Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
 
  26#include "internal.h"
  27
  28#ifdef CONFIG_COMPACTION
  29/*
  30 * Fragmentation score check interval for proactive compaction purposes.
  31 */
  32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
  33
  34static inline void count_compact_event(enum vm_event_item item)
  35{
  36	count_vm_event(item);
  37}
  38
  39static inline void count_compact_events(enum vm_event_item item, long delta)
  40{
  41	count_vm_events(item, delta);
  42}
 
 
 
 
 
 
 
 
 
 
 
 
  43#else
  44#define count_compact_event(item) do { } while (0)
  45#define count_compact_events(item, delta) do { } while (0)
 
  46#endif
  47
  48#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/compaction.h>
  52
  53#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  54#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
  55
  56/*
  57 * Page order with-respect-to which proactive compaction
  58 * calculates external fragmentation, which is used as
  59 * the "fragmentation score" of a node/zone.
  60 */
  61#if defined CONFIG_TRANSPARENT_HUGEPAGE
  62#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
  63#elif defined CONFIG_HUGETLBFS
  64#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
  65#else
  66#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  67#endif
  68
  69static unsigned long release_freepages(struct list_head *freelist)
  70{
  71	struct page *page, *next;
  72	unsigned long high_pfn = 0;
  73
  74	list_for_each_entry_safe(page, next, freelist, lru) {
  75		unsigned long pfn = page_to_pfn(page);
  76		list_del(&page->lru);
  77		__free_page(page);
  78		if (pfn > high_pfn)
  79			high_pfn = pfn;
  80	}
  81
  82	return high_pfn;
  83}
 
  84
  85static void split_map_pages(struct list_head *list)
  86{
  87	unsigned int i, order, nr_pages;
  88	struct page *page, *next;
  89	LIST_HEAD(tmp_list);
  90
  91	list_for_each_entry_safe(page, next, list, lru) {
  92		list_del(&page->lru);
  93
  94		order = page_private(page);
  95		nr_pages = 1 << order;
  96
  97		post_alloc_hook(page, order, __GFP_MOVABLE);
  98		if (order)
  99			split_page(page, order);
 100
 101		for (i = 0; i < nr_pages; i++) {
 102			list_add(&page->lru, &tmp_list);
 103			page++;
 
 
 
 
 
 
 104		}
 105	}
 106
 107	list_splice(&tmp_list, list);
 108}
 109
 110#ifdef CONFIG_COMPACTION
 111bool PageMovable(struct page *page)
 112{
 113	const struct movable_operations *mops;
 114
 115	VM_BUG_ON_PAGE(!PageLocked(page), page);
 116	if (!__PageMovable(page))
 117		return false;
 118
 119	mops = page_movable_ops(page);
 120	if (mops)
 121		return true;
 122
 123	return false;
 124}
 125
 126void __SetPageMovable(struct page *page, const struct movable_operations *mops)
 127{
 128	VM_BUG_ON_PAGE(!PageLocked(page), page);
 129	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
 130	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
 131}
 132EXPORT_SYMBOL(__SetPageMovable);
 133
 134void __ClearPageMovable(struct page *page)
 135{
 136	VM_BUG_ON_PAGE(!PageMovable(page), page);
 137	/*
 138	 * This page still has the type of a movable page, but it's
 139	 * actually not movable any more.
 140	 */
 141	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
 142}
 143EXPORT_SYMBOL(__ClearPageMovable);
 144
 145/* Do not skip compaction more than 64 times */
 146#define COMPACT_MAX_DEFER_SHIFT 6
 147
 148/*
 149 * Compaction is deferred when compaction fails to result in a page
 150 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 152 */
 153static void defer_compaction(struct zone *zone, int order)
 154{
 155	zone->compact_considered = 0;
 156	zone->compact_defer_shift++;
 157
 158	if (order < zone->compact_order_failed)
 159		zone->compact_order_failed = order;
 160
 161	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 162		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 163
 164	trace_mm_compaction_defer_compaction(zone, order);
 165}
 166
 167/* Returns true if compaction should be skipped this time */
 168static bool compaction_deferred(struct zone *zone, int order)
 169{
 170	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 171
 172	if (order < zone->compact_order_failed)
 173		return false;
 174
 175	/* Avoid possible overflow */
 176	if (++zone->compact_considered >= defer_limit) {
 177		zone->compact_considered = defer_limit;
 178		return false;
 179	}
 180
 181	trace_mm_compaction_deferred(zone, order);
 182
 183	return true;
 184}
 185
 186/*
 187 * Update defer tracking counters after successful compaction of given order,
 188 * which means an allocation either succeeded (alloc_success == true) or is
 189 * expected to succeed.
 190 */
 191void compaction_defer_reset(struct zone *zone, int order,
 192		bool alloc_success)
 193{
 194	if (alloc_success) {
 195		zone->compact_considered = 0;
 196		zone->compact_defer_shift = 0;
 197	}
 198	if (order >= zone->compact_order_failed)
 199		zone->compact_order_failed = order + 1;
 200
 201	trace_mm_compaction_defer_reset(zone, order);
 202}
 203
 204/* Returns true if restarting compaction after many failures */
 205static bool compaction_restarting(struct zone *zone, int order)
 206{
 207	if (order < zone->compact_order_failed)
 208		return false;
 209
 210	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 211		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 212}
 213
 214/* Returns true if the pageblock should be scanned for pages to isolate. */
 215static inline bool isolation_suitable(struct compact_control *cc,
 216					struct page *page)
 217{
 218	if (cc->ignore_skip_hint)
 219		return true;
 220
 221	return !get_pageblock_skip(page);
 222}
 223
 224static void reset_cached_positions(struct zone *zone)
 225{
 226	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 227	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 228	zone->compact_cached_free_pfn =
 229				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 230}
 231
 232#ifdef CONFIG_SPARSEMEM
 233/*
 234 * If the PFN falls into an offline section, return the start PFN of the
 235 * next online section. If the PFN falls into an online section or if
 236 * there is no next online section, return 0.
 237 */
 238static unsigned long skip_offline_sections(unsigned long start_pfn)
 239{
 240	unsigned long start_nr = pfn_to_section_nr(start_pfn);
 241
 242	if (online_section_nr(start_nr))
 243		return 0;
 244
 245	while (++start_nr <= __highest_present_section_nr) {
 246		if (online_section_nr(start_nr))
 247			return section_nr_to_pfn(start_nr);
 248	}
 249
 250	return 0;
 251}
 252
 253/*
 254 * If the PFN falls into an offline section, return the end PFN of the
 255 * next online section in reverse. If the PFN falls into an online section
 256 * or if there is no next online section in reverse, return 0.
 257 */
 258static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
 259{
 260	unsigned long start_nr = pfn_to_section_nr(start_pfn);
 261
 262	if (!start_nr || online_section_nr(start_nr))
 263		return 0;
 264
 265	while (start_nr-- > 0) {
 266		if (online_section_nr(start_nr))
 267			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
 268	}
 269
 270	return 0;
 271}
 272#else
 273static unsigned long skip_offline_sections(unsigned long start_pfn)
 274{
 275	return 0;
 276}
 277
 278static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
 279{
 280	return 0;
 281}
 282#endif
 283
 284/*
 285 * Compound pages of >= pageblock_order should consistently be skipped until
 286 * released. It is always pointless to compact pages of such order (if they are
 287 * migratable), and the pageblocks they occupy cannot contain any free pages.
 288 */
 289static bool pageblock_skip_persistent(struct page *page)
 290{
 291	if (!PageCompound(page))
 292		return false;
 293
 294	page = compound_head(page);
 295
 296	if (compound_order(page) >= pageblock_order)
 297		return true;
 298
 299	return false;
 300}
 301
 302static bool
 303__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 304							bool check_target)
 305{
 306	struct page *page = pfn_to_online_page(pfn);
 307	struct page *block_page;
 308	struct page *end_page;
 309	unsigned long block_pfn;
 310
 311	if (!page)
 312		return false;
 313	if (zone != page_zone(page))
 314		return false;
 315	if (pageblock_skip_persistent(page))
 316		return false;
 317
 318	/*
 319	 * If skip is already cleared do no further checking once the
 320	 * restart points have been set.
 321	 */
 322	if (check_source && check_target && !get_pageblock_skip(page))
 323		return true;
 324
 325	/*
 326	 * If clearing skip for the target scanner, do not select a
 327	 * non-movable pageblock as the starting point.
 328	 */
 329	if (!check_source && check_target &&
 330	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 331		return false;
 332
 333	/* Ensure the start of the pageblock or zone is online and valid */
 334	block_pfn = pageblock_start_pfn(pfn);
 335	block_pfn = max(block_pfn, zone->zone_start_pfn);
 336	block_page = pfn_to_online_page(block_pfn);
 337	if (block_page) {
 338		page = block_page;
 339		pfn = block_pfn;
 340	}
 341
 342	/* Ensure the end of the pageblock or zone is online and valid */
 343	block_pfn = pageblock_end_pfn(pfn) - 1;
 344	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 345	end_page = pfn_to_online_page(block_pfn);
 346	if (!end_page)
 347		return false;
 348
 349	/*
 350	 * Only clear the hint if a sample indicates there is either a
 351	 * free page or an LRU page in the block. One or other condition
 352	 * is necessary for the block to be a migration source/target.
 353	 */
 354	do {
 355		if (check_source && PageLRU(page)) {
 356			clear_pageblock_skip(page);
 357			return true;
 358		}
 359
 360		if (check_target && PageBuddy(page)) {
 361			clear_pageblock_skip(page);
 362			return true;
 363		}
 364
 365		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 366	} while (page <= end_page);
 367
 368	return false;
 369}
 370
 371/*
 372 * This function is called to clear all cached information on pageblocks that
 373 * should be skipped for page isolation when the migrate and free page scanner
 374 * meet.
 375 */
 376static void __reset_isolation_suitable(struct zone *zone)
 377{
 378	unsigned long migrate_pfn = zone->zone_start_pfn;
 379	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 380	unsigned long reset_migrate = free_pfn;
 381	unsigned long reset_free = migrate_pfn;
 382	bool source_set = false;
 383	bool free_set = false;
 384
 385	/* Only flush if a full compaction finished recently */
 386	if (!zone->compact_blockskip_flush)
 387		return;
 388
 389	zone->compact_blockskip_flush = false;
 390
 391	/*
 392	 * Walk the zone and update pageblock skip information. Source looks
 393	 * for PageLRU while target looks for PageBuddy. When the scanner
 394	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 395	 * is suitable as both source and target.
 396	 */
 397	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 398					free_pfn -= pageblock_nr_pages) {
 399		cond_resched();
 400
 401		/* Update the migrate PFN */
 402		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 403		    migrate_pfn < reset_migrate) {
 404			source_set = true;
 405			reset_migrate = migrate_pfn;
 406			zone->compact_init_migrate_pfn = reset_migrate;
 407			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 408			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 409		}
 410
 411		/* Update the free PFN */
 412		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 413		    free_pfn > reset_free) {
 414			free_set = true;
 415			reset_free = free_pfn;
 416			zone->compact_init_free_pfn = reset_free;
 417			zone->compact_cached_free_pfn = reset_free;
 418		}
 419	}
 420
 421	/* Leave no distance if no suitable block was reset */
 422	if (reset_migrate >= reset_free) {
 423		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 424		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 425		zone->compact_cached_free_pfn = free_pfn;
 426	}
 427}
 428
 429void reset_isolation_suitable(pg_data_t *pgdat)
 430{
 431	int zoneid;
 432
 433	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 434		struct zone *zone = &pgdat->node_zones[zoneid];
 435		if (!populated_zone(zone))
 436			continue;
 437
 438		__reset_isolation_suitable(zone);
 439	}
 440}
 441
 442/*
 443 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 444 * locks are not required for read/writers. Returns true if it was already set.
 445 */
 446static bool test_and_set_skip(struct compact_control *cc, struct page *page)
 447{
 448	bool skip;
 449
 450	/* Do not update if skip hint is being ignored */
 451	if (cc->ignore_skip_hint)
 452		return false;
 453
 454	skip = get_pageblock_skip(page);
 455	if (!skip && !cc->no_set_skip_hint)
 456		set_pageblock_skip(page);
 457
 458	return skip;
 459}
 460
 461static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 462{
 463	struct zone *zone = cc->zone;
 464
 465	/* Set for isolation rather than compaction */
 466	if (cc->no_set_skip_hint)
 467		return;
 468
 469	pfn = pageblock_end_pfn(pfn);
 470
 471	/* Update where async and sync compaction should restart */
 472	if (pfn > zone->compact_cached_migrate_pfn[0])
 473		zone->compact_cached_migrate_pfn[0] = pfn;
 474	if (cc->mode != MIGRATE_ASYNC &&
 475	    pfn > zone->compact_cached_migrate_pfn[1])
 476		zone->compact_cached_migrate_pfn[1] = pfn;
 477}
 478
 479/*
 480 * If no pages were isolated then mark this pageblock to be skipped in the
 481 * future. The information is later cleared by __reset_isolation_suitable().
 482 */
 483static void update_pageblock_skip(struct compact_control *cc,
 484			struct page *page, unsigned long pfn)
 485{
 486	struct zone *zone = cc->zone;
 487
 488	if (cc->no_set_skip_hint)
 489		return;
 490
 491	set_pageblock_skip(page);
 492
 493	if (pfn < zone->compact_cached_free_pfn)
 494		zone->compact_cached_free_pfn = pfn;
 495}
 496#else
 497static inline bool isolation_suitable(struct compact_control *cc,
 498					struct page *page)
 499{
 500	return true;
 501}
 502
 503static inline bool pageblock_skip_persistent(struct page *page)
 504{
 505	return false;
 506}
 507
 508static inline void update_pageblock_skip(struct compact_control *cc,
 509			struct page *page, unsigned long pfn)
 510{
 511}
 512
 513static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 514{
 515}
 516
 517static bool test_and_set_skip(struct compact_control *cc, struct page *page)
 518{
 519	return false;
 520}
 521#endif /* CONFIG_COMPACTION */
 522
 523/*
 524 * Compaction requires the taking of some coarse locks that are potentially
 525 * very heavily contended. For async compaction, trylock and record if the
 526 * lock is contended. The lock will still be acquired but compaction will
 527 * abort when the current block is finished regardless of success rate.
 528 * Sync compaction acquires the lock.
 529 *
 530 * Always returns true which makes it easier to track lock state in callers.
 531 */
 532static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 533						struct compact_control *cc)
 534	__acquires(lock)
 535{
 536	/* Track if the lock is contended in async mode */
 537	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 538		if (spin_trylock_irqsave(lock, *flags))
 539			return true;
 540
 541		cc->contended = true;
 542	}
 543
 544	spin_lock_irqsave(lock, *flags);
 545	return true;
 546}
 547
 548/*
 549 * Compaction requires the taking of some coarse locks that are potentially
 550 * very heavily contended. The lock should be periodically unlocked to avoid
 551 * having disabled IRQs for a long time, even when there is nobody waiting on
 552 * the lock. It might also be that allowing the IRQs will result in
 553 * need_resched() becoming true. If scheduling is needed, compaction schedules.
 554 * Either compaction type will also abort if a fatal signal is pending.
 555 * In either case if the lock was locked, it is dropped and not regained.
 556 *
 557 * Returns true if compaction should abort due to fatal signal pending.
 558 * Returns false when compaction can continue.
 559 */
 560static bool compact_unlock_should_abort(spinlock_t *lock,
 561		unsigned long flags, bool *locked, struct compact_control *cc)
 562{
 563	if (*locked) {
 564		spin_unlock_irqrestore(lock, flags);
 565		*locked = false;
 566	}
 567
 568	if (fatal_signal_pending(current)) {
 569		cc->contended = true;
 570		return true;
 571	}
 572
 573	cond_resched();
 574
 575	return false;
 576}
 577
 578/*
 579 * Isolate free pages onto a private freelist. If @strict is true, will abort
 580 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 581 * (even though it may still end up isolating some pages).
 582 */
 583static unsigned long isolate_freepages_block(struct compact_control *cc,
 584				unsigned long *start_pfn,
 585				unsigned long end_pfn,
 586				struct list_head *freelist,
 587				unsigned int stride,
 588				bool strict)
 589{
 590	int nr_scanned = 0, total_isolated = 0;
 591	struct page *page;
 592	unsigned long flags = 0;
 593	bool locked = false;
 594	unsigned long blockpfn = *start_pfn;
 595	unsigned int order;
 596
 597	/* Strict mode is for isolation, speed is secondary */
 598	if (strict)
 599		stride = 1;
 600
 601	page = pfn_to_page(blockpfn);
 602
 603	/* Isolate free pages. */
 604	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
 605		int isolated;
 606
 607		/*
 608		 * Periodically drop the lock (if held) regardless of its
 609		 * contention, to give chance to IRQs. Abort if fatal signal
 610		 * pending.
 611		 */
 612		if (!(blockpfn % COMPACT_CLUSTER_MAX)
 613		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 614								&locked, cc))
 615			break;
 616
 617		nr_scanned++;
 618
 619		/*
 620		 * For compound pages such as THP and hugetlbfs, we can save
 621		 * potentially a lot of iterations if we skip them at once.
 622		 * The check is racy, but we can consider only valid values
 623		 * and the only danger is skipping too much.
 624		 */
 625		if (PageCompound(page)) {
 626			const unsigned int order = compound_order(page);
 627
 628			if (blockpfn + (1UL << order) <= end_pfn) {
 
 629				blockpfn += (1UL << order) - 1;
 630				page += (1UL << order) - 1;
 631				nr_scanned += (1UL << order) - 1;
 632			}
 633
 634			goto isolate_fail;
 635		}
 636
 637		if (!PageBuddy(page))
 638			goto isolate_fail;
 639
 640		/* If we already hold the lock, we can skip some rechecking. */
 641		if (!locked) {
 642			locked = compact_lock_irqsave(&cc->zone->lock,
 643								&flags, cc);
 644
 645			/* Recheck this is a buddy page under lock */
 646			if (!PageBuddy(page))
 647				goto isolate_fail;
 648		}
 649
 650		/* Found a free page, will break it into order-0 pages */
 651		order = buddy_order(page);
 652		isolated = __isolate_free_page(page, order);
 653		if (!isolated)
 654			break;
 655		set_page_private(page, order);
 656
 657		nr_scanned += isolated - 1;
 658		total_isolated += isolated;
 659		cc->nr_freepages += isolated;
 660		list_add_tail(&page->lru, freelist);
 661
 662		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 663			blockpfn += isolated;
 664			break;
 665		}
 666		/* Advance to the end of split page */
 667		blockpfn += isolated - 1;
 668		page += isolated - 1;
 669		continue;
 670
 671isolate_fail:
 672		if (strict)
 673			break;
 674
 675	}
 676
 677	if (locked)
 678		spin_unlock_irqrestore(&cc->zone->lock, flags);
 679
 680	/*
 681	 * Be careful to not go outside of the pageblock.
 682	 */
 683	if (unlikely(blockpfn > end_pfn))
 684		blockpfn = end_pfn;
 685
 686	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 687					nr_scanned, total_isolated);
 688
 689	/* Record how far we have got within the block */
 690	*start_pfn = blockpfn;
 691
 692	/*
 693	 * If strict isolation is requested by CMA then check that all the
 694	 * pages requested were isolated. If there were any failures, 0 is
 695	 * returned and CMA will fail.
 696	 */
 697	if (strict && blockpfn < end_pfn)
 698		total_isolated = 0;
 699
 700	cc->total_free_scanned += nr_scanned;
 701	if (total_isolated)
 702		count_compact_events(COMPACTISOLATED, total_isolated);
 703	return total_isolated;
 704}
 705
 706/**
 707 * isolate_freepages_range() - isolate free pages.
 708 * @cc:        Compaction control structure.
 709 * @start_pfn: The first PFN to start isolating.
 710 * @end_pfn:   The one-past-last PFN.
 711 *
 712 * Non-free pages, invalid PFNs, or zone boundaries within the
 713 * [start_pfn, end_pfn) range are considered errors, cause function to
 714 * undo its actions and return zero.
 715 *
 716 * Otherwise, function returns one-past-the-last PFN of isolated page
 717 * (which may be greater then end_pfn if end fell in a middle of
 718 * a free page).
 719 */
 720unsigned long
 721isolate_freepages_range(struct compact_control *cc,
 722			unsigned long start_pfn, unsigned long end_pfn)
 723{
 724	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 725	LIST_HEAD(freelist);
 
 
 
 726
 727	pfn = start_pfn;
 728	block_start_pfn = pageblock_start_pfn(pfn);
 729	if (block_start_pfn < cc->zone->zone_start_pfn)
 730		block_start_pfn = cc->zone->zone_start_pfn;
 731	block_end_pfn = pageblock_end_pfn(pfn);
 732
 733	for (; pfn < end_pfn; pfn += isolated,
 734				block_start_pfn = block_end_pfn,
 735				block_end_pfn += pageblock_nr_pages) {
 736		/* Protect pfn from changing by isolate_freepages_block */
 737		unsigned long isolate_start_pfn = pfn;
 738
 739		/*
 740		 * pfn could pass the block_end_pfn if isolated freepage
 741		 * is more than pageblock order. In this case, we adjust
 742		 * scanning range to right one.
 743		 */
 744		if (pfn >= block_end_pfn) {
 745			block_start_pfn = pageblock_start_pfn(pfn);
 746			block_end_pfn = pageblock_end_pfn(pfn);
 747		}
 748
 749		block_end_pfn = min(block_end_pfn, end_pfn);
 750
 751		if (!pageblock_pfn_to_page(block_start_pfn,
 752					block_end_pfn, cc->zone))
 753			break;
 754
 755		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 756					block_end_pfn, &freelist, 0, true);
 757
 758		/*
 759		 * In strict mode, isolate_freepages_block() returns 0 if
 760		 * there are any holes in the block (ie. invalid PFNs or
 761		 * non-free pages).
 762		 */
 763		if (!isolated)
 764			break;
 765
 766		/*
 767		 * If we managed to isolate pages, it is always (1 << n) *
 768		 * pageblock_nr_pages for some non-negative n.  (Max order
 769		 * page may span two pageblocks).
 770		 */
 771	}
 772
 773	/* __isolate_free_page() does not map the pages */
 774	split_map_pages(&freelist);
 775
 776	if (pfn < end_pfn) {
 777		/* Loop terminated early, cleanup. */
 778		release_freepages(&freelist);
 779		return 0;
 780	}
 781
 782	/* We don't use freelists for anything. */
 783	return pfn;
 784}
 785
 786/* Similar to reclaim, but different enough that they don't share logic */
 787static bool too_many_isolated(struct compact_control *cc)
 788{
 789	pg_data_t *pgdat = cc->zone->zone_pgdat;
 790	bool too_many;
 791
 792	unsigned long active, inactive, isolated;
 793
 794	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 795			node_page_state(pgdat, NR_INACTIVE_ANON);
 796	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 797			node_page_state(pgdat, NR_ACTIVE_ANON);
 798	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 799			node_page_state(pgdat, NR_ISOLATED_ANON);
 800
 801	/*
 802	 * Allow GFP_NOFS to isolate past the limit set for regular
 803	 * compaction runs. This prevents an ABBA deadlock when other
 804	 * compactors have already isolated to the limit, but are
 805	 * blocked on filesystem locks held by the GFP_NOFS thread.
 806	 */
 807	if (cc->gfp_mask & __GFP_FS) {
 808		inactive >>= 3;
 809		active >>= 3;
 810	}
 811
 812	too_many = isolated > (inactive + active) / 2;
 813	if (!too_many)
 814		wake_throttle_isolated(pgdat);
 815
 816	return too_many;
 817}
 818
 819/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820 * isolate_migratepages_block() - isolate all migrate-able pages within
 821 *				  a single pageblock
 822 * @cc:		Compaction control structure.
 823 * @low_pfn:	The first PFN to isolate
 824 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 825 * @mode:	Isolation mode to be used.
 826 *
 827 * Isolate all pages that can be migrated from the range specified by
 828 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 829 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
 830 * -ENOMEM in case we could not allocate a page, or 0.
 831 * cc->migrate_pfn will contain the next pfn to scan.
 832 *
 833 * The pages are isolated on cc->migratepages list (not required to be empty),
 834 * and cc->nr_migratepages is updated accordingly.
 835 */
 836static int
 837isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 838			unsigned long end_pfn, isolate_mode_t mode)
 839{
 840	pg_data_t *pgdat = cc->zone->zone_pgdat;
 841	unsigned long nr_scanned = 0, nr_isolated = 0;
 842	struct lruvec *lruvec;
 843	unsigned long flags = 0;
 844	struct lruvec *locked = NULL;
 845	struct folio *folio = NULL;
 846	struct page *page = NULL, *valid_page = NULL;
 847	struct address_space *mapping;
 848	unsigned long start_pfn = low_pfn;
 849	bool skip_on_failure = false;
 850	unsigned long next_skip_pfn = 0;
 851	bool skip_updated = false;
 852	int ret = 0;
 853
 854	cc->migrate_pfn = low_pfn;
 855
 856	/*
 857	 * Ensure that there are not too many pages isolated from the LRU
 858	 * list by either parallel reclaimers or compaction. If there are,
 859	 * delay for some time until fewer pages are isolated
 860	 */
 861	while (unlikely(too_many_isolated(cc))) {
 862		/* stop isolation if there are still pages not migrated */
 863		if (cc->nr_migratepages)
 864			return -EAGAIN;
 865
 866		/* async migration should just abort */
 867		if (cc->mode == MIGRATE_ASYNC)
 868			return -EAGAIN;
 869
 870		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
 871
 872		if (fatal_signal_pending(current))
 873			return -EINTR;
 874	}
 875
 876	cond_resched();
 877
 878	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 879		skip_on_failure = true;
 880		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 881	}
 882
 883	/* Time to isolate some pages for migration */
 884	for (; low_pfn < end_pfn; low_pfn++) {
 885		bool is_dirty, is_unevictable;
 886
 887		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 888			/*
 889			 * We have isolated all migration candidates in the
 890			 * previous order-aligned block, and did not skip it due
 891			 * to failure. We should migrate the pages now and
 892			 * hopefully succeed compaction.
 893			 */
 894			if (nr_isolated)
 895				break;
 896
 897			/*
 898			 * We failed to isolate in the previous order-aligned
 899			 * block. Set the new boundary to the end of the
 900			 * current block. Note we can't simply increase
 901			 * next_skip_pfn by 1 << order, as low_pfn might have
 902			 * been incremented by a higher number due to skipping
 903			 * a compound or a high-order buddy page in the
 904			 * previous loop iteration.
 905			 */
 906			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 907		}
 908
 909		/*
 910		 * Periodically drop the lock (if held) regardless of its
 911		 * contention, to give chance to IRQs. Abort completely if
 912		 * a fatal signal is pending.
 913		 */
 914		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
 915			if (locked) {
 916				unlock_page_lruvec_irqrestore(locked, flags);
 917				locked = NULL;
 918			}
 919
 920			if (fatal_signal_pending(current)) {
 921				cc->contended = true;
 922				ret = -EINTR;
 923
 924				goto fatal_pending;
 925			}
 926
 927			cond_resched();
 928		}
 929
 930		nr_scanned++;
 931
 932		page = pfn_to_page(low_pfn);
 933
 934		/*
 935		 * Check if the pageblock has already been marked skipped.
 936		 * Only the first PFN is checked as the caller isolates
 937		 * COMPACT_CLUSTER_MAX at a time so the second call must
 938		 * not falsely conclude that the block should be skipped.
 939		 */
 940		if (!valid_page && (pageblock_aligned(low_pfn) ||
 941				    low_pfn == cc->zone->zone_start_pfn)) {
 942			if (!isolation_suitable(cc, page)) {
 943				low_pfn = end_pfn;
 944				folio = NULL;
 945				goto isolate_abort;
 946			}
 947			valid_page = page;
 948		}
 949
 950		if (PageHuge(page) && cc->alloc_contig) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 951			if (locked) {
 952				unlock_page_lruvec_irqrestore(locked, flags);
 953				locked = NULL;
 954			}
 955
 956			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
 957
 958			/*
 959			 * Fail isolation in case isolate_or_dissolve_huge_page()
 960			 * reports an error. In case of -ENOMEM, abort right away.
 961			 */
 962			if (ret < 0) {
 963				 /* Do not report -EBUSY down the chain */
 964				if (ret == -EBUSY)
 965					ret = 0;
 966				low_pfn += compound_nr(page) - 1;
 967				nr_scanned += compound_nr(page) - 1;
 968				goto isolate_fail;
 969			}
 970
 971			if (PageHuge(page)) {
 972				/*
 973				 * Hugepage was successfully isolated and placed
 974				 * on the cc->migratepages list.
 975				 */
 976				folio = page_folio(page);
 977				low_pfn += folio_nr_pages(folio) - 1;
 978				goto isolate_success_no_list;
 979			}
 980
 981			/*
 982			 * Ok, the hugepage was dissolved. Now these pages are
 983			 * Buddy and cannot be re-allocated because they are
 984			 * isolated. Fall-through as the check below handles
 985			 * Buddy pages.
 986			 */
 987		}
 988
 989		/*
 990		 * Skip if free. We read page order here without zone lock
 991		 * which is generally unsafe, but the race window is small and
 992		 * the worst thing that can happen is that we skip some
 993		 * potential isolation targets.
 994		 */
 995		if (PageBuddy(page)) {
 996			unsigned long freepage_order = buddy_order_unsafe(page);
 997
 998			/*
 999			 * Without lock, we cannot be sure that what we got is
1000			 * a valid page order. Consider only values in the
1001			 * valid order range to prevent low_pfn overflow.
1002			 */
1003			if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1004				low_pfn += (1UL << freepage_order) - 1;
1005				nr_scanned += (1UL << freepage_order) - 1;
1006			}
1007			continue;
1008		}
1009
1010		/*
1011		 * Regardless of being on LRU, compound pages such as THP and
1012		 * hugetlbfs are not to be compacted unless we are attempting
1013		 * an allocation much larger than the huge page size (eg CMA).
1014		 * We can potentially save a lot of iterations if we skip them
1015		 * at once. The check is racy, but we can consider only valid
1016		 * values and the only danger is skipping too much.
1017		 */
1018		if (PageCompound(page) && !cc->alloc_contig) {
1019			const unsigned int order = compound_order(page);
1020
1021			if (likely(order <= MAX_PAGE_ORDER)) {
1022				low_pfn += (1UL << order) - 1;
1023				nr_scanned += (1UL << order) - 1;
 
 
 
 
1024			}
1025			goto isolate_fail;
1026		}
1027
1028		/*
1029		 * Check may be lockless but that's ok as we recheck later.
1030		 * It's possible to migrate LRU and non-lru movable pages.
1031		 * Skip any other type of page
1032		 */
1033		if (!PageLRU(page)) {
1034			/*
1035			 * __PageMovable can return false positive so we need
1036			 * to verify it under page_lock.
1037			 */
1038			if (unlikely(__PageMovable(page)) &&
1039					!PageIsolated(page)) {
1040				if (locked) {
1041					unlock_page_lruvec_irqrestore(locked, flags);
1042					locked = NULL;
1043				}
1044
1045				if (isolate_movable_page(page, mode)) {
1046					folio = page_folio(page);
1047					goto isolate_success;
1048				}
1049			}
1050
1051			goto isolate_fail;
1052		}
1053
1054		/*
1055		 * Be careful not to clear PageLRU until after we're
1056		 * sure the page is not being freed elsewhere -- the
1057		 * page release code relies on it.
1058		 */
1059		folio = folio_get_nontail_page(page);
1060		if (unlikely(!folio))
1061			goto isolate_fail;
1062
1063		/*
1064		 * Migration will fail if an anonymous page is pinned in memory,
1065		 * so avoid taking lru_lock and isolating it unnecessarily in an
1066		 * admittedly racy check.
1067		 */
1068		mapping = folio_mapping(folio);
1069		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1070			goto isolate_fail_put;
1071
1072		/*
1073		 * Only allow to migrate anonymous pages in GFP_NOFS context
1074		 * because those do not depend on fs locks.
1075		 */
1076		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1077			goto isolate_fail_put;
1078
1079		/* Only take pages on LRU: a check now makes later tests safe */
1080		if (!folio_test_lru(folio))
1081			goto isolate_fail_put;
1082
1083		is_unevictable = folio_test_unevictable(folio);
1084
1085		/* Compaction might skip unevictable pages but CMA takes them */
1086		if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1087			goto isolate_fail_put;
1088
1089		/*
1090		 * To minimise LRU disruption, the caller can indicate with
1091		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1092		 * it will be able to migrate without blocking - clean pages
1093		 * for the most part.  PageWriteback would require blocking.
1094		 */
1095		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1096			goto isolate_fail_put;
1097
1098		is_dirty = folio_test_dirty(folio);
1099
1100		if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1101		    (mapping && is_unevictable)) {
1102			bool migrate_dirty = true;
1103			bool is_unmovable;
1104
1105			/*
1106			 * Only folios without mappings or that have
1107			 * a ->migrate_folio callback are possible to migrate
1108			 * without blocking.
1109			 *
1110			 * Folios from unmovable mappings are not migratable.
1111			 *
1112			 * However, we can be racing with truncation, which can
1113			 * free the mapping that we need to check. Truncation
1114			 * holds the folio lock until after the folio is removed
1115			 * from the page so holding it ourselves is sufficient.
1116			 *
1117			 * To avoid locking the folio just to check unmovable,
1118			 * assume every unmovable folio is also unevictable,
1119			 * which is a cheaper test.  If our assumption goes
1120			 * wrong, it's not a correctness bug, just potentially
1121			 * wasted cycles.
1122			 */
1123			if (!folio_trylock(folio))
1124				goto isolate_fail_put;
1125
1126			mapping = folio_mapping(folio);
1127			if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1128				migrate_dirty = !mapping ||
1129						mapping->a_ops->migrate_folio;
1130			}
1131			is_unmovable = mapping && mapping_unmovable(mapping);
1132			folio_unlock(folio);
1133			if (!migrate_dirty || is_unmovable)
1134				goto isolate_fail_put;
1135		}
1136
1137		/* Try isolate the folio */
1138		if (!folio_test_clear_lru(folio))
1139			goto isolate_fail_put;
1140
1141		lruvec = folio_lruvec(folio);
1142
1143		/* If we already hold the lock, we can skip some rechecking */
1144		if (lruvec != locked) {
1145			if (locked)
1146				unlock_page_lruvec_irqrestore(locked, flags);
1147
1148			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1149			locked = lruvec;
1150
1151			lruvec_memcg_debug(lruvec, folio);
1152
1153			/*
1154			 * Try get exclusive access under lock. If marked for
1155			 * skip, the scan is aborted unless the current context
1156			 * is a rescan to reach the end of the pageblock.
1157			 */
1158			if (!skip_updated && valid_page) {
1159				skip_updated = true;
1160				if (test_and_set_skip(cc, valid_page) &&
1161				    !cc->finish_pageblock) {
1162					low_pfn = end_pfn;
1163					goto isolate_abort;
1164				}
1165			}
1166
1167			/*
1168			 * folio become large since the non-locked check,
1169			 * and it's on LRU.
1170			 */
1171			if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
 
 
1172				low_pfn += folio_nr_pages(folio) - 1;
1173				nr_scanned += folio_nr_pages(folio) - 1;
1174				folio_set_lru(folio);
1175				goto isolate_fail_put;
1176			}
1177		}
1178
1179		/* The folio is taken off the LRU */
1180		if (folio_test_large(folio))
1181			low_pfn += folio_nr_pages(folio) - 1;
1182
1183		/* Successfully isolated */
1184		lruvec_del_folio(lruvec, folio);
1185		node_stat_mod_folio(folio,
1186				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1187				folio_nr_pages(folio));
1188
1189isolate_success:
1190		list_add(&folio->lru, &cc->migratepages);
1191isolate_success_no_list:
1192		cc->nr_migratepages += folio_nr_pages(folio);
1193		nr_isolated += folio_nr_pages(folio);
1194		nr_scanned += folio_nr_pages(folio) - 1;
1195
1196		/*
1197		 * Avoid isolating too much unless this block is being
1198		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1199		 * or a lock is contended. For contention, isolate quickly to
1200		 * potentially remove one source of contention.
1201		 */
1202		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1203		    !cc->finish_pageblock && !cc->contended) {
1204			++low_pfn;
1205			break;
1206		}
1207
1208		continue;
1209
1210isolate_fail_put:
1211		/* Avoid potential deadlock in freeing page under lru_lock */
1212		if (locked) {
1213			unlock_page_lruvec_irqrestore(locked, flags);
1214			locked = NULL;
1215		}
1216		folio_put(folio);
1217
1218isolate_fail:
1219		if (!skip_on_failure && ret != -ENOMEM)
1220			continue;
1221
1222		/*
1223		 * We have isolated some pages, but then failed. Release them
1224		 * instead of migrating, as we cannot form the cc->order buddy
1225		 * page anyway.
1226		 */
1227		if (nr_isolated) {
1228			if (locked) {
1229				unlock_page_lruvec_irqrestore(locked, flags);
1230				locked = NULL;
1231			}
1232			putback_movable_pages(&cc->migratepages);
1233			cc->nr_migratepages = 0;
1234			nr_isolated = 0;
1235		}
1236
1237		if (low_pfn < next_skip_pfn) {
1238			low_pfn = next_skip_pfn - 1;
1239			/*
1240			 * The check near the loop beginning would have updated
1241			 * next_skip_pfn too, but this is a bit simpler.
1242			 */
1243			next_skip_pfn += 1UL << cc->order;
1244		}
1245
1246		if (ret == -ENOMEM)
1247			break;
1248	}
1249
1250	/*
1251	 * The PageBuddy() check could have potentially brought us outside
1252	 * the range to be scanned.
1253	 */
1254	if (unlikely(low_pfn > end_pfn))
1255		low_pfn = end_pfn;
1256
1257	folio = NULL;
1258
1259isolate_abort:
1260	if (locked)
1261		unlock_page_lruvec_irqrestore(locked, flags);
1262	if (folio) {
1263		folio_set_lru(folio);
1264		folio_put(folio);
1265	}
1266
1267	/*
1268	 * Update the cached scanner pfn once the pageblock has been scanned.
1269	 * Pages will either be migrated in which case there is no point
1270	 * scanning in the near future or migration failed in which case the
1271	 * failure reason may persist. The block is marked for skipping if
1272	 * there were no pages isolated in the block or if the block is
1273	 * rescanned twice in a row.
1274	 */
1275	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1276		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1277			set_pageblock_skip(valid_page);
1278		update_cached_migrate(cc, low_pfn);
1279	}
1280
1281	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1282						nr_scanned, nr_isolated);
1283
1284fatal_pending:
1285	cc->total_migrate_scanned += nr_scanned;
1286	if (nr_isolated)
1287		count_compact_events(COMPACTISOLATED, nr_isolated);
1288
1289	cc->migrate_pfn = low_pfn;
1290
1291	return ret;
1292}
1293
1294/**
1295 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1296 * @cc:        Compaction control structure.
1297 * @start_pfn: The first PFN to start isolating.
1298 * @end_pfn:   The one-past-last PFN.
1299 *
1300 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1301 * in case we could not allocate a page, or 0.
1302 */
1303int
1304isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1305							unsigned long end_pfn)
1306{
1307	unsigned long pfn, block_start_pfn, block_end_pfn;
1308	int ret = 0;
1309
1310	/* Scan block by block. First and last block may be incomplete */
1311	pfn = start_pfn;
1312	block_start_pfn = pageblock_start_pfn(pfn);
1313	if (block_start_pfn < cc->zone->zone_start_pfn)
1314		block_start_pfn = cc->zone->zone_start_pfn;
1315	block_end_pfn = pageblock_end_pfn(pfn);
1316
1317	for (; pfn < end_pfn; pfn = block_end_pfn,
1318				block_start_pfn = block_end_pfn,
1319				block_end_pfn += pageblock_nr_pages) {
1320
1321		block_end_pfn = min(block_end_pfn, end_pfn);
1322
1323		if (!pageblock_pfn_to_page(block_start_pfn,
1324					block_end_pfn, cc->zone))
1325			continue;
1326
1327		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1328						 ISOLATE_UNEVICTABLE);
1329
1330		if (ret)
1331			break;
1332
1333		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1334			break;
1335	}
1336
1337	return ret;
1338}
1339
1340#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1341#ifdef CONFIG_COMPACTION
1342
1343static bool suitable_migration_source(struct compact_control *cc,
1344							struct page *page)
1345{
1346	int block_mt;
1347
1348	if (pageblock_skip_persistent(page))
1349		return false;
1350
1351	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1352		return true;
1353
1354	block_mt = get_pageblock_migratetype(page);
1355
1356	if (cc->migratetype == MIGRATE_MOVABLE)
1357		return is_migrate_movable(block_mt);
1358	else
1359		return block_mt == cc->migratetype;
1360}
1361
1362/* Returns true if the page is within a block suitable for migration to */
1363static bool suitable_migration_target(struct compact_control *cc,
1364							struct page *page)
1365{
1366	/* If the page is a large free page, then disallow migration */
1367	if (PageBuddy(page)) {
 
 
1368		/*
1369		 * We are checking page_order without zone->lock taken. But
1370		 * the only small danger is that we skip a potentially suitable
1371		 * pageblock, so it's not worth to check order for valid range.
1372		 */
1373		if (buddy_order_unsafe(page) >= pageblock_order)
1374			return false;
1375	}
1376
1377	if (cc->ignore_block_suitable)
1378		return true;
1379
1380	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1381	if (is_migrate_movable(get_pageblock_migratetype(page)))
1382		return true;
1383
1384	/* Otherwise skip the block */
1385	return false;
1386}
1387
1388static inline unsigned int
1389freelist_scan_limit(struct compact_control *cc)
1390{
1391	unsigned short shift = BITS_PER_LONG - 1;
1392
1393	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1394}
1395
1396/*
1397 * Test whether the free scanner has reached the same or lower pageblock than
1398 * the migration scanner, and compaction should thus terminate.
1399 */
1400static inline bool compact_scanners_met(struct compact_control *cc)
1401{
1402	return (cc->free_pfn >> pageblock_order)
1403		<= (cc->migrate_pfn >> pageblock_order);
1404}
1405
1406/*
1407 * Used when scanning for a suitable migration target which scans freelists
1408 * in reverse. Reorders the list such as the unscanned pages are scanned
1409 * first on the next iteration of the free scanner
1410 */
1411static void
1412move_freelist_head(struct list_head *freelist, struct page *freepage)
1413{
1414	LIST_HEAD(sublist);
1415
1416	if (!list_is_first(&freepage->buddy_list, freelist)) {
1417		list_cut_before(&sublist, freelist, &freepage->buddy_list);
1418		list_splice_tail(&sublist, freelist);
1419	}
1420}
1421
1422/*
1423 * Similar to move_freelist_head except used by the migration scanner
1424 * when scanning forward. It's possible for these list operations to
1425 * move against each other if they search the free list exactly in
1426 * lockstep.
1427 */
1428static void
1429move_freelist_tail(struct list_head *freelist, struct page *freepage)
1430{
1431	LIST_HEAD(sublist);
1432
1433	if (!list_is_last(&freepage->buddy_list, freelist)) {
1434		list_cut_position(&sublist, freelist, &freepage->buddy_list);
1435		list_splice_tail(&sublist, freelist);
1436	}
1437}
1438
1439static void
1440fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1441{
1442	unsigned long start_pfn, end_pfn;
1443	struct page *page;
1444
1445	/* Do not search around if there are enough pages already */
1446	if (cc->nr_freepages >= cc->nr_migratepages)
1447		return;
1448
1449	/* Minimise scanning during async compaction */
1450	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1451		return;
1452
1453	/* Pageblock boundaries */
1454	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1455	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1456
1457	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1458	if (!page)
1459		return;
1460
1461	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1462
1463	/* Skip this pageblock in the future as it's full or nearly full */
1464	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1465		set_pageblock_skip(page);
1466}
1467
1468/* Search orders in round-robin fashion */
1469static int next_search_order(struct compact_control *cc, int order)
1470{
1471	order--;
1472	if (order < 0)
1473		order = cc->order - 1;
1474
1475	/* Search wrapped around? */
1476	if (order == cc->search_order) {
1477		cc->search_order--;
1478		if (cc->search_order < 0)
1479			cc->search_order = cc->order - 1;
1480		return -1;
1481	}
1482
1483	return order;
1484}
1485
1486static void fast_isolate_freepages(struct compact_control *cc)
1487{
1488	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1489	unsigned int nr_scanned = 0, total_isolated = 0;
1490	unsigned long low_pfn, min_pfn, highest = 0;
1491	unsigned long nr_isolated = 0;
1492	unsigned long distance;
1493	struct page *page = NULL;
1494	bool scan_start = false;
1495	int order;
1496
1497	/* Full compaction passes in a negative order */
1498	if (cc->order <= 0)
1499		return;
1500
1501	/*
1502	 * If starting the scan, use a deeper search and use the highest
1503	 * PFN found if a suitable one is not found.
1504	 */
1505	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1506		limit = pageblock_nr_pages >> 1;
1507		scan_start = true;
1508	}
1509
1510	/*
1511	 * Preferred point is in the top quarter of the scan space but take
1512	 * a pfn from the top half if the search is problematic.
1513	 */
1514	distance = (cc->free_pfn - cc->migrate_pfn);
1515	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1516	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1517
1518	if (WARN_ON_ONCE(min_pfn > low_pfn))
1519		low_pfn = min_pfn;
1520
1521	/*
1522	 * Search starts from the last successful isolation order or the next
1523	 * order to search after a previous failure
1524	 */
1525	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1526
1527	for (order = cc->search_order;
1528	     !page && order >= 0;
1529	     order = next_search_order(cc, order)) {
1530		struct free_area *area = &cc->zone->free_area[order];
1531		struct list_head *freelist;
1532		struct page *freepage;
1533		unsigned long flags;
1534		unsigned int order_scanned = 0;
1535		unsigned long high_pfn = 0;
1536
1537		if (!area->nr_free)
1538			continue;
1539
1540		spin_lock_irqsave(&cc->zone->lock, flags);
1541		freelist = &area->free_list[MIGRATE_MOVABLE];
1542		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1543			unsigned long pfn;
1544
1545			order_scanned++;
1546			nr_scanned++;
1547			pfn = page_to_pfn(freepage);
1548
1549			if (pfn >= highest)
1550				highest = max(pageblock_start_pfn(pfn),
1551					      cc->zone->zone_start_pfn);
1552
1553			if (pfn >= low_pfn) {
1554				cc->fast_search_fail = 0;
1555				cc->search_order = order;
1556				page = freepage;
1557				break;
1558			}
1559
1560			if (pfn >= min_pfn && pfn > high_pfn) {
1561				high_pfn = pfn;
1562
1563				/* Shorten the scan if a candidate is found */
1564				limit >>= 1;
1565			}
1566
1567			if (order_scanned >= limit)
1568				break;
1569		}
1570
1571		/* Use a maximum candidate pfn if a preferred one was not found */
1572		if (!page && high_pfn) {
1573			page = pfn_to_page(high_pfn);
1574
1575			/* Update freepage for the list reorder below */
1576			freepage = page;
1577		}
1578
1579		/* Reorder to so a future search skips recent pages */
1580		move_freelist_head(freelist, freepage);
1581
1582		/* Isolate the page if available */
1583		if (page) {
1584			if (__isolate_free_page(page, order)) {
1585				set_page_private(page, order);
1586				nr_isolated = 1 << order;
1587				nr_scanned += nr_isolated - 1;
1588				total_isolated += nr_isolated;
1589				cc->nr_freepages += nr_isolated;
1590				list_add_tail(&page->lru, &cc->freepages);
1591				count_compact_events(COMPACTISOLATED, nr_isolated);
1592			} else {
1593				/* If isolation fails, abort the search */
1594				order = cc->search_order + 1;
1595				page = NULL;
1596			}
1597		}
1598
1599		spin_unlock_irqrestore(&cc->zone->lock, flags);
1600
1601		/* Skip fast search if enough freepages isolated */
1602		if (cc->nr_freepages >= cc->nr_migratepages)
1603			break;
1604
1605		/*
1606		 * Smaller scan on next order so the total scan is related
1607		 * to freelist_scan_limit.
1608		 */
1609		if (order_scanned >= limit)
1610			limit = max(1U, limit >> 1);
1611	}
1612
1613	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1614						   nr_scanned, total_isolated);
1615
1616	if (!page) {
1617		cc->fast_search_fail++;
1618		if (scan_start) {
1619			/*
1620			 * Use the highest PFN found above min. If one was
1621			 * not found, be pessimistic for direct compaction
1622			 * and use the min mark.
1623			 */
1624			if (highest >= min_pfn) {
1625				page = pfn_to_page(highest);
1626				cc->free_pfn = highest;
1627			} else {
1628				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1629					page = pageblock_pfn_to_page(min_pfn,
1630						min(pageblock_end_pfn(min_pfn),
1631						    zone_end_pfn(cc->zone)),
1632						cc->zone);
1633					if (page && !suitable_migration_target(cc, page))
1634						page = NULL;
1635
1636					cc->free_pfn = min_pfn;
1637				}
1638			}
1639		}
1640	}
1641
1642	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1643		highest -= pageblock_nr_pages;
1644		cc->zone->compact_cached_free_pfn = highest;
1645	}
1646
1647	cc->total_free_scanned += nr_scanned;
1648	if (!page)
1649		return;
1650
1651	low_pfn = page_to_pfn(page);
1652	fast_isolate_around(cc, low_pfn);
1653}
1654
1655/*
1656 * Based on information in the current compact_control, find blocks
1657 * suitable for isolating free pages from and then isolate them.
1658 */
1659static void isolate_freepages(struct compact_control *cc)
1660{
1661	struct zone *zone = cc->zone;
1662	struct page *page;
1663	unsigned long block_start_pfn;	/* start of current pageblock */
1664	unsigned long isolate_start_pfn; /* exact pfn we start at */
1665	unsigned long block_end_pfn;	/* end of current pageblock */
1666	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1667	struct list_head *freelist = &cc->freepages;
1668	unsigned int stride;
1669
1670	/* Try a small search of the free lists for a candidate */
1671	fast_isolate_freepages(cc);
1672	if (cc->nr_freepages)
1673		goto splitmap;
1674
1675	/*
1676	 * Initialise the free scanner. The starting point is where we last
1677	 * successfully isolated from, zone-cached value, or the end of the
1678	 * zone when isolating for the first time. For looping we also need
1679	 * this pfn aligned down to the pageblock boundary, because we do
1680	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1681	 * For ending point, take care when isolating in last pageblock of a
1682	 * zone which ends in the middle of a pageblock.
1683	 * The low boundary is the end of the pageblock the migration scanner
1684	 * is using.
1685	 */
1686	isolate_start_pfn = cc->free_pfn;
1687	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1688	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1689						zone_end_pfn(zone));
1690	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1691	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1692
1693	/*
1694	 * Isolate free pages until enough are available to migrate the
1695	 * pages on cc->migratepages. We stop searching if the migrate
1696	 * and free page scanners meet or enough free pages are isolated.
1697	 */
1698	for (; block_start_pfn >= low_pfn;
1699				block_end_pfn = block_start_pfn,
1700				block_start_pfn -= pageblock_nr_pages,
1701				isolate_start_pfn = block_start_pfn) {
1702		unsigned long nr_isolated;
1703
1704		/*
1705		 * This can iterate a massively long zone without finding any
1706		 * suitable migration targets, so periodically check resched.
1707		 */
1708		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1709			cond_resched();
1710
1711		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1712									zone);
1713		if (!page) {
1714			unsigned long next_pfn;
1715
1716			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1717			if (next_pfn)
1718				block_start_pfn = max(next_pfn, low_pfn);
1719
1720			continue;
1721		}
1722
1723		/* Check the block is suitable for migration */
1724		if (!suitable_migration_target(cc, page))
1725			continue;
1726
1727		/* If isolation recently failed, do not retry */
1728		if (!isolation_suitable(cc, page))
1729			continue;
1730
1731		/* Found a block suitable for isolating free pages from. */
1732		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1733					block_end_pfn, freelist, stride, false);
1734
1735		/* Update the skip hint if the full pageblock was scanned */
1736		if (isolate_start_pfn == block_end_pfn)
1737			update_pageblock_skip(cc, page, block_start_pfn -
1738					      pageblock_nr_pages);
1739
1740		/* Are enough freepages isolated? */
1741		if (cc->nr_freepages >= cc->nr_migratepages) {
1742			if (isolate_start_pfn >= block_end_pfn) {
1743				/*
1744				 * Restart at previous pageblock if more
1745				 * freepages can be isolated next time.
1746				 */
1747				isolate_start_pfn =
1748					block_start_pfn - pageblock_nr_pages;
1749			}
1750			break;
1751		} else if (isolate_start_pfn < block_end_pfn) {
1752			/*
1753			 * If isolation failed early, do not continue
1754			 * needlessly.
1755			 */
1756			break;
1757		}
1758
1759		/* Adjust stride depending on isolation */
1760		if (nr_isolated) {
1761			stride = 1;
1762			continue;
1763		}
1764		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1765	}
1766
1767	/*
1768	 * Record where the free scanner will restart next time. Either we
1769	 * broke from the loop and set isolate_start_pfn based on the last
1770	 * call to isolate_freepages_block(), or we met the migration scanner
1771	 * and the loop terminated due to isolate_start_pfn < low_pfn
1772	 */
1773	cc->free_pfn = isolate_start_pfn;
1774
1775splitmap:
1776	/* __isolate_free_page() does not map the pages */
1777	split_map_pages(freelist);
1778}
1779
1780/*
1781 * This is a migrate-callback that "allocates" freepages by taking pages
1782 * from the isolated freelists in the block we are migrating to.
1783 */
1784static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1785{
1786	struct compact_control *cc = (struct compact_control *)data;
1787	struct folio *dst;
 
 
 
 
 
 
 
 
 
 
1788
1789	if (list_empty(&cc->freepages)) {
 
 
 
1790		isolate_freepages(cc);
 
 
 
1791
1792		if (list_empty(&cc->freepages))
1793			return NULL;
 
 
 
 
 
 
 
 
 
 
1794	}
 
1795
1796	dst = list_entry(cc->freepages.next, struct folio, lru);
1797	list_del(&dst->lru);
1798	cc->nr_freepages--;
 
 
 
 
1799
1800	return dst;
 
 
1801}
1802
1803/*
1804 * This is a migrate-callback that "frees" freepages back to the isolated
1805 * freelist.  All pages on the freelist are from the same zone, so there is no
1806 * special handling needed for NUMA.
1807 */
1808static void compaction_free(struct folio *dst, unsigned long data)
1809{
1810	struct compact_control *cc = (struct compact_control *)data;
 
 
1811
1812	list_add(&dst->lru, &cc->freepages);
1813	cc->nr_freepages++;
 
 
 
 
 
 
 
 
1814}
1815
1816/* possible outcome of isolate_migratepages */
1817typedef enum {
1818	ISOLATE_ABORT,		/* Abort compaction now */
1819	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1820	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1821} isolate_migrate_t;
1822
1823/*
1824 * Allow userspace to control policy on scanning the unevictable LRU for
1825 * compactable pages.
1826 */
1827static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1828/*
1829 * Tunable for proactive compaction. It determines how
1830 * aggressively the kernel should compact memory in the
1831 * background. It takes values in the range [0, 100].
1832 */
1833static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1834static int sysctl_extfrag_threshold = 500;
1835static int __read_mostly sysctl_compact_memory;
1836
1837static inline void
1838update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1839{
1840	if (cc->fast_start_pfn == ULONG_MAX)
1841		return;
1842
1843	if (!cc->fast_start_pfn)
1844		cc->fast_start_pfn = pfn;
1845
1846	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1847}
1848
1849static inline unsigned long
1850reinit_migrate_pfn(struct compact_control *cc)
1851{
1852	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1853		return cc->migrate_pfn;
1854
1855	cc->migrate_pfn = cc->fast_start_pfn;
1856	cc->fast_start_pfn = ULONG_MAX;
1857
1858	return cc->migrate_pfn;
1859}
1860
1861/*
1862 * Briefly search the free lists for a migration source that already has
1863 * some free pages to reduce the number of pages that need migration
1864 * before a pageblock is free.
1865 */
1866static unsigned long fast_find_migrateblock(struct compact_control *cc)
1867{
1868	unsigned int limit = freelist_scan_limit(cc);
1869	unsigned int nr_scanned = 0;
1870	unsigned long distance;
1871	unsigned long pfn = cc->migrate_pfn;
1872	unsigned long high_pfn;
1873	int order;
1874	bool found_block = false;
1875
1876	/* Skip hints are relied on to avoid repeats on the fast search */
1877	if (cc->ignore_skip_hint)
1878		return pfn;
1879
1880	/*
1881	 * If the pageblock should be finished then do not select a different
1882	 * pageblock.
1883	 */
1884	if (cc->finish_pageblock)
1885		return pfn;
1886
1887	/*
1888	 * If the migrate_pfn is not at the start of a zone or the start
1889	 * of a pageblock then assume this is a continuation of a previous
1890	 * scan restarted due to COMPACT_CLUSTER_MAX.
1891	 */
1892	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1893		return pfn;
1894
1895	/*
1896	 * For smaller orders, just linearly scan as the number of pages
1897	 * to migrate should be relatively small and does not necessarily
1898	 * justify freeing up a large block for a small allocation.
1899	 */
1900	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1901		return pfn;
1902
1903	/*
1904	 * Only allow kcompactd and direct requests for movable pages to
1905	 * quickly clear out a MOVABLE pageblock for allocation. This
1906	 * reduces the risk that a large movable pageblock is freed for
1907	 * an unmovable/reclaimable small allocation.
1908	 */
1909	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1910		return pfn;
1911
1912	/*
1913	 * When starting the migration scanner, pick any pageblock within the
1914	 * first half of the search space. Otherwise try and pick a pageblock
1915	 * within the first eighth to reduce the chances that a migration
1916	 * target later becomes a source.
1917	 */
1918	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1919	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1920		distance >>= 2;
1921	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1922
1923	for (order = cc->order - 1;
1924	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1925	     order--) {
1926		struct free_area *area = &cc->zone->free_area[order];
1927		struct list_head *freelist;
1928		unsigned long flags;
1929		struct page *freepage;
1930
1931		if (!area->nr_free)
1932			continue;
1933
1934		spin_lock_irqsave(&cc->zone->lock, flags);
1935		freelist = &area->free_list[MIGRATE_MOVABLE];
1936		list_for_each_entry(freepage, freelist, buddy_list) {
1937			unsigned long free_pfn;
1938
1939			if (nr_scanned++ >= limit) {
1940				move_freelist_tail(freelist, freepage);
1941				break;
1942			}
1943
1944			free_pfn = page_to_pfn(freepage);
1945			if (free_pfn < high_pfn) {
1946				/*
1947				 * Avoid if skipped recently. Ideally it would
1948				 * move to the tail but even safe iteration of
1949				 * the list assumes an entry is deleted, not
1950				 * reordered.
1951				 */
1952				if (get_pageblock_skip(freepage))
1953					continue;
1954
1955				/* Reorder to so a future search skips recent pages */
1956				move_freelist_tail(freelist, freepage);
1957
1958				update_fast_start_pfn(cc, free_pfn);
1959				pfn = pageblock_start_pfn(free_pfn);
1960				if (pfn < cc->zone->zone_start_pfn)
1961					pfn = cc->zone->zone_start_pfn;
1962				cc->fast_search_fail = 0;
1963				found_block = true;
1964				break;
1965			}
1966		}
1967		spin_unlock_irqrestore(&cc->zone->lock, flags);
1968	}
1969
1970	cc->total_migrate_scanned += nr_scanned;
1971
1972	/*
1973	 * If fast scanning failed then use a cached entry for a page block
1974	 * that had free pages as the basis for starting a linear scan.
1975	 */
1976	if (!found_block) {
1977		cc->fast_search_fail++;
1978		pfn = reinit_migrate_pfn(cc);
1979	}
1980	return pfn;
1981}
1982
1983/*
1984 * Isolate all pages that can be migrated from the first suitable block,
1985 * starting at the block pointed to by the migrate scanner pfn within
1986 * compact_control.
1987 */
1988static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1989{
1990	unsigned long block_start_pfn;
1991	unsigned long block_end_pfn;
1992	unsigned long low_pfn;
1993	struct page *page;
1994	const isolate_mode_t isolate_mode =
1995		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1996		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1997	bool fast_find_block;
1998
1999	/*
2000	 * Start at where we last stopped, or beginning of the zone as
2001	 * initialized by compact_zone(). The first failure will use
2002	 * the lowest PFN as the starting point for linear scanning.
2003	 */
2004	low_pfn = fast_find_migrateblock(cc);
2005	block_start_pfn = pageblock_start_pfn(low_pfn);
2006	if (block_start_pfn < cc->zone->zone_start_pfn)
2007		block_start_pfn = cc->zone->zone_start_pfn;
2008
2009	/*
2010	 * fast_find_migrateblock() has already ensured the pageblock is not
2011	 * set with a skipped flag, so to avoid the isolation_suitable check
2012	 * below again, check whether the fast search was successful.
2013	 */
2014	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2015
2016	/* Only scan within a pageblock boundary */
2017	block_end_pfn = pageblock_end_pfn(low_pfn);
2018
2019	/*
2020	 * Iterate over whole pageblocks until we find the first suitable.
2021	 * Do not cross the free scanner.
2022	 */
2023	for (; block_end_pfn <= cc->free_pfn;
2024			fast_find_block = false,
2025			cc->migrate_pfn = low_pfn = block_end_pfn,
2026			block_start_pfn = block_end_pfn,
2027			block_end_pfn += pageblock_nr_pages) {
2028
2029		/*
2030		 * This can potentially iterate a massively long zone with
2031		 * many pageblocks unsuitable, so periodically check if we
2032		 * need to schedule.
2033		 */
2034		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2035			cond_resched();
2036
2037		page = pageblock_pfn_to_page(block_start_pfn,
2038						block_end_pfn, cc->zone);
2039		if (!page) {
2040			unsigned long next_pfn;
2041
2042			next_pfn = skip_offline_sections(block_start_pfn);
2043			if (next_pfn)
2044				block_end_pfn = min(next_pfn, cc->free_pfn);
2045			continue;
2046		}
2047
2048		/*
2049		 * If isolation recently failed, do not retry. Only check the
2050		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2051		 * to be visited multiple times. Assume skip was checked
2052		 * before making it "skip" so other compaction instances do
2053		 * not scan the same block.
2054		 */
2055		if ((pageblock_aligned(low_pfn) ||
2056		     low_pfn == cc->zone->zone_start_pfn) &&
2057		    !fast_find_block && !isolation_suitable(cc, page))
2058			continue;
2059
2060		/*
2061		 * For async direct compaction, only scan the pageblocks of the
2062		 * same migratetype without huge pages. Async direct compaction
2063		 * is optimistic to see if the minimum amount of work satisfies
2064		 * the allocation. The cached PFN is updated as it's possible
2065		 * that all remaining blocks between source and target are
2066		 * unsuitable and the compaction scanners fail to meet.
2067		 */
2068		if (!suitable_migration_source(cc, page)) {
2069			update_cached_migrate(cc, block_end_pfn);
2070			continue;
2071		}
2072
2073		/* Perform the isolation */
2074		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2075						isolate_mode))
2076			return ISOLATE_ABORT;
2077
2078		/*
2079		 * Either we isolated something and proceed with migration. Or
2080		 * we failed and compact_zone should decide if we should
2081		 * continue or not.
2082		 */
2083		break;
2084	}
2085
2086	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2087}
2088
2089/*
2090 * order == -1 is expected when compacting proactively via
2091 * 1. /proc/sys/vm/compact_memory
2092 * 2. /sys/devices/system/node/nodex/compact
2093 * 3. /proc/sys/vm/compaction_proactiveness
2094 */
2095static inline bool is_via_compact_memory(int order)
2096{
2097	return order == -1;
2098}
2099
2100/*
2101 * Determine whether kswapd is (or recently was!) running on this node.
2102 *
2103 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2104 * zero it.
2105 */
2106static bool kswapd_is_running(pg_data_t *pgdat)
2107{
2108	bool running;
2109
2110	pgdat_kswapd_lock(pgdat);
2111	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2112	pgdat_kswapd_unlock(pgdat);
2113
2114	return running;
2115}
2116
2117/*
2118 * A zone's fragmentation score is the external fragmentation wrt to the
2119 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2120 */
2121static unsigned int fragmentation_score_zone(struct zone *zone)
2122{
2123	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2124}
2125
2126/*
2127 * A weighted zone's fragmentation score is the external fragmentation
2128 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2129 * returns a value in the range [0, 100].
2130 *
2131 * The scaling factor ensures that proactive compaction focuses on larger
2132 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2133 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2134 * and thus never exceeds the high threshold for proactive compaction.
2135 */
2136static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2137{
2138	unsigned long score;
2139
2140	score = zone->present_pages * fragmentation_score_zone(zone);
2141	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2142}
2143
2144/*
2145 * The per-node proactive (background) compaction process is started by its
2146 * corresponding kcompactd thread when the node's fragmentation score
2147 * exceeds the high threshold. The compaction process remains active till
2148 * the node's score falls below the low threshold, or one of the back-off
2149 * conditions is met.
2150 */
2151static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2152{
2153	unsigned int score = 0;
2154	int zoneid;
2155
2156	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2157		struct zone *zone;
2158
2159		zone = &pgdat->node_zones[zoneid];
2160		if (!populated_zone(zone))
2161			continue;
2162		score += fragmentation_score_zone_weighted(zone);
2163	}
2164
2165	return score;
2166}
2167
2168static unsigned int fragmentation_score_wmark(bool low)
2169{
2170	unsigned int wmark_low;
2171
2172	/*
2173	 * Cap the low watermark to avoid excessive compaction
2174	 * activity in case a user sets the proactiveness tunable
2175	 * close to 100 (maximum).
2176	 */
2177	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2178	return low ? wmark_low : min(wmark_low + 10, 100U);
2179}
2180
2181static bool should_proactive_compact_node(pg_data_t *pgdat)
2182{
2183	int wmark_high;
2184
2185	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2186		return false;
2187
2188	wmark_high = fragmentation_score_wmark(false);
2189	return fragmentation_score_node(pgdat) > wmark_high;
2190}
2191
2192static enum compact_result __compact_finished(struct compact_control *cc)
2193{
2194	unsigned int order;
2195	const int migratetype = cc->migratetype;
2196	int ret;
2197
2198	/* Compaction run completes if the migrate and free scanner meet */
2199	if (compact_scanners_met(cc)) {
2200		/* Let the next compaction start anew. */
2201		reset_cached_positions(cc->zone);
2202
2203		/*
2204		 * Mark that the PG_migrate_skip information should be cleared
2205		 * by kswapd when it goes to sleep. kcompactd does not set the
2206		 * flag itself as the decision to be clear should be directly
2207		 * based on an allocation request.
2208		 */
2209		if (cc->direct_compaction)
2210			cc->zone->compact_blockskip_flush = true;
2211
2212		if (cc->whole_zone)
2213			return COMPACT_COMPLETE;
2214		else
2215			return COMPACT_PARTIAL_SKIPPED;
2216	}
2217
2218	if (cc->proactive_compaction) {
2219		int score, wmark_low;
2220		pg_data_t *pgdat;
2221
2222		pgdat = cc->zone->zone_pgdat;
2223		if (kswapd_is_running(pgdat))
2224			return COMPACT_PARTIAL_SKIPPED;
2225
2226		score = fragmentation_score_zone(cc->zone);
2227		wmark_low = fragmentation_score_wmark(true);
2228
2229		if (score > wmark_low)
2230			ret = COMPACT_CONTINUE;
2231		else
2232			ret = COMPACT_SUCCESS;
2233
2234		goto out;
2235	}
2236
2237	if (is_via_compact_memory(cc->order))
2238		return COMPACT_CONTINUE;
2239
2240	/*
2241	 * Always finish scanning a pageblock to reduce the possibility of
2242	 * fallbacks in the future. This is particularly important when
2243	 * migration source is unmovable/reclaimable but it's not worth
2244	 * special casing.
2245	 */
2246	if (!pageblock_aligned(cc->migrate_pfn))
2247		return COMPACT_CONTINUE;
2248
2249	/* Direct compactor: Is a suitable page free? */
2250	ret = COMPACT_NO_SUITABLE_PAGE;
2251	for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2252		struct free_area *area = &cc->zone->free_area[order];
2253		bool can_steal;
2254
2255		/* Job done if page is free of the right migratetype */
2256		if (!free_area_empty(area, migratetype))
2257			return COMPACT_SUCCESS;
2258
2259#ifdef CONFIG_CMA
2260		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2261		if (migratetype == MIGRATE_MOVABLE &&
2262			!free_area_empty(area, MIGRATE_CMA))
2263			return COMPACT_SUCCESS;
2264#endif
2265		/*
2266		 * Job done if allocation would steal freepages from
2267		 * other migratetype buddy lists.
2268		 */
2269		if (find_suitable_fallback(area, order, migratetype,
2270						true, &can_steal) != -1)
2271			/*
2272			 * Movable pages are OK in any pageblock. If we are
2273			 * stealing for a non-movable allocation, make sure
2274			 * we finish compacting the current pageblock first
2275			 * (which is assured by the above migrate_pfn align
2276			 * check) so it is as free as possible and we won't
2277			 * have to steal another one soon.
2278			 */
2279			return COMPACT_SUCCESS;
2280	}
2281
2282out:
2283	if (cc->contended || fatal_signal_pending(current))
2284		ret = COMPACT_CONTENDED;
2285
2286	return ret;
2287}
2288
2289static enum compact_result compact_finished(struct compact_control *cc)
2290{
2291	int ret;
2292
2293	ret = __compact_finished(cc);
2294	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2295	if (ret == COMPACT_NO_SUITABLE_PAGE)
2296		ret = COMPACT_CONTINUE;
2297
2298	return ret;
2299}
2300
2301static bool __compaction_suitable(struct zone *zone, int order,
2302				  int highest_zoneidx,
2303				  unsigned long wmark_target)
2304{
2305	unsigned long watermark;
2306	/*
2307	 * Watermarks for order-0 must be met for compaction to be able to
2308	 * isolate free pages for migration targets. This means that the
2309	 * watermark and alloc_flags have to match, or be more pessimistic than
2310	 * the check in __isolate_free_page(). We don't use the direct
2311	 * compactor's alloc_flags, as they are not relevant for freepage
2312	 * isolation. We however do use the direct compactor's highest_zoneidx
2313	 * to skip over zones where lowmem reserves would prevent allocation
2314	 * even if compaction succeeds.
2315	 * For costly orders, we require low watermark instead of min for
2316	 * compaction to proceed to increase its chances.
2317	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2318	 * suitable migration targets
2319	 */
2320	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2321				low_wmark_pages(zone) : min_wmark_pages(zone);
2322	watermark += compact_gap(order);
2323	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2324				   ALLOC_CMA, wmark_target);
2325}
2326
2327/*
2328 * compaction_suitable: Is this suitable to run compaction on this zone now?
2329 */
2330bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2331{
2332	enum compact_result compact_result;
2333	bool suitable;
2334
2335	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2336					 zone_page_state(zone, NR_FREE_PAGES));
2337	/*
2338	 * fragmentation index determines if allocation failures are due to
2339	 * low memory or external fragmentation
2340	 *
2341	 * index of -1000 would imply allocations might succeed depending on
2342	 * watermarks, but we already failed the high-order watermark check
2343	 * index towards 0 implies failure is due to lack of memory
2344	 * index towards 1000 implies failure is due to fragmentation
2345	 *
2346	 * Only compact if a failure would be due to fragmentation. Also
2347	 * ignore fragindex for non-costly orders where the alternative to
2348	 * a successful reclaim/compaction is OOM. Fragindex and the
2349	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2350	 * excessive compaction for costly orders, but it should not be at the
2351	 * expense of system stability.
2352	 */
2353	if (suitable) {
2354		compact_result = COMPACT_CONTINUE;
2355		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2356			int fragindex = fragmentation_index(zone, order);
2357
2358			if (fragindex >= 0 &&
2359			    fragindex <= sysctl_extfrag_threshold) {
2360				suitable = false;
2361				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2362			}
2363		}
2364	} else {
2365		compact_result = COMPACT_SKIPPED;
2366	}
2367
2368	trace_mm_compaction_suitable(zone, order, compact_result);
2369
2370	return suitable;
2371}
2372
2373bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2374		int alloc_flags)
2375{
2376	struct zone *zone;
2377	struct zoneref *z;
2378
2379	/*
2380	 * Make sure at least one zone would pass __compaction_suitable if we continue
2381	 * retrying the reclaim.
2382	 */
2383	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2384				ac->highest_zoneidx, ac->nodemask) {
2385		unsigned long available;
2386
2387		/*
2388		 * Do not consider all the reclaimable memory because we do not
2389		 * want to trash just for a single high order allocation which
2390		 * is even not guaranteed to appear even if __compaction_suitable
2391		 * is happy about the watermark check.
2392		 */
2393		available = zone_reclaimable_pages(zone) / order;
2394		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2395		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2396					  available))
2397			return true;
2398	}
2399
2400	return false;
2401}
2402
2403/*
2404 * Should we do compaction for target allocation order.
2405 * Return COMPACT_SUCCESS if allocation for target order can be already
2406 * satisfied
2407 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2408 * Return COMPACT_CONTINUE if compaction for target order should be ran
2409 */
2410static enum compact_result
2411compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2412				 int highest_zoneidx, unsigned int alloc_flags)
2413{
2414	unsigned long watermark;
2415
2416	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2417	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2418			      alloc_flags))
2419		return COMPACT_SUCCESS;
2420
2421	if (!compaction_suitable(zone, order, highest_zoneidx))
2422		return COMPACT_SKIPPED;
2423
2424	return COMPACT_CONTINUE;
2425}
2426
2427static enum compact_result
2428compact_zone(struct compact_control *cc, struct capture_control *capc)
2429{
2430	enum compact_result ret;
2431	unsigned long start_pfn = cc->zone->zone_start_pfn;
2432	unsigned long end_pfn = zone_end_pfn(cc->zone);
2433	unsigned long last_migrated_pfn;
2434	const bool sync = cc->mode != MIGRATE_ASYNC;
2435	bool update_cached;
2436	unsigned int nr_succeeded = 0;
 
2437
2438	/*
2439	 * These counters track activities during zone compaction.  Initialize
2440	 * them before compacting a new zone.
2441	 */
2442	cc->total_migrate_scanned = 0;
2443	cc->total_free_scanned = 0;
2444	cc->nr_migratepages = 0;
2445	cc->nr_freepages = 0;
2446	INIT_LIST_HEAD(&cc->freepages);
 
2447	INIT_LIST_HEAD(&cc->migratepages);
2448
2449	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2450
2451	if (!is_via_compact_memory(cc->order)) {
2452		ret = compaction_suit_allocation_order(cc->zone, cc->order,
2453						       cc->highest_zoneidx,
2454						       cc->alloc_flags);
2455		if (ret != COMPACT_CONTINUE)
2456			return ret;
2457	}
2458
2459	/*
2460	 * Clear pageblock skip if there were failures recently and compaction
2461	 * is about to be retried after being deferred.
2462	 */
2463	if (compaction_restarting(cc->zone, cc->order))
2464		__reset_isolation_suitable(cc->zone);
2465
2466	/*
2467	 * Setup to move all movable pages to the end of the zone. Used cached
2468	 * information on where the scanners should start (unless we explicitly
2469	 * want to compact the whole zone), but check that it is initialised
2470	 * by ensuring the values are within zone boundaries.
2471	 */
2472	cc->fast_start_pfn = 0;
2473	if (cc->whole_zone) {
2474		cc->migrate_pfn = start_pfn;
2475		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2476	} else {
2477		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2478		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2479		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2480			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2481			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2482		}
2483		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2484			cc->migrate_pfn = start_pfn;
2485			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2486			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2487		}
2488
2489		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2490			cc->whole_zone = true;
2491	}
2492
2493	last_migrated_pfn = 0;
2494
2495	/*
2496	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2497	 * the basis that some migrations will fail in ASYNC mode. However,
2498	 * if the cached PFNs match and pageblocks are skipped due to having
2499	 * no isolation candidates, then the sync state does not matter.
2500	 * Until a pageblock with isolation candidates is found, keep the
2501	 * cached PFNs in sync to avoid revisiting the same blocks.
2502	 */
2503	update_cached = !sync &&
2504		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2505
2506	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2507
2508	/* lru_add_drain_all could be expensive with involving other CPUs */
2509	lru_add_drain();
2510
2511	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2512		int err;
2513		unsigned long iteration_start_pfn = cc->migrate_pfn;
2514
2515		/*
2516		 * Avoid multiple rescans of the same pageblock which can
2517		 * happen if a page cannot be isolated (dirty/writeback in
2518		 * async mode) or if the migrated pages are being allocated
2519		 * before the pageblock is cleared.  The first rescan will
2520		 * capture the entire pageblock for migration. If it fails,
2521		 * it'll be marked skip and scanning will proceed as normal.
2522		 */
2523		cc->finish_pageblock = false;
2524		if (pageblock_start_pfn(last_migrated_pfn) ==
2525		    pageblock_start_pfn(iteration_start_pfn)) {
2526			cc->finish_pageblock = true;
2527		}
2528
2529rescan:
2530		switch (isolate_migratepages(cc)) {
2531		case ISOLATE_ABORT:
2532			ret = COMPACT_CONTENDED;
2533			putback_movable_pages(&cc->migratepages);
2534			cc->nr_migratepages = 0;
2535			goto out;
2536		case ISOLATE_NONE:
2537			if (update_cached) {
2538				cc->zone->compact_cached_migrate_pfn[1] =
2539					cc->zone->compact_cached_migrate_pfn[0];
2540			}
2541
2542			/*
2543			 * We haven't isolated and migrated anything, but
2544			 * there might still be unflushed migrations from
2545			 * previous cc->order aligned block.
2546			 */
2547			goto check_drain;
2548		case ISOLATE_SUCCESS:
2549			update_cached = false;
2550			last_migrated_pfn = max(cc->zone->zone_start_pfn,
2551				pageblock_start_pfn(cc->migrate_pfn - 1));
2552		}
2553
 
 
 
 
 
 
2554		err = migrate_pages(&cc->migratepages, compaction_alloc,
2555				compaction_free, (unsigned long)cc, cc->mode,
2556				MR_COMPACTION, &nr_succeeded);
2557
2558		trace_mm_compaction_migratepages(cc, nr_succeeded);
2559
2560		/* All pages were either migrated or will be released */
2561		cc->nr_migratepages = 0;
2562		if (err) {
2563			putback_movable_pages(&cc->migratepages);
2564			/*
2565			 * migrate_pages() may return -ENOMEM when scanners meet
2566			 * and we want compact_finished() to detect it
2567			 */
2568			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2569				ret = COMPACT_CONTENDED;
2570				goto out;
2571			}
2572			/*
2573			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2574			 * within the pageblock_order-aligned block and
2575			 * fast_find_migrateblock may be used then scan the
2576			 * remainder of the pageblock. This will mark the
2577			 * pageblock "skip" to avoid rescanning in the near
2578			 * future. This will isolate more pages than necessary
2579			 * for the request but avoid loops due to
2580			 * fast_find_migrateblock revisiting blocks that were
2581			 * recently partially scanned.
2582			 */
2583			if (!pageblock_aligned(cc->migrate_pfn) &&
2584			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2585			    (cc->mode < MIGRATE_SYNC)) {
2586				cc->finish_pageblock = true;
2587
2588				/*
2589				 * Draining pcplists does not help THP if
2590				 * any page failed to migrate. Even after
2591				 * drain, the pageblock will not be free.
2592				 */
2593				if (cc->order == COMPACTION_HPAGE_ORDER)
2594					last_migrated_pfn = 0;
2595
2596				goto rescan;
2597			}
2598		}
2599
2600		/* Stop if a page has been captured */
2601		if (capc && capc->page) {
2602			ret = COMPACT_SUCCESS;
2603			break;
2604		}
2605
2606check_drain:
2607		/*
2608		 * Has the migration scanner moved away from the previous
2609		 * cc->order aligned block where we migrated from? If yes,
2610		 * flush the pages that were freed, so that they can merge and
2611		 * compact_finished() can detect immediately if allocation
2612		 * would succeed.
2613		 */
2614		if (cc->order > 0 && last_migrated_pfn) {
2615			unsigned long current_block_start =
2616				block_start_pfn(cc->migrate_pfn, cc->order);
2617
2618			if (last_migrated_pfn < current_block_start) {
2619				lru_add_drain_cpu_zone(cc->zone);
2620				/* No more flushing until we migrate again */
2621				last_migrated_pfn = 0;
2622			}
2623		}
2624	}
2625
2626out:
2627	/*
2628	 * Release free pages and update where the free scanner should restart,
2629	 * so we don't leave any returned pages behind in the next attempt.
2630	 */
2631	if (cc->nr_freepages > 0) {
2632		unsigned long free_pfn = release_freepages(&cc->freepages);
2633
2634		cc->nr_freepages = 0;
2635		VM_BUG_ON(free_pfn == 0);
2636		/* The cached pfn is always the first in a pageblock */
2637		free_pfn = pageblock_start_pfn(free_pfn);
2638		/*
2639		 * Only go back, not forward. The cached pfn might have been
2640		 * already reset to zone end in compact_finished()
2641		 */
2642		if (free_pfn > cc->zone->compact_cached_free_pfn)
2643			cc->zone->compact_cached_free_pfn = free_pfn;
2644	}
2645
2646	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2647	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2648
2649	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2650
2651	VM_BUG_ON(!list_empty(&cc->freepages));
2652	VM_BUG_ON(!list_empty(&cc->migratepages));
2653
2654	return ret;
2655}
2656
2657static enum compact_result compact_zone_order(struct zone *zone, int order,
2658		gfp_t gfp_mask, enum compact_priority prio,
2659		unsigned int alloc_flags, int highest_zoneidx,
2660		struct page **capture)
2661{
2662	enum compact_result ret;
2663	struct compact_control cc = {
2664		.order = order,
2665		.search_order = order,
2666		.gfp_mask = gfp_mask,
2667		.zone = zone,
2668		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2669					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2670		.alloc_flags = alloc_flags,
2671		.highest_zoneidx = highest_zoneidx,
2672		.direct_compaction = true,
2673		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2674		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2675		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2676	};
2677	struct capture_control capc = {
2678		.cc = &cc,
2679		.page = NULL,
2680	};
2681
2682	/*
2683	 * Make sure the structs are really initialized before we expose the
2684	 * capture control, in case we are interrupted and the interrupt handler
2685	 * frees a page.
2686	 */
2687	barrier();
2688	WRITE_ONCE(current->capture_control, &capc);
2689
2690	ret = compact_zone(&cc, &capc);
2691
2692	/*
2693	 * Make sure we hide capture control first before we read the captured
2694	 * page pointer, otherwise an interrupt could free and capture a page
2695	 * and we would leak it.
2696	 */
2697	WRITE_ONCE(current->capture_control, NULL);
2698	*capture = READ_ONCE(capc.page);
2699	/*
2700	 * Technically, it is also possible that compaction is skipped but
2701	 * the page is still captured out of luck(IRQ came and freed the page).
2702	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2703	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2704	 */
2705	if (*capture)
2706		ret = COMPACT_SUCCESS;
2707
2708	return ret;
2709}
2710
2711/**
2712 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2713 * @gfp_mask: The GFP mask of the current allocation
2714 * @order: The order of the current allocation
2715 * @alloc_flags: The allocation flags of the current allocation
2716 * @ac: The context of current allocation
2717 * @prio: Determines how hard direct compaction should try to succeed
2718 * @capture: Pointer to free page created by compaction will be stored here
2719 *
2720 * This is the main entry point for direct page compaction.
2721 */
2722enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2723		unsigned int alloc_flags, const struct alloc_context *ac,
2724		enum compact_priority prio, struct page **capture)
2725{
2726	struct zoneref *z;
2727	struct zone *zone;
2728	enum compact_result rc = COMPACT_SKIPPED;
2729
2730	if (!gfp_compaction_allowed(gfp_mask))
2731		return COMPACT_SKIPPED;
2732
2733	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2734
2735	/* Compact each zone in the list */
2736	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2737					ac->highest_zoneidx, ac->nodemask) {
2738		enum compact_result status;
2739
 
 
 
 
 
2740		if (prio > MIN_COMPACT_PRIORITY
2741					&& compaction_deferred(zone, order)) {
2742			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2743			continue;
2744		}
2745
2746		status = compact_zone_order(zone, order, gfp_mask, prio,
2747				alloc_flags, ac->highest_zoneidx, capture);
2748		rc = max(status, rc);
2749
2750		/* The allocation should succeed, stop compacting */
2751		if (status == COMPACT_SUCCESS) {
2752			/*
2753			 * We think the allocation will succeed in this zone,
2754			 * but it is not certain, hence the false. The caller
2755			 * will repeat this with true if allocation indeed
2756			 * succeeds in this zone.
2757			 */
2758			compaction_defer_reset(zone, order, false);
2759
2760			break;
2761		}
2762
2763		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2764					status == COMPACT_PARTIAL_SKIPPED))
2765			/*
2766			 * We think that allocation won't succeed in this zone
2767			 * so we defer compaction there. If it ends up
2768			 * succeeding after all, it will be reset.
2769			 */
2770			defer_compaction(zone, order);
2771
2772		/*
2773		 * We might have stopped compacting due to need_resched() in
2774		 * async compaction, or due to a fatal signal detected. In that
2775		 * case do not try further zones
2776		 */
2777		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2778					|| fatal_signal_pending(current))
2779			break;
2780	}
2781
2782	return rc;
2783}
2784
2785/*
2786 * Compact all zones within a node till each zone's fragmentation score
2787 * reaches within proactive compaction thresholds (as determined by the
2788 * proactiveness tunable).
2789 *
2790 * It is possible that the function returns before reaching score targets
2791 * due to various back-off conditions, such as, contention on per-node or
2792 * per-zone locks.
 
 
2793 */
2794static void proactive_compact_node(pg_data_t *pgdat)
2795{
2796	int zoneid;
2797	struct zone *zone;
2798	struct compact_control cc = {
2799		.order = -1,
2800		.mode = MIGRATE_SYNC_LIGHT,
2801		.ignore_skip_hint = true,
2802		.whole_zone = true,
2803		.gfp_mask = GFP_KERNEL,
2804		.proactive_compaction = true,
2805	};
2806
2807	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2808		zone = &pgdat->node_zones[zoneid];
2809		if (!populated_zone(zone))
2810			continue;
2811
 
 
 
2812		cc.zone = zone;
2813
2814		compact_zone(&cc, NULL);
2815
2816		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2817				     cc.total_migrate_scanned);
2818		count_compact_events(KCOMPACTD_FREE_SCANNED,
2819				     cc.total_free_scanned);
 
 
2820	}
2821}
2822
2823/* Compact all zones within a node */
2824static void compact_node(int nid)
2825{
2826	pg_data_t *pgdat = NODE_DATA(nid);
2827	int zoneid;
2828	struct zone *zone;
2829	struct compact_control cc = {
2830		.order = -1,
2831		.mode = MIGRATE_SYNC,
2832		.ignore_skip_hint = true,
2833		.whole_zone = true,
2834		.gfp_mask = GFP_KERNEL,
2835	};
2836
2837
2838	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2839
2840		zone = &pgdat->node_zones[zoneid];
2841		if (!populated_zone(zone))
2842			continue;
2843
2844		cc.zone = zone;
2845
2846		compact_zone(&cc, NULL);
2847	}
2848}
2849
2850/* Compact all nodes in the system */
2851static void compact_nodes(void)
2852{
2853	int nid;
2854
2855	/* Flush pending updates to the LRU lists */
2856	lru_add_drain_all();
2857
2858	for_each_online_node(nid)
2859		compact_node(nid);
 
 
 
 
 
2860}
2861
2862static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2863		void *buffer, size_t *length, loff_t *ppos)
2864{
2865	int rc, nid;
2866
2867	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2868	if (rc)
2869		return rc;
2870
2871	if (write && sysctl_compaction_proactiveness) {
2872		for_each_online_node(nid) {
2873			pg_data_t *pgdat = NODE_DATA(nid);
2874
2875			if (pgdat->proactive_compact_trigger)
2876				continue;
2877
2878			pgdat->proactive_compact_trigger = true;
2879			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2880							     pgdat->nr_zones - 1);
2881			wake_up_interruptible(&pgdat->kcompactd_wait);
2882		}
2883	}
2884
2885	return 0;
2886}
2887
2888/*
2889 * This is the entry point for compacting all nodes via
2890 * /proc/sys/vm/compact_memory
2891 */
2892static int sysctl_compaction_handler(struct ctl_table *table, int write,
2893			void *buffer, size_t *length, loff_t *ppos)
2894{
2895	int ret;
2896
2897	ret = proc_dointvec(table, write, buffer, length, ppos);
2898	if (ret)
2899		return ret;
2900
2901	if (sysctl_compact_memory != 1)
2902		return -EINVAL;
2903
2904	if (write)
2905		compact_nodes();
2906
2907	return 0;
2908}
2909
2910#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2911static ssize_t compact_store(struct device *dev,
2912			     struct device_attribute *attr,
2913			     const char *buf, size_t count)
2914{
2915	int nid = dev->id;
2916
2917	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2918		/* Flush pending updates to the LRU lists */
2919		lru_add_drain_all();
2920
2921		compact_node(nid);
2922	}
2923
2924	return count;
2925}
2926static DEVICE_ATTR_WO(compact);
2927
2928int compaction_register_node(struct node *node)
2929{
2930	return device_create_file(&node->dev, &dev_attr_compact);
2931}
2932
2933void compaction_unregister_node(struct node *node)
2934{
2935	device_remove_file(&node->dev, &dev_attr_compact);
2936}
2937#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2938
2939static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2940{
2941	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2942		pgdat->proactive_compact_trigger;
2943}
2944
2945static bool kcompactd_node_suitable(pg_data_t *pgdat)
2946{
2947	int zoneid;
2948	struct zone *zone;
2949	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2950	enum compact_result ret;
2951
2952	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2953		zone = &pgdat->node_zones[zoneid];
2954
2955		if (!populated_zone(zone))
2956			continue;
2957
2958		ret = compaction_suit_allocation_order(zone,
2959				pgdat->kcompactd_max_order,
2960				highest_zoneidx, ALLOC_WMARK_MIN);
2961		if (ret == COMPACT_CONTINUE)
2962			return true;
2963	}
2964
2965	return false;
2966}
2967
2968static void kcompactd_do_work(pg_data_t *pgdat)
2969{
2970	/*
2971	 * With no special task, compact all zones so that a page of requested
2972	 * order is allocatable.
2973	 */
2974	int zoneid;
2975	struct zone *zone;
2976	struct compact_control cc = {
2977		.order = pgdat->kcompactd_max_order,
2978		.search_order = pgdat->kcompactd_max_order,
2979		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2980		.mode = MIGRATE_SYNC_LIGHT,
2981		.ignore_skip_hint = false,
2982		.gfp_mask = GFP_KERNEL,
2983	};
2984	enum compact_result ret;
2985
2986	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2987							cc.highest_zoneidx);
2988	count_compact_event(KCOMPACTD_WAKE);
2989
2990	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2991		int status;
2992
2993		zone = &pgdat->node_zones[zoneid];
2994		if (!populated_zone(zone))
2995			continue;
2996
2997		if (compaction_deferred(zone, cc.order))
2998			continue;
2999
3000		ret = compaction_suit_allocation_order(zone,
3001				cc.order, zoneid, ALLOC_WMARK_MIN);
3002		if (ret != COMPACT_CONTINUE)
3003			continue;
3004
3005		if (kthread_should_stop())
3006			return;
3007
3008		cc.zone = zone;
3009		status = compact_zone(&cc, NULL);
3010
3011		if (status == COMPACT_SUCCESS) {
3012			compaction_defer_reset(zone, cc.order, false);
3013		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3014			/*
3015			 * Buddy pages may become stranded on pcps that could
3016			 * otherwise coalesce on the zone's free area for
3017			 * order >= cc.order.  This is ratelimited by the
3018			 * upcoming deferral.
3019			 */
3020			drain_all_pages(zone);
3021
3022			/*
3023			 * We use sync migration mode here, so we defer like
3024			 * sync direct compaction does.
3025			 */
3026			defer_compaction(zone, cc.order);
3027		}
3028
3029		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3030				     cc.total_migrate_scanned);
3031		count_compact_events(KCOMPACTD_FREE_SCANNED,
3032				     cc.total_free_scanned);
3033	}
3034
3035	/*
3036	 * Regardless of success, we are done until woken up next. But remember
3037	 * the requested order/highest_zoneidx in case it was higher/tighter
3038	 * than our current ones
3039	 */
3040	if (pgdat->kcompactd_max_order <= cc.order)
3041		pgdat->kcompactd_max_order = 0;
3042	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3043		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3044}
3045
3046void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3047{
3048	if (!order)
3049		return;
3050
3051	if (pgdat->kcompactd_max_order < order)
3052		pgdat->kcompactd_max_order = order;
3053
3054	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3055		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3056
3057	/*
3058	 * Pairs with implicit barrier in wait_event_freezable()
3059	 * such that wakeups are not missed.
3060	 */
3061	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3062		return;
3063
3064	if (!kcompactd_node_suitable(pgdat))
3065		return;
3066
3067	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3068							highest_zoneidx);
3069	wake_up_interruptible(&pgdat->kcompactd_wait);
3070}
3071
3072/*
3073 * The background compaction daemon, started as a kernel thread
3074 * from the init process.
3075 */
3076static int kcompactd(void *p)
3077{
3078	pg_data_t *pgdat = (pg_data_t *)p;
3079	struct task_struct *tsk = current;
3080	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3081	long timeout = default_timeout;
3082
3083	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3084
3085	if (!cpumask_empty(cpumask))
3086		set_cpus_allowed_ptr(tsk, cpumask);
3087
 
3088	set_freezable();
3089
3090	pgdat->kcompactd_max_order = 0;
3091	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3092
3093	while (!kthread_should_stop()) {
3094		unsigned long pflags;
3095
3096		/*
3097		 * Avoid the unnecessary wakeup for proactive compaction
3098		 * when it is disabled.
3099		 */
3100		if (!sysctl_compaction_proactiveness)
3101			timeout = MAX_SCHEDULE_TIMEOUT;
3102		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3103		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3104			kcompactd_work_requested(pgdat), timeout) &&
3105			!pgdat->proactive_compact_trigger) {
3106
3107			psi_memstall_enter(&pflags);
3108			kcompactd_do_work(pgdat);
3109			psi_memstall_leave(&pflags);
3110			/*
3111			 * Reset the timeout value. The defer timeout from
3112			 * proactive compaction is lost here but that is fine
3113			 * as the condition of the zone changing substantionally
3114			 * then carrying on with the previous defer interval is
3115			 * not useful.
3116			 */
3117			timeout = default_timeout;
3118			continue;
3119		}
3120
3121		/*
3122		 * Start the proactive work with default timeout. Based
3123		 * on the fragmentation score, this timeout is updated.
3124		 */
3125		timeout = default_timeout;
3126		if (should_proactive_compact_node(pgdat)) {
3127			unsigned int prev_score, score;
3128
3129			prev_score = fragmentation_score_node(pgdat);
3130			proactive_compact_node(pgdat);
3131			score = fragmentation_score_node(pgdat);
3132			/*
3133			 * Defer proactive compaction if the fragmentation
3134			 * score did not go down i.e. no progress made.
3135			 */
3136			if (unlikely(score >= prev_score))
3137				timeout =
3138				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3139		}
3140		if (unlikely(pgdat->proactive_compact_trigger))
3141			pgdat->proactive_compact_trigger = false;
3142	}
3143
 
 
3144	return 0;
3145}
3146
3147/*
3148 * This kcompactd start function will be called by init and node-hot-add.
3149 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3150 */
3151void __meminit kcompactd_run(int nid)
3152{
3153	pg_data_t *pgdat = NODE_DATA(nid);
3154
3155	if (pgdat->kcompactd)
3156		return;
3157
3158	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3159	if (IS_ERR(pgdat->kcompactd)) {
3160		pr_err("Failed to start kcompactd on node %d\n", nid);
3161		pgdat->kcompactd = NULL;
3162	}
3163}
3164
3165/*
3166 * Called by memory hotplug when all memory in a node is offlined. Caller must
3167 * be holding mem_hotplug_begin/done().
3168 */
3169void __meminit kcompactd_stop(int nid)
3170{
3171	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3172
3173	if (kcompactd) {
3174		kthread_stop(kcompactd);
3175		NODE_DATA(nid)->kcompactd = NULL;
3176	}
3177}
3178
3179/*
3180 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3181 * not required for correctness. So if the last cpu in a node goes
3182 * away, we get changed to run anywhere: as the first one comes back,
3183 * restore their cpu bindings.
3184 */
3185static int kcompactd_cpu_online(unsigned int cpu)
3186{
3187	int nid;
3188
3189	for_each_node_state(nid, N_MEMORY) {
3190		pg_data_t *pgdat = NODE_DATA(nid);
3191		const struct cpumask *mask;
3192
3193		mask = cpumask_of_node(pgdat->node_id);
3194
3195		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3196			/* One of our CPUs online: restore mask */
3197			if (pgdat->kcompactd)
3198				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3199	}
3200	return 0;
3201}
3202
3203static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3204		int write, void *buffer, size_t *lenp, loff_t *ppos)
3205{
3206	int ret, old;
3207
3208	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3209		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3210
3211	old = *(int *)table->data;
3212	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3213	if (ret)
3214		return ret;
3215	if (old != *(int *)table->data)
3216		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3217			     table->procname, current->comm,
3218			     task_pid_nr(current));
3219	return ret;
3220}
3221
3222static struct ctl_table vm_compaction[] = {
3223	{
3224		.procname	= "compact_memory",
3225		.data		= &sysctl_compact_memory,
3226		.maxlen		= sizeof(int),
3227		.mode		= 0200,
3228		.proc_handler	= sysctl_compaction_handler,
3229	},
3230	{
3231		.procname	= "compaction_proactiveness",
3232		.data		= &sysctl_compaction_proactiveness,
3233		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3234		.mode		= 0644,
3235		.proc_handler	= compaction_proactiveness_sysctl_handler,
3236		.extra1		= SYSCTL_ZERO,
3237		.extra2		= SYSCTL_ONE_HUNDRED,
3238	},
3239	{
3240		.procname	= "extfrag_threshold",
3241		.data		= &sysctl_extfrag_threshold,
3242		.maxlen		= sizeof(int),
3243		.mode		= 0644,
3244		.proc_handler	= proc_dointvec_minmax,
3245		.extra1		= SYSCTL_ZERO,
3246		.extra2		= SYSCTL_ONE_THOUSAND,
3247	},
3248	{
3249		.procname	= "compact_unevictable_allowed",
3250		.data		= &sysctl_compact_unevictable_allowed,
3251		.maxlen		= sizeof(int),
3252		.mode		= 0644,
3253		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3254		.extra1		= SYSCTL_ZERO,
3255		.extra2		= SYSCTL_ONE,
3256	},
3257	{ }
3258};
3259
3260static int __init kcompactd_init(void)
3261{
3262	int nid;
3263	int ret;
3264
3265	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3266					"mm/compaction:online",
3267					kcompactd_cpu_online, NULL);
3268	if (ret < 0) {
3269		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3270		return ret;
3271	}
3272
3273	for_each_node_state(nid, N_MEMORY)
3274		kcompactd_run(nid);
3275	register_sysctl_init("vm", vm_compaction);
3276	return 0;
3277}
3278subsys_initcall(kcompactd_init)
3279
3280#endif /* CONFIG_COMPACTION */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include <linux/cpuset.h>
  27#include "internal.h"
  28
  29#ifdef CONFIG_COMPACTION
  30/*
  31 * Fragmentation score check interval for proactive compaction purposes.
  32 */
  33#define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
  34
  35static inline void count_compact_event(enum vm_event_item item)
  36{
  37	count_vm_event(item);
  38}
  39
  40static inline void count_compact_events(enum vm_event_item item, long delta)
  41{
  42	count_vm_events(item, delta);
  43}
  44
  45/*
  46 * order == -1 is expected when compacting proactively via
  47 * 1. /proc/sys/vm/compact_memory
  48 * 2. /sys/devices/system/node/nodex/compact
  49 * 3. /proc/sys/vm/compaction_proactiveness
  50 */
  51static inline bool is_via_compact_memory(int order)
  52{
  53	return order == -1;
  54}
  55
  56#else
  57#define count_compact_event(item) do { } while (0)
  58#define count_compact_events(item, delta) do { } while (0)
  59static inline bool is_via_compact_memory(int order) { return false; }
  60#endif
  61
  62#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  63
  64#define CREATE_TRACE_POINTS
  65#include <trace/events/compaction.h>
  66
  67#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  68#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
  69
  70/*
  71 * Page order with-respect-to which proactive compaction
  72 * calculates external fragmentation, which is used as
  73 * the "fragmentation score" of a node/zone.
  74 */
  75#if defined CONFIG_TRANSPARENT_HUGEPAGE
  76#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
  77#elif defined CONFIG_HUGETLBFS
  78#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
  79#else
  80#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  81#endif
  82
  83static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags)
  84{
  85	post_alloc_hook(page, order, __GFP_MOVABLE);
  86	return page;
 
 
 
 
 
 
 
 
 
 
  87}
  88#define mark_allocated(...)	alloc_hooks(mark_allocated_noprof(__VA_ARGS__))
  89
  90static unsigned long release_free_list(struct list_head *freepages)
  91{
  92	int order;
  93	unsigned long high_pfn = 0;
 
 
 
 
  94
  95	for (order = 0; order < NR_PAGE_ORDERS; order++) {
  96		struct page *page, *next;
  97
  98		list_for_each_entry_safe(page, next, &freepages[order], lru) {
  99			unsigned long pfn = page_to_pfn(page);
 
 100
 101			list_del(&page->lru);
 102			/*
 103			 * Convert free pages into post allocation pages, so
 104			 * that we can free them via __free_page.
 105			 */
 106			mark_allocated(page, order, __GFP_MOVABLE);
 107			__free_pages(page, order);
 108			if (pfn > high_pfn)
 109				high_pfn = pfn;
 110		}
 111	}
 112	return high_pfn;
 
 113}
 114
 115#ifdef CONFIG_COMPACTION
 116bool PageMovable(struct page *page)
 117{
 118	const struct movable_operations *mops;
 119
 120	VM_BUG_ON_PAGE(!PageLocked(page), page);
 121	if (!__PageMovable(page))
 122		return false;
 123
 124	mops = page_movable_ops(page);
 125	if (mops)
 126		return true;
 127
 128	return false;
 129}
 130
 131void __SetPageMovable(struct page *page, const struct movable_operations *mops)
 132{
 133	VM_BUG_ON_PAGE(!PageLocked(page), page);
 134	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
 135	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
 136}
 137EXPORT_SYMBOL(__SetPageMovable);
 138
 139void __ClearPageMovable(struct page *page)
 140{
 141	VM_BUG_ON_PAGE(!PageMovable(page), page);
 142	/*
 143	 * This page still has the type of a movable page, but it's
 144	 * actually not movable any more.
 145	 */
 146	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
 147}
 148EXPORT_SYMBOL(__ClearPageMovable);
 149
 150/* Do not skip compaction more than 64 times */
 151#define COMPACT_MAX_DEFER_SHIFT 6
 152
 153/*
 154 * Compaction is deferred when compaction fails to result in a page
 155 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 156 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 157 */
 158static void defer_compaction(struct zone *zone, int order)
 159{
 160	zone->compact_considered = 0;
 161	zone->compact_defer_shift++;
 162
 163	if (order < zone->compact_order_failed)
 164		zone->compact_order_failed = order;
 165
 166	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 167		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 168
 169	trace_mm_compaction_defer_compaction(zone, order);
 170}
 171
 172/* Returns true if compaction should be skipped this time */
 173static bool compaction_deferred(struct zone *zone, int order)
 174{
 175	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 176
 177	if (order < zone->compact_order_failed)
 178		return false;
 179
 180	/* Avoid possible overflow */
 181	if (++zone->compact_considered >= defer_limit) {
 182		zone->compact_considered = defer_limit;
 183		return false;
 184	}
 185
 186	trace_mm_compaction_deferred(zone, order);
 187
 188	return true;
 189}
 190
 191/*
 192 * Update defer tracking counters after successful compaction of given order,
 193 * which means an allocation either succeeded (alloc_success == true) or is
 194 * expected to succeed.
 195 */
 196void compaction_defer_reset(struct zone *zone, int order,
 197		bool alloc_success)
 198{
 199	if (alloc_success) {
 200		zone->compact_considered = 0;
 201		zone->compact_defer_shift = 0;
 202	}
 203	if (order >= zone->compact_order_failed)
 204		zone->compact_order_failed = order + 1;
 205
 206	trace_mm_compaction_defer_reset(zone, order);
 207}
 208
 209/* Returns true if restarting compaction after many failures */
 210static bool compaction_restarting(struct zone *zone, int order)
 211{
 212	if (order < zone->compact_order_failed)
 213		return false;
 214
 215	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 216		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 217}
 218
 219/* Returns true if the pageblock should be scanned for pages to isolate. */
 220static inline bool isolation_suitable(struct compact_control *cc,
 221					struct page *page)
 222{
 223	if (cc->ignore_skip_hint)
 224		return true;
 225
 226	return !get_pageblock_skip(page);
 227}
 228
 229static void reset_cached_positions(struct zone *zone)
 230{
 231	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 232	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 233	zone->compact_cached_free_pfn =
 234				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 235}
 236
 237#ifdef CONFIG_SPARSEMEM
 238/*
 239 * If the PFN falls into an offline section, return the start PFN of the
 240 * next online section. If the PFN falls into an online section or if
 241 * there is no next online section, return 0.
 242 */
 243static unsigned long skip_offline_sections(unsigned long start_pfn)
 244{
 245	unsigned long start_nr = pfn_to_section_nr(start_pfn);
 246
 247	if (online_section_nr(start_nr))
 248		return 0;
 249
 250	while (++start_nr <= __highest_present_section_nr) {
 251		if (online_section_nr(start_nr))
 252			return section_nr_to_pfn(start_nr);
 253	}
 254
 255	return 0;
 256}
 257
 258/*
 259 * If the PFN falls into an offline section, return the end PFN of the
 260 * next online section in reverse. If the PFN falls into an online section
 261 * or if there is no next online section in reverse, return 0.
 262 */
 263static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
 264{
 265	unsigned long start_nr = pfn_to_section_nr(start_pfn);
 266
 267	if (!start_nr || online_section_nr(start_nr))
 268		return 0;
 269
 270	while (start_nr-- > 0) {
 271		if (online_section_nr(start_nr))
 272			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
 273	}
 274
 275	return 0;
 276}
 277#else
 278static unsigned long skip_offline_sections(unsigned long start_pfn)
 279{
 280	return 0;
 281}
 282
 283static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
 284{
 285	return 0;
 286}
 287#endif
 288
 289/*
 290 * Compound pages of >= pageblock_order should consistently be skipped until
 291 * released. It is always pointless to compact pages of such order (if they are
 292 * migratable), and the pageblocks they occupy cannot contain any free pages.
 293 */
 294static bool pageblock_skip_persistent(struct page *page)
 295{
 296	if (!PageCompound(page))
 297		return false;
 298
 299	page = compound_head(page);
 300
 301	if (compound_order(page) >= pageblock_order)
 302		return true;
 303
 304	return false;
 305}
 306
 307static bool
 308__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 309							bool check_target)
 310{
 311	struct page *page = pfn_to_online_page(pfn);
 312	struct page *block_page;
 313	struct page *end_page;
 314	unsigned long block_pfn;
 315
 316	if (!page)
 317		return false;
 318	if (zone != page_zone(page))
 319		return false;
 320	if (pageblock_skip_persistent(page))
 321		return false;
 322
 323	/*
 324	 * If skip is already cleared do no further checking once the
 325	 * restart points have been set.
 326	 */
 327	if (check_source && check_target && !get_pageblock_skip(page))
 328		return true;
 329
 330	/*
 331	 * If clearing skip for the target scanner, do not select a
 332	 * non-movable pageblock as the starting point.
 333	 */
 334	if (!check_source && check_target &&
 335	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 336		return false;
 337
 338	/* Ensure the start of the pageblock or zone is online and valid */
 339	block_pfn = pageblock_start_pfn(pfn);
 340	block_pfn = max(block_pfn, zone->zone_start_pfn);
 341	block_page = pfn_to_online_page(block_pfn);
 342	if (block_page) {
 343		page = block_page;
 344		pfn = block_pfn;
 345	}
 346
 347	/* Ensure the end of the pageblock or zone is online and valid */
 348	block_pfn = pageblock_end_pfn(pfn) - 1;
 349	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 350	end_page = pfn_to_online_page(block_pfn);
 351	if (!end_page)
 352		return false;
 353
 354	/*
 355	 * Only clear the hint if a sample indicates there is either a
 356	 * free page or an LRU page in the block. One or other condition
 357	 * is necessary for the block to be a migration source/target.
 358	 */
 359	do {
 360		if (check_source && PageLRU(page)) {
 361			clear_pageblock_skip(page);
 362			return true;
 363		}
 364
 365		if (check_target && PageBuddy(page)) {
 366			clear_pageblock_skip(page);
 367			return true;
 368		}
 369
 370		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 371	} while (page <= end_page);
 372
 373	return false;
 374}
 375
 376/*
 377 * This function is called to clear all cached information on pageblocks that
 378 * should be skipped for page isolation when the migrate and free page scanner
 379 * meet.
 380 */
 381static void __reset_isolation_suitable(struct zone *zone)
 382{
 383	unsigned long migrate_pfn = zone->zone_start_pfn;
 384	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 385	unsigned long reset_migrate = free_pfn;
 386	unsigned long reset_free = migrate_pfn;
 387	bool source_set = false;
 388	bool free_set = false;
 389
 390	/* Only flush if a full compaction finished recently */
 391	if (!zone->compact_blockskip_flush)
 392		return;
 393
 394	zone->compact_blockskip_flush = false;
 395
 396	/*
 397	 * Walk the zone and update pageblock skip information. Source looks
 398	 * for PageLRU while target looks for PageBuddy. When the scanner
 399	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 400	 * is suitable as both source and target.
 401	 */
 402	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 403					free_pfn -= pageblock_nr_pages) {
 404		cond_resched();
 405
 406		/* Update the migrate PFN */
 407		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 408		    migrate_pfn < reset_migrate) {
 409			source_set = true;
 410			reset_migrate = migrate_pfn;
 411			zone->compact_init_migrate_pfn = reset_migrate;
 412			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 413			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 414		}
 415
 416		/* Update the free PFN */
 417		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 418		    free_pfn > reset_free) {
 419			free_set = true;
 420			reset_free = free_pfn;
 421			zone->compact_init_free_pfn = reset_free;
 422			zone->compact_cached_free_pfn = reset_free;
 423		}
 424	}
 425
 426	/* Leave no distance if no suitable block was reset */
 427	if (reset_migrate >= reset_free) {
 428		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 429		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 430		zone->compact_cached_free_pfn = free_pfn;
 431	}
 432}
 433
 434void reset_isolation_suitable(pg_data_t *pgdat)
 435{
 436	int zoneid;
 437
 438	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 439		struct zone *zone = &pgdat->node_zones[zoneid];
 440		if (!populated_zone(zone))
 441			continue;
 442
 443		__reset_isolation_suitable(zone);
 444	}
 445}
 446
 447/*
 448 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 449 * locks are not required for read/writers. Returns true if it was already set.
 450 */
 451static bool test_and_set_skip(struct compact_control *cc, struct page *page)
 452{
 453	bool skip;
 454
 455	/* Do not update if skip hint is being ignored */
 456	if (cc->ignore_skip_hint)
 457		return false;
 458
 459	skip = get_pageblock_skip(page);
 460	if (!skip && !cc->no_set_skip_hint)
 461		set_pageblock_skip(page);
 462
 463	return skip;
 464}
 465
 466static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 467{
 468	struct zone *zone = cc->zone;
 469
 470	/* Set for isolation rather than compaction */
 471	if (cc->no_set_skip_hint)
 472		return;
 473
 474	pfn = pageblock_end_pfn(pfn);
 475
 476	/* Update where async and sync compaction should restart */
 477	if (pfn > zone->compact_cached_migrate_pfn[0])
 478		zone->compact_cached_migrate_pfn[0] = pfn;
 479	if (cc->mode != MIGRATE_ASYNC &&
 480	    pfn > zone->compact_cached_migrate_pfn[1])
 481		zone->compact_cached_migrate_pfn[1] = pfn;
 482}
 483
 484/*
 485 * If no pages were isolated then mark this pageblock to be skipped in the
 486 * future. The information is later cleared by __reset_isolation_suitable().
 487 */
 488static void update_pageblock_skip(struct compact_control *cc,
 489			struct page *page, unsigned long pfn)
 490{
 491	struct zone *zone = cc->zone;
 492
 493	if (cc->no_set_skip_hint)
 494		return;
 495
 496	set_pageblock_skip(page);
 497
 498	if (pfn < zone->compact_cached_free_pfn)
 499		zone->compact_cached_free_pfn = pfn;
 500}
 501#else
 502static inline bool isolation_suitable(struct compact_control *cc,
 503					struct page *page)
 504{
 505	return true;
 506}
 507
 508static inline bool pageblock_skip_persistent(struct page *page)
 509{
 510	return false;
 511}
 512
 513static inline void update_pageblock_skip(struct compact_control *cc,
 514			struct page *page, unsigned long pfn)
 515{
 516}
 517
 518static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 519{
 520}
 521
 522static bool test_and_set_skip(struct compact_control *cc, struct page *page)
 523{
 524	return false;
 525}
 526#endif /* CONFIG_COMPACTION */
 527
 528/*
 529 * Compaction requires the taking of some coarse locks that are potentially
 530 * very heavily contended. For async compaction, trylock and record if the
 531 * lock is contended. The lock will still be acquired but compaction will
 532 * abort when the current block is finished regardless of success rate.
 533 * Sync compaction acquires the lock.
 534 *
 535 * Always returns true which makes it easier to track lock state in callers.
 536 */
 537static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 538						struct compact_control *cc)
 539	__acquires(lock)
 540{
 541	/* Track if the lock is contended in async mode */
 542	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 543		if (spin_trylock_irqsave(lock, *flags))
 544			return true;
 545
 546		cc->contended = true;
 547	}
 548
 549	spin_lock_irqsave(lock, *flags);
 550	return true;
 551}
 552
 553/*
 554 * Compaction requires the taking of some coarse locks that are potentially
 555 * very heavily contended. The lock should be periodically unlocked to avoid
 556 * having disabled IRQs for a long time, even when there is nobody waiting on
 557 * the lock. It might also be that allowing the IRQs will result in
 558 * need_resched() becoming true. If scheduling is needed, compaction schedules.
 559 * Either compaction type will also abort if a fatal signal is pending.
 560 * In either case if the lock was locked, it is dropped and not regained.
 561 *
 562 * Returns true if compaction should abort due to fatal signal pending.
 563 * Returns false when compaction can continue.
 564 */
 565static bool compact_unlock_should_abort(spinlock_t *lock,
 566		unsigned long flags, bool *locked, struct compact_control *cc)
 567{
 568	if (*locked) {
 569		spin_unlock_irqrestore(lock, flags);
 570		*locked = false;
 571	}
 572
 573	if (fatal_signal_pending(current)) {
 574		cc->contended = true;
 575		return true;
 576	}
 577
 578	cond_resched();
 579
 580	return false;
 581}
 582
 583/*
 584 * Isolate free pages onto a private freelist. If @strict is true, will abort
 585 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 586 * (even though it may still end up isolating some pages).
 587 */
 588static unsigned long isolate_freepages_block(struct compact_control *cc,
 589				unsigned long *start_pfn,
 590				unsigned long end_pfn,
 591				struct list_head *freelist,
 592				unsigned int stride,
 593				bool strict)
 594{
 595	int nr_scanned = 0, total_isolated = 0;
 596	struct page *page;
 597	unsigned long flags = 0;
 598	bool locked = false;
 599	unsigned long blockpfn = *start_pfn;
 600	unsigned int order;
 601
 602	/* Strict mode is for isolation, speed is secondary */
 603	if (strict)
 604		stride = 1;
 605
 606	page = pfn_to_page(blockpfn);
 607
 608	/* Isolate free pages. */
 609	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
 610		int isolated;
 611
 612		/*
 613		 * Periodically drop the lock (if held) regardless of its
 614		 * contention, to give chance to IRQs. Abort if fatal signal
 615		 * pending.
 616		 */
 617		if (!(blockpfn % COMPACT_CLUSTER_MAX)
 618		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 619								&locked, cc))
 620			break;
 621
 622		nr_scanned++;
 623
 624		/*
 625		 * For compound pages such as THP and hugetlbfs, we can save
 626		 * potentially a lot of iterations if we skip them at once.
 627		 * The check is racy, but we can consider only valid values
 628		 * and the only danger is skipping too much.
 629		 */
 630		if (PageCompound(page)) {
 631			const unsigned int order = compound_order(page);
 632
 633			if ((order <= MAX_PAGE_ORDER) &&
 634			    (blockpfn + (1UL << order) <= end_pfn)) {
 635				blockpfn += (1UL << order) - 1;
 636				page += (1UL << order) - 1;
 637				nr_scanned += (1UL << order) - 1;
 638			}
 639
 640			goto isolate_fail;
 641		}
 642
 643		if (!PageBuddy(page))
 644			goto isolate_fail;
 645
 646		/* If we already hold the lock, we can skip some rechecking. */
 647		if (!locked) {
 648			locked = compact_lock_irqsave(&cc->zone->lock,
 649								&flags, cc);
 650
 651			/* Recheck this is a buddy page under lock */
 652			if (!PageBuddy(page))
 653				goto isolate_fail;
 654		}
 655
 656		/* Found a free page, will break it into order-0 pages */
 657		order = buddy_order(page);
 658		isolated = __isolate_free_page(page, order);
 659		if (!isolated)
 660			break;
 661		set_page_private(page, order);
 662
 663		nr_scanned += isolated - 1;
 664		total_isolated += isolated;
 665		cc->nr_freepages += isolated;
 666		list_add_tail(&page->lru, &freelist[order]);
 667
 668		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 669			blockpfn += isolated;
 670			break;
 671		}
 672		/* Advance to the end of split page */
 673		blockpfn += isolated - 1;
 674		page += isolated - 1;
 675		continue;
 676
 677isolate_fail:
 678		if (strict)
 679			break;
 680
 681	}
 682
 683	if (locked)
 684		spin_unlock_irqrestore(&cc->zone->lock, flags);
 685
 686	/*
 687	 * Be careful to not go outside of the pageblock.
 688	 */
 689	if (unlikely(blockpfn > end_pfn))
 690		blockpfn = end_pfn;
 691
 692	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 693					nr_scanned, total_isolated);
 694
 695	/* Record how far we have got within the block */
 696	*start_pfn = blockpfn;
 697
 698	/*
 699	 * If strict isolation is requested by CMA then check that all the
 700	 * pages requested were isolated. If there were any failures, 0 is
 701	 * returned and CMA will fail.
 702	 */
 703	if (strict && blockpfn < end_pfn)
 704		total_isolated = 0;
 705
 706	cc->total_free_scanned += nr_scanned;
 707	if (total_isolated)
 708		count_compact_events(COMPACTISOLATED, total_isolated);
 709	return total_isolated;
 710}
 711
 712/**
 713 * isolate_freepages_range() - isolate free pages.
 714 * @cc:        Compaction control structure.
 715 * @start_pfn: The first PFN to start isolating.
 716 * @end_pfn:   The one-past-last PFN.
 717 *
 718 * Non-free pages, invalid PFNs, or zone boundaries within the
 719 * [start_pfn, end_pfn) range are considered errors, cause function to
 720 * undo its actions and return zero. cc->freepages[] are empty.
 721 *
 722 * Otherwise, function returns one-past-the-last PFN of isolated page
 723 * (which may be greater then end_pfn if end fell in a middle of
 724 * a free page). cc->freepages[] contain free pages isolated.
 725 */
 726unsigned long
 727isolate_freepages_range(struct compact_control *cc,
 728			unsigned long start_pfn, unsigned long end_pfn)
 729{
 730	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 731	int order;
 732
 733	for (order = 0; order < NR_PAGE_ORDERS; order++)
 734		INIT_LIST_HEAD(&cc->freepages[order]);
 735
 736	pfn = start_pfn;
 737	block_start_pfn = pageblock_start_pfn(pfn);
 738	if (block_start_pfn < cc->zone->zone_start_pfn)
 739		block_start_pfn = cc->zone->zone_start_pfn;
 740	block_end_pfn = pageblock_end_pfn(pfn);
 741
 742	for (; pfn < end_pfn; pfn += isolated,
 743				block_start_pfn = block_end_pfn,
 744				block_end_pfn += pageblock_nr_pages) {
 745		/* Protect pfn from changing by isolate_freepages_block */
 746		unsigned long isolate_start_pfn = pfn;
 747
 748		/*
 749		 * pfn could pass the block_end_pfn if isolated freepage
 750		 * is more than pageblock order. In this case, we adjust
 751		 * scanning range to right one.
 752		 */
 753		if (pfn >= block_end_pfn) {
 754			block_start_pfn = pageblock_start_pfn(pfn);
 755			block_end_pfn = pageblock_end_pfn(pfn);
 756		}
 757
 758		block_end_pfn = min(block_end_pfn, end_pfn);
 759
 760		if (!pageblock_pfn_to_page(block_start_pfn,
 761					block_end_pfn, cc->zone))
 762			break;
 763
 764		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 765					block_end_pfn, cc->freepages, 0, true);
 766
 767		/*
 768		 * In strict mode, isolate_freepages_block() returns 0 if
 769		 * there are any holes in the block (ie. invalid PFNs or
 770		 * non-free pages).
 771		 */
 772		if (!isolated)
 773			break;
 774
 775		/*
 776		 * If we managed to isolate pages, it is always (1 << n) *
 777		 * pageblock_nr_pages for some non-negative n.  (Max order
 778		 * page may span two pageblocks).
 779		 */
 780	}
 781
 
 
 
 782	if (pfn < end_pfn) {
 783		/* Loop terminated early, cleanup. */
 784		release_free_list(cc->freepages);
 785		return 0;
 786	}
 787
 788	/* We don't use freelists for anything. */
 789	return pfn;
 790}
 791
 792/* Similar to reclaim, but different enough that they don't share logic */
 793static bool too_many_isolated(struct compact_control *cc)
 794{
 795	pg_data_t *pgdat = cc->zone->zone_pgdat;
 796	bool too_many;
 797
 798	unsigned long active, inactive, isolated;
 799
 800	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 801			node_page_state(pgdat, NR_INACTIVE_ANON);
 802	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 803			node_page_state(pgdat, NR_ACTIVE_ANON);
 804	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 805			node_page_state(pgdat, NR_ISOLATED_ANON);
 806
 807	/*
 808	 * Allow GFP_NOFS to isolate past the limit set for regular
 809	 * compaction runs. This prevents an ABBA deadlock when other
 810	 * compactors have already isolated to the limit, but are
 811	 * blocked on filesystem locks held by the GFP_NOFS thread.
 812	 */
 813	if (cc->gfp_mask & __GFP_FS) {
 814		inactive >>= 3;
 815		active >>= 3;
 816	}
 817
 818	too_many = isolated > (inactive + active) / 2;
 819	if (!too_many)
 820		wake_throttle_isolated(pgdat);
 821
 822	return too_many;
 823}
 824
 825/**
 826 * skip_isolation_on_order() - determine when to skip folio isolation based on
 827 *			       folio order and compaction target order
 828 * @order:		to-be-isolated folio order
 829 * @target_order:	compaction target order
 830 *
 831 * This avoids unnecessary folio isolations during compaction.
 832 */
 833static bool skip_isolation_on_order(int order, int target_order)
 834{
 835	/*
 836	 * Unless we are performing global compaction (i.e.,
 837	 * is_via_compact_memory), skip any folios that are larger than the
 838	 * target order: we wouldn't be here if we'd have a free folio with
 839	 * the desired target_order, so migrating this folio would likely fail
 840	 * later.
 841	 */
 842	if (!is_via_compact_memory(target_order) && order >= target_order)
 843		return true;
 844	/*
 845	 * We limit memory compaction to pageblocks and won't try
 846	 * creating free blocks of memory that are larger than that.
 847	 */
 848	return order >= pageblock_order;
 849}
 850
 851/**
 852 * isolate_migratepages_block() - isolate all migrate-able pages within
 853 *				  a single pageblock
 854 * @cc:		Compaction control structure.
 855 * @low_pfn:	The first PFN to isolate
 856 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 857 * @mode:	Isolation mode to be used.
 858 *
 859 * Isolate all pages that can be migrated from the range specified by
 860 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 861 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
 862 * -ENOMEM in case we could not allocate a page, or 0.
 863 * cc->migrate_pfn will contain the next pfn to scan.
 864 *
 865 * The pages are isolated on cc->migratepages list (not required to be empty),
 866 * and cc->nr_migratepages is updated accordingly.
 867 */
 868static int
 869isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 870			unsigned long end_pfn, isolate_mode_t mode)
 871{
 872	pg_data_t *pgdat = cc->zone->zone_pgdat;
 873	unsigned long nr_scanned = 0, nr_isolated = 0;
 874	struct lruvec *lruvec;
 875	unsigned long flags = 0;
 876	struct lruvec *locked = NULL;
 877	struct folio *folio = NULL;
 878	struct page *page = NULL, *valid_page = NULL;
 879	struct address_space *mapping;
 880	unsigned long start_pfn = low_pfn;
 881	bool skip_on_failure = false;
 882	unsigned long next_skip_pfn = 0;
 883	bool skip_updated = false;
 884	int ret = 0;
 885
 886	cc->migrate_pfn = low_pfn;
 887
 888	/*
 889	 * Ensure that there are not too many pages isolated from the LRU
 890	 * list by either parallel reclaimers or compaction. If there are,
 891	 * delay for some time until fewer pages are isolated
 892	 */
 893	while (unlikely(too_many_isolated(cc))) {
 894		/* stop isolation if there are still pages not migrated */
 895		if (cc->nr_migratepages)
 896			return -EAGAIN;
 897
 898		/* async migration should just abort */
 899		if (cc->mode == MIGRATE_ASYNC)
 900			return -EAGAIN;
 901
 902		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
 903
 904		if (fatal_signal_pending(current))
 905			return -EINTR;
 906	}
 907
 908	cond_resched();
 909
 910	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 911		skip_on_failure = true;
 912		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 913	}
 914
 915	/* Time to isolate some pages for migration */
 916	for (; low_pfn < end_pfn; low_pfn++) {
 917		bool is_dirty, is_unevictable;
 918
 919		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 920			/*
 921			 * We have isolated all migration candidates in the
 922			 * previous order-aligned block, and did not skip it due
 923			 * to failure. We should migrate the pages now and
 924			 * hopefully succeed compaction.
 925			 */
 926			if (nr_isolated)
 927				break;
 928
 929			/*
 930			 * We failed to isolate in the previous order-aligned
 931			 * block. Set the new boundary to the end of the
 932			 * current block. Note we can't simply increase
 933			 * next_skip_pfn by 1 << order, as low_pfn might have
 934			 * been incremented by a higher number due to skipping
 935			 * a compound or a high-order buddy page in the
 936			 * previous loop iteration.
 937			 */
 938			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 939		}
 940
 941		/*
 942		 * Periodically drop the lock (if held) regardless of its
 943		 * contention, to give chance to IRQs. Abort completely if
 944		 * a fatal signal is pending.
 945		 */
 946		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
 947			if (locked) {
 948				unlock_page_lruvec_irqrestore(locked, flags);
 949				locked = NULL;
 950			}
 951
 952			if (fatal_signal_pending(current)) {
 953				cc->contended = true;
 954				ret = -EINTR;
 955
 956				goto fatal_pending;
 957			}
 958
 959			cond_resched();
 960		}
 961
 962		nr_scanned++;
 963
 964		page = pfn_to_page(low_pfn);
 965
 966		/*
 967		 * Check if the pageblock has already been marked skipped.
 968		 * Only the first PFN is checked as the caller isolates
 969		 * COMPACT_CLUSTER_MAX at a time so the second call must
 970		 * not falsely conclude that the block should be skipped.
 971		 */
 972		if (!valid_page && (pageblock_aligned(low_pfn) ||
 973				    low_pfn == cc->zone->zone_start_pfn)) {
 974			if (!isolation_suitable(cc, page)) {
 975				low_pfn = end_pfn;
 976				folio = NULL;
 977				goto isolate_abort;
 978			}
 979			valid_page = page;
 980		}
 981
 982		if (PageHuge(page)) {
 983			/*
 984			 * skip hugetlbfs if we are not compacting for pages
 985			 * bigger than its order. THPs and other compound pages
 986			 * are handled below.
 987			 */
 988			if (!cc->alloc_contig) {
 989				const unsigned int order = compound_order(page);
 990
 991				if (order <= MAX_PAGE_ORDER) {
 992					low_pfn += (1UL << order) - 1;
 993					nr_scanned += (1UL << order) - 1;
 994				}
 995				goto isolate_fail;
 996			}
 997			/* for alloc_contig case */
 998			if (locked) {
 999				unlock_page_lruvec_irqrestore(locked, flags);
1000				locked = NULL;
1001			}
1002
1003			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
1004
1005			/*
1006			 * Fail isolation in case isolate_or_dissolve_huge_page()
1007			 * reports an error. In case of -ENOMEM, abort right away.
1008			 */
1009			if (ret < 0) {
1010				 /* Do not report -EBUSY down the chain */
1011				if (ret == -EBUSY)
1012					ret = 0;
1013				low_pfn += compound_nr(page) - 1;
1014				nr_scanned += compound_nr(page) - 1;
1015				goto isolate_fail;
1016			}
1017
1018			if (PageHuge(page)) {
1019				/*
1020				 * Hugepage was successfully isolated and placed
1021				 * on the cc->migratepages list.
1022				 */
1023				folio = page_folio(page);
1024				low_pfn += folio_nr_pages(folio) - 1;
1025				goto isolate_success_no_list;
1026			}
1027
1028			/*
1029			 * Ok, the hugepage was dissolved. Now these pages are
1030			 * Buddy and cannot be re-allocated because they are
1031			 * isolated. Fall-through as the check below handles
1032			 * Buddy pages.
1033			 */
1034		}
1035
1036		/*
1037		 * Skip if free. We read page order here without zone lock
1038		 * which is generally unsafe, but the race window is small and
1039		 * the worst thing that can happen is that we skip some
1040		 * potential isolation targets.
1041		 */
1042		if (PageBuddy(page)) {
1043			unsigned long freepage_order = buddy_order_unsafe(page);
1044
1045			/*
1046			 * Without lock, we cannot be sure that what we got is
1047			 * a valid page order. Consider only values in the
1048			 * valid order range to prevent low_pfn overflow.
1049			 */
1050			if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1051				low_pfn += (1UL << freepage_order) - 1;
1052				nr_scanned += (1UL << freepage_order) - 1;
1053			}
1054			continue;
1055		}
1056
1057		/*
1058		 * Regardless of being on LRU, compound pages such as THP
1059		 * (hugetlbfs is handled above) are not to be compacted unless
1060		 * we are attempting an allocation larger than the compound
1061		 * page size. We can potentially save a lot of iterations if we
1062		 * skip them at once. The check is racy, but we can consider
1063		 * only valid values and the only danger is skipping too much.
1064		 */
1065		if (PageCompound(page) && !cc->alloc_contig) {
1066			const unsigned int order = compound_order(page);
1067
1068			/* Skip based on page order and compaction target order. */
1069			if (skip_isolation_on_order(order, cc->order)) {
1070				if (order <= MAX_PAGE_ORDER) {
1071					low_pfn += (1UL << order) - 1;
1072					nr_scanned += (1UL << order) - 1;
1073				}
1074				goto isolate_fail;
1075			}
 
1076		}
1077
1078		/*
1079		 * Check may be lockless but that's ok as we recheck later.
1080		 * It's possible to migrate LRU and non-lru movable pages.
1081		 * Skip any other type of page
1082		 */
1083		if (!PageLRU(page)) {
1084			/*
1085			 * __PageMovable can return false positive so we need
1086			 * to verify it under page_lock.
1087			 */
1088			if (unlikely(__PageMovable(page)) &&
1089					!PageIsolated(page)) {
1090				if (locked) {
1091					unlock_page_lruvec_irqrestore(locked, flags);
1092					locked = NULL;
1093				}
1094
1095				if (isolate_movable_page(page, mode)) {
1096					folio = page_folio(page);
1097					goto isolate_success;
1098				}
1099			}
1100
1101			goto isolate_fail;
1102		}
1103
1104		/*
1105		 * Be careful not to clear PageLRU until after we're
1106		 * sure the page is not being freed elsewhere -- the
1107		 * page release code relies on it.
1108		 */
1109		folio = folio_get_nontail_page(page);
1110		if (unlikely(!folio))
1111			goto isolate_fail;
1112
1113		/*
1114		 * Migration will fail if an anonymous page is pinned in memory,
1115		 * so avoid taking lru_lock and isolating it unnecessarily in an
1116		 * admittedly racy check.
1117		 */
1118		mapping = folio_mapping(folio);
1119		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1120			goto isolate_fail_put;
1121
1122		/*
1123		 * Only allow to migrate anonymous pages in GFP_NOFS context
1124		 * because those do not depend on fs locks.
1125		 */
1126		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1127			goto isolate_fail_put;
1128
1129		/* Only take pages on LRU: a check now makes later tests safe */
1130		if (!folio_test_lru(folio))
1131			goto isolate_fail_put;
1132
1133		is_unevictable = folio_test_unevictable(folio);
1134
1135		/* Compaction might skip unevictable pages but CMA takes them */
1136		if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1137			goto isolate_fail_put;
1138
1139		/*
1140		 * To minimise LRU disruption, the caller can indicate with
1141		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1142		 * it will be able to migrate without blocking - clean pages
1143		 * for the most part.  PageWriteback would require blocking.
1144		 */
1145		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1146			goto isolate_fail_put;
1147
1148		is_dirty = folio_test_dirty(folio);
1149
1150		if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1151		    (mapping && is_unevictable)) {
1152			bool migrate_dirty = true;
1153			bool is_inaccessible;
1154
1155			/*
1156			 * Only folios without mappings or that have
1157			 * a ->migrate_folio callback are possible to migrate
1158			 * without blocking.
1159			 *
1160			 * Folios from inaccessible mappings are not migratable.
1161			 *
1162			 * However, we can be racing with truncation, which can
1163			 * free the mapping that we need to check. Truncation
1164			 * holds the folio lock until after the folio is removed
1165			 * from the page so holding it ourselves is sufficient.
1166			 *
1167			 * To avoid locking the folio just to check inaccessible,
1168			 * assume every inaccessible folio is also unevictable,
1169			 * which is a cheaper test.  If our assumption goes
1170			 * wrong, it's not a correctness bug, just potentially
1171			 * wasted cycles.
1172			 */
1173			if (!folio_trylock(folio))
1174				goto isolate_fail_put;
1175
1176			mapping = folio_mapping(folio);
1177			if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1178				migrate_dirty = !mapping ||
1179						mapping->a_ops->migrate_folio;
1180			}
1181			is_inaccessible = mapping && mapping_inaccessible(mapping);
1182			folio_unlock(folio);
1183			if (!migrate_dirty || is_inaccessible)
1184				goto isolate_fail_put;
1185		}
1186
1187		/* Try isolate the folio */
1188		if (!folio_test_clear_lru(folio))
1189			goto isolate_fail_put;
1190
1191		lruvec = folio_lruvec(folio);
1192
1193		/* If we already hold the lock, we can skip some rechecking */
1194		if (lruvec != locked) {
1195			if (locked)
1196				unlock_page_lruvec_irqrestore(locked, flags);
1197
1198			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1199			locked = lruvec;
1200
1201			lruvec_memcg_debug(lruvec, folio);
1202
1203			/*
1204			 * Try get exclusive access under lock. If marked for
1205			 * skip, the scan is aborted unless the current context
1206			 * is a rescan to reach the end of the pageblock.
1207			 */
1208			if (!skip_updated && valid_page) {
1209				skip_updated = true;
1210				if (test_and_set_skip(cc, valid_page) &&
1211				    !cc->finish_pageblock) {
1212					low_pfn = end_pfn;
1213					goto isolate_abort;
1214				}
1215			}
1216
1217			/*
1218			 * Check LRU folio order under the lock
 
1219			 */
1220			if (unlikely(skip_isolation_on_order(folio_order(folio),
1221							     cc->order) &&
1222				     !cc->alloc_contig)) {
1223				low_pfn += folio_nr_pages(folio) - 1;
1224				nr_scanned += folio_nr_pages(folio) - 1;
1225				folio_set_lru(folio);
1226				goto isolate_fail_put;
1227			}
1228		}
1229
1230		/* The folio is taken off the LRU */
1231		if (folio_test_large(folio))
1232			low_pfn += folio_nr_pages(folio) - 1;
1233
1234		/* Successfully isolated */
1235		lruvec_del_folio(lruvec, folio);
1236		node_stat_mod_folio(folio,
1237				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1238				folio_nr_pages(folio));
1239
1240isolate_success:
1241		list_add(&folio->lru, &cc->migratepages);
1242isolate_success_no_list:
1243		cc->nr_migratepages += folio_nr_pages(folio);
1244		nr_isolated += folio_nr_pages(folio);
1245		nr_scanned += folio_nr_pages(folio) - 1;
1246
1247		/*
1248		 * Avoid isolating too much unless this block is being
1249		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1250		 * or a lock is contended. For contention, isolate quickly to
1251		 * potentially remove one source of contention.
1252		 */
1253		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1254		    !cc->finish_pageblock && !cc->contended) {
1255			++low_pfn;
1256			break;
1257		}
1258
1259		continue;
1260
1261isolate_fail_put:
1262		/* Avoid potential deadlock in freeing page under lru_lock */
1263		if (locked) {
1264			unlock_page_lruvec_irqrestore(locked, flags);
1265			locked = NULL;
1266		}
1267		folio_put(folio);
1268
1269isolate_fail:
1270		if (!skip_on_failure && ret != -ENOMEM)
1271			continue;
1272
1273		/*
1274		 * We have isolated some pages, but then failed. Release them
1275		 * instead of migrating, as we cannot form the cc->order buddy
1276		 * page anyway.
1277		 */
1278		if (nr_isolated) {
1279			if (locked) {
1280				unlock_page_lruvec_irqrestore(locked, flags);
1281				locked = NULL;
1282			}
1283			putback_movable_pages(&cc->migratepages);
1284			cc->nr_migratepages = 0;
1285			nr_isolated = 0;
1286		}
1287
1288		if (low_pfn < next_skip_pfn) {
1289			low_pfn = next_skip_pfn - 1;
1290			/*
1291			 * The check near the loop beginning would have updated
1292			 * next_skip_pfn too, but this is a bit simpler.
1293			 */
1294			next_skip_pfn += 1UL << cc->order;
1295		}
1296
1297		if (ret == -ENOMEM)
1298			break;
1299	}
1300
1301	/*
1302	 * The PageBuddy() check could have potentially brought us outside
1303	 * the range to be scanned.
1304	 */
1305	if (unlikely(low_pfn > end_pfn))
1306		low_pfn = end_pfn;
1307
1308	folio = NULL;
1309
1310isolate_abort:
1311	if (locked)
1312		unlock_page_lruvec_irqrestore(locked, flags);
1313	if (folio) {
1314		folio_set_lru(folio);
1315		folio_put(folio);
1316	}
1317
1318	/*
1319	 * Update the cached scanner pfn once the pageblock has been scanned.
1320	 * Pages will either be migrated in which case there is no point
1321	 * scanning in the near future or migration failed in which case the
1322	 * failure reason may persist. The block is marked for skipping if
1323	 * there were no pages isolated in the block or if the block is
1324	 * rescanned twice in a row.
1325	 */
1326	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1327		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1328			set_pageblock_skip(valid_page);
1329		update_cached_migrate(cc, low_pfn);
1330	}
1331
1332	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1333						nr_scanned, nr_isolated);
1334
1335fatal_pending:
1336	cc->total_migrate_scanned += nr_scanned;
1337	if (nr_isolated)
1338		count_compact_events(COMPACTISOLATED, nr_isolated);
1339
1340	cc->migrate_pfn = low_pfn;
1341
1342	return ret;
1343}
1344
1345/**
1346 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1347 * @cc:        Compaction control structure.
1348 * @start_pfn: The first PFN to start isolating.
1349 * @end_pfn:   The one-past-last PFN.
1350 *
1351 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1352 * in case we could not allocate a page, or 0.
1353 */
1354int
1355isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1356							unsigned long end_pfn)
1357{
1358	unsigned long pfn, block_start_pfn, block_end_pfn;
1359	int ret = 0;
1360
1361	/* Scan block by block. First and last block may be incomplete */
1362	pfn = start_pfn;
1363	block_start_pfn = pageblock_start_pfn(pfn);
1364	if (block_start_pfn < cc->zone->zone_start_pfn)
1365		block_start_pfn = cc->zone->zone_start_pfn;
1366	block_end_pfn = pageblock_end_pfn(pfn);
1367
1368	for (; pfn < end_pfn; pfn = block_end_pfn,
1369				block_start_pfn = block_end_pfn,
1370				block_end_pfn += pageblock_nr_pages) {
1371
1372		block_end_pfn = min(block_end_pfn, end_pfn);
1373
1374		if (!pageblock_pfn_to_page(block_start_pfn,
1375					block_end_pfn, cc->zone))
1376			continue;
1377
1378		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1379						 ISOLATE_UNEVICTABLE);
1380
1381		if (ret)
1382			break;
1383
1384		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1385			break;
1386	}
1387
1388	return ret;
1389}
1390
1391#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1392#ifdef CONFIG_COMPACTION
1393
1394static bool suitable_migration_source(struct compact_control *cc,
1395							struct page *page)
1396{
1397	int block_mt;
1398
1399	if (pageblock_skip_persistent(page))
1400		return false;
1401
1402	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1403		return true;
1404
1405	block_mt = get_pageblock_migratetype(page);
1406
1407	if (cc->migratetype == MIGRATE_MOVABLE)
1408		return is_migrate_movable(block_mt);
1409	else
1410		return block_mt == cc->migratetype;
1411}
1412
1413/* Returns true if the page is within a block suitable for migration to */
1414static bool suitable_migration_target(struct compact_control *cc,
1415							struct page *page)
1416{
1417	/* If the page is a large free page, then disallow migration */
1418	if (PageBuddy(page)) {
1419		int order = cc->order > 0 ? cc->order : pageblock_order;
1420
1421		/*
1422		 * We are checking page_order without zone->lock taken. But
1423		 * the only small danger is that we skip a potentially suitable
1424		 * pageblock, so it's not worth to check order for valid range.
1425		 */
1426		if (buddy_order_unsafe(page) >= order)
1427			return false;
1428	}
1429
1430	if (cc->ignore_block_suitable)
1431		return true;
1432
1433	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1434	if (is_migrate_movable(get_pageblock_migratetype(page)))
1435		return true;
1436
1437	/* Otherwise skip the block */
1438	return false;
1439}
1440
1441static inline unsigned int
1442freelist_scan_limit(struct compact_control *cc)
1443{
1444	unsigned short shift = BITS_PER_LONG - 1;
1445
1446	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1447}
1448
1449/*
1450 * Test whether the free scanner has reached the same or lower pageblock than
1451 * the migration scanner, and compaction should thus terminate.
1452 */
1453static inline bool compact_scanners_met(struct compact_control *cc)
1454{
1455	return (cc->free_pfn >> pageblock_order)
1456		<= (cc->migrate_pfn >> pageblock_order);
1457}
1458
1459/*
1460 * Used when scanning for a suitable migration target which scans freelists
1461 * in reverse. Reorders the list such as the unscanned pages are scanned
1462 * first on the next iteration of the free scanner
1463 */
1464static void
1465move_freelist_head(struct list_head *freelist, struct page *freepage)
1466{
1467	LIST_HEAD(sublist);
1468
1469	if (!list_is_first(&freepage->buddy_list, freelist)) {
1470		list_cut_before(&sublist, freelist, &freepage->buddy_list);
1471		list_splice_tail(&sublist, freelist);
1472	}
1473}
1474
1475/*
1476 * Similar to move_freelist_head except used by the migration scanner
1477 * when scanning forward. It's possible for these list operations to
1478 * move against each other if they search the free list exactly in
1479 * lockstep.
1480 */
1481static void
1482move_freelist_tail(struct list_head *freelist, struct page *freepage)
1483{
1484	LIST_HEAD(sublist);
1485
1486	if (!list_is_last(&freepage->buddy_list, freelist)) {
1487		list_cut_position(&sublist, freelist, &freepage->buddy_list);
1488		list_splice_tail(&sublist, freelist);
1489	}
1490}
1491
1492static void
1493fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1494{
1495	unsigned long start_pfn, end_pfn;
1496	struct page *page;
1497
1498	/* Do not search around if there are enough pages already */
1499	if (cc->nr_freepages >= cc->nr_migratepages)
1500		return;
1501
1502	/* Minimise scanning during async compaction */
1503	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1504		return;
1505
1506	/* Pageblock boundaries */
1507	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1508	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1509
1510	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1511	if (!page)
1512		return;
1513
1514	isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
1515
1516	/* Skip this pageblock in the future as it's full or nearly full */
1517	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1518		set_pageblock_skip(page);
1519}
1520
1521/* Search orders in round-robin fashion */
1522static int next_search_order(struct compact_control *cc, int order)
1523{
1524	order--;
1525	if (order < 0)
1526		order = cc->order - 1;
1527
1528	/* Search wrapped around? */
1529	if (order == cc->search_order) {
1530		cc->search_order--;
1531		if (cc->search_order < 0)
1532			cc->search_order = cc->order - 1;
1533		return -1;
1534	}
1535
1536	return order;
1537}
1538
1539static void fast_isolate_freepages(struct compact_control *cc)
1540{
1541	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1542	unsigned int nr_scanned = 0, total_isolated = 0;
1543	unsigned long low_pfn, min_pfn, highest = 0;
1544	unsigned long nr_isolated = 0;
1545	unsigned long distance;
1546	struct page *page = NULL;
1547	bool scan_start = false;
1548	int order;
1549
1550	/* Full compaction passes in a negative order */
1551	if (cc->order <= 0)
1552		return;
1553
1554	/*
1555	 * If starting the scan, use a deeper search and use the highest
1556	 * PFN found if a suitable one is not found.
1557	 */
1558	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1559		limit = pageblock_nr_pages >> 1;
1560		scan_start = true;
1561	}
1562
1563	/*
1564	 * Preferred point is in the top quarter of the scan space but take
1565	 * a pfn from the top half if the search is problematic.
1566	 */
1567	distance = (cc->free_pfn - cc->migrate_pfn);
1568	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1569	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1570
1571	if (WARN_ON_ONCE(min_pfn > low_pfn))
1572		low_pfn = min_pfn;
1573
1574	/*
1575	 * Search starts from the last successful isolation order or the next
1576	 * order to search after a previous failure
1577	 */
1578	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1579
1580	for (order = cc->search_order;
1581	     !page && order >= 0;
1582	     order = next_search_order(cc, order)) {
1583		struct free_area *area = &cc->zone->free_area[order];
1584		struct list_head *freelist;
1585		struct page *freepage;
1586		unsigned long flags;
1587		unsigned int order_scanned = 0;
1588		unsigned long high_pfn = 0;
1589
1590		if (!area->nr_free)
1591			continue;
1592
1593		spin_lock_irqsave(&cc->zone->lock, flags);
1594		freelist = &area->free_list[MIGRATE_MOVABLE];
1595		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1596			unsigned long pfn;
1597
1598			order_scanned++;
1599			nr_scanned++;
1600			pfn = page_to_pfn(freepage);
1601
1602			if (pfn >= highest)
1603				highest = max(pageblock_start_pfn(pfn),
1604					      cc->zone->zone_start_pfn);
1605
1606			if (pfn >= low_pfn) {
1607				cc->fast_search_fail = 0;
1608				cc->search_order = order;
1609				page = freepage;
1610				break;
1611			}
1612
1613			if (pfn >= min_pfn && pfn > high_pfn) {
1614				high_pfn = pfn;
1615
1616				/* Shorten the scan if a candidate is found */
1617				limit >>= 1;
1618			}
1619
1620			if (order_scanned >= limit)
1621				break;
1622		}
1623
1624		/* Use a maximum candidate pfn if a preferred one was not found */
1625		if (!page && high_pfn) {
1626			page = pfn_to_page(high_pfn);
1627
1628			/* Update freepage for the list reorder below */
1629			freepage = page;
1630		}
1631
1632		/* Reorder to so a future search skips recent pages */
1633		move_freelist_head(freelist, freepage);
1634
1635		/* Isolate the page if available */
1636		if (page) {
1637			if (__isolate_free_page(page, order)) {
1638				set_page_private(page, order);
1639				nr_isolated = 1 << order;
1640				nr_scanned += nr_isolated - 1;
1641				total_isolated += nr_isolated;
1642				cc->nr_freepages += nr_isolated;
1643				list_add_tail(&page->lru, &cc->freepages[order]);
1644				count_compact_events(COMPACTISOLATED, nr_isolated);
1645			} else {
1646				/* If isolation fails, abort the search */
1647				order = cc->search_order + 1;
1648				page = NULL;
1649			}
1650		}
1651
1652		spin_unlock_irqrestore(&cc->zone->lock, flags);
1653
1654		/* Skip fast search if enough freepages isolated */
1655		if (cc->nr_freepages >= cc->nr_migratepages)
1656			break;
1657
1658		/*
1659		 * Smaller scan on next order so the total scan is related
1660		 * to freelist_scan_limit.
1661		 */
1662		if (order_scanned >= limit)
1663			limit = max(1U, limit >> 1);
1664	}
1665
1666	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1667						   nr_scanned, total_isolated);
1668
1669	if (!page) {
1670		cc->fast_search_fail++;
1671		if (scan_start) {
1672			/*
1673			 * Use the highest PFN found above min. If one was
1674			 * not found, be pessimistic for direct compaction
1675			 * and use the min mark.
1676			 */
1677			if (highest >= min_pfn) {
1678				page = pfn_to_page(highest);
1679				cc->free_pfn = highest;
1680			} else {
1681				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1682					page = pageblock_pfn_to_page(min_pfn,
1683						min(pageblock_end_pfn(min_pfn),
1684						    zone_end_pfn(cc->zone)),
1685						cc->zone);
1686					if (page && !suitable_migration_target(cc, page))
1687						page = NULL;
1688
1689					cc->free_pfn = min_pfn;
1690				}
1691			}
1692		}
1693	}
1694
1695	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1696		highest -= pageblock_nr_pages;
1697		cc->zone->compact_cached_free_pfn = highest;
1698	}
1699
1700	cc->total_free_scanned += nr_scanned;
1701	if (!page)
1702		return;
1703
1704	low_pfn = page_to_pfn(page);
1705	fast_isolate_around(cc, low_pfn);
1706}
1707
1708/*
1709 * Based on information in the current compact_control, find blocks
1710 * suitable for isolating free pages from and then isolate them.
1711 */
1712static void isolate_freepages(struct compact_control *cc)
1713{
1714	struct zone *zone = cc->zone;
1715	struct page *page;
1716	unsigned long block_start_pfn;	/* start of current pageblock */
1717	unsigned long isolate_start_pfn; /* exact pfn we start at */
1718	unsigned long block_end_pfn;	/* end of current pageblock */
1719	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
 
1720	unsigned int stride;
1721
1722	/* Try a small search of the free lists for a candidate */
1723	fast_isolate_freepages(cc);
1724	if (cc->nr_freepages)
1725		return;
1726
1727	/*
1728	 * Initialise the free scanner. The starting point is where we last
1729	 * successfully isolated from, zone-cached value, or the end of the
1730	 * zone when isolating for the first time. For looping we also need
1731	 * this pfn aligned down to the pageblock boundary, because we do
1732	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1733	 * For ending point, take care when isolating in last pageblock of a
1734	 * zone which ends in the middle of a pageblock.
1735	 * The low boundary is the end of the pageblock the migration scanner
1736	 * is using.
1737	 */
1738	isolate_start_pfn = cc->free_pfn;
1739	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1740	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1741						zone_end_pfn(zone));
1742	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1743	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1744
1745	/*
1746	 * Isolate free pages until enough are available to migrate the
1747	 * pages on cc->migratepages. We stop searching if the migrate
1748	 * and free page scanners meet or enough free pages are isolated.
1749	 */
1750	for (; block_start_pfn >= low_pfn;
1751				block_end_pfn = block_start_pfn,
1752				block_start_pfn -= pageblock_nr_pages,
1753				isolate_start_pfn = block_start_pfn) {
1754		unsigned long nr_isolated;
1755
1756		/*
1757		 * This can iterate a massively long zone without finding any
1758		 * suitable migration targets, so periodically check resched.
1759		 */
1760		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1761			cond_resched();
1762
1763		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1764									zone);
1765		if (!page) {
1766			unsigned long next_pfn;
1767
1768			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1769			if (next_pfn)
1770				block_start_pfn = max(next_pfn, low_pfn);
1771
1772			continue;
1773		}
1774
1775		/* Check the block is suitable for migration */
1776		if (!suitable_migration_target(cc, page))
1777			continue;
1778
1779		/* If isolation recently failed, do not retry */
1780		if (!isolation_suitable(cc, page))
1781			continue;
1782
1783		/* Found a block suitable for isolating free pages from. */
1784		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1785					block_end_pfn, cc->freepages, stride, false);
1786
1787		/* Update the skip hint if the full pageblock was scanned */
1788		if (isolate_start_pfn == block_end_pfn)
1789			update_pageblock_skip(cc, page, block_start_pfn -
1790					      pageblock_nr_pages);
1791
1792		/* Are enough freepages isolated? */
1793		if (cc->nr_freepages >= cc->nr_migratepages) {
1794			if (isolate_start_pfn >= block_end_pfn) {
1795				/*
1796				 * Restart at previous pageblock if more
1797				 * freepages can be isolated next time.
1798				 */
1799				isolate_start_pfn =
1800					block_start_pfn - pageblock_nr_pages;
1801			}
1802			break;
1803		} else if (isolate_start_pfn < block_end_pfn) {
1804			/*
1805			 * If isolation failed early, do not continue
1806			 * needlessly.
1807			 */
1808			break;
1809		}
1810
1811		/* Adjust stride depending on isolation */
1812		if (nr_isolated) {
1813			stride = 1;
1814			continue;
1815		}
1816		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1817	}
1818
1819	/*
1820	 * Record where the free scanner will restart next time. Either we
1821	 * broke from the loop and set isolate_start_pfn based on the last
1822	 * call to isolate_freepages_block(), or we met the migration scanner
1823	 * and the loop terminated due to isolate_start_pfn < low_pfn
1824	 */
1825	cc->free_pfn = isolate_start_pfn;
 
 
 
 
1826}
1827
1828/*
1829 * This is a migrate-callback that "allocates" freepages by taking pages
1830 * from the isolated freelists in the block we are migrating to.
1831 */
1832static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data)
1833{
1834	struct compact_control *cc = (struct compact_control *)data;
1835	struct folio *dst;
1836	int order = folio_order(src);
1837	bool has_isolated_pages = false;
1838	int start_order;
1839	struct page *freepage;
1840	unsigned long size;
1841
1842again:
1843	for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
1844		if (!list_empty(&cc->freepages[start_order]))
1845			break;
1846
1847	/* no free pages in the list */
1848	if (start_order == NR_PAGE_ORDERS) {
1849		if (has_isolated_pages)
1850			return NULL;
1851		isolate_freepages(cc);
1852		has_isolated_pages = true;
1853		goto again;
1854	}
1855
1856	freepage = list_first_entry(&cc->freepages[start_order], struct page,
1857				lru);
1858	size = 1 << start_order;
1859
1860	list_del(&freepage->lru);
1861
1862	while (start_order > order) {
1863		start_order--;
1864		size >>= 1;
1865
1866		list_add(&freepage[size].lru, &cc->freepages[start_order]);
1867		set_page_private(&freepage[size], start_order);
1868	}
1869	dst = (struct folio *)freepage;
1870
1871	post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
1872	if (order)
1873		prep_compound_page(&dst->page, order);
1874	cc->nr_freepages -= 1 << order;
1875	cc->nr_migratepages -= 1 << order;
1876	return page_rmappable_folio(&dst->page);
1877}
1878
1879static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1880{
1881	return alloc_hooks(compaction_alloc_noprof(src, data));
1882}
1883
1884/*
1885 * This is a migrate-callback that "frees" freepages back to the isolated
1886 * freelist.  All pages on the freelist are from the same zone, so there is no
1887 * special handling needed for NUMA.
1888 */
1889static void compaction_free(struct folio *dst, unsigned long data)
1890{
1891	struct compact_control *cc = (struct compact_control *)data;
1892	int order = folio_order(dst);
1893	struct page *page = &dst->page;
1894
1895	if (folio_put_testzero(dst)) {
1896		free_pages_prepare(page, order);
1897		list_add(&dst->lru, &cc->freepages[order]);
1898		cc->nr_freepages += 1 << order;
1899	}
1900	cc->nr_migratepages += 1 << order;
1901	/*
1902	 * someone else has referenced the page, we cannot take it back to our
1903	 * free list.
1904	 */
1905}
1906
1907/* possible outcome of isolate_migratepages */
1908typedef enum {
1909	ISOLATE_ABORT,		/* Abort compaction now */
1910	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1911	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1912} isolate_migrate_t;
1913
1914/*
1915 * Allow userspace to control policy on scanning the unevictable LRU for
1916 * compactable pages.
1917 */
1918static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1919/*
1920 * Tunable for proactive compaction. It determines how
1921 * aggressively the kernel should compact memory in the
1922 * background. It takes values in the range [0, 100].
1923 */
1924static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1925static int sysctl_extfrag_threshold = 500;
1926static int __read_mostly sysctl_compact_memory;
1927
1928static inline void
1929update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1930{
1931	if (cc->fast_start_pfn == ULONG_MAX)
1932		return;
1933
1934	if (!cc->fast_start_pfn)
1935		cc->fast_start_pfn = pfn;
1936
1937	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1938}
1939
1940static inline unsigned long
1941reinit_migrate_pfn(struct compact_control *cc)
1942{
1943	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1944		return cc->migrate_pfn;
1945
1946	cc->migrate_pfn = cc->fast_start_pfn;
1947	cc->fast_start_pfn = ULONG_MAX;
1948
1949	return cc->migrate_pfn;
1950}
1951
1952/*
1953 * Briefly search the free lists for a migration source that already has
1954 * some free pages to reduce the number of pages that need migration
1955 * before a pageblock is free.
1956 */
1957static unsigned long fast_find_migrateblock(struct compact_control *cc)
1958{
1959	unsigned int limit = freelist_scan_limit(cc);
1960	unsigned int nr_scanned = 0;
1961	unsigned long distance;
1962	unsigned long pfn = cc->migrate_pfn;
1963	unsigned long high_pfn;
1964	int order;
1965	bool found_block = false;
1966
1967	/* Skip hints are relied on to avoid repeats on the fast search */
1968	if (cc->ignore_skip_hint)
1969		return pfn;
1970
1971	/*
1972	 * If the pageblock should be finished then do not select a different
1973	 * pageblock.
1974	 */
1975	if (cc->finish_pageblock)
1976		return pfn;
1977
1978	/*
1979	 * If the migrate_pfn is not at the start of a zone or the start
1980	 * of a pageblock then assume this is a continuation of a previous
1981	 * scan restarted due to COMPACT_CLUSTER_MAX.
1982	 */
1983	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1984		return pfn;
1985
1986	/*
1987	 * For smaller orders, just linearly scan as the number of pages
1988	 * to migrate should be relatively small and does not necessarily
1989	 * justify freeing up a large block for a small allocation.
1990	 */
1991	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1992		return pfn;
1993
1994	/*
1995	 * Only allow kcompactd and direct requests for movable pages to
1996	 * quickly clear out a MOVABLE pageblock for allocation. This
1997	 * reduces the risk that a large movable pageblock is freed for
1998	 * an unmovable/reclaimable small allocation.
1999	 */
2000	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
2001		return pfn;
2002
2003	/*
2004	 * When starting the migration scanner, pick any pageblock within the
2005	 * first half of the search space. Otherwise try and pick a pageblock
2006	 * within the first eighth to reduce the chances that a migration
2007	 * target later becomes a source.
2008	 */
2009	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
2010	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
2011		distance >>= 2;
2012	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
2013
2014	for (order = cc->order - 1;
2015	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
2016	     order--) {
2017		struct free_area *area = &cc->zone->free_area[order];
2018		struct list_head *freelist;
2019		unsigned long flags;
2020		struct page *freepage;
2021
2022		if (!area->nr_free)
2023			continue;
2024
2025		spin_lock_irqsave(&cc->zone->lock, flags);
2026		freelist = &area->free_list[MIGRATE_MOVABLE];
2027		list_for_each_entry(freepage, freelist, buddy_list) {
2028			unsigned long free_pfn;
2029
2030			if (nr_scanned++ >= limit) {
2031				move_freelist_tail(freelist, freepage);
2032				break;
2033			}
2034
2035			free_pfn = page_to_pfn(freepage);
2036			if (free_pfn < high_pfn) {
2037				/*
2038				 * Avoid if skipped recently. Ideally it would
2039				 * move to the tail but even safe iteration of
2040				 * the list assumes an entry is deleted, not
2041				 * reordered.
2042				 */
2043				if (get_pageblock_skip(freepage))
2044					continue;
2045
2046				/* Reorder to so a future search skips recent pages */
2047				move_freelist_tail(freelist, freepage);
2048
2049				update_fast_start_pfn(cc, free_pfn);
2050				pfn = pageblock_start_pfn(free_pfn);
2051				if (pfn < cc->zone->zone_start_pfn)
2052					pfn = cc->zone->zone_start_pfn;
2053				cc->fast_search_fail = 0;
2054				found_block = true;
2055				break;
2056			}
2057		}
2058		spin_unlock_irqrestore(&cc->zone->lock, flags);
2059	}
2060
2061	cc->total_migrate_scanned += nr_scanned;
2062
2063	/*
2064	 * If fast scanning failed then use a cached entry for a page block
2065	 * that had free pages as the basis for starting a linear scan.
2066	 */
2067	if (!found_block) {
2068		cc->fast_search_fail++;
2069		pfn = reinit_migrate_pfn(cc);
2070	}
2071	return pfn;
2072}
2073
2074/*
2075 * Isolate all pages that can be migrated from the first suitable block,
2076 * starting at the block pointed to by the migrate scanner pfn within
2077 * compact_control.
2078 */
2079static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
2080{
2081	unsigned long block_start_pfn;
2082	unsigned long block_end_pfn;
2083	unsigned long low_pfn;
2084	struct page *page;
2085	const isolate_mode_t isolate_mode =
2086		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
2087		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
2088	bool fast_find_block;
2089
2090	/*
2091	 * Start at where we last stopped, or beginning of the zone as
2092	 * initialized by compact_zone(). The first failure will use
2093	 * the lowest PFN as the starting point for linear scanning.
2094	 */
2095	low_pfn = fast_find_migrateblock(cc);
2096	block_start_pfn = pageblock_start_pfn(low_pfn);
2097	if (block_start_pfn < cc->zone->zone_start_pfn)
2098		block_start_pfn = cc->zone->zone_start_pfn;
2099
2100	/*
2101	 * fast_find_migrateblock() has already ensured the pageblock is not
2102	 * set with a skipped flag, so to avoid the isolation_suitable check
2103	 * below again, check whether the fast search was successful.
2104	 */
2105	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2106
2107	/* Only scan within a pageblock boundary */
2108	block_end_pfn = pageblock_end_pfn(low_pfn);
2109
2110	/*
2111	 * Iterate over whole pageblocks until we find the first suitable.
2112	 * Do not cross the free scanner.
2113	 */
2114	for (; block_end_pfn <= cc->free_pfn;
2115			fast_find_block = false,
2116			cc->migrate_pfn = low_pfn = block_end_pfn,
2117			block_start_pfn = block_end_pfn,
2118			block_end_pfn += pageblock_nr_pages) {
2119
2120		/*
2121		 * This can potentially iterate a massively long zone with
2122		 * many pageblocks unsuitable, so periodically check if we
2123		 * need to schedule.
2124		 */
2125		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2126			cond_resched();
2127
2128		page = pageblock_pfn_to_page(block_start_pfn,
2129						block_end_pfn, cc->zone);
2130		if (!page) {
2131			unsigned long next_pfn;
2132
2133			next_pfn = skip_offline_sections(block_start_pfn);
2134			if (next_pfn)
2135				block_end_pfn = min(next_pfn, cc->free_pfn);
2136			continue;
2137		}
2138
2139		/*
2140		 * If isolation recently failed, do not retry. Only check the
2141		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2142		 * to be visited multiple times. Assume skip was checked
2143		 * before making it "skip" so other compaction instances do
2144		 * not scan the same block.
2145		 */
2146		if ((pageblock_aligned(low_pfn) ||
2147		     low_pfn == cc->zone->zone_start_pfn) &&
2148		    !fast_find_block && !isolation_suitable(cc, page))
2149			continue;
2150
2151		/*
2152		 * For async direct compaction, only scan the pageblocks of the
2153		 * same migratetype without huge pages. Async direct compaction
2154		 * is optimistic to see if the minimum amount of work satisfies
2155		 * the allocation. The cached PFN is updated as it's possible
2156		 * that all remaining blocks between source and target are
2157		 * unsuitable and the compaction scanners fail to meet.
2158		 */
2159		if (!suitable_migration_source(cc, page)) {
2160			update_cached_migrate(cc, block_end_pfn);
2161			continue;
2162		}
2163
2164		/* Perform the isolation */
2165		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2166						isolate_mode))
2167			return ISOLATE_ABORT;
2168
2169		/*
2170		 * Either we isolated something and proceed with migration. Or
2171		 * we failed and compact_zone should decide if we should
2172		 * continue or not.
2173		 */
2174		break;
2175	}
2176
2177	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2178}
2179
2180/*
 
 
 
 
 
 
 
 
 
 
 
2181 * Determine whether kswapd is (or recently was!) running on this node.
2182 *
2183 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2184 * zero it.
2185 */
2186static bool kswapd_is_running(pg_data_t *pgdat)
2187{
2188	bool running;
2189
2190	pgdat_kswapd_lock(pgdat);
2191	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2192	pgdat_kswapd_unlock(pgdat);
2193
2194	return running;
2195}
2196
2197/*
2198 * A zone's fragmentation score is the external fragmentation wrt to the
2199 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2200 */
2201static unsigned int fragmentation_score_zone(struct zone *zone)
2202{
2203	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2204}
2205
2206/*
2207 * A weighted zone's fragmentation score is the external fragmentation
2208 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2209 * returns a value in the range [0, 100].
2210 *
2211 * The scaling factor ensures that proactive compaction focuses on larger
2212 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2213 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2214 * and thus never exceeds the high threshold for proactive compaction.
2215 */
2216static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2217{
2218	unsigned long score;
2219
2220	score = zone->present_pages * fragmentation_score_zone(zone);
2221	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2222}
2223
2224/*
2225 * The per-node proactive (background) compaction process is started by its
2226 * corresponding kcompactd thread when the node's fragmentation score
2227 * exceeds the high threshold. The compaction process remains active till
2228 * the node's score falls below the low threshold, or one of the back-off
2229 * conditions is met.
2230 */
2231static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2232{
2233	unsigned int score = 0;
2234	int zoneid;
2235
2236	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2237		struct zone *zone;
2238
2239		zone = &pgdat->node_zones[zoneid];
2240		if (!populated_zone(zone))
2241			continue;
2242		score += fragmentation_score_zone_weighted(zone);
2243	}
2244
2245	return score;
2246}
2247
2248static unsigned int fragmentation_score_wmark(bool low)
2249{
2250	unsigned int wmark_low;
2251
2252	/*
2253	 * Cap the low watermark to avoid excessive compaction
2254	 * activity in case a user sets the proactiveness tunable
2255	 * close to 100 (maximum).
2256	 */
2257	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2258	return low ? wmark_low : min(wmark_low + 10, 100U);
2259}
2260
2261static bool should_proactive_compact_node(pg_data_t *pgdat)
2262{
2263	int wmark_high;
2264
2265	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2266		return false;
2267
2268	wmark_high = fragmentation_score_wmark(false);
2269	return fragmentation_score_node(pgdat) > wmark_high;
2270}
2271
2272static enum compact_result __compact_finished(struct compact_control *cc)
2273{
2274	unsigned int order;
2275	const int migratetype = cc->migratetype;
2276	int ret;
2277
2278	/* Compaction run completes if the migrate and free scanner meet */
2279	if (compact_scanners_met(cc)) {
2280		/* Let the next compaction start anew. */
2281		reset_cached_positions(cc->zone);
2282
2283		/*
2284		 * Mark that the PG_migrate_skip information should be cleared
2285		 * by kswapd when it goes to sleep. kcompactd does not set the
2286		 * flag itself as the decision to be clear should be directly
2287		 * based on an allocation request.
2288		 */
2289		if (cc->direct_compaction)
2290			cc->zone->compact_blockskip_flush = true;
2291
2292		if (cc->whole_zone)
2293			return COMPACT_COMPLETE;
2294		else
2295			return COMPACT_PARTIAL_SKIPPED;
2296	}
2297
2298	if (cc->proactive_compaction) {
2299		int score, wmark_low;
2300		pg_data_t *pgdat;
2301
2302		pgdat = cc->zone->zone_pgdat;
2303		if (kswapd_is_running(pgdat))
2304			return COMPACT_PARTIAL_SKIPPED;
2305
2306		score = fragmentation_score_zone(cc->zone);
2307		wmark_low = fragmentation_score_wmark(true);
2308
2309		if (score > wmark_low)
2310			ret = COMPACT_CONTINUE;
2311		else
2312			ret = COMPACT_SUCCESS;
2313
2314		goto out;
2315	}
2316
2317	if (is_via_compact_memory(cc->order))
2318		return COMPACT_CONTINUE;
2319
2320	/*
2321	 * Always finish scanning a pageblock to reduce the possibility of
2322	 * fallbacks in the future. This is particularly important when
2323	 * migration source is unmovable/reclaimable but it's not worth
2324	 * special casing.
2325	 */
2326	if (!pageblock_aligned(cc->migrate_pfn))
2327		return COMPACT_CONTINUE;
2328
2329	/* Direct compactor: Is a suitable page free? */
2330	ret = COMPACT_NO_SUITABLE_PAGE;
2331	for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2332		struct free_area *area = &cc->zone->free_area[order];
2333		bool can_steal;
2334
2335		/* Job done if page is free of the right migratetype */
2336		if (!free_area_empty(area, migratetype))
2337			return COMPACT_SUCCESS;
2338
2339#ifdef CONFIG_CMA
2340		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2341		if (migratetype == MIGRATE_MOVABLE &&
2342			!free_area_empty(area, MIGRATE_CMA))
2343			return COMPACT_SUCCESS;
2344#endif
2345		/*
2346		 * Job done if allocation would steal freepages from
2347		 * other migratetype buddy lists.
2348		 */
2349		if (find_suitable_fallback(area, order, migratetype,
2350						true, &can_steal) != -1)
2351			/*
2352			 * Movable pages are OK in any pageblock. If we are
2353			 * stealing for a non-movable allocation, make sure
2354			 * we finish compacting the current pageblock first
2355			 * (which is assured by the above migrate_pfn align
2356			 * check) so it is as free as possible and we won't
2357			 * have to steal another one soon.
2358			 */
2359			return COMPACT_SUCCESS;
2360	}
2361
2362out:
2363	if (cc->contended || fatal_signal_pending(current))
2364		ret = COMPACT_CONTENDED;
2365
2366	return ret;
2367}
2368
2369static enum compact_result compact_finished(struct compact_control *cc)
2370{
2371	int ret;
2372
2373	ret = __compact_finished(cc);
2374	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2375	if (ret == COMPACT_NO_SUITABLE_PAGE)
2376		ret = COMPACT_CONTINUE;
2377
2378	return ret;
2379}
2380
2381static bool __compaction_suitable(struct zone *zone, int order,
2382				  int highest_zoneidx,
2383				  unsigned long wmark_target)
2384{
2385	unsigned long watermark;
2386	/*
2387	 * Watermarks for order-0 must be met for compaction to be able to
2388	 * isolate free pages for migration targets. This means that the
2389	 * watermark and alloc_flags have to match, or be more pessimistic than
2390	 * the check in __isolate_free_page(). We don't use the direct
2391	 * compactor's alloc_flags, as they are not relevant for freepage
2392	 * isolation. We however do use the direct compactor's highest_zoneidx
2393	 * to skip over zones where lowmem reserves would prevent allocation
2394	 * even if compaction succeeds.
2395	 * For costly orders, we require low watermark instead of min for
2396	 * compaction to proceed to increase its chances.
2397	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2398	 * suitable migration targets
2399	 */
2400	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2401				low_wmark_pages(zone) : min_wmark_pages(zone);
2402	watermark += compact_gap(order);
2403	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2404				   ALLOC_CMA, wmark_target);
2405}
2406
2407/*
2408 * compaction_suitable: Is this suitable to run compaction on this zone now?
2409 */
2410bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2411{
2412	enum compact_result compact_result;
2413	bool suitable;
2414
2415	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2416					 zone_page_state(zone, NR_FREE_PAGES));
2417	/*
2418	 * fragmentation index determines if allocation failures are due to
2419	 * low memory or external fragmentation
2420	 *
2421	 * index of -1000 would imply allocations might succeed depending on
2422	 * watermarks, but we already failed the high-order watermark check
2423	 * index towards 0 implies failure is due to lack of memory
2424	 * index towards 1000 implies failure is due to fragmentation
2425	 *
2426	 * Only compact if a failure would be due to fragmentation. Also
2427	 * ignore fragindex for non-costly orders where the alternative to
2428	 * a successful reclaim/compaction is OOM. Fragindex and the
2429	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2430	 * excessive compaction for costly orders, but it should not be at the
2431	 * expense of system stability.
2432	 */
2433	if (suitable) {
2434		compact_result = COMPACT_CONTINUE;
2435		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2436			int fragindex = fragmentation_index(zone, order);
2437
2438			if (fragindex >= 0 &&
2439			    fragindex <= sysctl_extfrag_threshold) {
2440				suitable = false;
2441				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2442			}
2443		}
2444	} else {
2445		compact_result = COMPACT_SKIPPED;
2446	}
2447
2448	trace_mm_compaction_suitable(zone, order, compact_result);
2449
2450	return suitable;
2451}
2452
2453bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2454		int alloc_flags)
2455{
2456	struct zone *zone;
2457	struct zoneref *z;
2458
2459	/*
2460	 * Make sure at least one zone would pass __compaction_suitable if we continue
2461	 * retrying the reclaim.
2462	 */
2463	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2464				ac->highest_zoneidx, ac->nodemask) {
2465		unsigned long available;
2466
2467		/*
2468		 * Do not consider all the reclaimable memory because we do not
2469		 * want to trash just for a single high order allocation which
2470		 * is even not guaranteed to appear even if __compaction_suitable
2471		 * is happy about the watermark check.
2472		 */
2473		available = zone_reclaimable_pages(zone) / order;
2474		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2475		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2476					  available))
2477			return true;
2478	}
2479
2480	return false;
2481}
2482
2483/*
2484 * Should we do compaction for target allocation order.
2485 * Return COMPACT_SUCCESS if allocation for target order can be already
2486 * satisfied
2487 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2488 * Return COMPACT_CONTINUE if compaction for target order should be ran
2489 */
2490static enum compact_result
2491compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2492				 int highest_zoneidx, unsigned int alloc_flags)
2493{
2494	unsigned long watermark;
2495
2496	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2497	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2498			      alloc_flags))
2499		return COMPACT_SUCCESS;
2500
2501	if (!compaction_suitable(zone, order, highest_zoneidx))
2502		return COMPACT_SKIPPED;
2503
2504	return COMPACT_CONTINUE;
2505}
2506
2507static enum compact_result
2508compact_zone(struct compact_control *cc, struct capture_control *capc)
2509{
2510	enum compact_result ret;
2511	unsigned long start_pfn = cc->zone->zone_start_pfn;
2512	unsigned long end_pfn = zone_end_pfn(cc->zone);
2513	unsigned long last_migrated_pfn;
2514	const bool sync = cc->mode != MIGRATE_ASYNC;
2515	bool update_cached;
2516	unsigned int nr_succeeded = 0, nr_migratepages;
2517	int order;
2518
2519	/*
2520	 * These counters track activities during zone compaction.  Initialize
2521	 * them before compacting a new zone.
2522	 */
2523	cc->total_migrate_scanned = 0;
2524	cc->total_free_scanned = 0;
2525	cc->nr_migratepages = 0;
2526	cc->nr_freepages = 0;
2527	for (order = 0; order < NR_PAGE_ORDERS; order++)
2528		INIT_LIST_HEAD(&cc->freepages[order]);
2529	INIT_LIST_HEAD(&cc->migratepages);
2530
2531	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2532
2533	if (!is_via_compact_memory(cc->order)) {
2534		ret = compaction_suit_allocation_order(cc->zone, cc->order,
2535						       cc->highest_zoneidx,
2536						       cc->alloc_flags);
2537		if (ret != COMPACT_CONTINUE)
2538			return ret;
2539	}
2540
2541	/*
2542	 * Clear pageblock skip if there were failures recently and compaction
2543	 * is about to be retried after being deferred.
2544	 */
2545	if (compaction_restarting(cc->zone, cc->order))
2546		__reset_isolation_suitable(cc->zone);
2547
2548	/*
2549	 * Setup to move all movable pages to the end of the zone. Used cached
2550	 * information on where the scanners should start (unless we explicitly
2551	 * want to compact the whole zone), but check that it is initialised
2552	 * by ensuring the values are within zone boundaries.
2553	 */
2554	cc->fast_start_pfn = 0;
2555	if (cc->whole_zone) {
2556		cc->migrate_pfn = start_pfn;
2557		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2558	} else {
2559		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2560		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2561		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2562			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2563			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2564		}
2565		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2566			cc->migrate_pfn = start_pfn;
2567			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2568			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2569		}
2570
2571		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2572			cc->whole_zone = true;
2573	}
2574
2575	last_migrated_pfn = 0;
2576
2577	/*
2578	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2579	 * the basis that some migrations will fail in ASYNC mode. However,
2580	 * if the cached PFNs match and pageblocks are skipped due to having
2581	 * no isolation candidates, then the sync state does not matter.
2582	 * Until a pageblock with isolation candidates is found, keep the
2583	 * cached PFNs in sync to avoid revisiting the same blocks.
2584	 */
2585	update_cached = !sync &&
2586		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2587
2588	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2589
2590	/* lru_add_drain_all could be expensive with involving other CPUs */
2591	lru_add_drain();
2592
2593	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2594		int err;
2595		unsigned long iteration_start_pfn = cc->migrate_pfn;
2596
2597		/*
2598		 * Avoid multiple rescans of the same pageblock which can
2599		 * happen if a page cannot be isolated (dirty/writeback in
2600		 * async mode) or if the migrated pages are being allocated
2601		 * before the pageblock is cleared.  The first rescan will
2602		 * capture the entire pageblock for migration. If it fails,
2603		 * it'll be marked skip and scanning will proceed as normal.
2604		 */
2605		cc->finish_pageblock = false;
2606		if (pageblock_start_pfn(last_migrated_pfn) ==
2607		    pageblock_start_pfn(iteration_start_pfn)) {
2608			cc->finish_pageblock = true;
2609		}
2610
2611rescan:
2612		switch (isolate_migratepages(cc)) {
2613		case ISOLATE_ABORT:
2614			ret = COMPACT_CONTENDED;
2615			putback_movable_pages(&cc->migratepages);
2616			cc->nr_migratepages = 0;
2617			goto out;
2618		case ISOLATE_NONE:
2619			if (update_cached) {
2620				cc->zone->compact_cached_migrate_pfn[1] =
2621					cc->zone->compact_cached_migrate_pfn[0];
2622			}
2623
2624			/*
2625			 * We haven't isolated and migrated anything, but
2626			 * there might still be unflushed migrations from
2627			 * previous cc->order aligned block.
2628			 */
2629			goto check_drain;
2630		case ISOLATE_SUCCESS:
2631			update_cached = false;
2632			last_migrated_pfn = max(cc->zone->zone_start_pfn,
2633				pageblock_start_pfn(cc->migrate_pfn - 1));
2634		}
2635
2636		/*
2637		 * Record the number of pages to migrate since the
2638		 * compaction_alloc/free() will update cc->nr_migratepages
2639		 * properly.
2640		 */
2641		nr_migratepages = cc->nr_migratepages;
2642		err = migrate_pages(&cc->migratepages, compaction_alloc,
2643				compaction_free, (unsigned long)cc, cc->mode,
2644				MR_COMPACTION, &nr_succeeded);
2645
2646		trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
2647
2648		/* All pages were either migrated or will be released */
2649		cc->nr_migratepages = 0;
2650		if (err) {
2651			putback_movable_pages(&cc->migratepages);
2652			/*
2653			 * migrate_pages() may return -ENOMEM when scanners meet
2654			 * and we want compact_finished() to detect it
2655			 */
2656			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2657				ret = COMPACT_CONTENDED;
2658				goto out;
2659			}
2660			/*
2661			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2662			 * within the pageblock_order-aligned block and
2663			 * fast_find_migrateblock may be used then scan the
2664			 * remainder of the pageblock. This will mark the
2665			 * pageblock "skip" to avoid rescanning in the near
2666			 * future. This will isolate more pages than necessary
2667			 * for the request but avoid loops due to
2668			 * fast_find_migrateblock revisiting blocks that were
2669			 * recently partially scanned.
2670			 */
2671			if (!pageblock_aligned(cc->migrate_pfn) &&
2672			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2673			    (cc->mode < MIGRATE_SYNC)) {
2674				cc->finish_pageblock = true;
2675
2676				/*
2677				 * Draining pcplists does not help THP if
2678				 * any page failed to migrate. Even after
2679				 * drain, the pageblock will not be free.
2680				 */
2681				if (cc->order == COMPACTION_HPAGE_ORDER)
2682					last_migrated_pfn = 0;
2683
2684				goto rescan;
2685			}
2686		}
2687
2688		/* Stop if a page has been captured */
2689		if (capc && capc->page) {
2690			ret = COMPACT_SUCCESS;
2691			break;
2692		}
2693
2694check_drain:
2695		/*
2696		 * Has the migration scanner moved away from the previous
2697		 * cc->order aligned block where we migrated from? If yes,
2698		 * flush the pages that were freed, so that they can merge and
2699		 * compact_finished() can detect immediately if allocation
2700		 * would succeed.
2701		 */
2702		if (cc->order > 0 && last_migrated_pfn) {
2703			unsigned long current_block_start =
2704				block_start_pfn(cc->migrate_pfn, cc->order);
2705
2706			if (last_migrated_pfn < current_block_start) {
2707				lru_add_drain_cpu_zone(cc->zone);
2708				/* No more flushing until we migrate again */
2709				last_migrated_pfn = 0;
2710			}
2711		}
2712	}
2713
2714out:
2715	/*
2716	 * Release free pages and update where the free scanner should restart,
2717	 * so we don't leave any returned pages behind in the next attempt.
2718	 */
2719	if (cc->nr_freepages > 0) {
2720		unsigned long free_pfn = release_free_list(cc->freepages);
2721
2722		cc->nr_freepages = 0;
2723		VM_BUG_ON(free_pfn == 0);
2724		/* The cached pfn is always the first in a pageblock */
2725		free_pfn = pageblock_start_pfn(free_pfn);
2726		/*
2727		 * Only go back, not forward. The cached pfn might have been
2728		 * already reset to zone end in compact_finished()
2729		 */
2730		if (free_pfn > cc->zone->compact_cached_free_pfn)
2731			cc->zone->compact_cached_free_pfn = free_pfn;
2732	}
2733
2734	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2735	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2736
2737	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2738
 
2739	VM_BUG_ON(!list_empty(&cc->migratepages));
2740
2741	return ret;
2742}
2743
2744static enum compact_result compact_zone_order(struct zone *zone, int order,
2745		gfp_t gfp_mask, enum compact_priority prio,
2746		unsigned int alloc_flags, int highest_zoneidx,
2747		struct page **capture)
2748{
2749	enum compact_result ret;
2750	struct compact_control cc = {
2751		.order = order,
2752		.search_order = order,
2753		.gfp_mask = gfp_mask,
2754		.zone = zone,
2755		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2756					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2757		.alloc_flags = alloc_flags,
2758		.highest_zoneidx = highest_zoneidx,
2759		.direct_compaction = true,
2760		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2761		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2762		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2763	};
2764	struct capture_control capc = {
2765		.cc = &cc,
2766		.page = NULL,
2767	};
2768
2769	/*
2770	 * Make sure the structs are really initialized before we expose the
2771	 * capture control, in case we are interrupted and the interrupt handler
2772	 * frees a page.
2773	 */
2774	barrier();
2775	WRITE_ONCE(current->capture_control, &capc);
2776
2777	ret = compact_zone(&cc, &capc);
2778
2779	/*
2780	 * Make sure we hide capture control first before we read the captured
2781	 * page pointer, otherwise an interrupt could free and capture a page
2782	 * and we would leak it.
2783	 */
2784	WRITE_ONCE(current->capture_control, NULL);
2785	*capture = READ_ONCE(capc.page);
2786	/*
2787	 * Technically, it is also possible that compaction is skipped but
2788	 * the page is still captured out of luck(IRQ came and freed the page).
2789	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2790	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2791	 */
2792	if (*capture)
2793		ret = COMPACT_SUCCESS;
2794
2795	return ret;
2796}
2797
2798/**
2799 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2800 * @gfp_mask: The GFP mask of the current allocation
2801 * @order: The order of the current allocation
2802 * @alloc_flags: The allocation flags of the current allocation
2803 * @ac: The context of current allocation
2804 * @prio: Determines how hard direct compaction should try to succeed
2805 * @capture: Pointer to free page created by compaction will be stored here
2806 *
2807 * This is the main entry point for direct page compaction.
2808 */
2809enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2810		unsigned int alloc_flags, const struct alloc_context *ac,
2811		enum compact_priority prio, struct page **capture)
2812{
2813	struct zoneref *z;
2814	struct zone *zone;
2815	enum compact_result rc = COMPACT_SKIPPED;
2816
2817	if (!gfp_compaction_allowed(gfp_mask))
2818		return COMPACT_SKIPPED;
2819
2820	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2821
2822	/* Compact each zone in the list */
2823	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2824					ac->highest_zoneidx, ac->nodemask) {
2825		enum compact_result status;
2826
2827		if (cpusets_enabled() &&
2828			(alloc_flags & ALLOC_CPUSET) &&
2829			!__cpuset_zone_allowed(zone, gfp_mask))
2830				continue;
2831
2832		if (prio > MIN_COMPACT_PRIORITY
2833					&& compaction_deferred(zone, order)) {
2834			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2835			continue;
2836		}
2837
2838		status = compact_zone_order(zone, order, gfp_mask, prio,
2839				alloc_flags, ac->highest_zoneidx, capture);
2840		rc = max(status, rc);
2841
2842		/* The allocation should succeed, stop compacting */
2843		if (status == COMPACT_SUCCESS) {
2844			/*
2845			 * We think the allocation will succeed in this zone,
2846			 * but it is not certain, hence the false. The caller
2847			 * will repeat this with true if allocation indeed
2848			 * succeeds in this zone.
2849			 */
2850			compaction_defer_reset(zone, order, false);
2851
2852			break;
2853		}
2854
2855		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2856					status == COMPACT_PARTIAL_SKIPPED))
2857			/*
2858			 * We think that allocation won't succeed in this zone
2859			 * so we defer compaction there. If it ends up
2860			 * succeeding after all, it will be reset.
2861			 */
2862			defer_compaction(zone, order);
2863
2864		/*
2865		 * We might have stopped compacting due to need_resched() in
2866		 * async compaction, or due to a fatal signal detected. In that
2867		 * case do not try further zones
2868		 */
2869		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2870					|| fatal_signal_pending(current))
2871			break;
2872	}
2873
2874	return rc;
2875}
2876
2877/*
2878 * compact_node() - compact all zones within a node
2879 * @pgdat: The node page data
2880 * @proactive: Whether the compaction is proactive
2881 *
2882 * For proactive compaction, compact till each zone's fragmentation score
2883 * reaches within proactive compaction thresholds (as determined by the
2884 * proactiveness tunable), it is possible that the function returns before
2885 * reaching score targets due to various back-off conditions, such as,
2886 * contention on per-node or per-zone locks.
2887 */
2888static int compact_node(pg_data_t *pgdat, bool proactive)
2889{
2890	int zoneid;
2891	struct zone *zone;
2892	struct compact_control cc = {
2893		.order = -1,
2894		.mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
2895		.ignore_skip_hint = true,
2896		.whole_zone = true,
2897		.gfp_mask = GFP_KERNEL,
2898		.proactive_compaction = proactive,
2899	};
2900
2901	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2902		zone = &pgdat->node_zones[zoneid];
2903		if (!populated_zone(zone))
2904			continue;
2905
2906		if (fatal_signal_pending(current))
2907			return -EINTR;
2908
2909		cc.zone = zone;
2910
2911		compact_zone(&cc, NULL);
2912
2913		if (proactive) {
2914			count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2915					     cc.total_migrate_scanned);
2916			count_compact_events(KCOMPACTD_FREE_SCANNED,
2917					     cc.total_free_scanned);
2918		}
2919	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2920
2921	return 0;
 
 
 
 
 
 
 
2922}
2923
2924/* Compact all zones of all nodes in the system */
2925static int compact_nodes(void)
2926{
2927	int ret, nid;
2928
2929	/* Flush pending updates to the LRU lists */
2930	lru_add_drain_all();
2931
2932	for_each_online_node(nid) {
2933		ret = compact_node(NODE_DATA(nid), false);
2934		if (ret)
2935			return ret;
2936	}
2937
2938	return 0;
2939}
2940
2941static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write,
2942		void *buffer, size_t *length, loff_t *ppos)
2943{
2944	int rc, nid;
2945
2946	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2947	if (rc)
2948		return rc;
2949
2950	if (write && sysctl_compaction_proactiveness) {
2951		for_each_online_node(nid) {
2952			pg_data_t *pgdat = NODE_DATA(nid);
2953
2954			if (pgdat->proactive_compact_trigger)
2955				continue;
2956
2957			pgdat->proactive_compact_trigger = true;
2958			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2959							     pgdat->nr_zones - 1);
2960			wake_up_interruptible(&pgdat->kcompactd_wait);
2961		}
2962	}
2963
2964	return 0;
2965}
2966
2967/*
2968 * This is the entry point for compacting all nodes via
2969 * /proc/sys/vm/compact_memory
2970 */
2971static int sysctl_compaction_handler(const struct ctl_table *table, int write,
2972			void *buffer, size_t *length, loff_t *ppos)
2973{
2974	int ret;
2975
2976	ret = proc_dointvec(table, write, buffer, length, ppos);
2977	if (ret)
2978		return ret;
2979
2980	if (sysctl_compact_memory != 1)
2981		return -EINVAL;
2982
2983	if (write)
2984		ret = compact_nodes();
2985
2986	return ret;
2987}
2988
2989#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2990static ssize_t compact_store(struct device *dev,
2991			     struct device_attribute *attr,
2992			     const char *buf, size_t count)
2993{
2994	int nid = dev->id;
2995
2996	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2997		/* Flush pending updates to the LRU lists */
2998		lru_add_drain_all();
2999
3000		compact_node(NODE_DATA(nid), false);
3001	}
3002
3003	return count;
3004}
3005static DEVICE_ATTR_WO(compact);
3006
3007int compaction_register_node(struct node *node)
3008{
3009	return device_create_file(&node->dev, &dev_attr_compact);
3010}
3011
3012void compaction_unregister_node(struct node *node)
3013{
3014	device_remove_file(&node->dev, &dev_attr_compact);
3015}
3016#endif /* CONFIG_SYSFS && CONFIG_NUMA */
3017
3018static inline bool kcompactd_work_requested(pg_data_t *pgdat)
3019{
3020	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
3021		pgdat->proactive_compact_trigger;
3022}
3023
3024static bool kcompactd_node_suitable(pg_data_t *pgdat)
3025{
3026	int zoneid;
3027	struct zone *zone;
3028	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
3029	enum compact_result ret;
3030
3031	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
3032		zone = &pgdat->node_zones[zoneid];
3033
3034		if (!populated_zone(zone))
3035			continue;
3036
3037		ret = compaction_suit_allocation_order(zone,
3038				pgdat->kcompactd_max_order,
3039				highest_zoneidx, ALLOC_WMARK_MIN);
3040		if (ret == COMPACT_CONTINUE)
3041			return true;
3042	}
3043
3044	return false;
3045}
3046
3047static void kcompactd_do_work(pg_data_t *pgdat)
3048{
3049	/*
3050	 * With no special task, compact all zones so that a page of requested
3051	 * order is allocatable.
3052	 */
3053	int zoneid;
3054	struct zone *zone;
3055	struct compact_control cc = {
3056		.order = pgdat->kcompactd_max_order,
3057		.search_order = pgdat->kcompactd_max_order,
3058		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
3059		.mode = MIGRATE_SYNC_LIGHT,
3060		.ignore_skip_hint = false,
3061		.gfp_mask = GFP_KERNEL,
3062	};
3063	enum compact_result ret;
3064
3065	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
3066							cc.highest_zoneidx);
3067	count_compact_event(KCOMPACTD_WAKE);
3068
3069	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
3070		int status;
3071
3072		zone = &pgdat->node_zones[zoneid];
3073		if (!populated_zone(zone))
3074			continue;
3075
3076		if (compaction_deferred(zone, cc.order))
3077			continue;
3078
3079		ret = compaction_suit_allocation_order(zone,
3080				cc.order, zoneid, ALLOC_WMARK_MIN);
3081		if (ret != COMPACT_CONTINUE)
3082			continue;
3083
3084		if (kthread_should_stop())
3085			return;
3086
3087		cc.zone = zone;
3088		status = compact_zone(&cc, NULL);
3089
3090		if (status == COMPACT_SUCCESS) {
3091			compaction_defer_reset(zone, cc.order, false);
3092		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3093			/*
3094			 * Buddy pages may become stranded on pcps that could
3095			 * otherwise coalesce on the zone's free area for
3096			 * order >= cc.order.  This is ratelimited by the
3097			 * upcoming deferral.
3098			 */
3099			drain_all_pages(zone);
3100
3101			/*
3102			 * We use sync migration mode here, so we defer like
3103			 * sync direct compaction does.
3104			 */
3105			defer_compaction(zone, cc.order);
3106		}
3107
3108		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3109				     cc.total_migrate_scanned);
3110		count_compact_events(KCOMPACTD_FREE_SCANNED,
3111				     cc.total_free_scanned);
3112	}
3113
3114	/*
3115	 * Regardless of success, we are done until woken up next. But remember
3116	 * the requested order/highest_zoneidx in case it was higher/tighter
3117	 * than our current ones
3118	 */
3119	if (pgdat->kcompactd_max_order <= cc.order)
3120		pgdat->kcompactd_max_order = 0;
3121	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3122		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3123}
3124
3125void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3126{
3127	if (!order)
3128		return;
3129
3130	if (pgdat->kcompactd_max_order < order)
3131		pgdat->kcompactd_max_order = order;
3132
3133	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3134		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3135
3136	/*
3137	 * Pairs with implicit barrier in wait_event_freezable()
3138	 * such that wakeups are not missed.
3139	 */
3140	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3141		return;
3142
3143	if (!kcompactd_node_suitable(pgdat))
3144		return;
3145
3146	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3147							highest_zoneidx);
3148	wake_up_interruptible(&pgdat->kcompactd_wait);
3149}
3150
3151/*
3152 * The background compaction daemon, started as a kernel thread
3153 * from the init process.
3154 */
3155static int kcompactd(void *p)
3156{
3157	pg_data_t *pgdat = (pg_data_t *)p;
3158	struct task_struct *tsk = current;
3159	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3160	long timeout = default_timeout;
3161
3162	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3163
3164	if (!cpumask_empty(cpumask))
3165		set_cpus_allowed_ptr(tsk, cpumask);
3166
3167	current->flags |= PF_KCOMPACTD;
3168	set_freezable();
3169
3170	pgdat->kcompactd_max_order = 0;
3171	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3172
3173	while (!kthread_should_stop()) {
3174		unsigned long pflags;
3175
3176		/*
3177		 * Avoid the unnecessary wakeup for proactive compaction
3178		 * when it is disabled.
3179		 */
3180		if (!sysctl_compaction_proactiveness)
3181			timeout = MAX_SCHEDULE_TIMEOUT;
3182		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3183		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3184			kcompactd_work_requested(pgdat), timeout) &&
3185			!pgdat->proactive_compact_trigger) {
3186
3187			psi_memstall_enter(&pflags);
3188			kcompactd_do_work(pgdat);
3189			psi_memstall_leave(&pflags);
3190			/*
3191			 * Reset the timeout value. The defer timeout from
3192			 * proactive compaction is lost here but that is fine
3193			 * as the condition of the zone changing substantionally
3194			 * then carrying on with the previous defer interval is
3195			 * not useful.
3196			 */
3197			timeout = default_timeout;
3198			continue;
3199		}
3200
3201		/*
3202		 * Start the proactive work with default timeout. Based
3203		 * on the fragmentation score, this timeout is updated.
3204		 */
3205		timeout = default_timeout;
3206		if (should_proactive_compact_node(pgdat)) {
3207			unsigned int prev_score, score;
3208
3209			prev_score = fragmentation_score_node(pgdat);
3210			compact_node(pgdat, true);
3211			score = fragmentation_score_node(pgdat);
3212			/*
3213			 * Defer proactive compaction if the fragmentation
3214			 * score did not go down i.e. no progress made.
3215			 */
3216			if (unlikely(score >= prev_score))
3217				timeout =
3218				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3219		}
3220		if (unlikely(pgdat->proactive_compact_trigger))
3221			pgdat->proactive_compact_trigger = false;
3222	}
3223
3224	current->flags &= ~PF_KCOMPACTD;
3225
3226	return 0;
3227}
3228
3229/*
3230 * This kcompactd start function will be called by init and node-hot-add.
3231 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3232 */
3233void __meminit kcompactd_run(int nid)
3234{
3235	pg_data_t *pgdat = NODE_DATA(nid);
3236
3237	if (pgdat->kcompactd)
3238		return;
3239
3240	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3241	if (IS_ERR(pgdat->kcompactd)) {
3242		pr_err("Failed to start kcompactd on node %d\n", nid);
3243		pgdat->kcompactd = NULL;
3244	}
3245}
3246
3247/*
3248 * Called by memory hotplug when all memory in a node is offlined. Caller must
3249 * be holding mem_hotplug_begin/done().
3250 */
3251void __meminit kcompactd_stop(int nid)
3252{
3253	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3254
3255	if (kcompactd) {
3256		kthread_stop(kcompactd);
3257		NODE_DATA(nid)->kcompactd = NULL;
3258	}
3259}
3260
3261/*
3262 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3263 * not required for correctness. So if the last cpu in a node goes
3264 * away, we get changed to run anywhere: as the first one comes back,
3265 * restore their cpu bindings.
3266 */
3267static int kcompactd_cpu_online(unsigned int cpu)
3268{
3269	int nid;
3270
3271	for_each_node_state(nid, N_MEMORY) {
3272		pg_data_t *pgdat = NODE_DATA(nid);
3273		const struct cpumask *mask;
3274
3275		mask = cpumask_of_node(pgdat->node_id);
3276
3277		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3278			/* One of our CPUs online: restore mask */
3279			if (pgdat->kcompactd)
3280				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3281	}
3282	return 0;
3283}
3284
3285static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table,
3286		int write, void *buffer, size_t *lenp, loff_t *ppos)
3287{
3288	int ret, old;
3289
3290	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3291		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3292
3293	old = *(int *)table->data;
3294	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3295	if (ret)
3296		return ret;
3297	if (old != *(int *)table->data)
3298		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3299			     table->procname, current->comm,
3300			     task_pid_nr(current));
3301	return ret;
3302}
3303
3304static struct ctl_table vm_compaction[] = {
3305	{
3306		.procname	= "compact_memory",
3307		.data		= &sysctl_compact_memory,
3308		.maxlen		= sizeof(int),
3309		.mode		= 0200,
3310		.proc_handler	= sysctl_compaction_handler,
3311	},
3312	{
3313		.procname	= "compaction_proactiveness",
3314		.data		= &sysctl_compaction_proactiveness,
3315		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3316		.mode		= 0644,
3317		.proc_handler	= compaction_proactiveness_sysctl_handler,
3318		.extra1		= SYSCTL_ZERO,
3319		.extra2		= SYSCTL_ONE_HUNDRED,
3320	},
3321	{
3322		.procname	= "extfrag_threshold",
3323		.data		= &sysctl_extfrag_threshold,
3324		.maxlen		= sizeof(int),
3325		.mode		= 0644,
3326		.proc_handler	= proc_dointvec_minmax,
3327		.extra1		= SYSCTL_ZERO,
3328		.extra2		= SYSCTL_ONE_THOUSAND,
3329	},
3330	{
3331		.procname	= "compact_unevictable_allowed",
3332		.data		= &sysctl_compact_unevictable_allowed,
3333		.maxlen		= sizeof(int),
3334		.mode		= 0644,
3335		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3336		.extra1		= SYSCTL_ZERO,
3337		.extra2		= SYSCTL_ONE,
3338	},
 
3339};
3340
3341static int __init kcompactd_init(void)
3342{
3343	int nid;
3344	int ret;
3345
3346	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3347					"mm/compaction:online",
3348					kcompactd_cpu_online, NULL);
3349	if (ret < 0) {
3350		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3351		return ret;
3352	}
3353
3354	for_each_node_state(nid, N_MEMORY)
3355		kcompactd_run(nid);
3356	register_sysctl_init("vm", vm_compaction);
3357	return 0;
3358}
3359subsys_initcall(kcompactd_init)
3360
3361#endif /* CONFIG_COMPACTION */