Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/truncate.c - code for taking down pages from address_spaces
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 10Sep2002 Andrew Morton
8 * Initial version.
9 */
10
11#include <linux/kernel.h>
12#include <linux/backing-dev.h>
13#include <linux/dax.h>
14#include <linux/gfp.h>
15#include <linux/mm.h>
16#include <linux/swap.h>
17#include <linux/export.h>
18#include <linux/pagemap.h>
19#include <linux/highmem.h>
20#include <linux/pagevec.h>
21#include <linux/task_io_accounting_ops.h>
22#include <linux/shmem_fs.h>
23#include <linux/rmap.h>
24#include "internal.h"
25
26/*
27 * Regular page slots are stabilized by the page lock even without the tree
28 * itself locked. These unlocked entries need verification under the tree
29 * lock.
30 */
31static inline void __clear_shadow_entry(struct address_space *mapping,
32 pgoff_t index, void *entry)
33{
34 XA_STATE(xas, &mapping->i_pages, index);
35
36 xas_set_update(&xas, workingset_update_node);
37 if (xas_load(&xas) != entry)
38 return;
39 xas_store(&xas, NULL);
40}
41
42static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
43 void *entry)
44{
45 spin_lock(&mapping->host->i_lock);
46 xa_lock_irq(&mapping->i_pages);
47 __clear_shadow_entry(mapping, index, entry);
48 xa_unlock_irq(&mapping->i_pages);
49 if (mapping_shrinkable(mapping))
50 inode_add_lru(mapping->host);
51 spin_unlock(&mapping->host->i_lock);
52}
53
54/*
55 * Unconditionally remove exceptional entries. Usually called from truncate
56 * path. Note that the folio_batch may be altered by this function by removing
57 * exceptional entries similar to what folio_batch_remove_exceptionals() does.
58 */
59static void truncate_folio_batch_exceptionals(struct address_space *mapping,
60 struct folio_batch *fbatch, pgoff_t *indices)
61{
62 int i, j;
63 bool dax;
64
65 /* Handled by shmem itself */
66 if (shmem_mapping(mapping))
67 return;
68
69 for (j = 0; j < folio_batch_count(fbatch); j++)
70 if (xa_is_value(fbatch->folios[j]))
71 break;
72
73 if (j == folio_batch_count(fbatch))
74 return;
75
76 dax = dax_mapping(mapping);
77 if (!dax) {
78 spin_lock(&mapping->host->i_lock);
79 xa_lock_irq(&mapping->i_pages);
80 }
81
82 for (i = j; i < folio_batch_count(fbatch); i++) {
83 struct folio *folio = fbatch->folios[i];
84 pgoff_t index = indices[i];
85
86 if (!xa_is_value(folio)) {
87 fbatch->folios[j++] = folio;
88 continue;
89 }
90
91 if (unlikely(dax)) {
92 dax_delete_mapping_entry(mapping, index);
93 continue;
94 }
95
96 __clear_shadow_entry(mapping, index, folio);
97 }
98
99 if (!dax) {
100 xa_unlock_irq(&mapping->i_pages);
101 if (mapping_shrinkable(mapping))
102 inode_add_lru(mapping->host);
103 spin_unlock(&mapping->host->i_lock);
104 }
105 fbatch->nr = j;
106}
107
108/*
109 * Invalidate exceptional entry if easily possible. This handles exceptional
110 * entries for invalidate_inode_pages().
111 */
112static int invalidate_exceptional_entry(struct address_space *mapping,
113 pgoff_t index, void *entry)
114{
115 /* Handled by shmem itself, or for DAX we do nothing. */
116 if (shmem_mapping(mapping) || dax_mapping(mapping))
117 return 1;
118 clear_shadow_entry(mapping, index, entry);
119 return 1;
120}
121
122/*
123 * Invalidate exceptional entry if clean. This handles exceptional entries for
124 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
125 */
126static int invalidate_exceptional_entry2(struct address_space *mapping,
127 pgoff_t index, void *entry)
128{
129 /* Handled by shmem itself */
130 if (shmem_mapping(mapping))
131 return 1;
132 if (dax_mapping(mapping))
133 return dax_invalidate_mapping_entry_sync(mapping, index);
134 clear_shadow_entry(mapping, index, entry);
135 return 1;
136}
137
138/**
139 * folio_invalidate - Invalidate part or all of a folio.
140 * @folio: The folio which is affected.
141 * @offset: start of the range to invalidate
142 * @length: length of the range to invalidate
143 *
144 * folio_invalidate() is called when all or part of the folio has become
145 * invalidated by a truncate operation.
146 *
147 * folio_invalidate() does not have to release all buffers, but it must
148 * ensure that no dirty buffer is left outside @offset and that no I/O
149 * is underway against any of the blocks which are outside the truncation
150 * point. Because the caller is about to free (and possibly reuse) those
151 * blocks on-disk.
152 */
153void folio_invalidate(struct folio *folio, size_t offset, size_t length)
154{
155 const struct address_space_operations *aops = folio->mapping->a_ops;
156
157 if (aops->invalidate_folio)
158 aops->invalidate_folio(folio, offset, length);
159}
160EXPORT_SYMBOL_GPL(folio_invalidate);
161
162/*
163 * If truncate cannot remove the fs-private metadata from the page, the page
164 * becomes orphaned. It will be left on the LRU and may even be mapped into
165 * user pagetables if we're racing with filemap_fault().
166 *
167 * We need to bail out if page->mapping is no longer equal to the original
168 * mapping. This happens a) when the VM reclaimed the page while we waited on
169 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
170 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
171 */
172static void truncate_cleanup_folio(struct folio *folio)
173{
174 if (folio_mapped(folio))
175 unmap_mapping_folio(folio);
176
177 if (folio_has_private(folio))
178 folio_invalidate(folio, 0, folio_size(folio));
179
180 /*
181 * Some filesystems seem to re-dirty the page even after
182 * the VM has canceled the dirty bit (eg ext3 journaling).
183 * Hence dirty accounting check is placed after invalidation.
184 */
185 folio_cancel_dirty(folio);
186 folio_clear_mappedtodisk(folio);
187}
188
189int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
190{
191 if (folio->mapping != mapping)
192 return -EIO;
193
194 truncate_cleanup_folio(folio);
195 filemap_remove_folio(folio);
196 return 0;
197}
198
199/*
200 * Handle partial folios. The folio may be entirely within the
201 * range if a split has raced with us. If not, we zero the part of the
202 * folio that's within the [start, end] range, and then split the folio if
203 * it's large. split_page_range() will discard pages which now lie beyond
204 * i_size, and we rely on the caller to discard pages which lie within a
205 * newly created hole.
206 *
207 * Returns false if splitting failed so the caller can avoid
208 * discarding the entire folio which is stubbornly unsplit.
209 */
210bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
211{
212 loff_t pos = folio_pos(folio);
213 unsigned int offset, length;
214
215 if (pos < start)
216 offset = start - pos;
217 else
218 offset = 0;
219 length = folio_size(folio);
220 if (pos + length <= (u64)end)
221 length = length - offset;
222 else
223 length = end + 1 - pos - offset;
224
225 folio_wait_writeback(folio);
226 if (length == folio_size(folio)) {
227 truncate_inode_folio(folio->mapping, folio);
228 return true;
229 }
230
231 /*
232 * We may be zeroing pages we're about to discard, but it avoids
233 * doing a complex calculation here, and then doing the zeroing
234 * anyway if the page split fails.
235 */
236 folio_zero_range(folio, offset, length);
237
238 if (folio_has_private(folio))
239 folio_invalidate(folio, offset, length);
240 if (!folio_test_large(folio))
241 return true;
242 if (split_folio(folio) == 0)
243 return true;
244 if (folio_test_dirty(folio))
245 return false;
246 truncate_inode_folio(folio->mapping, folio);
247 return true;
248}
249
250/*
251 * Used to get rid of pages on hardware memory corruption.
252 */
253int generic_error_remove_folio(struct address_space *mapping,
254 struct folio *folio)
255{
256 if (!mapping)
257 return -EINVAL;
258 /*
259 * Only punch for normal data pages for now.
260 * Handling other types like directories would need more auditing.
261 */
262 if (!S_ISREG(mapping->host->i_mode))
263 return -EIO;
264 return truncate_inode_folio(mapping, folio);
265}
266EXPORT_SYMBOL(generic_error_remove_folio);
267
268/**
269 * mapping_evict_folio() - Remove an unused folio from the page-cache.
270 * @mapping: The mapping this folio belongs to.
271 * @folio: The folio to remove.
272 *
273 * Safely remove one folio from the page cache.
274 * It only drops clean, unused folios.
275 *
276 * Context: Folio must be locked.
277 * Return: The number of pages successfully removed.
278 */
279long mapping_evict_folio(struct address_space *mapping, struct folio *folio)
280{
281 /* The page may have been truncated before it was locked */
282 if (!mapping)
283 return 0;
284 if (folio_test_dirty(folio) || folio_test_writeback(folio))
285 return 0;
286 /* The refcount will be elevated if any page in the folio is mapped */
287 if (folio_ref_count(folio) >
288 folio_nr_pages(folio) + folio_has_private(folio) + 1)
289 return 0;
290 if (!filemap_release_folio(folio, 0))
291 return 0;
292
293 return remove_mapping(mapping, folio);
294}
295
296/**
297 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
298 * @mapping: mapping to truncate
299 * @lstart: offset from which to truncate
300 * @lend: offset to which to truncate (inclusive)
301 *
302 * Truncate the page cache, removing the pages that are between
303 * specified offsets (and zeroing out partial pages
304 * if lstart or lend + 1 is not page aligned).
305 *
306 * Truncate takes two passes - the first pass is nonblocking. It will not
307 * block on page locks and it will not block on writeback. The second pass
308 * will wait. This is to prevent as much IO as possible in the affected region.
309 * The first pass will remove most pages, so the search cost of the second pass
310 * is low.
311 *
312 * We pass down the cache-hot hint to the page freeing code. Even if the
313 * mapping is large, it is probably the case that the final pages are the most
314 * recently touched, and freeing happens in ascending file offset order.
315 *
316 * Note that since ->invalidate_folio() accepts range to invalidate
317 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
318 * page aligned properly.
319 */
320void truncate_inode_pages_range(struct address_space *mapping,
321 loff_t lstart, loff_t lend)
322{
323 pgoff_t start; /* inclusive */
324 pgoff_t end; /* exclusive */
325 struct folio_batch fbatch;
326 pgoff_t indices[PAGEVEC_SIZE];
327 pgoff_t index;
328 int i;
329 struct folio *folio;
330 bool same_folio;
331
332 if (mapping_empty(mapping))
333 return;
334
335 /*
336 * 'start' and 'end' always covers the range of pages to be fully
337 * truncated. Partial pages are covered with 'partial_start' at the
338 * start of the range and 'partial_end' at the end of the range.
339 * Note that 'end' is exclusive while 'lend' is inclusive.
340 */
341 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
342 if (lend == -1)
343 /*
344 * lend == -1 indicates end-of-file so we have to set 'end'
345 * to the highest possible pgoff_t and since the type is
346 * unsigned we're using -1.
347 */
348 end = -1;
349 else
350 end = (lend + 1) >> PAGE_SHIFT;
351
352 folio_batch_init(&fbatch);
353 index = start;
354 while (index < end && find_lock_entries(mapping, &index, end - 1,
355 &fbatch, indices)) {
356 truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
357 for (i = 0; i < folio_batch_count(&fbatch); i++)
358 truncate_cleanup_folio(fbatch.folios[i]);
359 delete_from_page_cache_batch(mapping, &fbatch);
360 for (i = 0; i < folio_batch_count(&fbatch); i++)
361 folio_unlock(fbatch.folios[i]);
362 folio_batch_release(&fbatch);
363 cond_resched();
364 }
365
366 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
367 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
368 if (!IS_ERR(folio)) {
369 same_folio = lend < folio_pos(folio) + folio_size(folio);
370 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
371 start = folio_next_index(folio);
372 if (same_folio)
373 end = folio->index;
374 }
375 folio_unlock(folio);
376 folio_put(folio);
377 folio = NULL;
378 }
379
380 if (!same_folio) {
381 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
382 FGP_LOCK, 0);
383 if (!IS_ERR(folio)) {
384 if (!truncate_inode_partial_folio(folio, lstart, lend))
385 end = folio->index;
386 folio_unlock(folio);
387 folio_put(folio);
388 }
389 }
390
391 index = start;
392 while (index < end) {
393 cond_resched();
394 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
395 indices)) {
396 /* If all gone from start onwards, we're done */
397 if (index == start)
398 break;
399 /* Otherwise restart to make sure all gone */
400 index = start;
401 continue;
402 }
403
404 for (i = 0; i < folio_batch_count(&fbatch); i++) {
405 struct folio *folio = fbatch.folios[i];
406
407 /* We rely upon deletion not changing page->index */
408
409 if (xa_is_value(folio))
410 continue;
411
412 folio_lock(folio);
413 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
414 folio_wait_writeback(folio);
415 truncate_inode_folio(mapping, folio);
416 folio_unlock(folio);
417 }
418 truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
419 folio_batch_release(&fbatch);
420 }
421}
422EXPORT_SYMBOL(truncate_inode_pages_range);
423
424/**
425 * truncate_inode_pages - truncate *all* the pages from an offset
426 * @mapping: mapping to truncate
427 * @lstart: offset from which to truncate
428 *
429 * Called under (and serialised by) inode->i_rwsem and
430 * mapping->invalidate_lock.
431 *
432 * Note: When this function returns, there can be a page in the process of
433 * deletion (inside __filemap_remove_folio()) in the specified range. Thus
434 * mapping->nrpages can be non-zero when this function returns even after
435 * truncation of the whole mapping.
436 */
437void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
438{
439 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
440}
441EXPORT_SYMBOL(truncate_inode_pages);
442
443/**
444 * truncate_inode_pages_final - truncate *all* pages before inode dies
445 * @mapping: mapping to truncate
446 *
447 * Called under (and serialized by) inode->i_rwsem.
448 *
449 * Filesystems have to use this in the .evict_inode path to inform the
450 * VM that this is the final truncate and the inode is going away.
451 */
452void truncate_inode_pages_final(struct address_space *mapping)
453{
454 /*
455 * Page reclaim can not participate in regular inode lifetime
456 * management (can't call iput()) and thus can race with the
457 * inode teardown. Tell it when the address space is exiting,
458 * so that it does not install eviction information after the
459 * final truncate has begun.
460 */
461 mapping_set_exiting(mapping);
462
463 if (!mapping_empty(mapping)) {
464 /*
465 * As truncation uses a lockless tree lookup, cycle
466 * the tree lock to make sure any ongoing tree
467 * modification that does not see AS_EXITING is
468 * completed before starting the final truncate.
469 */
470 xa_lock_irq(&mapping->i_pages);
471 xa_unlock_irq(&mapping->i_pages);
472 }
473
474 truncate_inode_pages(mapping, 0);
475}
476EXPORT_SYMBOL(truncate_inode_pages_final);
477
478/**
479 * mapping_try_invalidate - Invalidate all the evictable folios of one inode
480 * @mapping: the address_space which holds the folios to invalidate
481 * @start: the offset 'from' which to invalidate
482 * @end: the offset 'to' which to invalidate (inclusive)
483 * @nr_failed: How many folio invalidations failed
484 *
485 * This function is similar to invalidate_mapping_pages(), except that it
486 * returns the number of folios which could not be evicted in @nr_failed.
487 */
488unsigned long mapping_try_invalidate(struct address_space *mapping,
489 pgoff_t start, pgoff_t end, unsigned long *nr_failed)
490{
491 pgoff_t indices[PAGEVEC_SIZE];
492 struct folio_batch fbatch;
493 pgoff_t index = start;
494 unsigned long ret;
495 unsigned long count = 0;
496 int i;
497
498 folio_batch_init(&fbatch);
499 while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
500 for (i = 0; i < folio_batch_count(&fbatch); i++) {
501 struct folio *folio = fbatch.folios[i];
502
503 /* We rely upon deletion not changing folio->index */
504
505 if (xa_is_value(folio)) {
506 count += invalidate_exceptional_entry(mapping,
507 indices[i], folio);
508 continue;
509 }
510
511 ret = mapping_evict_folio(mapping, folio);
512 folio_unlock(folio);
513 /*
514 * Invalidation is a hint that the folio is no longer
515 * of interest and try to speed up its reclaim.
516 */
517 if (!ret) {
518 deactivate_file_folio(folio);
519 /* Likely in the lru cache of a remote CPU */
520 if (nr_failed)
521 (*nr_failed)++;
522 }
523 count += ret;
524 }
525 folio_batch_remove_exceptionals(&fbatch);
526 folio_batch_release(&fbatch);
527 cond_resched();
528 }
529 return count;
530}
531
532/**
533 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
534 * @mapping: the address_space which holds the cache to invalidate
535 * @start: the offset 'from' which to invalidate
536 * @end: the offset 'to' which to invalidate (inclusive)
537 *
538 * This function removes pages that are clean, unmapped and unlocked,
539 * as well as shadow entries. It will not block on IO activity.
540 *
541 * If you want to remove all the pages of one inode, regardless of
542 * their use and writeback state, use truncate_inode_pages().
543 *
544 * Return: The number of indices that had their contents invalidated
545 */
546unsigned long invalidate_mapping_pages(struct address_space *mapping,
547 pgoff_t start, pgoff_t end)
548{
549 return mapping_try_invalidate(mapping, start, end, NULL);
550}
551EXPORT_SYMBOL(invalidate_mapping_pages);
552
553/*
554 * This is like mapping_evict_folio(), except it ignores the folio's
555 * refcount. We do this because invalidate_inode_pages2() needs stronger
556 * invalidation guarantees, and cannot afford to leave folios behind because
557 * shrink_page_list() has a temp ref on them, or because they're transiently
558 * sitting in the folio_add_lru() caches.
559 */
560static int invalidate_complete_folio2(struct address_space *mapping,
561 struct folio *folio)
562{
563 if (folio->mapping != mapping)
564 return 0;
565
566 if (!filemap_release_folio(folio, GFP_KERNEL))
567 return 0;
568
569 spin_lock(&mapping->host->i_lock);
570 xa_lock_irq(&mapping->i_pages);
571 if (folio_test_dirty(folio))
572 goto failed;
573
574 BUG_ON(folio_has_private(folio));
575 __filemap_remove_folio(folio, NULL);
576 xa_unlock_irq(&mapping->i_pages);
577 if (mapping_shrinkable(mapping))
578 inode_add_lru(mapping->host);
579 spin_unlock(&mapping->host->i_lock);
580
581 filemap_free_folio(mapping, folio);
582 return 1;
583failed:
584 xa_unlock_irq(&mapping->i_pages);
585 spin_unlock(&mapping->host->i_lock);
586 return 0;
587}
588
589static int folio_launder(struct address_space *mapping, struct folio *folio)
590{
591 if (!folio_test_dirty(folio))
592 return 0;
593 if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
594 return 0;
595 return mapping->a_ops->launder_folio(folio);
596}
597
598/**
599 * invalidate_inode_pages2_range - remove range of pages from an address_space
600 * @mapping: the address_space
601 * @start: the page offset 'from' which to invalidate
602 * @end: the page offset 'to' which to invalidate (inclusive)
603 *
604 * Any pages which are found to be mapped into pagetables are unmapped prior to
605 * invalidation.
606 *
607 * Return: -EBUSY if any pages could not be invalidated.
608 */
609int invalidate_inode_pages2_range(struct address_space *mapping,
610 pgoff_t start, pgoff_t end)
611{
612 pgoff_t indices[PAGEVEC_SIZE];
613 struct folio_batch fbatch;
614 pgoff_t index;
615 int i;
616 int ret = 0;
617 int ret2 = 0;
618 int did_range_unmap = 0;
619
620 if (mapping_empty(mapping))
621 return 0;
622
623 folio_batch_init(&fbatch);
624 index = start;
625 while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
626 for (i = 0; i < folio_batch_count(&fbatch); i++) {
627 struct folio *folio = fbatch.folios[i];
628
629 /* We rely upon deletion not changing folio->index */
630
631 if (xa_is_value(folio)) {
632 if (!invalidate_exceptional_entry2(mapping,
633 indices[i], folio))
634 ret = -EBUSY;
635 continue;
636 }
637
638 if (!did_range_unmap && folio_mapped(folio)) {
639 /*
640 * If folio is mapped, before taking its lock,
641 * zap the rest of the file in one hit.
642 */
643 unmap_mapping_pages(mapping, indices[i],
644 (1 + end - indices[i]), false);
645 did_range_unmap = 1;
646 }
647
648 folio_lock(folio);
649 if (unlikely(folio->mapping != mapping)) {
650 folio_unlock(folio);
651 continue;
652 }
653 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
654 folio_wait_writeback(folio);
655
656 if (folio_mapped(folio))
657 unmap_mapping_folio(folio);
658 BUG_ON(folio_mapped(folio));
659
660 ret2 = folio_launder(mapping, folio);
661 if (ret2 == 0) {
662 if (!invalidate_complete_folio2(mapping, folio))
663 ret2 = -EBUSY;
664 }
665 if (ret2 < 0)
666 ret = ret2;
667 folio_unlock(folio);
668 }
669 folio_batch_remove_exceptionals(&fbatch);
670 folio_batch_release(&fbatch);
671 cond_resched();
672 }
673 /*
674 * For DAX we invalidate page tables after invalidating page cache. We
675 * could invalidate page tables while invalidating each entry however
676 * that would be expensive. And doing range unmapping before doesn't
677 * work as we have no cheap way to find whether page cache entry didn't
678 * get remapped later.
679 */
680 if (dax_mapping(mapping)) {
681 unmap_mapping_pages(mapping, start, end - start + 1, false);
682 }
683 return ret;
684}
685EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
686
687/**
688 * invalidate_inode_pages2 - remove all pages from an address_space
689 * @mapping: the address_space
690 *
691 * Any pages which are found to be mapped into pagetables are unmapped prior to
692 * invalidation.
693 *
694 * Return: -EBUSY if any pages could not be invalidated.
695 */
696int invalidate_inode_pages2(struct address_space *mapping)
697{
698 return invalidate_inode_pages2_range(mapping, 0, -1);
699}
700EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
701
702/**
703 * truncate_pagecache - unmap and remove pagecache that has been truncated
704 * @inode: inode
705 * @newsize: new file size
706 *
707 * inode's new i_size must already be written before truncate_pagecache
708 * is called.
709 *
710 * This function should typically be called before the filesystem
711 * releases resources associated with the freed range (eg. deallocates
712 * blocks). This way, pagecache will always stay logically coherent
713 * with on-disk format, and the filesystem would not have to deal with
714 * situations such as writepage being called for a page that has already
715 * had its underlying blocks deallocated.
716 */
717void truncate_pagecache(struct inode *inode, loff_t newsize)
718{
719 struct address_space *mapping = inode->i_mapping;
720 loff_t holebegin = round_up(newsize, PAGE_SIZE);
721
722 /*
723 * unmap_mapping_range is called twice, first simply for
724 * efficiency so that truncate_inode_pages does fewer
725 * single-page unmaps. However after this first call, and
726 * before truncate_inode_pages finishes, it is possible for
727 * private pages to be COWed, which remain after
728 * truncate_inode_pages finishes, hence the second
729 * unmap_mapping_range call must be made for correctness.
730 */
731 unmap_mapping_range(mapping, holebegin, 0, 1);
732 truncate_inode_pages(mapping, newsize);
733 unmap_mapping_range(mapping, holebegin, 0, 1);
734}
735EXPORT_SYMBOL(truncate_pagecache);
736
737/**
738 * truncate_setsize - update inode and pagecache for a new file size
739 * @inode: inode
740 * @newsize: new file size
741 *
742 * truncate_setsize updates i_size and performs pagecache truncation (if
743 * necessary) to @newsize. It will be typically be called from the filesystem's
744 * setattr function when ATTR_SIZE is passed in.
745 *
746 * Must be called with a lock serializing truncates and writes (generally
747 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
748 * specific block truncation has been performed.
749 */
750void truncate_setsize(struct inode *inode, loff_t newsize)
751{
752 loff_t oldsize = inode->i_size;
753
754 i_size_write(inode, newsize);
755 if (newsize > oldsize)
756 pagecache_isize_extended(inode, oldsize, newsize);
757 truncate_pagecache(inode, newsize);
758}
759EXPORT_SYMBOL(truncate_setsize);
760
761/**
762 * pagecache_isize_extended - update pagecache after extension of i_size
763 * @inode: inode for which i_size was extended
764 * @from: original inode size
765 * @to: new inode size
766 *
767 * Handle extension of inode size either caused by extending truncate or by
768 * write starting after current i_size. We mark the page straddling current
769 * i_size RO so that page_mkwrite() is called on the nearest write access to
770 * the page. This way filesystem can be sure that page_mkwrite() is called on
771 * the page before user writes to the page via mmap after the i_size has been
772 * changed.
773 *
774 * The function must be called after i_size is updated so that page fault
775 * coming after we unlock the page will already see the new i_size.
776 * The function must be called while we still hold i_rwsem - this not only
777 * makes sure i_size is stable but also that userspace cannot observe new
778 * i_size value before we are prepared to store mmap writes at new inode size.
779 */
780void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
781{
782 int bsize = i_blocksize(inode);
783 loff_t rounded_from;
784 struct page *page;
785 pgoff_t index;
786
787 WARN_ON(to > inode->i_size);
788
789 if (from >= to || bsize == PAGE_SIZE)
790 return;
791 /* Page straddling @from will not have any hole block created? */
792 rounded_from = round_up(from, bsize);
793 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
794 return;
795
796 index = from >> PAGE_SHIFT;
797 page = find_lock_page(inode->i_mapping, index);
798 /* Page not cached? Nothing to do */
799 if (!page)
800 return;
801 /*
802 * See clear_page_dirty_for_io() for details why set_page_dirty()
803 * is needed.
804 */
805 if (page_mkclean(page))
806 set_page_dirty(page);
807 unlock_page(page);
808 put_page(page);
809}
810EXPORT_SYMBOL(pagecache_isize_extended);
811
812/**
813 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
814 * @inode: inode
815 * @lstart: offset of beginning of hole
816 * @lend: offset of last byte of hole
817 *
818 * This function should typically be called before the filesystem
819 * releases resources associated with the freed range (eg. deallocates
820 * blocks). This way, pagecache will always stay logically coherent
821 * with on-disk format, and the filesystem would not have to deal with
822 * situations such as writepage being called for a page that has already
823 * had its underlying blocks deallocated.
824 */
825void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
826{
827 struct address_space *mapping = inode->i_mapping;
828 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
829 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
830 /*
831 * This rounding is currently just for example: unmap_mapping_range
832 * expands its hole outwards, whereas we want it to contract the hole
833 * inwards. However, existing callers of truncate_pagecache_range are
834 * doing their own page rounding first. Note that unmap_mapping_range
835 * allows holelen 0 for all, and we allow lend -1 for end of file.
836 */
837
838 /*
839 * Unlike in truncate_pagecache, unmap_mapping_range is called only
840 * once (before truncating pagecache), and without "even_cows" flag:
841 * hole-punching should not remove private COWed pages from the hole.
842 */
843 if ((u64)unmap_end > (u64)unmap_start)
844 unmap_mapping_range(mapping, unmap_start,
845 1 + unmap_end - unmap_start, 0);
846 truncate_inode_pages_range(mapping, lstart, lend);
847}
848EXPORT_SYMBOL(truncate_pagecache_range);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/truncate.c - code for taking down pages from address_spaces
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 10Sep2002 Andrew Morton
8 * Initial version.
9 */
10
11#include <linux/kernel.h>
12#include <linux/backing-dev.h>
13#include <linux/dax.h>
14#include <linux/gfp.h>
15#include <linux/mm.h>
16#include <linux/swap.h>
17#include <linux/export.h>
18#include <linux/pagemap.h>
19#include <linux/highmem.h>
20#include <linux/pagevec.h>
21#include <linux/task_io_accounting_ops.h>
22#include <linux/buffer_head.h> /* grr. try_to_release_page,
23 do_invalidatepage */
24#include <linux/shmem_fs.h>
25#include <linux/cleancache.h>
26#include <linux/rmap.h>
27#include "internal.h"
28
29/*
30 * Regular page slots are stabilized by the page lock even without the tree
31 * itself locked. These unlocked entries need verification under the tree
32 * lock.
33 */
34static inline void __clear_shadow_entry(struct address_space *mapping,
35 pgoff_t index, void *entry)
36{
37 XA_STATE(xas, &mapping->i_pages, index);
38
39 xas_set_update(&xas, workingset_update_node);
40 if (xas_load(&xas) != entry)
41 return;
42 xas_store(&xas, NULL);
43}
44
45static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
46 void *entry)
47{
48 xa_lock_irq(&mapping->i_pages);
49 __clear_shadow_entry(mapping, index, entry);
50 xa_unlock_irq(&mapping->i_pages);
51}
52
53/*
54 * Unconditionally remove exceptional entries. Usually called from truncate
55 * path. Note that the pagevec may be altered by this function by removing
56 * exceptional entries similar to what pagevec_remove_exceptionals does.
57 */
58static void truncate_exceptional_pvec_entries(struct address_space *mapping,
59 struct pagevec *pvec, pgoff_t *indices)
60{
61 int i, j;
62 bool dax;
63
64 /* Handled by shmem itself */
65 if (shmem_mapping(mapping))
66 return;
67
68 for (j = 0; j < pagevec_count(pvec); j++)
69 if (xa_is_value(pvec->pages[j]))
70 break;
71
72 if (j == pagevec_count(pvec))
73 return;
74
75 dax = dax_mapping(mapping);
76 if (!dax)
77 xa_lock_irq(&mapping->i_pages);
78
79 for (i = j; i < pagevec_count(pvec); i++) {
80 struct page *page = pvec->pages[i];
81 pgoff_t index = indices[i];
82
83 if (!xa_is_value(page)) {
84 pvec->pages[j++] = page;
85 continue;
86 }
87
88 if (unlikely(dax)) {
89 dax_delete_mapping_entry(mapping, index);
90 continue;
91 }
92
93 __clear_shadow_entry(mapping, index, page);
94 }
95
96 if (!dax)
97 xa_unlock_irq(&mapping->i_pages);
98 pvec->nr = j;
99}
100
101/*
102 * Invalidate exceptional entry if easily possible. This handles exceptional
103 * entries for invalidate_inode_pages().
104 */
105static int invalidate_exceptional_entry(struct address_space *mapping,
106 pgoff_t index, void *entry)
107{
108 /* Handled by shmem itself, or for DAX we do nothing. */
109 if (shmem_mapping(mapping) || dax_mapping(mapping))
110 return 1;
111 clear_shadow_entry(mapping, index, entry);
112 return 1;
113}
114
115/*
116 * Invalidate exceptional entry if clean. This handles exceptional entries for
117 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
118 */
119static int invalidate_exceptional_entry2(struct address_space *mapping,
120 pgoff_t index, void *entry)
121{
122 /* Handled by shmem itself */
123 if (shmem_mapping(mapping))
124 return 1;
125 if (dax_mapping(mapping))
126 return dax_invalidate_mapping_entry_sync(mapping, index);
127 clear_shadow_entry(mapping, index, entry);
128 return 1;
129}
130
131/**
132 * do_invalidatepage - invalidate part or all of a page
133 * @page: the page which is affected
134 * @offset: start of the range to invalidate
135 * @length: length of the range to invalidate
136 *
137 * do_invalidatepage() is called when all or part of the page has become
138 * invalidated by a truncate operation.
139 *
140 * do_invalidatepage() does not have to release all buffers, but it must
141 * ensure that no dirty buffer is left outside @offset and that no I/O
142 * is underway against any of the blocks which are outside the truncation
143 * point. Because the caller is about to free (and possibly reuse) those
144 * blocks on-disk.
145 */
146void do_invalidatepage(struct page *page, unsigned int offset,
147 unsigned int length)
148{
149 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
150
151 invalidatepage = page->mapping->a_ops->invalidatepage;
152#ifdef CONFIG_BLOCK
153 if (!invalidatepage)
154 invalidatepage = block_invalidatepage;
155#endif
156 if (invalidatepage)
157 (*invalidatepage)(page, offset, length);
158}
159
160/*
161 * If truncate cannot remove the fs-private metadata from the page, the page
162 * becomes orphaned. It will be left on the LRU and may even be mapped into
163 * user pagetables if we're racing with filemap_fault().
164 *
165 * We need to bail out if page->mapping is no longer equal to the original
166 * mapping. This happens a) when the VM reclaimed the page while we waited on
167 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
168 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
169 */
170static void truncate_cleanup_page(struct page *page)
171{
172 if (page_mapped(page))
173 unmap_mapping_page(page);
174
175 if (page_has_private(page))
176 do_invalidatepage(page, 0, thp_size(page));
177
178 /*
179 * Some filesystems seem to re-dirty the page even after
180 * the VM has canceled the dirty bit (eg ext3 journaling).
181 * Hence dirty accounting check is placed after invalidation.
182 */
183 cancel_dirty_page(page);
184 ClearPageMappedToDisk(page);
185}
186
187/*
188 * This is for invalidate_mapping_pages(). That function can be called at
189 * any time, and is not supposed to throw away dirty pages. But pages can
190 * be marked dirty at any time too, so use remove_mapping which safely
191 * discards clean, unused pages.
192 *
193 * Returns non-zero if the page was successfully invalidated.
194 */
195static int
196invalidate_complete_page(struct address_space *mapping, struct page *page)
197{
198 int ret;
199
200 if (page->mapping != mapping)
201 return 0;
202
203 if (page_has_private(page) && !try_to_release_page(page, 0))
204 return 0;
205
206 ret = remove_mapping(mapping, page);
207
208 return ret;
209}
210
211int truncate_inode_page(struct address_space *mapping, struct page *page)
212{
213 VM_BUG_ON_PAGE(PageTail(page), page);
214
215 if (page->mapping != mapping)
216 return -EIO;
217
218 truncate_cleanup_page(page);
219 delete_from_page_cache(page);
220 return 0;
221}
222
223/*
224 * Used to get rid of pages on hardware memory corruption.
225 */
226int generic_error_remove_page(struct address_space *mapping, struct page *page)
227{
228 if (!mapping)
229 return -EINVAL;
230 /*
231 * Only punch for normal data pages for now.
232 * Handling other types like directories would need more auditing.
233 */
234 if (!S_ISREG(mapping->host->i_mode))
235 return -EIO;
236 return truncate_inode_page(mapping, page);
237}
238EXPORT_SYMBOL(generic_error_remove_page);
239
240/*
241 * Safely invalidate one page from its pagecache mapping.
242 * It only drops clean, unused pages. The page must be locked.
243 *
244 * Returns 1 if the page is successfully invalidated, otherwise 0.
245 */
246int invalidate_inode_page(struct page *page)
247{
248 struct address_space *mapping = page_mapping(page);
249 if (!mapping)
250 return 0;
251 if (PageDirty(page) || PageWriteback(page))
252 return 0;
253 if (page_mapped(page))
254 return 0;
255 return invalidate_complete_page(mapping, page);
256}
257
258/**
259 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
260 * @mapping: mapping to truncate
261 * @lstart: offset from which to truncate
262 * @lend: offset to which to truncate (inclusive)
263 *
264 * Truncate the page cache, removing the pages that are between
265 * specified offsets (and zeroing out partial pages
266 * if lstart or lend + 1 is not page aligned).
267 *
268 * Truncate takes two passes - the first pass is nonblocking. It will not
269 * block on page locks and it will not block on writeback. The second pass
270 * will wait. This is to prevent as much IO as possible in the affected region.
271 * The first pass will remove most pages, so the search cost of the second pass
272 * is low.
273 *
274 * We pass down the cache-hot hint to the page freeing code. Even if the
275 * mapping is large, it is probably the case that the final pages are the most
276 * recently touched, and freeing happens in ascending file offset order.
277 *
278 * Note that since ->invalidatepage() accepts range to invalidate
279 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
280 * page aligned properly.
281 */
282void truncate_inode_pages_range(struct address_space *mapping,
283 loff_t lstart, loff_t lend)
284{
285 pgoff_t start; /* inclusive */
286 pgoff_t end; /* exclusive */
287 unsigned int partial_start; /* inclusive */
288 unsigned int partial_end; /* exclusive */
289 struct pagevec pvec;
290 pgoff_t indices[PAGEVEC_SIZE];
291 pgoff_t index;
292 int i;
293
294 if (mapping_empty(mapping))
295 goto out;
296
297 /* Offsets within partial pages */
298 partial_start = lstart & (PAGE_SIZE - 1);
299 partial_end = (lend + 1) & (PAGE_SIZE - 1);
300
301 /*
302 * 'start' and 'end' always covers the range of pages to be fully
303 * truncated. Partial pages are covered with 'partial_start' at the
304 * start of the range and 'partial_end' at the end of the range.
305 * Note that 'end' is exclusive while 'lend' is inclusive.
306 */
307 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
308 if (lend == -1)
309 /*
310 * lend == -1 indicates end-of-file so we have to set 'end'
311 * to the highest possible pgoff_t and since the type is
312 * unsigned we're using -1.
313 */
314 end = -1;
315 else
316 end = (lend + 1) >> PAGE_SHIFT;
317
318 pagevec_init(&pvec);
319 index = start;
320 while (index < end && find_lock_entries(mapping, index, end - 1,
321 &pvec, indices)) {
322 index = indices[pagevec_count(&pvec) - 1] + 1;
323 truncate_exceptional_pvec_entries(mapping, &pvec, indices);
324 for (i = 0; i < pagevec_count(&pvec); i++)
325 truncate_cleanup_page(pvec.pages[i]);
326 delete_from_page_cache_batch(mapping, &pvec);
327 for (i = 0; i < pagevec_count(&pvec); i++)
328 unlock_page(pvec.pages[i]);
329 pagevec_release(&pvec);
330 cond_resched();
331 }
332
333 if (partial_start) {
334 struct page *page = find_lock_page(mapping, start - 1);
335 if (page) {
336 unsigned int top = PAGE_SIZE;
337 if (start > end) {
338 /* Truncation within a single page */
339 top = partial_end;
340 partial_end = 0;
341 }
342 wait_on_page_writeback(page);
343 zero_user_segment(page, partial_start, top);
344 cleancache_invalidate_page(mapping, page);
345 if (page_has_private(page))
346 do_invalidatepage(page, partial_start,
347 top - partial_start);
348 unlock_page(page);
349 put_page(page);
350 }
351 }
352 if (partial_end) {
353 struct page *page = find_lock_page(mapping, end);
354 if (page) {
355 wait_on_page_writeback(page);
356 zero_user_segment(page, 0, partial_end);
357 cleancache_invalidate_page(mapping, page);
358 if (page_has_private(page))
359 do_invalidatepage(page, 0,
360 partial_end);
361 unlock_page(page);
362 put_page(page);
363 }
364 }
365 /*
366 * If the truncation happened within a single page no pages
367 * will be released, just zeroed, so we can bail out now.
368 */
369 if (start >= end)
370 goto out;
371
372 index = start;
373 for ( ; ; ) {
374 cond_resched();
375 if (!find_get_entries(mapping, index, end - 1, &pvec,
376 indices)) {
377 /* If all gone from start onwards, we're done */
378 if (index == start)
379 break;
380 /* Otherwise restart to make sure all gone */
381 index = start;
382 continue;
383 }
384
385 for (i = 0; i < pagevec_count(&pvec); i++) {
386 struct page *page = pvec.pages[i];
387
388 /* We rely upon deletion not changing page->index */
389 index = indices[i];
390
391 if (xa_is_value(page))
392 continue;
393
394 lock_page(page);
395 WARN_ON(page_to_index(page) != index);
396 wait_on_page_writeback(page);
397 truncate_inode_page(mapping, page);
398 unlock_page(page);
399 }
400 truncate_exceptional_pvec_entries(mapping, &pvec, indices);
401 pagevec_release(&pvec);
402 index++;
403 }
404
405out:
406 cleancache_invalidate_inode(mapping);
407}
408EXPORT_SYMBOL(truncate_inode_pages_range);
409
410/**
411 * truncate_inode_pages - truncate *all* the pages from an offset
412 * @mapping: mapping to truncate
413 * @lstart: offset from which to truncate
414 *
415 * Called under (and serialised by) inode->i_mutex.
416 *
417 * Note: When this function returns, there can be a page in the process of
418 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
419 * mapping->nrpages can be non-zero when this function returns even after
420 * truncation of the whole mapping.
421 */
422void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
423{
424 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
425}
426EXPORT_SYMBOL(truncate_inode_pages);
427
428/**
429 * truncate_inode_pages_final - truncate *all* pages before inode dies
430 * @mapping: mapping to truncate
431 *
432 * Called under (and serialized by) inode->i_mutex.
433 *
434 * Filesystems have to use this in the .evict_inode path to inform the
435 * VM that this is the final truncate and the inode is going away.
436 */
437void truncate_inode_pages_final(struct address_space *mapping)
438{
439 /*
440 * Page reclaim can not participate in regular inode lifetime
441 * management (can't call iput()) and thus can race with the
442 * inode teardown. Tell it when the address space is exiting,
443 * so that it does not install eviction information after the
444 * final truncate has begun.
445 */
446 mapping_set_exiting(mapping);
447
448 if (!mapping_empty(mapping)) {
449 /*
450 * As truncation uses a lockless tree lookup, cycle
451 * the tree lock to make sure any ongoing tree
452 * modification that does not see AS_EXITING is
453 * completed before starting the final truncate.
454 */
455 xa_lock_irq(&mapping->i_pages);
456 xa_unlock_irq(&mapping->i_pages);
457 }
458
459 /*
460 * Cleancache needs notification even if there are no pages or shadow
461 * entries.
462 */
463 truncate_inode_pages(mapping, 0);
464}
465EXPORT_SYMBOL(truncate_inode_pages_final);
466
467static unsigned long __invalidate_mapping_pages(struct address_space *mapping,
468 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
469{
470 pgoff_t indices[PAGEVEC_SIZE];
471 struct pagevec pvec;
472 pgoff_t index = start;
473 unsigned long ret;
474 unsigned long count = 0;
475 int i;
476
477 pagevec_init(&pvec);
478 while (find_lock_entries(mapping, index, end, &pvec, indices)) {
479 for (i = 0; i < pagevec_count(&pvec); i++) {
480 struct page *page = pvec.pages[i];
481
482 /* We rely upon deletion not changing page->index */
483 index = indices[i];
484
485 if (xa_is_value(page)) {
486 invalidate_exceptional_entry(mapping, index,
487 page);
488 continue;
489 }
490 index += thp_nr_pages(page) - 1;
491
492 ret = invalidate_inode_page(page);
493 unlock_page(page);
494 /*
495 * Invalidation is a hint that the page is no longer
496 * of interest and try to speed up its reclaim.
497 */
498 if (!ret) {
499 deactivate_file_page(page);
500 /* It is likely on the pagevec of a remote CPU */
501 if (nr_pagevec)
502 (*nr_pagevec)++;
503 }
504 count += ret;
505 }
506 pagevec_remove_exceptionals(&pvec);
507 pagevec_release(&pvec);
508 cond_resched();
509 index++;
510 }
511 return count;
512}
513
514/**
515 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
516 * @mapping: the address_space which holds the pages to invalidate
517 * @start: the offset 'from' which to invalidate
518 * @end: the offset 'to' which to invalidate (inclusive)
519 *
520 * This function only removes the unlocked pages, if you want to
521 * remove all the pages of one inode, you must call truncate_inode_pages.
522 *
523 * invalidate_mapping_pages() will not block on IO activity. It will not
524 * invalidate pages which are dirty, locked, under writeback or mapped into
525 * pagetables.
526 *
527 * Return: the number of the pages that were invalidated
528 */
529unsigned long invalidate_mapping_pages(struct address_space *mapping,
530 pgoff_t start, pgoff_t end)
531{
532 return __invalidate_mapping_pages(mapping, start, end, NULL);
533}
534EXPORT_SYMBOL(invalidate_mapping_pages);
535
536/**
537 * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
538 * @mapping: the address_space which holds the pages to invalidate
539 * @start: the offset 'from' which to invalidate
540 * @end: the offset 'to' which to invalidate (inclusive)
541 * @nr_pagevec: invalidate failed page number for caller
542 *
543 * This helper is similar to invalidate_mapping_pages(), except that it accounts
544 * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
545 * will be used by the caller.
546 */
547void invalidate_mapping_pagevec(struct address_space *mapping,
548 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
549{
550 __invalidate_mapping_pages(mapping, start, end, nr_pagevec);
551}
552
553/*
554 * This is like invalidate_complete_page(), except it ignores the page's
555 * refcount. We do this because invalidate_inode_pages2() needs stronger
556 * invalidation guarantees, and cannot afford to leave pages behind because
557 * shrink_page_list() has a temp ref on them, or because they're transiently
558 * sitting in the lru_cache_add() pagevecs.
559 */
560static int
561invalidate_complete_page2(struct address_space *mapping, struct page *page)
562{
563 unsigned long flags;
564
565 if (page->mapping != mapping)
566 return 0;
567
568 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
569 return 0;
570
571 xa_lock_irqsave(&mapping->i_pages, flags);
572 if (PageDirty(page))
573 goto failed;
574
575 BUG_ON(page_has_private(page));
576 __delete_from_page_cache(page, NULL);
577 xa_unlock_irqrestore(&mapping->i_pages, flags);
578
579 if (mapping->a_ops->freepage)
580 mapping->a_ops->freepage(page);
581
582 put_page(page); /* pagecache ref */
583 return 1;
584failed:
585 xa_unlock_irqrestore(&mapping->i_pages, flags);
586 return 0;
587}
588
589static int do_launder_page(struct address_space *mapping, struct page *page)
590{
591 if (!PageDirty(page))
592 return 0;
593 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
594 return 0;
595 return mapping->a_ops->launder_page(page);
596}
597
598/**
599 * invalidate_inode_pages2_range - remove range of pages from an address_space
600 * @mapping: the address_space
601 * @start: the page offset 'from' which to invalidate
602 * @end: the page offset 'to' which to invalidate (inclusive)
603 *
604 * Any pages which are found to be mapped into pagetables are unmapped prior to
605 * invalidation.
606 *
607 * Return: -EBUSY if any pages could not be invalidated.
608 */
609int invalidate_inode_pages2_range(struct address_space *mapping,
610 pgoff_t start, pgoff_t end)
611{
612 pgoff_t indices[PAGEVEC_SIZE];
613 struct pagevec pvec;
614 pgoff_t index;
615 int i;
616 int ret = 0;
617 int ret2 = 0;
618 int did_range_unmap = 0;
619
620 if (mapping_empty(mapping))
621 goto out;
622
623 pagevec_init(&pvec);
624 index = start;
625 while (find_get_entries(mapping, index, end, &pvec, indices)) {
626 for (i = 0; i < pagevec_count(&pvec); i++) {
627 struct page *page = pvec.pages[i];
628
629 /* We rely upon deletion not changing page->index */
630 index = indices[i];
631
632 if (xa_is_value(page)) {
633 if (!invalidate_exceptional_entry2(mapping,
634 index, page))
635 ret = -EBUSY;
636 continue;
637 }
638
639 if (!did_range_unmap && page_mapped(page)) {
640 /*
641 * If page is mapped, before taking its lock,
642 * zap the rest of the file in one hit.
643 */
644 unmap_mapping_pages(mapping, index,
645 (1 + end - index), false);
646 did_range_unmap = 1;
647 }
648
649 lock_page(page);
650 WARN_ON(page_to_index(page) != index);
651 if (page->mapping != mapping) {
652 unlock_page(page);
653 continue;
654 }
655 wait_on_page_writeback(page);
656
657 if (page_mapped(page))
658 unmap_mapping_page(page);
659 BUG_ON(page_mapped(page));
660
661 ret2 = do_launder_page(mapping, page);
662 if (ret2 == 0) {
663 if (!invalidate_complete_page2(mapping, page))
664 ret2 = -EBUSY;
665 }
666 if (ret2 < 0)
667 ret = ret2;
668 unlock_page(page);
669 }
670 pagevec_remove_exceptionals(&pvec);
671 pagevec_release(&pvec);
672 cond_resched();
673 index++;
674 }
675 /*
676 * For DAX we invalidate page tables after invalidating page cache. We
677 * could invalidate page tables while invalidating each entry however
678 * that would be expensive. And doing range unmapping before doesn't
679 * work as we have no cheap way to find whether page cache entry didn't
680 * get remapped later.
681 */
682 if (dax_mapping(mapping)) {
683 unmap_mapping_pages(mapping, start, end - start + 1, false);
684 }
685out:
686 cleancache_invalidate_inode(mapping);
687 return ret;
688}
689EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
690
691/**
692 * invalidate_inode_pages2 - remove all pages from an address_space
693 * @mapping: the address_space
694 *
695 * Any pages which are found to be mapped into pagetables are unmapped prior to
696 * invalidation.
697 *
698 * Return: -EBUSY if any pages could not be invalidated.
699 */
700int invalidate_inode_pages2(struct address_space *mapping)
701{
702 return invalidate_inode_pages2_range(mapping, 0, -1);
703}
704EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
705
706/**
707 * truncate_pagecache - unmap and remove pagecache that has been truncated
708 * @inode: inode
709 * @newsize: new file size
710 *
711 * inode's new i_size must already be written before truncate_pagecache
712 * is called.
713 *
714 * This function should typically be called before the filesystem
715 * releases resources associated with the freed range (eg. deallocates
716 * blocks). This way, pagecache will always stay logically coherent
717 * with on-disk format, and the filesystem would not have to deal with
718 * situations such as writepage being called for a page that has already
719 * had its underlying blocks deallocated.
720 */
721void truncate_pagecache(struct inode *inode, loff_t newsize)
722{
723 struct address_space *mapping = inode->i_mapping;
724 loff_t holebegin = round_up(newsize, PAGE_SIZE);
725
726 /*
727 * unmap_mapping_range is called twice, first simply for
728 * efficiency so that truncate_inode_pages does fewer
729 * single-page unmaps. However after this first call, and
730 * before truncate_inode_pages finishes, it is possible for
731 * private pages to be COWed, which remain after
732 * truncate_inode_pages finishes, hence the second
733 * unmap_mapping_range call must be made for correctness.
734 */
735 unmap_mapping_range(mapping, holebegin, 0, 1);
736 truncate_inode_pages(mapping, newsize);
737 unmap_mapping_range(mapping, holebegin, 0, 1);
738}
739EXPORT_SYMBOL(truncate_pagecache);
740
741/**
742 * truncate_setsize - update inode and pagecache for a new file size
743 * @inode: inode
744 * @newsize: new file size
745 *
746 * truncate_setsize updates i_size and performs pagecache truncation (if
747 * necessary) to @newsize. It will be typically be called from the filesystem's
748 * setattr function when ATTR_SIZE is passed in.
749 *
750 * Must be called with a lock serializing truncates and writes (generally
751 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
752 * specific block truncation has been performed.
753 */
754void truncate_setsize(struct inode *inode, loff_t newsize)
755{
756 loff_t oldsize = inode->i_size;
757
758 i_size_write(inode, newsize);
759 if (newsize > oldsize)
760 pagecache_isize_extended(inode, oldsize, newsize);
761 truncate_pagecache(inode, newsize);
762}
763EXPORT_SYMBOL(truncate_setsize);
764
765/**
766 * pagecache_isize_extended - update pagecache after extension of i_size
767 * @inode: inode for which i_size was extended
768 * @from: original inode size
769 * @to: new inode size
770 *
771 * Handle extension of inode size either caused by extending truncate or by
772 * write starting after current i_size. We mark the page straddling current
773 * i_size RO so that page_mkwrite() is called on the nearest write access to
774 * the page. This way filesystem can be sure that page_mkwrite() is called on
775 * the page before user writes to the page via mmap after the i_size has been
776 * changed.
777 *
778 * The function must be called after i_size is updated so that page fault
779 * coming after we unlock the page will already see the new i_size.
780 * The function must be called while we still hold i_mutex - this not only
781 * makes sure i_size is stable but also that userspace cannot observe new
782 * i_size value before we are prepared to store mmap writes at new inode size.
783 */
784void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
785{
786 int bsize = i_blocksize(inode);
787 loff_t rounded_from;
788 struct page *page;
789 pgoff_t index;
790
791 WARN_ON(to > inode->i_size);
792
793 if (from >= to || bsize == PAGE_SIZE)
794 return;
795 /* Page straddling @from will not have any hole block created? */
796 rounded_from = round_up(from, bsize);
797 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
798 return;
799
800 index = from >> PAGE_SHIFT;
801 page = find_lock_page(inode->i_mapping, index);
802 /* Page not cached? Nothing to do */
803 if (!page)
804 return;
805 /*
806 * See clear_page_dirty_for_io() for details why set_page_dirty()
807 * is needed.
808 */
809 if (page_mkclean(page))
810 set_page_dirty(page);
811 unlock_page(page);
812 put_page(page);
813}
814EXPORT_SYMBOL(pagecache_isize_extended);
815
816/**
817 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
818 * @inode: inode
819 * @lstart: offset of beginning of hole
820 * @lend: offset of last byte of hole
821 *
822 * This function should typically be called before the filesystem
823 * releases resources associated with the freed range (eg. deallocates
824 * blocks). This way, pagecache will always stay logically coherent
825 * with on-disk format, and the filesystem would not have to deal with
826 * situations such as writepage being called for a page that has already
827 * had its underlying blocks deallocated.
828 */
829void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
830{
831 struct address_space *mapping = inode->i_mapping;
832 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
833 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
834 /*
835 * This rounding is currently just for example: unmap_mapping_range
836 * expands its hole outwards, whereas we want it to contract the hole
837 * inwards. However, existing callers of truncate_pagecache_range are
838 * doing their own page rounding first. Note that unmap_mapping_range
839 * allows holelen 0 for all, and we allow lend -1 for end of file.
840 */
841
842 /*
843 * Unlike in truncate_pagecache, unmap_mapping_range is called only
844 * once (before truncating pagecache), and without "even_cows" flag:
845 * hole-punching should not remove private COWed pages from the hole.
846 */
847 if ((u64)unmap_end > (u64)unmap_start)
848 unmap_mapping_range(mapping, unmap_start,
849 1 + unmap_end - unmap_start, 0);
850 truncate_inode_pages_range(mapping, lstart, lend);
851}
852EXPORT_SYMBOL(truncate_pagecache_range);