Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include "internal.h"
  27
  28#ifdef CONFIG_COMPACTION
  29/*
  30 * Fragmentation score check interval for proactive compaction purposes.
  31 */
  32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
  33
  34static inline void count_compact_event(enum vm_event_item item)
  35{
  36	count_vm_event(item);
  37}
  38
  39static inline void count_compact_events(enum vm_event_item item, long delta)
  40{
  41	count_vm_events(item, delta);
  42}
  43#else
  44#define count_compact_event(item) do { } while (0)
  45#define count_compact_events(item, delta) do { } while (0)
  46#endif
  47
  48#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/compaction.h>
  52
  53#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  54#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
 
 
 
 
 
 
 
  55
  56/*
  57 * Page order with-respect-to which proactive compaction
  58 * calculates external fragmentation, which is used as
  59 * the "fragmentation score" of a node/zone.
  60 */
  61#if defined CONFIG_TRANSPARENT_HUGEPAGE
  62#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
  63#elif defined CONFIG_HUGETLBFS
  64#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
  65#else
  66#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  67#endif
  68
  69static unsigned long release_freepages(struct list_head *freelist)
  70{
  71	struct page *page, *next;
  72	unsigned long high_pfn = 0;
  73
  74	list_for_each_entry_safe(page, next, freelist, lru) {
  75		unsigned long pfn = page_to_pfn(page);
  76		list_del(&page->lru);
  77		__free_page(page);
  78		if (pfn > high_pfn)
  79			high_pfn = pfn;
  80	}
  81
  82	return high_pfn;
  83}
  84
  85static void split_map_pages(struct list_head *list)
  86{
  87	unsigned int i, order, nr_pages;
  88	struct page *page, *next;
  89	LIST_HEAD(tmp_list);
  90
  91	list_for_each_entry_safe(page, next, list, lru) {
  92		list_del(&page->lru);
  93
  94		order = page_private(page);
  95		nr_pages = 1 << order;
  96
  97		post_alloc_hook(page, order, __GFP_MOVABLE);
  98		if (order)
  99			split_page(page, order);
 100
 101		for (i = 0; i < nr_pages; i++) {
 102			list_add(&page->lru, &tmp_list);
 103			page++;
 104		}
 105	}
 106
 107	list_splice(&tmp_list, list);
 108}
 109
 110#ifdef CONFIG_COMPACTION
 111bool PageMovable(struct page *page)
 
 112{
 113	const struct movable_operations *mops;
 114
 115	VM_BUG_ON_PAGE(!PageLocked(page), page);
 116	if (!__PageMovable(page))
 117		return false;
 118
 119	mops = page_movable_ops(page);
 120	if (mops)
 121		return true;
 122
 123	return false;
 124}
 
 125
 126void __SetPageMovable(struct page *page, const struct movable_operations *mops)
 127{
 128	VM_BUG_ON_PAGE(!PageLocked(page), page);
 129	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
 130	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
 131}
 132EXPORT_SYMBOL(__SetPageMovable);
 133
 134void __ClearPageMovable(struct page *page)
 135{
 136	VM_BUG_ON_PAGE(!PageMovable(page), page);
 137	/*
 138	 * This page still has the type of a movable page, but it's
 139	 * actually not movable any more.
 
 140	 */
 141	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
 
 142}
 143EXPORT_SYMBOL(__ClearPageMovable);
 144
 145/* Do not skip compaction more than 64 times */
 146#define COMPACT_MAX_DEFER_SHIFT 6
 147
 148/*
 149 * Compaction is deferred when compaction fails to result in a page
 150 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 152 */
 153static void defer_compaction(struct zone *zone, int order)
 154{
 155	zone->compact_considered = 0;
 156	zone->compact_defer_shift++;
 157
 158	if (order < zone->compact_order_failed)
 159		zone->compact_order_failed = order;
 160
 161	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 162		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 163
 164	trace_mm_compaction_defer_compaction(zone, order);
 165}
 166
 167/* Returns true if compaction should be skipped this time */
 168static bool compaction_deferred(struct zone *zone, int order)
 169{
 170	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 171
 172	if (order < zone->compact_order_failed)
 173		return false;
 174
 175	/* Avoid possible overflow */
 176	if (++zone->compact_considered >= defer_limit) {
 177		zone->compact_considered = defer_limit;
 178		return false;
 179	}
 180
 181	trace_mm_compaction_deferred(zone, order);
 182
 183	return true;
 184}
 185
 186/*
 187 * Update defer tracking counters after successful compaction of given order,
 188 * which means an allocation either succeeded (alloc_success == true) or is
 189 * expected to succeed.
 190 */
 191void compaction_defer_reset(struct zone *zone, int order,
 192		bool alloc_success)
 193{
 194	if (alloc_success) {
 195		zone->compact_considered = 0;
 196		zone->compact_defer_shift = 0;
 197	}
 198	if (order >= zone->compact_order_failed)
 199		zone->compact_order_failed = order + 1;
 200
 201	trace_mm_compaction_defer_reset(zone, order);
 202}
 203
 204/* Returns true if restarting compaction after many failures */
 205static bool compaction_restarting(struct zone *zone, int order)
 206{
 207	if (order < zone->compact_order_failed)
 208		return false;
 209
 210	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 211		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 212}
 213
 214/* Returns true if the pageblock should be scanned for pages to isolate. */
 215static inline bool isolation_suitable(struct compact_control *cc,
 216					struct page *page)
 217{
 218	if (cc->ignore_skip_hint)
 219		return true;
 220
 221	return !get_pageblock_skip(page);
 222}
 223
 224static void reset_cached_positions(struct zone *zone)
 225{
 226	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 227	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 228	zone->compact_cached_free_pfn =
 229				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 230}
 231
 232#ifdef CONFIG_SPARSEMEM
 233/*
 234 * If the PFN falls into an offline section, return the start PFN of the
 235 * next online section. If the PFN falls into an online section or if
 236 * there is no next online section, return 0.
 237 */
 238static unsigned long skip_offline_sections(unsigned long start_pfn)
 239{
 240	unsigned long start_nr = pfn_to_section_nr(start_pfn);
 241
 242	if (online_section_nr(start_nr))
 243		return 0;
 244
 245	while (++start_nr <= __highest_present_section_nr) {
 246		if (online_section_nr(start_nr))
 247			return section_nr_to_pfn(start_nr);
 248	}
 249
 250	return 0;
 251}
 252
 253/*
 254 * If the PFN falls into an offline section, return the end PFN of the
 255 * next online section in reverse. If the PFN falls into an online section
 256 * or if there is no next online section in reverse, return 0.
 257 */
 258static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
 259{
 260	unsigned long start_nr = pfn_to_section_nr(start_pfn);
 261
 262	if (!start_nr || online_section_nr(start_nr))
 263		return 0;
 264
 265	while (start_nr-- > 0) {
 266		if (online_section_nr(start_nr))
 267			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
 268	}
 269
 270	return 0;
 271}
 272#else
 273static unsigned long skip_offline_sections(unsigned long start_pfn)
 274{
 275	return 0;
 276}
 277
 278static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
 279{
 280	return 0;
 281}
 282#endif
 283
 284/*
 285 * Compound pages of >= pageblock_order should consistently be skipped until
 286 * released. It is always pointless to compact pages of such order (if they are
 287 * migratable), and the pageblocks they occupy cannot contain any free pages.
 288 */
 289static bool pageblock_skip_persistent(struct page *page)
 290{
 291	if (!PageCompound(page))
 292		return false;
 293
 294	page = compound_head(page);
 295
 296	if (compound_order(page) >= pageblock_order)
 297		return true;
 298
 299	return false;
 300}
 301
 302static bool
 303__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 304							bool check_target)
 305{
 306	struct page *page = pfn_to_online_page(pfn);
 307	struct page *block_page;
 308	struct page *end_page;
 309	unsigned long block_pfn;
 310
 311	if (!page)
 312		return false;
 313	if (zone != page_zone(page))
 314		return false;
 315	if (pageblock_skip_persistent(page))
 316		return false;
 317
 318	/*
 319	 * If skip is already cleared do no further checking once the
 320	 * restart points have been set.
 321	 */
 322	if (check_source && check_target && !get_pageblock_skip(page))
 323		return true;
 324
 325	/*
 326	 * If clearing skip for the target scanner, do not select a
 327	 * non-movable pageblock as the starting point.
 328	 */
 329	if (!check_source && check_target &&
 330	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 331		return false;
 332
 333	/* Ensure the start of the pageblock or zone is online and valid */
 334	block_pfn = pageblock_start_pfn(pfn);
 335	block_pfn = max(block_pfn, zone->zone_start_pfn);
 336	block_page = pfn_to_online_page(block_pfn);
 337	if (block_page) {
 338		page = block_page;
 339		pfn = block_pfn;
 340	}
 341
 342	/* Ensure the end of the pageblock or zone is online and valid */
 343	block_pfn = pageblock_end_pfn(pfn) - 1;
 344	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 345	end_page = pfn_to_online_page(block_pfn);
 346	if (!end_page)
 347		return false;
 348
 349	/*
 350	 * Only clear the hint if a sample indicates there is either a
 351	 * free page or an LRU page in the block. One or other condition
 352	 * is necessary for the block to be a migration source/target.
 353	 */
 354	do {
 355		if (check_source && PageLRU(page)) {
 356			clear_pageblock_skip(page);
 357			return true;
 358		}
 
 359
 360		if (check_target && PageBuddy(page)) {
 361			clear_pageblock_skip(page);
 362			return true;
 
 363		}
 364
 365		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 
 366	} while (page <= end_page);
 367
 368	return false;
 369}
 370
 371/*
 372 * This function is called to clear all cached information on pageblocks that
 373 * should be skipped for page isolation when the migrate and free page scanner
 374 * meet.
 375 */
 376static void __reset_isolation_suitable(struct zone *zone)
 377{
 378	unsigned long migrate_pfn = zone->zone_start_pfn;
 379	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 380	unsigned long reset_migrate = free_pfn;
 381	unsigned long reset_free = migrate_pfn;
 382	bool source_set = false;
 383	bool free_set = false;
 384
 385	/* Only flush if a full compaction finished recently */
 386	if (!zone->compact_blockskip_flush)
 387		return;
 388
 389	zone->compact_blockskip_flush = false;
 390
 391	/*
 392	 * Walk the zone and update pageblock skip information. Source looks
 393	 * for PageLRU while target looks for PageBuddy. When the scanner
 394	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 395	 * is suitable as both source and target.
 396	 */
 397	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 398					free_pfn -= pageblock_nr_pages) {
 399		cond_resched();
 400
 401		/* Update the migrate PFN */
 402		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 403		    migrate_pfn < reset_migrate) {
 404			source_set = true;
 405			reset_migrate = migrate_pfn;
 406			zone->compact_init_migrate_pfn = reset_migrate;
 407			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 408			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 409		}
 410
 411		/* Update the free PFN */
 412		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 413		    free_pfn > reset_free) {
 414			free_set = true;
 415			reset_free = free_pfn;
 416			zone->compact_init_free_pfn = reset_free;
 417			zone->compact_cached_free_pfn = reset_free;
 418		}
 419	}
 420
 421	/* Leave no distance if no suitable block was reset */
 422	if (reset_migrate >= reset_free) {
 423		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 424		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 425		zone->compact_cached_free_pfn = free_pfn;
 426	}
 427}
 428
 429void reset_isolation_suitable(pg_data_t *pgdat)
 430{
 431	int zoneid;
 432
 433	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 434		struct zone *zone = &pgdat->node_zones[zoneid];
 435		if (!populated_zone(zone))
 436			continue;
 437
 438		__reset_isolation_suitable(zone);
 
 
 439	}
 440}
 441
 442/*
 443 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 444 * locks are not required for read/writers. Returns true if it was already set.
 445 */
 446static bool test_and_set_skip(struct compact_control *cc, struct page *page)
 
 447{
 448	bool skip;
 449
 450	/* Do not update if skip hint is being ignored */
 451	if (cc->ignore_skip_hint)
 452		return false;
 453
 
 
 
 454	skip = get_pageblock_skip(page);
 455	if (!skip && !cc->no_set_skip_hint)
 456		set_pageblock_skip(page);
 457
 458	return skip;
 459}
 460
 461static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 462{
 463	struct zone *zone = cc->zone;
 464
 
 
 465	/* Set for isolation rather than compaction */
 466	if (cc->no_set_skip_hint)
 467		return;
 468
 469	pfn = pageblock_end_pfn(pfn);
 470
 471	/* Update where async and sync compaction should restart */
 472	if (pfn > zone->compact_cached_migrate_pfn[0])
 473		zone->compact_cached_migrate_pfn[0] = pfn;
 474	if (cc->mode != MIGRATE_ASYNC &&
 475	    pfn > zone->compact_cached_migrate_pfn[1])
 476		zone->compact_cached_migrate_pfn[1] = pfn;
 477}
 478
 479/*
 480 * If no pages were isolated then mark this pageblock to be skipped in the
 481 * future. The information is later cleared by __reset_isolation_suitable().
 482 */
 483static void update_pageblock_skip(struct compact_control *cc,
 484			struct page *page, unsigned long pfn)
 485{
 486	struct zone *zone = cc->zone;
 487
 488	if (cc->no_set_skip_hint)
 489		return;
 490
 
 
 
 491	set_pageblock_skip(page);
 492
 
 493	if (pfn < zone->compact_cached_free_pfn)
 494		zone->compact_cached_free_pfn = pfn;
 495}
 496#else
 497static inline bool isolation_suitable(struct compact_control *cc,
 498					struct page *page)
 499{
 500	return true;
 501}
 502
 503static inline bool pageblock_skip_persistent(struct page *page)
 504{
 505	return false;
 506}
 507
 508static inline void update_pageblock_skip(struct compact_control *cc,
 509			struct page *page, unsigned long pfn)
 510{
 511}
 512
 513static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 514{
 515}
 516
 517static bool test_and_set_skip(struct compact_control *cc, struct page *page)
 
 518{
 519	return false;
 520}
 521#endif /* CONFIG_COMPACTION */
 522
 523/*
 524 * Compaction requires the taking of some coarse locks that are potentially
 525 * very heavily contended. For async compaction, trylock and record if the
 526 * lock is contended. The lock will still be acquired but compaction will
 527 * abort when the current block is finished regardless of success rate.
 528 * Sync compaction acquires the lock.
 529 *
 530 * Always returns true which makes it easier to track lock state in callers.
 531 */
 532static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 533						struct compact_control *cc)
 534	__acquires(lock)
 535{
 536	/* Track if the lock is contended in async mode */
 537	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 538		if (spin_trylock_irqsave(lock, *flags))
 539			return true;
 540
 541		cc->contended = true;
 542	}
 543
 544	spin_lock_irqsave(lock, *flags);
 545	return true;
 546}
 547
 548/*
 549 * Compaction requires the taking of some coarse locks that are potentially
 550 * very heavily contended. The lock should be periodically unlocked to avoid
 551 * having disabled IRQs for a long time, even when there is nobody waiting on
 552 * the lock. It might also be that allowing the IRQs will result in
 553 * need_resched() becoming true. If scheduling is needed, compaction schedules.
 
 554 * Either compaction type will also abort if a fatal signal is pending.
 555 * In either case if the lock was locked, it is dropped and not regained.
 556 *
 557 * Returns true if compaction should abort due to fatal signal pending.
 558 * Returns false when compaction can continue.
 
 
 559 */
 560static bool compact_unlock_should_abort(spinlock_t *lock,
 561		unsigned long flags, bool *locked, struct compact_control *cc)
 562{
 563	if (*locked) {
 564		spin_unlock_irqrestore(lock, flags);
 565		*locked = false;
 566	}
 567
 568	if (fatal_signal_pending(current)) {
 569		cc->contended = true;
 570		return true;
 571	}
 572
 573	cond_resched();
 574
 575	return false;
 576}
 577
 578/*
 579 * Isolate free pages onto a private freelist. If @strict is true, will abort
 580 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 581 * (even though it may still end up isolating some pages).
 582 */
 583static unsigned long isolate_freepages_block(struct compact_control *cc,
 584				unsigned long *start_pfn,
 585				unsigned long end_pfn,
 586				struct list_head *freelist,
 587				unsigned int stride,
 588				bool strict)
 589{
 590	int nr_scanned = 0, total_isolated = 0;
 591	struct page *page;
 592	unsigned long flags = 0;
 593	bool locked = false;
 594	unsigned long blockpfn = *start_pfn;
 595	unsigned int order;
 596
 597	/* Strict mode is for isolation, speed is secondary */
 598	if (strict)
 599		stride = 1;
 600
 601	page = pfn_to_page(blockpfn);
 602
 603	/* Isolate free pages. */
 604	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
 605		int isolated;
 
 606
 607		/*
 608		 * Periodically drop the lock (if held) regardless of its
 609		 * contention, to give chance to IRQs. Abort if fatal signal
 610		 * pending.
 611		 */
 612		if (!(blockpfn % COMPACT_CLUSTER_MAX)
 613		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 614								&locked, cc))
 615			break;
 616
 617		nr_scanned++;
 
 
 618
 619		/*
 620		 * For compound pages such as THP and hugetlbfs, we can save
 621		 * potentially a lot of iterations if we skip them at once.
 622		 * The check is racy, but we can consider only valid values
 623		 * and the only danger is skipping too much.
 624		 */
 625		if (PageCompound(page)) {
 626			const unsigned int order = compound_order(page);
 627
 628			if (blockpfn + (1UL << order) <= end_pfn) {
 629				blockpfn += (1UL << order) - 1;
 630				page += (1UL << order) - 1;
 631				nr_scanned += (1UL << order) - 1;
 632			}
 633
 634			goto isolate_fail;
 635		}
 636
 637		if (!PageBuddy(page))
 638			goto isolate_fail;
 639
 640		/* If we already hold the lock, we can skip some rechecking. */
 
 
 
 
 
 
 641		if (!locked) {
 642			locked = compact_lock_irqsave(&cc->zone->lock,
 643								&flags, cc);
 644
 645			/* Recheck this is a buddy page under lock */
 646			if (!PageBuddy(page))
 647				goto isolate_fail;
 648		}
 649
 650		/* Found a free page, will break it into order-0 pages */
 651		order = buddy_order(page);
 652		isolated = __isolate_free_page(page, order);
 653		if (!isolated)
 654			break;
 655		set_page_private(page, order);
 656
 657		nr_scanned += isolated - 1;
 658		total_isolated += isolated;
 659		cc->nr_freepages += isolated;
 660		list_add_tail(&page->lru, freelist);
 661
 662		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 663			blockpfn += isolated;
 664			break;
 665		}
 666		/* Advance to the end of split page */
 667		blockpfn += isolated - 1;
 668		page += isolated - 1;
 669		continue;
 670
 671isolate_fail:
 672		if (strict)
 673			break;
 
 
 674
 675	}
 676
 677	if (locked)
 678		spin_unlock_irqrestore(&cc->zone->lock, flags);
 679
 680	/*
 681	 * Be careful to not go outside of the pageblock.
 
 682	 */
 683	if (unlikely(blockpfn > end_pfn))
 684		blockpfn = end_pfn;
 685
 686	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 687					nr_scanned, total_isolated);
 688
 689	/* Record how far we have got within the block */
 690	*start_pfn = blockpfn;
 691
 692	/*
 693	 * If strict isolation is requested by CMA then check that all the
 694	 * pages requested were isolated. If there were any failures, 0 is
 695	 * returned and CMA will fail.
 696	 */
 697	if (strict && blockpfn < end_pfn)
 698		total_isolated = 0;
 699
 700	cc->total_free_scanned += nr_scanned;
 701	if (total_isolated)
 702		count_compact_events(COMPACTISOLATED, total_isolated);
 703	return total_isolated;
 704}
 705
 706/**
 707 * isolate_freepages_range() - isolate free pages.
 708 * @cc:        Compaction control structure.
 709 * @start_pfn: The first PFN to start isolating.
 710 * @end_pfn:   The one-past-last PFN.
 711 *
 712 * Non-free pages, invalid PFNs, or zone boundaries within the
 713 * [start_pfn, end_pfn) range are considered errors, cause function to
 714 * undo its actions and return zero.
 715 *
 716 * Otherwise, function returns one-past-the-last PFN of isolated page
 717 * (which may be greater then end_pfn if end fell in a middle of
 718 * a free page).
 719 */
 720unsigned long
 721isolate_freepages_range(struct compact_control *cc,
 722			unsigned long start_pfn, unsigned long end_pfn)
 723{
 724	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 725	LIST_HEAD(freelist);
 726
 727	pfn = start_pfn;
 728	block_start_pfn = pageblock_start_pfn(pfn);
 729	if (block_start_pfn < cc->zone->zone_start_pfn)
 730		block_start_pfn = cc->zone->zone_start_pfn;
 731	block_end_pfn = pageblock_end_pfn(pfn);
 732
 733	for (; pfn < end_pfn; pfn += isolated,
 734				block_start_pfn = block_end_pfn,
 735				block_end_pfn += pageblock_nr_pages) {
 736		/* Protect pfn from changing by isolate_freepages_block */
 737		unsigned long isolate_start_pfn = pfn;
 738
 
 
 739		/*
 740		 * pfn could pass the block_end_pfn if isolated freepage
 741		 * is more than pageblock order. In this case, we adjust
 742		 * scanning range to right one.
 743		 */
 744		if (pfn >= block_end_pfn) {
 745			block_start_pfn = pageblock_start_pfn(pfn);
 746			block_end_pfn = pageblock_end_pfn(pfn);
 
 747		}
 748
 749		block_end_pfn = min(block_end_pfn, end_pfn);
 750
 751		if (!pageblock_pfn_to_page(block_start_pfn,
 752					block_end_pfn, cc->zone))
 753			break;
 754
 755		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 756					block_end_pfn, &freelist, 0, true);
 757
 758		/*
 759		 * In strict mode, isolate_freepages_block() returns 0 if
 760		 * there are any holes in the block (ie. invalid PFNs or
 761		 * non-free pages).
 762		 */
 763		if (!isolated)
 764			break;
 765
 766		/*
 767		 * If we managed to isolate pages, it is always (1 << n) *
 768		 * pageblock_nr_pages for some non-negative n.  (Max order
 769		 * page may span two pageblocks).
 770		 */
 771	}
 772
 773	/* __isolate_free_page() does not map the pages */
 774	split_map_pages(&freelist);
 775
 776	if (pfn < end_pfn) {
 777		/* Loop terminated early, cleanup. */
 778		release_freepages(&freelist);
 779		return 0;
 780	}
 781
 782	/* We don't use freelists for anything. */
 783	return pfn;
 784}
 785
 786/* Similar to reclaim, but different enough that they don't share logic */
 787static bool too_many_isolated(struct compact_control *cc)
 788{
 789	pg_data_t *pgdat = cc->zone->zone_pgdat;
 790	bool too_many;
 791
 792	unsigned long active, inactive, isolated;
 793
 794	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 795			node_page_state(pgdat, NR_INACTIVE_ANON);
 796	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 797			node_page_state(pgdat, NR_ACTIVE_ANON);
 798	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 799			node_page_state(pgdat, NR_ISOLATED_ANON);
 800
 801	/*
 802	 * Allow GFP_NOFS to isolate past the limit set for regular
 803	 * compaction runs. This prevents an ABBA deadlock when other
 804	 * compactors have already isolated to the limit, but are
 805	 * blocked on filesystem locks held by the GFP_NOFS thread.
 806	 */
 807	if (cc->gfp_mask & __GFP_FS) {
 808		inactive >>= 3;
 809		active >>= 3;
 810	}
 811
 812	too_many = isolated > (inactive + active) / 2;
 813	if (!too_many)
 814		wake_throttle_isolated(pgdat);
 815
 816	return too_many;
 817}
 818
 819/**
 820 * isolate_migratepages_block() - isolate all migrate-able pages within
 821 *				  a single pageblock
 822 * @cc:		Compaction control structure.
 823 * @low_pfn:	The first PFN to isolate
 824 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 825 * @mode:	Isolation mode to be used.
 826 *
 827 * Isolate all pages that can be migrated from the range specified by
 828 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 829 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
 830 * -ENOMEM in case we could not allocate a page, or 0.
 831 * cc->migrate_pfn will contain the next pfn to scan.
 832 *
 833 * The pages are isolated on cc->migratepages list (not required to be empty),
 834 * and cc->nr_migratepages is updated accordingly.
 835 */
 836static int
 837isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 838			unsigned long end_pfn, isolate_mode_t mode)
 839{
 840	pg_data_t *pgdat = cc->zone->zone_pgdat;
 841	unsigned long nr_scanned = 0, nr_isolated = 0;
 842	struct lruvec *lruvec;
 843	unsigned long flags = 0;
 844	struct lruvec *locked = NULL;
 845	struct folio *folio = NULL;
 846	struct page *page = NULL, *valid_page = NULL;
 847	struct address_space *mapping;
 848	unsigned long start_pfn = low_pfn;
 849	bool skip_on_failure = false;
 850	unsigned long next_skip_pfn = 0;
 851	bool skip_updated = false;
 852	int ret = 0;
 853
 854	cc->migrate_pfn = low_pfn;
 855
 856	/*
 857	 * Ensure that there are not too many pages isolated from the LRU
 858	 * list by either parallel reclaimers or compaction. If there are,
 859	 * delay for some time until fewer pages are isolated
 860	 */
 861	while (unlikely(too_many_isolated(cc))) {
 862		/* stop isolation if there are still pages not migrated */
 863		if (cc->nr_migratepages)
 864			return -EAGAIN;
 865
 866		/* async migration should just abort */
 867		if (cc->mode == MIGRATE_ASYNC)
 868			return -EAGAIN;
 869
 870		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
 871
 872		if (fatal_signal_pending(current))
 873			return -EINTR;
 874	}
 875
 876	cond_resched();
 877
 878	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 879		skip_on_failure = true;
 880		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 881	}
 882
 883	/* Time to isolate some pages for migration */
 884	for (; low_pfn < end_pfn; low_pfn++) {
 885		bool is_dirty, is_unevictable;
 886
 887		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 888			/*
 889			 * We have isolated all migration candidates in the
 890			 * previous order-aligned block, and did not skip it due
 891			 * to failure. We should migrate the pages now and
 892			 * hopefully succeed compaction.
 893			 */
 894			if (nr_isolated)
 895				break;
 896
 897			/*
 898			 * We failed to isolate in the previous order-aligned
 899			 * block. Set the new boundary to the end of the
 900			 * current block. Note we can't simply increase
 901			 * next_skip_pfn by 1 << order, as low_pfn might have
 902			 * been incremented by a higher number due to skipping
 903			 * a compound or a high-order buddy page in the
 904			 * previous loop iteration.
 905			 */
 906			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 907		}
 908
 909		/*
 910		 * Periodically drop the lock (if held) regardless of its
 911		 * contention, to give chance to IRQs. Abort completely if
 912		 * a fatal signal is pending.
 913		 */
 914		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
 915			if (locked) {
 916				unlock_page_lruvec_irqrestore(locked, flags);
 917				locked = NULL;
 918			}
 919
 920			if (fatal_signal_pending(current)) {
 921				cc->contended = true;
 922				ret = -EINTR;
 923
 924				goto fatal_pending;
 925			}
 926
 927			cond_resched();
 928		}
 929
 
 
 930		nr_scanned++;
 931
 932		page = pfn_to_page(low_pfn);
 933
 934		/*
 935		 * Check if the pageblock has already been marked skipped.
 936		 * Only the first PFN is checked as the caller isolates
 937		 * COMPACT_CLUSTER_MAX at a time so the second call must
 938		 * not falsely conclude that the block should be skipped.
 939		 */
 940		if (!valid_page && (pageblock_aligned(low_pfn) ||
 941				    low_pfn == cc->zone->zone_start_pfn)) {
 942			if (!isolation_suitable(cc, page)) {
 943				low_pfn = end_pfn;
 944				folio = NULL;
 945				goto isolate_abort;
 946			}
 947			valid_page = page;
 948		}
 949
 950		if (PageHuge(page) && cc->alloc_contig) {
 951			if (locked) {
 952				unlock_page_lruvec_irqrestore(locked, flags);
 953				locked = NULL;
 954			}
 955
 956			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
 957
 958			/*
 959			 * Fail isolation in case isolate_or_dissolve_huge_page()
 960			 * reports an error. In case of -ENOMEM, abort right away.
 961			 */
 962			if (ret < 0) {
 963				 /* Do not report -EBUSY down the chain */
 964				if (ret == -EBUSY)
 965					ret = 0;
 966				low_pfn += compound_nr(page) - 1;
 967				nr_scanned += compound_nr(page) - 1;
 968				goto isolate_fail;
 969			}
 970
 971			if (PageHuge(page)) {
 972				/*
 973				 * Hugepage was successfully isolated and placed
 974				 * on the cc->migratepages list.
 975				 */
 976				folio = page_folio(page);
 977				low_pfn += folio_nr_pages(folio) - 1;
 978				goto isolate_success_no_list;
 979			}
 980
 981			/*
 982			 * Ok, the hugepage was dissolved. Now these pages are
 983			 * Buddy and cannot be re-allocated because they are
 984			 * isolated. Fall-through as the check below handles
 985			 * Buddy pages.
 986			 */
 987		}
 988
 989		/*
 990		 * Skip if free. We read page order here without zone lock
 991		 * which is generally unsafe, but the race window is small and
 992		 * the worst thing that can happen is that we skip some
 993		 * potential isolation targets.
 994		 */
 995		if (PageBuddy(page)) {
 996			unsigned long freepage_order = buddy_order_unsafe(page);
 997
 998			/*
 999			 * Without lock, we cannot be sure that what we got is
1000			 * a valid page order. Consider only values in the
1001			 * valid order range to prevent low_pfn overflow.
1002			 */
1003			if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1004				low_pfn += (1UL << freepage_order) - 1;
1005				nr_scanned += (1UL << freepage_order) - 1;
1006			}
1007			continue;
1008		}
1009
1010		/*
1011		 * Regardless of being on LRU, compound pages such as THP and
1012		 * hugetlbfs are not to be compacted unless we are attempting
1013		 * an allocation much larger than the huge page size (eg CMA).
1014		 * We can potentially save a lot of iterations if we skip them
1015		 * at once. The check is racy, but we can consider only valid
1016		 * values and the only danger is skipping too much.
1017		 */
1018		if (PageCompound(page) && !cc->alloc_contig) {
1019			const unsigned int order = compound_order(page);
1020
1021			if (likely(order <= MAX_PAGE_ORDER)) {
1022				low_pfn += (1UL << order) - 1;
1023				nr_scanned += (1UL << order) - 1;
1024			}
1025			goto isolate_fail;
1026		}
1027
1028		/*
1029		 * Check may be lockless but that's ok as we recheck later.
1030		 * It's possible to migrate LRU and non-lru movable pages.
1031		 * Skip any other type of page
1032		 */
1033		if (!PageLRU(page)) {
1034			/*
1035			 * __PageMovable can return false positive so we need
1036			 * to verify it under page_lock.
1037			 */
1038			if (unlikely(__PageMovable(page)) &&
1039					!PageIsolated(page)) {
1040				if (locked) {
1041					unlock_page_lruvec_irqrestore(locked, flags);
1042					locked = NULL;
1043				}
1044
1045				if (isolate_movable_page(page, mode)) {
1046					folio = page_folio(page);
1047					goto isolate_success;
1048				}
1049			}
1050
1051			goto isolate_fail;
1052		}
1053
1054		/*
1055		 * Be careful not to clear PageLRU until after we're
1056		 * sure the page is not being freed elsewhere -- the
1057		 * page release code relies on it.
1058		 */
1059		folio = folio_get_nontail_page(page);
1060		if (unlikely(!folio))
1061			goto isolate_fail;
1062
1063		/*
1064		 * Migration will fail if an anonymous page is pinned in memory,
1065		 * so avoid taking lru_lock and isolating it unnecessarily in an
1066		 * admittedly racy check.
1067		 */
1068		mapping = folio_mapping(folio);
1069		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1070			goto isolate_fail_put;
1071
1072		/*
1073		 * Only allow to migrate anonymous pages in GFP_NOFS context
1074		 * because those do not depend on fs locks.
1075		 */
1076		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1077			goto isolate_fail_put;
1078
1079		/* Only take pages on LRU: a check now makes later tests safe */
1080		if (!folio_test_lru(folio))
1081			goto isolate_fail_put;
1082
1083		is_unevictable = folio_test_unevictable(folio);
1084
1085		/* Compaction might skip unevictable pages but CMA takes them */
1086		if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1087			goto isolate_fail_put;
1088
1089		/*
1090		 * To minimise LRU disruption, the caller can indicate with
1091		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1092		 * it will be able to migrate without blocking - clean pages
1093		 * for the most part.  PageWriteback would require blocking.
1094		 */
1095		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1096			goto isolate_fail_put;
1097
1098		is_dirty = folio_test_dirty(folio);
1099
1100		if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1101		    (mapping && is_unevictable)) {
1102			bool migrate_dirty = true;
1103			bool is_unmovable;
1104
1105			/*
1106			 * Only folios without mappings or that have
1107			 * a ->migrate_folio callback are possible to migrate
1108			 * without blocking.
1109			 *
1110			 * Folios from unmovable mappings are not migratable.
1111			 *
1112			 * However, we can be racing with truncation, which can
1113			 * free the mapping that we need to check. Truncation
1114			 * holds the folio lock until after the folio is removed
1115			 * from the page so holding it ourselves is sufficient.
1116			 *
1117			 * To avoid locking the folio just to check unmovable,
1118			 * assume every unmovable folio is also unevictable,
1119			 * which is a cheaper test.  If our assumption goes
1120			 * wrong, it's not a correctness bug, just potentially
1121			 * wasted cycles.
1122			 */
1123			if (!folio_trylock(folio))
1124				goto isolate_fail_put;
1125
1126			mapping = folio_mapping(folio);
1127			if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1128				migrate_dirty = !mapping ||
1129						mapping->a_ops->migrate_folio;
1130			}
1131			is_unmovable = mapping && mapping_unmovable(mapping);
1132			folio_unlock(folio);
1133			if (!migrate_dirty || is_unmovable)
1134				goto isolate_fail_put;
1135		}
1136
1137		/* Try isolate the folio */
1138		if (!folio_test_clear_lru(folio))
1139			goto isolate_fail_put;
1140
1141		lruvec = folio_lruvec(folio);
1142
1143		/* If we already hold the lock, we can skip some rechecking */
1144		if (lruvec != locked) {
1145			if (locked)
1146				unlock_page_lruvec_irqrestore(locked, flags);
1147
1148			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1149			locked = lruvec;
1150
1151			lruvec_memcg_debug(lruvec, folio);
1152
1153			/*
1154			 * Try get exclusive access under lock. If marked for
1155			 * skip, the scan is aborted unless the current context
1156			 * is a rescan to reach the end of the pageblock.
1157			 */
1158			if (!skip_updated && valid_page) {
1159				skip_updated = true;
1160				if (test_and_set_skip(cc, valid_page) &&
1161				    !cc->finish_pageblock) {
1162					low_pfn = end_pfn;
1163					goto isolate_abort;
1164				}
1165			}
1166
1167			/*
1168			 * folio become large since the non-locked check,
1169			 * and it's on LRU.
 
1170			 */
1171			if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1172				low_pfn += folio_nr_pages(folio) - 1;
1173				nr_scanned += folio_nr_pages(folio) - 1;
1174				folio_set_lru(folio);
1175				goto isolate_fail_put;
1176			}
1177		}
1178
1179		/* The folio is taken off the LRU */
1180		if (folio_test_large(folio))
1181			low_pfn += folio_nr_pages(folio) - 1;
1182
1183		/* Successfully isolated */
1184		lruvec_del_folio(lruvec, folio);
1185		node_stat_mod_folio(folio,
1186				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1187				folio_nr_pages(folio));
1188
1189isolate_success:
1190		list_add(&folio->lru, &cc->migratepages);
1191isolate_success_no_list:
1192		cc->nr_migratepages += folio_nr_pages(folio);
1193		nr_isolated += folio_nr_pages(folio);
1194		nr_scanned += folio_nr_pages(folio) - 1;
1195
1196		/*
1197		 * Avoid isolating too much unless this block is being
1198		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1199		 * or a lock is contended. For contention, isolate quickly to
1200		 * potentially remove one source of contention.
1201		 */
1202		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1203		    !cc->finish_pageblock && !cc->contended) {
1204			++low_pfn;
1205			break;
1206		}
1207
1208		continue;
1209
1210isolate_fail_put:
1211		/* Avoid potential deadlock in freeing page under lru_lock */
1212		if (locked) {
1213			unlock_page_lruvec_irqrestore(locked, flags);
1214			locked = NULL;
1215		}
1216		folio_put(folio);
1217
1218isolate_fail:
1219		if (!skip_on_failure && ret != -ENOMEM)
1220			continue;
1221
1222		/*
1223		 * We have isolated some pages, but then failed. Release them
1224		 * instead of migrating, as we cannot form the cc->order buddy
1225		 * page anyway.
1226		 */
1227		if (nr_isolated) {
1228			if (locked) {
1229				unlock_page_lruvec_irqrestore(locked, flags);
1230				locked = NULL;
1231			}
1232			putback_movable_pages(&cc->migratepages);
1233			cc->nr_migratepages = 0;
1234			nr_isolated = 0;
1235		}
1236
1237		if (low_pfn < next_skip_pfn) {
1238			low_pfn = next_skip_pfn - 1;
1239			/*
1240			 * The check near the loop beginning would have updated
1241			 * next_skip_pfn too, but this is a bit simpler.
1242			 */
1243			next_skip_pfn += 1UL << cc->order;
1244		}
1245
1246		if (ret == -ENOMEM)
1247			break;
1248	}
1249
1250	/*
1251	 * The PageBuddy() check could have potentially brought us outside
1252	 * the range to be scanned.
1253	 */
1254	if (unlikely(low_pfn > end_pfn))
1255		low_pfn = end_pfn;
1256
1257	folio = NULL;
1258
1259isolate_abort:
1260	if (locked)
1261		unlock_page_lruvec_irqrestore(locked, flags);
1262	if (folio) {
1263		folio_set_lru(folio);
1264		folio_put(folio);
1265	}
1266
1267	/*
1268	 * Update the cached scanner pfn once the pageblock has been scanned.
1269	 * Pages will either be migrated in which case there is no point
1270	 * scanning in the near future or migration failed in which case the
1271	 * failure reason may persist. The block is marked for skipping if
1272	 * there were no pages isolated in the block or if the block is
1273	 * rescanned twice in a row.
1274	 */
1275	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1276		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1277			set_pageblock_skip(valid_page);
1278		update_cached_migrate(cc, low_pfn);
1279	}
1280
1281	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1282						nr_scanned, nr_isolated);
1283
1284fatal_pending:
1285	cc->total_migrate_scanned += nr_scanned;
1286	if (nr_isolated)
1287		count_compact_events(COMPACTISOLATED, nr_isolated);
1288
1289	cc->migrate_pfn = low_pfn;
1290
1291	return ret;
1292}
1293
1294/**
1295 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1296 * @cc:        Compaction control structure.
1297 * @start_pfn: The first PFN to start isolating.
1298 * @end_pfn:   The one-past-last PFN.
1299 *
1300 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1301 * in case we could not allocate a page, or 0.
1302 */
1303int
1304isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1305							unsigned long end_pfn)
1306{
1307	unsigned long pfn, block_start_pfn, block_end_pfn;
1308	int ret = 0;
1309
1310	/* Scan block by block. First and last block may be incomplete */
1311	pfn = start_pfn;
1312	block_start_pfn = pageblock_start_pfn(pfn);
1313	if (block_start_pfn < cc->zone->zone_start_pfn)
1314		block_start_pfn = cc->zone->zone_start_pfn;
1315	block_end_pfn = pageblock_end_pfn(pfn);
1316
1317	for (; pfn < end_pfn; pfn = block_end_pfn,
1318				block_start_pfn = block_end_pfn,
1319				block_end_pfn += pageblock_nr_pages) {
1320
1321		block_end_pfn = min(block_end_pfn, end_pfn);
1322
1323		if (!pageblock_pfn_to_page(block_start_pfn,
1324					block_end_pfn, cc->zone))
1325			continue;
1326
1327		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1328						 ISOLATE_UNEVICTABLE);
1329
1330		if (ret)
1331			break;
1332
1333		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1334			break;
1335	}
1336
1337	return ret;
1338}
1339
1340#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1341#ifdef CONFIG_COMPACTION
1342
1343static bool suitable_migration_source(struct compact_control *cc,
1344							struct page *page)
1345{
1346	int block_mt;
1347
1348	if (pageblock_skip_persistent(page))
1349		return false;
1350
1351	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1352		return true;
1353
1354	block_mt = get_pageblock_migratetype(page);
1355
1356	if (cc->migratetype == MIGRATE_MOVABLE)
1357		return is_migrate_movable(block_mt);
1358	else
1359		return block_mt == cc->migratetype;
1360}
1361
1362/* Returns true if the page is within a block suitable for migration to */
1363static bool suitable_migration_target(struct compact_control *cc,
1364							struct page *page)
1365{
1366	/* If the page is a large free page, then disallow migration */
1367	if (PageBuddy(page)) {
1368		/*
1369		 * We are checking page_order without zone->lock taken. But
1370		 * the only small danger is that we skip a potentially suitable
1371		 * pageblock, so it's not worth to check order for valid range.
1372		 */
1373		if (buddy_order_unsafe(page) >= pageblock_order)
1374			return false;
1375	}
1376
1377	if (cc->ignore_block_suitable)
1378		return true;
1379
1380	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1381	if (is_migrate_movable(get_pageblock_migratetype(page)))
1382		return true;
1383
1384	/* Otherwise skip the block */
1385	return false;
1386}
1387
1388static inline unsigned int
1389freelist_scan_limit(struct compact_control *cc)
1390{
1391	unsigned short shift = BITS_PER_LONG - 1;
1392
1393	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1394}
1395
1396/*
1397 * Test whether the free scanner has reached the same or lower pageblock than
1398 * the migration scanner, and compaction should thus terminate.
1399 */
1400static inline bool compact_scanners_met(struct compact_control *cc)
1401{
1402	return (cc->free_pfn >> pageblock_order)
1403		<= (cc->migrate_pfn >> pageblock_order);
1404}
1405
1406/*
1407 * Used when scanning for a suitable migration target which scans freelists
1408 * in reverse. Reorders the list such as the unscanned pages are scanned
1409 * first on the next iteration of the free scanner
1410 */
1411static void
1412move_freelist_head(struct list_head *freelist, struct page *freepage)
1413{
1414	LIST_HEAD(sublist);
1415
1416	if (!list_is_first(&freepage->buddy_list, freelist)) {
1417		list_cut_before(&sublist, freelist, &freepage->buddy_list);
1418		list_splice_tail(&sublist, freelist);
1419	}
1420}
1421
1422/*
1423 * Similar to move_freelist_head except used by the migration scanner
1424 * when scanning forward. It's possible for these list operations to
1425 * move against each other if they search the free list exactly in
1426 * lockstep.
1427 */
1428static void
1429move_freelist_tail(struct list_head *freelist, struct page *freepage)
1430{
1431	LIST_HEAD(sublist);
1432
1433	if (!list_is_last(&freepage->buddy_list, freelist)) {
1434		list_cut_position(&sublist, freelist, &freepage->buddy_list);
1435		list_splice_tail(&sublist, freelist);
1436	}
1437}
1438
1439static void
1440fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1441{
1442	unsigned long start_pfn, end_pfn;
1443	struct page *page;
1444
1445	/* Do not search around if there are enough pages already */
1446	if (cc->nr_freepages >= cc->nr_migratepages)
1447		return;
1448
1449	/* Minimise scanning during async compaction */
1450	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1451		return;
1452
1453	/* Pageblock boundaries */
1454	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1455	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1456
1457	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1458	if (!page)
1459		return;
1460
1461	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
 
 
 
 
 
 
 
 
 
 
1462
1463	/* Skip this pageblock in the future as it's full or nearly full */
1464	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1465		set_pageblock_skip(page);
1466}
1467
1468/* Search orders in round-robin fashion */
1469static int next_search_order(struct compact_control *cc, int order)
1470{
1471	order--;
1472	if (order < 0)
1473		order = cc->order - 1;
1474
1475	/* Search wrapped around? */
1476	if (order == cc->search_order) {
1477		cc->search_order--;
1478		if (cc->search_order < 0)
1479			cc->search_order = cc->order - 1;
1480		return -1;
1481	}
1482
1483	return order;
1484}
1485
1486static void fast_isolate_freepages(struct compact_control *cc)
 
1487{
1488	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1489	unsigned int nr_scanned = 0, total_isolated = 0;
1490	unsigned long low_pfn, min_pfn, highest = 0;
1491	unsigned long nr_isolated = 0;
1492	unsigned long distance;
1493	struct page *page = NULL;
1494	bool scan_start = false;
1495	int order;
1496
1497	/* Full compaction passes in a negative order */
1498	if (cc->order <= 0)
1499		return;
1500
1501	/*
1502	 * If starting the scan, use a deeper search and use the highest
1503	 * PFN found if a suitable one is not found.
1504	 */
1505	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1506		limit = pageblock_nr_pages >> 1;
1507		scan_start = true;
1508	}
1509
1510	/*
1511	 * Preferred point is in the top quarter of the scan space but take
1512	 * a pfn from the top half if the search is problematic.
1513	 */
1514	distance = (cc->free_pfn - cc->migrate_pfn);
1515	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1516	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1517
1518	if (WARN_ON_ONCE(min_pfn > low_pfn))
1519		low_pfn = min_pfn;
1520
1521	/*
1522	 * Search starts from the last successful isolation order or the next
1523	 * order to search after a previous failure
1524	 */
1525	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1526
1527	for (order = cc->search_order;
1528	     !page && order >= 0;
1529	     order = next_search_order(cc, order)) {
1530		struct free_area *area = &cc->zone->free_area[order];
1531		struct list_head *freelist;
1532		struct page *freepage;
1533		unsigned long flags;
1534		unsigned int order_scanned = 0;
1535		unsigned long high_pfn = 0;
1536
1537		if (!area->nr_free)
1538			continue;
1539
1540		spin_lock_irqsave(&cc->zone->lock, flags);
1541		freelist = &area->free_list[MIGRATE_MOVABLE];
1542		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1543			unsigned long pfn;
1544
1545			order_scanned++;
1546			nr_scanned++;
1547			pfn = page_to_pfn(freepage);
1548
1549			if (pfn >= highest)
1550				highest = max(pageblock_start_pfn(pfn),
1551					      cc->zone->zone_start_pfn);
1552
1553			if (pfn >= low_pfn) {
1554				cc->fast_search_fail = 0;
1555				cc->search_order = order;
1556				page = freepage;
1557				break;
1558			}
1559
1560			if (pfn >= min_pfn && pfn > high_pfn) {
1561				high_pfn = pfn;
1562
1563				/* Shorten the scan if a candidate is found */
1564				limit >>= 1;
1565			}
1566
1567			if (order_scanned >= limit)
1568				break;
1569		}
1570
1571		/* Use a maximum candidate pfn if a preferred one was not found */
1572		if (!page && high_pfn) {
1573			page = pfn_to_page(high_pfn);
1574
1575			/* Update freepage for the list reorder below */
1576			freepage = page;
1577		}
1578
1579		/* Reorder to so a future search skips recent pages */
1580		move_freelist_head(freelist, freepage);
1581
1582		/* Isolate the page if available */
1583		if (page) {
1584			if (__isolate_free_page(page, order)) {
1585				set_page_private(page, order);
1586				nr_isolated = 1 << order;
1587				nr_scanned += nr_isolated - 1;
1588				total_isolated += nr_isolated;
1589				cc->nr_freepages += nr_isolated;
1590				list_add_tail(&page->lru, &cc->freepages);
1591				count_compact_events(COMPACTISOLATED, nr_isolated);
1592			} else {
1593				/* If isolation fails, abort the search */
1594				order = cc->search_order + 1;
1595				page = NULL;
1596			}
1597		}
1598
1599		spin_unlock_irqrestore(&cc->zone->lock, flags);
1600
1601		/* Skip fast search if enough freepages isolated */
1602		if (cc->nr_freepages >= cc->nr_migratepages)
1603			break;
1604
1605		/*
1606		 * Smaller scan on next order so the total scan is related
1607		 * to freelist_scan_limit.
1608		 */
1609		if (order_scanned >= limit)
1610			limit = max(1U, limit >> 1);
1611	}
1612
1613	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1614						   nr_scanned, total_isolated);
1615
1616	if (!page) {
1617		cc->fast_search_fail++;
1618		if (scan_start) {
1619			/*
1620			 * Use the highest PFN found above min. If one was
1621			 * not found, be pessimistic for direct compaction
1622			 * and use the min mark.
1623			 */
1624			if (highest >= min_pfn) {
1625				page = pfn_to_page(highest);
1626				cc->free_pfn = highest;
1627			} else {
1628				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1629					page = pageblock_pfn_to_page(min_pfn,
1630						min(pageblock_end_pfn(min_pfn),
1631						    zone_end_pfn(cc->zone)),
1632						cc->zone);
1633					if (page && !suitable_migration_target(cc, page))
1634						page = NULL;
1635
1636					cc->free_pfn = min_pfn;
1637				}
1638			}
1639		}
1640	}
1641
1642	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1643		highest -= pageblock_nr_pages;
1644		cc->zone->compact_cached_free_pfn = highest;
1645	}
1646
1647	cc->total_free_scanned += nr_scanned;
1648	if (!page)
1649		return;
1650
1651	low_pfn = page_to_pfn(page);
1652	fast_isolate_around(cc, low_pfn);
 
1653}
1654
1655/*
1656 * Based on information in the current compact_control, find blocks
1657 * suitable for isolating free pages from and then isolate them.
1658 */
1659static void isolate_freepages(struct compact_control *cc)
1660{
1661	struct zone *zone = cc->zone;
1662	struct page *page;
1663	unsigned long block_start_pfn;	/* start of current pageblock */
1664	unsigned long isolate_start_pfn; /* exact pfn we start at */
1665	unsigned long block_end_pfn;	/* end of current pageblock */
1666	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1667	struct list_head *freelist = &cc->freepages;
1668	unsigned int stride;
1669
1670	/* Try a small search of the free lists for a candidate */
1671	fast_isolate_freepages(cc);
1672	if (cc->nr_freepages)
1673		goto splitmap;
1674
1675	/*
1676	 * Initialise the free scanner. The starting point is where we last
1677	 * successfully isolated from, zone-cached value, or the end of the
1678	 * zone when isolating for the first time. For looping we also need
1679	 * this pfn aligned down to the pageblock boundary, because we do
1680	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1681	 * For ending point, take care when isolating in last pageblock of a
1682	 * zone which ends in the middle of a pageblock.
1683	 * The low boundary is the end of the pageblock the migration scanner
1684	 * is using.
1685	 */
1686	isolate_start_pfn = cc->free_pfn;
1687	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1688	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1689						zone_end_pfn(zone));
1690	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1691	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1692
1693	/*
1694	 * Isolate free pages until enough are available to migrate the
1695	 * pages on cc->migratepages. We stop searching if the migrate
1696	 * and free page scanners meet or enough free pages are isolated.
1697	 */
1698	for (; block_start_pfn >= low_pfn;
1699				block_end_pfn = block_start_pfn,
1700				block_start_pfn -= pageblock_nr_pages,
1701				isolate_start_pfn = block_start_pfn) {
1702		unsigned long nr_isolated;
1703
1704		/*
1705		 * This can iterate a massively long zone without finding any
1706		 * suitable migration targets, so periodically check resched.
1707		 */
1708		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1709			cond_resched();
1710
1711		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1712									zone);
1713		if (!page) {
1714			unsigned long next_pfn;
1715
1716			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1717			if (next_pfn)
1718				block_start_pfn = max(next_pfn, low_pfn);
1719
1720			continue;
1721		}
1722
1723		/* Check the block is suitable for migration */
1724		if (!suitable_migration_target(cc, page))
1725			continue;
1726
1727		/* If isolation recently failed, do not retry */
1728		if (!isolation_suitable(cc, page))
1729			continue;
1730
1731		/* Found a block suitable for isolating free pages from. */
1732		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1733					block_end_pfn, freelist, stride, false);
1734
1735		/* Update the skip hint if the full pageblock was scanned */
1736		if (isolate_start_pfn == block_end_pfn)
1737			update_pageblock_skip(cc, page, block_start_pfn -
1738					      pageblock_nr_pages);
1739
1740		/* Are enough freepages isolated? */
1741		if (cc->nr_freepages >= cc->nr_migratepages) {
1742			if (isolate_start_pfn >= block_end_pfn) {
1743				/*
1744				 * Restart at previous pageblock if more
1745				 * freepages can be isolated next time.
1746				 */
1747				isolate_start_pfn =
1748					block_start_pfn - pageblock_nr_pages;
1749			}
1750			break;
1751		} else if (isolate_start_pfn < block_end_pfn) {
1752			/*
1753			 * If isolation failed early, do not continue
1754			 * needlessly.
1755			 */
1756			break;
1757		}
1758
1759		/* Adjust stride depending on isolation */
1760		if (nr_isolated) {
1761			stride = 1;
1762			continue;
1763		}
1764		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1765	}
1766
1767	/*
1768	 * Record where the free scanner will restart next time. Either we
1769	 * broke from the loop and set isolate_start_pfn based on the last
1770	 * call to isolate_freepages_block(), or we met the migration scanner
1771	 * and the loop terminated due to isolate_start_pfn < low_pfn
1772	 */
1773	cc->free_pfn = isolate_start_pfn;
1774
1775splitmap:
1776	/* __isolate_free_page() does not map the pages */
1777	split_map_pages(freelist);
1778}
1779
1780/*
1781 * This is a migrate-callback that "allocates" freepages by taking pages
1782 * from the isolated freelists in the block we are migrating to.
1783 */
1784static struct folio *compaction_alloc(struct folio *src, unsigned long data)
 
1785{
1786	struct compact_control *cc = (struct compact_control *)data;
1787	struct folio *dst;
1788
1789	if (list_empty(&cc->freepages)) {
1790		isolate_freepages(cc);
1791
1792		if (list_empty(&cc->freepages))
1793			return NULL;
1794	}
1795
1796	dst = list_entry(cc->freepages.next, struct folio, lru);
1797	list_del(&dst->lru);
1798	cc->nr_freepages--;
1799
1800	return dst;
1801}
1802
1803/*
1804 * This is a migrate-callback that "frees" freepages back to the isolated
1805 * freelist.  All pages on the freelist are from the same zone, so there is no
1806 * special handling needed for NUMA.
1807 */
1808static void compaction_free(struct folio *dst, unsigned long data)
1809{
1810	struct compact_control *cc = (struct compact_control *)data;
1811
1812	list_add(&dst->lru, &cc->freepages);
1813	cc->nr_freepages++;
1814}
1815
1816/* possible outcome of isolate_migratepages */
1817typedef enum {
1818	ISOLATE_ABORT,		/* Abort compaction now */
1819	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1820	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1821} isolate_migrate_t;
1822
1823/*
1824 * Allow userspace to control policy on scanning the unevictable LRU for
1825 * compactable pages.
1826 */
1827static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1828/*
1829 * Tunable for proactive compaction. It determines how
1830 * aggressively the kernel should compact memory in the
1831 * background. It takes values in the range [0, 100].
1832 */
1833static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1834static int sysctl_extfrag_threshold = 500;
1835static int __read_mostly sysctl_compact_memory;
1836
1837static inline void
1838update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1839{
1840	if (cc->fast_start_pfn == ULONG_MAX)
1841		return;
1842
1843	if (!cc->fast_start_pfn)
1844		cc->fast_start_pfn = pfn;
1845
1846	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1847}
1848
1849static inline unsigned long
1850reinit_migrate_pfn(struct compact_control *cc)
1851{
1852	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1853		return cc->migrate_pfn;
1854
1855	cc->migrate_pfn = cc->fast_start_pfn;
1856	cc->fast_start_pfn = ULONG_MAX;
1857
1858	return cc->migrate_pfn;
1859}
1860
1861/*
1862 * Briefly search the free lists for a migration source that already has
1863 * some free pages to reduce the number of pages that need migration
1864 * before a pageblock is free.
1865 */
1866static unsigned long fast_find_migrateblock(struct compact_control *cc)
1867{
1868	unsigned int limit = freelist_scan_limit(cc);
1869	unsigned int nr_scanned = 0;
1870	unsigned long distance;
1871	unsigned long pfn = cc->migrate_pfn;
1872	unsigned long high_pfn;
1873	int order;
1874	bool found_block = false;
1875
1876	/* Skip hints are relied on to avoid repeats on the fast search */
1877	if (cc->ignore_skip_hint)
1878		return pfn;
1879
1880	/*
1881	 * If the pageblock should be finished then do not select a different
1882	 * pageblock.
1883	 */
1884	if (cc->finish_pageblock)
1885		return pfn;
1886
1887	/*
1888	 * If the migrate_pfn is not at the start of a zone or the start
1889	 * of a pageblock then assume this is a continuation of a previous
1890	 * scan restarted due to COMPACT_CLUSTER_MAX.
1891	 */
1892	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1893		return pfn;
1894
1895	/*
1896	 * For smaller orders, just linearly scan as the number of pages
1897	 * to migrate should be relatively small and does not necessarily
1898	 * justify freeing up a large block for a small allocation.
1899	 */
1900	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1901		return pfn;
1902
1903	/*
1904	 * Only allow kcompactd and direct requests for movable pages to
1905	 * quickly clear out a MOVABLE pageblock for allocation. This
1906	 * reduces the risk that a large movable pageblock is freed for
1907	 * an unmovable/reclaimable small allocation.
1908	 */
1909	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1910		return pfn;
1911
1912	/*
1913	 * When starting the migration scanner, pick any pageblock within the
1914	 * first half of the search space. Otherwise try and pick a pageblock
1915	 * within the first eighth to reduce the chances that a migration
1916	 * target later becomes a source.
1917	 */
1918	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1919	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1920		distance >>= 2;
1921	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1922
1923	for (order = cc->order - 1;
1924	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1925	     order--) {
1926		struct free_area *area = &cc->zone->free_area[order];
1927		struct list_head *freelist;
1928		unsigned long flags;
1929		struct page *freepage;
1930
1931		if (!area->nr_free)
1932			continue;
1933
1934		spin_lock_irqsave(&cc->zone->lock, flags);
1935		freelist = &area->free_list[MIGRATE_MOVABLE];
1936		list_for_each_entry(freepage, freelist, buddy_list) {
1937			unsigned long free_pfn;
1938
1939			if (nr_scanned++ >= limit) {
1940				move_freelist_tail(freelist, freepage);
1941				break;
1942			}
1943
1944			free_pfn = page_to_pfn(freepage);
1945			if (free_pfn < high_pfn) {
1946				/*
1947				 * Avoid if skipped recently. Ideally it would
1948				 * move to the tail but even safe iteration of
1949				 * the list assumes an entry is deleted, not
1950				 * reordered.
1951				 */
1952				if (get_pageblock_skip(freepage))
1953					continue;
1954
1955				/* Reorder to so a future search skips recent pages */
1956				move_freelist_tail(freelist, freepage);
1957
1958				update_fast_start_pfn(cc, free_pfn);
1959				pfn = pageblock_start_pfn(free_pfn);
1960				if (pfn < cc->zone->zone_start_pfn)
1961					pfn = cc->zone->zone_start_pfn;
1962				cc->fast_search_fail = 0;
1963				found_block = true;
 
1964				break;
1965			}
1966		}
1967		spin_unlock_irqrestore(&cc->zone->lock, flags);
1968	}
1969
1970	cc->total_migrate_scanned += nr_scanned;
1971
1972	/*
1973	 * If fast scanning failed then use a cached entry for a page block
1974	 * that had free pages as the basis for starting a linear scan.
1975	 */
1976	if (!found_block) {
1977		cc->fast_search_fail++;
1978		pfn = reinit_migrate_pfn(cc);
1979	}
1980	return pfn;
1981}
1982
1983/*
1984 * Isolate all pages that can be migrated from the first suitable block,
1985 * starting at the block pointed to by the migrate scanner pfn within
1986 * compact_control.
1987 */
1988static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1989{
1990	unsigned long block_start_pfn;
1991	unsigned long block_end_pfn;
1992	unsigned long low_pfn;
1993	struct page *page;
1994	const isolate_mode_t isolate_mode =
1995		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1996		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1997	bool fast_find_block;
1998
1999	/*
2000	 * Start at where we last stopped, or beginning of the zone as
2001	 * initialized by compact_zone(). The first failure will use
2002	 * the lowest PFN as the starting point for linear scanning.
2003	 */
2004	low_pfn = fast_find_migrateblock(cc);
2005	block_start_pfn = pageblock_start_pfn(low_pfn);
2006	if (block_start_pfn < cc->zone->zone_start_pfn)
2007		block_start_pfn = cc->zone->zone_start_pfn;
2008
2009	/*
2010	 * fast_find_migrateblock() has already ensured the pageblock is not
2011	 * set with a skipped flag, so to avoid the isolation_suitable check
2012	 * below again, check whether the fast search was successful.
2013	 */
2014	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2015
2016	/* Only scan within a pageblock boundary */
2017	block_end_pfn = pageblock_end_pfn(low_pfn);
2018
2019	/*
2020	 * Iterate over whole pageblocks until we find the first suitable.
2021	 * Do not cross the free scanner.
2022	 */
2023	for (; block_end_pfn <= cc->free_pfn;
2024			fast_find_block = false,
2025			cc->migrate_pfn = low_pfn = block_end_pfn,
2026			block_start_pfn = block_end_pfn,
2027			block_end_pfn += pageblock_nr_pages) {
2028
2029		/*
2030		 * This can potentially iterate a massively long zone with
2031		 * many pageblocks unsuitable, so periodically check if we
2032		 * need to schedule.
2033		 */
2034		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2035			cond_resched();
2036
2037		page = pageblock_pfn_to_page(block_start_pfn,
2038						block_end_pfn, cc->zone);
2039		if (!page) {
2040			unsigned long next_pfn;
2041
2042			next_pfn = skip_offline_sections(block_start_pfn);
2043			if (next_pfn)
2044				block_end_pfn = min(next_pfn, cc->free_pfn);
2045			continue;
2046		}
2047
2048		/*
2049		 * If isolation recently failed, do not retry. Only check the
2050		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2051		 * to be visited multiple times. Assume skip was checked
2052		 * before making it "skip" so other compaction instances do
2053		 * not scan the same block.
2054		 */
2055		if ((pageblock_aligned(low_pfn) ||
2056		     low_pfn == cc->zone->zone_start_pfn) &&
2057		    !fast_find_block && !isolation_suitable(cc, page))
2058			continue;
2059
2060		/*
2061		 * For async direct compaction, only scan the pageblocks of the
2062		 * same migratetype without huge pages. Async direct compaction
2063		 * is optimistic to see if the minimum amount of work satisfies
2064		 * the allocation. The cached PFN is updated as it's possible
2065		 * that all remaining blocks between source and target are
2066		 * unsuitable and the compaction scanners fail to meet.
2067		 */
2068		if (!suitable_migration_source(cc, page)) {
2069			update_cached_migrate(cc, block_end_pfn);
2070			continue;
2071		}
2072
2073		/* Perform the isolation */
2074		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2075						isolate_mode))
2076			return ISOLATE_ABORT;
2077
2078		/*
2079		 * Either we isolated something and proceed with migration. Or
2080		 * we failed and compact_zone should decide if we should
2081		 * continue or not.
2082		 */
2083		break;
2084	}
2085
2086	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2087}
2088
2089/*
2090 * order == -1 is expected when compacting proactively via
2091 * 1. /proc/sys/vm/compact_memory
2092 * 2. /sys/devices/system/node/nodex/compact
2093 * 3. /proc/sys/vm/compaction_proactiveness
2094 */
2095static inline bool is_via_compact_memory(int order)
2096{
2097	return order == -1;
2098}
2099
2100/*
2101 * Determine whether kswapd is (or recently was!) running on this node.
2102 *
2103 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2104 * zero it.
2105 */
2106static bool kswapd_is_running(pg_data_t *pgdat)
2107{
2108	bool running;
2109
2110	pgdat_kswapd_lock(pgdat);
2111	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2112	pgdat_kswapd_unlock(pgdat);
2113
2114	return running;
2115}
2116
2117/*
2118 * A zone's fragmentation score is the external fragmentation wrt to the
2119 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2120 */
2121static unsigned int fragmentation_score_zone(struct zone *zone)
2122{
2123	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2124}
2125
2126/*
2127 * A weighted zone's fragmentation score is the external fragmentation
2128 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2129 * returns a value in the range [0, 100].
2130 *
2131 * The scaling factor ensures that proactive compaction focuses on larger
2132 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2133 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2134 * and thus never exceeds the high threshold for proactive compaction.
2135 */
2136static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2137{
2138	unsigned long score;
2139
2140	score = zone->present_pages * fragmentation_score_zone(zone);
2141	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2142}
2143
2144/*
2145 * The per-node proactive (background) compaction process is started by its
2146 * corresponding kcompactd thread when the node's fragmentation score
2147 * exceeds the high threshold. The compaction process remains active till
2148 * the node's score falls below the low threshold, or one of the back-off
2149 * conditions is met.
2150 */
2151static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2152{
2153	unsigned int score = 0;
2154	int zoneid;
2155
2156	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2157		struct zone *zone;
2158
2159		zone = &pgdat->node_zones[zoneid];
2160		if (!populated_zone(zone))
2161			continue;
2162		score += fragmentation_score_zone_weighted(zone);
2163	}
2164
2165	return score;
2166}
2167
2168static unsigned int fragmentation_score_wmark(bool low)
2169{
2170	unsigned int wmark_low;
2171
2172	/*
2173	 * Cap the low watermark to avoid excessive compaction
2174	 * activity in case a user sets the proactiveness tunable
2175	 * close to 100 (maximum).
2176	 */
2177	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2178	return low ? wmark_low : min(wmark_low + 10, 100U);
2179}
2180
2181static bool should_proactive_compact_node(pg_data_t *pgdat)
2182{
2183	int wmark_high;
2184
2185	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2186		return false;
2187
2188	wmark_high = fragmentation_score_wmark(false);
2189	return fragmentation_score_node(pgdat) > wmark_high;
2190}
2191
2192static enum compact_result __compact_finished(struct compact_control *cc)
2193{
2194	unsigned int order;
2195	const int migratetype = cc->migratetype;
2196	int ret;
2197
2198	/* Compaction run completes if the migrate and free scanner meet */
2199	if (compact_scanners_met(cc)) {
2200		/* Let the next compaction start anew. */
2201		reset_cached_positions(cc->zone);
2202
2203		/*
2204		 * Mark that the PG_migrate_skip information should be cleared
2205		 * by kswapd when it goes to sleep. kcompactd does not set the
2206		 * flag itself as the decision to be clear should be directly
2207		 * based on an allocation request.
2208		 */
2209		if (cc->direct_compaction)
2210			cc->zone->compact_blockskip_flush = true;
2211
2212		if (cc->whole_zone)
2213			return COMPACT_COMPLETE;
2214		else
2215			return COMPACT_PARTIAL_SKIPPED;
2216	}
2217
2218	if (cc->proactive_compaction) {
2219		int score, wmark_low;
2220		pg_data_t *pgdat;
2221
2222		pgdat = cc->zone->zone_pgdat;
2223		if (kswapd_is_running(pgdat))
2224			return COMPACT_PARTIAL_SKIPPED;
2225
2226		score = fragmentation_score_zone(cc->zone);
2227		wmark_low = fragmentation_score_wmark(true);
2228
2229		if (score > wmark_low)
2230			ret = COMPACT_CONTINUE;
2231		else
2232			ret = COMPACT_SUCCESS;
2233
2234		goto out;
2235	}
2236
2237	if (is_via_compact_memory(cc->order))
2238		return COMPACT_CONTINUE;
2239
2240	/*
2241	 * Always finish scanning a pageblock to reduce the possibility of
2242	 * fallbacks in the future. This is particularly important when
2243	 * migration source is unmovable/reclaimable but it's not worth
2244	 * special casing.
2245	 */
2246	if (!pageblock_aligned(cc->migrate_pfn))
2247		return COMPACT_CONTINUE;
2248
2249	/* Direct compactor: Is a suitable page free? */
2250	ret = COMPACT_NO_SUITABLE_PAGE;
2251	for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2252		struct free_area *area = &cc->zone->free_area[order];
2253		bool can_steal;
2254
2255		/* Job done if page is free of the right migratetype */
2256		if (!free_area_empty(area, migratetype))
2257			return COMPACT_SUCCESS;
2258
2259#ifdef CONFIG_CMA
2260		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2261		if (migratetype == MIGRATE_MOVABLE &&
2262			!free_area_empty(area, MIGRATE_CMA))
2263			return COMPACT_SUCCESS;
2264#endif
2265		/*
2266		 * Job done if allocation would steal freepages from
2267		 * other migratetype buddy lists.
2268		 */
2269		if (find_suitable_fallback(area, order, migratetype,
2270						true, &can_steal) != -1)
2271			/*
2272			 * Movable pages are OK in any pageblock. If we are
2273			 * stealing for a non-movable allocation, make sure
2274			 * we finish compacting the current pageblock first
2275			 * (which is assured by the above migrate_pfn align
2276			 * check) so it is as free as possible and we won't
2277			 * have to steal another one soon.
2278			 */
2279			return COMPACT_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
2280	}
2281
2282out:
2283	if (cc->contended || fatal_signal_pending(current))
2284		ret = COMPACT_CONTENDED;
2285
2286	return ret;
2287}
2288
2289static enum compact_result compact_finished(struct compact_control *cc)
2290{
2291	int ret;
2292
2293	ret = __compact_finished(cc);
2294	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2295	if (ret == COMPACT_NO_SUITABLE_PAGE)
2296		ret = COMPACT_CONTINUE;
2297
2298	return ret;
2299}
2300
2301static bool __compaction_suitable(struct zone *zone, int order,
2302				  int highest_zoneidx,
2303				  unsigned long wmark_target)
 
2304{
2305	unsigned long watermark;
 
 
 
 
 
 
 
 
 
 
 
 
 
2306	/*
2307	 * Watermarks for order-0 must be met for compaction to be able to
2308	 * isolate free pages for migration targets. This means that the
2309	 * watermark and alloc_flags have to match, or be more pessimistic than
2310	 * the check in __isolate_free_page(). We don't use the direct
2311	 * compactor's alloc_flags, as they are not relevant for freepage
2312	 * isolation. We however do use the direct compactor's highest_zoneidx
2313	 * to skip over zones where lowmem reserves would prevent allocation
2314	 * even if compaction succeeds.
2315	 * For costly orders, we require low watermark instead of min for
2316	 * compaction to proceed to increase its chances.
2317	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2318	 * suitable migration targets
2319	 */
2320	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2321				low_wmark_pages(zone) : min_wmark_pages(zone);
2322	watermark += compact_gap(order);
2323	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2324				   ALLOC_CMA, wmark_target);
 
 
 
2325}
2326
2327/*
2328 * compaction_suitable: Is this suitable to run compaction on this zone now?
2329 */
2330bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
 
 
 
 
 
 
2331{
2332	enum compact_result compact_result;
2333	bool suitable;
2334
2335	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2336					 zone_page_state(zone, NR_FREE_PAGES));
2337	/*
2338	 * fragmentation index determines if allocation failures are due to
2339	 * low memory or external fragmentation
2340	 *
2341	 * index of -1000 would imply allocations might succeed depending on
2342	 * watermarks, but we already failed the high-order watermark check
2343	 * index towards 0 implies failure is due to lack of memory
2344	 * index towards 1000 implies failure is due to fragmentation
2345	 *
2346	 * Only compact if a failure would be due to fragmentation. Also
2347	 * ignore fragindex for non-costly orders where the alternative to
2348	 * a successful reclaim/compaction is OOM. Fragindex and the
2349	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2350	 * excessive compaction for costly orders, but it should not be at the
2351	 * expense of system stability.
2352	 */
2353	if (suitable) {
2354		compact_result = COMPACT_CONTINUE;
2355		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2356			int fragindex = fragmentation_index(zone, order);
2357
2358			if (fragindex >= 0 &&
2359			    fragindex <= sysctl_extfrag_threshold) {
2360				suitable = false;
2361				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2362			}
2363		}
2364	} else {
2365		compact_result = COMPACT_SKIPPED;
2366	}
2367
2368	trace_mm_compaction_suitable(zone, order, compact_result);
 
 
2369
2370	return suitable;
2371}
2372
2373bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2374		int alloc_flags)
2375{
2376	struct zone *zone;
2377	struct zoneref *z;
2378
2379	/*
2380	 * Make sure at least one zone would pass __compaction_suitable if we continue
2381	 * retrying the reclaim.
2382	 */
2383	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2384				ac->highest_zoneidx, ac->nodemask) {
2385		unsigned long available;
 
2386
2387		/*
2388		 * Do not consider all the reclaimable memory because we do not
2389		 * want to trash just for a single high order allocation which
2390		 * is even not guaranteed to appear even if __compaction_suitable
2391		 * is happy about the watermark check.
2392		 */
2393		available = zone_reclaimable_pages(zone) / order;
2394		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2395		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2396					  available))
 
2397			return true;
2398	}
2399
2400	return false;
2401}
2402
2403/*
2404 * Should we do compaction for target allocation order.
2405 * Return COMPACT_SUCCESS if allocation for target order can be already
2406 * satisfied
2407 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2408 * Return COMPACT_CONTINUE if compaction for target order should be ran
2409 */
2410static enum compact_result
2411compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2412				 int highest_zoneidx, unsigned int alloc_flags)
2413{
2414	unsigned long watermark;
2415
2416	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2417	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2418			      alloc_flags))
2419		return COMPACT_SUCCESS;
2420
2421	if (!compaction_suitable(zone, order, highest_zoneidx))
2422		return COMPACT_SKIPPED;
2423
2424	return COMPACT_CONTINUE;
2425}
2426
2427static enum compact_result
2428compact_zone(struct compact_control *cc, struct capture_control *capc)
2429{
2430	enum compact_result ret;
2431	unsigned long start_pfn = cc->zone->zone_start_pfn;
2432	unsigned long end_pfn = zone_end_pfn(cc->zone);
2433	unsigned long last_migrated_pfn;
2434	const bool sync = cc->mode != MIGRATE_ASYNC;
2435	bool update_cached;
2436	unsigned int nr_succeeded = 0;
2437
2438	/*
2439	 * These counters track activities during zone compaction.  Initialize
2440	 * them before compacting a new zone.
2441	 */
2442	cc->total_migrate_scanned = 0;
2443	cc->total_free_scanned = 0;
2444	cc->nr_migratepages = 0;
2445	cc->nr_freepages = 0;
2446	INIT_LIST_HEAD(&cc->freepages);
2447	INIT_LIST_HEAD(&cc->migratepages);
2448
2449	cc->migratetype = gfp_migratetype(cc->gfp_mask);
 
 
 
 
 
2450
2451	if (!is_via_compact_memory(cc->order)) {
2452		ret = compaction_suit_allocation_order(cc->zone, cc->order,
2453						       cc->highest_zoneidx,
2454						       cc->alloc_flags);
2455		if (ret != COMPACT_CONTINUE)
2456			return ret;
2457	}
2458
2459	/*
2460	 * Clear pageblock skip if there were failures recently and compaction
2461	 * is about to be retried after being deferred.
2462	 */
2463	if (compaction_restarting(cc->zone, cc->order))
2464		__reset_isolation_suitable(cc->zone);
2465
2466	/*
2467	 * Setup to move all movable pages to the end of the zone. Used cached
2468	 * information on where the scanners should start (unless we explicitly
2469	 * want to compact the whole zone), but check that it is initialised
2470	 * by ensuring the values are within zone boundaries.
2471	 */
2472	cc->fast_start_pfn = 0;
2473	if (cc->whole_zone) {
2474		cc->migrate_pfn = start_pfn;
2475		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2476	} else {
2477		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2478		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2479		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2480			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2481			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2482		}
2483		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2484			cc->migrate_pfn = start_pfn;
2485			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2486			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2487		}
2488
2489		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2490			cc->whole_zone = true;
2491	}
2492
2493	last_migrated_pfn = 0;
2494
2495	/*
2496	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2497	 * the basis that some migrations will fail in ASYNC mode. However,
2498	 * if the cached PFNs match and pageblocks are skipped due to having
2499	 * no isolation candidates, then the sync state does not matter.
2500	 * Until a pageblock with isolation candidates is found, keep the
2501	 * cached PFNs in sync to avoid revisiting the same blocks.
2502	 */
2503	update_cached = !sync &&
2504		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2505
2506	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
 
2507
2508	/* lru_add_drain_all could be expensive with involving other CPUs */
2509	lru_add_drain();
2510
2511	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2512		int err;
2513		unsigned long iteration_start_pfn = cc->migrate_pfn;
2514
2515		/*
2516		 * Avoid multiple rescans of the same pageblock which can
2517		 * happen if a page cannot be isolated (dirty/writeback in
2518		 * async mode) or if the migrated pages are being allocated
2519		 * before the pageblock is cleared.  The first rescan will
2520		 * capture the entire pageblock for migration. If it fails,
2521		 * it'll be marked skip and scanning will proceed as normal.
2522		 */
2523		cc->finish_pageblock = false;
2524		if (pageblock_start_pfn(last_migrated_pfn) ==
2525		    pageblock_start_pfn(iteration_start_pfn)) {
2526			cc->finish_pageblock = true;
2527		}
2528
2529rescan:
2530		switch (isolate_migratepages(cc)) {
2531		case ISOLATE_ABORT:
2532			ret = COMPACT_CONTENDED;
2533			putback_movable_pages(&cc->migratepages);
2534			cc->nr_migratepages = 0;
2535			goto out;
2536		case ISOLATE_NONE:
2537			if (update_cached) {
2538				cc->zone->compact_cached_migrate_pfn[1] =
2539					cc->zone->compact_cached_migrate_pfn[0];
2540			}
2541
2542			/*
2543			 * We haven't isolated and migrated anything, but
2544			 * there might still be unflushed migrations from
2545			 * previous cc->order aligned block.
2546			 */
2547			goto check_drain;
2548		case ISOLATE_SUCCESS:
2549			update_cached = false;
2550			last_migrated_pfn = max(cc->zone->zone_start_pfn,
2551				pageblock_start_pfn(cc->migrate_pfn - 1));
2552		}
2553
2554		err = migrate_pages(&cc->migratepages, compaction_alloc,
2555				compaction_free, (unsigned long)cc, cc->mode,
2556				MR_COMPACTION, &nr_succeeded);
2557
2558		trace_mm_compaction_migratepages(cc, nr_succeeded);
 
2559
2560		/* All pages were either migrated or will be released */
2561		cc->nr_migratepages = 0;
2562		if (err) {
2563			putback_movable_pages(&cc->migratepages);
2564			/*
2565			 * migrate_pages() may return -ENOMEM when scanners meet
2566			 * and we want compact_finished() to detect it
2567			 */
2568			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2569				ret = COMPACT_CONTENDED;
2570				goto out;
2571			}
2572			/*
2573			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2574			 * within the pageblock_order-aligned block and
2575			 * fast_find_migrateblock may be used then scan the
2576			 * remainder of the pageblock. This will mark the
2577			 * pageblock "skip" to avoid rescanning in the near
2578			 * future. This will isolate more pages than necessary
2579			 * for the request but avoid loops due to
2580			 * fast_find_migrateblock revisiting blocks that were
2581			 * recently partially scanned.
2582			 */
2583			if (!pageblock_aligned(cc->migrate_pfn) &&
2584			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2585			    (cc->mode < MIGRATE_SYNC)) {
2586				cc->finish_pageblock = true;
2587
2588				/*
2589				 * Draining pcplists does not help THP if
2590				 * any page failed to migrate. Even after
2591				 * drain, the pageblock will not be free.
2592				 */
2593				if (cc->order == COMPACTION_HPAGE_ORDER)
2594					last_migrated_pfn = 0;
2595
2596				goto rescan;
2597			}
2598		}
2599
2600		/* Stop if a page has been captured */
2601		if (capc && capc->page) {
2602			ret = COMPACT_SUCCESS;
2603			break;
2604		}
2605
2606check_drain:
2607		/*
2608		 * Has the migration scanner moved away from the previous
2609		 * cc->order aligned block where we migrated from? If yes,
2610		 * flush the pages that were freed, so that they can merge and
2611		 * compact_finished() can detect immediately if allocation
2612		 * would succeed.
2613		 */
2614		if (cc->order > 0 && last_migrated_pfn) {
2615			unsigned long current_block_start =
2616				block_start_pfn(cc->migrate_pfn, cc->order);
2617
2618			if (last_migrated_pfn < current_block_start) {
2619				lru_add_drain_cpu_zone(cc->zone);
2620				/* No more flushing until we migrate again */
2621				last_migrated_pfn = 0;
2622			}
2623		}
 
 
 
 
 
 
2624	}
2625
2626out:
2627	/*
2628	 * Release free pages and update where the free scanner should restart,
2629	 * so we don't leave any returned pages behind in the next attempt.
2630	 */
2631	if (cc->nr_freepages > 0) {
2632		unsigned long free_pfn = release_freepages(&cc->freepages);
2633
2634		cc->nr_freepages = 0;
2635		VM_BUG_ON(free_pfn == 0);
2636		/* The cached pfn is always the first in a pageblock */
2637		free_pfn = pageblock_start_pfn(free_pfn);
2638		/*
2639		 * Only go back, not forward. The cached pfn might have been
2640		 * already reset to zone end in compact_finished()
2641		 */
2642		if (free_pfn > cc->zone->compact_cached_free_pfn)
2643			cc->zone->compact_cached_free_pfn = free_pfn;
2644	}
2645
2646	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2647	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2648
2649	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2650
2651	VM_BUG_ON(!list_empty(&cc->freepages));
2652	VM_BUG_ON(!list_empty(&cc->migratepages));
2653
2654	return ret;
2655}
2656
2657static enum compact_result compact_zone_order(struct zone *zone, int order,
2658		gfp_t gfp_mask, enum compact_priority prio,
2659		unsigned int alloc_flags, int highest_zoneidx,
2660		struct page **capture)
2661{
2662	enum compact_result ret;
2663	struct compact_control cc = {
2664		.order = order,
2665		.search_order = order,
2666		.gfp_mask = gfp_mask,
2667		.zone = zone,
2668		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2669					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2670		.alloc_flags = alloc_flags,
2671		.highest_zoneidx = highest_zoneidx,
2672		.direct_compaction = true,
2673		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2674		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2675		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2676	};
2677	struct capture_control capc = {
2678		.cc = &cc,
2679		.page = NULL,
2680	};
2681
2682	/*
2683	 * Make sure the structs are really initialized before we expose the
2684	 * capture control, in case we are interrupted and the interrupt handler
2685	 * frees a page.
2686	 */
2687	barrier();
2688	WRITE_ONCE(current->capture_control, &capc);
2689
2690	ret = compact_zone(&cc, &capc);
2691
 
 
 
2692	/*
2693	 * Make sure we hide capture control first before we read the captured
2694	 * page pointer, otherwise an interrupt could free and capture a page
2695	 * and we would leak it.
2696	 */
2697	WRITE_ONCE(current->capture_control, NULL);
2698	*capture = READ_ONCE(capc.page);
2699	/*
2700	 * Technically, it is also possible that compaction is skipped but
2701	 * the page is still captured out of luck(IRQ came and freed the page).
2702	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2703	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2704	 */
2705	if (*capture)
2706		ret = COMPACT_SUCCESS;
2707
2708	return ret;
2709}
2710
 
 
2711/**
2712 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2713 * @gfp_mask: The GFP mask of the current allocation
2714 * @order: The order of the current allocation
2715 * @alloc_flags: The allocation flags of the current allocation
2716 * @ac: The context of current allocation
2717 * @prio: Determines how hard direct compaction should try to succeed
2718 * @capture: Pointer to free page created by compaction will be stored here
2719 *
2720 * This is the main entry point for direct page compaction.
2721 */
2722enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2723		unsigned int alloc_flags, const struct alloc_context *ac,
2724		enum compact_priority prio, struct page **capture)
2725{
 
2726	struct zoneref *z;
2727	struct zone *zone;
2728	enum compact_result rc = COMPACT_SKIPPED;
2729
2730	if (!gfp_compaction_allowed(gfp_mask))
 
 
 
 
2731		return COMPACT_SKIPPED;
2732
2733	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2734
2735	/* Compact each zone in the list */
2736	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2737					ac->highest_zoneidx, ac->nodemask) {
2738		enum compact_result status;
2739
2740		if (prio > MIN_COMPACT_PRIORITY
2741					&& compaction_deferred(zone, order)) {
2742			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2743			continue;
2744		}
2745
2746		status = compact_zone_order(zone, order, gfp_mask, prio,
2747				alloc_flags, ac->highest_zoneidx, capture);
2748		rc = max(status, rc);
2749
2750		/* The allocation should succeed, stop compacting */
2751		if (status == COMPACT_SUCCESS) {
2752			/*
2753			 * We think the allocation will succeed in this zone,
2754			 * but it is not certain, hence the false. The caller
2755			 * will repeat this with true if allocation indeed
2756			 * succeeds in this zone.
2757			 */
2758			compaction_defer_reset(zone, order, false);
2759
2760			break;
2761		}
2762
2763		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2764					status == COMPACT_PARTIAL_SKIPPED))
2765			/*
2766			 * We think that allocation won't succeed in this zone
2767			 * so we defer compaction there. If it ends up
2768			 * succeeding after all, it will be reset.
2769			 */
2770			defer_compaction(zone, order);
2771
2772		/*
2773		 * We might have stopped compacting due to need_resched() in
2774		 * async compaction, or due to a fatal signal detected. In that
2775		 * case do not try further zones
2776		 */
2777		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2778					|| fatal_signal_pending(current))
2779			break;
2780	}
2781
2782	return rc;
2783}
2784
2785/*
2786 * Compact all zones within a node till each zone's fragmentation score
2787 * reaches within proactive compaction thresholds (as determined by the
2788 * proactiveness tunable).
2789 *
2790 * It is possible that the function returns before reaching score targets
2791 * due to various back-off conditions, such as, contention on per-node or
2792 * per-zone locks.
2793 */
2794static void proactive_compact_node(pg_data_t *pgdat)
2795{
2796	int zoneid;
2797	struct zone *zone;
2798	struct compact_control cc = {
2799		.order = -1,
2800		.mode = MIGRATE_SYNC_LIGHT,
2801		.ignore_skip_hint = true,
2802		.whole_zone = true,
2803		.gfp_mask = GFP_KERNEL,
2804		.proactive_compaction = true,
2805	};
2806
2807	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2808		zone = &pgdat->node_zones[zoneid];
2809		if (!populated_zone(zone))
2810			continue;
2811
2812		cc.zone = zone;
2813
2814		compact_zone(&cc, NULL);
2815
2816		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2817				     cc.total_migrate_scanned);
2818		count_compact_events(KCOMPACTD_FREE_SCANNED,
2819				     cc.total_free_scanned);
2820	}
2821}
2822
2823/* Compact all zones within a node */
2824static void compact_node(int nid)
2825{
2826	pg_data_t *pgdat = NODE_DATA(nid);
2827	int zoneid;
2828	struct zone *zone;
2829	struct compact_control cc = {
2830		.order = -1,
2831		.mode = MIGRATE_SYNC,
2832		.ignore_skip_hint = true,
2833		.whole_zone = true,
2834		.gfp_mask = GFP_KERNEL,
2835	};
2836
2837
2838	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2839
2840		zone = &pgdat->node_zones[zoneid];
2841		if (!populated_zone(zone))
2842			continue;
2843
2844		cc.zone = zone;
2845
2846		compact_zone(&cc, NULL);
 
 
 
2847	}
2848}
2849
2850/* Compact all nodes in the system */
2851static void compact_nodes(void)
2852{
2853	int nid;
2854
2855	/* Flush pending updates to the LRU lists */
2856	lru_add_drain_all();
2857
2858	for_each_online_node(nid)
2859		compact_node(nid);
2860}
2861
2862static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2863		void *buffer, size_t *length, loff_t *ppos)
2864{
2865	int rc, nid;
2866
2867	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2868	if (rc)
2869		return rc;
2870
2871	if (write && sysctl_compaction_proactiveness) {
2872		for_each_online_node(nid) {
2873			pg_data_t *pgdat = NODE_DATA(nid);
2874
2875			if (pgdat->proactive_compact_trigger)
2876				continue;
2877
2878			pgdat->proactive_compact_trigger = true;
2879			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2880							     pgdat->nr_zones - 1);
2881			wake_up_interruptible(&pgdat->kcompactd_wait);
2882		}
2883	}
2884
2885	return 0;
2886}
2887
2888/*
2889 * This is the entry point for compacting all nodes via
2890 * /proc/sys/vm/compact_memory
2891 */
2892static int sysctl_compaction_handler(struct ctl_table *table, int write,
2893			void *buffer, size_t *length, loff_t *ppos)
2894{
2895	int ret;
2896
2897	ret = proc_dointvec(table, write, buffer, length, ppos);
2898	if (ret)
2899		return ret;
2900
2901	if (sysctl_compact_memory != 1)
2902		return -EINVAL;
2903
2904	if (write)
2905		compact_nodes();
2906
2907	return 0;
2908}
2909
2910#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2911static ssize_t compact_store(struct device *dev,
2912			     struct device_attribute *attr,
2913			     const char *buf, size_t count)
2914{
2915	int nid = dev->id;
2916
2917	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2918		/* Flush pending updates to the LRU lists */
2919		lru_add_drain_all();
2920
2921		compact_node(nid);
2922	}
2923
2924	return count;
2925}
2926static DEVICE_ATTR_WO(compact);
2927
2928int compaction_register_node(struct node *node)
2929{
2930	return device_create_file(&node->dev, &dev_attr_compact);
2931}
2932
2933void compaction_unregister_node(struct node *node)
2934{
2935	device_remove_file(&node->dev, &dev_attr_compact);
2936}
2937#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2938
2939static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2940{
2941	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2942		pgdat->proactive_compact_trigger;
2943}
2944
2945static bool kcompactd_node_suitable(pg_data_t *pgdat)
2946{
2947	int zoneid;
2948	struct zone *zone;
2949	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2950	enum compact_result ret;
2951
2952	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2953		zone = &pgdat->node_zones[zoneid];
2954
2955		if (!populated_zone(zone))
2956			continue;
2957
2958		ret = compaction_suit_allocation_order(zone,
2959				pgdat->kcompactd_max_order,
2960				highest_zoneidx, ALLOC_WMARK_MIN);
2961		if (ret == COMPACT_CONTINUE)
2962			return true;
2963	}
2964
2965	return false;
2966}
2967
2968static void kcompactd_do_work(pg_data_t *pgdat)
2969{
2970	/*
2971	 * With no special task, compact all zones so that a page of requested
2972	 * order is allocatable.
2973	 */
2974	int zoneid;
2975	struct zone *zone;
2976	struct compact_control cc = {
2977		.order = pgdat->kcompactd_max_order,
2978		.search_order = pgdat->kcompactd_max_order,
2979		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2980		.mode = MIGRATE_SYNC_LIGHT,
2981		.ignore_skip_hint = false,
2982		.gfp_mask = GFP_KERNEL,
2983	};
2984	enum compact_result ret;
2985
2986	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2987							cc.highest_zoneidx);
2988	count_compact_event(KCOMPACTD_WAKE);
2989
2990	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2991		int status;
2992
2993		zone = &pgdat->node_zones[zoneid];
2994		if (!populated_zone(zone))
2995			continue;
2996
2997		if (compaction_deferred(zone, cc.order))
2998			continue;
2999
3000		ret = compaction_suit_allocation_order(zone,
3001				cc.order, zoneid, ALLOC_WMARK_MIN);
3002		if (ret != COMPACT_CONTINUE)
3003			continue;
3004
3005		if (kthread_should_stop())
3006			return;
3007
3008		cc.zone = zone;
3009		status = compact_zone(&cc, NULL);
3010
3011		if (status == COMPACT_SUCCESS) {
3012			compaction_defer_reset(zone, cc.order, false);
3013		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3014			/*
3015			 * Buddy pages may become stranded on pcps that could
3016			 * otherwise coalesce on the zone's free area for
3017			 * order >= cc.order.  This is ratelimited by the
3018			 * upcoming deferral.
3019			 */
3020			drain_all_pages(zone);
3021
3022			/*
3023			 * We use sync migration mode here, so we defer like
3024			 * sync direct compaction does.
3025			 */
3026			defer_compaction(zone, cc.order);
3027		}
3028
3029		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3030				     cc.total_migrate_scanned);
3031		count_compact_events(KCOMPACTD_FREE_SCANNED,
3032				     cc.total_free_scanned);
 
 
 
3033	}
3034
3035	/*
3036	 * Regardless of success, we are done until woken up next. But remember
3037	 * the requested order/highest_zoneidx in case it was higher/tighter
3038	 * than our current ones
3039	 */
3040	if (pgdat->kcompactd_max_order <= cc.order)
3041		pgdat->kcompactd_max_order = 0;
3042	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3043		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3044}
3045
3046void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3047{
3048	if (!order)
3049		return;
3050
3051	if (pgdat->kcompactd_max_order < order)
3052		pgdat->kcompactd_max_order = order;
3053
3054	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3055		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3056
3057	/*
3058	 * Pairs with implicit barrier in wait_event_freezable()
3059	 * such that wakeups are not missed.
3060	 */
3061	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3062		return;
3063
3064	if (!kcompactd_node_suitable(pgdat))
3065		return;
3066
3067	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3068							highest_zoneidx);
3069	wake_up_interruptible(&pgdat->kcompactd_wait);
3070}
3071
3072/*
3073 * The background compaction daemon, started as a kernel thread
3074 * from the init process.
3075 */
3076static int kcompactd(void *p)
3077{
3078	pg_data_t *pgdat = (pg_data_t *)p;
3079	struct task_struct *tsk = current;
3080	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3081	long timeout = default_timeout;
3082
3083	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3084
3085	if (!cpumask_empty(cpumask))
3086		set_cpus_allowed_ptr(tsk, cpumask);
3087
3088	set_freezable();
3089
3090	pgdat->kcompactd_max_order = 0;
3091	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3092
3093	while (!kthread_should_stop()) {
3094		unsigned long pflags;
3095
3096		/*
3097		 * Avoid the unnecessary wakeup for proactive compaction
3098		 * when it is disabled.
3099		 */
3100		if (!sysctl_compaction_proactiveness)
3101			timeout = MAX_SCHEDULE_TIMEOUT;
3102		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3103		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3104			kcompactd_work_requested(pgdat), timeout) &&
3105			!pgdat->proactive_compact_trigger) {
3106
3107			psi_memstall_enter(&pflags);
3108			kcompactd_do_work(pgdat);
3109			psi_memstall_leave(&pflags);
3110			/*
3111			 * Reset the timeout value. The defer timeout from
3112			 * proactive compaction is lost here but that is fine
3113			 * as the condition of the zone changing substantionally
3114			 * then carrying on with the previous defer interval is
3115			 * not useful.
3116			 */
3117			timeout = default_timeout;
3118			continue;
3119		}
3120
3121		/*
3122		 * Start the proactive work with default timeout. Based
3123		 * on the fragmentation score, this timeout is updated.
3124		 */
3125		timeout = default_timeout;
3126		if (should_proactive_compact_node(pgdat)) {
3127			unsigned int prev_score, score;
3128
 
 
 
 
3129			prev_score = fragmentation_score_node(pgdat);
3130			proactive_compact_node(pgdat);
3131			score = fragmentation_score_node(pgdat);
3132			/*
3133			 * Defer proactive compaction if the fragmentation
3134			 * score did not go down i.e. no progress made.
3135			 */
3136			if (unlikely(score >= prev_score))
3137				timeout =
3138				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3139		}
3140		if (unlikely(pgdat->proactive_compact_trigger))
3141			pgdat->proactive_compact_trigger = false;
3142	}
3143
3144	return 0;
3145}
3146
3147/*
3148 * This kcompactd start function will be called by init and node-hot-add.
3149 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3150 */
3151void __meminit kcompactd_run(int nid)
3152{
3153	pg_data_t *pgdat = NODE_DATA(nid);
 
3154
3155	if (pgdat->kcompactd)
3156		return;
3157
3158	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3159	if (IS_ERR(pgdat->kcompactd)) {
3160		pr_err("Failed to start kcompactd on node %d\n", nid);
 
3161		pgdat->kcompactd = NULL;
3162	}
 
3163}
3164
3165/*
3166 * Called by memory hotplug when all memory in a node is offlined. Caller must
3167 * be holding mem_hotplug_begin/done().
3168 */
3169void __meminit kcompactd_stop(int nid)
3170{
3171	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3172
3173	if (kcompactd) {
3174		kthread_stop(kcompactd);
3175		NODE_DATA(nid)->kcompactd = NULL;
3176	}
3177}
3178
3179/*
3180 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3181 * not required for correctness. So if the last cpu in a node goes
3182 * away, we get changed to run anywhere: as the first one comes back,
3183 * restore their cpu bindings.
3184 */
3185static int kcompactd_cpu_online(unsigned int cpu)
3186{
3187	int nid;
3188
3189	for_each_node_state(nid, N_MEMORY) {
3190		pg_data_t *pgdat = NODE_DATA(nid);
3191		const struct cpumask *mask;
3192
3193		mask = cpumask_of_node(pgdat->node_id);
3194
3195		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3196			/* One of our CPUs online: restore mask */
3197			if (pgdat->kcompactd)
3198				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3199	}
3200	return 0;
3201}
3202
3203static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3204		int write, void *buffer, size_t *lenp, loff_t *ppos)
3205{
3206	int ret, old;
3207
3208	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3209		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3210
3211	old = *(int *)table->data;
3212	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3213	if (ret)
3214		return ret;
3215	if (old != *(int *)table->data)
3216		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3217			     table->procname, current->comm,
3218			     task_pid_nr(current));
3219	return ret;
3220}
3221
3222static struct ctl_table vm_compaction[] = {
3223	{
3224		.procname	= "compact_memory",
3225		.data		= &sysctl_compact_memory,
3226		.maxlen		= sizeof(int),
3227		.mode		= 0200,
3228		.proc_handler	= sysctl_compaction_handler,
3229	},
3230	{
3231		.procname	= "compaction_proactiveness",
3232		.data		= &sysctl_compaction_proactiveness,
3233		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3234		.mode		= 0644,
3235		.proc_handler	= compaction_proactiveness_sysctl_handler,
3236		.extra1		= SYSCTL_ZERO,
3237		.extra2		= SYSCTL_ONE_HUNDRED,
3238	},
3239	{
3240		.procname	= "extfrag_threshold",
3241		.data		= &sysctl_extfrag_threshold,
3242		.maxlen		= sizeof(int),
3243		.mode		= 0644,
3244		.proc_handler	= proc_dointvec_minmax,
3245		.extra1		= SYSCTL_ZERO,
3246		.extra2		= SYSCTL_ONE_THOUSAND,
3247	},
3248	{
3249		.procname	= "compact_unevictable_allowed",
3250		.data		= &sysctl_compact_unevictable_allowed,
3251		.maxlen		= sizeof(int),
3252		.mode		= 0644,
3253		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3254		.extra1		= SYSCTL_ZERO,
3255		.extra2		= SYSCTL_ONE,
3256	},
3257	{ }
3258};
3259
3260static int __init kcompactd_init(void)
3261{
3262	int nid;
3263	int ret;
3264
3265	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3266					"mm/compaction:online",
3267					kcompactd_cpu_online, NULL);
3268	if (ret < 0) {
3269		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3270		return ret;
3271	}
3272
3273	for_each_node_state(nid, N_MEMORY)
3274		kcompactd_run(nid);
3275	register_sysctl_init("vm", vm_compaction);
3276	return 0;
3277}
3278subsys_initcall(kcompactd_init)
3279
3280#endif /* CONFIG_COMPACTION */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include "internal.h"
  27
  28#ifdef CONFIG_COMPACTION
 
 
 
 
 
  29static inline void count_compact_event(enum vm_event_item item)
  30{
  31	count_vm_event(item);
  32}
  33
  34static inline void count_compact_events(enum vm_event_item item, long delta)
  35{
  36	count_vm_events(item, delta);
  37}
  38#else
  39#define count_compact_event(item) do { } while (0)
  40#define count_compact_events(item, delta) do { } while (0)
  41#endif
  42
  43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/compaction.h>
  47
  48#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  49#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
  50#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
  51#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
  52
  53/*
  54 * Fragmentation score check interval for proactive compaction purposes.
  55 */
  56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
  57
  58/*
  59 * Page order with-respect-to which proactive compaction
  60 * calculates external fragmentation, which is used as
  61 * the "fragmentation score" of a node/zone.
  62 */
  63#if defined CONFIG_TRANSPARENT_HUGEPAGE
  64#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
  65#elif defined CONFIG_HUGETLBFS
  66#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
  67#else
  68#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  69#endif
  70
  71static unsigned long release_freepages(struct list_head *freelist)
  72{
  73	struct page *page, *next;
  74	unsigned long high_pfn = 0;
  75
  76	list_for_each_entry_safe(page, next, freelist, lru) {
  77		unsigned long pfn = page_to_pfn(page);
  78		list_del(&page->lru);
  79		__free_page(page);
  80		if (pfn > high_pfn)
  81			high_pfn = pfn;
  82	}
  83
  84	return high_pfn;
  85}
  86
  87static void split_map_pages(struct list_head *list)
  88{
  89	unsigned int i, order, nr_pages;
  90	struct page *page, *next;
  91	LIST_HEAD(tmp_list);
  92
  93	list_for_each_entry_safe(page, next, list, lru) {
  94		list_del(&page->lru);
  95
  96		order = page_private(page);
  97		nr_pages = 1 << order;
  98
  99		post_alloc_hook(page, order, __GFP_MOVABLE);
 100		if (order)
 101			split_page(page, order);
 102
 103		for (i = 0; i < nr_pages; i++) {
 104			list_add(&page->lru, &tmp_list);
 105			page++;
 106		}
 107	}
 108
 109	list_splice(&tmp_list, list);
 110}
 111
 112#ifdef CONFIG_COMPACTION
 113
 114int PageMovable(struct page *page)
 115{
 116	struct address_space *mapping;
 117
 118	VM_BUG_ON_PAGE(!PageLocked(page), page);
 119	if (!__PageMovable(page))
 120		return 0;
 121
 122	mapping = page_mapping(page);
 123	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
 124		return 1;
 125
 126	return 0;
 127}
 128EXPORT_SYMBOL(PageMovable);
 129
 130void __SetPageMovable(struct page *page, struct address_space *mapping)
 131{
 132	VM_BUG_ON_PAGE(!PageLocked(page), page);
 133	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
 134	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
 135}
 136EXPORT_SYMBOL(__SetPageMovable);
 137
 138void __ClearPageMovable(struct page *page)
 139{
 140	VM_BUG_ON_PAGE(!PageMovable(page), page);
 141	/*
 142	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
 143	 * flag so that VM can catch up released page by driver after isolation.
 144	 * With it, VM migration doesn't try to put it back.
 145	 */
 146	page->mapping = (void *)((unsigned long)page->mapping &
 147				PAGE_MAPPING_MOVABLE);
 148}
 149EXPORT_SYMBOL(__ClearPageMovable);
 150
 151/* Do not skip compaction more than 64 times */
 152#define COMPACT_MAX_DEFER_SHIFT 6
 153
 154/*
 155 * Compaction is deferred when compaction fails to result in a page
 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 158 */
 159static void defer_compaction(struct zone *zone, int order)
 160{
 161	zone->compact_considered = 0;
 162	zone->compact_defer_shift++;
 163
 164	if (order < zone->compact_order_failed)
 165		zone->compact_order_failed = order;
 166
 167	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 168		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 169
 170	trace_mm_compaction_defer_compaction(zone, order);
 171}
 172
 173/* Returns true if compaction should be skipped this time */
 174static bool compaction_deferred(struct zone *zone, int order)
 175{
 176	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 177
 178	if (order < zone->compact_order_failed)
 179		return false;
 180
 181	/* Avoid possible overflow */
 182	if (++zone->compact_considered >= defer_limit) {
 183		zone->compact_considered = defer_limit;
 184		return false;
 185	}
 186
 187	trace_mm_compaction_deferred(zone, order);
 188
 189	return true;
 190}
 191
 192/*
 193 * Update defer tracking counters after successful compaction of given order,
 194 * which means an allocation either succeeded (alloc_success == true) or is
 195 * expected to succeed.
 196 */
 197void compaction_defer_reset(struct zone *zone, int order,
 198		bool alloc_success)
 199{
 200	if (alloc_success) {
 201		zone->compact_considered = 0;
 202		zone->compact_defer_shift = 0;
 203	}
 204	if (order >= zone->compact_order_failed)
 205		zone->compact_order_failed = order + 1;
 206
 207	trace_mm_compaction_defer_reset(zone, order);
 208}
 209
 210/* Returns true if restarting compaction after many failures */
 211static bool compaction_restarting(struct zone *zone, int order)
 212{
 213	if (order < zone->compact_order_failed)
 214		return false;
 215
 216	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 217		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 218}
 219
 220/* Returns true if the pageblock should be scanned for pages to isolate. */
 221static inline bool isolation_suitable(struct compact_control *cc,
 222					struct page *page)
 223{
 224	if (cc->ignore_skip_hint)
 225		return true;
 226
 227	return !get_pageblock_skip(page);
 228}
 229
 230static void reset_cached_positions(struct zone *zone)
 231{
 232	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 233	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 234	zone->compact_cached_free_pfn =
 235				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 236}
 237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238/*
 239 * Compound pages of >= pageblock_order should consistently be skipped until
 240 * released. It is always pointless to compact pages of such order (if they are
 241 * migratable), and the pageblocks they occupy cannot contain any free pages.
 242 */
 243static bool pageblock_skip_persistent(struct page *page)
 244{
 245	if (!PageCompound(page))
 246		return false;
 247
 248	page = compound_head(page);
 249
 250	if (compound_order(page) >= pageblock_order)
 251		return true;
 252
 253	return false;
 254}
 255
 256static bool
 257__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 258							bool check_target)
 259{
 260	struct page *page = pfn_to_online_page(pfn);
 261	struct page *block_page;
 262	struct page *end_page;
 263	unsigned long block_pfn;
 264
 265	if (!page)
 266		return false;
 267	if (zone != page_zone(page))
 268		return false;
 269	if (pageblock_skip_persistent(page))
 270		return false;
 271
 272	/*
 273	 * If skip is already cleared do no further checking once the
 274	 * restart points have been set.
 275	 */
 276	if (check_source && check_target && !get_pageblock_skip(page))
 277		return true;
 278
 279	/*
 280	 * If clearing skip for the target scanner, do not select a
 281	 * non-movable pageblock as the starting point.
 282	 */
 283	if (!check_source && check_target &&
 284	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 285		return false;
 286
 287	/* Ensure the start of the pageblock or zone is online and valid */
 288	block_pfn = pageblock_start_pfn(pfn);
 289	block_pfn = max(block_pfn, zone->zone_start_pfn);
 290	block_page = pfn_to_online_page(block_pfn);
 291	if (block_page) {
 292		page = block_page;
 293		pfn = block_pfn;
 294	}
 295
 296	/* Ensure the end of the pageblock or zone is online and valid */
 297	block_pfn = pageblock_end_pfn(pfn) - 1;
 298	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 299	end_page = pfn_to_online_page(block_pfn);
 300	if (!end_page)
 301		return false;
 302
 303	/*
 304	 * Only clear the hint if a sample indicates there is either a
 305	 * free page or an LRU page in the block. One or other condition
 306	 * is necessary for the block to be a migration source/target.
 307	 */
 308	do {
 309		if (pfn_valid_within(pfn)) {
 310			if (check_source && PageLRU(page)) {
 311				clear_pageblock_skip(page);
 312				return true;
 313			}
 314
 315			if (check_target && PageBuddy(page)) {
 316				clear_pageblock_skip(page);
 317				return true;
 318			}
 319		}
 320
 321		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 322		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
 323	} while (page <= end_page);
 324
 325	return false;
 326}
 327
 328/*
 329 * This function is called to clear all cached information on pageblocks that
 330 * should be skipped for page isolation when the migrate and free page scanner
 331 * meet.
 332 */
 333static void __reset_isolation_suitable(struct zone *zone)
 334{
 335	unsigned long migrate_pfn = zone->zone_start_pfn;
 336	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 337	unsigned long reset_migrate = free_pfn;
 338	unsigned long reset_free = migrate_pfn;
 339	bool source_set = false;
 340	bool free_set = false;
 341
 
 342	if (!zone->compact_blockskip_flush)
 343		return;
 344
 345	zone->compact_blockskip_flush = false;
 346
 347	/*
 348	 * Walk the zone and update pageblock skip information. Source looks
 349	 * for PageLRU while target looks for PageBuddy. When the scanner
 350	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 351	 * is suitable as both source and target.
 352	 */
 353	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 354					free_pfn -= pageblock_nr_pages) {
 355		cond_resched();
 356
 357		/* Update the migrate PFN */
 358		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 359		    migrate_pfn < reset_migrate) {
 360			source_set = true;
 361			reset_migrate = migrate_pfn;
 362			zone->compact_init_migrate_pfn = reset_migrate;
 363			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 364			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 365		}
 366
 367		/* Update the free PFN */
 368		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 369		    free_pfn > reset_free) {
 370			free_set = true;
 371			reset_free = free_pfn;
 372			zone->compact_init_free_pfn = reset_free;
 373			zone->compact_cached_free_pfn = reset_free;
 374		}
 375	}
 376
 377	/* Leave no distance if no suitable block was reset */
 378	if (reset_migrate >= reset_free) {
 379		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 380		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 381		zone->compact_cached_free_pfn = free_pfn;
 382	}
 383}
 384
 385void reset_isolation_suitable(pg_data_t *pgdat)
 386{
 387	int zoneid;
 388
 389	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 390		struct zone *zone = &pgdat->node_zones[zoneid];
 391		if (!populated_zone(zone))
 392			continue;
 393
 394		/* Only flush if a full compaction finished recently */
 395		if (zone->compact_blockskip_flush)
 396			__reset_isolation_suitable(zone);
 397	}
 398}
 399
 400/*
 401 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 402 * locks are not required for read/writers. Returns true if it was already set.
 403 */
 404static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 405							unsigned long pfn)
 406{
 407	bool skip;
 408
 409	/* Do no update if skip hint is being ignored */
 410	if (cc->ignore_skip_hint)
 411		return false;
 412
 413	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
 414		return false;
 415
 416	skip = get_pageblock_skip(page);
 417	if (!skip && !cc->no_set_skip_hint)
 418		set_pageblock_skip(page);
 419
 420	return skip;
 421}
 422
 423static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 424{
 425	struct zone *zone = cc->zone;
 426
 427	pfn = pageblock_end_pfn(pfn);
 428
 429	/* Set for isolation rather than compaction */
 430	if (cc->no_set_skip_hint)
 431		return;
 432
 
 
 
 433	if (pfn > zone->compact_cached_migrate_pfn[0])
 434		zone->compact_cached_migrate_pfn[0] = pfn;
 435	if (cc->mode != MIGRATE_ASYNC &&
 436	    pfn > zone->compact_cached_migrate_pfn[1])
 437		zone->compact_cached_migrate_pfn[1] = pfn;
 438}
 439
 440/*
 441 * If no pages were isolated then mark this pageblock to be skipped in the
 442 * future. The information is later cleared by __reset_isolation_suitable().
 443 */
 444static void update_pageblock_skip(struct compact_control *cc,
 445			struct page *page, unsigned long pfn)
 446{
 447	struct zone *zone = cc->zone;
 448
 449	if (cc->no_set_skip_hint)
 450		return;
 451
 452	if (!page)
 453		return;
 454
 455	set_pageblock_skip(page);
 456
 457	/* Update where async and sync compaction should restart */
 458	if (pfn < zone->compact_cached_free_pfn)
 459		zone->compact_cached_free_pfn = pfn;
 460}
 461#else
 462static inline bool isolation_suitable(struct compact_control *cc,
 463					struct page *page)
 464{
 465	return true;
 466}
 467
 468static inline bool pageblock_skip_persistent(struct page *page)
 469{
 470	return false;
 471}
 472
 473static inline void update_pageblock_skip(struct compact_control *cc,
 474			struct page *page, unsigned long pfn)
 475{
 476}
 477
 478static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 479{
 480}
 481
 482static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 483							unsigned long pfn)
 484{
 485	return false;
 486}
 487#endif /* CONFIG_COMPACTION */
 488
 489/*
 490 * Compaction requires the taking of some coarse locks that are potentially
 491 * very heavily contended. For async compaction, trylock and record if the
 492 * lock is contended. The lock will still be acquired but compaction will
 493 * abort when the current block is finished regardless of success rate.
 494 * Sync compaction acquires the lock.
 495 *
 496 * Always returns true which makes it easier to track lock state in callers.
 497 */
 498static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 499						struct compact_control *cc)
 500	__acquires(lock)
 501{
 502	/* Track if the lock is contended in async mode */
 503	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 504		if (spin_trylock_irqsave(lock, *flags))
 505			return true;
 506
 507		cc->contended = true;
 508	}
 509
 510	spin_lock_irqsave(lock, *flags);
 511	return true;
 512}
 513
 514/*
 515 * Compaction requires the taking of some coarse locks that are potentially
 516 * very heavily contended. The lock should be periodically unlocked to avoid
 517 * having disabled IRQs for a long time, even when there is nobody waiting on
 518 * the lock. It might also be that allowing the IRQs will result in
 519 * need_resched() becoming true. If scheduling is needed, async compaction
 520 * aborts. Sync compaction schedules.
 521 * Either compaction type will also abort if a fatal signal is pending.
 522 * In either case if the lock was locked, it is dropped and not regained.
 523 *
 524 * Returns true if compaction should abort due to fatal signal pending, or
 525 *		async compaction due to need_resched()
 526 * Returns false when compaction can continue (sync compaction might have
 527 *		scheduled)
 528 */
 529static bool compact_unlock_should_abort(spinlock_t *lock,
 530		unsigned long flags, bool *locked, struct compact_control *cc)
 531{
 532	if (*locked) {
 533		spin_unlock_irqrestore(lock, flags);
 534		*locked = false;
 535	}
 536
 537	if (fatal_signal_pending(current)) {
 538		cc->contended = true;
 539		return true;
 540	}
 541
 542	cond_resched();
 543
 544	return false;
 545}
 546
 547/*
 548 * Isolate free pages onto a private freelist. If @strict is true, will abort
 549 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 550 * (even though it may still end up isolating some pages).
 551 */
 552static unsigned long isolate_freepages_block(struct compact_control *cc,
 553				unsigned long *start_pfn,
 554				unsigned long end_pfn,
 555				struct list_head *freelist,
 556				unsigned int stride,
 557				bool strict)
 558{
 559	int nr_scanned = 0, total_isolated = 0;
 560	struct page *cursor;
 561	unsigned long flags = 0;
 562	bool locked = false;
 563	unsigned long blockpfn = *start_pfn;
 564	unsigned int order;
 565
 566	/* Strict mode is for isolation, speed is secondary */
 567	if (strict)
 568		stride = 1;
 569
 570	cursor = pfn_to_page(blockpfn);
 571
 572	/* Isolate free pages. */
 573	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
 574		int isolated;
 575		struct page *page = cursor;
 576
 577		/*
 578		 * Periodically drop the lock (if held) regardless of its
 579		 * contention, to give chance to IRQs. Abort if fatal signal
 580		 * pending or async compaction detects need_resched()
 581		 */
 582		if (!(blockpfn % SWAP_CLUSTER_MAX)
 583		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 584								&locked, cc))
 585			break;
 586
 587		nr_scanned++;
 588		if (!pfn_valid_within(blockpfn))
 589			goto isolate_fail;
 590
 591		/*
 592		 * For compound pages such as THP and hugetlbfs, we can save
 593		 * potentially a lot of iterations if we skip them at once.
 594		 * The check is racy, but we can consider only valid values
 595		 * and the only danger is skipping too much.
 596		 */
 597		if (PageCompound(page)) {
 598			const unsigned int order = compound_order(page);
 599
 600			if (likely(order < MAX_ORDER)) {
 601				blockpfn += (1UL << order) - 1;
 602				cursor += (1UL << order) - 1;
 
 603			}
 
 604			goto isolate_fail;
 605		}
 606
 607		if (!PageBuddy(page))
 608			goto isolate_fail;
 609
 610		/*
 611		 * If we already hold the lock, we can skip some rechecking.
 612		 * Note that if we hold the lock now, checked_pageblock was
 613		 * already set in some previous iteration (or strict is true),
 614		 * so it is correct to skip the suitable migration target
 615		 * recheck as well.
 616		 */
 617		if (!locked) {
 618			locked = compact_lock_irqsave(&cc->zone->lock,
 619								&flags, cc);
 620
 621			/* Recheck this is a buddy page under lock */
 622			if (!PageBuddy(page))
 623				goto isolate_fail;
 624		}
 625
 626		/* Found a free page, will break it into order-0 pages */
 627		order = buddy_order(page);
 628		isolated = __isolate_free_page(page, order);
 629		if (!isolated)
 630			break;
 631		set_page_private(page, order);
 632
 
 633		total_isolated += isolated;
 634		cc->nr_freepages += isolated;
 635		list_add_tail(&page->lru, freelist);
 636
 637		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 638			blockpfn += isolated;
 639			break;
 640		}
 641		/* Advance to the end of split page */
 642		blockpfn += isolated - 1;
 643		cursor += isolated - 1;
 644		continue;
 645
 646isolate_fail:
 647		if (strict)
 648			break;
 649		else
 650			continue;
 651
 652	}
 653
 654	if (locked)
 655		spin_unlock_irqrestore(&cc->zone->lock, flags);
 656
 657	/*
 658	 * There is a tiny chance that we have read bogus compound_order(),
 659	 * so be careful to not go outside of the pageblock.
 660	 */
 661	if (unlikely(blockpfn > end_pfn))
 662		blockpfn = end_pfn;
 663
 664	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 665					nr_scanned, total_isolated);
 666
 667	/* Record how far we have got within the block */
 668	*start_pfn = blockpfn;
 669
 670	/*
 671	 * If strict isolation is requested by CMA then check that all the
 672	 * pages requested were isolated. If there were any failures, 0 is
 673	 * returned and CMA will fail.
 674	 */
 675	if (strict && blockpfn < end_pfn)
 676		total_isolated = 0;
 677
 678	cc->total_free_scanned += nr_scanned;
 679	if (total_isolated)
 680		count_compact_events(COMPACTISOLATED, total_isolated);
 681	return total_isolated;
 682}
 683
 684/**
 685 * isolate_freepages_range() - isolate free pages.
 686 * @cc:        Compaction control structure.
 687 * @start_pfn: The first PFN to start isolating.
 688 * @end_pfn:   The one-past-last PFN.
 689 *
 690 * Non-free pages, invalid PFNs, or zone boundaries within the
 691 * [start_pfn, end_pfn) range are considered errors, cause function to
 692 * undo its actions and return zero.
 693 *
 694 * Otherwise, function returns one-past-the-last PFN of isolated page
 695 * (which may be greater then end_pfn if end fell in a middle of
 696 * a free page).
 697 */
 698unsigned long
 699isolate_freepages_range(struct compact_control *cc,
 700			unsigned long start_pfn, unsigned long end_pfn)
 701{
 702	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 703	LIST_HEAD(freelist);
 704
 705	pfn = start_pfn;
 706	block_start_pfn = pageblock_start_pfn(pfn);
 707	if (block_start_pfn < cc->zone->zone_start_pfn)
 708		block_start_pfn = cc->zone->zone_start_pfn;
 709	block_end_pfn = pageblock_end_pfn(pfn);
 710
 711	for (; pfn < end_pfn; pfn += isolated,
 712				block_start_pfn = block_end_pfn,
 713				block_end_pfn += pageblock_nr_pages) {
 714		/* Protect pfn from changing by isolate_freepages_block */
 715		unsigned long isolate_start_pfn = pfn;
 716
 717		block_end_pfn = min(block_end_pfn, end_pfn);
 718
 719		/*
 720		 * pfn could pass the block_end_pfn if isolated freepage
 721		 * is more than pageblock order. In this case, we adjust
 722		 * scanning range to right one.
 723		 */
 724		if (pfn >= block_end_pfn) {
 725			block_start_pfn = pageblock_start_pfn(pfn);
 726			block_end_pfn = pageblock_end_pfn(pfn);
 727			block_end_pfn = min(block_end_pfn, end_pfn);
 728		}
 729
 
 
 730		if (!pageblock_pfn_to_page(block_start_pfn,
 731					block_end_pfn, cc->zone))
 732			break;
 733
 734		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 735					block_end_pfn, &freelist, 0, true);
 736
 737		/*
 738		 * In strict mode, isolate_freepages_block() returns 0 if
 739		 * there are any holes in the block (ie. invalid PFNs or
 740		 * non-free pages).
 741		 */
 742		if (!isolated)
 743			break;
 744
 745		/*
 746		 * If we managed to isolate pages, it is always (1 << n) *
 747		 * pageblock_nr_pages for some non-negative n.  (Max order
 748		 * page may span two pageblocks).
 749		 */
 750	}
 751
 752	/* __isolate_free_page() does not map the pages */
 753	split_map_pages(&freelist);
 754
 755	if (pfn < end_pfn) {
 756		/* Loop terminated early, cleanup. */
 757		release_freepages(&freelist);
 758		return 0;
 759	}
 760
 761	/* We don't use freelists for anything. */
 762	return pfn;
 763}
 764
 765/* Similar to reclaim, but different enough that they don't share logic */
 766static bool too_many_isolated(pg_data_t *pgdat)
 767{
 
 
 
 768	unsigned long active, inactive, isolated;
 769
 770	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 771			node_page_state(pgdat, NR_INACTIVE_ANON);
 772	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 773			node_page_state(pgdat, NR_ACTIVE_ANON);
 774	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 775			node_page_state(pgdat, NR_ISOLATED_ANON);
 776
 777	return isolated > (inactive + active) / 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778}
 779
 780/**
 781 * isolate_migratepages_block() - isolate all migrate-able pages within
 782 *				  a single pageblock
 783 * @cc:		Compaction control structure.
 784 * @low_pfn:	The first PFN to isolate
 785 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 786 * @isolate_mode: Isolation mode to be used.
 787 *
 788 * Isolate all pages that can be migrated from the range specified by
 789 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 790 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
 791 * -ENOMEM in case we could not allocate a page, or 0.
 792 * cc->migrate_pfn will contain the next pfn to scan.
 793 *
 794 * The pages are isolated on cc->migratepages list (not required to be empty),
 795 * and cc->nr_migratepages is updated accordingly.
 796 */
 797static int
 798isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 799			unsigned long end_pfn, isolate_mode_t isolate_mode)
 800{
 801	pg_data_t *pgdat = cc->zone->zone_pgdat;
 802	unsigned long nr_scanned = 0, nr_isolated = 0;
 803	struct lruvec *lruvec;
 804	unsigned long flags = 0;
 805	struct lruvec *locked = NULL;
 
 806	struct page *page = NULL, *valid_page = NULL;
 
 807	unsigned long start_pfn = low_pfn;
 808	bool skip_on_failure = false;
 809	unsigned long next_skip_pfn = 0;
 810	bool skip_updated = false;
 811	int ret = 0;
 812
 813	cc->migrate_pfn = low_pfn;
 814
 815	/*
 816	 * Ensure that there are not too many pages isolated from the LRU
 817	 * list by either parallel reclaimers or compaction. If there are,
 818	 * delay for some time until fewer pages are isolated
 819	 */
 820	while (unlikely(too_many_isolated(pgdat))) {
 821		/* stop isolation if there are still pages not migrated */
 822		if (cc->nr_migratepages)
 823			return -EAGAIN;
 824
 825		/* async migration should just abort */
 826		if (cc->mode == MIGRATE_ASYNC)
 827			return -EAGAIN;
 828
 829		congestion_wait(BLK_RW_ASYNC, HZ/10);
 830
 831		if (fatal_signal_pending(current))
 832			return -EINTR;
 833	}
 834
 835	cond_resched();
 836
 837	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 838		skip_on_failure = true;
 839		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 840	}
 841
 842	/* Time to isolate some pages for migration */
 843	for (; low_pfn < end_pfn; low_pfn++) {
 
 844
 845		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 846			/*
 847			 * We have isolated all migration candidates in the
 848			 * previous order-aligned block, and did not skip it due
 849			 * to failure. We should migrate the pages now and
 850			 * hopefully succeed compaction.
 851			 */
 852			if (nr_isolated)
 853				break;
 854
 855			/*
 856			 * We failed to isolate in the previous order-aligned
 857			 * block. Set the new boundary to the end of the
 858			 * current block. Note we can't simply increase
 859			 * next_skip_pfn by 1 << order, as low_pfn might have
 860			 * been incremented by a higher number due to skipping
 861			 * a compound or a high-order buddy page in the
 862			 * previous loop iteration.
 863			 */
 864			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 865		}
 866
 867		/*
 868		 * Periodically drop the lock (if held) regardless of its
 869		 * contention, to give chance to IRQs. Abort completely if
 870		 * a fatal signal is pending.
 871		 */
 872		if (!(low_pfn % SWAP_CLUSTER_MAX)) {
 873			if (locked) {
 874				unlock_page_lruvec_irqrestore(locked, flags);
 875				locked = NULL;
 876			}
 877
 878			if (fatal_signal_pending(current)) {
 879				cc->contended = true;
 880				ret = -EINTR;
 881
 882				goto fatal_pending;
 883			}
 884
 885			cond_resched();
 886		}
 887
 888		if (!pfn_valid_within(low_pfn))
 889			goto isolate_fail;
 890		nr_scanned++;
 891
 892		page = pfn_to_page(low_pfn);
 893
 894		/*
 895		 * Check if the pageblock has already been marked skipped.
 896		 * Only the aligned PFN is checked as the caller isolates
 897		 * COMPACT_CLUSTER_MAX at a time so the second call must
 898		 * not falsely conclude that the block should be skipped.
 899		 */
 900		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
 901			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
 
 902				low_pfn = end_pfn;
 903				page = NULL;
 904				goto isolate_abort;
 905			}
 906			valid_page = page;
 907		}
 908
 909		if (PageHuge(page) && cc->alloc_contig) {
 
 
 
 
 
 910			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
 911
 912			/*
 913			 * Fail isolation in case isolate_or_dissolve_huge_page()
 914			 * reports an error. In case of -ENOMEM, abort right away.
 915			 */
 916			if (ret < 0) {
 917				 /* Do not report -EBUSY down the chain */
 918				if (ret == -EBUSY)
 919					ret = 0;
 920				low_pfn += (1UL << compound_order(page)) - 1;
 
 921				goto isolate_fail;
 922			}
 923
 924			if (PageHuge(page)) {
 925				/*
 926				 * Hugepage was successfully isolated and placed
 927				 * on the cc->migratepages list.
 928				 */
 929				low_pfn += compound_nr(page) - 1;
 
 930				goto isolate_success_no_list;
 931			}
 932
 933			/*
 934			 * Ok, the hugepage was dissolved. Now these pages are
 935			 * Buddy and cannot be re-allocated because they are
 936			 * isolated. Fall-through as the check below handles
 937			 * Buddy pages.
 938			 */
 939		}
 940
 941		/*
 942		 * Skip if free. We read page order here without zone lock
 943		 * which is generally unsafe, but the race window is small and
 944		 * the worst thing that can happen is that we skip some
 945		 * potential isolation targets.
 946		 */
 947		if (PageBuddy(page)) {
 948			unsigned long freepage_order = buddy_order_unsafe(page);
 949
 950			/*
 951			 * Without lock, we cannot be sure that what we got is
 952			 * a valid page order. Consider only values in the
 953			 * valid order range to prevent low_pfn overflow.
 954			 */
 955			if (freepage_order > 0 && freepage_order < MAX_ORDER)
 956				low_pfn += (1UL << freepage_order) - 1;
 
 
 957			continue;
 958		}
 959
 960		/*
 961		 * Regardless of being on LRU, compound pages such as THP and
 962		 * hugetlbfs are not to be compacted unless we are attempting
 963		 * an allocation much larger than the huge page size (eg CMA).
 964		 * We can potentially save a lot of iterations if we skip them
 965		 * at once. The check is racy, but we can consider only valid
 966		 * values and the only danger is skipping too much.
 967		 */
 968		if (PageCompound(page) && !cc->alloc_contig) {
 969			const unsigned int order = compound_order(page);
 970
 971			if (likely(order < MAX_ORDER))
 972				low_pfn += (1UL << order) - 1;
 
 
 973			goto isolate_fail;
 974		}
 975
 976		/*
 977		 * Check may be lockless but that's ok as we recheck later.
 978		 * It's possible to migrate LRU and non-lru movable pages.
 979		 * Skip any other type of page
 980		 */
 981		if (!PageLRU(page)) {
 982			/*
 983			 * __PageMovable can return false positive so we need
 984			 * to verify it under page_lock.
 985			 */
 986			if (unlikely(__PageMovable(page)) &&
 987					!PageIsolated(page)) {
 988				if (locked) {
 989					unlock_page_lruvec_irqrestore(locked, flags);
 990					locked = NULL;
 991				}
 992
 993				if (!isolate_movable_page(page, isolate_mode))
 
 994					goto isolate_success;
 
 995			}
 996
 997			goto isolate_fail;
 998		}
 999
1000		/*
 
 
 
 
 
 
 
 
 
1001		 * Migration will fail if an anonymous page is pinned in memory,
1002		 * so avoid taking lru_lock and isolating it unnecessarily in an
1003		 * admittedly racy check.
1004		 */
1005		if (!page_mapping(page) &&
1006		    page_count(page) > page_mapcount(page))
1007			goto isolate_fail;
1008
1009		/*
1010		 * Only allow to migrate anonymous pages in GFP_NOFS context
1011		 * because those do not depend on fs locks.
1012		 */
1013		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
1014			goto isolate_fail;
 
 
 
 
 
 
 
 
 
 
1015
1016		/*
1017		 * Be careful not to clear PageLRU until after we're
1018		 * sure the page is not being freed elsewhere -- the
1019		 * page release code relies on it.
 
1020		 */
1021		if (unlikely(!get_page_unless_zero(page)))
1022			goto isolate_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023
1024		if (!__isolate_lru_page_prepare(page, isolate_mode))
1025			goto isolate_fail_put;
 
 
 
 
 
 
 
 
1026
1027		/* Try isolate the page */
1028		if (!TestClearPageLRU(page))
1029			goto isolate_fail_put;
1030
1031		lruvec = mem_cgroup_page_lruvec(page);
1032
1033		/* If we already hold the lock, we can skip some rechecking */
1034		if (lruvec != locked) {
1035			if (locked)
1036				unlock_page_lruvec_irqrestore(locked, flags);
1037
1038			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1039			locked = lruvec;
1040
1041			lruvec_memcg_debug(lruvec, page);
1042
1043			/* Try get exclusive access under lock */
1044			if (!skip_updated) {
 
 
 
 
1045				skip_updated = true;
1046				if (test_and_set_skip(cc, page, low_pfn))
 
 
1047					goto isolate_abort;
 
1048			}
1049
1050			/*
1051			 * Page become compound since the non-locked check,
1052			 * and it's on LRU. It can only be a THP so the order
1053			 * is safe to read and it's 0 for tail pages.
1054			 */
1055			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1056				low_pfn += compound_nr(page) - 1;
1057				SetPageLRU(page);
 
1058				goto isolate_fail_put;
1059			}
1060		}
1061
1062		/* The whole page is taken off the LRU; skip the tail pages. */
1063		if (PageCompound(page))
1064			low_pfn += compound_nr(page) - 1;
1065
1066		/* Successfully isolated */
1067		del_page_from_lru_list(page, lruvec);
1068		mod_node_page_state(page_pgdat(page),
1069				NR_ISOLATED_ANON + page_is_file_lru(page),
1070				thp_nr_pages(page));
1071
1072isolate_success:
1073		list_add(&page->lru, &cc->migratepages);
1074isolate_success_no_list:
1075		cc->nr_migratepages += compound_nr(page);
1076		nr_isolated += compound_nr(page);
 
1077
1078		/*
1079		 * Avoid isolating too much unless this block is being
1080		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1081		 * or a lock is contended. For contention, isolate quickly to
1082		 * potentially remove one source of contention.
1083		 */
1084		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1085		    !cc->rescan && !cc->contended) {
1086			++low_pfn;
1087			break;
1088		}
1089
1090		continue;
1091
1092isolate_fail_put:
1093		/* Avoid potential deadlock in freeing page under lru_lock */
1094		if (locked) {
1095			unlock_page_lruvec_irqrestore(locked, flags);
1096			locked = NULL;
1097		}
1098		put_page(page);
1099
1100isolate_fail:
1101		if (!skip_on_failure && ret != -ENOMEM)
1102			continue;
1103
1104		/*
1105		 * We have isolated some pages, but then failed. Release them
1106		 * instead of migrating, as we cannot form the cc->order buddy
1107		 * page anyway.
1108		 */
1109		if (nr_isolated) {
1110			if (locked) {
1111				unlock_page_lruvec_irqrestore(locked, flags);
1112				locked = NULL;
1113			}
1114			putback_movable_pages(&cc->migratepages);
1115			cc->nr_migratepages = 0;
1116			nr_isolated = 0;
1117		}
1118
1119		if (low_pfn < next_skip_pfn) {
1120			low_pfn = next_skip_pfn - 1;
1121			/*
1122			 * The check near the loop beginning would have updated
1123			 * next_skip_pfn too, but this is a bit simpler.
1124			 */
1125			next_skip_pfn += 1UL << cc->order;
1126		}
1127
1128		if (ret == -ENOMEM)
1129			break;
1130	}
1131
1132	/*
1133	 * The PageBuddy() check could have potentially brought us outside
1134	 * the range to be scanned.
1135	 */
1136	if (unlikely(low_pfn > end_pfn))
1137		low_pfn = end_pfn;
1138
1139	page = NULL;
1140
1141isolate_abort:
1142	if (locked)
1143		unlock_page_lruvec_irqrestore(locked, flags);
1144	if (page) {
1145		SetPageLRU(page);
1146		put_page(page);
1147	}
1148
1149	/*
1150	 * Updated the cached scanner pfn once the pageblock has been scanned
1151	 * Pages will either be migrated in which case there is no point
1152	 * scanning in the near future or migration failed in which case the
1153	 * failure reason may persist. The block is marked for skipping if
1154	 * there were no pages isolated in the block or if the block is
1155	 * rescanned twice in a row.
1156	 */
1157	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1158		if (valid_page && !skip_updated)
1159			set_pageblock_skip(valid_page);
1160		update_cached_migrate(cc, low_pfn);
1161	}
1162
1163	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1164						nr_scanned, nr_isolated);
1165
1166fatal_pending:
1167	cc->total_migrate_scanned += nr_scanned;
1168	if (nr_isolated)
1169		count_compact_events(COMPACTISOLATED, nr_isolated);
1170
1171	cc->migrate_pfn = low_pfn;
1172
1173	return ret;
1174}
1175
1176/**
1177 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1178 * @cc:        Compaction control structure.
1179 * @start_pfn: The first PFN to start isolating.
1180 * @end_pfn:   The one-past-last PFN.
1181 *
1182 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1183 * in case we could not allocate a page, or 0.
1184 */
1185int
1186isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1187							unsigned long end_pfn)
1188{
1189	unsigned long pfn, block_start_pfn, block_end_pfn;
1190	int ret = 0;
1191
1192	/* Scan block by block. First and last block may be incomplete */
1193	pfn = start_pfn;
1194	block_start_pfn = pageblock_start_pfn(pfn);
1195	if (block_start_pfn < cc->zone->zone_start_pfn)
1196		block_start_pfn = cc->zone->zone_start_pfn;
1197	block_end_pfn = pageblock_end_pfn(pfn);
1198
1199	for (; pfn < end_pfn; pfn = block_end_pfn,
1200				block_start_pfn = block_end_pfn,
1201				block_end_pfn += pageblock_nr_pages) {
1202
1203		block_end_pfn = min(block_end_pfn, end_pfn);
1204
1205		if (!pageblock_pfn_to_page(block_start_pfn,
1206					block_end_pfn, cc->zone))
1207			continue;
1208
1209		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1210						 ISOLATE_UNEVICTABLE);
1211
1212		if (ret)
1213			break;
1214
1215		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1216			break;
1217	}
1218
1219	return ret;
1220}
1221
1222#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1223#ifdef CONFIG_COMPACTION
1224
1225static bool suitable_migration_source(struct compact_control *cc,
1226							struct page *page)
1227{
1228	int block_mt;
1229
1230	if (pageblock_skip_persistent(page))
1231		return false;
1232
1233	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1234		return true;
1235
1236	block_mt = get_pageblock_migratetype(page);
1237
1238	if (cc->migratetype == MIGRATE_MOVABLE)
1239		return is_migrate_movable(block_mt);
1240	else
1241		return block_mt == cc->migratetype;
1242}
1243
1244/* Returns true if the page is within a block suitable for migration to */
1245static bool suitable_migration_target(struct compact_control *cc,
1246							struct page *page)
1247{
1248	/* If the page is a large free page, then disallow migration */
1249	if (PageBuddy(page)) {
1250		/*
1251		 * We are checking page_order without zone->lock taken. But
1252		 * the only small danger is that we skip a potentially suitable
1253		 * pageblock, so it's not worth to check order for valid range.
1254		 */
1255		if (buddy_order_unsafe(page) >= pageblock_order)
1256			return false;
1257	}
1258
1259	if (cc->ignore_block_suitable)
1260		return true;
1261
1262	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1263	if (is_migrate_movable(get_pageblock_migratetype(page)))
1264		return true;
1265
1266	/* Otherwise skip the block */
1267	return false;
1268}
1269
1270static inline unsigned int
1271freelist_scan_limit(struct compact_control *cc)
1272{
1273	unsigned short shift = BITS_PER_LONG - 1;
1274
1275	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1276}
1277
1278/*
1279 * Test whether the free scanner has reached the same or lower pageblock than
1280 * the migration scanner, and compaction should thus terminate.
1281 */
1282static inline bool compact_scanners_met(struct compact_control *cc)
1283{
1284	return (cc->free_pfn >> pageblock_order)
1285		<= (cc->migrate_pfn >> pageblock_order);
1286}
1287
1288/*
1289 * Used when scanning for a suitable migration target which scans freelists
1290 * in reverse. Reorders the list such as the unscanned pages are scanned
1291 * first on the next iteration of the free scanner
1292 */
1293static void
1294move_freelist_head(struct list_head *freelist, struct page *freepage)
1295{
1296	LIST_HEAD(sublist);
1297
1298	if (!list_is_last(freelist, &freepage->lru)) {
1299		list_cut_before(&sublist, freelist, &freepage->lru);
1300		list_splice_tail(&sublist, freelist);
1301	}
1302}
1303
1304/*
1305 * Similar to move_freelist_head except used by the migration scanner
1306 * when scanning forward. It's possible for these list operations to
1307 * move against each other if they search the free list exactly in
1308 * lockstep.
1309 */
1310static void
1311move_freelist_tail(struct list_head *freelist, struct page *freepage)
1312{
1313	LIST_HEAD(sublist);
1314
1315	if (!list_is_first(freelist, &freepage->lru)) {
1316		list_cut_position(&sublist, freelist, &freepage->lru);
1317		list_splice_tail(&sublist, freelist);
1318	}
1319}
1320
1321static void
1322fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1323{
1324	unsigned long start_pfn, end_pfn;
1325	struct page *page;
1326
1327	/* Do not search around if there are enough pages already */
1328	if (cc->nr_freepages >= cc->nr_migratepages)
1329		return;
1330
1331	/* Minimise scanning during async compaction */
1332	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1333		return;
1334
1335	/* Pageblock boundaries */
1336	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1337	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1338
1339	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1340	if (!page)
1341		return;
1342
1343	/* Scan before */
1344	if (start_pfn != pfn) {
1345		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1346		if (cc->nr_freepages >= cc->nr_migratepages)
1347			return;
1348	}
1349
1350	/* Scan after */
1351	start_pfn = pfn + nr_isolated;
1352	if (start_pfn < end_pfn)
1353		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1354
1355	/* Skip this pageblock in the future as it's full or nearly full */
1356	if (cc->nr_freepages < cc->nr_migratepages)
1357		set_pageblock_skip(page);
1358}
1359
1360/* Search orders in round-robin fashion */
1361static int next_search_order(struct compact_control *cc, int order)
1362{
1363	order--;
1364	if (order < 0)
1365		order = cc->order - 1;
1366
1367	/* Search wrapped around? */
1368	if (order == cc->search_order) {
1369		cc->search_order--;
1370		if (cc->search_order < 0)
1371			cc->search_order = cc->order - 1;
1372		return -1;
1373	}
1374
1375	return order;
1376}
1377
1378static unsigned long
1379fast_isolate_freepages(struct compact_control *cc)
1380{
1381	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1382	unsigned int nr_scanned = 0;
1383	unsigned long low_pfn, min_pfn, highest = 0;
1384	unsigned long nr_isolated = 0;
1385	unsigned long distance;
1386	struct page *page = NULL;
1387	bool scan_start = false;
1388	int order;
1389
1390	/* Full compaction passes in a negative order */
1391	if (cc->order <= 0)
1392		return cc->free_pfn;
1393
1394	/*
1395	 * If starting the scan, use a deeper search and use the highest
1396	 * PFN found if a suitable one is not found.
1397	 */
1398	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1399		limit = pageblock_nr_pages >> 1;
1400		scan_start = true;
1401	}
1402
1403	/*
1404	 * Preferred point is in the top quarter of the scan space but take
1405	 * a pfn from the top half if the search is problematic.
1406	 */
1407	distance = (cc->free_pfn - cc->migrate_pfn);
1408	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1409	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1410
1411	if (WARN_ON_ONCE(min_pfn > low_pfn))
1412		low_pfn = min_pfn;
1413
1414	/*
1415	 * Search starts from the last successful isolation order or the next
1416	 * order to search after a previous failure
1417	 */
1418	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1419
1420	for (order = cc->search_order;
1421	     !page && order >= 0;
1422	     order = next_search_order(cc, order)) {
1423		struct free_area *area = &cc->zone->free_area[order];
1424		struct list_head *freelist;
1425		struct page *freepage;
1426		unsigned long flags;
1427		unsigned int order_scanned = 0;
1428		unsigned long high_pfn = 0;
1429
1430		if (!area->nr_free)
1431			continue;
1432
1433		spin_lock_irqsave(&cc->zone->lock, flags);
1434		freelist = &area->free_list[MIGRATE_MOVABLE];
1435		list_for_each_entry_reverse(freepage, freelist, lru) {
1436			unsigned long pfn;
1437
1438			order_scanned++;
1439			nr_scanned++;
1440			pfn = page_to_pfn(freepage);
1441
1442			if (pfn >= highest)
1443				highest = max(pageblock_start_pfn(pfn),
1444					      cc->zone->zone_start_pfn);
1445
1446			if (pfn >= low_pfn) {
1447				cc->fast_search_fail = 0;
1448				cc->search_order = order;
1449				page = freepage;
1450				break;
1451			}
1452
1453			if (pfn >= min_pfn && pfn > high_pfn) {
1454				high_pfn = pfn;
1455
1456				/* Shorten the scan if a candidate is found */
1457				limit >>= 1;
1458			}
1459
1460			if (order_scanned >= limit)
1461				break;
1462		}
1463
1464		/* Use a minimum pfn if a preferred one was not found */
1465		if (!page && high_pfn) {
1466			page = pfn_to_page(high_pfn);
1467
1468			/* Update freepage for the list reorder below */
1469			freepage = page;
1470		}
1471
1472		/* Reorder to so a future search skips recent pages */
1473		move_freelist_head(freelist, freepage);
1474
1475		/* Isolate the page if available */
1476		if (page) {
1477			if (__isolate_free_page(page, order)) {
1478				set_page_private(page, order);
1479				nr_isolated = 1 << order;
 
 
1480				cc->nr_freepages += nr_isolated;
1481				list_add_tail(&page->lru, &cc->freepages);
1482				count_compact_events(COMPACTISOLATED, nr_isolated);
1483			} else {
1484				/* If isolation fails, abort the search */
1485				order = cc->search_order + 1;
1486				page = NULL;
1487			}
1488		}
1489
1490		spin_unlock_irqrestore(&cc->zone->lock, flags);
1491
 
 
 
 
1492		/*
1493		 * Smaller scan on next order so the total scan is related
1494		 * to freelist_scan_limit.
1495		 */
1496		if (order_scanned >= limit)
1497			limit = max(1U, limit >> 1);
1498	}
1499
 
 
 
1500	if (!page) {
1501		cc->fast_search_fail++;
1502		if (scan_start) {
1503			/*
1504			 * Use the highest PFN found above min. If one was
1505			 * not found, be pessimistic for direct compaction
1506			 * and use the min mark.
1507			 */
1508			if (highest) {
1509				page = pfn_to_page(highest);
1510				cc->free_pfn = highest;
1511			} else {
1512				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1513					page = pageblock_pfn_to_page(min_pfn,
1514						min(pageblock_end_pfn(min_pfn),
1515						    zone_end_pfn(cc->zone)),
1516						cc->zone);
 
 
 
1517					cc->free_pfn = min_pfn;
1518				}
1519			}
1520		}
1521	}
1522
1523	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1524		highest -= pageblock_nr_pages;
1525		cc->zone->compact_cached_free_pfn = highest;
1526	}
1527
1528	cc->total_free_scanned += nr_scanned;
1529	if (!page)
1530		return cc->free_pfn;
1531
1532	low_pfn = page_to_pfn(page);
1533	fast_isolate_around(cc, low_pfn, nr_isolated);
1534	return low_pfn;
1535}
1536
1537/*
1538 * Based on information in the current compact_control, find blocks
1539 * suitable for isolating free pages from and then isolate them.
1540 */
1541static void isolate_freepages(struct compact_control *cc)
1542{
1543	struct zone *zone = cc->zone;
1544	struct page *page;
1545	unsigned long block_start_pfn;	/* start of current pageblock */
1546	unsigned long isolate_start_pfn; /* exact pfn we start at */
1547	unsigned long block_end_pfn;	/* end of current pageblock */
1548	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1549	struct list_head *freelist = &cc->freepages;
1550	unsigned int stride;
1551
1552	/* Try a small search of the free lists for a candidate */
1553	isolate_start_pfn = fast_isolate_freepages(cc);
1554	if (cc->nr_freepages)
1555		goto splitmap;
1556
1557	/*
1558	 * Initialise the free scanner. The starting point is where we last
1559	 * successfully isolated from, zone-cached value, or the end of the
1560	 * zone when isolating for the first time. For looping we also need
1561	 * this pfn aligned down to the pageblock boundary, because we do
1562	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1563	 * For ending point, take care when isolating in last pageblock of a
1564	 * zone which ends in the middle of a pageblock.
1565	 * The low boundary is the end of the pageblock the migration scanner
1566	 * is using.
1567	 */
1568	isolate_start_pfn = cc->free_pfn;
1569	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1570	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1571						zone_end_pfn(zone));
1572	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1573	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1574
1575	/*
1576	 * Isolate free pages until enough are available to migrate the
1577	 * pages on cc->migratepages. We stop searching if the migrate
1578	 * and free page scanners meet or enough free pages are isolated.
1579	 */
1580	for (; block_start_pfn >= low_pfn;
1581				block_end_pfn = block_start_pfn,
1582				block_start_pfn -= pageblock_nr_pages,
1583				isolate_start_pfn = block_start_pfn) {
1584		unsigned long nr_isolated;
1585
1586		/*
1587		 * This can iterate a massively long zone without finding any
1588		 * suitable migration targets, so periodically check resched.
1589		 */
1590		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1591			cond_resched();
1592
1593		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1594									zone);
1595		if (!page)
 
 
 
 
 
 
1596			continue;
 
1597
1598		/* Check the block is suitable for migration */
1599		if (!suitable_migration_target(cc, page))
1600			continue;
1601
1602		/* If isolation recently failed, do not retry */
1603		if (!isolation_suitable(cc, page))
1604			continue;
1605
1606		/* Found a block suitable for isolating free pages from. */
1607		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1608					block_end_pfn, freelist, stride, false);
1609
1610		/* Update the skip hint if the full pageblock was scanned */
1611		if (isolate_start_pfn == block_end_pfn)
1612			update_pageblock_skip(cc, page, block_start_pfn);
 
1613
1614		/* Are enough freepages isolated? */
1615		if (cc->nr_freepages >= cc->nr_migratepages) {
1616			if (isolate_start_pfn >= block_end_pfn) {
1617				/*
1618				 * Restart at previous pageblock if more
1619				 * freepages can be isolated next time.
1620				 */
1621				isolate_start_pfn =
1622					block_start_pfn - pageblock_nr_pages;
1623			}
1624			break;
1625		} else if (isolate_start_pfn < block_end_pfn) {
1626			/*
1627			 * If isolation failed early, do not continue
1628			 * needlessly.
1629			 */
1630			break;
1631		}
1632
1633		/* Adjust stride depending on isolation */
1634		if (nr_isolated) {
1635			stride = 1;
1636			continue;
1637		}
1638		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1639	}
1640
1641	/*
1642	 * Record where the free scanner will restart next time. Either we
1643	 * broke from the loop and set isolate_start_pfn based on the last
1644	 * call to isolate_freepages_block(), or we met the migration scanner
1645	 * and the loop terminated due to isolate_start_pfn < low_pfn
1646	 */
1647	cc->free_pfn = isolate_start_pfn;
1648
1649splitmap:
1650	/* __isolate_free_page() does not map the pages */
1651	split_map_pages(freelist);
1652}
1653
1654/*
1655 * This is a migrate-callback that "allocates" freepages by taking pages
1656 * from the isolated freelists in the block we are migrating to.
1657 */
1658static struct page *compaction_alloc(struct page *migratepage,
1659					unsigned long data)
1660{
1661	struct compact_control *cc = (struct compact_control *)data;
1662	struct page *freepage;
1663
1664	if (list_empty(&cc->freepages)) {
1665		isolate_freepages(cc);
1666
1667		if (list_empty(&cc->freepages))
1668			return NULL;
1669	}
1670
1671	freepage = list_entry(cc->freepages.next, struct page, lru);
1672	list_del(&freepage->lru);
1673	cc->nr_freepages--;
1674
1675	return freepage;
1676}
1677
1678/*
1679 * This is a migrate-callback that "frees" freepages back to the isolated
1680 * freelist.  All pages on the freelist are from the same zone, so there is no
1681 * special handling needed for NUMA.
1682 */
1683static void compaction_free(struct page *page, unsigned long data)
1684{
1685	struct compact_control *cc = (struct compact_control *)data;
1686
1687	list_add(&page->lru, &cc->freepages);
1688	cc->nr_freepages++;
1689}
1690
1691/* possible outcome of isolate_migratepages */
1692typedef enum {
1693	ISOLATE_ABORT,		/* Abort compaction now */
1694	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1695	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1696} isolate_migrate_t;
1697
1698/*
1699 * Allow userspace to control policy on scanning the unevictable LRU for
1700 * compactable pages.
1701 */
1702#ifdef CONFIG_PREEMPT_RT
1703int sysctl_compact_unevictable_allowed __read_mostly = 0;
1704#else
1705int sysctl_compact_unevictable_allowed __read_mostly = 1;
1706#endif
 
 
 
 
1707
1708static inline void
1709update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1710{
1711	if (cc->fast_start_pfn == ULONG_MAX)
1712		return;
1713
1714	if (!cc->fast_start_pfn)
1715		cc->fast_start_pfn = pfn;
1716
1717	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1718}
1719
1720static inline unsigned long
1721reinit_migrate_pfn(struct compact_control *cc)
1722{
1723	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1724		return cc->migrate_pfn;
1725
1726	cc->migrate_pfn = cc->fast_start_pfn;
1727	cc->fast_start_pfn = ULONG_MAX;
1728
1729	return cc->migrate_pfn;
1730}
1731
1732/*
1733 * Briefly search the free lists for a migration source that already has
1734 * some free pages to reduce the number of pages that need migration
1735 * before a pageblock is free.
1736 */
1737static unsigned long fast_find_migrateblock(struct compact_control *cc)
1738{
1739	unsigned int limit = freelist_scan_limit(cc);
1740	unsigned int nr_scanned = 0;
1741	unsigned long distance;
1742	unsigned long pfn = cc->migrate_pfn;
1743	unsigned long high_pfn;
1744	int order;
1745	bool found_block = false;
1746
1747	/* Skip hints are relied on to avoid repeats on the fast search */
1748	if (cc->ignore_skip_hint)
1749		return pfn;
1750
1751	/*
 
 
 
 
 
 
 
1752	 * If the migrate_pfn is not at the start of a zone or the start
1753	 * of a pageblock then assume this is a continuation of a previous
1754	 * scan restarted due to COMPACT_CLUSTER_MAX.
1755	 */
1756	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1757		return pfn;
1758
1759	/*
1760	 * For smaller orders, just linearly scan as the number of pages
1761	 * to migrate should be relatively small and does not necessarily
1762	 * justify freeing up a large block for a small allocation.
1763	 */
1764	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1765		return pfn;
1766
1767	/*
1768	 * Only allow kcompactd and direct requests for movable pages to
1769	 * quickly clear out a MOVABLE pageblock for allocation. This
1770	 * reduces the risk that a large movable pageblock is freed for
1771	 * an unmovable/reclaimable small allocation.
1772	 */
1773	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1774		return pfn;
1775
1776	/*
1777	 * When starting the migration scanner, pick any pageblock within the
1778	 * first half of the search space. Otherwise try and pick a pageblock
1779	 * within the first eighth to reduce the chances that a migration
1780	 * target later becomes a source.
1781	 */
1782	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1783	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1784		distance >>= 2;
1785	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1786
1787	for (order = cc->order - 1;
1788	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1789	     order--) {
1790		struct free_area *area = &cc->zone->free_area[order];
1791		struct list_head *freelist;
1792		unsigned long flags;
1793		struct page *freepage;
1794
1795		if (!area->nr_free)
1796			continue;
1797
1798		spin_lock_irqsave(&cc->zone->lock, flags);
1799		freelist = &area->free_list[MIGRATE_MOVABLE];
1800		list_for_each_entry(freepage, freelist, lru) {
1801			unsigned long free_pfn;
1802
1803			if (nr_scanned++ >= limit) {
1804				move_freelist_tail(freelist, freepage);
1805				break;
1806			}
1807
1808			free_pfn = page_to_pfn(freepage);
1809			if (free_pfn < high_pfn) {
1810				/*
1811				 * Avoid if skipped recently. Ideally it would
1812				 * move to the tail but even safe iteration of
1813				 * the list assumes an entry is deleted, not
1814				 * reordered.
1815				 */
1816				if (get_pageblock_skip(freepage))
1817					continue;
1818
1819				/* Reorder to so a future search skips recent pages */
1820				move_freelist_tail(freelist, freepage);
1821
1822				update_fast_start_pfn(cc, free_pfn);
1823				pfn = pageblock_start_pfn(free_pfn);
 
 
1824				cc->fast_search_fail = 0;
1825				found_block = true;
1826				set_pageblock_skip(freepage);
1827				break;
1828			}
1829		}
1830		spin_unlock_irqrestore(&cc->zone->lock, flags);
1831	}
1832
1833	cc->total_migrate_scanned += nr_scanned;
1834
1835	/*
1836	 * If fast scanning failed then use a cached entry for a page block
1837	 * that had free pages as the basis for starting a linear scan.
1838	 */
1839	if (!found_block) {
1840		cc->fast_search_fail++;
1841		pfn = reinit_migrate_pfn(cc);
1842	}
1843	return pfn;
1844}
1845
1846/*
1847 * Isolate all pages that can be migrated from the first suitable block,
1848 * starting at the block pointed to by the migrate scanner pfn within
1849 * compact_control.
1850 */
1851static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1852{
1853	unsigned long block_start_pfn;
1854	unsigned long block_end_pfn;
1855	unsigned long low_pfn;
1856	struct page *page;
1857	const isolate_mode_t isolate_mode =
1858		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1859		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1860	bool fast_find_block;
1861
1862	/*
1863	 * Start at where we last stopped, or beginning of the zone as
1864	 * initialized by compact_zone(). The first failure will use
1865	 * the lowest PFN as the starting point for linear scanning.
1866	 */
1867	low_pfn = fast_find_migrateblock(cc);
1868	block_start_pfn = pageblock_start_pfn(low_pfn);
1869	if (block_start_pfn < cc->zone->zone_start_pfn)
1870		block_start_pfn = cc->zone->zone_start_pfn;
1871
1872	/*
1873	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1874	 * the isolation_suitable check below, check whether the fast
1875	 * search was successful.
1876	 */
1877	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1878
1879	/* Only scan within a pageblock boundary */
1880	block_end_pfn = pageblock_end_pfn(low_pfn);
1881
1882	/*
1883	 * Iterate over whole pageblocks until we find the first suitable.
1884	 * Do not cross the free scanner.
1885	 */
1886	for (; block_end_pfn <= cc->free_pfn;
1887			fast_find_block = false,
1888			cc->migrate_pfn = low_pfn = block_end_pfn,
1889			block_start_pfn = block_end_pfn,
1890			block_end_pfn += pageblock_nr_pages) {
1891
1892		/*
1893		 * This can potentially iterate a massively long zone with
1894		 * many pageblocks unsuitable, so periodically check if we
1895		 * need to schedule.
1896		 */
1897		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1898			cond_resched();
1899
1900		page = pageblock_pfn_to_page(block_start_pfn,
1901						block_end_pfn, cc->zone);
1902		if (!page)
 
 
 
 
 
1903			continue;
 
1904
1905		/*
1906		 * If isolation recently failed, do not retry. Only check the
1907		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1908		 * to be visited multiple times. Assume skip was checked
1909		 * before making it "skip" so other compaction instances do
1910		 * not scan the same block.
1911		 */
1912		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
 
1913		    !fast_find_block && !isolation_suitable(cc, page))
1914			continue;
1915
1916		/*
1917		 * For async compaction, also only scan in MOVABLE blocks
1918		 * without huge pages. Async compaction is optimistic to see
1919		 * if the minimum amount of work satisfies the allocation.
1920		 * The cached PFN is updated as it's possible that all
1921		 * remaining blocks between source and target are unsuitable
1922		 * and the compaction scanners fail to meet.
1923		 */
1924		if (!suitable_migration_source(cc, page)) {
1925			update_cached_migrate(cc, block_end_pfn);
1926			continue;
1927		}
1928
1929		/* Perform the isolation */
1930		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1931						isolate_mode))
1932			return ISOLATE_ABORT;
1933
1934		/*
1935		 * Either we isolated something and proceed with migration. Or
1936		 * we failed and compact_zone should decide if we should
1937		 * continue or not.
1938		 */
1939		break;
1940	}
1941
1942	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1943}
1944
1945/*
1946 * order == -1 is expected when compacting via
1947 * /proc/sys/vm/compact_memory
 
 
1948 */
1949static inline bool is_via_compact_memory(int order)
1950{
1951	return order == -1;
1952}
1953
 
 
 
 
 
 
1954static bool kswapd_is_running(pg_data_t *pgdat)
1955{
1956	return pgdat->kswapd && task_is_running(pgdat->kswapd);
 
 
 
 
 
 
1957}
1958
1959/*
1960 * A zone's fragmentation score is the external fragmentation wrt to the
1961 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1962 */
1963static unsigned int fragmentation_score_zone(struct zone *zone)
1964{
1965	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1966}
1967
1968/*
1969 * A weighted zone's fragmentation score is the external fragmentation
1970 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1971 * returns a value in the range [0, 100].
1972 *
1973 * The scaling factor ensures that proactive compaction focuses on larger
1974 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1975 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1976 * and thus never exceeds the high threshold for proactive compaction.
1977 */
1978static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1979{
1980	unsigned long score;
1981
1982	score = zone->present_pages * fragmentation_score_zone(zone);
1983	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1984}
1985
1986/*
1987 * The per-node proactive (background) compaction process is started by its
1988 * corresponding kcompactd thread when the node's fragmentation score
1989 * exceeds the high threshold. The compaction process remains active till
1990 * the node's score falls below the low threshold, or one of the back-off
1991 * conditions is met.
1992 */
1993static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1994{
1995	unsigned int score = 0;
1996	int zoneid;
1997
1998	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1999		struct zone *zone;
2000
2001		zone = &pgdat->node_zones[zoneid];
 
 
2002		score += fragmentation_score_zone_weighted(zone);
2003	}
2004
2005	return score;
2006}
2007
2008static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2009{
2010	unsigned int wmark_low;
2011
2012	/*
2013	 * Cap the low watermark to avoid excessive compaction
2014	 * activity in case a user sets the proactiveness tunable
2015	 * close to 100 (maximum).
2016	 */
2017	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2018	return low ? wmark_low : min(wmark_low + 10, 100U);
2019}
2020
2021static bool should_proactive_compact_node(pg_data_t *pgdat)
2022{
2023	int wmark_high;
2024
2025	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2026		return false;
2027
2028	wmark_high = fragmentation_score_wmark(pgdat, false);
2029	return fragmentation_score_node(pgdat) > wmark_high;
2030}
2031
2032static enum compact_result __compact_finished(struct compact_control *cc)
2033{
2034	unsigned int order;
2035	const int migratetype = cc->migratetype;
2036	int ret;
2037
2038	/* Compaction run completes if the migrate and free scanner meet */
2039	if (compact_scanners_met(cc)) {
2040		/* Let the next compaction start anew. */
2041		reset_cached_positions(cc->zone);
2042
2043		/*
2044		 * Mark that the PG_migrate_skip information should be cleared
2045		 * by kswapd when it goes to sleep. kcompactd does not set the
2046		 * flag itself as the decision to be clear should be directly
2047		 * based on an allocation request.
2048		 */
2049		if (cc->direct_compaction)
2050			cc->zone->compact_blockskip_flush = true;
2051
2052		if (cc->whole_zone)
2053			return COMPACT_COMPLETE;
2054		else
2055			return COMPACT_PARTIAL_SKIPPED;
2056	}
2057
2058	if (cc->proactive_compaction) {
2059		int score, wmark_low;
2060		pg_data_t *pgdat;
2061
2062		pgdat = cc->zone->zone_pgdat;
2063		if (kswapd_is_running(pgdat))
2064			return COMPACT_PARTIAL_SKIPPED;
2065
2066		score = fragmentation_score_zone(cc->zone);
2067		wmark_low = fragmentation_score_wmark(pgdat, true);
2068
2069		if (score > wmark_low)
2070			ret = COMPACT_CONTINUE;
2071		else
2072			ret = COMPACT_SUCCESS;
2073
2074		goto out;
2075	}
2076
2077	if (is_via_compact_memory(cc->order))
2078		return COMPACT_CONTINUE;
2079
2080	/*
2081	 * Always finish scanning a pageblock to reduce the possibility of
2082	 * fallbacks in the future. This is particularly important when
2083	 * migration source is unmovable/reclaimable but it's not worth
2084	 * special casing.
2085	 */
2086	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2087		return COMPACT_CONTINUE;
2088
2089	/* Direct compactor: Is a suitable page free? */
2090	ret = COMPACT_NO_SUITABLE_PAGE;
2091	for (order = cc->order; order < MAX_ORDER; order++) {
2092		struct free_area *area = &cc->zone->free_area[order];
2093		bool can_steal;
2094
2095		/* Job done if page is free of the right migratetype */
2096		if (!free_area_empty(area, migratetype))
2097			return COMPACT_SUCCESS;
2098
2099#ifdef CONFIG_CMA
2100		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2101		if (migratetype == MIGRATE_MOVABLE &&
2102			!free_area_empty(area, MIGRATE_CMA))
2103			return COMPACT_SUCCESS;
2104#endif
2105		/*
2106		 * Job done if allocation would steal freepages from
2107		 * other migratetype buddy lists.
2108		 */
2109		if (find_suitable_fallback(area, order, migratetype,
2110						true, &can_steal) != -1) {
2111
2112			/* movable pages are OK in any pageblock */
2113			if (migratetype == MIGRATE_MOVABLE)
2114				return COMPACT_SUCCESS;
2115
2116			/*
2117			 * We are stealing for a non-movable allocation. Make
2118			 * sure we finish compacting the current pageblock
2119			 * first so it is as free as possible and we won't
2120			 * have to steal another one soon. This only applies
2121			 * to sync compaction, as async compaction operates
2122			 * on pageblocks of the same migratetype.
2123			 */
2124			if (cc->mode == MIGRATE_ASYNC ||
2125					IS_ALIGNED(cc->migrate_pfn,
2126							pageblock_nr_pages)) {
2127				return COMPACT_SUCCESS;
2128			}
2129
2130			ret = COMPACT_CONTINUE;
2131			break;
2132		}
2133	}
2134
2135out:
2136	if (cc->contended || fatal_signal_pending(current))
2137		ret = COMPACT_CONTENDED;
2138
2139	return ret;
2140}
2141
2142static enum compact_result compact_finished(struct compact_control *cc)
2143{
2144	int ret;
2145
2146	ret = __compact_finished(cc);
2147	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2148	if (ret == COMPACT_NO_SUITABLE_PAGE)
2149		ret = COMPACT_CONTINUE;
2150
2151	return ret;
2152}
2153
2154static enum compact_result __compaction_suitable(struct zone *zone, int order,
2155					unsigned int alloc_flags,
2156					int highest_zoneidx,
2157					unsigned long wmark_target)
2158{
2159	unsigned long watermark;
2160
2161	if (is_via_compact_memory(order))
2162		return COMPACT_CONTINUE;
2163
2164	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2165	/*
2166	 * If watermarks for high-order allocation are already met, there
2167	 * should be no need for compaction at all.
2168	 */
2169	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2170								alloc_flags))
2171		return COMPACT_SUCCESS;
2172
2173	/*
2174	 * Watermarks for order-0 must be met for compaction to be able to
2175	 * isolate free pages for migration targets. This means that the
2176	 * watermark and alloc_flags have to match, or be more pessimistic than
2177	 * the check in __isolate_free_page(). We don't use the direct
2178	 * compactor's alloc_flags, as they are not relevant for freepage
2179	 * isolation. We however do use the direct compactor's highest_zoneidx
2180	 * to skip over zones where lowmem reserves would prevent allocation
2181	 * even if compaction succeeds.
2182	 * For costly orders, we require low watermark instead of min for
2183	 * compaction to proceed to increase its chances.
2184	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2185	 * suitable migration targets
2186	 */
2187	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2188				low_wmark_pages(zone) : min_wmark_pages(zone);
2189	watermark += compact_gap(order);
2190	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2191						ALLOC_CMA, wmark_target))
2192		return COMPACT_SKIPPED;
2193
2194	return COMPACT_CONTINUE;
2195}
2196
2197/*
2198 * compaction_suitable: Is this suitable to run compaction on this zone now?
2199 * Returns
2200 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2201 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2202 *   COMPACT_CONTINUE - If compaction should run now
2203 */
2204enum compact_result compaction_suitable(struct zone *zone, int order,
2205					unsigned int alloc_flags,
2206					int highest_zoneidx)
2207{
2208	enum compact_result ret;
2209	int fragindex;
2210
2211	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2212				    zone_page_state(zone, NR_FREE_PAGES));
2213	/*
2214	 * fragmentation index determines if allocation failures are due to
2215	 * low memory or external fragmentation
2216	 *
2217	 * index of -1000 would imply allocations might succeed depending on
2218	 * watermarks, but we already failed the high-order watermark check
2219	 * index towards 0 implies failure is due to lack of memory
2220	 * index towards 1000 implies failure is due to fragmentation
2221	 *
2222	 * Only compact if a failure would be due to fragmentation. Also
2223	 * ignore fragindex for non-costly orders where the alternative to
2224	 * a successful reclaim/compaction is OOM. Fragindex and the
2225	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2226	 * excessive compaction for costly orders, but it should not be at the
2227	 * expense of system stability.
2228	 */
2229	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2230		fragindex = fragmentation_index(zone, order);
2231		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2232			ret = COMPACT_NOT_SUITABLE_ZONE;
 
 
 
 
 
 
 
 
 
2233	}
2234
2235	trace_mm_compaction_suitable(zone, order, ret);
2236	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2237		ret = COMPACT_SKIPPED;
2238
2239	return ret;
2240}
2241
2242bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2243		int alloc_flags)
2244{
2245	struct zone *zone;
2246	struct zoneref *z;
2247
2248	/*
2249	 * Make sure at least one zone would pass __compaction_suitable if we continue
2250	 * retrying the reclaim.
2251	 */
2252	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2253				ac->highest_zoneidx, ac->nodemask) {
2254		unsigned long available;
2255		enum compact_result compact_result;
2256
2257		/*
2258		 * Do not consider all the reclaimable memory because we do not
2259		 * want to trash just for a single high order allocation which
2260		 * is even not guaranteed to appear even if __compaction_suitable
2261		 * is happy about the watermark check.
2262		 */
2263		available = zone_reclaimable_pages(zone) / order;
2264		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2265		compact_result = __compaction_suitable(zone, order, alloc_flags,
2266				ac->highest_zoneidx, available);
2267		if (compact_result != COMPACT_SKIPPED)
2268			return true;
2269	}
2270
2271	return false;
2272}
2273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2274static enum compact_result
2275compact_zone(struct compact_control *cc, struct capture_control *capc)
2276{
2277	enum compact_result ret;
2278	unsigned long start_pfn = cc->zone->zone_start_pfn;
2279	unsigned long end_pfn = zone_end_pfn(cc->zone);
2280	unsigned long last_migrated_pfn;
2281	const bool sync = cc->mode != MIGRATE_ASYNC;
2282	bool update_cached;
 
2283
2284	/*
2285	 * These counters track activities during zone compaction.  Initialize
2286	 * them before compacting a new zone.
2287	 */
2288	cc->total_migrate_scanned = 0;
2289	cc->total_free_scanned = 0;
2290	cc->nr_migratepages = 0;
2291	cc->nr_freepages = 0;
2292	INIT_LIST_HEAD(&cc->freepages);
2293	INIT_LIST_HEAD(&cc->migratepages);
2294
2295	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2296	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2297							cc->highest_zoneidx);
2298	/* Compaction is likely to fail */
2299	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2300		return ret;
2301
2302	/* huh, compaction_suitable is returning something unexpected */
2303	VM_BUG_ON(ret != COMPACT_CONTINUE);
 
 
 
 
 
2304
2305	/*
2306	 * Clear pageblock skip if there were failures recently and compaction
2307	 * is about to be retried after being deferred.
2308	 */
2309	if (compaction_restarting(cc->zone, cc->order))
2310		__reset_isolation_suitable(cc->zone);
2311
2312	/*
2313	 * Setup to move all movable pages to the end of the zone. Used cached
2314	 * information on where the scanners should start (unless we explicitly
2315	 * want to compact the whole zone), but check that it is initialised
2316	 * by ensuring the values are within zone boundaries.
2317	 */
2318	cc->fast_start_pfn = 0;
2319	if (cc->whole_zone) {
2320		cc->migrate_pfn = start_pfn;
2321		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2322	} else {
2323		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2324		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2325		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2326			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2327			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2328		}
2329		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2330			cc->migrate_pfn = start_pfn;
2331			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2332			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2333		}
2334
2335		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2336			cc->whole_zone = true;
2337	}
2338
2339	last_migrated_pfn = 0;
2340
2341	/*
2342	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2343	 * the basis that some migrations will fail in ASYNC mode. However,
2344	 * if the cached PFNs match and pageblocks are skipped due to having
2345	 * no isolation candidates, then the sync state does not matter.
2346	 * Until a pageblock with isolation candidates is found, keep the
2347	 * cached PFNs in sync to avoid revisiting the same blocks.
2348	 */
2349	update_cached = !sync &&
2350		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2351
2352	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2353				cc->free_pfn, end_pfn, sync);
2354
2355	/* lru_add_drain_all could be expensive with involving other CPUs */
2356	lru_add_drain();
2357
2358	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2359		int err;
2360		unsigned long iteration_start_pfn = cc->migrate_pfn;
2361
2362		/*
2363		 * Avoid multiple rescans which can happen if a page cannot be
2364		 * isolated (dirty/writeback in async mode) or if the migrated
2365		 * pages are being allocated before the pageblock is cleared.
2366		 * The first rescan will capture the entire pageblock for
2367		 * migration. If it fails, it'll be marked skip and scanning
2368		 * will proceed as normal.
2369		 */
2370		cc->rescan = false;
2371		if (pageblock_start_pfn(last_migrated_pfn) ==
2372		    pageblock_start_pfn(iteration_start_pfn)) {
2373			cc->rescan = true;
2374		}
2375
 
2376		switch (isolate_migratepages(cc)) {
2377		case ISOLATE_ABORT:
2378			ret = COMPACT_CONTENDED;
2379			putback_movable_pages(&cc->migratepages);
2380			cc->nr_migratepages = 0;
2381			goto out;
2382		case ISOLATE_NONE:
2383			if (update_cached) {
2384				cc->zone->compact_cached_migrate_pfn[1] =
2385					cc->zone->compact_cached_migrate_pfn[0];
2386			}
2387
2388			/*
2389			 * We haven't isolated and migrated anything, but
2390			 * there might still be unflushed migrations from
2391			 * previous cc->order aligned block.
2392			 */
2393			goto check_drain;
2394		case ISOLATE_SUCCESS:
2395			update_cached = false;
2396			last_migrated_pfn = iteration_start_pfn;
 
2397		}
2398
2399		err = migrate_pages(&cc->migratepages, compaction_alloc,
2400				compaction_free, (unsigned long)cc, cc->mode,
2401				MR_COMPACTION);
2402
2403		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2404							&cc->migratepages);
2405
2406		/* All pages were either migrated or will be released */
2407		cc->nr_migratepages = 0;
2408		if (err) {
2409			putback_movable_pages(&cc->migratepages);
2410			/*
2411			 * migrate_pages() may return -ENOMEM when scanners meet
2412			 * and we want compact_finished() to detect it
2413			 */
2414			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2415				ret = COMPACT_CONTENDED;
2416				goto out;
2417			}
2418			/*
2419			 * We failed to migrate at least one page in the current
2420			 * order-aligned block, so skip the rest of it.
 
 
 
 
 
 
 
2421			 */
2422			if (cc->direct_compaction &&
2423						(cc->mode == MIGRATE_ASYNC)) {
2424				cc->migrate_pfn = block_end_pfn(
2425						cc->migrate_pfn - 1, cc->order);
2426				/* Draining pcplists is useless in this case */
2427				last_migrated_pfn = 0;
 
 
 
 
 
 
 
 
2428			}
2429		}
2430
 
 
 
 
 
 
2431check_drain:
2432		/*
2433		 * Has the migration scanner moved away from the previous
2434		 * cc->order aligned block where we migrated from? If yes,
2435		 * flush the pages that were freed, so that they can merge and
2436		 * compact_finished() can detect immediately if allocation
2437		 * would succeed.
2438		 */
2439		if (cc->order > 0 && last_migrated_pfn) {
2440			unsigned long current_block_start =
2441				block_start_pfn(cc->migrate_pfn, cc->order);
2442
2443			if (last_migrated_pfn < current_block_start) {
2444				lru_add_drain_cpu_zone(cc->zone);
2445				/* No more flushing until we migrate again */
2446				last_migrated_pfn = 0;
2447			}
2448		}
2449
2450		/* Stop if a page has been captured */
2451		if (capc && capc->page) {
2452			ret = COMPACT_SUCCESS;
2453			break;
2454		}
2455	}
2456
2457out:
2458	/*
2459	 * Release free pages and update where the free scanner should restart,
2460	 * so we don't leave any returned pages behind in the next attempt.
2461	 */
2462	if (cc->nr_freepages > 0) {
2463		unsigned long free_pfn = release_freepages(&cc->freepages);
2464
2465		cc->nr_freepages = 0;
2466		VM_BUG_ON(free_pfn == 0);
2467		/* The cached pfn is always the first in a pageblock */
2468		free_pfn = pageblock_start_pfn(free_pfn);
2469		/*
2470		 * Only go back, not forward. The cached pfn might have been
2471		 * already reset to zone end in compact_finished()
2472		 */
2473		if (free_pfn > cc->zone->compact_cached_free_pfn)
2474			cc->zone->compact_cached_free_pfn = free_pfn;
2475	}
2476
2477	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2478	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2479
2480	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2481				cc->free_pfn, end_pfn, sync, ret);
 
 
2482
2483	return ret;
2484}
2485
2486static enum compact_result compact_zone_order(struct zone *zone, int order,
2487		gfp_t gfp_mask, enum compact_priority prio,
2488		unsigned int alloc_flags, int highest_zoneidx,
2489		struct page **capture)
2490{
2491	enum compact_result ret;
2492	struct compact_control cc = {
2493		.order = order,
2494		.search_order = order,
2495		.gfp_mask = gfp_mask,
2496		.zone = zone,
2497		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2498					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2499		.alloc_flags = alloc_flags,
2500		.highest_zoneidx = highest_zoneidx,
2501		.direct_compaction = true,
2502		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2503		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2504		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2505	};
2506	struct capture_control capc = {
2507		.cc = &cc,
2508		.page = NULL,
2509	};
2510
2511	/*
2512	 * Make sure the structs are really initialized before we expose the
2513	 * capture control, in case we are interrupted and the interrupt handler
2514	 * frees a page.
2515	 */
2516	barrier();
2517	WRITE_ONCE(current->capture_control, &capc);
2518
2519	ret = compact_zone(&cc, &capc);
2520
2521	VM_BUG_ON(!list_empty(&cc.freepages));
2522	VM_BUG_ON(!list_empty(&cc.migratepages));
2523
2524	/*
2525	 * Make sure we hide capture control first before we read the captured
2526	 * page pointer, otherwise an interrupt could free and capture a page
2527	 * and we would leak it.
2528	 */
2529	WRITE_ONCE(current->capture_control, NULL);
2530	*capture = READ_ONCE(capc.page);
2531	/*
2532	 * Technically, it is also possible that compaction is skipped but
2533	 * the page is still captured out of luck(IRQ came and freed the page).
2534	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2535	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2536	 */
2537	if (*capture)
2538		ret = COMPACT_SUCCESS;
2539
2540	return ret;
2541}
2542
2543int sysctl_extfrag_threshold = 500;
2544
2545/**
2546 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2547 * @gfp_mask: The GFP mask of the current allocation
2548 * @order: The order of the current allocation
2549 * @alloc_flags: The allocation flags of the current allocation
2550 * @ac: The context of current allocation
2551 * @prio: Determines how hard direct compaction should try to succeed
2552 * @capture: Pointer to free page created by compaction will be stored here
2553 *
2554 * This is the main entry point for direct page compaction.
2555 */
2556enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2557		unsigned int alloc_flags, const struct alloc_context *ac,
2558		enum compact_priority prio, struct page **capture)
2559{
2560	int may_perform_io = gfp_mask & __GFP_IO;
2561	struct zoneref *z;
2562	struct zone *zone;
2563	enum compact_result rc = COMPACT_SKIPPED;
2564
2565	/*
2566	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2567	 * tricky context because the migration might require IO
2568	 */
2569	if (!may_perform_io)
2570		return COMPACT_SKIPPED;
2571
2572	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2573
2574	/* Compact each zone in the list */
2575	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2576					ac->highest_zoneidx, ac->nodemask) {
2577		enum compact_result status;
2578
2579		if (prio > MIN_COMPACT_PRIORITY
2580					&& compaction_deferred(zone, order)) {
2581			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2582			continue;
2583		}
2584
2585		status = compact_zone_order(zone, order, gfp_mask, prio,
2586				alloc_flags, ac->highest_zoneidx, capture);
2587		rc = max(status, rc);
2588
2589		/* The allocation should succeed, stop compacting */
2590		if (status == COMPACT_SUCCESS) {
2591			/*
2592			 * We think the allocation will succeed in this zone,
2593			 * but it is not certain, hence the false. The caller
2594			 * will repeat this with true if allocation indeed
2595			 * succeeds in this zone.
2596			 */
2597			compaction_defer_reset(zone, order, false);
2598
2599			break;
2600		}
2601
2602		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2603					status == COMPACT_PARTIAL_SKIPPED))
2604			/*
2605			 * We think that allocation won't succeed in this zone
2606			 * so we defer compaction there. If it ends up
2607			 * succeeding after all, it will be reset.
2608			 */
2609			defer_compaction(zone, order);
2610
2611		/*
2612		 * We might have stopped compacting due to need_resched() in
2613		 * async compaction, or due to a fatal signal detected. In that
2614		 * case do not try further zones
2615		 */
2616		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2617					|| fatal_signal_pending(current))
2618			break;
2619	}
2620
2621	return rc;
2622}
2623
2624/*
2625 * Compact all zones within a node till each zone's fragmentation score
2626 * reaches within proactive compaction thresholds (as determined by the
2627 * proactiveness tunable).
2628 *
2629 * It is possible that the function returns before reaching score targets
2630 * due to various back-off conditions, such as, contention on per-node or
2631 * per-zone locks.
2632 */
2633static void proactive_compact_node(pg_data_t *pgdat)
2634{
2635	int zoneid;
2636	struct zone *zone;
2637	struct compact_control cc = {
2638		.order = -1,
2639		.mode = MIGRATE_SYNC_LIGHT,
2640		.ignore_skip_hint = true,
2641		.whole_zone = true,
2642		.gfp_mask = GFP_KERNEL,
2643		.proactive_compaction = true,
2644	};
2645
2646	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2647		zone = &pgdat->node_zones[zoneid];
2648		if (!populated_zone(zone))
2649			continue;
2650
2651		cc.zone = zone;
2652
2653		compact_zone(&cc, NULL);
2654
2655		VM_BUG_ON(!list_empty(&cc.freepages));
2656		VM_BUG_ON(!list_empty(&cc.migratepages));
 
 
2657	}
2658}
2659
2660/* Compact all zones within a node */
2661static void compact_node(int nid)
2662{
2663	pg_data_t *pgdat = NODE_DATA(nid);
2664	int zoneid;
2665	struct zone *zone;
2666	struct compact_control cc = {
2667		.order = -1,
2668		.mode = MIGRATE_SYNC,
2669		.ignore_skip_hint = true,
2670		.whole_zone = true,
2671		.gfp_mask = GFP_KERNEL,
2672	};
2673
2674
2675	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2676
2677		zone = &pgdat->node_zones[zoneid];
2678		if (!populated_zone(zone))
2679			continue;
2680
2681		cc.zone = zone;
2682
2683		compact_zone(&cc, NULL);
2684
2685		VM_BUG_ON(!list_empty(&cc.freepages));
2686		VM_BUG_ON(!list_empty(&cc.migratepages));
2687	}
2688}
2689
2690/* Compact all nodes in the system */
2691static void compact_nodes(void)
2692{
2693	int nid;
2694
2695	/* Flush pending updates to the LRU lists */
2696	lru_add_drain_all();
2697
2698	for_each_online_node(nid)
2699		compact_node(nid);
2700}
2701
2702/*
2703 * Tunable for proactive compaction. It determines how
2704 * aggressively the kernel should compact memory in the
2705 * background. It takes values in the range [0, 100].
2706 */
2707unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2708
2709/*
2710 * This is the entry point for compacting all nodes via
2711 * /proc/sys/vm/compact_memory
2712 */
2713int sysctl_compaction_handler(struct ctl_table *table, int write,
2714			void *buffer, size_t *length, loff_t *ppos)
2715{
 
 
 
 
 
 
 
 
 
2716	if (write)
2717		compact_nodes();
2718
2719	return 0;
2720}
2721
2722#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2723static ssize_t compact_store(struct device *dev,
2724			     struct device_attribute *attr,
2725			     const char *buf, size_t count)
2726{
2727	int nid = dev->id;
2728
2729	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2730		/* Flush pending updates to the LRU lists */
2731		lru_add_drain_all();
2732
2733		compact_node(nid);
2734	}
2735
2736	return count;
2737}
2738static DEVICE_ATTR_WO(compact);
2739
2740int compaction_register_node(struct node *node)
2741{
2742	return device_create_file(&node->dev, &dev_attr_compact);
2743}
2744
2745void compaction_unregister_node(struct node *node)
2746{
2747	return device_remove_file(&node->dev, &dev_attr_compact);
2748}
2749#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2750
2751static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2752{
2753	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
 
2754}
2755
2756static bool kcompactd_node_suitable(pg_data_t *pgdat)
2757{
2758	int zoneid;
2759	struct zone *zone;
2760	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
 
2761
2762	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2763		zone = &pgdat->node_zones[zoneid];
2764
2765		if (!populated_zone(zone))
2766			continue;
2767
2768		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2769					highest_zoneidx) == COMPACT_CONTINUE)
 
 
2770			return true;
2771	}
2772
2773	return false;
2774}
2775
2776static void kcompactd_do_work(pg_data_t *pgdat)
2777{
2778	/*
2779	 * With no special task, compact all zones so that a page of requested
2780	 * order is allocatable.
2781	 */
2782	int zoneid;
2783	struct zone *zone;
2784	struct compact_control cc = {
2785		.order = pgdat->kcompactd_max_order,
2786		.search_order = pgdat->kcompactd_max_order,
2787		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2788		.mode = MIGRATE_SYNC_LIGHT,
2789		.ignore_skip_hint = false,
2790		.gfp_mask = GFP_KERNEL,
2791	};
 
 
2792	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2793							cc.highest_zoneidx);
2794	count_compact_event(KCOMPACTD_WAKE);
2795
2796	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2797		int status;
2798
2799		zone = &pgdat->node_zones[zoneid];
2800		if (!populated_zone(zone))
2801			continue;
2802
2803		if (compaction_deferred(zone, cc.order))
2804			continue;
2805
2806		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2807							COMPACT_CONTINUE)
 
2808			continue;
2809
2810		if (kthread_should_stop())
2811			return;
2812
2813		cc.zone = zone;
2814		status = compact_zone(&cc, NULL);
2815
2816		if (status == COMPACT_SUCCESS) {
2817			compaction_defer_reset(zone, cc.order, false);
2818		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2819			/*
2820			 * Buddy pages may become stranded on pcps that could
2821			 * otherwise coalesce on the zone's free area for
2822			 * order >= cc.order.  This is ratelimited by the
2823			 * upcoming deferral.
2824			 */
2825			drain_all_pages(zone);
2826
2827			/*
2828			 * We use sync migration mode here, so we defer like
2829			 * sync direct compaction does.
2830			 */
2831			defer_compaction(zone, cc.order);
2832		}
2833
2834		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2835				     cc.total_migrate_scanned);
2836		count_compact_events(KCOMPACTD_FREE_SCANNED,
2837				     cc.total_free_scanned);
2838
2839		VM_BUG_ON(!list_empty(&cc.freepages));
2840		VM_BUG_ON(!list_empty(&cc.migratepages));
2841	}
2842
2843	/*
2844	 * Regardless of success, we are done until woken up next. But remember
2845	 * the requested order/highest_zoneidx in case it was higher/tighter
2846	 * than our current ones
2847	 */
2848	if (pgdat->kcompactd_max_order <= cc.order)
2849		pgdat->kcompactd_max_order = 0;
2850	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2851		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2852}
2853
2854void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2855{
2856	if (!order)
2857		return;
2858
2859	if (pgdat->kcompactd_max_order < order)
2860		pgdat->kcompactd_max_order = order;
2861
2862	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2863		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2864
2865	/*
2866	 * Pairs with implicit barrier in wait_event_freezable()
2867	 * such that wakeups are not missed.
2868	 */
2869	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2870		return;
2871
2872	if (!kcompactd_node_suitable(pgdat))
2873		return;
2874
2875	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2876							highest_zoneidx);
2877	wake_up_interruptible(&pgdat->kcompactd_wait);
2878}
2879
2880/*
2881 * The background compaction daemon, started as a kernel thread
2882 * from the init process.
2883 */
2884static int kcompactd(void *p)
2885{
2886	pg_data_t *pgdat = (pg_data_t *)p;
2887	struct task_struct *tsk = current;
2888	unsigned int proactive_defer = 0;
 
2889
2890	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2891
2892	if (!cpumask_empty(cpumask))
2893		set_cpus_allowed_ptr(tsk, cpumask);
2894
2895	set_freezable();
2896
2897	pgdat->kcompactd_max_order = 0;
2898	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2899
2900	while (!kthread_should_stop()) {
2901		unsigned long pflags;
2902
 
 
 
 
 
 
2903		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2904		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2905			kcompactd_work_requested(pgdat),
2906			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2907
2908			psi_memstall_enter(&pflags);
2909			kcompactd_do_work(pgdat);
2910			psi_memstall_leave(&pflags);
 
 
 
 
 
 
 
 
2911			continue;
2912		}
2913
2914		/* kcompactd wait timeout */
 
 
 
 
2915		if (should_proactive_compact_node(pgdat)) {
2916			unsigned int prev_score, score;
2917
2918			if (proactive_defer) {
2919				proactive_defer--;
2920				continue;
2921			}
2922			prev_score = fragmentation_score_node(pgdat);
2923			proactive_compact_node(pgdat);
2924			score = fragmentation_score_node(pgdat);
2925			/*
2926			 * Defer proactive compaction if the fragmentation
2927			 * score did not go down i.e. no progress made.
2928			 */
2929			proactive_defer = score < prev_score ?
2930					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
 
2931		}
 
 
2932	}
2933
2934	return 0;
2935}
2936
2937/*
2938 * This kcompactd start function will be called by init and node-hot-add.
2939 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2940 */
2941int kcompactd_run(int nid)
2942{
2943	pg_data_t *pgdat = NODE_DATA(nid);
2944	int ret = 0;
2945
2946	if (pgdat->kcompactd)
2947		return 0;
2948
2949	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2950	if (IS_ERR(pgdat->kcompactd)) {
2951		pr_err("Failed to start kcompactd on node %d\n", nid);
2952		ret = PTR_ERR(pgdat->kcompactd);
2953		pgdat->kcompactd = NULL;
2954	}
2955	return ret;
2956}
2957
2958/*
2959 * Called by memory hotplug when all memory in a node is offlined. Caller must
2960 * hold mem_hotplug_begin/end().
2961 */
2962void kcompactd_stop(int nid)
2963{
2964	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2965
2966	if (kcompactd) {
2967		kthread_stop(kcompactd);
2968		NODE_DATA(nid)->kcompactd = NULL;
2969	}
2970}
2971
2972/*
2973 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2974 * not required for correctness. So if the last cpu in a node goes
2975 * away, we get changed to run anywhere: as the first one comes back,
2976 * restore their cpu bindings.
2977 */
2978static int kcompactd_cpu_online(unsigned int cpu)
2979{
2980	int nid;
2981
2982	for_each_node_state(nid, N_MEMORY) {
2983		pg_data_t *pgdat = NODE_DATA(nid);
2984		const struct cpumask *mask;
2985
2986		mask = cpumask_of_node(pgdat->node_id);
2987
2988		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2989			/* One of our CPUs online: restore mask */
2990			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
 
2991	}
2992	return 0;
2993}
2994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2995static int __init kcompactd_init(void)
2996{
2997	int nid;
2998	int ret;
2999
3000	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3001					"mm/compaction:online",
3002					kcompactd_cpu_online, NULL);
3003	if (ret < 0) {
3004		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3005		return ret;
3006	}
3007
3008	for_each_node_state(nid, N_MEMORY)
3009		kcompactd_run(nid);
 
3010	return 0;
3011}
3012subsys_initcall(kcompactd_init)
3013
3014#endif /* CONFIG_COMPACTION */