178
 179	for (i = 0; i < d->chip->num_config_bases; i++) {
 180		for (j = 0; j < d->chip->num_config_regs; j++) {
 181			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
 182			ret = regmap_write(map, reg, d->config_buf[i][j]);
 183			if (ret)
 184				dev_err(d->map->dev,
 185					"Failed to write config %x: %d\n",
 186					reg, ret);
 187		}
 188	}
 189
 190	if (d->chip->runtime_pm)
 191		pm_runtime_put(map->dev);
 192
 193	/* If we've changed our wakeup count propagate it to the parent */
 194	if (d->wake_count < 0)
 195		for (i = d->wake_count; i < 0; i++)
 196			irq_set_irq_wake(d->irq, 0);
 197	else if (d->wake_count > 0)
 198		for (i = 0; i < d->wake_count; i++)
 199			irq_set_irq_wake(d->irq, 1);
 200
 201	d->wake_count = 0;
 202
 203	mutex_unlock(&d->lock);
 204}
 205
 206static void regmap_irq_enable(struct irq_data *data)
 207{
 208	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 209	struct regmap *map = d->map;
 210	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 211	unsigned int reg = irq_data->reg_offset / map->reg_stride;
 212	unsigned int mask;
 213
 214	/*
 215	 * The type_in_mask flag means that the underlying hardware uses
 216	 * separate mask bits for each interrupt trigger type, but we want
 217	 * to have a single logical interrupt with a configurable type.
 218	 *
 219	 * If the interrupt we're enabling defines any supported types
 220	 * then instead of using the regular mask bits for this interrupt,
 221	 * use the value previously written to the type buffer at the
 222	 * corresponding offset in regmap_irq_set_type().
 223	 */
 224	if (d->chip->type_in_mask && irq_data->type.types_supported)
 225		mask = d->type_buf[reg] & irq_data->mask;
 226	else
 227		mask = irq_data->mask;
 228
 229	if (d->chip->clear_on_unmask)
 230		d->clear_status = true;
 231
 232	d->mask_buf[reg] &= ~mask;
 233}
 234
 235static void regmap_irq_disable(struct irq_data *data)
 236{
 237	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 238	struct regmap *map = d->map;
 239	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 240
 241	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
 242}
 243
 244static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
 245{
 246	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 247	struct regmap *map = d->map;
 248	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 249	int reg, ret;
 250	const struct regmap_irq_type *t = &irq_data->type;
 251
 252	if ((t->types_supported & type) != type)
 253		return 0;
 254
 255	reg = t->type_reg_offset / map->reg_stride;
 256
 257	if (d->chip->type_in_mask) {
 258		ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
 259							irq_data, reg, d->chip->irq_drv_data);
 260		if (ret)
 261			return ret;
 262	}
 263
 264	if (d->chip->set_type_config) {
 265		ret = d->chip->set_type_config(d->config_buf, type, irq_data,
 266					       reg, d->chip->irq_drv_data);
 267		if (ret)
 268			return ret;
 269	}
 270
 271	return 0;
 272}
 273
 274static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
 275{
 276	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 277	struct regmap *map = d->map;
 278	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 279
 280	if (on) {
 281		if (d->wake_buf)
 282			d->wake_buf[irq_data->reg_offset / map->reg_stride]
 283				&= ~irq_data->mask;
 284		d->wake_count++;
 285	} else {
 286		if (d->wake_buf)
 287			d->wake_buf[irq_data->reg_offset / map->reg_stride]
 288				|= irq_data->mask;
 289		d->wake_count--;
 290	}
 291
 292	return 0;
 293}
 294
 295static const struct irq_chip regmap_irq_chip = {
 296	.irq_bus_lock		= regmap_irq_lock,
 297	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
 298	.irq_disable		= regmap_irq_disable,
 299	.irq_enable		= regmap_irq_enable,
 300	.irq_set_type		= regmap_irq_set_type,
 301	.irq_set_wake		= regmap_irq_set_wake,
 302};
 303
 304static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
 305					   unsigned int b)
 306{
 307	const struct regmap_irq_chip *chip = data->chip;
 
 308	struct regmap *map = data->map;
 309	struct regmap_irq_sub_irq_map *subreg;
 310	unsigned int reg;
 311	int i, ret = 0;
 312
 313	if (!chip->sub_reg_offsets) {
 314		reg = data->get_irq_reg(data, chip->status_base, b);
 315		ret = regmap_read(map, reg, &data->status_buf[b]);
 316	} else {
 317		/*
 318		 * Note we can't use ->get_irq_reg() here because the offsets
 319		 * in 'subreg' are *not* interchangeable with indices.
 320		 */
 321		subreg = &chip->sub_reg_offsets[b];
 322		for (i = 0; i < subreg->num_regs; i++) {
 323			unsigned int offset = subreg->offset[i];
 324			unsigned int index = offset / map->reg_stride;
 325
 326			ret = regmap_read(map, chip->status_base + offset,
 327					  &data->status_buf[index]);
 328			if (ret)
 329				break;
 330		}
 331	}
 332	return ret;
 333}
 334
 335static irqreturn_t regmap_irq_thread(int irq, void *d)
 336{
 337	struct regmap_irq_chip_data *data = d;
 338	const struct regmap_irq_chip *chip = data->chip;
 339	struct regmap *map = data->map;
 340	int ret, i;
 341	bool handled = false;
 342	u32 reg;
 343
 344	if (chip->handle_pre_irq)
 345		chip->handle_pre_irq(chip->irq_drv_data);
 346
 347	if (chip->runtime_pm) {
 348		ret = pm_runtime_get_sync(map->dev);
 349		if (ret < 0) {
 350			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
 351				ret);
 352			goto exit;
 353		}
 354	}
 355
 356	/*
 357	 * Read only registers with active IRQs if the chip has 'main status
 358	 * register'. Else read in the statuses, using a single bulk read if
 359	 * possible in order to reduce the I/O overheads.
 360	 */
 361
 362	if (chip->no_status) {
 363		/* no status register so default to all active */
 364		memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
 365	} else if (chip->num_main_regs) {
 366		unsigned int max_main_bits;
 367		unsigned long size;
 368
 369		size = chip->num_regs * sizeof(unsigned int);
 370
 371		max_main_bits = (chip->num_main_status_bits) ?
 372				 chip->num_main_status_bits : chip->num_regs;
 373		/* Clear the status buf as we don't read all status regs */
 374		memset(data->status_buf, 0, size);
 375
 376		/* We could support bulk read for main status registers
 377		 * but I don't expect to see devices with really many main
 378		 * status registers so let's only support single reads for the
 379		 * sake of simplicity. and add bulk reads only if needed
 380		 */
 381		for (i = 0; i < chip->num_main_regs; i++) {
 382			reg = data->get_irq_reg(data, chip->main_status, i);
 383			ret = regmap_read(map, reg, &data->main_status_buf[i]);
 384			if (ret) {
 385				dev_err(map->dev,
 386					"Failed to read IRQ status %d\n",
 387					ret);
 388				goto exit;
 389			}
 390		}
 391
 392		/* Read sub registers with active IRQs */
 393		for (i = 0; i < chip->num_main_regs; i++) {
 394			unsigned int b;
 395			const unsigned long mreg = data->main_status_buf[i];
 396
 397			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
 398				if (i * map->format.val_bytes * 8 + b >
 399				    max_main_bits)
 400					break;
 401				ret = read_sub_irq_data(data, b);
 402
 403				if (ret != 0) {
 404					dev_err(map->dev,
 405						"Failed to read IRQ status %d\n",
 406						ret);
 407					goto exit;
 408				}
 409			}
 410
 411		}
 412	} else if (regmap_irq_can_bulk_read_status(data)) {
 413
 414		u8 *buf8 = data->status_reg_buf;
 415		u16 *buf16 = data->status_reg_buf;
 416		u32 *buf32 = data->status_reg_buf;
 417
 418		BUG_ON(!data->status_reg_buf);
 419
 420		ret = regmap_bulk_read(map, chip->status_base,
 421				       data->status_reg_buf,
 422				       chip->num_regs);
 423		if (ret != 0) {
 424			dev_err(map->dev, "Failed to read IRQ status: %d\n",
 425				ret);
 426			goto exit;
 427		}
 428
 429		for (i = 0; i < data->chip->num_regs; i++) {
 430			switch (map->format.val_bytes) {
 431			case 1:
 432				data->status_buf[i] = buf8[i];
 433				break;
 434			case 2:
 435				data->status_buf[i] = buf16[i];
 436				break;
 437			case 4:
 438				data->status_buf[i] = buf32[i];
 439				break;
 440			default:
 441				BUG();
 442				goto exit;
 443			}
 444		}
 445
 446	} else {
 447		for (i = 0; i < data->chip->num_regs; i++) {
 448			unsigned int reg = data->get_irq_reg(data,
 449					data->chip->status_base, i);
 450			ret = regmap_read(map, reg, &data->status_buf[i]);
 451
 452			if (ret != 0) {
 453				dev_err(map->dev,
 454					"Failed to read IRQ status: %d\n",
 455					ret);
 456				goto exit;
 457			}
 458		}
 459	}
 460
 461	if (chip->status_invert)
 462		for (i = 0; i < data->chip->num_regs; i++)
 463			data->status_buf[i] = ~data->status_buf[i];
 464
 465	/*
 466	 * Ignore masked IRQs and ack if we need to; we ack early so
 467	 * there is no race between handling and acknowledging the
 468	 * interrupt.  We assume that typically few of the interrupts
 469	 * will fire simultaneously so don't worry about overhead from
 470	 * doing a write per register.
 471	 */
 472	for (i = 0; i < data->chip->num_regs; i++) {
 473		data->status_buf[i] &= ~data->mask_buf[i];
 474
 475		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 476			reg = data->get_irq_reg(data, data->chip->ack_base, i);
 477
 478			if (chip->ack_invert)
 479				ret = regmap_write(map, reg,
 480						~data->status_buf[i]);
 481			else
 482				ret = regmap_write(map, reg,
 483						data->status_buf[i]);
 484			if (chip->clear_ack) {
 485				if (chip->ack_invert && !ret)
 486					ret = regmap_write(map, reg, UINT_MAX);
 487				else if (!ret)
 488					ret = regmap_write(map, reg, 0);
 489			}
 490			if (ret != 0)
 491				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 492					reg, ret);
 493		}
 494	}
 495
 496	for (i = 0; i < chip->num_irqs; i++) {
 497		if (data->status_buf[chip->irqs[i].reg_offset /
 498				     map->reg_stride] & chip->irqs[i].mask) {
 499			handle_nested_irq(irq_find_mapping(data->domain, i));
 500			handled = true;
 501		}
 502	}
 503
 504exit:
 505	if (chip->handle_post_irq)
 506		chip->handle_post_irq(chip->irq_drv_data);
 507
 508	if (chip->runtime_pm)
 509		pm_runtime_put(map->dev);
 510
 511	if (handled)
 512		return IRQ_HANDLED;
 513	else
 514		return IRQ_NONE;
 515}
 516
 
 
 
 517static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
 518			  irq_hw_number_t hw)
 519{
 520	struct regmap_irq_chip_data *data = h->host_data;
 521
 522	irq_set_chip_data(virq, data);
 
 523	irq_set_chip(virq, &data->irq_chip);
 524	irq_set_nested_thread(virq, 1);
 525	irq_set_parent(virq, data->irq);
 526	irq_set_noprobe(virq);
 527
 528	return 0;
 529}
 530
 531static const struct irq_domain_ops regmap_domain_ops = {
 532	.map	= regmap_irq_map,
 533	.xlate	= irq_domain_xlate_onetwocell,
 534};
 535
 536/**
 537 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
 538 * @data: Data for the &struct regmap_irq_chip
 539 * @base: Base register
 540 * @index: Register index
 541 *
 542 * Returns the register address corresponding to the given @base and @index
 543 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
 544 */
 545unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
 546					   unsigned int base, int index)
 547{
 548	struct regmap *map = data->map;
 549
 550	return base + index * map->reg_stride * data->irq_reg_stride;
 551}
 552EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
 553
 554/**
 555 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
 556 * @buf: Buffer containing configuration register values, this is a 2D array of
 557 *       `num_config_bases` rows, each of `num_config_regs` elements.
 558 * @type: The requested IRQ type.
 559 * @irq_data: The IRQ being configured.
 560 * @idx: Index of the irq's config registers within each array `buf[i]`
 561 * @irq_drv_data: Driver specific IRQ data
 562 *
 563 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
 564 * chips with one config register. Register values are updated according to
 565 * the &struct regmap_irq_type data associated with an IRQ.
 566 */
 567int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
 568				      const struct regmap_irq *irq_data,
 569				      int idx, void *irq_drv_data)
 570{
 571	const struct regmap_irq_type *t = &irq_data->type;
 572
 573	if (t->type_reg_mask)
 574		buf[0][idx] &= ~t->type_reg_mask;
 575	else
 576		buf[0][idx] &= ~(t->type_falling_val |
 577				 t->type_rising_val |
 578				 t->type_level_low_val |
 579				 t->type_level_high_val);
 580
 581	switch (type) {
 582	case IRQ_TYPE_EDGE_FALLING:
 583		buf[0][idx] |= t->type_falling_val;
 584		break;
 585
 586	case IRQ_TYPE_EDGE_RISING:
 587		buf[0][idx] |= t->type_rising_val;
 588		break;
 589
 590	case IRQ_TYPE_EDGE_BOTH:
 591		buf[0][idx] |= (t->type_falling_val |
 592				t->type_rising_val);
 593		break;
 594
 595	case IRQ_TYPE_LEVEL_HIGH:
 596		buf[0][idx] |= t->type_level_high_val;
 597		break;
 598
 599	case IRQ_TYPE_LEVEL_LOW:
 600		buf[0][idx] |= t->type_level_low_val;
 601		break;
 602
 603	default:
 604		return -EINVAL;
 605	}
 606
 607	return 0;
 608}
 609EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
 610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611/**
 612 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
 613 *
 614 * @fwnode: The firmware node where the IRQ domain should be added to.
 615 * @map: The regmap for the device.
 616 * @irq: The IRQ the device uses to signal interrupts.
 617 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 618 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 619 * @chip: Configuration for the interrupt controller.
 620 * @data: Runtime data structure for the controller, allocated on success.
 621 *
 622 * Returns 0 on success or an errno on failure.
 623 *
 624 * In order for this to be efficient the chip really should use a
 625 * register cache.  The chip driver is responsible for restoring the
 626 * register values used by the IRQ controller over suspend and resume.
 627 */
 628int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
 629			       struct regmap *map, int irq,
 630			       int irq_flags, int irq_base,
 631			       const struct regmap_irq_chip *chip,
 632			       struct regmap_irq_chip_data **data)
 633{
 634	struct regmap_irq_chip_data *d;
 635	int i;
 636	int ret = -ENOMEM;
 637	u32 reg;
 638
 639	if (chip->num_regs <= 0)
 640		return -EINVAL;
 641
 642	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
 643		return -EINVAL;
 644
 645	if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
 646		return -EINVAL;
 647
 648	for (i = 0; i < chip->num_irqs; i++) {
 649		if (chip->irqs[i].reg_offset % map->reg_stride)
 650			return -EINVAL;
 651		if (chip->irqs[i].reg_offset / map->reg_stride >=
 652		    chip->num_regs)
 653			return -EINVAL;
 654	}
 655
 656	if (irq_base) {
 657		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
 658		if (irq_base < 0) {
 659			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
 660				 irq_base);
 661			return irq_base;
 662		}
 663	}
 664
 665	d = kzalloc(sizeof(*d), GFP_KERNEL);
 666	if (!d)
 667		return -ENOMEM;
 668
 669	if (chip->num_main_regs) {
 670		d->main_status_buf = kcalloc(chip->num_main_regs,
 671					     sizeof(*d->main_status_buf),
 672					     GFP_KERNEL);
 673
 674		if (!d->main_status_buf)
 675			goto err_alloc;
 676	}
 677
 678	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
 679				GFP_KERNEL);
 680	if (!d->status_buf)
 681		goto err_alloc;
 682
 683	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
 684			      GFP_KERNEL);
 685	if (!d->mask_buf)
 686		goto err_alloc;
 687
 688	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
 689				  GFP_KERNEL);
 690	if (!d->mask_buf_def)
 691		goto err_alloc;
 692
 693	if (chip->wake_base) {
 694		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
 695				      GFP_KERNEL);
 696		if (!d->wake_buf)
 697			goto err_alloc;
 698	}
 699
 700	if (chip->type_in_mask) {
 701		d->type_buf_def = kcalloc(chip->num_regs,
 702					  sizeof(*d->type_buf_def), GFP_KERNEL);
 703		if (!d->type_buf_def)
 704			goto err_alloc;
 705
 706		d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
 707		if (!d->type_buf)
 708			goto err_alloc;
 709	}
 710
 711	if (chip->num_config_bases && chip->num_config_regs) {
 712		/*
 713		 * Create config_buf[num_config_bases][num_config_regs]
 714		 */
 715		d->config_buf = kcalloc(chip->num_config_bases,
 716					sizeof(*d->config_buf), GFP_KERNEL);
 717		if (!d->config_buf)
 718			goto err_alloc;
 719
 720		for (i = 0; i < chip->num_config_bases; i++) {
 721			d->config_buf[i] = kcalloc(chip->num_config_regs,
 722						   sizeof(**d->config_buf),
 723						   GFP_KERNEL);
 724			if (!d->config_buf[i])
 725				goto err_alloc;
 726		}
 727	}
 728
 729	d->irq_chip = regmap_irq_chip;
 730	d->irq_chip.name = chip->name;
 731	d->irq = irq;
 732	d->map = map;
 733	d->chip = chip;
 734	d->irq_base = irq_base;
 735
 736	if (chip->irq_reg_stride)
 737		d->irq_reg_stride = chip->irq_reg_stride;
 738	else
 739		d->irq_reg_stride = 1;
 740
 741	if (chip->get_irq_reg)
 742		d->get_irq_reg = chip->get_irq_reg;
 743	else
 744		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
 745
 746	if (regmap_irq_can_bulk_read_status(d)) {
 747		d->status_reg_buf = kmalloc_array(chip->num_regs,
 748						  map->format.val_bytes,
 749						  GFP_KERNEL);
 750		if (!d->status_reg_buf)
 751			goto err_alloc;
 752	}
 753
 754	mutex_init(&d->lock);
 755
 756	for (i = 0; i < chip->num_irqs; i++)
 757		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
 758			|= chip->irqs[i].mask;
 759
 760	/* Mask all the interrupts by default */
 761	for (i = 0; i < chip->num_regs; i++) {
 762		d->mask_buf[i] = d->mask_buf_def[i];
 763
 764		if (chip->handle_mask_sync) {
 765			ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
 766						     d->mask_buf[i],
 767						     chip->irq_drv_data);
 768			if (ret)
 769				goto err_alloc;
 770		}
 771
 772		if (chip->mask_base && !chip->handle_mask_sync) {
 773			reg = d->get_irq_reg(d, chip->mask_base, i);
 774			ret = regmap_update_bits(d->map, reg,
 775						 d->mask_buf_def[i],
 776						 d->mask_buf[i]);
 777			if (ret) {
 778				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 779					reg, ret);
 780				goto err_alloc;
 781			}
 782		}
 783
 784		if (chip->unmask_base && !chip->handle_mask_sync) {
 785			reg = d->get_irq_reg(d, chip->unmask_base, i);
 786			ret = regmap_update_bits(d->map, reg,
 787					d->mask_buf_def[i], ~d->mask_buf[i]);
 788			if (ret) {
 789				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 790					reg, ret);
 791				goto err_alloc;
 792			}
 793		}
 794
 795		if (!chip->init_ack_masked)
 796			continue;
 797
 798		/* Ack masked but set interrupts */
 799		if (d->chip->no_status) {
 800			/* no status register so default to all active */
 801			d->status_buf[i] = GENMASK(31, 0);
 802		} else {
 803			reg = d->get_irq_reg(d, d->chip->status_base, i);
 804			ret = regmap_read(map, reg, &d->status_buf[i]);
 805			if (ret != 0) {
 806				dev_err(map->dev, "Failed to read IRQ status: %d\n",
 807					ret);
 808				goto err_alloc;
 809			}
 810		}
 811
 812		if (chip->status_invert)
 813			d->status_buf[i] = ~d->status_buf[i];
 814
 815		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 816			reg = d->get_irq_reg(d, d->chip->ack_base, i);
 817			if (chip->ack_invert)
 818				ret = regmap_write(map, reg,
 819					~(d->status_buf[i] & d->mask_buf[i]));
 820			else
 821				ret = regmap_write(map, reg,
 822					d->status_buf[i] & d->mask_buf[i]);
 823			if (chip->clear_ack) {
 824				if (chip->ack_invert && !ret)
 825					ret = regmap_write(map, reg, UINT_MAX);
 826				else if (!ret)
 827					ret = regmap_write(map, reg, 0);
 828			}
 829			if (ret != 0) {
 830				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 831					reg, ret);
 832				goto err_alloc;
 833			}
 834		}
 835	}
 836
 837	/* Wake is disabled by default */
 838	if (d->wake_buf) {
 839		for (i = 0; i < chip->num_regs; i++) {
 840			d->wake_buf[i] = d->mask_buf_def[i];
 841			reg = d->get_irq_reg(d, d->chip->wake_base, i);
 842
 843			if (chip->wake_invert)
 844				ret = regmap_update_bits(d->map, reg,
 845							 d->mask_buf_def[i],
 846							 0);
 847			else
 848				ret = regmap_update_bits(d->map, reg,
 849							 d->mask_buf_def[i],
 850							 d->wake_buf[i]);
 851			if (ret != 0) {
 852				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 853					reg, ret);
 854				goto err_alloc;
 855			}
 856		}
 857	}
 858
 859	if (irq_base)
 860		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
 861						     irq_base, 0,
 862						     &regmap_domain_ops, d);
 863	else
 864		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
 865						     &regmap_domain_ops, d);
 866	if (!d->domain) {
 867		dev_err(map->dev, "Failed to create IRQ domain\n");
 868		ret = -ENOMEM;
 869		goto err_alloc;
 870	}
 871
 872	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
 873				   irq_flags | IRQF_ONESHOT,
 874				   chip->name, d);
 875	if (ret != 0) {
 876		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
 877			irq, chip->name, ret);
 878		goto err_domain;
 879	}
 880
 881	*data = d;
 882
 883	return 0;
 884
 885err_domain:
 886	/* Should really dispose of the domain but... */
 887err_alloc:
 888	kfree(d->type_buf);
 889	kfree(d->type_buf_def);
 890	kfree(d->wake_buf);
 891	kfree(d->mask_buf_def);
 892	kfree(d->mask_buf);
 
 893	kfree(d->status_buf);
 894	kfree(d->status_reg_buf);
 895	if (d->config_buf) {
 896		for (i = 0; i < chip->num_config_bases; i++)
 897			kfree(d->config_buf[i]);
 898		kfree(d->config_buf);
 899	}
 900	kfree(d);
 901	return ret;
 902}
 903EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
 904
 905/**
 906 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
 907 *
 908 * @map: The regmap for the device.
 909 * @irq: The IRQ the device uses to signal interrupts.
 910 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 911 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 912 * @chip: Configuration for the interrupt controller.
 913 * @data: Runtime data structure for the controller, allocated on success.
 914 *
 915 * Returns 0 on success or an errno on failure.
 916 *
 917 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
 918 * node of the regmap is used.
 919 */
 920int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
 921			int irq_base, const struct regmap_irq_chip *chip,
 922			struct regmap_irq_chip_data **data)
 923{
 924	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
 925					  irq_flags, irq_base, chip, data);
 926}
 927EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
 928
 929/**
 930 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
 931 *
 932 * @irq: Primary IRQ for the device
 933 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
 934 *
 935 * This function also disposes of all mapped IRQs on the chip.
 936 */
 937void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
 938{
 939	unsigned int virq;
 940	int i, hwirq;
 941
 942	if (!d)
 943		return;
 944
 945	free_irq(irq, d);
 946
 947	/* Dispose all virtual irq from irq domain before removing it */
 948	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
 949		/* Ignore hwirq if holes in the IRQ list */
 950		if (!d->chip->irqs[hwirq].mask)
 951			continue;
 952
 953		/*
 954		 * Find the virtual irq of hwirq on chip and if it is
 955		 * there then dispose it
 956		 */
 957		virq = irq_find_mapping(d->domain, hwirq);
 958		if (virq)
 959			irq_dispose_mapping(virq);
 960	}
 961
 962	irq_domain_remove(d->domain);
 963	kfree(d->type_buf);
 964	kfree(d->type_buf_def);
 965	kfree(d->wake_buf);
 966	kfree(d->mask_buf_def);
 967	kfree(d->mask_buf);
 
 968	kfree(d->status_reg_buf);
 969	kfree(d->status_buf);
 970	if (d->config_buf) {
 971		for (i = 0; i < d->chip->num_config_bases; i++)
 972			kfree(d->config_buf[i]);
 973		kfree(d->config_buf);
 974	}
 975	kfree(d);
 976}
 977EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
 978
 979static void devm_regmap_irq_chip_release(struct device *dev, void *res)
 980{
 981	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
 982
 983	regmap_del_irq_chip(d->irq, d);
 984}
 985
 986static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
 987
 988{
 989	struct regmap_irq_chip_data **r = res;
 990
 991	if (!r || !*r) {
 992		WARN_ON(!r || !*r);
 993		return 0;
 994	}
 995	return *r == data;
 996}
 997
 998/**
 999 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1000 *
1001 * @dev: The device pointer on which irq_chip belongs to.
1002 * @fwnode: The firmware node where the IRQ domain should be added to.
1003 * @map: The regmap for the device.
1004 * @irq: The IRQ the device uses to signal interrupts
1005 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1006 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1007 * @chip: Configuration for the interrupt controller.
1008 * @data: Runtime data structure for the controller, allocated on success
1009 *
1010 * Returns 0 on success or an errno on failure.
1011 *
1012 * The &regmap_irq_chip_data will be automatically released when the device is
1013 * unbound.
1014 */
1015int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1016				    struct fwnode_handle *fwnode,
1017				    struct regmap *map, int irq,
1018				    int irq_flags, int irq_base,
1019				    const struct regmap_irq_chip *chip,
1020				    struct regmap_irq_chip_data **data)
1021{
1022	struct regmap_irq_chip_data **ptr, *d;
1023	int ret;
1024
1025	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1026			   GFP_KERNEL);
1027	if (!ptr)
1028		return -ENOMEM;
1029
1030	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1031					 chip, &d);
1032	if (ret < 0) {
1033		devres_free(ptr);
1034		return ret;
1035	}
1036
1037	*ptr = d;
1038	devres_add(dev, ptr);
1039	*data = d;
1040	return 0;
1041}
1042EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1043
1044/**
1045 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1046 *
1047 * @dev: The device pointer on which irq_chip belongs to.
1048 * @map: The regmap for the device.
1049 * @irq: The IRQ the device uses to signal interrupts
1050 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1051 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1052 * @chip: Configuration for the interrupt controller.
1053 * @data: Runtime data structure for the controller, allocated on success
1054 *
1055 * Returns 0 on success or an errno on failure.
1056 *
1057 * The &regmap_irq_chip_data will be automatically released when the device is
1058 * unbound.
1059 */
1060int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1061			     int irq_flags, int irq_base,
1062			     const struct regmap_irq_chip *chip,
1063			     struct regmap_irq_chip_data **data)
1064{
1065	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1066					       irq, irq_flags, irq_base, chip,
1067					       data);
1068}
1069EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1070
1071/**
1072 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1073 *
1074 * @dev: Device for which the resource was allocated.
1075 * @irq: Primary IRQ for the device.
1076 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1077 *
1078 * A resource managed version of regmap_del_irq_chip().
1079 */
1080void devm_regmap_del_irq_chip(struct device *dev, int irq,
1081			      struct regmap_irq_chip_data *data)
1082{
1083	int rc;
1084
1085	WARN_ON(irq != data->irq);
1086	rc = devres_release(dev, devm_regmap_irq_chip_release,
1087			    devm_regmap_irq_chip_match, data);
1088
1089	if (rc != 0)
1090		WARN_ON(rc);
1091}
1092EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1093
1094/**
1095 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1096 *
1097 * @data: regmap irq controller to operate on.
1098 *
1099 * Useful for drivers to request their own IRQs.
1100 */
1101int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1102{
1103	WARN_ON(!data->irq_base);
1104	return data->irq_base;
1105}
1106EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1107
1108/**
1109 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1110 *
1111 * @data: regmap irq controller to operate on.
1112 * @irq: index of the interrupt requested in the chip IRQs.
1113 *
1114 * Useful for drivers to request their own IRQs.
1115 */
1116int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1117{
1118	/* Handle holes in the IRQ list */
1119	if (!data->chip->irqs[irq].mask)
1120		return -EINVAL;
1121
1122	return irq_create_mapping(data->domain, irq);
1123}
1124EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1125
1126/**
1127 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1128 *
1129 * @data: regmap_irq controller to operate on.
1130 *
1131 * Useful for drivers to request their own IRQs and for integration
1132 * with subsystems.  For ease of integration NULL is accepted as a
1133 * domain, allowing devices to just call this even if no domain is
1134 * allocated.
1135 */
1136struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1137{
1138	if (data)
1139		return data->domain;
1140	else
1141		return NULL;
1142}
1143EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// regmap based irq_chip
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/interrupt.h>
  12#include <linux/irq.h>
  13#include <linux/irqdomain.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/regmap.h>
  16#include <linux/slab.h>
  17
  18#include "internal.h"
  19
  20struct regmap_irq_chip_data {
  21	struct mutex lock;
  22	struct irq_chip irq_chip;
  23
  24	struct regmap *map;
  25	const struct regmap_irq_chip *chip;
  26
  27	int irq_base;
  28	struct irq_domain *domain;
  29
  30	int irq;
  31	int wake_count;
  32
  33	void *status_reg_buf;
  34	unsigned int *main_status_buf;
  35	unsigned int *status_buf;
  36	unsigned int *mask_buf;
  37	unsigned int *mask_buf_def;
  38	unsigned int *wake_buf;
  39	unsigned int *type_buf;
  40	unsigned int *type_buf_def;
  41	unsigned int **config_buf;
  42
  43	unsigned int irq_reg_stride;
  44
  45	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
  46				    unsigned int base, int index);
  47
  48	unsigned int clear_status:1;
  49};
  50
  51static inline const
  52struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
  53				     int irq)
  54{
  55	return &data->chip->irqs[irq];
  56}
  57
  58static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
  59{
  60	struct regmap *map = data->map;
  61
  62	/*
  63	 * While possible that a user-defined ->get_irq_reg() callback might
  64	 * be linear enough to support bulk reads, most of the time it won't.
  65	 * Therefore only allow them if the default callback is being used.
  66	 */
  67	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
  68	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
  69	       !map->use_single_read;
  70}
  71
  72static void regmap_irq_lock(struct irq_data *data)
  73{
  74	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  75
  76	mutex_lock(&d->lock);
  77}
  78
  79static void regmap_irq_sync_unlock(struct irq_data *data)
  80{
  81	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  82	struct regmap *map = d->map;
  83	int i, j, ret;
  84	u32 reg;
  85	u32 val;
  86
  87	if (d->chip->runtime_pm) {
  88		ret = pm_runtime_get_sync(map->dev);
  89		if (ret < 0)
  90			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
  91				ret);
  92	}
  93
  94	if (d->clear_status) {
  95		for (i = 0; i < d->chip->num_regs; i++) {
  96			reg = d->get_irq_reg(d, d->chip->status_base, i);
  97
  98			ret = regmap_read(map, reg, &val);
  99			if (ret)
 100				dev_err(d->map->dev,
 101					"Failed to clear the interrupt status bits\n");
 102		}
 103
 104		d->clear_status = false;
 105	}
 106
 107	/*
 108	 * If there's been a change in the mask write it back to the
 109	 * hardware.  We rely on the use of the regmap core cache to
 110	 * suppress pointless writes.
 111	 */
 112	for (i = 0; i < d->chip->num_regs; i++) {
 113		if (d->chip->handle_mask_sync)
 114			d->chip->handle_mask_sync(i, d->mask_buf_def[i],
 115						  d->mask_buf[i],
 116						  d->chip->irq_drv_data);
 117
 118		if (d->chip->mask_base && !d->chip->handle_mask_sync) {
 119			reg = d->get_irq_reg(d, d->chip->mask_base, i);
 120			ret = regmap_update_bits(d->map, reg,
 121						 d->mask_buf_def[i],
 122						 d->mask_buf[i]);
 123			if (ret)
 124				dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
 125		}
 126
 127		if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
 128			reg = d->get_irq_reg(d, d->chip->unmask_base, i);
 129			ret = regmap_update_bits(d->map, reg,
 130					d->mask_buf_def[i], ~d->mask_buf[i]);
 131			if (ret)
 132				dev_err(d->map->dev, "Failed to sync masks in %x\n",
 133					reg);
 134		}
 135
 136		reg = d->get_irq_reg(d, d->chip->wake_base, i);
 137		if (d->wake_buf) {
 138			if (d->chip->wake_invert)
 139				ret = regmap_update_bits(d->map, reg,
 140							 d->mask_buf_def[i],
 141							 ~d->wake_buf[i]);
 142			else
 143				ret = regmap_update_bits(d->map, reg,
 144							 d->mask_buf_def[i],
 145							 d->wake_buf[i]);
 146			if (ret != 0)
 147				dev_err(d->map->dev,
 148					"Failed to sync wakes in %x: %d\n",
 149					reg, ret);
 150		}
 151
 152		if (!d->chip->init_ack_masked)
 153			continue;
 154		/*
 155		 * Ack all the masked interrupts unconditionally,
 156		 * OR if there is masked interrupt which hasn't been Acked,
 157		 * it'll be ignored in irq handler, then may introduce irq storm
 158		 */
 159		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
 160			reg = d->get_irq_reg(d, d->chip->ack_base, i);
 161
 162			/* some chips ack by write 0 */
 163			if (d->chip->ack_invert)
 164				ret = regmap_write(map, reg, ~d->mask_buf[i]);
 165			else
 166				ret = regmap_write(map, reg, d->mask_buf[i]);
 167			if (d->chip->clear_ack) {
 168				if (d->chip->ack_invert && !ret)
 169					ret = regmap_write(map, reg, UINT_MAX);
 170				else if (!ret)
 171					ret = regmap_write(map, reg, 0);
 172			}
 173			if (ret != 0)
 174				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
 175					reg, ret);
 176		}
 177	}
 178
 179	for (i = 0; i < d->chip->num_config_bases; i++) {
 180		for (j = 0; j < d->chip->num_config_regs; j++) {
 181			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
 182			ret = regmap_write(map, reg, d->config_buf[i][j]);
 183			if (ret)
 184				dev_err(d->map->dev,
 185					"Failed to write config %x: %d\n",
 186					reg, ret);
 187		}
 188	}
 189
 190	if (d->chip->runtime_pm)
 191		pm_runtime_put(map->dev);
 192
 193	/* If we've changed our wakeup count propagate it to the parent */
 194	if (d->wake_count < 0)
 195		for (i = d->wake_count; i < 0; i++)
 196			irq_set_irq_wake(d->irq, 0);
 197	else if (d->wake_count > 0)
 198		for (i = 0; i < d->wake_count; i++)
 199			irq_set_irq_wake(d->irq, 1);
 200
 201	d->wake_count = 0;
 202
 203	mutex_unlock(&d->lock);
 204}
 205
 206static void regmap_irq_enable(struct irq_data *data)
 207{
 208	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 209	struct regmap *map = d->map;
 210	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 211	unsigned int reg = irq_data->reg_offset / map->reg_stride;
 212	unsigned int mask;
 213
 214	/*
 215	 * The type_in_mask flag means that the underlying hardware uses
 216	 * separate mask bits for each interrupt trigger type, but we want
 217	 * to have a single logical interrupt with a configurable type.
 218	 *
 219	 * If the interrupt we're enabling defines any supported types
 220	 * then instead of using the regular mask bits for this interrupt,
 221	 * use the value previously written to the type buffer at the
 222	 * corresponding offset in regmap_irq_set_type().
 223	 */
 224	if (d->chip->type_in_mask && irq_data->type.types_supported)
 225		mask = d->type_buf[reg] & irq_data->mask;
 226	else
 227		mask = irq_data->mask;
 228
 229	if (d->chip->clear_on_unmask)
 230		d->clear_status = true;
 231
 232	d->mask_buf[reg] &= ~mask;
 233}
 234
 235static void regmap_irq_disable(struct irq_data *data)
 236{
 237	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 238	struct regmap *map = d->map;
 239	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 240
 241	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
 242}
 243
 244static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
 245{
 246	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 247	struct regmap *map = d->map;
 248	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 249	int reg, ret;
 250	const struct regmap_irq_type *t = &irq_data->type;
 251
 252	if ((t->types_supported & type) != type)
 253		return 0;
 254
 255	reg = t->type_reg_offset / map->reg_stride;
 256
 257	if (d->chip->type_in_mask) {
 258		ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
 259							irq_data, reg, d->chip->irq_drv_data);
 260		if (ret)
 261			return ret;
 262	}
 263
 264	if (d->chip->set_type_config) {
 265		ret = d->chip->set_type_config(d->config_buf, type, irq_data,
 266					       reg, d->chip->irq_drv_data);
 267		if (ret)
 268			return ret;
 269	}
 270
 271	return 0;
 272}
 273
 274static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
 275{
 276	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 277	struct regmap *map = d->map;
 278	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 279
 280	if (on) {
 281		if (d->wake_buf)
 282			d->wake_buf[irq_data->reg_offset / map->reg_stride]
 283				&= ~irq_data->mask;
 284		d->wake_count++;
 285	} else {
 286		if (d->wake_buf)
 287			d->wake_buf[irq_data->reg_offset / map->reg_stride]
 288				|= irq_data->mask;
 289		d->wake_count--;
 290	}
 291
 292	return 0;
 293}
 294
 295static const struct irq_chip regmap_irq_chip = {
 296	.irq_bus_lock		= regmap_irq_lock,
 297	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
 298	.irq_disable		= regmap_irq_disable,
 299	.irq_enable		= regmap_irq_enable,
 300	.irq_set_type		= regmap_irq_set_type,
 301	.irq_set_wake		= regmap_irq_set_wake,
 302};
 303
 304static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
 305					   unsigned int b)
 306{
 307	const struct regmap_irq_chip *chip = data->chip;
 308	const struct regmap_irq_sub_irq_map *subreg;
 309	struct regmap *map = data->map;
 
 310	unsigned int reg;
 311	int i, ret = 0;
 312
 313	if (!chip->sub_reg_offsets) {
 314		reg = data->get_irq_reg(data, chip->status_base, b);
 315		ret = regmap_read(map, reg, &data->status_buf[b]);
 316	} else {
 317		/*
 318		 * Note we can't use ->get_irq_reg() here because the offsets
 319		 * in 'subreg' are *not* interchangeable with indices.
 320		 */
 321		subreg = &chip->sub_reg_offsets[b];
 322		for (i = 0; i < subreg->num_regs; i++) {
 323			unsigned int offset = subreg->offset[i];
 324			unsigned int index = offset / map->reg_stride;
 325
 326			ret = regmap_read(map, chip->status_base + offset,
 327					  &data->status_buf[index]);
 328			if (ret)
 329				break;
 330		}
 331	}
 332	return ret;
 333}
 334
 335static irqreturn_t regmap_irq_thread(int irq, void *d)
 336{
 337	struct regmap_irq_chip_data *data = d;
 338	const struct regmap_irq_chip *chip = data->chip;
 339	struct regmap *map = data->map;
 340	int ret, i;
 341	bool handled = false;
 342	u32 reg;
 343
 344	if (chip->handle_pre_irq)
 345		chip->handle_pre_irq(chip->irq_drv_data);
 346
 347	if (chip->runtime_pm) {
 348		ret = pm_runtime_get_sync(map->dev);
 349		if (ret < 0) {
 350			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
 351				ret);
 352			goto exit;
 353		}
 354	}
 355
 356	/*
 357	 * Read only registers with active IRQs if the chip has 'main status
 358	 * register'. Else read in the statuses, using a single bulk read if
 359	 * possible in order to reduce the I/O overheads.
 360	 */
 361
 362	if (chip->no_status) {
 363		/* no status register so default to all active */
 364		memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
 365	} else if (chip->num_main_regs) {
 366		unsigned int max_main_bits;
 
 
 
 367
 368		max_main_bits = (chip->num_main_status_bits) ?
 369				 chip->num_main_status_bits : chip->num_regs;
 370		/* Clear the status buf as we don't read all status regs */
 371		memset32(data->status_buf, 0, chip->num_regs);
 372
 373		/* We could support bulk read for main status registers
 374		 * but I don't expect to see devices with really many main
 375		 * status registers so let's only support single reads for the
 376		 * sake of simplicity. and add bulk reads only if needed
 377		 */
 378		for (i = 0; i < chip->num_main_regs; i++) {
 379			reg = data->get_irq_reg(data, chip->main_status, i);
 380			ret = regmap_read(map, reg, &data->main_status_buf[i]);
 381			if (ret) {
 382				dev_err(map->dev,
 383					"Failed to read IRQ status %d\n",
 384					ret);
 385				goto exit;
 386			}
 387		}
 388
 389		/* Read sub registers with active IRQs */
 390		for (i = 0; i < chip->num_main_regs; i++) {
 391			unsigned int b;
 392			const unsigned long mreg = data->main_status_buf[i];
 393
 394			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
 395				if (i * map->format.val_bytes * 8 + b >
 396				    max_main_bits)
 397					break;
 398				ret = read_sub_irq_data(data, b);
 399
 400				if (ret != 0) {
 401					dev_err(map->dev,
 402						"Failed to read IRQ status %d\n",
 403						ret);
 404					goto exit;
 405				}
 406			}
 407
 408		}
 409	} else if (regmap_irq_can_bulk_read_status(data)) {
 410
 411		u8 *buf8 = data->status_reg_buf;
 412		u16 *buf16 = data->status_reg_buf;
 413		u32 *buf32 = data->status_reg_buf;
 414
 415		BUG_ON(!data->status_reg_buf);
 416
 417		ret = regmap_bulk_read(map, chip->status_base,
 418				       data->status_reg_buf,
 419				       chip->num_regs);
 420		if (ret != 0) {
 421			dev_err(map->dev, "Failed to read IRQ status: %d\n",
 422				ret);
 423			goto exit;
 424		}
 425
 426		for (i = 0; i < data->chip->num_regs; i++) {
 427			switch (map->format.val_bytes) {
 428			case 1:
 429				data->status_buf[i] = buf8[i];
 430				break;
 431			case 2:
 432				data->status_buf[i] = buf16[i];
 433				break;
 434			case 4:
 435				data->status_buf[i] = buf32[i];
 436				break;
 437			default:
 438				BUG();
 439				goto exit;
 440			}
 441		}
 442
 443	} else {
 444		for (i = 0; i < data->chip->num_regs; i++) {
 445			unsigned int reg = data->get_irq_reg(data,
 446					data->chip->status_base, i);
 447			ret = regmap_read(map, reg, &data->status_buf[i]);
 448
 449			if (ret != 0) {
 450				dev_err(map->dev,
 451					"Failed to read IRQ status: %d\n",
 452					ret);
 453				goto exit;
 454			}
 455		}
 456	}
 457
 458	if (chip->status_invert)
 459		for (i = 0; i < data->chip->num_regs; i++)
 460			data->status_buf[i] = ~data->status_buf[i];
 461
 462	/*
 463	 * Ignore masked IRQs and ack if we need to; we ack early so
 464	 * there is no race between handling and acknowledging the
 465	 * interrupt.  We assume that typically few of the interrupts
 466	 * will fire simultaneously so don't worry about overhead from
 467	 * doing a write per register.
 468	 */
 469	for (i = 0; i < data->chip->num_regs; i++) {
 470		data->status_buf[i] &= ~data->mask_buf[i];
 471
 472		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 473			reg = data->get_irq_reg(data, data->chip->ack_base, i);
 474
 475			if (chip->ack_invert)
 476				ret = regmap_write(map, reg,
 477						~data->status_buf[i]);
 478			else
 479				ret = regmap_write(map, reg,
 480						data->status_buf[i]);
 481			if (chip->clear_ack) {
 482				if (chip->ack_invert && !ret)
 483					ret = regmap_write(map, reg, UINT_MAX);
 484				else if (!ret)
 485					ret = regmap_write(map, reg, 0);
 486			}
 487			if (ret != 0)
 488				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 489					reg, ret);
 490		}
 491	}
 492
 493	for (i = 0; i < chip->num_irqs; i++) {
 494		if (data->status_buf[chip->irqs[i].reg_offset /
 495				     map->reg_stride] & chip->irqs[i].mask) {
 496			handle_nested_irq(irq_find_mapping(data->domain, i));
 497			handled = true;
 498		}
 499	}
 500
 501exit:
 502	if (chip->handle_post_irq)
 503		chip->handle_post_irq(chip->irq_drv_data);
 504
 505	if (chip->runtime_pm)
 506		pm_runtime_put(map->dev);
 507
 508	if (handled)
 509		return IRQ_HANDLED;
 510	else
 511		return IRQ_NONE;
 512}
 513
 514static struct lock_class_key regmap_irq_lock_class;
 515static struct lock_class_key regmap_irq_request_class;
 516
 517static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
 518			  irq_hw_number_t hw)
 519{
 520	struct regmap_irq_chip_data *data = h->host_data;
 521
 522	irq_set_chip_data(virq, data);
 523	irq_set_lockdep_class(virq, &regmap_irq_lock_class, &regmap_irq_request_class);
 524	irq_set_chip(virq, &data->irq_chip);
 525	irq_set_nested_thread(virq, 1);
 526	irq_set_parent(virq, data->irq);
 527	irq_set_noprobe(virq);
 528
 529	return 0;
 530}
 531
 532static const struct irq_domain_ops regmap_domain_ops = {
 533	.map	= regmap_irq_map,
 534	.xlate	= irq_domain_xlate_onetwocell,
 535};
 536
 537/**
 538 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
 539 * @data: Data for the &struct regmap_irq_chip
 540 * @base: Base register
 541 * @index: Register index
 542 *
 543 * Returns the register address corresponding to the given @base and @index
 544 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
 545 */
 546unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
 547					   unsigned int base, int index)
 548{
 549	struct regmap *map = data->map;
 550
 551	return base + index * map->reg_stride * data->irq_reg_stride;
 552}
 553EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
 554
 555/**
 556 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
 557 * @buf: Buffer containing configuration register values, this is a 2D array of
 558 *       `num_config_bases` rows, each of `num_config_regs` elements.
 559 * @type: The requested IRQ type.
 560 * @irq_data: The IRQ being configured.
 561 * @idx: Index of the irq's config registers within each array `buf[i]`
 562 * @irq_drv_data: Driver specific IRQ data
 563 *
 564 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
 565 * chips with one config register. Register values are updated according to
 566 * the &struct regmap_irq_type data associated with an IRQ.
 567 */
 568int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
 569				      const struct regmap_irq *irq_data,
 570				      int idx, void *irq_drv_data)
 571{
 572	const struct regmap_irq_type *t = &irq_data->type;
 573
 574	if (t->type_reg_mask)
 575		buf[0][idx] &= ~t->type_reg_mask;
 576	else
 577		buf[0][idx] &= ~(t->type_falling_val |
 578				 t->type_rising_val |
 579				 t->type_level_low_val |
 580				 t->type_level_high_val);
 581
 582	switch (type) {
 583	case IRQ_TYPE_EDGE_FALLING:
 584		buf[0][idx] |= t->type_falling_val;
 585		break;
 586
 587	case IRQ_TYPE_EDGE_RISING:
 588		buf[0][idx] |= t->type_rising_val;
 589		break;
 590
 591	case IRQ_TYPE_EDGE_BOTH:
 592		buf[0][idx] |= (t->type_falling_val |
 593				t->type_rising_val);
 594		break;
 595
 596	case IRQ_TYPE_LEVEL_HIGH:
 597		buf[0][idx] |= t->type_level_high_val;
 598		break;
 599
 600	case IRQ_TYPE_LEVEL_LOW:
 601		buf[0][idx] |= t->type_level_low_val;
 602		break;
 603
 604	default:
 605		return -EINVAL;
 606	}
 607
 608	return 0;
 609}
 610EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
 611
 612static int regmap_irq_create_domain(struct fwnode_handle *fwnode, int irq_base,
 613				    const struct regmap_irq_chip *chip,
 614				    struct regmap_irq_chip_data *d)
 615{
 616	struct irq_domain_info info = {
 617		.fwnode = fwnode,
 618		.size = chip->num_irqs,
 619		.hwirq_max = chip->num_irqs,
 620		.virq_base = irq_base,
 621		.ops = &regmap_domain_ops,
 622		.host_data = d,
 623		.name_suffix = chip->domain_suffix,
 624	};
 625
 626	d->domain = irq_domain_instantiate(&info);
 627	if (IS_ERR(d->domain)) {
 628		dev_err(d->map->dev, "Failed to create IRQ domain\n");
 629		return PTR_ERR(d->domain);
 630	}
 631
 632	return 0;
 633}
 634
 635
 636/**
 637 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
 638 *
 639 * @fwnode: The firmware node where the IRQ domain should be added to.
 640 * @map: The regmap for the device.
 641 * @irq: The IRQ the device uses to signal interrupts.
 642 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 643 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 644 * @chip: Configuration for the interrupt controller.
 645 * @data: Runtime data structure for the controller, allocated on success.
 646 *
 647 * Returns 0 on success or an errno on failure.
 648 *
 649 * In order for this to be efficient the chip really should use a
 650 * register cache.  The chip driver is responsible for restoring the
 651 * register values used by the IRQ controller over suspend and resume.
 652 */
 653int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
 654			       struct regmap *map, int irq,
 655			       int irq_flags, int irq_base,
 656			       const struct regmap_irq_chip *chip,
 657			       struct regmap_irq_chip_data **data)
 658{
 659	struct regmap_irq_chip_data *d;
 660	int i;
 661	int ret = -ENOMEM;
 662	u32 reg;
 663
 664	if (chip->num_regs <= 0)
 665		return -EINVAL;
 666
 667	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
 668		return -EINVAL;
 669
 670	if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
 671		return -EINVAL;
 672
 673	for (i = 0; i < chip->num_irqs; i++) {
 674		if (chip->irqs[i].reg_offset % map->reg_stride)
 675			return -EINVAL;
 676		if (chip->irqs[i].reg_offset / map->reg_stride >=
 677		    chip->num_regs)
 678			return -EINVAL;
 679	}
 680
 681	if (irq_base) {
 682		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
 683		if (irq_base < 0) {
 684			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
 685				 irq_base);
 686			return irq_base;
 687		}
 688	}
 689
 690	d = kzalloc(sizeof(*d), GFP_KERNEL);
 691	if (!d)
 692		return -ENOMEM;
 693
 694	if (chip->num_main_regs) {
 695		d->main_status_buf = kcalloc(chip->num_main_regs,
 696					     sizeof(*d->main_status_buf),
 697					     GFP_KERNEL);
 698
 699		if (!d->main_status_buf)
 700			goto err_alloc;
 701	}
 702
 703	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
 704				GFP_KERNEL);
 705	if (!d->status_buf)
 706		goto err_alloc;
 707
 708	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
 709			      GFP_KERNEL);
 710	if (!d->mask_buf)
 711		goto err_alloc;
 712
 713	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
 714				  GFP_KERNEL);
 715	if (!d->mask_buf_def)
 716		goto err_alloc;
 717
 718	if (chip->wake_base) {
 719		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
 720				      GFP_KERNEL);
 721		if (!d->wake_buf)
 722			goto err_alloc;
 723	}
 724
 725	if (chip->type_in_mask) {
 726		d->type_buf_def = kcalloc(chip->num_regs,
 727					  sizeof(*d->type_buf_def), GFP_KERNEL);
 728		if (!d->type_buf_def)
 729			goto err_alloc;
 730
 731		d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
 732		if (!d->type_buf)
 733			goto err_alloc;
 734	}
 735
 736	if (chip->num_config_bases && chip->num_config_regs) {
 737		/*
 738		 * Create config_buf[num_config_bases][num_config_regs]
 739		 */
 740		d->config_buf = kcalloc(chip->num_config_bases,
 741					sizeof(*d->config_buf), GFP_KERNEL);
 742		if (!d->config_buf)
 743			goto err_alloc;
 744
 745		for (i = 0; i < chip->num_config_bases; i++) {
 746			d->config_buf[i] = kcalloc(chip->num_config_regs,
 747						   sizeof(**d->config_buf),
 748						   GFP_KERNEL);
 749			if (!d->config_buf[i])
 750				goto err_alloc;
 751		}
 752	}
 753
 754	d->irq_chip = regmap_irq_chip;
 755	d->irq_chip.name = chip->name;
 756	d->irq = irq;
 757	d->map = map;
 758	d->chip = chip;
 759	d->irq_base = irq_base;
 760
 761	if (chip->irq_reg_stride)
 762		d->irq_reg_stride = chip->irq_reg_stride;
 763	else
 764		d->irq_reg_stride = 1;
 765
 766	if (chip->get_irq_reg)
 767		d->get_irq_reg = chip->get_irq_reg;
 768	else
 769		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
 770
 771	if (regmap_irq_can_bulk_read_status(d)) {
 772		d->status_reg_buf = kmalloc_array(chip->num_regs,
 773						  map->format.val_bytes,
 774						  GFP_KERNEL);
 775		if (!d->status_reg_buf)
 776			goto err_alloc;
 777	}
 778
 779	mutex_init(&d->lock);
 780
 781	for (i = 0; i < chip->num_irqs; i++)
 782		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
 783			|= chip->irqs[i].mask;
 784
 785	/* Mask all the interrupts by default */
 786	for (i = 0; i < chip->num_regs; i++) {
 787		d->mask_buf[i] = d->mask_buf_def[i];
 788
 789		if (chip->handle_mask_sync) {
 790			ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
 791						     d->mask_buf[i],
 792						     chip->irq_drv_data);
 793			if (ret)
 794				goto err_alloc;
 795		}
 796
 797		if (chip->mask_base && !chip->handle_mask_sync) {
 798			reg = d->get_irq_reg(d, chip->mask_base, i);
 799			ret = regmap_update_bits(d->map, reg,
 800						 d->mask_buf_def[i],
 801						 d->mask_buf[i]);
 802			if (ret) {
 803				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 804					reg, ret);
 805				goto err_alloc;
 806			}
 807		}
 808
 809		if (chip->unmask_base && !chip->handle_mask_sync) {
 810			reg = d->get_irq_reg(d, chip->unmask_base, i);
 811			ret = regmap_update_bits(d->map, reg,
 812					d->mask_buf_def[i], ~d->mask_buf[i]);
 813			if (ret) {
 814				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 815					reg, ret);
 816				goto err_alloc;
 817			}
 818		}
 819
 820		if (!chip->init_ack_masked)
 821			continue;
 822
 823		/* Ack masked but set interrupts */
 824		if (d->chip->no_status) {
 825			/* no status register so default to all active */
 826			d->status_buf[i] = GENMASK(31, 0);
 827		} else {
 828			reg = d->get_irq_reg(d, d->chip->status_base, i);
 829			ret = regmap_read(map, reg, &d->status_buf[i]);
 830			if (ret != 0) {
 831				dev_err(map->dev, "Failed to read IRQ status: %d\n",
 832					ret);
 833				goto err_alloc;
 834			}
 835		}
 836
 837		if (chip->status_invert)
 838			d->status_buf[i] = ~d->status_buf[i];
 839
 840		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 841			reg = d->get_irq_reg(d, d->chip->ack_base, i);
 842			if (chip->ack_invert)
 843				ret = regmap_write(map, reg,
 844					~(d->status_buf[i] & d->mask_buf[i]));
 845			else
 846				ret = regmap_write(map, reg,
 847					d->status_buf[i] & d->mask_buf[i]);
 848			if (chip->clear_ack) {
 849				if (chip->ack_invert && !ret)
 850					ret = regmap_write(map, reg, UINT_MAX);
 851				else if (!ret)
 852					ret = regmap_write(map, reg, 0);
 853			}
 854			if (ret != 0) {
 855				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 856					reg, ret);
 857				goto err_alloc;
 858			}
 859		}
 860	}
 861
 862	/* Wake is disabled by default */
 863	if (d->wake_buf) {
 864		for (i = 0; i < chip->num_regs; i++) {
 865			d->wake_buf[i] = d->mask_buf_def[i];
 866			reg = d->get_irq_reg(d, d->chip->wake_base, i);
 867
 868			if (chip->wake_invert)
 869				ret = regmap_update_bits(d->map, reg,
 870							 d->mask_buf_def[i],
 871							 0);
 872			else
 873				ret = regmap_update_bits(d->map, reg,
 874							 d->mask_buf_def[i],
 875							 d->wake_buf[i]);
 876			if (ret != 0) {
 877				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 878					reg, ret);
 879				goto err_alloc;
 880			}
 881		}
 882	}
 883
 884	ret = regmap_irq_create_domain(fwnode, irq_base, chip, d);
 885	if (ret)
 
 
 
 
 
 
 
 
 886		goto err_alloc;
 
 887
 888	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
 889				   irq_flags | IRQF_ONESHOT,
 890				   chip->name, d);
 891	if (ret != 0) {
 892		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
 893			irq, chip->name, ret);
 894		goto err_domain;
 895	}
 896
 897	*data = d;
 898
 899	return 0;
 900
 901err_domain:
 902	/* Should really dispose of the domain but... */
 903err_alloc:
 904	kfree(d->type_buf);
 905	kfree(d->type_buf_def);
 906	kfree(d->wake_buf);
 907	kfree(d->mask_buf_def);
 908	kfree(d->mask_buf);
 909	kfree(d->main_status_buf);
 910	kfree(d->status_buf);
 911	kfree(d->status_reg_buf);
 912	if (d->config_buf) {
 913		for (i = 0; i < chip->num_config_bases; i++)
 914			kfree(d->config_buf[i]);
 915		kfree(d->config_buf);
 916	}
 917	kfree(d);
 918	return ret;
 919}
 920EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
 921
 922/**
 923 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
 924 *
 925 * @map: The regmap for the device.
 926 * @irq: The IRQ the device uses to signal interrupts.
 927 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 928 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 929 * @chip: Configuration for the interrupt controller.
 930 * @data: Runtime data structure for the controller, allocated on success.
 931 *
 932 * Returns 0 on success or an errno on failure.
 933 *
 934 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
 935 * node of the regmap is used.
 936 */
 937int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
 938			int irq_base, const struct regmap_irq_chip *chip,
 939			struct regmap_irq_chip_data **data)
 940{
 941	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
 942					  irq_flags, irq_base, chip, data);
 943}
 944EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
 945
 946/**
 947 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
 948 *
 949 * @irq: Primary IRQ for the device
 950 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
 951 *
 952 * This function also disposes of all mapped IRQs on the chip.
 953 */
 954void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
 955{
 956	unsigned int virq;
 957	int i, hwirq;
 958
 959	if (!d)
 960		return;
 961
 962	free_irq(irq, d);
 963
 964	/* Dispose all virtual irq from irq domain before removing it */
 965	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
 966		/* Ignore hwirq if holes in the IRQ list */
 967		if (!d->chip->irqs[hwirq].mask)
 968			continue;
 969
 970		/*
 971		 * Find the virtual irq of hwirq on chip and if it is
 972		 * there then dispose it
 973		 */
 974		virq = irq_find_mapping(d->domain, hwirq);
 975		if (virq)
 976			irq_dispose_mapping(virq);
 977	}
 978
 979	irq_domain_remove(d->domain);
 980	kfree(d->type_buf);
 981	kfree(d->type_buf_def);
 982	kfree(d->wake_buf);
 983	kfree(d->mask_buf_def);
 984	kfree(d->mask_buf);
 985	kfree(d->main_status_buf);
 986	kfree(d->status_reg_buf);
 987	kfree(d->status_buf);
 988	if (d->config_buf) {
 989		for (i = 0; i < d->chip->num_config_bases; i++)
 990			kfree(d->config_buf[i]);
 991		kfree(d->config_buf);
 992	}
 993	kfree(d);
 994}
 995EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
 996
 997static void devm_regmap_irq_chip_release(struct device *dev, void *res)
 998{
 999	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1000
1001	regmap_del_irq_chip(d->irq, d);
1002}
1003
1004static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1005
1006{
1007	struct regmap_irq_chip_data **r = res;
1008
1009	if (!r || !*r) {
1010		WARN_ON(!r || !*r);
1011		return 0;
1012	}
1013	return *r == data;
1014}
1015
1016/**
1017 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1018 *
1019 * @dev: The device pointer on which irq_chip belongs to.
1020 * @fwnode: The firmware node where the IRQ domain should be added to.
1021 * @map: The regmap for the device.
1022 * @irq: The IRQ the device uses to signal interrupts
1023 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1024 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1025 * @chip: Configuration for the interrupt controller.
1026 * @data: Runtime data structure for the controller, allocated on success
1027 *
1028 * Returns 0 on success or an errno on failure.
1029 *
1030 * The &regmap_irq_chip_data will be automatically released when the device is
1031 * unbound.
1032 */
1033int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1034				    struct fwnode_handle *fwnode,
1035				    struct regmap *map, int irq,
1036				    int irq_flags, int irq_base,
1037				    const struct regmap_irq_chip *chip,
1038				    struct regmap_irq_chip_data **data)
1039{
1040	struct regmap_irq_chip_data **ptr, *d;
1041	int ret;
1042
1043	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1044			   GFP_KERNEL);
1045	if (!ptr)
1046		return -ENOMEM;
1047
1048	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1049					 chip, &d);
1050	if (ret < 0) {
1051		devres_free(ptr);
1052		return ret;
1053	}
1054
1055	*ptr = d;
1056	devres_add(dev, ptr);
1057	*data = d;
1058	return 0;
1059}
1060EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1061
1062/**
1063 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1064 *
1065 * @dev: The device pointer on which irq_chip belongs to.
1066 * @map: The regmap for the device.
1067 * @irq: The IRQ the device uses to signal interrupts
1068 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1069 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1070 * @chip: Configuration for the interrupt controller.
1071 * @data: Runtime data structure for the controller, allocated on success
1072 *
1073 * Returns 0 on success or an errno on failure.
1074 *
1075 * The &regmap_irq_chip_data will be automatically released when the device is
1076 * unbound.
1077 */
1078int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1079			     int irq_flags, int irq_base,
1080			     const struct regmap_irq_chip *chip,
1081			     struct regmap_irq_chip_data **data)
1082{
1083	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1084					       irq, irq_flags, irq_base, chip,
1085					       data);
1086}
1087EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1088
1089/**
1090 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1091 *
1092 * @dev: Device for which the resource was allocated.
1093 * @irq: Primary IRQ for the device.
1094 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1095 *
1096 * A resource managed version of regmap_del_irq_chip().
1097 */
1098void devm_regmap_del_irq_chip(struct device *dev, int irq,
1099			      struct regmap_irq_chip_data *data)
1100{
1101	int rc;
1102
1103	WARN_ON(irq != data->irq);
1104	rc = devres_release(dev, devm_regmap_irq_chip_release,
1105			    devm_regmap_irq_chip_match, data);
1106
1107	if (rc != 0)
1108		WARN_ON(rc);
1109}
1110EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1111
1112/**
1113 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1114 *
1115 * @data: regmap irq controller to operate on.
1116 *
1117 * Useful for drivers to request their own IRQs.
1118 */
1119int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1120{
1121	WARN_ON(!data->irq_base);
1122	return data->irq_base;
1123}
1124EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1125
1126/**
1127 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1128 *
1129 * @data: regmap irq controller to operate on.
1130 * @irq: index of the interrupt requested in the chip IRQs.
1131 *
1132 * Useful for drivers to request their own IRQs.
1133 */
1134int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1135{
1136	/* Handle holes in the IRQ list */
1137	if (!data->chip->irqs[irq].mask)
1138		return -EINVAL;
1139
1140	return irq_create_mapping(data->domain, irq);
1141}
1142EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1143
1144/**
1145 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1146 *
1147 * @data: regmap_irq controller to operate on.
1148 *
1149 * Useful for drivers to request their own IRQs and for integration
1150 * with subsystems.  For ease of integration NULL is accepted as a
1151 * domain, allowing devices to just call this even if no domain is
1152 * allocated.
1153 */
1154struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1155{
1156	if (data)
1157		return data->domain;
1158	else
1159		return NULL;
1160}
1161EXPORT_SYMBOL_GPL(regmap_irq_get_domain);