Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * mm/truncate.c - code for taking down pages from address_spaces
  4 *
  5 * Copyright (C) 2002, Linus Torvalds
  6 *
  7 * 10Sep2002	Andrew Morton
  8 *		Initial version.
  9 */
 10
 11#include <linux/kernel.h>
 12#include <linux/backing-dev.h>
 13#include <linux/dax.h>
 14#include <linux/gfp.h>
 15#include <linux/mm.h>
 16#include <linux/swap.h>
 17#include <linux/export.h>
 18#include <linux/pagemap.h>
 19#include <linux/highmem.h>
 20#include <linux/pagevec.h>
 21#include <linux/task_io_accounting_ops.h>
 22#include <linux/shmem_fs.h>
 23#include <linux/rmap.h>
 24#include "internal.h"
 25
 26/*
 27 * Regular page slots are stabilized by the page lock even without the tree
 28 * itself locked.  These unlocked entries need verification under the tree
 29 * lock.
 30 */
 31static inline void __clear_shadow_entry(struct address_space *mapping,
 32				pgoff_t index, void *entry)
 33{
 34	XA_STATE(xas, &mapping->i_pages, index);
 
 35
 36	xas_set_update(&xas, workingset_update_node);
 37	if (xas_load(&xas) != entry)
 38		return;
 39	xas_store(&xas, NULL);
 40}
 41
 42static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
 43			       void *entry)
 44{
 45	spin_lock(&mapping->host->i_lock);
 46	xa_lock_irq(&mapping->i_pages);
 47	__clear_shadow_entry(mapping, index, entry);
 48	xa_unlock_irq(&mapping->i_pages);
 
 
 
 
 
 
 49	if (mapping_shrinkable(mapping))
 50		inode_add_lru(mapping->host);
 51	spin_unlock(&mapping->host->i_lock);
 52}
 53
 54/*
 55 * Unconditionally remove exceptional entries. Usually called from truncate
 56 * path. Note that the folio_batch may be altered by this function by removing
 57 * exceptional entries similar to what folio_batch_remove_exceptionals() does.
 
 
 58 */
 59static void truncate_folio_batch_exceptionals(struct address_space *mapping,
 60				struct folio_batch *fbatch, pgoff_t *indices)
 61{
 
 
 
 62	int i, j;
 63	bool dax;
 64
 65	/* Handled by shmem itself */
 66	if (shmem_mapping(mapping))
 67		return;
 68
 69	for (j = 0; j < folio_batch_count(fbatch); j++)
 70		if (xa_is_value(fbatch->folios[j]))
 71			break;
 72
 73	if (j == folio_batch_count(fbatch))
 74		return;
 75
 76	dax = dax_mapping(mapping);
 77	if (!dax) {
 78		spin_lock(&mapping->host->i_lock);
 79		xa_lock_irq(&mapping->i_pages);
 80	}
 81
 82	for (i = j; i < folio_batch_count(fbatch); i++) {
 83		struct folio *folio = fbatch->folios[i];
 84		pgoff_t index = indices[i];
 85
 86		if (!xa_is_value(folio)) {
 87			fbatch->folios[j++] = folio;
 88			continue;
 89		}
 
 
 90
 91		if (unlikely(dax)) {
 92			dax_delete_mapping_entry(mapping, index);
 93			continue;
 94		}
 95
 96		__clear_shadow_entry(mapping, index, folio);
 97	}
 98
 99	if (!dax) {
100		xa_unlock_irq(&mapping->i_pages);
101		if (mapping_shrinkable(mapping))
102			inode_add_lru(mapping->host);
103		spin_unlock(&mapping->host->i_lock);
104	}
105	fbatch->nr = j;
106}
107
108/*
109 * Invalidate exceptional entry if easily possible. This handles exceptional
110 * entries for invalidate_inode_pages().
111 */
112static int invalidate_exceptional_entry(struct address_space *mapping,
113					pgoff_t index, void *entry)
114{
115	/* Handled by shmem itself, or for DAX we do nothing. */
116	if (shmem_mapping(mapping) || dax_mapping(mapping))
117		return 1;
118	clear_shadow_entry(mapping, index, entry);
119	return 1;
120}
121
122/*
123 * Invalidate exceptional entry if clean. This handles exceptional entries for
124 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
125 */
126static int invalidate_exceptional_entry2(struct address_space *mapping,
127					 pgoff_t index, void *entry)
128{
129	/* Handled by shmem itself */
130	if (shmem_mapping(mapping))
131		return 1;
132	if (dax_mapping(mapping))
133		return dax_invalidate_mapping_entry_sync(mapping, index);
134	clear_shadow_entry(mapping, index, entry);
135	return 1;
136}
137
138/**
139 * folio_invalidate - Invalidate part or all of a folio.
140 * @folio: The folio which is affected.
141 * @offset: start of the range to invalidate
142 * @length: length of the range to invalidate
143 *
144 * folio_invalidate() is called when all or part of the folio has become
145 * invalidated by a truncate operation.
146 *
147 * folio_invalidate() does not have to release all buffers, but it must
148 * ensure that no dirty buffer is left outside @offset and that no I/O
149 * is underway against any of the blocks which are outside the truncation
150 * point.  Because the caller is about to free (and possibly reuse) those
151 * blocks on-disk.
152 */
153void folio_invalidate(struct folio *folio, size_t offset, size_t length)
154{
155	const struct address_space_operations *aops = folio->mapping->a_ops;
156
157	if (aops->invalidate_folio)
158		aops->invalidate_folio(folio, offset, length);
159}
160EXPORT_SYMBOL_GPL(folio_invalidate);
161
162/*
163 * If truncate cannot remove the fs-private metadata from the page, the page
164 * becomes orphaned.  It will be left on the LRU and may even be mapped into
165 * user pagetables if we're racing with filemap_fault().
166 *
167 * We need to bail out if page->mapping is no longer equal to the original
168 * mapping.  This happens a) when the VM reclaimed the page while we waited on
169 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
170 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
171 */
172static void truncate_cleanup_folio(struct folio *folio)
173{
174	if (folio_mapped(folio))
175		unmap_mapping_folio(folio);
176
177	if (folio_has_private(folio))
178		folio_invalidate(folio, 0, folio_size(folio));
179
180	/*
181	 * Some filesystems seem to re-dirty the page even after
182	 * the VM has canceled the dirty bit (eg ext3 journaling).
183	 * Hence dirty accounting check is placed after invalidation.
184	 */
185	folio_cancel_dirty(folio);
186	folio_clear_mappedtodisk(folio);
187}
188
189int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
190{
191	if (folio->mapping != mapping)
192		return -EIO;
193
194	truncate_cleanup_folio(folio);
195	filemap_remove_folio(folio);
196	return 0;
197}
198
199/*
200 * Handle partial folios.  The folio may be entirely within the
201 * range if a split has raced with us.  If not, we zero the part of the
202 * folio that's within the [start, end] range, and then split the folio if
203 * it's large.  split_page_range() will discard pages which now lie beyond
204 * i_size, and we rely on the caller to discard pages which lie within a
205 * newly created hole.
206 *
207 * Returns false if splitting failed so the caller can avoid
208 * discarding the entire folio which is stubbornly unsplit.
209 */
210bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
211{
212	loff_t pos = folio_pos(folio);
213	unsigned int offset, length;
214
215	if (pos < start)
216		offset = start - pos;
217	else
218		offset = 0;
219	length = folio_size(folio);
220	if (pos + length <= (u64)end)
221		length = length - offset;
222	else
223		length = end + 1 - pos - offset;
224
225	folio_wait_writeback(folio);
226	if (length == folio_size(folio)) {
227		truncate_inode_folio(folio->mapping, folio);
228		return true;
229	}
230
231	/*
232	 * We may be zeroing pages we're about to discard, but it avoids
233	 * doing a complex calculation here, and then doing the zeroing
234	 * anyway if the page split fails.
235	 */
236	folio_zero_range(folio, offset, length);
 
237
238	if (folio_has_private(folio))
239		folio_invalidate(folio, offset, length);
240	if (!folio_test_large(folio))
241		return true;
242	if (split_folio(folio) == 0)
243		return true;
244	if (folio_test_dirty(folio))
245		return false;
246	truncate_inode_folio(folio->mapping, folio);
247	return true;
248}
249
250/*
251 * Used to get rid of pages on hardware memory corruption.
252 */
253int generic_error_remove_folio(struct address_space *mapping,
254		struct folio *folio)
255{
256	if (!mapping)
257		return -EINVAL;
258	/*
259	 * Only punch for normal data pages for now.
260	 * Handling other types like directories would need more auditing.
261	 */
262	if (!S_ISREG(mapping->host->i_mode))
263		return -EIO;
264	return truncate_inode_folio(mapping, folio);
265}
266EXPORT_SYMBOL(generic_error_remove_folio);
267
268/**
269 * mapping_evict_folio() - Remove an unused folio from the page-cache.
270 * @mapping: The mapping this folio belongs to.
271 * @folio: The folio to remove.
272 *
273 * Safely remove one folio from the page cache.
274 * It only drops clean, unused folios.
275 *
276 * Context: Folio must be locked.
277 * Return: The number of pages successfully removed.
278 */
279long mapping_evict_folio(struct address_space *mapping, struct folio *folio)
280{
281	/* The page may have been truncated before it was locked */
282	if (!mapping)
283		return 0;
284	if (folio_test_dirty(folio) || folio_test_writeback(folio))
285		return 0;
286	/* The refcount will be elevated if any page in the folio is mapped */
287	if (folio_ref_count(folio) >
288			folio_nr_pages(folio) + folio_has_private(folio) + 1)
289		return 0;
290	if (!filemap_release_folio(folio, 0))
291		return 0;
292
293	return remove_mapping(mapping, folio);
294}
295
296/**
297 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
298 * @mapping: mapping to truncate
299 * @lstart: offset from which to truncate
300 * @lend: offset to which to truncate (inclusive)
301 *
302 * Truncate the page cache, removing the pages that are between
303 * specified offsets (and zeroing out partial pages
304 * if lstart or lend + 1 is not page aligned).
305 *
306 * Truncate takes two passes - the first pass is nonblocking.  It will not
307 * block on page locks and it will not block on writeback.  The second pass
308 * will wait.  This is to prevent as much IO as possible in the affected region.
309 * The first pass will remove most pages, so the search cost of the second pass
310 * is low.
311 *
312 * We pass down the cache-hot hint to the page freeing code.  Even if the
313 * mapping is large, it is probably the case that the final pages are the most
314 * recently touched, and freeing happens in ascending file offset order.
315 *
316 * Note that since ->invalidate_folio() accepts range to invalidate
317 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
318 * page aligned properly.
319 */
320void truncate_inode_pages_range(struct address_space *mapping,
321				loff_t lstart, loff_t lend)
322{
323	pgoff_t		start;		/* inclusive */
324	pgoff_t		end;		/* exclusive */
325	struct folio_batch fbatch;
326	pgoff_t		indices[PAGEVEC_SIZE];
327	pgoff_t		index;
328	int		i;
329	struct folio	*folio;
330	bool		same_folio;
331
332	if (mapping_empty(mapping))
333		return;
334
335	/*
336	 * 'start' and 'end' always covers the range of pages to be fully
337	 * truncated. Partial pages are covered with 'partial_start' at the
338	 * start of the range and 'partial_end' at the end of the range.
339	 * Note that 'end' is exclusive while 'lend' is inclusive.
340	 */
341	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
342	if (lend == -1)
343		/*
344		 * lend == -1 indicates end-of-file so we have to set 'end'
345		 * to the highest possible pgoff_t and since the type is
346		 * unsigned we're using -1.
347		 */
348		end = -1;
349	else
350		end = (lend + 1) >> PAGE_SHIFT;
351
352	folio_batch_init(&fbatch);
353	index = start;
354	while (index < end && find_lock_entries(mapping, &index, end - 1,
355			&fbatch, indices)) {
356		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
357		for (i = 0; i < folio_batch_count(&fbatch); i++)
358			truncate_cleanup_folio(fbatch.folios[i]);
359		delete_from_page_cache_batch(mapping, &fbatch);
360		for (i = 0; i < folio_batch_count(&fbatch); i++)
361			folio_unlock(fbatch.folios[i]);
362		folio_batch_release(&fbatch);
363		cond_resched();
364	}
365
366	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
367	folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
368	if (!IS_ERR(folio)) {
369		same_folio = lend < folio_pos(folio) + folio_size(folio);
370		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
371			start = folio_next_index(folio);
372			if (same_folio)
373				end = folio->index;
374		}
375		folio_unlock(folio);
376		folio_put(folio);
377		folio = NULL;
378	}
379
380	if (!same_folio) {
381		folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
382						FGP_LOCK, 0);
383		if (!IS_ERR(folio)) {
384			if (!truncate_inode_partial_folio(folio, lstart, lend))
385				end = folio->index;
386			folio_unlock(folio);
387			folio_put(folio);
388		}
389	}
390
391	index = start;
392	while (index < end) {
393		cond_resched();
394		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
395				indices)) {
396			/* If all gone from start onwards, we're done */
397			if (index == start)
398				break;
399			/* Otherwise restart to make sure all gone */
400			index = start;
401			continue;
402		}
403
404		for (i = 0; i < folio_batch_count(&fbatch); i++) {
405			struct folio *folio = fbatch.folios[i];
406
407			/* We rely upon deletion not changing page->index */
408
409			if (xa_is_value(folio))
410				continue;
411
412			folio_lock(folio);
413			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
414			folio_wait_writeback(folio);
415			truncate_inode_folio(mapping, folio);
416			folio_unlock(folio);
417		}
418		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
419		folio_batch_release(&fbatch);
420	}
421}
422EXPORT_SYMBOL(truncate_inode_pages_range);
423
424/**
425 * truncate_inode_pages - truncate *all* the pages from an offset
426 * @mapping: mapping to truncate
427 * @lstart: offset from which to truncate
428 *
429 * Called under (and serialised by) inode->i_rwsem and
430 * mapping->invalidate_lock.
431 *
432 * Note: When this function returns, there can be a page in the process of
433 * deletion (inside __filemap_remove_folio()) in the specified range.  Thus
434 * mapping->nrpages can be non-zero when this function returns even after
435 * truncation of the whole mapping.
436 */
437void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
438{
439	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
440}
441EXPORT_SYMBOL(truncate_inode_pages);
442
443/**
444 * truncate_inode_pages_final - truncate *all* pages before inode dies
445 * @mapping: mapping to truncate
446 *
447 * Called under (and serialized by) inode->i_rwsem.
448 *
449 * Filesystems have to use this in the .evict_inode path to inform the
450 * VM that this is the final truncate and the inode is going away.
451 */
452void truncate_inode_pages_final(struct address_space *mapping)
453{
454	/*
455	 * Page reclaim can not participate in regular inode lifetime
456	 * management (can't call iput()) and thus can race with the
457	 * inode teardown.  Tell it when the address space is exiting,
458	 * so that it does not install eviction information after the
459	 * final truncate has begun.
460	 */
461	mapping_set_exiting(mapping);
462
463	if (!mapping_empty(mapping)) {
464		/*
465		 * As truncation uses a lockless tree lookup, cycle
466		 * the tree lock to make sure any ongoing tree
467		 * modification that does not see AS_EXITING is
468		 * completed before starting the final truncate.
469		 */
470		xa_lock_irq(&mapping->i_pages);
471		xa_unlock_irq(&mapping->i_pages);
472	}
473
474	truncate_inode_pages(mapping, 0);
475}
476EXPORT_SYMBOL(truncate_inode_pages_final);
477
478/**
479 * mapping_try_invalidate - Invalidate all the evictable folios of one inode
480 * @mapping: the address_space which holds the folios to invalidate
481 * @start: the offset 'from' which to invalidate
482 * @end: the offset 'to' which to invalidate (inclusive)
483 * @nr_failed: How many folio invalidations failed
484 *
485 * This function is similar to invalidate_mapping_pages(), except that it
486 * returns the number of folios which could not be evicted in @nr_failed.
487 */
488unsigned long mapping_try_invalidate(struct address_space *mapping,
489		pgoff_t start, pgoff_t end, unsigned long *nr_failed)
490{
491	pgoff_t indices[PAGEVEC_SIZE];
492	struct folio_batch fbatch;
493	pgoff_t index = start;
494	unsigned long ret;
495	unsigned long count = 0;
496	int i;
497
498	folio_batch_init(&fbatch);
499	while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
500		for (i = 0; i < folio_batch_count(&fbatch); i++) {
 
 
 
501			struct folio *folio = fbatch.folios[i];
502
503			/* We rely upon deletion not changing folio->index */
504
505			if (xa_is_value(folio)) {
506				count += invalidate_exceptional_entry(mapping,
507							     indices[i], folio);
508				continue;
509			}
510
511			ret = mapping_evict_folio(mapping, folio);
512			folio_unlock(folio);
513			/*
514			 * Invalidation is a hint that the folio is no longer
515			 * of interest and try to speed up its reclaim.
516			 */
517			if (!ret) {
518				deactivate_file_folio(folio);
519				/* Likely in the lru cache of a remote CPU */
520				if (nr_failed)
521					(*nr_failed)++;
522			}
523			count += ret;
524		}
 
 
 
 
525		folio_batch_remove_exceptionals(&fbatch);
526		folio_batch_release(&fbatch);
527		cond_resched();
528	}
529	return count;
530}
531
532/**
533 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
534 * @mapping: the address_space which holds the cache to invalidate
535 * @start: the offset 'from' which to invalidate
536 * @end: the offset 'to' which to invalidate (inclusive)
537 *
538 * This function removes pages that are clean, unmapped and unlocked,
539 * as well as shadow entries. It will not block on IO activity.
540 *
541 * If you want to remove all the pages of one inode, regardless of
542 * their use and writeback state, use truncate_inode_pages().
543 *
544 * Return: The number of indices that had their contents invalidated
545 */
546unsigned long invalidate_mapping_pages(struct address_space *mapping,
547		pgoff_t start, pgoff_t end)
548{
549	return mapping_try_invalidate(mapping, start, end, NULL);
550}
551EXPORT_SYMBOL(invalidate_mapping_pages);
552
553/*
554 * This is like mapping_evict_folio(), except it ignores the folio's
555 * refcount.  We do this because invalidate_inode_pages2() needs stronger
556 * invalidation guarantees, and cannot afford to leave folios behind because
557 * shrink_page_list() has a temp ref on them, or because they're transiently
558 * sitting in the folio_add_lru() caches.
559 */
560static int invalidate_complete_folio2(struct address_space *mapping,
561					struct folio *folio)
562{
563	if (folio->mapping != mapping)
564		return 0;
565
566	if (!filemap_release_folio(folio, GFP_KERNEL))
567		return 0;
568
569	spin_lock(&mapping->host->i_lock);
570	xa_lock_irq(&mapping->i_pages);
571	if (folio_test_dirty(folio))
572		goto failed;
573
574	BUG_ON(folio_has_private(folio));
575	__filemap_remove_folio(folio, NULL);
576	xa_unlock_irq(&mapping->i_pages);
577	if (mapping_shrinkable(mapping))
578		inode_add_lru(mapping->host);
579	spin_unlock(&mapping->host->i_lock);
580
581	filemap_free_folio(mapping, folio);
582	return 1;
583failed:
584	xa_unlock_irq(&mapping->i_pages);
585	spin_unlock(&mapping->host->i_lock);
586	return 0;
587}
588
589static int folio_launder(struct address_space *mapping, struct folio *folio)
590{
591	if (!folio_test_dirty(folio))
592		return 0;
593	if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
594		return 0;
595	return mapping->a_ops->launder_folio(folio);
596}
597
598/**
599 * invalidate_inode_pages2_range - remove range of pages from an address_space
600 * @mapping: the address_space
601 * @start: the page offset 'from' which to invalidate
602 * @end: the page offset 'to' which to invalidate (inclusive)
603 *
604 * Any pages which are found to be mapped into pagetables are unmapped prior to
605 * invalidation.
606 *
607 * Return: -EBUSY if any pages could not be invalidated.
608 */
609int invalidate_inode_pages2_range(struct address_space *mapping,
610				  pgoff_t start, pgoff_t end)
611{
612	pgoff_t indices[PAGEVEC_SIZE];
613	struct folio_batch fbatch;
614	pgoff_t index;
615	int i;
616	int ret = 0;
617	int ret2 = 0;
618	int did_range_unmap = 0;
619
620	if (mapping_empty(mapping))
621		return 0;
622
623	folio_batch_init(&fbatch);
624	index = start;
625	while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
626		for (i = 0; i < folio_batch_count(&fbatch); i++) {
 
 
 
627			struct folio *folio = fbatch.folios[i];
628
629			/* We rely upon deletion not changing folio->index */
630
631			if (xa_is_value(folio)) {
632				if (!invalidate_exceptional_entry2(mapping,
633						indices[i], folio))
 
634					ret = -EBUSY;
635				continue;
636			}
637
638			if (!did_range_unmap && folio_mapped(folio)) {
639				/*
640				 * If folio is mapped, before taking its lock,
641				 * zap the rest of the file in one hit.
642				 */
643				unmap_mapping_pages(mapping, indices[i],
644						(1 + end - indices[i]), false);
645				did_range_unmap = 1;
646			}
647
648			folio_lock(folio);
649			if (unlikely(folio->mapping != mapping)) {
650				folio_unlock(folio);
651				continue;
652			}
653			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
654			folio_wait_writeback(folio);
655
656			if (folio_mapped(folio))
657				unmap_mapping_folio(folio);
658			BUG_ON(folio_mapped(folio));
659
660			ret2 = folio_launder(mapping, folio);
661			if (ret2 == 0) {
662				if (!invalidate_complete_folio2(mapping, folio))
663					ret2 = -EBUSY;
664			}
665			if (ret2 < 0)
666				ret = ret2;
667			folio_unlock(folio);
668		}
 
 
 
 
669		folio_batch_remove_exceptionals(&fbatch);
670		folio_batch_release(&fbatch);
671		cond_resched();
672	}
673	/*
674	 * For DAX we invalidate page tables after invalidating page cache.  We
675	 * could invalidate page tables while invalidating each entry however
676	 * that would be expensive. And doing range unmapping before doesn't
677	 * work as we have no cheap way to find whether page cache entry didn't
678	 * get remapped later.
679	 */
680	if (dax_mapping(mapping)) {
681		unmap_mapping_pages(mapping, start, end - start + 1, false);
682	}
683	return ret;
684}
685EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
686
687/**
688 * invalidate_inode_pages2 - remove all pages from an address_space
689 * @mapping: the address_space
690 *
691 * Any pages which are found to be mapped into pagetables are unmapped prior to
692 * invalidation.
693 *
694 * Return: -EBUSY if any pages could not be invalidated.
695 */
696int invalidate_inode_pages2(struct address_space *mapping)
697{
698	return invalidate_inode_pages2_range(mapping, 0, -1);
699}
700EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
701
702/**
703 * truncate_pagecache - unmap and remove pagecache that has been truncated
704 * @inode: inode
705 * @newsize: new file size
706 *
707 * inode's new i_size must already be written before truncate_pagecache
708 * is called.
709 *
710 * This function should typically be called before the filesystem
711 * releases resources associated with the freed range (eg. deallocates
712 * blocks). This way, pagecache will always stay logically coherent
713 * with on-disk format, and the filesystem would not have to deal with
714 * situations such as writepage being called for a page that has already
715 * had its underlying blocks deallocated.
716 */
717void truncate_pagecache(struct inode *inode, loff_t newsize)
718{
719	struct address_space *mapping = inode->i_mapping;
720	loff_t holebegin = round_up(newsize, PAGE_SIZE);
721
722	/*
723	 * unmap_mapping_range is called twice, first simply for
724	 * efficiency so that truncate_inode_pages does fewer
725	 * single-page unmaps.  However after this first call, and
726	 * before truncate_inode_pages finishes, it is possible for
727	 * private pages to be COWed, which remain after
728	 * truncate_inode_pages finishes, hence the second
729	 * unmap_mapping_range call must be made for correctness.
730	 */
731	unmap_mapping_range(mapping, holebegin, 0, 1);
732	truncate_inode_pages(mapping, newsize);
733	unmap_mapping_range(mapping, holebegin, 0, 1);
734}
735EXPORT_SYMBOL(truncate_pagecache);
736
737/**
738 * truncate_setsize - update inode and pagecache for a new file size
739 * @inode: inode
740 * @newsize: new file size
741 *
742 * truncate_setsize updates i_size and performs pagecache truncation (if
743 * necessary) to @newsize. It will be typically be called from the filesystem's
744 * setattr function when ATTR_SIZE is passed in.
745 *
746 * Must be called with a lock serializing truncates and writes (generally
747 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
748 * specific block truncation has been performed.
749 */
750void truncate_setsize(struct inode *inode, loff_t newsize)
751{
752	loff_t oldsize = inode->i_size;
753
754	i_size_write(inode, newsize);
755	if (newsize > oldsize)
756		pagecache_isize_extended(inode, oldsize, newsize);
757	truncate_pagecache(inode, newsize);
758}
759EXPORT_SYMBOL(truncate_setsize);
760
761/**
762 * pagecache_isize_extended - update pagecache after extension of i_size
763 * @inode:	inode for which i_size was extended
764 * @from:	original inode size
765 * @to:		new inode size
766 *
767 * Handle extension of inode size either caused by extending truncate or by
768 * write starting after current i_size. We mark the page straddling current
769 * i_size RO so that page_mkwrite() is called on the nearest write access to
770 * the page.  This way filesystem can be sure that page_mkwrite() is called on
771 * the page before user writes to the page via mmap after the i_size has been
772 * changed.
773 *
774 * The function must be called after i_size is updated so that page fault
775 * coming after we unlock the page will already see the new i_size.
776 * The function must be called while we still hold i_rwsem - this not only
777 * makes sure i_size is stable but also that userspace cannot observe new
778 * i_size value before we are prepared to store mmap writes at new inode size.
779 */
780void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
781{
782	int bsize = i_blocksize(inode);
783	loff_t rounded_from;
784	struct page *page;
785	pgoff_t index;
786
787	WARN_ON(to > inode->i_size);
788
789	if (from >= to || bsize == PAGE_SIZE)
790		return;
791	/* Page straddling @from will not have any hole block created? */
792	rounded_from = round_up(from, bsize);
793	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
794		return;
795
796	index = from >> PAGE_SHIFT;
797	page = find_lock_page(inode->i_mapping, index);
798	/* Page not cached? Nothing to do */
799	if (!page)
800		return;
801	/*
802	 * See clear_page_dirty_for_io() for details why set_page_dirty()
803	 * is needed.
804	 */
805	if (page_mkclean(page))
806		set_page_dirty(page);
807	unlock_page(page);
808	put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809}
810EXPORT_SYMBOL(pagecache_isize_extended);
811
812/**
813 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
814 * @inode: inode
815 * @lstart: offset of beginning of hole
816 * @lend: offset of last byte of hole
817 *
818 * This function should typically be called before the filesystem
819 * releases resources associated with the freed range (eg. deallocates
820 * blocks). This way, pagecache will always stay logically coherent
821 * with on-disk format, and the filesystem would not have to deal with
822 * situations such as writepage being called for a page that has already
823 * had its underlying blocks deallocated.
824 */
825void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
826{
827	struct address_space *mapping = inode->i_mapping;
828	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
829	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
830	/*
831	 * This rounding is currently just for example: unmap_mapping_range
832	 * expands its hole outwards, whereas we want it to contract the hole
833	 * inwards.  However, existing callers of truncate_pagecache_range are
834	 * doing their own page rounding first.  Note that unmap_mapping_range
835	 * allows holelen 0 for all, and we allow lend -1 for end of file.
836	 */
837
838	/*
839	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
840	 * once (before truncating pagecache), and without "even_cows" flag:
841	 * hole-punching should not remove private COWed pages from the hole.
842	 */
843	if ((u64)unmap_end > (u64)unmap_start)
844		unmap_mapping_range(mapping, unmap_start,
845				    1 + unmap_end - unmap_start, 0);
846	truncate_inode_pages_range(mapping, lstart, lend);
847}
848EXPORT_SYMBOL(truncate_pagecache_range);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * mm/truncate.c - code for taking down pages from address_spaces
  4 *
  5 * Copyright (C) 2002, Linus Torvalds
  6 *
  7 * 10Sep2002	Andrew Morton
  8 *		Initial version.
  9 */
 10
 11#include <linux/kernel.h>
 12#include <linux/backing-dev.h>
 13#include <linux/dax.h>
 14#include <linux/gfp.h>
 15#include <linux/mm.h>
 16#include <linux/swap.h>
 17#include <linux/export.h>
 18#include <linux/pagemap.h>
 19#include <linux/highmem.h>
 20#include <linux/pagevec.h>
 21#include <linux/task_io_accounting_ops.h>
 22#include <linux/shmem_fs.h>
 23#include <linux/rmap.h>
 24#include "internal.h"
 25
 26static void clear_shadow_entries(struct address_space *mapping,
 27				 unsigned long start, unsigned long max)
 
 
 
 
 
 28{
 29	XA_STATE(xas, &mapping->i_pages, start);
 30	struct folio *folio;
 31
 32	/* Handled by shmem itself, or for DAX we do nothing. */
 33	if (shmem_mapping(mapping) || dax_mapping(mapping))
 34		return;
 
 
 35
 36	xas_set_update(&xas, workingset_update_node);
 37
 
 38	spin_lock(&mapping->host->i_lock);
 39	xas_lock_irq(&xas);
 40
 41	/* Clear all shadow entries from start to max */
 42	xas_for_each(&xas, folio, max) {
 43		if (xa_is_value(folio))
 44			xas_store(&xas, NULL);
 45	}
 46
 47	xas_unlock_irq(&xas);
 48	if (mapping_shrinkable(mapping))
 49		inode_add_lru(mapping->host);
 50	spin_unlock(&mapping->host->i_lock);
 51}
 52
 53/*
 54 * Unconditionally remove exceptional entries. Usually called from truncate
 55 * path. Note that the folio_batch may be altered by this function by removing
 56 * exceptional entries similar to what folio_batch_remove_exceptionals() does.
 57 * Please note that indices[] has entries in ascending order as guaranteed by
 58 * either find_get_entries() or find_lock_entries().
 59 */
 60static void truncate_folio_batch_exceptionals(struct address_space *mapping,
 61				struct folio_batch *fbatch, pgoff_t *indices)
 62{
 63	XA_STATE(xas, &mapping->i_pages, indices[0]);
 64	int nr = folio_batch_count(fbatch);
 65	struct folio *folio;
 66	int i, j;
 
 67
 68	/* Handled by shmem itself */
 69	if (shmem_mapping(mapping))
 70		return;
 71
 72	for (j = 0; j < nr; j++)
 73		if (xa_is_value(fbatch->folios[j]))
 74			break;
 75
 76	if (j == nr)
 77		return;
 78
 79	if (dax_mapping(mapping)) {
 80		for (i = j; i < nr; i++) {
 81			if (xa_is_value(fbatch->folios[i]))
 82				dax_delete_mapping_entry(mapping, indices[i]);
 
 
 
 
 
 
 
 
 
 83		}
 84		goto out;
 85	}
 86
 87	xas_set(&xas, indices[j]);
 88	xas_set_update(&xas, workingset_update_node);
 
 
 89
 90	spin_lock(&mapping->host->i_lock);
 91	xas_lock_irq(&xas);
 92
 93	xas_for_each(&xas, folio, indices[nr-1]) {
 94		if (xa_is_value(folio))
 95			xas_store(&xas, NULL);
 
 
 96	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 97
 98	xas_unlock_irq(&xas);
 99	if (mapping_shrinkable(mapping))
100		inode_add_lru(mapping->host);
101	spin_unlock(&mapping->host->i_lock);
102out:
103	folio_batch_remove_exceptionals(fbatch);
 
 
 
 
 
 
 
 
104}
105
106/**
107 * folio_invalidate - Invalidate part or all of a folio.
108 * @folio: The folio which is affected.
109 * @offset: start of the range to invalidate
110 * @length: length of the range to invalidate
111 *
112 * folio_invalidate() is called when all or part of the folio has become
113 * invalidated by a truncate operation.
114 *
115 * folio_invalidate() does not have to release all buffers, but it must
116 * ensure that no dirty buffer is left outside @offset and that no I/O
117 * is underway against any of the blocks which are outside the truncation
118 * point.  Because the caller is about to free (and possibly reuse) those
119 * blocks on-disk.
120 */
121void folio_invalidate(struct folio *folio, size_t offset, size_t length)
122{
123	const struct address_space_operations *aops = folio->mapping->a_ops;
124
125	if (aops->invalidate_folio)
126		aops->invalidate_folio(folio, offset, length);
127}
128EXPORT_SYMBOL_GPL(folio_invalidate);
129
130/*
131 * If truncate cannot remove the fs-private metadata from the page, the page
132 * becomes orphaned.  It will be left on the LRU and may even be mapped into
133 * user pagetables if we're racing with filemap_fault().
134 *
135 * We need to bail out if page->mapping is no longer equal to the original
136 * mapping.  This happens a) when the VM reclaimed the page while we waited on
137 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
138 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
139 */
140static void truncate_cleanup_folio(struct folio *folio)
141{
142	if (folio_mapped(folio))
143		unmap_mapping_folio(folio);
144
145	if (folio_needs_release(folio))
146		folio_invalidate(folio, 0, folio_size(folio));
147
148	/*
149	 * Some filesystems seem to re-dirty the page even after
150	 * the VM has canceled the dirty bit (eg ext3 journaling).
151	 * Hence dirty accounting check is placed after invalidation.
152	 */
153	folio_cancel_dirty(folio);
 
154}
155
156int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
157{
158	if (folio->mapping != mapping)
159		return -EIO;
160
161	truncate_cleanup_folio(folio);
162	filemap_remove_folio(folio);
163	return 0;
164}
165
166/*
167 * Handle partial folios.  The folio may be entirely within the
168 * range if a split has raced with us.  If not, we zero the part of the
169 * folio that's within the [start, end] range, and then split the folio if
170 * it's large.  split_page_range() will discard pages which now lie beyond
171 * i_size, and we rely on the caller to discard pages which lie within a
172 * newly created hole.
173 *
174 * Returns false if splitting failed so the caller can avoid
175 * discarding the entire folio which is stubbornly unsplit.
176 */
177bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
178{
179	loff_t pos = folio_pos(folio);
180	unsigned int offset, length;
181
182	if (pos < start)
183		offset = start - pos;
184	else
185		offset = 0;
186	length = folio_size(folio);
187	if (pos + length <= (u64)end)
188		length = length - offset;
189	else
190		length = end + 1 - pos - offset;
191
192	folio_wait_writeback(folio);
193	if (length == folio_size(folio)) {
194		truncate_inode_folio(folio->mapping, folio);
195		return true;
196	}
197
198	/*
199	 * We may be zeroing pages we're about to discard, but it avoids
200	 * doing a complex calculation here, and then doing the zeroing
201	 * anyway if the page split fails.
202	 */
203	if (!mapping_inaccessible(folio->mapping))
204		folio_zero_range(folio, offset, length);
205
206	if (folio_needs_release(folio))
207		folio_invalidate(folio, offset, length);
208	if (!folio_test_large(folio))
209		return true;
210	if (split_folio(folio) == 0)
211		return true;
212	if (folio_test_dirty(folio))
213		return false;
214	truncate_inode_folio(folio->mapping, folio);
215	return true;
216}
217
218/*
219 * Used to get rid of pages on hardware memory corruption.
220 */
221int generic_error_remove_folio(struct address_space *mapping,
222		struct folio *folio)
223{
224	if (!mapping)
225		return -EINVAL;
226	/*
227	 * Only punch for normal data pages for now.
228	 * Handling other types like directories would need more auditing.
229	 */
230	if (!S_ISREG(mapping->host->i_mode))
231		return -EIO;
232	return truncate_inode_folio(mapping, folio);
233}
234EXPORT_SYMBOL(generic_error_remove_folio);
235
236/**
237 * mapping_evict_folio() - Remove an unused folio from the page-cache.
238 * @mapping: The mapping this folio belongs to.
239 * @folio: The folio to remove.
240 *
241 * Safely remove one folio from the page cache.
242 * It only drops clean, unused folios.
243 *
244 * Context: Folio must be locked.
245 * Return: The number of pages successfully removed.
246 */
247long mapping_evict_folio(struct address_space *mapping, struct folio *folio)
248{
249	/* The page may have been truncated before it was locked */
250	if (!mapping)
251		return 0;
252	if (folio_test_dirty(folio) || folio_test_writeback(folio))
253		return 0;
254	/* The refcount will be elevated if any page in the folio is mapped */
255	if (folio_ref_count(folio) >
256			folio_nr_pages(folio) + folio_has_private(folio) + 1)
257		return 0;
258	if (!filemap_release_folio(folio, 0))
259		return 0;
260
261	return remove_mapping(mapping, folio);
262}
263
264/**
265 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
266 * @mapping: mapping to truncate
267 * @lstart: offset from which to truncate
268 * @lend: offset to which to truncate (inclusive)
269 *
270 * Truncate the page cache, removing the pages that are between
271 * specified offsets (and zeroing out partial pages
272 * if lstart or lend + 1 is not page aligned).
273 *
274 * Truncate takes two passes - the first pass is nonblocking.  It will not
275 * block on page locks and it will not block on writeback.  The second pass
276 * will wait.  This is to prevent as much IO as possible in the affected region.
277 * The first pass will remove most pages, so the search cost of the second pass
278 * is low.
279 *
280 * We pass down the cache-hot hint to the page freeing code.  Even if the
281 * mapping is large, it is probably the case that the final pages are the most
282 * recently touched, and freeing happens in ascending file offset order.
283 *
284 * Note that since ->invalidate_folio() accepts range to invalidate
285 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
286 * page aligned properly.
287 */
288void truncate_inode_pages_range(struct address_space *mapping,
289				loff_t lstart, loff_t lend)
290{
291	pgoff_t		start;		/* inclusive */
292	pgoff_t		end;		/* exclusive */
293	struct folio_batch fbatch;
294	pgoff_t		indices[PAGEVEC_SIZE];
295	pgoff_t		index;
296	int		i;
297	struct folio	*folio;
298	bool		same_folio;
299
300	if (mapping_empty(mapping))
301		return;
302
303	/*
304	 * 'start' and 'end' always covers the range of pages to be fully
305	 * truncated. Partial pages are covered with 'partial_start' at the
306	 * start of the range and 'partial_end' at the end of the range.
307	 * Note that 'end' is exclusive while 'lend' is inclusive.
308	 */
309	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
310	if (lend == -1)
311		/*
312		 * lend == -1 indicates end-of-file so we have to set 'end'
313		 * to the highest possible pgoff_t and since the type is
314		 * unsigned we're using -1.
315		 */
316		end = -1;
317	else
318		end = (lend + 1) >> PAGE_SHIFT;
319
320	folio_batch_init(&fbatch);
321	index = start;
322	while (index < end && find_lock_entries(mapping, &index, end - 1,
323			&fbatch, indices)) {
324		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
325		for (i = 0; i < folio_batch_count(&fbatch); i++)
326			truncate_cleanup_folio(fbatch.folios[i]);
327		delete_from_page_cache_batch(mapping, &fbatch);
328		for (i = 0; i < folio_batch_count(&fbatch); i++)
329			folio_unlock(fbatch.folios[i]);
330		folio_batch_release(&fbatch);
331		cond_resched();
332	}
333
334	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
335	folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
336	if (!IS_ERR(folio)) {
337		same_folio = lend < folio_pos(folio) + folio_size(folio);
338		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
339			start = folio_next_index(folio);
340			if (same_folio)
341				end = folio->index;
342		}
343		folio_unlock(folio);
344		folio_put(folio);
345		folio = NULL;
346	}
347
348	if (!same_folio) {
349		folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
350						FGP_LOCK, 0);
351		if (!IS_ERR(folio)) {
352			if (!truncate_inode_partial_folio(folio, lstart, lend))
353				end = folio->index;
354			folio_unlock(folio);
355			folio_put(folio);
356		}
357	}
358
359	index = start;
360	while (index < end) {
361		cond_resched();
362		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
363				indices)) {
364			/* If all gone from start onwards, we're done */
365			if (index == start)
366				break;
367			/* Otherwise restart to make sure all gone */
368			index = start;
369			continue;
370		}
371
372		for (i = 0; i < folio_batch_count(&fbatch); i++) {
373			struct folio *folio = fbatch.folios[i];
374
375			/* We rely upon deletion not changing page->index */
376
377			if (xa_is_value(folio))
378				continue;
379
380			folio_lock(folio);
381			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
382			folio_wait_writeback(folio);
383			truncate_inode_folio(mapping, folio);
384			folio_unlock(folio);
385		}
386		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
387		folio_batch_release(&fbatch);
388	}
389}
390EXPORT_SYMBOL(truncate_inode_pages_range);
391
392/**
393 * truncate_inode_pages - truncate *all* the pages from an offset
394 * @mapping: mapping to truncate
395 * @lstart: offset from which to truncate
396 *
397 * Called under (and serialised by) inode->i_rwsem and
398 * mapping->invalidate_lock.
399 *
400 * Note: When this function returns, there can be a page in the process of
401 * deletion (inside __filemap_remove_folio()) in the specified range.  Thus
402 * mapping->nrpages can be non-zero when this function returns even after
403 * truncation of the whole mapping.
404 */
405void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
406{
407	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
408}
409EXPORT_SYMBOL(truncate_inode_pages);
410
411/**
412 * truncate_inode_pages_final - truncate *all* pages before inode dies
413 * @mapping: mapping to truncate
414 *
415 * Called under (and serialized by) inode->i_rwsem.
416 *
417 * Filesystems have to use this in the .evict_inode path to inform the
418 * VM that this is the final truncate and the inode is going away.
419 */
420void truncate_inode_pages_final(struct address_space *mapping)
421{
422	/*
423	 * Page reclaim can not participate in regular inode lifetime
424	 * management (can't call iput()) and thus can race with the
425	 * inode teardown.  Tell it when the address space is exiting,
426	 * so that it does not install eviction information after the
427	 * final truncate has begun.
428	 */
429	mapping_set_exiting(mapping);
430
431	if (!mapping_empty(mapping)) {
432		/*
433		 * As truncation uses a lockless tree lookup, cycle
434		 * the tree lock to make sure any ongoing tree
435		 * modification that does not see AS_EXITING is
436		 * completed before starting the final truncate.
437		 */
438		xa_lock_irq(&mapping->i_pages);
439		xa_unlock_irq(&mapping->i_pages);
440	}
441
442	truncate_inode_pages(mapping, 0);
443}
444EXPORT_SYMBOL(truncate_inode_pages_final);
445
446/**
447 * mapping_try_invalidate - Invalidate all the evictable folios of one inode
448 * @mapping: the address_space which holds the folios to invalidate
449 * @start: the offset 'from' which to invalidate
450 * @end: the offset 'to' which to invalidate (inclusive)
451 * @nr_failed: How many folio invalidations failed
452 *
453 * This function is similar to invalidate_mapping_pages(), except that it
454 * returns the number of folios which could not be evicted in @nr_failed.
455 */
456unsigned long mapping_try_invalidate(struct address_space *mapping,
457		pgoff_t start, pgoff_t end, unsigned long *nr_failed)
458{
459	pgoff_t indices[PAGEVEC_SIZE];
460	struct folio_batch fbatch;
461	pgoff_t index = start;
462	unsigned long ret;
463	unsigned long count = 0;
464	int i;
465
466	folio_batch_init(&fbatch);
467	while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
468		bool xa_has_values = false;
469		int nr = folio_batch_count(&fbatch);
470
471		for (i = 0; i < nr; i++) {
472			struct folio *folio = fbatch.folios[i];
473
474			/* We rely upon deletion not changing folio->index */
475
476			if (xa_is_value(folio)) {
477				xa_has_values = true;
478				count++;
479				continue;
480			}
481
482			ret = mapping_evict_folio(mapping, folio);
483			folio_unlock(folio);
484			/*
485			 * Invalidation is a hint that the folio is no longer
486			 * of interest and try to speed up its reclaim.
487			 */
488			if (!ret) {
489				deactivate_file_folio(folio);
490				/* Likely in the lru cache of a remote CPU */
491				if (nr_failed)
492					(*nr_failed)++;
493			}
494			count += ret;
495		}
496
497		if (xa_has_values)
498			clear_shadow_entries(mapping, indices[0], indices[nr-1]);
499
500		folio_batch_remove_exceptionals(&fbatch);
501		folio_batch_release(&fbatch);
502		cond_resched();
503	}
504	return count;
505}
506
507/**
508 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
509 * @mapping: the address_space which holds the cache to invalidate
510 * @start: the offset 'from' which to invalidate
511 * @end: the offset 'to' which to invalidate (inclusive)
512 *
513 * This function removes pages that are clean, unmapped and unlocked,
514 * as well as shadow entries. It will not block on IO activity.
515 *
516 * If you want to remove all the pages of one inode, regardless of
517 * their use and writeback state, use truncate_inode_pages().
518 *
519 * Return: The number of indices that had their contents invalidated
520 */
521unsigned long invalidate_mapping_pages(struct address_space *mapping,
522		pgoff_t start, pgoff_t end)
523{
524	return mapping_try_invalidate(mapping, start, end, NULL);
525}
526EXPORT_SYMBOL(invalidate_mapping_pages);
527
528/*
529 * This is like mapping_evict_folio(), except it ignores the folio's
530 * refcount.  We do this because invalidate_inode_pages2() needs stronger
531 * invalidation guarantees, and cannot afford to leave folios behind because
532 * shrink_folio_list() has a temp ref on them, or because they're transiently
533 * sitting in the folio_add_lru() caches.
534 */
535static int invalidate_complete_folio2(struct address_space *mapping,
536					struct folio *folio)
537{
538	if (folio->mapping != mapping)
539		return 0;
540
541	if (!filemap_release_folio(folio, GFP_KERNEL))
542		return 0;
543
544	spin_lock(&mapping->host->i_lock);
545	xa_lock_irq(&mapping->i_pages);
546	if (folio_test_dirty(folio))
547		goto failed;
548
549	BUG_ON(folio_has_private(folio));
550	__filemap_remove_folio(folio, NULL);
551	xa_unlock_irq(&mapping->i_pages);
552	if (mapping_shrinkable(mapping))
553		inode_add_lru(mapping->host);
554	spin_unlock(&mapping->host->i_lock);
555
556	filemap_free_folio(mapping, folio);
557	return 1;
558failed:
559	xa_unlock_irq(&mapping->i_pages);
560	spin_unlock(&mapping->host->i_lock);
561	return 0;
562}
563
564static int folio_launder(struct address_space *mapping, struct folio *folio)
565{
566	if (!folio_test_dirty(folio))
567		return 0;
568	if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
569		return 0;
570	return mapping->a_ops->launder_folio(folio);
571}
572
573/**
574 * invalidate_inode_pages2_range - remove range of pages from an address_space
575 * @mapping: the address_space
576 * @start: the page offset 'from' which to invalidate
577 * @end: the page offset 'to' which to invalidate (inclusive)
578 *
579 * Any pages which are found to be mapped into pagetables are unmapped prior to
580 * invalidation.
581 *
582 * Return: -EBUSY if any pages could not be invalidated.
583 */
584int invalidate_inode_pages2_range(struct address_space *mapping,
585				  pgoff_t start, pgoff_t end)
586{
587	pgoff_t indices[PAGEVEC_SIZE];
588	struct folio_batch fbatch;
589	pgoff_t index;
590	int i;
591	int ret = 0;
592	int ret2 = 0;
593	int did_range_unmap = 0;
594
595	if (mapping_empty(mapping))
596		return 0;
597
598	folio_batch_init(&fbatch);
599	index = start;
600	while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
601		bool xa_has_values = false;
602		int nr = folio_batch_count(&fbatch);
603
604		for (i = 0; i < nr; i++) {
605			struct folio *folio = fbatch.folios[i];
606
607			/* We rely upon deletion not changing folio->index */
608
609			if (xa_is_value(folio)) {
610				xa_has_values = true;
611				if (dax_mapping(mapping) &&
612				    !dax_invalidate_mapping_entry_sync(mapping, indices[i]))
613					ret = -EBUSY;
614				continue;
615			}
616
617			if (!did_range_unmap && folio_mapped(folio)) {
618				/*
619				 * If folio is mapped, before taking its lock,
620				 * zap the rest of the file in one hit.
621				 */
622				unmap_mapping_pages(mapping, indices[i],
623						(1 + end - indices[i]), false);
624				did_range_unmap = 1;
625			}
626
627			folio_lock(folio);
628			if (unlikely(folio->mapping != mapping)) {
629				folio_unlock(folio);
630				continue;
631			}
632			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
633			folio_wait_writeback(folio);
634
635			if (folio_mapped(folio))
636				unmap_mapping_folio(folio);
637			BUG_ON(folio_mapped(folio));
638
639			ret2 = folio_launder(mapping, folio);
640			if (ret2 == 0) {
641				if (!invalidate_complete_folio2(mapping, folio))
642					ret2 = -EBUSY;
643			}
644			if (ret2 < 0)
645				ret = ret2;
646			folio_unlock(folio);
647		}
648
649		if (xa_has_values)
650			clear_shadow_entries(mapping, indices[0], indices[nr-1]);
651
652		folio_batch_remove_exceptionals(&fbatch);
653		folio_batch_release(&fbatch);
654		cond_resched();
655	}
656	/*
657	 * For DAX we invalidate page tables after invalidating page cache.  We
658	 * could invalidate page tables while invalidating each entry however
659	 * that would be expensive. And doing range unmapping before doesn't
660	 * work as we have no cheap way to find whether page cache entry didn't
661	 * get remapped later.
662	 */
663	if (dax_mapping(mapping)) {
664		unmap_mapping_pages(mapping, start, end - start + 1, false);
665	}
666	return ret;
667}
668EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
669
670/**
671 * invalidate_inode_pages2 - remove all pages from an address_space
672 * @mapping: the address_space
673 *
674 * Any pages which are found to be mapped into pagetables are unmapped prior to
675 * invalidation.
676 *
677 * Return: -EBUSY if any pages could not be invalidated.
678 */
679int invalidate_inode_pages2(struct address_space *mapping)
680{
681	return invalidate_inode_pages2_range(mapping, 0, -1);
682}
683EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
684
685/**
686 * truncate_pagecache - unmap and remove pagecache that has been truncated
687 * @inode: inode
688 * @newsize: new file size
689 *
690 * inode's new i_size must already be written before truncate_pagecache
691 * is called.
692 *
693 * This function should typically be called before the filesystem
694 * releases resources associated with the freed range (eg. deallocates
695 * blocks). This way, pagecache will always stay logically coherent
696 * with on-disk format, and the filesystem would not have to deal with
697 * situations such as writepage being called for a page that has already
698 * had its underlying blocks deallocated.
699 */
700void truncate_pagecache(struct inode *inode, loff_t newsize)
701{
702	struct address_space *mapping = inode->i_mapping;
703	loff_t holebegin = round_up(newsize, PAGE_SIZE);
704
705	/*
706	 * unmap_mapping_range is called twice, first simply for
707	 * efficiency so that truncate_inode_pages does fewer
708	 * single-page unmaps.  However after this first call, and
709	 * before truncate_inode_pages finishes, it is possible for
710	 * private pages to be COWed, which remain after
711	 * truncate_inode_pages finishes, hence the second
712	 * unmap_mapping_range call must be made for correctness.
713	 */
714	unmap_mapping_range(mapping, holebegin, 0, 1);
715	truncate_inode_pages(mapping, newsize);
716	unmap_mapping_range(mapping, holebegin, 0, 1);
717}
718EXPORT_SYMBOL(truncate_pagecache);
719
720/**
721 * truncate_setsize - update inode and pagecache for a new file size
722 * @inode: inode
723 * @newsize: new file size
724 *
725 * truncate_setsize updates i_size and performs pagecache truncation (if
726 * necessary) to @newsize. It will be typically be called from the filesystem's
727 * setattr function when ATTR_SIZE is passed in.
728 *
729 * Must be called with a lock serializing truncates and writes (generally
730 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
731 * specific block truncation has been performed.
732 */
733void truncate_setsize(struct inode *inode, loff_t newsize)
734{
735	loff_t oldsize = inode->i_size;
736
737	i_size_write(inode, newsize);
738	if (newsize > oldsize)
739		pagecache_isize_extended(inode, oldsize, newsize);
740	truncate_pagecache(inode, newsize);
741}
742EXPORT_SYMBOL(truncate_setsize);
743
744/**
745 * pagecache_isize_extended - update pagecache after extension of i_size
746 * @inode:	inode for which i_size was extended
747 * @from:	original inode size
748 * @to:		new inode size
749 *
750 * Handle extension of inode size either caused by extending truncate or
751 * by write starting after current i_size.  We mark the page straddling
752 * current i_size RO so that page_mkwrite() is called on the first
753 * write access to the page.  The filesystem will update its per-block
754 * information before user writes to the page via mmap after the i_size
755 * has been changed.
756 *
757 * The function must be called after i_size is updated so that page fault
758 * coming after we unlock the folio will already see the new i_size.
759 * The function must be called while we still hold i_rwsem - this not only
760 * makes sure i_size is stable but also that userspace cannot observe new
761 * i_size value before we are prepared to store mmap writes at new inode size.
762 */
763void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
764{
765	int bsize = i_blocksize(inode);
766	loff_t rounded_from;
767	struct folio *folio;
 
768
769	WARN_ON(to > inode->i_size);
770
771	if (from >= to || bsize >= PAGE_SIZE)
772		return;
773	/* Page straddling @from will not have any hole block created? */
774	rounded_from = round_up(from, bsize);
775	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
776		return;
777
778	folio = filemap_lock_folio(inode->i_mapping, from / PAGE_SIZE);
779	/* Folio not cached? Nothing to do */
780	if (IS_ERR(folio))
 
781		return;
782	/*
783	 * See folio_clear_dirty_for_io() for details why folio_mark_dirty()
784	 * is needed.
785	 */
786	if (folio_mkclean(folio))
787		folio_mark_dirty(folio);
788
789	/*
790	 * The post-eof range of the folio must be zeroed before it is exposed
791	 * to the file. Writeback normally does this, but since i_size has been
792	 * increased we handle it here.
793	 */
794	if (folio_test_dirty(folio)) {
795		unsigned int offset, end;
796
797		offset = from - folio_pos(folio);
798		end = min_t(unsigned int, to - folio_pos(folio),
799			    folio_size(folio));
800		folio_zero_segment(folio, offset, end);
801	}
802
803	folio_unlock(folio);
804	folio_put(folio);
805}
806EXPORT_SYMBOL(pagecache_isize_extended);
807
808/**
809 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
810 * @inode: inode
811 * @lstart: offset of beginning of hole
812 * @lend: offset of last byte of hole
813 *
814 * This function should typically be called before the filesystem
815 * releases resources associated with the freed range (eg. deallocates
816 * blocks). This way, pagecache will always stay logically coherent
817 * with on-disk format, and the filesystem would not have to deal with
818 * situations such as writepage being called for a page that has already
819 * had its underlying blocks deallocated.
820 */
821void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
822{
823	struct address_space *mapping = inode->i_mapping;
824	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
825	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
826	/*
827	 * This rounding is currently just for example: unmap_mapping_range
828	 * expands its hole outwards, whereas we want it to contract the hole
829	 * inwards.  However, existing callers of truncate_pagecache_range are
830	 * doing their own page rounding first.  Note that unmap_mapping_range
831	 * allows holelen 0 for all, and we allow lend -1 for end of file.
832	 */
833
834	/*
835	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
836	 * once (before truncating pagecache), and without "even_cows" flag:
837	 * hole-punching should not remove private COWed pages from the hole.
838	 */
839	if ((u64)unmap_end > (u64)unmap_start)
840		unmap_mapping_range(mapping, unmap_start,
841				    1 + unmap_end - unmap_start, 0);
842	truncate_inode_pages_range(mapping, lstart, lend);
843}
844EXPORT_SYMBOL(truncate_pagecache_range);