Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11#include <linux/cpu.h>
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
16#include <linux/sched/signal.h>
17#include <linux/backing-dev.h>
18#include <linux/sysctl.h>
19#include <linux/sysfs.h>
20#include <linux/page-isolation.h>
21#include <linux/kasan.h>
22#include <linux/kthread.h>
23#include <linux/freezer.h>
24#include <linux/page_owner.h>
25#include <linux/psi.h>
26#include "internal.h"
27
28#ifdef CONFIG_COMPACTION
29/*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
33
34static inline void count_compact_event(enum vm_event_item item)
35{
36 count_vm_event(item);
37}
38
39static inline void count_compact_events(enum vm_event_item item, long delta)
40{
41 count_vm_events(item, delta);
42}
43#else
44#define count_compact_event(item) do { } while (0)
45#define count_compact_events(item, delta) do { } while (0)
46#endif
47
48#if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/compaction.h>
52
53#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
55
56/*
57 * Page order with-respect-to which proactive compaction
58 * calculates external fragmentation, which is used as
59 * the "fragmentation score" of a node/zone.
60 */
61#if defined CONFIG_TRANSPARENT_HUGEPAGE
62#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
63#elif defined CONFIG_HUGETLBFS
64#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
65#else
66#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
67#endif
68
69static unsigned long release_freepages(struct list_head *freelist)
70{
71 struct page *page, *next;
72 unsigned long high_pfn = 0;
73
74 list_for_each_entry_safe(page, next, freelist, lru) {
75 unsigned long pfn = page_to_pfn(page);
76 list_del(&page->lru);
77 __free_page(page);
78 if (pfn > high_pfn)
79 high_pfn = pfn;
80 }
81
82 return high_pfn;
83}
84
85static void split_map_pages(struct list_head *list)
86{
87 unsigned int i, order, nr_pages;
88 struct page *page, *next;
89 LIST_HEAD(tmp_list);
90
91 list_for_each_entry_safe(page, next, list, lru) {
92 list_del(&page->lru);
93
94 order = page_private(page);
95 nr_pages = 1 << order;
96
97 post_alloc_hook(page, order, __GFP_MOVABLE);
98 if (order)
99 split_page(page, order);
100
101 for (i = 0; i < nr_pages; i++) {
102 list_add(&page->lru, &tmp_list);
103 page++;
104 }
105 }
106
107 list_splice(&tmp_list, list);
108}
109
110#ifdef CONFIG_COMPACTION
111bool PageMovable(struct page *page)
112{
113 const struct movable_operations *mops;
114
115 VM_BUG_ON_PAGE(!PageLocked(page), page);
116 if (!__PageMovable(page))
117 return false;
118
119 mops = page_movable_ops(page);
120 if (mops)
121 return true;
122
123 return false;
124}
125
126void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127{
128 VM_BUG_ON_PAGE(!PageLocked(page), page);
129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131}
132EXPORT_SYMBOL(__SetPageMovable);
133
134void __ClearPageMovable(struct page *page)
135{
136 VM_BUG_ON_PAGE(!PageMovable(page), page);
137 /*
138 * This page still has the type of a movable page, but it's
139 * actually not movable any more.
140 */
141 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142}
143EXPORT_SYMBOL(__ClearPageMovable);
144
145/* Do not skip compaction more than 64 times */
146#define COMPACT_MAX_DEFER_SHIFT 6
147
148/*
149 * Compaction is deferred when compaction fails to result in a page
150 * allocation success. 1 << compact_defer_shift, compactions are skipped up
151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152 */
153static void defer_compaction(struct zone *zone, int order)
154{
155 zone->compact_considered = 0;
156 zone->compact_defer_shift++;
157
158 if (order < zone->compact_order_failed)
159 zone->compact_order_failed = order;
160
161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164 trace_mm_compaction_defer_compaction(zone, order);
165}
166
167/* Returns true if compaction should be skipped this time */
168static bool compaction_deferred(struct zone *zone, int order)
169{
170 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172 if (order < zone->compact_order_failed)
173 return false;
174
175 /* Avoid possible overflow */
176 if (++zone->compact_considered >= defer_limit) {
177 zone->compact_considered = defer_limit;
178 return false;
179 }
180
181 trace_mm_compaction_deferred(zone, order);
182
183 return true;
184}
185
186/*
187 * Update defer tracking counters after successful compaction of given order,
188 * which means an allocation either succeeded (alloc_success == true) or is
189 * expected to succeed.
190 */
191void compaction_defer_reset(struct zone *zone, int order,
192 bool alloc_success)
193{
194 if (alloc_success) {
195 zone->compact_considered = 0;
196 zone->compact_defer_shift = 0;
197 }
198 if (order >= zone->compact_order_failed)
199 zone->compact_order_failed = order + 1;
200
201 trace_mm_compaction_defer_reset(zone, order);
202}
203
204/* Returns true if restarting compaction after many failures */
205static bool compaction_restarting(struct zone *zone, int order)
206{
207 if (order < zone->compact_order_failed)
208 return false;
209
210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212}
213
214/* Returns true if the pageblock should be scanned for pages to isolate. */
215static inline bool isolation_suitable(struct compact_control *cc,
216 struct page *page)
217{
218 if (cc->ignore_skip_hint)
219 return true;
220
221 return !get_pageblock_skip(page);
222}
223
224static void reset_cached_positions(struct zone *zone)
225{
226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 zone->compact_cached_free_pfn =
229 pageblock_start_pfn(zone_end_pfn(zone) - 1);
230}
231
232#ifdef CONFIG_SPARSEMEM
233/*
234 * If the PFN falls into an offline section, return the start PFN of the
235 * next online section. If the PFN falls into an online section or if
236 * there is no next online section, return 0.
237 */
238static unsigned long skip_offline_sections(unsigned long start_pfn)
239{
240 unsigned long start_nr = pfn_to_section_nr(start_pfn);
241
242 if (online_section_nr(start_nr))
243 return 0;
244
245 while (++start_nr <= __highest_present_section_nr) {
246 if (online_section_nr(start_nr))
247 return section_nr_to_pfn(start_nr);
248 }
249
250 return 0;
251}
252
253/*
254 * If the PFN falls into an offline section, return the end PFN of the
255 * next online section in reverse. If the PFN falls into an online section
256 * or if there is no next online section in reverse, return 0.
257 */
258static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
259{
260 unsigned long start_nr = pfn_to_section_nr(start_pfn);
261
262 if (!start_nr || online_section_nr(start_nr))
263 return 0;
264
265 while (start_nr-- > 0) {
266 if (online_section_nr(start_nr))
267 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
268 }
269
270 return 0;
271}
272#else
273static unsigned long skip_offline_sections(unsigned long start_pfn)
274{
275 return 0;
276}
277
278static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
279{
280 return 0;
281}
282#endif
283
284/*
285 * Compound pages of >= pageblock_order should consistently be skipped until
286 * released. It is always pointless to compact pages of such order (if they are
287 * migratable), and the pageblocks they occupy cannot contain any free pages.
288 */
289static bool pageblock_skip_persistent(struct page *page)
290{
291 if (!PageCompound(page))
292 return false;
293
294 page = compound_head(page);
295
296 if (compound_order(page) >= pageblock_order)
297 return true;
298
299 return false;
300}
301
302static bool
303__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
304 bool check_target)
305{
306 struct page *page = pfn_to_online_page(pfn);
307 struct page *block_page;
308 struct page *end_page;
309 unsigned long block_pfn;
310
311 if (!page)
312 return false;
313 if (zone != page_zone(page))
314 return false;
315 if (pageblock_skip_persistent(page))
316 return false;
317
318 /*
319 * If skip is already cleared do no further checking once the
320 * restart points have been set.
321 */
322 if (check_source && check_target && !get_pageblock_skip(page))
323 return true;
324
325 /*
326 * If clearing skip for the target scanner, do not select a
327 * non-movable pageblock as the starting point.
328 */
329 if (!check_source && check_target &&
330 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
331 return false;
332
333 /* Ensure the start of the pageblock or zone is online and valid */
334 block_pfn = pageblock_start_pfn(pfn);
335 block_pfn = max(block_pfn, zone->zone_start_pfn);
336 block_page = pfn_to_online_page(block_pfn);
337 if (block_page) {
338 page = block_page;
339 pfn = block_pfn;
340 }
341
342 /* Ensure the end of the pageblock or zone is online and valid */
343 block_pfn = pageblock_end_pfn(pfn) - 1;
344 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
345 end_page = pfn_to_online_page(block_pfn);
346 if (!end_page)
347 return false;
348
349 /*
350 * Only clear the hint if a sample indicates there is either a
351 * free page or an LRU page in the block. One or other condition
352 * is necessary for the block to be a migration source/target.
353 */
354 do {
355 if (check_source && PageLRU(page)) {
356 clear_pageblock_skip(page);
357 return true;
358 }
359
360 if (check_target && PageBuddy(page)) {
361 clear_pageblock_skip(page);
362 return true;
363 }
364
365 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
366 } while (page <= end_page);
367
368 return false;
369}
370
371/*
372 * This function is called to clear all cached information on pageblocks that
373 * should be skipped for page isolation when the migrate and free page scanner
374 * meet.
375 */
376static void __reset_isolation_suitable(struct zone *zone)
377{
378 unsigned long migrate_pfn = zone->zone_start_pfn;
379 unsigned long free_pfn = zone_end_pfn(zone) - 1;
380 unsigned long reset_migrate = free_pfn;
381 unsigned long reset_free = migrate_pfn;
382 bool source_set = false;
383 bool free_set = false;
384
385 /* Only flush if a full compaction finished recently */
386 if (!zone->compact_blockskip_flush)
387 return;
388
389 zone->compact_blockskip_flush = false;
390
391 /*
392 * Walk the zone and update pageblock skip information. Source looks
393 * for PageLRU while target looks for PageBuddy. When the scanner
394 * is found, both PageBuddy and PageLRU are checked as the pageblock
395 * is suitable as both source and target.
396 */
397 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
398 free_pfn -= pageblock_nr_pages) {
399 cond_resched();
400
401 /* Update the migrate PFN */
402 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
403 migrate_pfn < reset_migrate) {
404 source_set = true;
405 reset_migrate = migrate_pfn;
406 zone->compact_init_migrate_pfn = reset_migrate;
407 zone->compact_cached_migrate_pfn[0] = reset_migrate;
408 zone->compact_cached_migrate_pfn[1] = reset_migrate;
409 }
410
411 /* Update the free PFN */
412 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
413 free_pfn > reset_free) {
414 free_set = true;
415 reset_free = free_pfn;
416 zone->compact_init_free_pfn = reset_free;
417 zone->compact_cached_free_pfn = reset_free;
418 }
419 }
420
421 /* Leave no distance if no suitable block was reset */
422 if (reset_migrate >= reset_free) {
423 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
424 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
425 zone->compact_cached_free_pfn = free_pfn;
426 }
427}
428
429void reset_isolation_suitable(pg_data_t *pgdat)
430{
431 int zoneid;
432
433 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
434 struct zone *zone = &pgdat->node_zones[zoneid];
435 if (!populated_zone(zone))
436 continue;
437
438 __reset_isolation_suitable(zone);
439 }
440}
441
442/*
443 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
444 * locks are not required for read/writers. Returns true if it was already set.
445 */
446static bool test_and_set_skip(struct compact_control *cc, struct page *page)
447{
448 bool skip;
449
450 /* Do not update if skip hint is being ignored */
451 if (cc->ignore_skip_hint)
452 return false;
453
454 skip = get_pageblock_skip(page);
455 if (!skip && !cc->no_set_skip_hint)
456 set_pageblock_skip(page);
457
458 return skip;
459}
460
461static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
462{
463 struct zone *zone = cc->zone;
464
465 /* Set for isolation rather than compaction */
466 if (cc->no_set_skip_hint)
467 return;
468
469 pfn = pageblock_end_pfn(pfn);
470
471 /* Update where async and sync compaction should restart */
472 if (pfn > zone->compact_cached_migrate_pfn[0])
473 zone->compact_cached_migrate_pfn[0] = pfn;
474 if (cc->mode != MIGRATE_ASYNC &&
475 pfn > zone->compact_cached_migrate_pfn[1])
476 zone->compact_cached_migrate_pfn[1] = pfn;
477}
478
479/*
480 * If no pages were isolated then mark this pageblock to be skipped in the
481 * future. The information is later cleared by __reset_isolation_suitable().
482 */
483static void update_pageblock_skip(struct compact_control *cc,
484 struct page *page, unsigned long pfn)
485{
486 struct zone *zone = cc->zone;
487
488 if (cc->no_set_skip_hint)
489 return;
490
491 set_pageblock_skip(page);
492
493 if (pfn < zone->compact_cached_free_pfn)
494 zone->compact_cached_free_pfn = pfn;
495}
496#else
497static inline bool isolation_suitable(struct compact_control *cc,
498 struct page *page)
499{
500 return true;
501}
502
503static inline bool pageblock_skip_persistent(struct page *page)
504{
505 return false;
506}
507
508static inline void update_pageblock_skip(struct compact_control *cc,
509 struct page *page, unsigned long pfn)
510{
511}
512
513static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
514{
515}
516
517static bool test_and_set_skip(struct compact_control *cc, struct page *page)
518{
519 return false;
520}
521#endif /* CONFIG_COMPACTION */
522
523/*
524 * Compaction requires the taking of some coarse locks that are potentially
525 * very heavily contended. For async compaction, trylock and record if the
526 * lock is contended. The lock will still be acquired but compaction will
527 * abort when the current block is finished regardless of success rate.
528 * Sync compaction acquires the lock.
529 *
530 * Always returns true which makes it easier to track lock state in callers.
531 */
532static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
533 struct compact_control *cc)
534 __acquires(lock)
535{
536 /* Track if the lock is contended in async mode */
537 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
538 if (spin_trylock_irqsave(lock, *flags))
539 return true;
540
541 cc->contended = true;
542 }
543
544 spin_lock_irqsave(lock, *flags);
545 return true;
546}
547
548/*
549 * Compaction requires the taking of some coarse locks that are potentially
550 * very heavily contended. The lock should be periodically unlocked to avoid
551 * having disabled IRQs for a long time, even when there is nobody waiting on
552 * the lock. It might also be that allowing the IRQs will result in
553 * need_resched() becoming true. If scheduling is needed, compaction schedules.
554 * Either compaction type will also abort if a fatal signal is pending.
555 * In either case if the lock was locked, it is dropped and not regained.
556 *
557 * Returns true if compaction should abort due to fatal signal pending.
558 * Returns false when compaction can continue.
559 */
560static bool compact_unlock_should_abort(spinlock_t *lock,
561 unsigned long flags, bool *locked, struct compact_control *cc)
562{
563 if (*locked) {
564 spin_unlock_irqrestore(lock, flags);
565 *locked = false;
566 }
567
568 if (fatal_signal_pending(current)) {
569 cc->contended = true;
570 return true;
571 }
572
573 cond_resched();
574
575 return false;
576}
577
578/*
579 * Isolate free pages onto a private freelist. If @strict is true, will abort
580 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
581 * (even though it may still end up isolating some pages).
582 */
583static unsigned long isolate_freepages_block(struct compact_control *cc,
584 unsigned long *start_pfn,
585 unsigned long end_pfn,
586 struct list_head *freelist,
587 unsigned int stride,
588 bool strict)
589{
590 int nr_scanned = 0, total_isolated = 0;
591 struct page *page;
592 unsigned long flags = 0;
593 bool locked = false;
594 unsigned long blockpfn = *start_pfn;
595 unsigned int order;
596
597 /* Strict mode is for isolation, speed is secondary */
598 if (strict)
599 stride = 1;
600
601 page = pfn_to_page(blockpfn);
602
603 /* Isolate free pages. */
604 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
605 int isolated;
606
607 /*
608 * Periodically drop the lock (if held) regardless of its
609 * contention, to give chance to IRQs. Abort if fatal signal
610 * pending.
611 */
612 if (!(blockpfn % COMPACT_CLUSTER_MAX)
613 && compact_unlock_should_abort(&cc->zone->lock, flags,
614 &locked, cc))
615 break;
616
617 nr_scanned++;
618
619 /*
620 * For compound pages such as THP and hugetlbfs, we can save
621 * potentially a lot of iterations if we skip them at once.
622 * The check is racy, but we can consider only valid values
623 * and the only danger is skipping too much.
624 */
625 if (PageCompound(page)) {
626 const unsigned int order = compound_order(page);
627
628 if (blockpfn + (1UL << order) <= end_pfn) {
629 blockpfn += (1UL << order) - 1;
630 page += (1UL << order) - 1;
631 nr_scanned += (1UL << order) - 1;
632 }
633
634 goto isolate_fail;
635 }
636
637 if (!PageBuddy(page))
638 goto isolate_fail;
639
640 /* If we already hold the lock, we can skip some rechecking. */
641 if (!locked) {
642 locked = compact_lock_irqsave(&cc->zone->lock,
643 &flags, cc);
644
645 /* Recheck this is a buddy page under lock */
646 if (!PageBuddy(page))
647 goto isolate_fail;
648 }
649
650 /* Found a free page, will break it into order-0 pages */
651 order = buddy_order(page);
652 isolated = __isolate_free_page(page, order);
653 if (!isolated)
654 break;
655 set_page_private(page, order);
656
657 nr_scanned += isolated - 1;
658 total_isolated += isolated;
659 cc->nr_freepages += isolated;
660 list_add_tail(&page->lru, freelist);
661
662 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
663 blockpfn += isolated;
664 break;
665 }
666 /* Advance to the end of split page */
667 blockpfn += isolated - 1;
668 page += isolated - 1;
669 continue;
670
671isolate_fail:
672 if (strict)
673 break;
674
675 }
676
677 if (locked)
678 spin_unlock_irqrestore(&cc->zone->lock, flags);
679
680 /*
681 * Be careful to not go outside of the pageblock.
682 */
683 if (unlikely(blockpfn > end_pfn))
684 blockpfn = end_pfn;
685
686 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
687 nr_scanned, total_isolated);
688
689 /* Record how far we have got within the block */
690 *start_pfn = blockpfn;
691
692 /*
693 * If strict isolation is requested by CMA then check that all the
694 * pages requested were isolated. If there were any failures, 0 is
695 * returned and CMA will fail.
696 */
697 if (strict && blockpfn < end_pfn)
698 total_isolated = 0;
699
700 cc->total_free_scanned += nr_scanned;
701 if (total_isolated)
702 count_compact_events(COMPACTISOLATED, total_isolated);
703 return total_isolated;
704}
705
706/**
707 * isolate_freepages_range() - isolate free pages.
708 * @cc: Compaction control structure.
709 * @start_pfn: The first PFN to start isolating.
710 * @end_pfn: The one-past-last PFN.
711 *
712 * Non-free pages, invalid PFNs, or zone boundaries within the
713 * [start_pfn, end_pfn) range are considered errors, cause function to
714 * undo its actions and return zero.
715 *
716 * Otherwise, function returns one-past-the-last PFN of isolated page
717 * (which may be greater then end_pfn if end fell in a middle of
718 * a free page).
719 */
720unsigned long
721isolate_freepages_range(struct compact_control *cc,
722 unsigned long start_pfn, unsigned long end_pfn)
723{
724 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
725 LIST_HEAD(freelist);
726
727 pfn = start_pfn;
728 block_start_pfn = pageblock_start_pfn(pfn);
729 if (block_start_pfn < cc->zone->zone_start_pfn)
730 block_start_pfn = cc->zone->zone_start_pfn;
731 block_end_pfn = pageblock_end_pfn(pfn);
732
733 for (; pfn < end_pfn; pfn += isolated,
734 block_start_pfn = block_end_pfn,
735 block_end_pfn += pageblock_nr_pages) {
736 /* Protect pfn from changing by isolate_freepages_block */
737 unsigned long isolate_start_pfn = pfn;
738
739 /*
740 * pfn could pass the block_end_pfn if isolated freepage
741 * is more than pageblock order. In this case, we adjust
742 * scanning range to right one.
743 */
744 if (pfn >= block_end_pfn) {
745 block_start_pfn = pageblock_start_pfn(pfn);
746 block_end_pfn = pageblock_end_pfn(pfn);
747 }
748
749 block_end_pfn = min(block_end_pfn, end_pfn);
750
751 if (!pageblock_pfn_to_page(block_start_pfn,
752 block_end_pfn, cc->zone))
753 break;
754
755 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
756 block_end_pfn, &freelist, 0, true);
757
758 /*
759 * In strict mode, isolate_freepages_block() returns 0 if
760 * there are any holes in the block (ie. invalid PFNs or
761 * non-free pages).
762 */
763 if (!isolated)
764 break;
765
766 /*
767 * If we managed to isolate pages, it is always (1 << n) *
768 * pageblock_nr_pages for some non-negative n. (Max order
769 * page may span two pageblocks).
770 */
771 }
772
773 /* __isolate_free_page() does not map the pages */
774 split_map_pages(&freelist);
775
776 if (pfn < end_pfn) {
777 /* Loop terminated early, cleanup. */
778 release_freepages(&freelist);
779 return 0;
780 }
781
782 /* We don't use freelists for anything. */
783 return pfn;
784}
785
786/* Similar to reclaim, but different enough that they don't share logic */
787static bool too_many_isolated(struct compact_control *cc)
788{
789 pg_data_t *pgdat = cc->zone->zone_pgdat;
790 bool too_many;
791
792 unsigned long active, inactive, isolated;
793
794 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
795 node_page_state(pgdat, NR_INACTIVE_ANON);
796 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
797 node_page_state(pgdat, NR_ACTIVE_ANON);
798 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
799 node_page_state(pgdat, NR_ISOLATED_ANON);
800
801 /*
802 * Allow GFP_NOFS to isolate past the limit set for regular
803 * compaction runs. This prevents an ABBA deadlock when other
804 * compactors have already isolated to the limit, but are
805 * blocked on filesystem locks held by the GFP_NOFS thread.
806 */
807 if (cc->gfp_mask & __GFP_FS) {
808 inactive >>= 3;
809 active >>= 3;
810 }
811
812 too_many = isolated > (inactive + active) / 2;
813 if (!too_many)
814 wake_throttle_isolated(pgdat);
815
816 return too_many;
817}
818
819/**
820 * isolate_migratepages_block() - isolate all migrate-able pages within
821 * a single pageblock
822 * @cc: Compaction control structure.
823 * @low_pfn: The first PFN to isolate
824 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
825 * @mode: Isolation mode to be used.
826 *
827 * Isolate all pages that can be migrated from the range specified by
828 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
829 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
830 * -ENOMEM in case we could not allocate a page, or 0.
831 * cc->migrate_pfn will contain the next pfn to scan.
832 *
833 * The pages are isolated on cc->migratepages list (not required to be empty),
834 * and cc->nr_migratepages is updated accordingly.
835 */
836static int
837isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
838 unsigned long end_pfn, isolate_mode_t mode)
839{
840 pg_data_t *pgdat = cc->zone->zone_pgdat;
841 unsigned long nr_scanned = 0, nr_isolated = 0;
842 struct lruvec *lruvec;
843 unsigned long flags = 0;
844 struct lruvec *locked = NULL;
845 struct folio *folio = NULL;
846 struct page *page = NULL, *valid_page = NULL;
847 struct address_space *mapping;
848 unsigned long start_pfn = low_pfn;
849 bool skip_on_failure = false;
850 unsigned long next_skip_pfn = 0;
851 bool skip_updated = false;
852 int ret = 0;
853
854 cc->migrate_pfn = low_pfn;
855
856 /*
857 * Ensure that there are not too many pages isolated from the LRU
858 * list by either parallel reclaimers or compaction. If there are,
859 * delay for some time until fewer pages are isolated
860 */
861 while (unlikely(too_many_isolated(cc))) {
862 /* stop isolation if there are still pages not migrated */
863 if (cc->nr_migratepages)
864 return -EAGAIN;
865
866 /* async migration should just abort */
867 if (cc->mode == MIGRATE_ASYNC)
868 return -EAGAIN;
869
870 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
871
872 if (fatal_signal_pending(current))
873 return -EINTR;
874 }
875
876 cond_resched();
877
878 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
879 skip_on_failure = true;
880 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
881 }
882
883 /* Time to isolate some pages for migration */
884 for (; low_pfn < end_pfn; low_pfn++) {
885 bool is_dirty, is_unevictable;
886
887 if (skip_on_failure && low_pfn >= next_skip_pfn) {
888 /*
889 * We have isolated all migration candidates in the
890 * previous order-aligned block, and did not skip it due
891 * to failure. We should migrate the pages now and
892 * hopefully succeed compaction.
893 */
894 if (nr_isolated)
895 break;
896
897 /*
898 * We failed to isolate in the previous order-aligned
899 * block. Set the new boundary to the end of the
900 * current block. Note we can't simply increase
901 * next_skip_pfn by 1 << order, as low_pfn might have
902 * been incremented by a higher number due to skipping
903 * a compound or a high-order buddy page in the
904 * previous loop iteration.
905 */
906 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
907 }
908
909 /*
910 * Periodically drop the lock (if held) regardless of its
911 * contention, to give chance to IRQs. Abort completely if
912 * a fatal signal is pending.
913 */
914 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
915 if (locked) {
916 unlock_page_lruvec_irqrestore(locked, flags);
917 locked = NULL;
918 }
919
920 if (fatal_signal_pending(current)) {
921 cc->contended = true;
922 ret = -EINTR;
923
924 goto fatal_pending;
925 }
926
927 cond_resched();
928 }
929
930 nr_scanned++;
931
932 page = pfn_to_page(low_pfn);
933
934 /*
935 * Check if the pageblock has already been marked skipped.
936 * Only the first PFN is checked as the caller isolates
937 * COMPACT_CLUSTER_MAX at a time so the second call must
938 * not falsely conclude that the block should be skipped.
939 */
940 if (!valid_page && (pageblock_aligned(low_pfn) ||
941 low_pfn == cc->zone->zone_start_pfn)) {
942 if (!isolation_suitable(cc, page)) {
943 low_pfn = end_pfn;
944 folio = NULL;
945 goto isolate_abort;
946 }
947 valid_page = page;
948 }
949
950 if (PageHuge(page) && cc->alloc_contig) {
951 if (locked) {
952 unlock_page_lruvec_irqrestore(locked, flags);
953 locked = NULL;
954 }
955
956 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
957
958 /*
959 * Fail isolation in case isolate_or_dissolve_huge_page()
960 * reports an error. In case of -ENOMEM, abort right away.
961 */
962 if (ret < 0) {
963 /* Do not report -EBUSY down the chain */
964 if (ret == -EBUSY)
965 ret = 0;
966 low_pfn += compound_nr(page) - 1;
967 nr_scanned += compound_nr(page) - 1;
968 goto isolate_fail;
969 }
970
971 if (PageHuge(page)) {
972 /*
973 * Hugepage was successfully isolated and placed
974 * on the cc->migratepages list.
975 */
976 folio = page_folio(page);
977 low_pfn += folio_nr_pages(folio) - 1;
978 goto isolate_success_no_list;
979 }
980
981 /*
982 * Ok, the hugepage was dissolved. Now these pages are
983 * Buddy and cannot be re-allocated because they are
984 * isolated. Fall-through as the check below handles
985 * Buddy pages.
986 */
987 }
988
989 /*
990 * Skip if free. We read page order here without zone lock
991 * which is generally unsafe, but the race window is small and
992 * the worst thing that can happen is that we skip some
993 * potential isolation targets.
994 */
995 if (PageBuddy(page)) {
996 unsigned long freepage_order = buddy_order_unsafe(page);
997
998 /*
999 * Without lock, we cannot be sure that what we got is
1000 * a valid page order. Consider only values in the
1001 * valid order range to prevent low_pfn overflow.
1002 */
1003 if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1004 low_pfn += (1UL << freepage_order) - 1;
1005 nr_scanned += (1UL << freepage_order) - 1;
1006 }
1007 continue;
1008 }
1009
1010 /*
1011 * Regardless of being on LRU, compound pages such as THP and
1012 * hugetlbfs are not to be compacted unless we are attempting
1013 * an allocation much larger than the huge page size (eg CMA).
1014 * We can potentially save a lot of iterations if we skip them
1015 * at once. The check is racy, but we can consider only valid
1016 * values and the only danger is skipping too much.
1017 */
1018 if (PageCompound(page) && !cc->alloc_contig) {
1019 const unsigned int order = compound_order(page);
1020
1021 if (likely(order <= MAX_PAGE_ORDER)) {
1022 low_pfn += (1UL << order) - 1;
1023 nr_scanned += (1UL << order) - 1;
1024 }
1025 goto isolate_fail;
1026 }
1027
1028 /*
1029 * Check may be lockless but that's ok as we recheck later.
1030 * It's possible to migrate LRU and non-lru movable pages.
1031 * Skip any other type of page
1032 */
1033 if (!PageLRU(page)) {
1034 /*
1035 * __PageMovable can return false positive so we need
1036 * to verify it under page_lock.
1037 */
1038 if (unlikely(__PageMovable(page)) &&
1039 !PageIsolated(page)) {
1040 if (locked) {
1041 unlock_page_lruvec_irqrestore(locked, flags);
1042 locked = NULL;
1043 }
1044
1045 if (isolate_movable_page(page, mode)) {
1046 folio = page_folio(page);
1047 goto isolate_success;
1048 }
1049 }
1050
1051 goto isolate_fail;
1052 }
1053
1054 /*
1055 * Be careful not to clear PageLRU until after we're
1056 * sure the page is not being freed elsewhere -- the
1057 * page release code relies on it.
1058 */
1059 folio = folio_get_nontail_page(page);
1060 if (unlikely(!folio))
1061 goto isolate_fail;
1062
1063 /*
1064 * Migration will fail if an anonymous page is pinned in memory,
1065 * so avoid taking lru_lock and isolating it unnecessarily in an
1066 * admittedly racy check.
1067 */
1068 mapping = folio_mapping(folio);
1069 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1070 goto isolate_fail_put;
1071
1072 /*
1073 * Only allow to migrate anonymous pages in GFP_NOFS context
1074 * because those do not depend on fs locks.
1075 */
1076 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1077 goto isolate_fail_put;
1078
1079 /* Only take pages on LRU: a check now makes later tests safe */
1080 if (!folio_test_lru(folio))
1081 goto isolate_fail_put;
1082
1083 is_unevictable = folio_test_unevictable(folio);
1084
1085 /* Compaction might skip unevictable pages but CMA takes them */
1086 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1087 goto isolate_fail_put;
1088
1089 /*
1090 * To minimise LRU disruption, the caller can indicate with
1091 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1092 * it will be able to migrate without blocking - clean pages
1093 * for the most part. PageWriteback would require blocking.
1094 */
1095 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1096 goto isolate_fail_put;
1097
1098 is_dirty = folio_test_dirty(folio);
1099
1100 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1101 (mapping && is_unevictable)) {
1102 bool migrate_dirty = true;
1103 bool is_unmovable;
1104
1105 /*
1106 * Only folios without mappings or that have
1107 * a ->migrate_folio callback are possible to migrate
1108 * without blocking.
1109 *
1110 * Folios from unmovable mappings are not migratable.
1111 *
1112 * However, we can be racing with truncation, which can
1113 * free the mapping that we need to check. Truncation
1114 * holds the folio lock until after the folio is removed
1115 * from the page so holding it ourselves is sufficient.
1116 *
1117 * To avoid locking the folio just to check unmovable,
1118 * assume every unmovable folio is also unevictable,
1119 * which is a cheaper test. If our assumption goes
1120 * wrong, it's not a correctness bug, just potentially
1121 * wasted cycles.
1122 */
1123 if (!folio_trylock(folio))
1124 goto isolate_fail_put;
1125
1126 mapping = folio_mapping(folio);
1127 if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1128 migrate_dirty = !mapping ||
1129 mapping->a_ops->migrate_folio;
1130 }
1131 is_unmovable = mapping && mapping_unmovable(mapping);
1132 folio_unlock(folio);
1133 if (!migrate_dirty || is_unmovable)
1134 goto isolate_fail_put;
1135 }
1136
1137 /* Try isolate the folio */
1138 if (!folio_test_clear_lru(folio))
1139 goto isolate_fail_put;
1140
1141 lruvec = folio_lruvec(folio);
1142
1143 /* If we already hold the lock, we can skip some rechecking */
1144 if (lruvec != locked) {
1145 if (locked)
1146 unlock_page_lruvec_irqrestore(locked, flags);
1147
1148 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1149 locked = lruvec;
1150
1151 lruvec_memcg_debug(lruvec, folio);
1152
1153 /*
1154 * Try get exclusive access under lock. If marked for
1155 * skip, the scan is aborted unless the current context
1156 * is a rescan to reach the end of the pageblock.
1157 */
1158 if (!skip_updated && valid_page) {
1159 skip_updated = true;
1160 if (test_and_set_skip(cc, valid_page) &&
1161 !cc->finish_pageblock) {
1162 low_pfn = end_pfn;
1163 goto isolate_abort;
1164 }
1165 }
1166
1167 /*
1168 * folio become large since the non-locked check,
1169 * and it's on LRU.
1170 */
1171 if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1172 low_pfn += folio_nr_pages(folio) - 1;
1173 nr_scanned += folio_nr_pages(folio) - 1;
1174 folio_set_lru(folio);
1175 goto isolate_fail_put;
1176 }
1177 }
1178
1179 /* The folio is taken off the LRU */
1180 if (folio_test_large(folio))
1181 low_pfn += folio_nr_pages(folio) - 1;
1182
1183 /* Successfully isolated */
1184 lruvec_del_folio(lruvec, folio);
1185 node_stat_mod_folio(folio,
1186 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1187 folio_nr_pages(folio));
1188
1189isolate_success:
1190 list_add(&folio->lru, &cc->migratepages);
1191isolate_success_no_list:
1192 cc->nr_migratepages += folio_nr_pages(folio);
1193 nr_isolated += folio_nr_pages(folio);
1194 nr_scanned += folio_nr_pages(folio) - 1;
1195
1196 /*
1197 * Avoid isolating too much unless this block is being
1198 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1199 * or a lock is contended. For contention, isolate quickly to
1200 * potentially remove one source of contention.
1201 */
1202 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1203 !cc->finish_pageblock && !cc->contended) {
1204 ++low_pfn;
1205 break;
1206 }
1207
1208 continue;
1209
1210isolate_fail_put:
1211 /* Avoid potential deadlock in freeing page under lru_lock */
1212 if (locked) {
1213 unlock_page_lruvec_irqrestore(locked, flags);
1214 locked = NULL;
1215 }
1216 folio_put(folio);
1217
1218isolate_fail:
1219 if (!skip_on_failure && ret != -ENOMEM)
1220 continue;
1221
1222 /*
1223 * We have isolated some pages, but then failed. Release them
1224 * instead of migrating, as we cannot form the cc->order buddy
1225 * page anyway.
1226 */
1227 if (nr_isolated) {
1228 if (locked) {
1229 unlock_page_lruvec_irqrestore(locked, flags);
1230 locked = NULL;
1231 }
1232 putback_movable_pages(&cc->migratepages);
1233 cc->nr_migratepages = 0;
1234 nr_isolated = 0;
1235 }
1236
1237 if (low_pfn < next_skip_pfn) {
1238 low_pfn = next_skip_pfn - 1;
1239 /*
1240 * The check near the loop beginning would have updated
1241 * next_skip_pfn too, but this is a bit simpler.
1242 */
1243 next_skip_pfn += 1UL << cc->order;
1244 }
1245
1246 if (ret == -ENOMEM)
1247 break;
1248 }
1249
1250 /*
1251 * The PageBuddy() check could have potentially brought us outside
1252 * the range to be scanned.
1253 */
1254 if (unlikely(low_pfn > end_pfn))
1255 low_pfn = end_pfn;
1256
1257 folio = NULL;
1258
1259isolate_abort:
1260 if (locked)
1261 unlock_page_lruvec_irqrestore(locked, flags);
1262 if (folio) {
1263 folio_set_lru(folio);
1264 folio_put(folio);
1265 }
1266
1267 /*
1268 * Update the cached scanner pfn once the pageblock has been scanned.
1269 * Pages will either be migrated in which case there is no point
1270 * scanning in the near future or migration failed in which case the
1271 * failure reason may persist. The block is marked for skipping if
1272 * there were no pages isolated in the block or if the block is
1273 * rescanned twice in a row.
1274 */
1275 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1276 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1277 set_pageblock_skip(valid_page);
1278 update_cached_migrate(cc, low_pfn);
1279 }
1280
1281 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1282 nr_scanned, nr_isolated);
1283
1284fatal_pending:
1285 cc->total_migrate_scanned += nr_scanned;
1286 if (nr_isolated)
1287 count_compact_events(COMPACTISOLATED, nr_isolated);
1288
1289 cc->migrate_pfn = low_pfn;
1290
1291 return ret;
1292}
1293
1294/**
1295 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1296 * @cc: Compaction control structure.
1297 * @start_pfn: The first PFN to start isolating.
1298 * @end_pfn: The one-past-last PFN.
1299 *
1300 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1301 * in case we could not allocate a page, or 0.
1302 */
1303int
1304isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1305 unsigned long end_pfn)
1306{
1307 unsigned long pfn, block_start_pfn, block_end_pfn;
1308 int ret = 0;
1309
1310 /* Scan block by block. First and last block may be incomplete */
1311 pfn = start_pfn;
1312 block_start_pfn = pageblock_start_pfn(pfn);
1313 if (block_start_pfn < cc->zone->zone_start_pfn)
1314 block_start_pfn = cc->zone->zone_start_pfn;
1315 block_end_pfn = pageblock_end_pfn(pfn);
1316
1317 for (; pfn < end_pfn; pfn = block_end_pfn,
1318 block_start_pfn = block_end_pfn,
1319 block_end_pfn += pageblock_nr_pages) {
1320
1321 block_end_pfn = min(block_end_pfn, end_pfn);
1322
1323 if (!pageblock_pfn_to_page(block_start_pfn,
1324 block_end_pfn, cc->zone))
1325 continue;
1326
1327 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1328 ISOLATE_UNEVICTABLE);
1329
1330 if (ret)
1331 break;
1332
1333 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1334 break;
1335 }
1336
1337 return ret;
1338}
1339
1340#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1341#ifdef CONFIG_COMPACTION
1342
1343static bool suitable_migration_source(struct compact_control *cc,
1344 struct page *page)
1345{
1346 int block_mt;
1347
1348 if (pageblock_skip_persistent(page))
1349 return false;
1350
1351 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1352 return true;
1353
1354 block_mt = get_pageblock_migratetype(page);
1355
1356 if (cc->migratetype == MIGRATE_MOVABLE)
1357 return is_migrate_movable(block_mt);
1358 else
1359 return block_mt == cc->migratetype;
1360}
1361
1362/* Returns true if the page is within a block suitable for migration to */
1363static bool suitable_migration_target(struct compact_control *cc,
1364 struct page *page)
1365{
1366 /* If the page is a large free page, then disallow migration */
1367 if (PageBuddy(page)) {
1368 /*
1369 * We are checking page_order without zone->lock taken. But
1370 * the only small danger is that we skip a potentially suitable
1371 * pageblock, so it's not worth to check order for valid range.
1372 */
1373 if (buddy_order_unsafe(page) >= pageblock_order)
1374 return false;
1375 }
1376
1377 if (cc->ignore_block_suitable)
1378 return true;
1379
1380 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1381 if (is_migrate_movable(get_pageblock_migratetype(page)))
1382 return true;
1383
1384 /* Otherwise skip the block */
1385 return false;
1386}
1387
1388static inline unsigned int
1389freelist_scan_limit(struct compact_control *cc)
1390{
1391 unsigned short shift = BITS_PER_LONG - 1;
1392
1393 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1394}
1395
1396/*
1397 * Test whether the free scanner has reached the same or lower pageblock than
1398 * the migration scanner, and compaction should thus terminate.
1399 */
1400static inline bool compact_scanners_met(struct compact_control *cc)
1401{
1402 return (cc->free_pfn >> pageblock_order)
1403 <= (cc->migrate_pfn >> pageblock_order);
1404}
1405
1406/*
1407 * Used when scanning for a suitable migration target which scans freelists
1408 * in reverse. Reorders the list such as the unscanned pages are scanned
1409 * first on the next iteration of the free scanner
1410 */
1411static void
1412move_freelist_head(struct list_head *freelist, struct page *freepage)
1413{
1414 LIST_HEAD(sublist);
1415
1416 if (!list_is_first(&freepage->buddy_list, freelist)) {
1417 list_cut_before(&sublist, freelist, &freepage->buddy_list);
1418 list_splice_tail(&sublist, freelist);
1419 }
1420}
1421
1422/*
1423 * Similar to move_freelist_head except used by the migration scanner
1424 * when scanning forward. It's possible for these list operations to
1425 * move against each other if they search the free list exactly in
1426 * lockstep.
1427 */
1428static void
1429move_freelist_tail(struct list_head *freelist, struct page *freepage)
1430{
1431 LIST_HEAD(sublist);
1432
1433 if (!list_is_last(&freepage->buddy_list, freelist)) {
1434 list_cut_position(&sublist, freelist, &freepage->buddy_list);
1435 list_splice_tail(&sublist, freelist);
1436 }
1437}
1438
1439static void
1440fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1441{
1442 unsigned long start_pfn, end_pfn;
1443 struct page *page;
1444
1445 /* Do not search around if there are enough pages already */
1446 if (cc->nr_freepages >= cc->nr_migratepages)
1447 return;
1448
1449 /* Minimise scanning during async compaction */
1450 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1451 return;
1452
1453 /* Pageblock boundaries */
1454 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1455 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1456
1457 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1458 if (!page)
1459 return;
1460
1461 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1462
1463 /* Skip this pageblock in the future as it's full or nearly full */
1464 if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1465 set_pageblock_skip(page);
1466}
1467
1468/* Search orders in round-robin fashion */
1469static int next_search_order(struct compact_control *cc, int order)
1470{
1471 order--;
1472 if (order < 0)
1473 order = cc->order - 1;
1474
1475 /* Search wrapped around? */
1476 if (order == cc->search_order) {
1477 cc->search_order--;
1478 if (cc->search_order < 0)
1479 cc->search_order = cc->order - 1;
1480 return -1;
1481 }
1482
1483 return order;
1484}
1485
1486static void fast_isolate_freepages(struct compact_control *cc)
1487{
1488 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1489 unsigned int nr_scanned = 0, total_isolated = 0;
1490 unsigned long low_pfn, min_pfn, highest = 0;
1491 unsigned long nr_isolated = 0;
1492 unsigned long distance;
1493 struct page *page = NULL;
1494 bool scan_start = false;
1495 int order;
1496
1497 /* Full compaction passes in a negative order */
1498 if (cc->order <= 0)
1499 return;
1500
1501 /*
1502 * If starting the scan, use a deeper search and use the highest
1503 * PFN found if a suitable one is not found.
1504 */
1505 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1506 limit = pageblock_nr_pages >> 1;
1507 scan_start = true;
1508 }
1509
1510 /*
1511 * Preferred point is in the top quarter of the scan space but take
1512 * a pfn from the top half if the search is problematic.
1513 */
1514 distance = (cc->free_pfn - cc->migrate_pfn);
1515 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1516 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1517
1518 if (WARN_ON_ONCE(min_pfn > low_pfn))
1519 low_pfn = min_pfn;
1520
1521 /*
1522 * Search starts from the last successful isolation order or the next
1523 * order to search after a previous failure
1524 */
1525 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1526
1527 for (order = cc->search_order;
1528 !page && order >= 0;
1529 order = next_search_order(cc, order)) {
1530 struct free_area *area = &cc->zone->free_area[order];
1531 struct list_head *freelist;
1532 struct page *freepage;
1533 unsigned long flags;
1534 unsigned int order_scanned = 0;
1535 unsigned long high_pfn = 0;
1536
1537 if (!area->nr_free)
1538 continue;
1539
1540 spin_lock_irqsave(&cc->zone->lock, flags);
1541 freelist = &area->free_list[MIGRATE_MOVABLE];
1542 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1543 unsigned long pfn;
1544
1545 order_scanned++;
1546 nr_scanned++;
1547 pfn = page_to_pfn(freepage);
1548
1549 if (pfn >= highest)
1550 highest = max(pageblock_start_pfn(pfn),
1551 cc->zone->zone_start_pfn);
1552
1553 if (pfn >= low_pfn) {
1554 cc->fast_search_fail = 0;
1555 cc->search_order = order;
1556 page = freepage;
1557 break;
1558 }
1559
1560 if (pfn >= min_pfn && pfn > high_pfn) {
1561 high_pfn = pfn;
1562
1563 /* Shorten the scan if a candidate is found */
1564 limit >>= 1;
1565 }
1566
1567 if (order_scanned >= limit)
1568 break;
1569 }
1570
1571 /* Use a maximum candidate pfn if a preferred one was not found */
1572 if (!page && high_pfn) {
1573 page = pfn_to_page(high_pfn);
1574
1575 /* Update freepage for the list reorder below */
1576 freepage = page;
1577 }
1578
1579 /* Reorder to so a future search skips recent pages */
1580 move_freelist_head(freelist, freepage);
1581
1582 /* Isolate the page if available */
1583 if (page) {
1584 if (__isolate_free_page(page, order)) {
1585 set_page_private(page, order);
1586 nr_isolated = 1 << order;
1587 nr_scanned += nr_isolated - 1;
1588 total_isolated += nr_isolated;
1589 cc->nr_freepages += nr_isolated;
1590 list_add_tail(&page->lru, &cc->freepages);
1591 count_compact_events(COMPACTISOLATED, nr_isolated);
1592 } else {
1593 /* If isolation fails, abort the search */
1594 order = cc->search_order + 1;
1595 page = NULL;
1596 }
1597 }
1598
1599 spin_unlock_irqrestore(&cc->zone->lock, flags);
1600
1601 /* Skip fast search if enough freepages isolated */
1602 if (cc->nr_freepages >= cc->nr_migratepages)
1603 break;
1604
1605 /*
1606 * Smaller scan on next order so the total scan is related
1607 * to freelist_scan_limit.
1608 */
1609 if (order_scanned >= limit)
1610 limit = max(1U, limit >> 1);
1611 }
1612
1613 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1614 nr_scanned, total_isolated);
1615
1616 if (!page) {
1617 cc->fast_search_fail++;
1618 if (scan_start) {
1619 /*
1620 * Use the highest PFN found above min. If one was
1621 * not found, be pessimistic for direct compaction
1622 * and use the min mark.
1623 */
1624 if (highest >= min_pfn) {
1625 page = pfn_to_page(highest);
1626 cc->free_pfn = highest;
1627 } else {
1628 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1629 page = pageblock_pfn_to_page(min_pfn,
1630 min(pageblock_end_pfn(min_pfn),
1631 zone_end_pfn(cc->zone)),
1632 cc->zone);
1633 if (page && !suitable_migration_target(cc, page))
1634 page = NULL;
1635
1636 cc->free_pfn = min_pfn;
1637 }
1638 }
1639 }
1640 }
1641
1642 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1643 highest -= pageblock_nr_pages;
1644 cc->zone->compact_cached_free_pfn = highest;
1645 }
1646
1647 cc->total_free_scanned += nr_scanned;
1648 if (!page)
1649 return;
1650
1651 low_pfn = page_to_pfn(page);
1652 fast_isolate_around(cc, low_pfn);
1653}
1654
1655/*
1656 * Based on information in the current compact_control, find blocks
1657 * suitable for isolating free pages from and then isolate them.
1658 */
1659static void isolate_freepages(struct compact_control *cc)
1660{
1661 struct zone *zone = cc->zone;
1662 struct page *page;
1663 unsigned long block_start_pfn; /* start of current pageblock */
1664 unsigned long isolate_start_pfn; /* exact pfn we start at */
1665 unsigned long block_end_pfn; /* end of current pageblock */
1666 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1667 struct list_head *freelist = &cc->freepages;
1668 unsigned int stride;
1669
1670 /* Try a small search of the free lists for a candidate */
1671 fast_isolate_freepages(cc);
1672 if (cc->nr_freepages)
1673 goto splitmap;
1674
1675 /*
1676 * Initialise the free scanner. The starting point is where we last
1677 * successfully isolated from, zone-cached value, or the end of the
1678 * zone when isolating for the first time. For looping we also need
1679 * this pfn aligned down to the pageblock boundary, because we do
1680 * block_start_pfn -= pageblock_nr_pages in the for loop.
1681 * For ending point, take care when isolating in last pageblock of a
1682 * zone which ends in the middle of a pageblock.
1683 * The low boundary is the end of the pageblock the migration scanner
1684 * is using.
1685 */
1686 isolate_start_pfn = cc->free_pfn;
1687 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1688 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1689 zone_end_pfn(zone));
1690 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1691 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1692
1693 /*
1694 * Isolate free pages until enough are available to migrate the
1695 * pages on cc->migratepages. We stop searching if the migrate
1696 * and free page scanners meet or enough free pages are isolated.
1697 */
1698 for (; block_start_pfn >= low_pfn;
1699 block_end_pfn = block_start_pfn,
1700 block_start_pfn -= pageblock_nr_pages,
1701 isolate_start_pfn = block_start_pfn) {
1702 unsigned long nr_isolated;
1703
1704 /*
1705 * This can iterate a massively long zone without finding any
1706 * suitable migration targets, so periodically check resched.
1707 */
1708 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1709 cond_resched();
1710
1711 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1712 zone);
1713 if (!page) {
1714 unsigned long next_pfn;
1715
1716 next_pfn = skip_offline_sections_reverse(block_start_pfn);
1717 if (next_pfn)
1718 block_start_pfn = max(next_pfn, low_pfn);
1719
1720 continue;
1721 }
1722
1723 /* Check the block is suitable for migration */
1724 if (!suitable_migration_target(cc, page))
1725 continue;
1726
1727 /* If isolation recently failed, do not retry */
1728 if (!isolation_suitable(cc, page))
1729 continue;
1730
1731 /* Found a block suitable for isolating free pages from. */
1732 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1733 block_end_pfn, freelist, stride, false);
1734
1735 /* Update the skip hint if the full pageblock was scanned */
1736 if (isolate_start_pfn == block_end_pfn)
1737 update_pageblock_skip(cc, page, block_start_pfn -
1738 pageblock_nr_pages);
1739
1740 /* Are enough freepages isolated? */
1741 if (cc->nr_freepages >= cc->nr_migratepages) {
1742 if (isolate_start_pfn >= block_end_pfn) {
1743 /*
1744 * Restart at previous pageblock if more
1745 * freepages can be isolated next time.
1746 */
1747 isolate_start_pfn =
1748 block_start_pfn - pageblock_nr_pages;
1749 }
1750 break;
1751 } else if (isolate_start_pfn < block_end_pfn) {
1752 /*
1753 * If isolation failed early, do not continue
1754 * needlessly.
1755 */
1756 break;
1757 }
1758
1759 /* Adjust stride depending on isolation */
1760 if (nr_isolated) {
1761 stride = 1;
1762 continue;
1763 }
1764 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1765 }
1766
1767 /*
1768 * Record where the free scanner will restart next time. Either we
1769 * broke from the loop and set isolate_start_pfn based on the last
1770 * call to isolate_freepages_block(), or we met the migration scanner
1771 * and the loop terminated due to isolate_start_pfn < low_pfn
1772 */
1773 cc->free_pfn = isolate_start_pfn;
1774
1775splitmap:
1776 /* __isolate_free_page() does not map the pages */
1777 split_map_pages(freelist);
1778}
1779
1780/*
1781 * This is a migrate-callback that "allocates" freepages by taking pages
1782 * from the isolated freelists in the block we are migrating to.
1783 */
1784static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1785{
1786 struct compact_control *cc = (struct compact_control *)data;
1787 struct folio *dst;
1788
1789 if (list_empty(&cc->freepages)) {
1790 isolate_freepages(cc);
1791
1792 if (list_empty(&cc->freepages))
1793 return NULL;
1794 }
1795
1796 dst = list_entry(cc->freepages.next, struct folio, lru);
1797 list_del(&dst->lru);
1798 cc->nr_freepages--;
1799
1800 return dst;
1801}
1802
1803/*
1804 * This is a migrate-callback that "frees" freepages back to the isolated
1805 * freelist. All pages on the freelist are from the same zone, so there is no
1806 * special handling needed for NUMA.
1807 */
1808static void compaction_free(struct folio *dst, unsigned long data)
1809{
1810 struct compact_control *cc = (struct compact_control *)data;
1811
1812 list_add(&dst->lru, &cc->freepages);
1813 cc->nr_freepages++;
1814}
1815
1816/* possible outcome of isolate_migratepages */
1817typedef enum {
1818 ISOLATE_ABORT, /* Abort compaction now */
1819 ISOLATE_NONE, /* No pages isolated, continue scanning */
1820 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1821} isolate_migrate_t;
1822
1823/*
1824 * Allow userspace to control policy on scanning the unevictable LRU for
1825 * compactable pages.
1826 */
1827static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1828/*
1829 * Tunable for proactive compaction. It determines how
1830 * aggressively the kernel should compact memory in the
1831 * background. It takes values in the range [0, 100].
1832 */
1833static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1834static int sysctl_extfrag_threshold = 500;
1835static int __read_mostly sysctl_compact_memory;
1836
1837static inline void
1838update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1839{
1840 if (cc->fast_start_pfn == ULONG_MAX)
1841 return;
1842
1843 if (!cc->fast_start_pfn)
1844 cc->fast_start_pfn = pfn;
1845
1846 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1847}
1848
1849static inline unsigned long
1850reinit_migrate_pfn(struct compact_control *cc)
1851{
1852 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1853 return cc->migrate_pfn;
1854
1855 cc->migrate_pfn = cc->fast_start_pfn;
1856 cc->fast_start_pfn = ULONG_MAX;
1857
1858 return cc->migrate_pfn;
1859}
1860
1861/*
1862 * Briefly search the free lists for a migration source that already has
1863 * some free pages to reduce the number of pages that need migration
1864 * before a pageblock is free.
1865 */
1866static unsigned long fast_find_migrateblock(struct compact_control *cc)
1867{
1868 unsigned int limit = freelist_scan_limit(cc);
1869 unsigned int nr_scanned = 0;
1870 unsigned long distance;
1871 unsigned long pfn = cc->migrate_pfn;
1872 unsigned long high_pfn;
1873 int order;
1874 bool found_block = false;
1875
1876 /* Skip hints are relied on to avoid repeats on the fast search */
1877 if (cc->ignore_skip_hint)
1878 return pfn;
1879
1880 /*
1881 * If the pageblock should be finished then do not select a different
1882 * pageblock.
1883 */
1884 if (cc->finish_pageblock)
1885 return pfn;
1886
1887 /*
1888 * If the migrate_pfn is not at the start of a zone or the start
1889 * of a pageblock then assume this is a continuation of a previous
1890 * scan restarted due to COMPACT_CLUSTER_MAX.
1891 */
1892 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1893 return pfn;
1894
1895 /*
1896 * For smaller orders, just linearly scan as the number of pages
1897 * to migrate should be relatively small and does not necessarily
1898 * justify freeing up a large block for a small allocation.
1899 */
1900 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1901 return pfn;
1902
1903 /*
1904 * Only allow kcompactd and direct requests for movable pages to
1905 * quickly clear out a MOVABLE pageblock for allocation. This
1906 * reduces the risk that a large movable pageblock is freed for
1907 * an unmovable/reclaimable small allocation.
1908 */
1909 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1910 return pfn;
1911
1912 /*
1913 * When starting the migration scanner, pick any pageblock within the
1914 * first half of the search space. Otherwise try and pick a pageblock
1915 * within the first eighth to reduce the chances that a migration
1916 * target later becomes a source.
1917 */
1918 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1919 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1920 distance >>= 2;
1921 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1922
1923 for (order = cc->order - 1;
1924 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1925 order--) {
1926 struct free_area *area = &cc->zone->free_area[order];
1927 struct list_head *freelist;
1928 unsigned long flags;
1929 struct page *freepage;
1930
1931 if (!area->nr_free)
1932 continue;
1933
1934 spin_lock_irqsave(&cc->zone->lock, flags);
1935 freelist = &area->free_list[MIGRATE_MOVABLE];
1936 list_for_each_entry(freepage, freelist, buddy_list) {
1937 unsigned long free_pfn;
1938
1939 if (nr_scanned++ >= limit) {
1940 move_freelist_tail(freelist, freepage);
1941 break;
1942 }
1943
1944 free_pfn = page_to_pfn(freepage);
1945 if (free_pfn < high_pfn) {
1946 /*
1947 * Avoid if skipped recently. Ideally it would
1948 * move to the tail but even safe iteration of
1949 * the list assumes an entry is deleted, not
1950 * reordered.
1951 */
1952 if (get_pageblock_skip(freepage))
1953 continue;
1954
1955 /* Reorder to so a future search skips recent pages */
1956 move_freelist_tail(freelist, freepage);
1957
1958 update_fast_start_pfn(cc, free_pfn);
1959 pfn = pageblock_start_pfn(free_pfn);
1960 if (pfn < cc->zone->zone_start_pfn)
1961 pfn = cc->zone->zone_start_pfn;
1962 cc->fast_search_fail = 0;
1963 found_block = true;
1964 break;
1965 }
1966 }
1967 spin_unlock_irqrestore(&cc->zone->lock, flags);
1968 }
1969
1970 cc->total_migrate_scanned += nr_scanned;
1971
1972 /*
1973 * If fast scanning failed then use a cached entry for a page block
1974 * that had free pages as the basis for starting a linear scan.
1975 */
1976 if (!found_block) {
1977 cc->fast_search_fail++;
1978 pfn = reinit_migrate_pfn(cc);
1979 }
1980 return pfn;
1981}
1982
1983/*
1984 * Isolate all pages that can be migrated from the first suitable block,
1985 * starting at the block pointed to by the migrate scanner pfn within
1986 * compact_control.
1987 */
1988static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1989{
1990 unsigned long block_start_pfn;
1991 unsigned long block_end_pfn;
1992 unsigned long low_pfn;
1993 struct page *page;
1994 const isolate_mode_t isolate_mode =
1995 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1996 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1997 bool fast_find_block;
1998
1999 /*
2000 * Start at where we last stopped, or beginning of the zone as
2001 * initialized by compact_zone(). The first failure will use
2002 * the lowest PFN as the starting point for linear scanning.
2003 */
2004 low_pfn = fast_find_migrateblock(cc);
2005 block_start_pfn = pageblock_start_pfn(low_pfn);
2006 if (block_start_pfn < cc->zone->zone_start_pfn)
2007 block_start_pfn = cc->zone->zone_start_pfn;
2008
2009 /*
2010 * fast_find_migrateblock() has already ensured the pageblock is not
2011 * set with a skipped flag, so to avoid the isolation_suitable check
2012 * below again, check whether the fast search was successful.
2013 */
2014 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2015
2016 /* Only scan within a pageblock boundary */
2017 block_end_pfn = pageblock_end_pfn(low_pfn);
2018
2019 /*
2020 * Iterate over whole pageblocks until we find the first suitable.
2021 * Do not cross the free scanner.
2022 */
2023 for (; block_end_pfn <= cc->free_pfn;
2024 fast_find_block = false,
2025 cc->migrate_pfn = low_pfn = block_end_pfn,
2026 block_start_pfn = block_end_pfn,
2027 block_end_pfn += pageblock_nr_pages) {
2028
2029 /*
2030 * This can potentially iterate a massively long zone with
2031 * many pageblocks unsuitable, so periodically check if we
2032 * need to schedule.
2033 */
2034 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2035 cond_resched();
2036
2037 page = pageblock_pfn_to_page(block_start_pfn,
2038 block_end_pfn, cc->zone);
2039 if (!page) {
2040 unsigned long next_pfn;
2041
2042 next_pfn = skip_offline_sections(block_start_pfn);
2043 if (next_pfn)
2044 block_end_pfn = min(next_pfn, cc->free_pfn);
2045 continue;
2046 }
2047
2048 /*
2049 * If isolation recently failed, do not retry. Only check the
2050 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2051 * to be visited multiple times. Assume skip was checked
2052 * before making it "skip" so other compaction instances do
2053 * not scan the same block.
2054 */
2055 if ((pageblock_aligned(low_pfn) ||
2056 low_pfn == cc->zone->zone_start_pfn) &&
2057 !fast_find_block && !isolation_suitable(cc, page))
2058 continue;
2059
2060 /*
2061 * For async direct compaction, only scan the pageblocks of the
2062 * same migratetype without huge pages. Async direct compaction
2063 * is optimistic to see if the minimum amount of work satisfies
2064 * the allocation. The cached PFN is updated as it's possible
2065 * that all remaining blocks between source and target are
2066 * unsuitable and the compaction scanners fail to meet.
2067 */
2068 if (!suitable_migration_source(cc, page)) {
2069 update_cached_migrate(cc, block_end_pfn);
2070 continue;
2071 }
2072
2073 /* Perform the isolation */
2074 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2075 isolate_mode))
2076 return ISOLATE_ABORT;
2077
2078 /*
2079 * Either we isolated something and proceed with migration. Or
2080 * we failed and compact_zone should decide if we should
2081 * continue or not.
2082 */
2083 break;
2084 }
2085
2086 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2087}
2088
2089/*
2090 * order == -1 is expected when compacting proactively via
2091 * 1. /proc/sys/vm/compact_memory
2092 * 2. /sys/devices/system/node/nodex/compact
2093 * 3. /proc/sys/vm/compaction_proactiveness
2094 */
2095static inline bool is_via_compact_memory(int order)
2096{
2097 return order == -1;
2098}
2099
2100/*
2101 * Determine whether kswapd is (or recently was!) running on this node.
2102 *
2103 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2104 * zero it.
2105 */
2106static bool kswapd_is_running(pg_data_t *pgdat)
2107{
2108 bool running;
2109
2110 pgdat_kswapd_lock(pgdat);
2111 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2112 pgdat_kswapd_unlock(pgdat);
2113
2114 return running;
2115}
2116
2117/*
2118 * A zone's fragmentation score is the external fragmentation wrt to the
2119 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2120 */
2121static unsigned int fragmentation_score_zone(struct zone *zone)
2122{
2123 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2124}
2125
2126/*
2127 * A weighted zone's fragmentation score is the external fragmentation
2128 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2129 * returns a value in the range [0, 100].
2130 *
2131 * The scaling factor ensures that proactive compaction focuses on larger
2132 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2133 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2134 * and thus never exceeds the high threshold for proactive compaction.
2135 */
2136static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2137{
2138 unsigned long score;
2139
2140 score = zone->present_pages * fragmentation_score_zone(zone);
2141 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2142}
2143
2144/*
2145 * The per-node proactive (background) compaction process is started by its
2146 * corresponding kcompactd thread when the node's fragmentation score
2147 * exceeds the high threshold. The compaction process remains active till
2148 * the node's score falls below the low threshold, or one of the back-off
2149 * conditions is met.
2150 */
2151static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2152{
2153 unsigned int score = 0;
2154 int zoneid;
2155
2156 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2157 struct zone *zone;
2158
2159 zone = &pgdat->node_zones[zoneid];
2160 if (!populated_zone(zone))
2161 continue;
2162 score += fragmentation_score_zone_weighted(zone);
2163 }
2164
2165 return score;
2166}
2167
2168static unsigned int fragmentation_score_wmark(bool low)
2169{
2170 unsigned int wmark_low;
2171
2172 /*
2173 * Cap the low watermark to avoid excessive compaction
2174 * activity in case a user sets the proactiveness tunable
2175 * close to 100 (maximum).
2176 */
2177 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2178 return low ? wmark_low : min(wmark_low + 10, 100U);
2179}
2180
2181static bool should_proactive_compact_node(pg_data_t *pgdat)
2182{
2183 int wmark_high;
2184
2185 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2186 return false;
2187
2188 wmark_high = fragmentation_score_wmark(false);
2189 return fragmentation_score_node(pgdat) > wmark_high;
2190}
2191
2192static enum compact_result __compact_finished(struct compact_control *cc)
2193{
2194 unsigned int order;
2195 const int migratetype = cc->migratetype;
2196 int ret;
2197
2198 /* Compaction run completes if the migrate and free scanner meet */
2199 if (compact_scanners_met(cc)) {
2200 /* Let the next compaction start anew. */
2201 reset_cached_positions(cc->zone);
2202
2203 /*
2204 * Mark that the PG_migrate_skip information should be cleared
2205 * by kswapd when it goes to sleep. kcompactd does not set the
2206 * flag itself as the decision to be clear should be directly
2207 * based on an allocation request.
2208 */
2209 if (cc->direct_compaction)
2210 cc->zone->compact_blockskip_flush = true;
2211
2212 if (cc->whole_zone)
2213 return COMPACT_COMPLETE;
2214 else
2215 return COMPACT_PARTIAL_SKIPPED;
2216 }
2217
2218 if (cc->proactive_compaction) {
2219 int score, wmark_low;
2220 pg_data_t *pgdat;
2221
2222 pgdat = cc->zone->zone_pgdat;
2223 if (kswapd_is_running(pgdat))
2224 return COMPACT_PARTIAL_SKIPPED;
2225
2226 score = fragmentation_score_zone(cc->zone);
2227 wmark_low = fragmentation_score_wmark(true);
2228
2229 if (score > wmark_low)
2230 ret = COMPACT_CONTINUE;
2231 else
2232 ret = COMPACT_SUCCESS;
2233
2234 goto out;
2235 }
2236
2237 if (is_via_compact_memory(cc->order))
2238 return COMPACT_CONTINUE;
2239
2240 /*
2241 * Always finish scanning a pageblock to reduce the possibility of
2242 * fallbacks in the future. This is particularly important when
2243 * migration source is unmovable/reclaimable but it's not worth
2244 * special casing.
2245 */
2246 if (!pageblock_aligned(cc->migrate_pfn))
2247 return COMPACT_CONTINUE;
2248
2249 /* Direct compactor: Is a suitable page free? */
2250 ret = COMPACT_NO_SUITABLE_PAGE;
2251 for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2252 struct free_area *area = &cc->zone->free_area[order];
2253 bool can_steal;
2254
2255 /* Job done if page is free of the right migratetype */
2256 if (!free_area_empty(area, migratetype))
2257 return COMPACT_SUCCESS;
2258
2259#ifdef CONFIG_CMA
2260 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2261 if (migratetype == MIGRATE_MOVABLE &&
2262 !free_area_empty(area, MIGRATE_CMA))
2263 return COMPACT_SUCCESS;
2264#endif
2265 /*
2266 * Job done if allocation would steal freepages from
2267 * other migratetype buddy lists.
2268 */
2269 if (find_suitable_fallback(area, order, migratetype,
2270 true, &can_steal) != -1)
2271 /*
2272 * Movable pages are OK in any pageblock. If we are
2273 * stealing for a non-movable allocation, make sure
2274 * we finish compacting the current pageblock first
2275 * (which is assured by the above migrate_pfn align
2276 * check) so it is as free as possible and we won't
2277 * have to steal another one soon.
2278 */
2279 return COMPACT_SUCCESS;
2280 }
2281
2282out:
2283 if (cc->contended || fatal_signal_pending(current))
2284 ret = COMPACT_CONTENDED;
2285
2286 return ret;
2287}
2288
2289static enum compact_result compact_finished(struct compact_control *cc)
2290{
2291 int ret;
2292
2293 ret = __compact_finished(cc);
2294 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2295 if (ret == COMPACT_NO_SUITABLE_PAGE)
2296 ret = COMPACT_CONTINUE;
2297
2298 return ret;
2299}
2300
2301static bool __compaction_suitable(struct zone *zone, int order,
2302 int highest_zoneidx,
2303 unsigned long wmark_target)
2304{
2305 unsigned long watermark;
2306 /*
2307 * Watermarks for order-0 must be met for compaction to be able to
2308 * isolate free pages for migration targets. This means that the
2309 * watermark and alloc_flags have to match, or be more pessimistic than
2310 * the check in __isolate_free_page(). We don't use the direct
2311 * compactor's alloc_flags, as they are not relevant for freepage
2312 * isolation. We however do use the direct compactor's highest_zoneidx
2313 * to skip over zones where lowmem reserves would prevent allocation
2314 * even if compaction succeeds.
2315 * For costly orders, we require low watermark instead of min for
2316 * compaction to proceed to increase its chances.
2317 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2318 * suitable migration targets
2319 */
2320 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2321 low_wmark_pages(zone) : min_wmark_pages(zone);
2322 watermark += compact_gap(order);
2323 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2324 ALLOC_CMA, wmark_target);
2325}
2326
2327/*
2328 * compaction_suitable: Is this suitable to run compaction on this zone now?
2329 */
2330bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2331{
2332 enum compact_result compact_result;
2333 bool suitable;
2334
2335 suitable = __compaction_suitable(zone, order, highest_zoneidx,
2336 zone_page_state(zone, NR_FREE_PAGES));
2337 /*
2338 * fragmentation index determines if allocation failures are due to
2339 * low memory or external fragmentation
2340 *
2341 * index of -1000 would imply allocations might succeed depending on
2342 * watermarks, but we already failed the high-order watermark check
2343 * index towards 0 implies failure is due to lack of memory
2344 * index towards 1000 implies failure is due to fragmentation
2345 *
2346 * Only compact if a failure would be due to fragmentation. Also
2347 * ignore fragindex for non-costly orders where the alternative to
2348 * a successful reclaim/compaction is OOM. Fragindex and the
2349 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2350 * excessive compaction for costly orders, but it should not be at the
2351 * expense of system stability.
2352 */
2353 if (suitable) {
2354 compact_result = COMPACT_CONTINUE;
2355 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2356 int fragindex = fragmentation_index(zone, order);
2357
2358 if (fragindex >= 0 &&
2359 fragindex <= sysctl_extfrag_threshold) {
2360 suitable = false;
2361 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2362 }
2363 }
2364 } else {
2365 compact_result = COMPACT_SKIPPED;
2366 }
2367
2368 trace_mm_compaction_suitable(zone, order, compact_result);
2369
2370 return suitable;
2371}
2372
2373bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2374 int alloc_flags)
2375{
2376 struct zone *zone;
2377 struct zoneref *z;
2378
2379 /*
2380 * Make sure at least one zone would pass __compaction_suitable if we continue
2381 * retrying the reclaim.
2382 */
2383 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2384 ac->highest_zoneidx, ac->nodemask) {
2385 unsigned long available;
2386
2387 /*
2388 * Do not consider all the reclaimable memory because we do not
2389 * want to trash just for a single high order allocation which
2390 * is even not guaranteed to appear even if __compaction_suitable
2391 * is happy about the watermark check.
2392 */
2393 available = zone_reclaimable_pages(zone) / order;
2394 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2395 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2396 available))
2397 return true;
2398 }
2399
2400 return false;
2401}
2402
2403/*
2404 * Should we do compaction for target allocation order.
2405 * Return COMPACT_SUCCESS if allocation for target order can be already
2406 * satisfied
2407 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2408 * Return COMPACT_CONTINUE if compaction for target order should be ran
2409 */
2410static enum compact_result
2411compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2412 int highest_zoneidx, unsigned int alloc_flags)
2413{
2414 unsigned long watermark;
2415
2416 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2417 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2418 alloc_flags))
2419 return COMPACT_SUCCESS;
2420
2421 if (!compaction_suitable(zone, order, highest_zoneidx))
2422 return COMPACT_SKIPPED;
2423
2424 return COMPACT_CONTINUE;
2425}
2426
2427static enum compact_result
2428compact_zone(struct compact_control *cc, struct capture_control *capc)
2429{
2430 enum compact_result ret;
2431 unsigned long start_pfn = cc->zone->zone_start_pfn;
2432 unsigned long end_pfn = zone_end_pfn(cc->zone);
2433 unsigned long last_migrated_pfn;
2434 const bool sync = cc->mode != MIGRATE_ASYNC;
2435 bool update_cached;
2436 unsigned int nr_succeeded = 0;
2437
2438 /*
2439 * These counters track activities during zone compaction. Initialize
2440 * them before compacting a new zone.
2441 */
2442 cc->total_migrate_scanned = 0;
2443 cc->total_free_scanned = 0;
2444 cc->nr_migratepages = 0;
2445 cc->nr_freepages = 0;
2446 INIT_LIST_HEAD(&cc->freepages);
2447 INIT_LIST_HEAD(&cc->migratepages);
2448
2449 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2450
2451 if (!is_via_compact_memory(cc->order)) {
2452 ret = compaction_suit_allocation_order(cc->zone, cc->order,
2453 cc->highest_zoneidx,
2454 cc->alloc_flags);
2455 if (ret != COMPACT_CONTINUE)
2456 return ret;
2457 }
2458
2459 /*
2460 * Clear pageblock skip if there were failures recently and compaction
2461 * is about to be retried after being deferred.
2462 */
2463 if (compaction_restarting(cc->zone, cc->order))
2464 __reset_isolation_suitable(cc->zone);
2465
2466 /*
2467 * Setup to move all movable pages to the end of the zone. Used cached
2468 * information on where the scanners should start (unless we explicitly
2469 * want to compact the whole zone), but check that it is initialised
2470 * by ensuring the values are within zone boundaries.
2471 */
2472 cc->fast_start_pfn = 0;
2473 if (cc->whole_zone) {
2474 cc->migrate_pfn = start_pfn;
2475 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2476 } else {
2477 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2478 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2479 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2480 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2481 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2482 }
2483 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2484 cc->migrate_pfn = start_pfn;
2485 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2486 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2487 }
2488
2489 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2490 cc->whole_zone = true;
2491 }
2492
2493 last_migrated_pfn = 0;
2494
2495 /*
2496 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2497 * the basis that some migrations will fail in ASYNC mode. However,
2498 * if the cached PFNs match and pageblocks are skipped due to having
2499 * no isolation candidates, then the sync state does not matter.
2500 * Until a pageblock with isolation candidates is found, keep the
2501 * cached PFNs in sync to avoid revisiting the same blocks.
2502 */
2503 update_cached = !sync &&
2504 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2505
2506 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2507
2508 /* lru_add_drain_all could be expensive with involving other CPUs */
2509 lru_add_drain();
2510
2511 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2512 int err;
2513 unsigned long iteration_start_pfn = cc->migrate_pfn;
2514
2515 /*
2516 * Avoid multiple rescans of the same pageblock which can
2517 * happen if a page cannot be isolated (dirty/writeback in
2518 * async mode) or if the migrated pages are being allocated
2519 * before the pageblock is cleared. The first rescan will
2520 * capture the entire pageblock for migration. If it fails,
2521 * it'll be marked skip and scanning will proceed as normal.
2522 */
2523 cc->finish_pageblock = false;
2524 if (pageblock_start_pfn(last_migrated_pfn) ==
2525 pageblock_start_pfn(iteration_start_pfn)) {
2526 cc->finish_pageblock = true;
2527 }
2528
2529rescan:
2530 switch (isolate_migratepages(cc)) {
2531 case ISOLATE_ABORT:
2532 ret = COMPACT_CONTENDED;
2533 putback_movable_pages(&cc->migratepages);
2534 cc->nr_migratepages = 0;
2535 goto out;
2536 case ISOLATE_NONE:
2537 if (update_cached) {
2538 cc->zone->compact_cached_migrate_pfn[1] =
2539 cc->zone->compact_cached_migrate_pfn[0];
2540 }
2541
2542 /*
2543 * We haven't isolated and migrated anything, but
2544 * there might still be unflushed migrations from
2545 * previous cc->order aligned block.
2546 */
2547 goto check_drain;
2548 case ISOLATE_SUCCESS:
2549 update_cached = false;
2550 last_migrated_pfn = max(cc->zone->zone_start_pfn,
2551 pageblock_start_pfn(cc->migrate_pfn - 1));
2552 }
2553
2554 err = migrate_pages(&cc->migratepages, compaction_alloc,
2555 compaction_free, (unsigned long)cc, cc->mode,
2556 MR_COMPACTION, &nr_succeeded);
2557
2558 trace_mm_compaction_migratepages(cc, nr_succeeded);
2559
2560 /* All pages were either migrated or will be released */
2561 cc->nr_migratepages = 0;
2562 if (err) {
2563 putback_movable_pages(&cc->migratepages);
2564 /*
2565 * migrate_pages() may return -ENOMEM when scanners meet
2566 * and we want compact_finished() to detect it
2567 */
2568 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2569 ret = COMPACT_CONTENDED;
2570 goto out;
2571 }
2572 /*
2573 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2574 * within the pageblock_order-aligned block and
2575 * fast_find_migrateblock may be used then scan the
2576 * remainder of the pageblock. This will mark the
2577 * pageblock "skip" to avoid rescanning in the near
2578 * future. This will isolate more pages than necessary
2579 * for the request but avoid loops due to
2580 * fast_find_migrateblock revisiting blocks that were
2581 * recently partially scanned.
2582 */
2583 if (!pageblock_aligned(cc->migrate_pfn) &&
2584 !cc->ignore_skip_hint && !cc->finish_pageblock &&
2585 (cc->mode < MIGRATE_SYNC)) {
2586 cc->finish_pageblock = true;
2587
2588 /*
2589 * Draining pcplists does not help THP if
2590 * any page failed to migrate. Even after
2591 * drain, the pageblock will not be free.
2592 */
2593 if (cc->order == COMPACTION_HPAGE_ORDER)
2594 last_migrated_pfn = 0;
2595
2596 goto rescan;
2597 }
2598 }
2599
2600 /* Stop if a page has been captured */
2601 if (capc && capc->page) {
2602 ret = COMPACT_SUCCESS;
2603 break;
2604 }
2605
2606check_drain:
2607 /*
2608 * Has the migration scanner moved away from the previous
2609 * cc->order aligned block where we migrated from? If yes,
2610 * flush the pages that were freed, so that they can merge and
2611 * compact_finished() can detect immediately if allocation
2612 * would succeed.
2613 */
2614 if (cc->order > 0 && last_migrated_pfn) {
2615 unsigned long current_block_start =
2616 block_start_pfn(cc->migrate_pfn, cc->order);
2617
2618 if (last_migrated_pfn < current_block_start) {
2619 lru_add_drain_cpu_zone(cc->zone);
2620 /* No more flushing until we migrate again */
2621 last_migrated_pfn = 0;
2622 }
2623 }
2624 }
2625
2626out:
2627 /*
2628 * Release free pages and update where the free scanner should restart,
2629 * so we don't leave any returned pages behind in the next attempt.
2630 */
2631 if (cc->nr_freepages > 0) {
2632 unsigned long free_pfn = release_freepages(&cc->freepages);
2633
2634 cc->nr_freepages = 0;
2635 VM_BUG_ON(free_pfn == 0);
2636 /* The cached pfn is always the first in a pageblock */
2637 free_pfn = pageblock_start_pfn(free_pfn);
2638 /*
2639 * Only go back, not forward. The cached pfn might have been
2640 * already reset to zone end in compact_finished()
2641 */
2642 if (free_pfn > cc->zone->compact_cached_free_pfn)
2643 cc->zone->compact_cached_free_pfn = free_pfn;
2644 }
2645
2646 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2647 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2648
2649 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2650
2651 VM_BUG_ON(!list_empty(&cc->freepages));
2652 VM_BUG_ON(!list_empty(&cc->migratepages));
2653
2654 return ret;
2655}
2656
2657static enum compact_result compact_zone_order(struct zone *zone, int order,
2658 gfp_t gfp_mask, enum compact_priority prio,
2659 unsigned int alloc_flags, int highest_zoneidx,
2660 struct page **capture)
2661{
2662 enum compact_result ret;
2663 struct compact_control cc = {
2664 .order = order,
2665 .search_order = order,
2666 .gfp_mask = gfp_mask,
2667 .zone = zone,
2668 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2669 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2670 .alloc_flags = alloc_flags,
2671 .highest_zoneidx = highest_zoneidx,
2672 .direct_compaction = true,
2673 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2674 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2675 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2676 };
2677 struct capture_control capc = {
2678 .cc = &cc,
2679 .page = NULL,
2680 };
2681
2682 /*
2683 * Make sure the structs are really initialized before we expose the
2684 * capture control, in case we are interrupted and the interrupt handler
2685 * frees a page.
2686 */
2687 barrier();
2688 WRITE_ONCE(current->capture_control, &capc);
2689
2690 ret = compact_zone(&cc, &capc);
2691
2692 /*
2693 * Make sure we hide capture control first before we read the captured
2694 * page pointer, otherwise an interrupt could free and capture a page
2695 * and we would leak it.
2696 */
2697 WRITE_ONCE(current->capture_control, NULL);
2698 *capture = READ_ONCE(capc.page);
2699 /*
2700 * Technically, it is also possible that compaction is skipped but
2701 * the page is still captured out of luck(IRQ came and freed the page).
2702 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2703 * the COMPACT[STALL|FAIL] when compaction is skipped.
2704 */
2705 if (*capture)
2706 ret = COMPACT_SUCCESS;
2707
2708 return ret;
2709}
2710
2711/**
2712 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2713 * @gfp_mask: The GFP mask of the current allocation
2714 * @order: The order of the current allocation
2715 * @alloc_flags: The allocation flags of the current allocation
2716 * @ac: The context of current allocation
2717 * @prio: Determines how hard direct compaction should try to succeed
2718 * @capture: Pointer to free page created by compaction will be stored here
2719 *
2720 * This is the main entry point for direct page compaction.
2721 */
2722enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2723 unsigned int alloc_flags, const struct alloc_context *ac,
2724 enum compact_priority prio, struct page **capture)
2725{
2726 struct zoneref *z;
2727 struct zone *zone;
2728 enum compact_result rc = COMPACT_SKIPPED;
2729
2730 if (!gfp_compaction_allowed(gfp_mask))
2731 return COMPACT_SKIPPED;
2732
2733 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2734
2735 /* Compact each zone in the list */
2736 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2737 ac->highest_zoneidx, ac->nodemask) {
2738 enum compact_result status;
2739
2740 if (prio > MIN_COMPACT_PRIORITY
2741 && compaction_deferred(zone, order)) {
2742 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2743 continue;
2744 }
2745
2746 status = compact_zone_order(zone, order, gfp_mask, prio,
2747 alloc_flags, ac->highest_zoneidx, capture);
2748 rc = max(status, rc);
2749
2750 /* The allocation should succeed, stop compacting */
2751 if (status == COMPACT_SUCCESS) {
2752 /*
2753 * We think the allocation will succeed in this zone,
2754 * but it is not certain, hence the false. The caller
2755 * will repeat this with true if allocation indeed
2756 * succeeds in this zone.
2757 */
2758 compaction_defer_reset(zone, order, false);
2759
2760 break;
2761 }
2762
2763 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2764 status == COMPACT_PARTIAL_SKIPPED))
2765 /*
2766 * We think that allocation won't succeed in this zone
2767 * so we defer compaction there. If it ends up
2768 * succeeding after all, it will be reset.
2769 */
2770 defer_compaction(zone, order);
2771
2772 /*
2773 * We might have stopped compacting due to need_resched() in
2774 * async compaction, or due to a fatal signal detected. In that
2775 * case do not try further zones
2776 */
2777 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2778 || fatal_signal_pending(current))
2779 break;
2780 }
2781
2782 return rc;
2783}
2784
2785/*
2786 * Compact all zones within a node till each zone's fragmentation score
2787 * reaches within proactive compaction thresholds (as determined by the
2788 * proactiveness tunable).
2789 *
2790 * It is possible that the function returns before reaching score targets
2791 * due to various back-off conditions, such as, contention on per-node or
2792 * per-zone locks.
2793 */
2794static void proactive_compact_node(pg_data_t *pgdat)
2795{
2796 int zoneid;
2797 struct zone *zone;
2798 struct compact_control cc = {
2799 .order = -1,
2800 .mode = MIGRATE_SYNC_LIGHT,
2801 .ignore_skip_hint = true,
2802 .whole_zone = true,
2803 .gfp_mask = GFP_KERNEL,
2804 .proactive_compaction = true,
2805 };
2806
2807 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2808 zone = &pgdat->node_zones[zoneid];
2809 if (!populated_zone(zone))
2810 continue;
2811
2812 cc.zone = zone;
2813
2814 compact_zone(&cc, NULL);
2815
2816 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2817 cc.total_migrate_scanned);
2818 count_compact_events(KCOMPACTD_FREE_SCANNED,
2819 cc.total_free_scanned);
2820 }
2821}
2822
2823/* Compact all zones within a node */
2824static void compact_node(int nid)
2825{
2826 pg_data_t *pgdat = NODE_DATA(nid);
2827 int zoneid;
2828 struct zone *zone;
2829 struct compact_control cc = {
2830 .order = -1,
2831 .mode = MIGRATE_SYNC,
2832 .ignore_skip_hint = true,
2833 .whole_zone = true,
2834 .gfp_mask = GFP_KERNEL,
2835 };
2836
2837
2838 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2839
2840 zone = &pgdat->node_zones[zoneid];
2841 if (!populated_zone(zone))
2842 continue;
2843
2844 cc.zone = zone;
2845
2846 compact_zone(&cc, NULL);
2847 }
2848}
2849
2850/* Compact all nodes in the system */
2851static void compact_nodes(void)
2852{
2853 int nid;
2854
2855 /* Flush pending updates to the LRU lists */
2856 lru_add_drain_all();
2857
2858 for_each_online_node(nid)
2859 compact_node(nid);
2860}
2861
2862static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2863 void *buffer, size_t *length, loff_t *ppos)
2864{
2865 int rc, nid;
2866
2867 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2868 if (rc)
2869 return rc;
2870
2871 if (write && sysctl_compaction_proactiveness) {
2872 for_each_online_node(nid) {
2873 pg_data_t *pgdat = NODE_DATA(nid);
2874
2875 if (pgdat->proactive_compact_trigger)
2876 continue;
2877
2878 pgdat->proactive_compact_trigger = true;
2879 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2880 pgdat->nr_zones - 1);
2881 wake_up_interruptible(&pgdat->kcompactd_wait);
2882 }
2883 }
2884
2885 return 0;
2886}
2887
2888/*
2889 * This is the entry point for compacting all nodes via
2890 * /proc/sys/vm/compact_memory
2891 */
2892static int sysctl_compaction_handler(struct ctl_table *table, int write,
2893 void *buffer, size_t *length, loff_t *ppos)
2894{
2895 int ret;
2896
2897 ret = proc_dointvec(table, write, buffer, length, ppos);
2898 if (ret)
2899 return ret;
2900
2901 if (sysctl_compact_memory != 1)
2902 return -EINVAL;
2903
2904 if (write)
2905 compact_nodes();
2906
2907 return 0;
2908}
2909
2910#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2911static ssize_t compact_store(struct device *dev,
2912 struct device_attribute *attr,
2913 const char *buf, size_t count)
2914{
2915 int nid = dev->id;
2916
2917 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2918 /* Flush pending updates to the LRU lists */
2919 lru_add_drain_all();
2920
2921 compact_node(nid);
2922 }
2923
2924 return count;
2925}
2926static DEVICE_ATTR_WO(compact);
2927
2928int compaction_register_node(struct node *node)
2929{
2930 return device_create_file(&node->dev, &dev_attr_compact);
2931}
2932
2933void compaction_unregister_node(struct node *node)
2934{
2935 device_remove_file(&node->dev, &dev_attr_compact);
2936}
2937#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2938
2939static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2940{
2941 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2942 pgdat->proactive_compact_trigger;
2943}
2944
2945static bool kcompactd_node_suitable(pg_data_t *pgdat)
2946{
2947 int zoneid;
2948 struct zone *zone;
2949 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2950 enum compact_result ret;
2951
2952 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2953 zone = &pgdat->node_zones[zoneid];
2954
2955 if (!populated_zone(zone))
2956 continue;
2957
2958 ret = compaction_suit_allocation_order(zone,
2959 pgdat->kcompactd_max_order,
2960 highest_zoneidx, ALLOC_WMARK_MIN);
2961 if (ret == COMPACT_CONTINUE)
2962 return true;
2963 }
2964
2965 return false;
2966}
2967
2968static void kcompactd_do_work(pg_data_t *pgdat)
2969{
2970 /*
2971 * With no special task, compact all zones so that a page of requested
2972 * order is allocatable.
2973 */
2974 int zoneid;
2975 struct zone *zone;
2976 struct compact_control cc = {
2977 .order = pgdat->kcompactd_max_order,
2978 .search_order = pgdat->kcompactd_max_order,
2979 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2980 .mode = MIGRATE_SYNC_LIGHT,
2981 .ignore_skip_hint = false,
2982 .gfp_mask = GFP_KERNEL,
2983 };
2984 enum compact_result ret;
2985
2986 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2987 cc.highest_zoneidx);
2988 count_compact_event(KCOMPACTD_WAKE);
2989
2990 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2991 int status;
2992
2993 zone = &pgdat->node_zones[zoneid];
2994 if (!populated_zone(zone))
2995 continue;
2996
2997 if (compaction_deferred(zone, cc.order))
2998 continue;
2999
3000 ret = compaction_suit_allocation_order(zone,
3001 cc.order, zoneid, ALLOC_WMARK_MIN);
3002 if (ret != COMPACT_CONTINUE)
3003 continue;
3004
3005 if (kthread_should_stop())
3006 return;
3007
3008 cc.zone = zone;
3009 status = compact_zone(&cc, NULL);
3010
3011 if (status == COMPACT_SUCCESS) {
3012 compaction_defer_reset(zone, cc.order, false);
3013 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3014 /*
3015 * Buddy pages may become stranded on pcps that could
3016 * otherwise coalesce on the zone's free area for
3017 * order >= cc.order. This is ratelimited by the
3018 * upcoming deferral.
3019 */
3020 drain_all_pages(zone);
3021
3022 /*
3023 * We use sync migration mode here, so we defer like
3024 * sync direct compaction does.
3025 */
3026 defer_compaction(zone, cc.order);
3027 }
3028
3029 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3030 cc.total_migrate_scanned);
3031 count_compact_events(KCOMPACTD_FREE_SCANNED,
3032 cc.total_free_scanned);
3033 }
3034
3035 /*
3036 * Regardless of success, we are done until woken up next. But remember
3037 * the requested order/highest_zoneidx in case it was higher/tighter
3038 * than our current ones
3039 */
3040 if (pgdat->kcompactd_max_order <= cc.order)
3041 pgdat->kcompactd_max_order = 0;
3042 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3043 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3044}
3045
3046void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3047{
3048 if (!order)
3049 return;
3050
3051 if (pgdat->kcompactd_max_order < order)
3052 pgdat->kcompactd_max_order = order;
3053
3054 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3055 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3056
3057 /*
3058 * Pairs with implicit barrier in wait_event_freezable()
3059 * such that wakeups are not missed.
3060 */
3061 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3062 return;
3063
3064 if (!kcompactd_node_suitable(pgdat))
3065 return;
3066
3067 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3068 highest_zoneidx);
3069 wake_up_interruptible(&pgdat->kcompactd_wait);
3070}
3071
3072/*
3073 * The background compaction daemon, started as a kernel thread
3074 * from the init process.
3075 */
3076static int kcompactd(void *p)
3077{
3078 pg_data_t *pgdat = (pg_data_t *)p;
3079 struct task_struct *tsk = current;
3080 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3081 long timeout = default_timeout;
3082
3083 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3084
3085 if (!cpumask_empty(cpumask))
3086 set_cpus_allowed_ptr(tsk, cpumask);
3087
3088 set_freezable();
3089
3090 pgdat->kcompactd_max_order = 0;
3091 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3092
3093 while (!kthread_should_stop()) {
3094 unsigned long pflags;
3095
3096 /*
3097 * Avoid the unnecessary wakeup for proactive compaction
3098 * when it is disabled.
3099 */
3100 if (!sysctl_compaction_proactiveness)
3101 timeout = MAX_SCHEDULE_TIMEOUT;
3102 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3103 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3104 kcompactd_work_requested(pgdat), timeout) &&
3105 !pgdat->proactive_compact_trigger) {
3106
3107 psi_memstall_enter(&pflags);
3108 kcompactd_do_work(pgdat);
3109 psi_memstall_leave(&pflags);
3110 /*
3111 * Reset the timeout value. The defer timeout from
3112 * proactive compaction is lost here but that is fine
3113 * as the condition of the zone changing substantionally
3114 * then carrying on with the previous defer interval is
3115 * not useful.
3116 */
3117 timeout = default_timeout;
3118 continue;
3119 }
3120
3121 /*
3122 * Start the proactive work with default timeout. Based
3123 * on the fragmentation score, this timeout is updated.
3124 */
3125 timeout = default_timeout;
3126 if (should_proactive_compact_node(pgdat)) {
3127 unsigned int prev_score, score;
3128
3129 prev_score = fragmentation_score_node(pgdat);
3130 proactive_compact_node(pgdat);
3131 score = fragmentation_score_node(pgdat);
3132 /*
3133 * Defer proactive compaction if the fragmentation
3134 * score did not go down i.e. no progress made.
3135 */
3136 if (unlikely(score >= prev_score))
3137 timeout =
3138 default_timeout << COMPACT_MAX_DEFER_SHIFT;
3139 }
3140 if (unlikely(pgdat->proactive_compact_trigger))
3141 pgdat->proactive_compact_trigger = false;
3142 }
3143
3144 return 0;
3145}
3146
3147/*
3148 * This kcompactd start function will be called by init and node-hot-add.
3149 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3150 */
3151void __meminit kcompactd_run(int nid)
3152{
3153 pg_data_t *pgdat = NODE_DATA(nid);
3154
3155 if (pgdat->kcompactd)
3156 return;
3157
3158 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3159 if (IS_ERR(pgdat->kcompactd)) {
3160 pr_err("Failed to start kcompactd on node %d\n", nid);
3161 pgdat->kcompactd = NULL;
3162 }
3163}
3164
3165/*
3166 * Called by memory hotplug when all memory in a node is offlined. Caller must
3167 * be holding mem_hotplug_begin/done().
3168 */
3169void __meminit kcompactd_stop(int nid)
3170{
3171 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3172
3173 if (kcompactd) {
3174 kthread_stop(kcompactd);
3175 NODE_DATA(nid)->kcompactd = NULL;
3176 }
3177}
3178
3179/*
3180 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3181 * not required for correctness. So if the last cpu in a node goes
3182 * away, we get changed to run anywhere: as the first one comes back,
3183 * restore their cpu bindings.
3184 */
3185static int kcompactd_cpu_online(unsigned int cpu)
3186{
3187 int nid;
3188
3189 for_each_node_state(nid, N_MEMORY) {
3190 pg_data_t *pgdat = NODE_DATA(nid);
3191 const struct cpumask *mask;
3192
3193 mask = cpumask_of_node(pgdat->node_id);
3194
3195 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3196 /* One of our CPUs online: restore mask */
3197 if (pgdat->kcompactd)
3198 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3199 }
3200 return 0;
3201}
3202
3203static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3204 int write, void *buffer, size_t *lenp, loff_t *ppos)
3205{
3206 int ret, old;
3207
3208 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3209 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3210
3211 old = *(int *)table->data;
3212 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3213 if (ret)
3214 return ret;
3215 if (old != *(int *)table->data)
3216 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3217 table->procname, current->comm,
3218 task_pid_nr(current));
3219 return ret;
3220}
3221
3222static struct ctl_table vm_compaction[] = {
3223 {
3224 .procname = "compact_memory",
3225 .data = &sysctl_compact_memory,
3226 .maxlen = sizeof(int),
3227 .mode = 0200,
3228 .proc_handler = sysctl_compaction_handler,
3229 },
3230 {
3231 .procname = "compaction_proactiveness",
3232 .data = &sysctl_compaction_proactiveness,
3233 .maxlen = sizeof(sysctl_compaction_proactiveness),
3234 .mode = 0644,
3235 .proc_handler = compaction_proactiveness_sysctl_handler,
3236 .extra1 = SYSCTL_ZERO,
3237 .extra2 = SYSCTL_ONE_HUNDRED,
3238 },
3239 {
3240 .procname = "extfrag_threshold",
3241 .data = &sysctl_extfrag_threshold,
3242 .maxlen = sizeof(int),
3243 .mode = 0644,
3244 .proc_handler = proc_dointvec_minmax,
3245 .extra1 = SYSCTL_ZERO,
3246 .extra2 = SYSCTL_ONE_THOUSAND,
3247 },
3248 {
3249 .procname = "compact_unevictable_allowed",
3250 .data = &sysctl_compact_unevictable_allowed,
3251 .maxlen = sizeof(int),
3252 .mode = 0644,
3253 .proc_handler = proc_dointvec_minmax_warn_RT_change,
3254 .extra1 = SYSCTL_ZERO,
3255 .extra2 = SYSCTL_ONE,
3256 },
3257 { }
3258};
3259
3260static int __init kcompactd_init(void)
3261{
3262 int nid;
3263 int ret;
3264
3265 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3266 "mm/compaction:online",
3267 kcompactd_cpu_online, NULL);
3268 if (ret < 0) {
3269 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3270 return ret;
3271 }
3272
3273 for_each_node_state(nid, N_MEMORY)
3274 kcompactd_run(nid);
3275 register_sysctl_init("vm", vm_compaction);
3276 return 0;
3277}
3278subsys_initcall(kcompactd_init)
3279
3280#endif /* CONFIG_COMPACTION */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11#include <linux/cpu.h>
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
16#include <linux/sched/signal.h>
17#include <linux/backing-dev.h>
18#include <linux/sysctl.h>
19#include <linux/sysfs.h>
20#include <linux/page-isolation.h>
21#include <linux/kasan.h>
22#include <linux/kthread.h>
23#include <linux/freezer.h>
24#include <linux/page_owner.h>
25#include <linux/psi.h>
26#include "internal.h"
27
28#ifdef CONFIG_COMPACTION
29static inline void count_compact_event(enum vm_event_item item)
30{
31 count_vm_event(item);
32}
33
34static inline void count_compact_events(enum vm_event_item item, long delta)
35{
36 count_vm_events(item, delta);
37}
38#else
39#define count_compact_event(item) do { } while (0)
40#define count_compact_events(item, delta) do { } while (0)
41#endif
42
43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/compaction.h>
47
48#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
53/*
54 * Fragmentation score check interval for proactive compaction purposes.
55 */
56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57
58/*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63#if defined CONFIG_TRANSPARENT_HUGEPAGE
64#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
65#elif defined CONFIG_HUGETLBFS
66#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
67#else
68#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69#endif
70
71static unsigned long release_freepages(struct list_head *freelist)
72{
73 struct page *page, *next;
74 unsigned long high_pfn = 0;
75
76 list_for_each_entry_safe(page, next, freelist, lru) {
77 unsigned long pfn = page_to_pfn(page);
78 list_del(&page->lru);
79 __free_page(page);
80 if (pfn > high_pfn)
81 high_pfn = pfn;
82 }
83
84 return high_pfn;
85}
86
87static void split_map_pages(struct list_head *list)
88{
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
91 LIST_HEAD(tmp_list);
92
93 list_for_each_entry_safe(page, next, list, lru) {
94 list_del(&page->lru);
95
96 order = page_private(page);
97 nr_pages = 1 << order;
98
99 post_alloc_hook(page, order, __GFP_MOVABLE);
100 if (order)
101 split_page(page, order);
102
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
105 page++;
106 }
107 }
108
109 list_splice(&tmp_list, list);
110}
111
112#ifdef CONFIG_COMPACTION
113
114int PageMovable(struct page *page)
115{
116 struct address_space *mapping;
117
118 VM_BUG_ON_PAGE(!PageLocked(page), page);
119 if (!__PageMovable(page))
120 return 0;
121
122 mapping = page_mapping(page);
123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 return 1;
125
126 return 0;
127}
128EXPORT_SYMBOL(PageMovable);
129
130void __SetPageMovable(struct page *page, struct address_space *mapping)
131{
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135}
136EXPORT_SYMBOL(__SetPageMovable);
137
138void __ClearPageMovable(struct page *page)
139{
140 VM_BUG_ON_PAGE(!PageMovable(page), page);
141 /*
142 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143 * flag so that VM can catch up released page by driver after isolation.
144 * With it, VM migration doesn't try to put it back.
145 */
146 page->mapping = (void *)((unsigned long)page->mapping &
147 PAGE_MAPPING_MOVABLE);
148}
149EXPORT_SYMBOL(__ClearPageMovable);
150
151/* Do not skip compaction more than 64 times */
152#define COMPACT_MAX_DEFER_SHIFT 6
153
154/*
155 * Compaction is deferred when compaction fails to result in a page
156 * allocation success. 1 << compact_defer_shift, compactions are skipped up
157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158 */
159static void defer_compaction(struct zone *zone, int order)
160{
161 zone->compact_considered = 0;
162 zone->compact_defer_shift++;
163
164 if (order < zone->compact_order_failed)
165 zone->compact_order_failed = order;
166
167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170 trace_mm_compaction_defer_compaction(zone, order);
171}
172
173/* Returns true if compaction should be skipped this time */
174static bool compaction_deferred(struct zone *zone, int order)
175{
176 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178 if (order < zone->compact_order_failed)
179 return false;
180
181 /* Avoid possible overflow */
182 if (++zone->compact_considered >= defer_limit) {
183 zone->compact_considered = defer_limit;
184 return false;
185 }
186
187 trace_mm_compaction_deferred(zone, order);
188
189 return true;
190}
191
192/*
193 * Update defer tracking counters after successful compaction of given order,
194 * which means an allocation either succeeded (alloc_success == true) or is
195 * expected to succeed.
196 */
197void compaction_defer_reset(struct zone *zone, int order,
198 bool alloc_success)
199{
200 if (alloc_success) {
201 zone->compact_considered = 0;
202 zone->compact_defer_shift = 0;
203 }
204 if (order >= zone->compact_order_failed)
205 zone->compact_order_failed = order + 1;
206
207 trace_mm_compaction_defer_reset(zone, order);
208}
209
210/* Returns true if restarting compaction after many failures */
211static bool compaction_restarting(struct zone *zone, int order)
212{
213 if (order < zone->compact_order_failed)
214 return false;
215
216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218}
219
220/* Returns true if the pageblock should be scanned for pages to isolate. */
221static inline bool isolation_suitable(struct compact_control *cc,
222 struct page *page)
223{
224 if (cc->ignore_skip_hint)
225 return true;
226
227 return !get_pageblock_skip(page);
228}
229
230static void reset_cached_positions(struct zone *zone)
231{
232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
234 zone->compact_cached_free_pfn =
235 pageblock_start_pfn(zone_end_pfn(zone) - 1);
236}
237
238/*
239 * Compound pages of >= pageblock_order should consistently be skipped until
240 * released. It is always pointless to compact pages of such order (if they are
241 * migratable), and the pageblocks they occupy cannot contain any free pages.
242 */
243static bool pageblock_skip_persistent(struct page *page)
244{
245 if (!PageCompound(page))
246 return false;
247
248 page = compound_head(page);
249
250 if (compound_order(page) >= pageblock_order)
251 return true;
252
253 return false;
254}
255
256static bool
257__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258 bool check_target)
259{
260 struct page *page = pfn_to_online_page(pfn);
261 struct page *block_page;
262 struct page *end_page;
263 unsigned long block_pfn;
264
265 if (!page)
266 return false;
267 if (zone != page_zone(page))
268 return false;
269 if (pageblock_skip_persistent(page))
270 return false;
271
272 /*
273 * If skip is already cleared do no further checking once the
274 * restart points have been set.
275 */
276 if (check_source && check_target && !get_pageblock_skip(page))
277 return true;
278
279 /*
280 * If clearing skip for the target scanner, do not select a
281 * non-movable pageblock as the starting point.
282 */
283 if (!check_source && check_target &&
284 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285 return false;
286
287 /* Ensure the start of the pageblock or zone is online and valid */
288 block_pfn = pageblock_start_pfn(pfn);
289 block_pfn = max(block_pfn, zone->zone_start_pfn);
290 block_page = pfn_to_online_page(block_pfn);
291 if (block_page) {
292 page = block_page;
293 pfn = block_pfn;
294 }
295
296 /* Ensure the end of the pageblock or zone is online and valid */
297 block_pfn = pageblock_end_pfn(pfn) - 1;
298 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299 end_page = pfn_to_online_page(block_pfn);
300 if (!end_page)
301 return false;
302
303 /*
304 * Only clear the hint if a sample indicates there is either a
305 * free page or an LRU page in the block. One or other condition
306 * is necessary for the block to be a migration source/target.
307 */
308 do {
309 if (pfn_valid_within(pfn)) {
310 if (check_source && PageLRU(page)) {
311 clear_pageblock_skip(page);
312 return true;
313 }
314
315 if (check_target && PageBuddy(page)) {
316 clear_pageblock_skip(page);
317 return true;
318 }
319 }
320
321 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
322 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
323 } while (page <= end_page);
324
325 return false;
326}
327
328/*
329 * This function is called to clear all cached information on pageblocks that
330 * should be skipped for page isolation when the migrate and free page scanner
331 * meet.
332 */
333static void __reset_isolation_suitable(struct zone *zone)
334{
335 unsigned long migrate_pfn = zone->zone_start_pfn;
336 unsigned long free_pfn = zone_end_pfn(zone) - 1;
337 unsigned long reset_migrate = free_pfn;
338 unsigned long reset_free = migrate_pfn;
339 bool source_set = false;
340 bool free_set = false;
341
342 if (!zone->compact_blockskip_flush)
343 return;
344
345 zone->compact_blockskip_flush = false;
346
347 /*
348 * Walk the zone and update pageblock skip information. Source looks
349 * for PageLRU while target looks for PageBuddy. When the scanner
350 * is found, both PageBuddy and PageLRU are checked as the pageblock
351 * is suitable as both source and target.
352 */
353 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
354 free_pfn -= pageblock_nr_pages) {
355 cond_resched();
356
357 /* Update the migrate PFN */
358 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
359 migrate_pfn < reset_migrate) {
360 source_set = true;
361 reset_migrate = migrate_pfn;
362 zone->compact_init_migrate_pfn = reset_migrate;
363 zone->compact_cached_migrate_pfn[0] = reset_migrate;
364 zone->compact_cached_migrate_pfn[1] = reset_migrate;
365 }
366
367 /* Update the free PFN */
368 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
369 free_pfn > reset_free) {
370 free_set = true;
371 reset_free = free_pfn;
372 zone->compact_init_free_pfn = reset_free;
373 zone->compact_cached_free_pfn = reset_free;
374 }
375 }
376
377 /* Leave no distance if no suitable block was reset */
378 if (reset_migrate >= reset_free) {
379 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
380 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
381 zone->compact_cached_free_pfn = free_pfn;
382 }
383}
384
385void reset_isolation_suitable(pg_data_t *pgdat)
386{
387 int zoneid;
388
389 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
390 struct zone *zone = &pgdat->node_zones[zoneid];
391 if (!populated_zone(zone))
392 continue;
393
394 /* Only flush if a full compaction finished recently */
395 if (zone->compact_blockskip_flush)
396 __reset_isolation_suitable(zone);
397 }
398}
399
400/*
401 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
402 * locks are not required for read/writers. Returns true if it was already set.
403 */
404static bool test_and_set_skip(struct compact_control *cc, struct page *page,
405 unsigned long pfn)
406{
407 bool skip;
408
409 /* Do no update if skip hint is being ignored */
410 if (cc->ignore_skip_hint)
411 return false;
412
413 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
414 return false;
415
416 skip = get_pageblock_skip(page);
417 if (!skip && !cc->no_set_skip_hint)
418 set_pageblock_skip(page);
419
420 return skip;
421}
422
423static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
424{
425 struct zone *zone = cc->zone;
426
427 pfn = pageblock_end_pfn(pfn);
428
429 /* Set for isolation rather than compaction */
430 if (cc->no_set_skip_hint)
431 return;
432
433 if (pfn > zone->compact_cached_migrate_pfn[0])
434 zone->compact_cached_migrate_pfn[0] = pfn;
435 if (cc->mode != MIGRATE_ASYNC &&
436 pfn > zone->compact_cached_migrate_pfn[1])
437 zone->compact_cached_migrate_pfn[1] = pfn;
438}
439
440/*
441 * If no pages were isolated then mark this pageblock to be skipped in the
442 * future. The information is later cleared by __reset_isolation_suitable().
443 */
444static void update_pageblock_skip(struct compact_control *cc,
445 struct page *page, unsigned long pfn)
446{
447 struct zone *zone = cc->zone;
448
449 if (cc->no_set_skip_hint)
450 return;
451
452 if (!page)
453 return;
454
455 set_pageblock_skip(page);
456
457 /* Update where async and sync compaction should restart */
458 if (pfn < zone->compact_cached_free_pfn)
459 zone->compact_cached_free_pfn = pfn;
460}
461#else
462static inline bool isolation_suitable(struct compact_control *cc,
463 struct page *page)
464{
465 return true;
466}
467
468static inline bool pageblock_skip_persistent(struct page *page)
469{
470 return false;
471}
472
473static inline void update_pageblock_skip(struct compact_control *cc,
474 struct page *page, unsigned long pfn)
475{
476}
477
478static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
479{
480}
481
482static bool test_and_set_skip(struct compact_control *cc, struct page *page,
483 unsigned long pfn)
484{
485 return false;
486}
487#endif /* CONFIG_COMPACTION */
488
489/*
490 * Compaction requires the taking of some coarse locks that are potentially
491 * very heavily contended. For async compaction, trylock and record if the
492 * lock is contended. The lock will still be acquired but compaction will
493 * abort when the current block is finished regardless of success rate.
494 * Sync compaction acquires the lock.
495 *
496 * Always returns true which makes it easier to track lock state in callers.
497 */
498static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
499 struct compact_control *cc)
500 __acquires(lock)
501{
502 /* Track if the lock is contended in async mode */
503 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
504 if (spin_trylock_irqsave(lock, *flags))
505 return true;
506
507 cc->contended = true;
508 }
509
510 spin_lock_irqsave(lock, *flags);
511 return true;
512}
513
514/*
515 * Compaction requires the taking of some coarse locks that are potentially
516 * very heavily contended. The lock should be periodically unlocked to avoid
517 * having disabled IRQs for a long time, even when there is nobody waiting on
518 * the lock. It might also be that allowing the IRQs will result in
519 * need_resched() becoming true. If scheduling is needed, async compaction
520 * aborts. Sync compaction schedules.
521 * Either compaction type will also abort if a fatal signal is pending.
522 * In either case if the lock was locked, it is dropped and not regained.
523 *
524 * Returns true if compaction should abort due to fatal signal pending, or
525 * async compaction due to need_resched()
526 * Returns false when compaction can continue (sync compaction might have
527 * scheduled)
528 */
529static bool compact_unlock_should_abort(spinlock_t *lock,
530 unsigned long flags, bool *locked, struct compact_control *cc)
531{
532 if (*locked) {
533 spin_unlock_irqrestore(lock, flags);
534 *locked = false;
535 }
536
537 if (fatal_signal_pending(current)) {
538 cc->contended = true;
539 return true;
540 }
541
542 cond_resched();
543
544 return false;
545}
546
547/*
548 * Isolate free pages onto a private freelist. If @strict is true, will abort
549 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
550 * (even though it may still end up isolating some pages).
551 */
552static unsigned long isolate_freepages_block(struct compact_control *cc,
553 unsigned long *start_pfn,
554 unsigned long end_pfn,
555 struct list_head *freelist,
556 unsigned int stride,
557 bool strict)
558{
559 int nr_scanned = 0, total_isolated = 0;
560 struct page *cursor;
561 unsigned long flags = 0;
562 bool locked = false;
563 unsigned long blockpfn = *start_pfn;
564 unsigned int order;
565
566 /* Strict mode is for isolation, speed is secondary */
567 if (strict)
568 stride = 1;
569
570 cursor = pfn_to_page(blockpfn);
571
572 /* Isolate free pages. */
573 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
574 int isolated;
575 struct page *page = cursor;
576
577 /*
578 * Periodically drop the lock (if held) regardless of its
579 * contention, to give chance to IRQs. Abort if fatal signal
580 * pending or async compaction detects need_resched()
581 */
582 if (!(blockpfn % SWAP_CLUSTER_MAX)
583 && compact_unlock_should_abort(&cc->zone->lock, flags,
584 &locked, cc))
585 break;
586
587 nr_scanned++;
588 if (!pfn_valid_within(blockpfn))
589 goto isolate_fail;
590
591 /*
592 * For compound pages such as THP and hugetlbfs, we can save
593 * potentially a lot of iterations if we skip them at once.
594 * The check is racy, but we can consider only valid values
595 * and the only danger is skipping too much.
596 */
597 if (PageCompound(page)) {
598 const unsigned int order = compound_order(page);
599
600 if (likely(order < MAX_ORDER)) {
601 blockpfn += (1UL << order) - 1;
602 cursor += (1UL << order) - 1;
603 }
604 goto isolate_fail;
605 }
606
607 if (!PageBuddy(page))
608 goto isolate_fail;
609
610 /*
611 * If we already hold the lock, we can skip some rechecking.
612 * Note that if we hold the lock now, checked_pageblock was
613 * already set in some previous iteration (or strict is true),
614 * so it is correct to skip the suitable migration target
615 * recheck as well.
616 */
617 if (!locked) {
618 locked = compact_lock_irqsave(&cc->zone->lock,
619 &flags, cc);
620
621 /* Recheck this is a buddy page under lock */
622 if (!PageBuddy(page))
623 goto isolate_fail;
624 }
625
626 /* Found a free page, will break it into order-0 pages */
627 order = buddy_order(page);
628 isolated = __isolate_free_page(page, order);
629 if (!isolated)
630 break;
631 set_page_private(page, order);
632
633 total_isolated += isolated;
634 cc->nr_freepages += isolated;
635 list_add_tail(&page->lru, freelist);
636
637 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
638 blockpfn += isolated;
639 break;
640 }
641 /* Advance to the end of split page */
642 blockpfn += isolated - 1;
643 cursor += isolated - 1;
644 continue;
645
646isolate_fail:
647 if (strict)
648 break;
649 else
650 continue;
651
652 }
653
654 if (locked)
655 spin_unlock_irqrestore(&cc->zone->lock, flags);
656
657 /*
658 * There is a tiny chance that we have read bogus compound_order(),
659 * so be careful to not go outside of the pageblock.
660 */
661 if (unlikely(blockpfn > end_pfn))
662 blockpfn = end_pfn;
663
664 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
665 nr_scanned, total_isolated);
666
667 /* Record how far we have got within the block */
668 *start_pfn = blockpfn;
669
670 /*
671 * If strict isolation is requested by CMA then check that all the
672 * pages requested were isolated. If there were any failures, 0 is
673 * returned and CMA will fail.
674 */
675 if (strict && blockpfn < end_pfn)
676 total_isolated = 0;
677
678 cc->total_free_scanned += nr_scanned;
679 if (total_isolated)
680 count_compact_events(COMPACTISOLATED, total_isolated);
681 return total_isolated;
682}
683
684/**
685 * isolate_freepages_range() - isolate free pages.
686 * @cc: Compaction control structure.
687 * @start_pfn: The first PFN to start isolating.
688 * @end_pfn: The one-past-last PFN.
689 *
690 * Non-free pages, invalid PFNs, or zone boundaries within the
691 * [start_pfn, end_pfn) range are considered errors, cause function to
692 * undo its actions and return zero.
693 *
694 * Otherwise, function returns one-past-the-last PFN of isolated page
695 * (which may be greater then end_pfn if end fell in a middle of
696 * a free page).
697 */
698unsigned long
699isolate_freepages_range(struct compact_control *cc,
700 unsigned long start_pfn, unsigned long end_pfn)
701{
702 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
703 LIST_HEAD(freelist);
704
705 pfn = start_pfn;
706 block_start_pfn = pageblock_start_pfn(pfn);
707 if (block_start_pfn < cc->zone->zone_start_pfn)
708 block_start_pfn = cc->zone->zone_start_pfn;
709 block_end_pfn = pageblock_end_pfn(pfn);
710
711 for (; pfn < end_pfn; pfn += isolated,
712 block_start_pfn = block_end_pfn,
713 block_end_pfn += pageblock_nr_pages) {
714 /* Protect pfn from changing by isolate_freepages_block */
715 unsigned long isolate_start_pfn = pfn;
716
717 block_end_pfn = min(block_end_pfn, end_pfn);
718
719 /*
720 * pfn could pass the block_end_pfn if isolated freepage
721 * is more than pageblock order. In this case, we adjust
722 * scanning range to right one.
723 */
724 if (pfn >= block_end_pfn) {
725 block_start_pfn = pageblock_start_pfn(pfn);
726 block_end_pfn = pageblock_end_pfn(pfn);
727 block_end_pfn = min(block_end_pfn, end_pfn);
728 }
729
730 if (!pageblock_pfn_to_page(block_start_pfn,
731 block_end_pfn, cc->zone))
732 break;
733
734 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
735 block_end_pfn, &freelist, 0, true);
736
737 /*
738 * In strict mode, isolate_freepages_block() returns 0 if
739 * there are any holes in the block (ie. invalid PFNs or
740 * non-free pages).
741 */
742 if (!isolated)
743 break;
744
745 /*
746 * If we managed to isolate pages, it is always (1 << n) *
747 * pageblock_nr_pages for some non-negative n. (Max order
748 * page may span two pageblocks).
749 */
750 }
751
752 /* __isolate_free_page() does not map the pages */
753 split_map_pages(&freelist);
754
755 if (pfn < end_pfn) {
756 /* Loop terminated early, cleanup. */
757 release_freepages(&freelist);
758 return 0;
759 }
760
761 /* We don't use freelists for anything. */
762 return pfn;
763}
764
765/* Similar to reclaim, but different enough that they don't share logic */
766static bool too_many_isolated(pg_data_t *pgdat)
767{
768 unsigned long active, inactive, isolated;
769
770 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
771 node_page_state(pgdat, NR_INACTIVE_ANON);
772 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
773 node_page_state(pgdat, NR_ACTIVE_ANON);
774 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
775 node_page_state(pgdat, NR_ISOLATED_ANON);
776
777 return isolated > (inactive + active) / 2;
778}
779
780/**
781 * isolate_migratepages_block() - isolate all migrate-able pages within
782 * a single pageblock
783 * @cc: Compaction control structure.
784 * @low_pfn: The first PFN to isolate
785 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
786 * @isolate_mode: Isolation mode to be used.
787 *
788 * Isolate all pages that can be migrated from the range specified by
789 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
790 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
791 * -ENOMEM in case we could not allocate a page, or 0.
792 * cc->migrate_pfn will contain the next pfn to scan.
793 *
794 * The pages are isolated on cc->migratepages list (not required to be empty),
795 * and cc->nr_migratepages is updated accordingly.
796 */
797static int
798isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
799 unsigned long end_pfn, isolate_mode_t isolate_mode)
800{
801 pg_data_t *pgdat = cc->zone->zone_pgdat;
802 unsigned long nr_scanned = 0, nr_isolated = 0;
803 struct lruvec *lruvec;
804 unsigned long flags = 0;
805 struct lruvec *locked = NULL;
806 struct page *page = NULL, *valid_page = NULL;
807 unsigned long start_pfn = low_pfn;
808 bool skip_on_failure = false;
809 unsigned long next_skip_pfn = 0;
810 bool skip_updated = false;
811 int ret = 0;
812
813 cc->migrate_pfn = low_pfn;
814
815 /*
816 * Ensure that there are not too many pages isolated from the LRU
817 * list by either parallel reclaimers or compaction. If there are,
818 * delay for some time until fewer pages are isolated
819 */
820 while (unlikely(too_many_isolated(pgdat))) {
821 /* stop isolation if there are still pages not migrated */
822 if (cc->nr_migratepages)
823 return -EAGAIN;
824
825 /* async migration should just abort */
826 if (cc->mode == MIGRATE_ASYNC)
827 return -EAGAIN;
828
829 congestion_wait(BLK_RW_ASYNC, HZ/10);
830
831 if (fatal_signal_pending(current))
832 return -EINTR;
833 }
834
835 cond_resched();
836
837 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
838 skip_on_failure = true;
839 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
840 }
841
842 /* Time to isolate some pages for migration */
843 for (; low_pfn < end_pfn; low_pfn++) {
844
845 if (skip_on_failure && low_pfn >= next_skip_pfn) {
846 /*
847 * We have isolated all migration candidates in the
848 * previous order-aligned block, and did not skip it due
849 * to failure. We should migrate the pages now and
850 * hopefully succeed compaction.
851 */
852 if (nr_isolated)
853 break;
854
855 /*
856 * We failed to isolate in the previous order-aligned
857 * block. Set the new boundary to the end of the
858 * current block. Note we can't simply increase
859 * next_skip_pfn by 1 << order, as low_pfn might have
860 * been incremented by a higher number due to skipping
861 * a compound or a high-order buddy page in the
862 * previous loop iteration.
863 */
864 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
865 }
866
867 /*
868 * Periodically drop the lock (if held) regardless of its
869 * contention, to give chance to IRQs. Abort completely if
870 * a fatal signal is pending.
871 */
872 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
873 if (locked) {
874 unlock_page_lruvec_irqrestore(locked, flags);
875 locked = NULL;
876 }
877
878 if (fatal_signal_pending(current)) {
879 cc->contended = true;
880 ret = -EINTR;
881
882 goto fatal_pending;
883 }
884
885 cond_resched();
886 }
887
888 if (!pfn_valid_within(low_pfn))
889 goto isolate_fail;
890 nr_scanned++;
891
892 page = pfn_to_page(low_pfn);
893
894 /*
895 * Check if the pageblock has already been marked skipped.
896 * Only the aligned PFN is checked as the caller isolates
897 * COMPACT_CLUSTER_MAX at a time so the second call must
898 * not falsely conclude that the block should be skipped.
899 */
900 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
901 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
902 low_pfn = end_pfn;
903 page = NULL;
904 goto isolate_abort;
905 }
906 valid_page = page;
907 }
908
909 if (PageHuge(page) && cc->alloc_contig) {
910 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
911
912 /*
913 * Fail isolation in case isolate_or_dissolve_huge_page()
914 * reports an error. In case of -ENOMEM, abort right away.
915 */
916 if (ret < 0) {
917 /* Do not report -EBUSY down the chain */
918 if (ret == -EBUSY)
919 ret = 0;
920 low_pfn += (1UL << compound_order(page)) - 1;
921 goto isolate_fail;
922 }
923
924 if (PageHuge(page)) {
925 /*
926 * Hugepage was successfully isolated and placed
927 * on the cc->migratepages list.
928 */
929 low_pfn += compound_nr(page) - 1;
930 goto isolate_success_no_list;
931 }
932
933 /*
934 * Ok, the hugepage was dissolved. Now these pages are
935 * Buddy and cannot be re-allocated because they are
936 * isolated. Fall-through as the check below handles
937 * Buddy pages.
938 */
939 }
940
941 /*
942 * Skip if free. We read page order here without zone lock
943 * which is generally unsafe, but the race window is small and
944 * the worst thing that can happen is that we skip some
945 * potential isolation targets.
946 */
947 if (PageBuddy(page)) {
948 unsigned long freepage_order = buddy_order_unsafe(page);
949
950 /*
951 * Without lock, we cannot be sure that what we got is
952 * a valid page order. Consider only values in the
953 * valid order range to prevent low_pfn overflow.
954 */
955 if (freepage_order > 0 && freepage_order < MAX_ORDER)
956 low_pfn += (1UL << freepage_order) - 1;
957 continue;
958 }
959
960 /*
961 * Regardless of being on LRU, compound pages such as THP and
962 * hugetlbfs are not to be compacted unless we are attempting
963 * an allocation much larger than the huge page size (eg CMA).
964 * We can potentially save a lot of iterations if we skip them
965 * at once. The check is racy, but we can consider only valid
966 * values and the only danger is skipping too much.
967 */
968 if (PageCompound(page) && !cc->alloc_contig) {
969 const unsigned int order = compound_order(page);
970
971 if (likely(order < MAX_ORDER))
972 low_pfn += (1UL << order) - 1;
973 goto isolate_fail;
974 }
975
976 /*
977 * Check may be lockless but that's ok as we recheck later.
978 * It's possible to migrate LRU and non-lru movable pages.
979 * Skip any other type of page
980 */
981 if (!PageLRU(page)) {
982 /*
983 * __PageMovable can return false positive so we need
984 * to verify it under page_lock.
985 */
986 if (unlikely(__PageMovable(page)) &&
987 !PageIsolated(page)) {
988 if (locked) {
989 unlock_page_lruvec_irqrestore(locked, flags);
990 locked = NULL;
991 }
992
993 if (!isolate_movable_page(page, isolate_mode))
994 goto isolate_success;
995 }
996
997 goto isolate_fail;
998 }
999
1000 /*
1001 * Migration will fail if an anonymous page is pinned in memory,
1002 * so avoid taking lru_lock and isolating it unnecessarily in an
1003 * admittedly racy check.
1004 */
1005 if (!page_mapping(page) &&
1006 page_count(page) > page_mapcount(page))
1007 goto isolate_fail;
1008
1009 /*
1010 * Only allow to migrate anonymous pages in GFP_NOFS context
1011 * because those do not depend on fs locks.
1012 */
1013 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
1014 goto isolate_fail;
1015
1016 /*
1017 * Be careful not to clear PageLRU until after we're
1018 * sure the page is not being freed elsewhere -- the
1019 * page release code relies on it.
1020 */
1021 if (unlikely(!get_page_unless_zero(page)))
1022 goto isolate_fail;
1023
1024 if (!__isolate_lru_page_prepare(page, isolate_mode))
1025 goto isolate_fail_put;
1026
1027 /* Try isolate the page */
1028 if (!TestClearPageLRU(page))
1029 goto isolate_fail_put;
1030
1031 lruvec = mem_cgroup_page_lruvec(page);
1032
1033 /* If we already hold the lock, we can skip some rechecking */
1034 if (lruvec != locked) {
1035 if (locked)
1036 unlock_page_lruvec_irqrestore(locked, flags);
1037
1038 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1039 locked = lruvec;
1040
1041 lruvec_memcg_debug(lruvec, page);
1042
1043 /* Try get exclusive access under lock */
1044 if (!skip_updated) {
1045 skip_updated = true;
1046 if (test_and_set_skip(cc, page, low_pfn))
1047 goto isolate_abort;
1048 }
1049
1050 /*
1051 * Page become compound since the non-locked check,
1052 * and it's on LRU. It can only be a THP so the order
1053 * is safe to read and it's 0 for tail pages.
1054 */
1055 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1056 low_pfn += compound_nr(page) - 1;
1057 SetPageLRU(page);
1058 goto isolate_fail_put;
1059 }
1060 }
1061
1062 /* The whole page is taken off the LRU; skip the tail pages. */
1063 if (PageCompound(page))
1064 low_pfn += compound_nr(page) - 1;
1065
1066 /* Successfully isolated */
1067 del_page_from_lru_list(page, lruvec);
1068 mod_node_page_state(page_pgdat(page),
1069 NR_ISOLATED_ANON + page_is_file_lru(page),
1070 thp_nr_pages(page));
1071
1072isolate_success:
1073 list_add(&page->lru, &cc->migratepages);
1074isolate_success_no_list:
1075 cc->nr_migratepages += compound_nr(page);
1076 nr_isolated += compound_nr(page);
1077
1078 /*
1079 * Avoid isolating too much unless this block is being
1080 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1081 * or a lock is contended. For contention, isolate quickly to
1082 * potentially remove one source of contention.
1083 */
1084 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1085 !cc->rescan && !cc->contended) {
1086 ++low_pfn;
1087 break;
1088 }
1089
1090 continue;
1091
1092isolate_fail_put:
1093 /* Avoid potential deadlock in freeing page under lru_lock */
1094 if (locked) {
1095 unlock_page_lruvec_irqrestore(locked, flags);
1096 locked = NULL;
1097 }
1098 put_page(page);
1099
1100isolate_fail:
1101 if (!skip_on_failure && ret != -ENOMEM)
1102 continue;
1103
1104 /*
1105 * We have isolated some pages, but then failed. Release them
1106 * instead of migrating, as we cannot form the cc->order buddy
1107 * page anyway.
1108 */
1109 if (nr_isolated) {
1110 if (locked) {
1111 unlock_page_lruvec_irqrestore(locked, flags);
1112 locked = NULL;
1113 }
1114 putback_movable_pages(&cc->migratepages);
1115 cc->nr_migratepages = 0;
1116 nr_isolated = 0;
1117 }
1118
1119 if (low_pfn < next_skip_pfn) {
1120 low_pfn = next_skip_pfn - 1;
1121 /*
1122 * The check near the loop beginning would have updated
1123 * next_skip_pfn too, but this is a bit simpler.
1124 */
1125 next_skip_pfn += 1UL << cc->order;
1126 }
1127
1128 if (ret == -ENOMEM)
1129 break;
1130 }
1131
1132 /*
1133 * The PageBuddy() check could have potentially brought us outside
1134 * the range to be scanned.
1135 */
1136 if (unlikely(low_pfn > end_pfn))
1137 low_pfn = end_pfn;
1138
1139 page = NULL;
1140
1141isolate_abort:
1142 if (locked)
1143 unlock_page_lruvec_irqrestore(locked, flags);
1144 if (page) {
1145 SetPageLRU(page);
1146 put_page(page);
1147 }
1148
1149 /*
1150 * Updated the cached scanner pfn once the pageblock has been scanned
1151 * Pages will either be migrated in which case there is no point
1152 * scanning in the near future or migration failed in which case the
1153 * failure reason may persist. The block is marked for skipping if
1154 * there were no pages isolated in the block or if the block is
1155 * rescanned twice in a row.
1156 */
1157 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1158 if (valid_page && !skip_updated)
1159 set_pageblock_skip(valid_page);
1160 update_cached_migrate(cc, low_pfn);
1161 }
1162
1163 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1164 nr_scanned, nr_isolated);
1165
1166fatal_pending:
1167 cc->total_migrate_scanned += nr_scanned;
1168 if (nr_isolated)
1169 count_compact_events(COMPACTISOLATED, nr_isolated);
1170
1171 cc->migrate_pfn = low_pfn;
1172
1173 return ret;
1174}
1175
1176/**
1177 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1178 * @cc: Compaction control structure.
1179 * @start_pfn: The first PFN to start isolating.
1180 * @end_pfn: The one-past-last PFN.
1181 *
1182 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1183 * in case we could not allocate a page, or 0.
1184 */
1185int
1186isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1187 unsigned long end_pfn)
1188{
1189 unsigned long pfn, block_start_pfn, block_end_pfn;
1190 int ret = 0;
1191
1192 /* Scan block by block. First and last block may be incomplete */
1193 pfn = start_pfn;
1194 block_start_pfn = pageblock_start_pfn(pfn);
1195 if (block_start_pfn < cc->zone->zone_start_pfn)
1196 block_start_pfn = cc->zone->zone_start_pfn;
1197 block_end_pfn = pageblock_end_pfn(pfn);
1198
1199 for (; pfn < end_pfn; pfn = block_end_pfn,
1200 block_start_pfn = block_end_pfn,
1201 block_end_pfn += pageblock_nr_pages) {
1202
1203 block_end_pfn = min(block_end_pfn, end_pfn);
1204
1205 if (!pageblock_pfn_to_page(block_start_pfn,
1206 block_end_pfn, cc->zone))
1207 continue;
1208
1209 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1210 ISOLATE_UNEVICTABLE);
1211
1212 if (ret)
1213 break;
1214
1215 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1216 break;
1217 }
1218
1219 return ret;
1220}
1221
1222#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1223#ifdef CONFIG_COMPACTION
1224
1225static bool suitable_migration_source(struct compact_control *cc,
1226 struct page *page)
1227{
1228 int block_mt;
1229
1230 if (pageblock_skip_persistent(page))
1231 return false;
1232
1233 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1234 return true;
1235
1236 block_mt = get_pageblock_migratetype(page);
1237
1238 if (cc->migratetype == MIGRATE_MOVABLE)
1239 return is_migrate_movable(block_mt);
1240 else
1241 return block_mt == cc->migratetype;
1242}
1243
1244/* Returns true if the page is within a block suitable for migration to */
1245static bool suitable_migration_target(struct compact_control *cc,
1246 struct page *page)
1247{
1248 /* If the page is a large free page, then disallow migration */
1249 if (PageBuddy(page)) {
1250 /*
1251 * We are checking page_order without zone->lock taken. But
1252 * the only small danger is that we skip a potentially suitable
1253 * pageblock, so it's not worth to check order for valid range.
1254 */
1255 if (buddy_order_unsafe(page) >= pageblock_order)
1256 return false;
1257 }
1258
1259 if (cc->ignore_block_suitable)
1260 return true;
1261
1262 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1263 if (is_migrate_movable(get_pageblock_migratetype(page)))
1264 return true;
1265
1266 /* Otherwise skip the block */
1267 return false;
1268}
1269
1270static inline unsigned int
1271freelist_scan_limit(struct compact_control *cc)
1272{
1273 unsigned short shift = BITS_PER_LONG - 1;
1274
1275 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1276}
1277
1278/*
1279 * Test whether the free scanner has reached the same or lower pageblock than
1280 * the migration scanner, and compaction should thus terminate.
1281 */
1282static inline bool compact_scanners_met(struct compact_control *cc)
1283{
1284 return (cc->free_pfn >> pageblock_order)
1285 <= (cc->migrate_pfn >> pageblock_order);
1286}
1287
1288/*
1289 * Used when scanning for a suitable migration target which scans freelists
1290 * in reverse. Reorders the list such as the unscanned pages are scanned
1291 * first on the next iteration of the free scanner
1292 */
1293static void
1294move_freelist_head(struct list_head *freelist, struct page *freepage)
1295{
1296 LIST_HEAD(sublist);
1297
1298 if (!list_is_last(freelist, &freepage->lru)) {
1299 list_cut_before(&sublist, freelist, &freepage->lru);
1300 list_splice_tail(&sublist, freelist);
1301 }
1302}
1303
1304/*
1305 * Similar to move_freelist_head except used by the migration scanner
1306 * when scanning forward. It's possible for these list operations to
1307 * move against each other if they search the free list exactly in
1308 * lockstep.
1309 */
1310static void
1311move_freelist_tail(struct list_head *freelist, struct page *freepage)
1312{
1313 LIST_HEAD(sublist);
1314
1315 if (!list_is_first(freelist, &freepage->lru)) {
1316 list_cut_position(&sublist, freelist, &freepage->lru);
1317 list_splice_tail(&sublist, freelist);
1318 }
1319}
1320
1321static void
1322fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1323{
1324 unsigned long start_pfn, end_pfn;
1325 struct page *page;
1326
1327 /* Do not search around if there are enough pages already */
1328 if (cc->nr_freepages >= cc->nr_migratepages)
1329 return;
1330
1331 /* Minimise scanning during async compaction */
1332 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1333 return;
1334
1335 /* Pageblock boundaries */
1336 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1337 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1338
1339 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1340 if (!page)
1341 return;
1342
1343 /* Scan before */
1344 if (start_pfn != pfn) {
1345 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1346 if (cc->nr_freepages >= cc->nr_migratepages)
1347 return;
1348 }
1349
1350 /* Scan after */
1351 start_pfn = pfn + nr_isolated;
1352 if (start_pfn < end_pfn)
1353 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1354
1355 /* Skip this pageblock in the future as it's full or nearly full */
1356 if (cc->nr_freepages < cc->nr_migratepages)
1357 set_pageblock_skip(page);
1358}
1359
1360/* Search orders in round-robin fashion */
1361static int next_search_order(struct compact_control *cc, int order)
1362{
1363 order--;
1364 if (order < 0)
1365 order = cc->order - 1;
1366
1367 /* Search wrapped around? */
1368 if (order == cc->search_order) {
1369 cc->search_order--;
1370 if (cc->search_order < 0)
1371 cc->search_order = cc->order - 1;
1372 return -1;
1373 }
1374
1375 return order;
1376}
1377
1378static unsigned long
1379fast_isolate_freepages(struct compact_control *cc)
1380{
1381 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1382 unsigned int nr_scanned = 0;
1383 unsigned long low_pfn, min_pfn, highest = 0;
1384 unsigned long nr_isolated = 0;
1385 unsigned long distance;
1386 struct page *page = NULL;
1387 bool scan_start = false;
1388 int order;
1389
1390 /* Full compaction passes in a negative order */
1391 if (cc->order <= 0)
1392 return cc->free_pfn;
1393
1394 /*
1395 * If starting the scan, use a deeper search and use the highest
1396 * PFN found if a suitable one is not found.
1397 */
1398 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1399 limit = pageblock_nr_pages >> 1;
1400 scan_start = true;
1401 }
1402
1403 /*
1404 * Preferred point is in the top quarter of the scan space but take
1405 * a pfn from the top half if the search is problematic.
1406 */
1407 distance = (cc->free_pfn - cc->migrate_pfn);
1408 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1409 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1410
1411 if (WARN_ON_ONCE(min_pfn > low_pfn))
1412 low_pfn = min_pfn;
1413
1414 /*
1415 * Search starts from the last successful isolation order or the next
1416 * order to search after a previous failure
1417 */
1418 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1419
1420 for (order = cc->search_order;
1421 !page && order >= 0;
1422 order = next_search_order(cc, order)) {
1423 struct free_area *area = &cc->zone->free_area[order];
1424 struct list_head *freelist;
1425 struct page *freepage;
1426 unsigned long flags;
1427 unsigned int order_scanned = 0;
1428 unsigned long high_pfn = 0;
1429
1430 if (!area->nr_free)
1431 continue;
1432
1433 spin_lock_irqsave(&cc->zone->lock, flags);
1434 freelist = &area->free_list[MIGRATE_MOVABLE];
1435 list_for_each_entry_reverse(freepage, freelist, lru) {
1436 unsigned long pfn;
1437
1438 order_scanned++;
1439 nr_scanned++;
1440 pfn = page_to_pfn(freepage);
1441
1442 if (pfn >= highest)
1443 highest = max(pageblock_start_pfn(pfn),
1444 cc->zone->zone_start_pfn);
1445
1446 if (pfn >= low_pfn) {
1447 cc->fast_search_fail = 0;
1448 cc->search_order = order;
1449 page = freepage;
1450 break;
1451 }
1452
1453 if (pfn >= min_pfn && pfn > high_pfn) {
1454 high_pfn = pfn;
1455
1456 /* Shorten the scan if a candidate is found */
1457 limit >>= 1;
1458 }
1459
1460 if (order_scanned >= limit)
1461 break;
1462 }
1463
1464 /* Use a minimum pfn if a preferred one was not found */
1465 if (!page && high_pfn) {
1466 page = pfn_to_page(high_pfn);
1467
1468 /* Update freepage for the list reorder below */
1469 freepage = page;
1470 }
1471
1472 /* Reorder to so a future search skips recent pages */
1473 move_freelist_head(freelist, freepage);
1474
1475 /* Isolate the page if available */
1476 if (page) {
1477 if (__isolate_free_page(page, order)) {
1478 set_page_private(page, order);
1479 nr_isolated = 1 << order;
1480 cc->nr_freepages += nr_isolated;
1481 list_add_tail(&page->lru, &cc->freepages);
1482 count_compact_events(COMPACTISOLATED, nr_isolated);
1483 } else {
1484 /* If isolation fails, abort the search */
1485 order = cc->search_order + 1;
1486 page = NULL;
1487 }
1488 }
1489
1490 spin_unlock_irqrestore(&cc->zone->lock, flags);
1491
1492 /*
1493 * Smaller scan on next order so the total scan is related
1494 * to freelist_scan_limit.
1495 */
1496 if (order_scanned >= limit)
1497 limit = max(1U, limit >> 1);
1498 }
1499
1500 if (!page) {
1501 cc->fast_search_fail++;
1502 if (scan_start) {
1503 /*
1504 * Use the highest PFN found above min. If one was
1505 * not found, be pessimistic for direct compaction
1506 * and use the min mark.
1507 */
1508 if (highest) {
1509 page = pfn_to_page(highest);
1510 cc->free_pfn = highest;
1511 } else {
1512 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1513 page = pageblock_pfn_to_page(min_pfn,
1514 min(pageblock_end_pfn(min_pfn),
1515 zone_end_pfn(cc->zone)),
1516 cc->zone);
1517 cc->free_pfn = min_pfn;
1518 }
1519 }
1520 }
1521 }
1522
1523 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1524 highest -= pageblock_nr_pages;
1525 cc->zone->compact_cached_free_pfn = highest;
1526 }
1527
1528 cc->total_free_scanned += nr_scanned;
1529 if (!page)
1530 return cc->free_pfn;
1531
1532 low_pfn = page_to_pfn(page);
1533 fast_isolate_around(cc, low_pfn, nr_isolated);
1534 return low_pfn;
1535}
1536
1537/*
1538 * Based on information in the current compact_control, find blocks
1539 * suitable for isolating free pages from and then isolate them.
1540 */
1541static void isolate_freepages(struct compact_control *cc)
1542{
1543 struct zone *zone = cc->zone;
1544 struct page *page;
1545 unsigned long block_start_pfn; /* start of current pageblock */
1546 unsigned long isolate_start_pfn; /* exact pfn we start at */
1547 unsigned long block_end_pfn; /* end of current pageblock */
1548 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1549 struct list_head *freelist = &cc->freepages;
1550 unsigned int stride;
1551
1552 /* Try a small search of the free lists for a candidate */
1553 isolate_start_pfn = fast_isolate_freepages(cc);
1554 if (cc->nr_freepages)
1555 goto splitmap;
1556
1557 /*
1558 * Initialise the free scanner. The starting point is where we last
1559 * successfully isolated from, zone-cached value, or the end of the
1560 * zone when isolating for the first time. For looping we also need
1561 * this pfn aligned down to the pageblock boundary, because we do
1562 * block_start_pfn -= pageblock_nr_pages in the for loop.
1563 * For ending point, take care when isolating in last pageblock of a
1564 * zone which ends in the middle of a pageblock.
1565 * The low boundary is the end of the pageblock the migration scanner
1566 * is using.
1567 */
1568 isolate_start_pfn = cc->free_pfn;
1569 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1570 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1571 zone_end_pfn(zone));
1572 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1573 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1574
1575 /*
1576 * Isolate free pages until enough are available to migrate the
1577 * pages on cc->migratepages. We stop searching if the migrate
1578 * and free page scanners meet or enough free pages are isolated.
1579 */
1580 for (; block_start_pfn >= low_pfn;
1581 block_end_pfn = block_start_pfn,
1582 block_start_pfn -= pageblock_nr_pages,
1583 isolate_start_pfn = block_start_pfn) {
1584 unsigned long nr_isolated;
1585
1586 /*
1587 * This can iterate a massively long zone without finding any
1588 * suitable migration targets, so periodically check resched.
1589 */
1590 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1591 cond_resched();
1592
1593 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1594 zone);
1595 if (!page)
1596 continue;
1597
1598 /* Check the block is suitable for migration */
1599 if (!suitable_migration_target(cc, page))
1600 continue;
1601
1602 /* If isolation recently failed, do not retry */
1603 if (!isolation_suitable(cc, page))
1604 continue;
1605
1606 /* Found a block suitable for isolating free pages from. */
1607 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1608 block_end_pfn, freelist, stride, false);
1609
1610 /* Update the skip hint if the full pageblock was scanned */
1611 if (isolate_start_pfn == block_end_pfn)
1612 update_pageblock_skip(cc, page, block_start_pfn);
1613
1614 /* Are enough freepages isolated? */
1615 if (cc->nr_freepages >= cc->nr_migratepages) {
1616 if (isolate_start_pfn >= block_end_pfn) {
1617 /*
1618 * Restart at previous pageblock if more
1619 * freepages can be isolated next time.
1620 */
1621 isolate_start_pfn =
1622 block_start_pfn - pageblock_nr_pages;
1623 }
1624 break;
1625 } else if (isolate_start_pfn < block_end_pfn) {
1626 /*
1627 * If isolation failed early, do not continue
1628 * needlessly.
1629 */
1630 break;
1631 }
1632
1633 /* Adjust stride depending on isolation */
1634 if (nr_isolated) {
1635 stride = 1;
1636 continue;
1637 }
1638 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1639 }
1640
1641 /*
1642 * Record where the free scanner will restart next time. Either we
1643 * broke from the loop and set isolate_start_pfn based on the last
1644 * call to isolate_freepages_block(), or we met the migration scanner
1645 * and the loop terminated due to isolate_start_pfn < low_pfn
1646 */
1647 cc->free_pfn = isolate_start_pfn;
1648
1649splitmap:
1650 /* __isolate_free_page() does not map the pages */
1651 split_map_pages(freelist);
1652}
1653
1654/*
1655 * This is a migrate-callback that "allocates" freepages by taking pages
1656 * from the isolated freelists in the block we are migrating to.
1657 */
1658static struct page *compaction_alloc(struct page *migratepage,
1659 unsigned long data)
1660{
1661 struct compact_control *cc = (struct compact_control *)data;
1662 struct page *freepage;
1663
1664 if (list_empty(&cc->freepages)) {
1665 isolate_freepages(cc);
1666
1667 if (list_empty(&cc->freepages))
1668 return NULL;
1669 }
1670
1671 freepage = list_entry(cc->freepages.next, struct page, lru);
1672 list_del(&freepage->lru);
1673 cc->nr_freepages--;
1674
1675 return freepage;
1676}
1677
1678/*
1679 * This is a migrate-callback that "frees" freepages back to the isolated
1680 * freelist. All pages on the freelist are from the same zone, so there is no
1681 * special handling needed for NUMA.
1682 */
1683static void compaction_free(struct page *page, unsigned long data)
1684{
1685 struct compact_control *cc = (struct compact_control *)data;
1686
1687 list_add(&page->lru, &cc->freepages);
1688 cc->nr_freepages++;
1689}
1690
1691/* possible outcome of isolate_migratepages */
1692typedef enum {
1693 ISOLATE_ABORT, /* Abort compaction now */
1694 ISOLATE_NONE, /* No pages isolated, continue scanning */
1695 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1696} isolate_migrate_t;
1697
1698/*
1699 * Allow userspace to control policy on scanning the unevictable LRU for
1700 * compactable pages.
1701 */
1702#ifdef CONFIG_PREEMPT_RT
1703int sysctl_compact_unevictable_allowed __read_mostly = 0;
1704#else
1705int sysctl_compact_unevictable_allowed __read_mostly = 1;
1706#endif
1707
1708static inline void
1709update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1710{
1711 if (cc->fast_start_pfn == ULONG_MAX)
1712 return;
1713
1714 if (!cc->fast_start_pfn)
1715 cc->fast_start_pfn = pfn;
1716
1717 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1718}
1719
1720static inline unsigned long
1721reinit_migrate_pfn(struct compact_control *cc)
1722{
1723 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1724 return cc->migrate_pfn;
1725
1726 cc->migrate_pfn = cc->fast_start_pfn;
1727 cc->fast_start_pfn = ULONG_MAX;
1728
1729 return cc->migrate_pfn;
1730}
1731
1732/*
1733 * Briefly search the free lists for a migration source that already has
1734 * some free pages to reduce the number of pages that need migration
1735 * before a pageblock is free.
1736 */
1737static unsigned long fast_find_migrateblock(struct compact_control *cc)
1738{
1739 unsigned int limit = freelist_scan_limit(cc);
1740 unsigned int nr_scanned = 0;
1741 unsigned long distance;
1742 unsigned long pfn = cc->migrate_pfn;
1743 unsigned long high_pfn;
1744 int order;
1745 bool found_block = false;
1746
1747 /* Skip hints are relied on to avoid repeats on the fast search */
1748 if (cc->ignore_skip_hint)
1749 return pfn;
1750
1751 /*
1752 * If the migrate_pfn is not at the start of a zone or the start
1753 * of a pageblock then assume this is a continuation of a previous
1754 * scan restarted due to COMPACT_CLUSTER_MAX.
1755 */
1756 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1757 return pfn;
1758
1759 /*
1760 * For smaller orders, just linearly scan as the number of pages
1761 * to migrate should be relatively small and does not necessarily
1762 * justify freeing up a large block for a small allocation.
1763 */
1764 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1765 return pfn;
1766
1767 /*
1768 * Only allow kcompactd and direct requests for movable pages to
1769 * quickly clear out a MOVABLE pageblock for allocation. This
1770 * reduces the risk that a large movable pageblock is freed for
1771 * an unmovable/reclaimable small allocation.
1772 */
1773 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1774 return pfn;
1775
1776 /*
1777 * When starting the migration scanner, pick any pageblock within the
1778 * first half of the search space. Otherwise try and pick a pageblock
1779 * within the first eighth to reduce the chances that a migration
1780 * target later becomes a source.
1781 */
1782 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1783 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1784 distance >>= 2;
1785 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1786
1787 for (order = cc->order - 1;
1788 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1789 order--) {
1790 struct free_area *area = &cc->zone->free_area[order];
1791 struct list_head *freelist;
1792 unsigned long flags;
1793 struct page *freepage;
1794
1795 if (!area->nr_free)
1796 continue;
1797
1798 spin_lock_irqsave(&cc->zone->lock, flags);
1799 freelist = &area->free_list[MIGRATE_MOVABLE];
1800 list_for_each_entry(freepage, freelist, lru) {
1801 unsigned long free_pfn;
1802
1803 if (nr_scanned++ >= limit) {
1804 move_freelist_tail(freelist, freepage);
1805 break;
1806 }
1807
1808 free_pfn = page_to_pfn(freepage);
1809 if (free_pfn < high_pfn) {
1810 /*
1811 * Avoid if skipped recently. Ideally it would
1812 * move to the tail but even safe iteration of
1813 * the list assumes an entry is deleted, not
1814 * reordered.
1815 */
1816 if (get_pageblock_skip(freepage))
1817 continue;
1818
1819 /* Reorder to so a future search skips recent pages */
1820 move_freelist_tail(freelist, freepage);
1821
1822 update_fast_start_pfn(cc, free_pfn);
1823 pfn = pageblock_start_pfn(free_pfn);
1824 cc->fast_search_fail = 0;
1825 found_block = true;
1826 set_pageblock_skip(freepage);
1827 break;
1828 }
1829 }
1830 spin_unlock_irqrestore(&cc->zone->lock, flags);
1831 }
1832
1833 cc->total_migrate_scanned += nr_scanned;
1834
1835 /*
1836 * If fast scanning failed then use a cached entry for a page block
1837 * that had free pages as the basis for starting a linear scan.
1838 */
1839 if (!found_block) {
1840 cc->fast_search_fail++;
1841 pfn = reinit_migrate_pfn(cc);
1842 }
1843 return pfn;
1844}
1845
1846/*
1847 * Isolate all pages that can be migrated from the first suitable block,
1848 * starting at the block pointed to by the migrate scanner pfn within
1849 * compact_control.
1850 */
1851static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1852{
1853 unsigned long block_start_pfn;
1854 unsigned long block_end_pfn;
1855 unsigned long low_pfn;
1856 struct page *page;
1857 const isolate_mode_t isolate_mode =
1858 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1859 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1860 bool fast_find_block;
1861
1862 /*
1863 * Start at where we last stopped, or beginning of the zone as
1864 * initialized by compact_zone(). The first failure will use
1865 * the lowest PFN as the starting point for linear scanning.
1866 */
1867 low_pfn = fast_find_migrateblock(cc);
1868 block_start_pfn = pageblock_start_pfn(low_pfn);
1869 if (block_start_pfn < cc->zone->zone_start_pfn)
1870 block_start_pfn = cc->zone->zone_start_pfn;
1871
1872 /*
1873 * fast_find_migrateblock marks a pageblock skipped so to avoid
1874 * the isolation_suitable check below, check whether the fast
1875 * search was successful.
1876 */
1877 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1878
1879 /* Only scan within a pageblock boundary */
1880 block_end_pfn = pageblock_end_pfn(low_pfn);
1881
1882 /*
1883 * Iterate over whole pageblocks until we find the first suitable.
1884 * Do not cross the free scanner.
1885 */
1886 for (; block_end_pfn <= cc->free_pfn;
1887 fast_find_block = false,
1888 cc->migrate_pfn = low_pfn = block_end_pfn,
1889 block_start_pfn = block_end_pfn,
1890 block_end_pfn += pageblock_nr_pages) {
1891
1892 /*
1893 * This can potentially iterate a massively long zone with
1894 * many pageblocks unsuitable, so periodically check if we
1895 * need to schedule.
1896 */
1897 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1898 cond_resched();
1899
1900 page = pageblock_pfn_to_page(block_start_pfn,
1901 block_end_pfn, cc->zone);
1902 if (!page)
1903 continue;
1904
1905 /*
1906 * If isolation recently failed, do not retry. Only check the
1907 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1908 * to be visited multiple times. Assume skip was checked
1909 * before making it "skip" so other compaction instances do
1910 * not scan the same block.
1911 */
1912 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1913 !fast_find_block && !isolation_suitable(cc, page))
1914 continue;
1915
1916 /*
1917 * For async compaction, also only scan in MOVABLE blocks
1918 * without huge pages. Async compaction is optimistic to see
1919 * if the minimum amount of work satisfies the allocation.
1920 * The cached PFN is updated as it's possible that all
1921 * remaining blocks between source and target are unsuitable
1922 * and the compaction scanners fail to meet.
1923 */
1924 if (!suitable_migration_source(cc, page)) {
1925 update_cached_migrate(cc, block_end_pfn);
1926 continue;
1927 }
1928
1929 /* Perform the isolation */
1930 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1931 isolate_mode))
1932 return ISOLATE_ABORT;
1933
1934 /*
1935 * Either we isolated something and proceed with migration. Or
1936 * we failed and compact_zone should decide if we should
1937 * continue or not.
1938 */
1939 break;
1940 }
1941
1942 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1943}
1944
1945/*
1946 * order == -1 is expected when compacting via
1947 * /proc/sys/vm/compact_memory
1948 */
1949static inline bool is_via_compact_memory(int order)
1950{
1951 return order == -1;
1952}
1953
1954static bool kswapd_is_running(pg_data_t *pgdat)
1955{
1956 return pgdat->kswapd && task_is_running(pgdat->kswapd);
1957}
1958
1959/*
1960 * A zone's fragmentation score is the external fragmentation wrt to the
1961 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1962 */
1963static unsigned int fragmentation_score_zone(struct zone *zone)
1964{
1965 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1966}
1967
1968/*
1969 * A weighted zone's fragmentation score is the external fragmentation
1970 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1971 * returns a value in the range [0, 100].
1972 *
1973 * The scaling factor ensures that proactive compaction focuses on larger
1974 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1975 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1976 * and thus never exceeds the high threshold for proactive compaction.
1977 */
1978static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1979{
1980 unsigned long score;
1981
1982 score = zone->present_pages * fragmentation_score_zone(zone);
1983 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1984}
1985
1986/*
1987 * The per-node proactive (background) compaction process is started by its
1988 * corresponding kcompactd thread when the node's fragmentation score
1989 * exceeds the high threshold. The compaction process remains active till
1990 * the node's score falls below the low threshold, or one of the back-off
1991 * conditions is met.
1992 */
1993static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1994{
1995 unsigned int score = 0;
1996 int zoneid;
1997
1998 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1999 struct zone *zone;
2000
2001 zone = &pgdat->node_zones[zoneid];
2002 score += fragmentation_score_zone_weighted(zone);
2003 }
2004
2005 return score;
2006}
2007
2008static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2009{
2010 unsigned int wmark_low;
2011
2012 /*
2013 * Cap the low watermark to avoid excessive compaction
2014 * activity in case a user sets the proactiveness tunable
2015 * close to 100 (maximum).
2016 */
2017 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2018 return low ? wmark_low : min(wmark_low + 10, 100U);
2019}
2020
2021static bool should_proactive_compact_node(pg_data_t *pgdat)
2022{
2023 int wmark_high;
2024
2025 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2026 return false;
2027
2028 wmark_high = fragmentation_score_wmark(pgdat, false);
2029 return fragmentation_score_node(pgdat) > wmark_high;
2030}
2031
2032static enum compact_result __compact_finished(struct compact_control *cc)
2033{
2034 unsigned int order;
2035 const int migratetype = cc->migratetype;
2036 int ret;
2037
2038 /* Compaction run completes if the migrate and free scanner meet */
2039 if (compact_scanners_met(cc)) {
2040 /* Let the next compaction start anew. */
2041 reset_cached_positions(cc->zone);
2042
2043 /*
2044 * Mark that the PG_migrate_skip information should be cleared
2045 * by kswapd when it goes to sleep. kcompactd does not set the
2046 * flag itself as the decision to be clear should be directly
2047 * based on an allocation request.
2048 */
2049 if (cc->direct_compaction)
2050 cc->zone->compact_blockskip_flush = true;
2051
2052 if (cc->whole_zone)
2053 return COMPACT_COMPLETE;
2054 else
2055 return COMPACT_PARTIAL_SKIPPED;
2056 }
2057
2058 if (cc->proactive_compaction) {
2059 int score, wmark_low;
2060 pg_data_t *pgdat;
2061
2062 pgdat = cc->zone->zone_pgdat;
2063 if (kswapd_is_running(pgdat))
2064 return COMPACT_PARTIAL_SKIPPED;
2065
2066 score = fragmentation_score_zone(cc->zone);
2067 wmark_low = fragmentation_score_wmark(pgdat, true);
2068
2069 if (score > wmark_low)
2070 ret = COMPACT_CONTINUE;
2071 else
2072 ret = COMPACT_SUCCESS;
2073
2074 goto out;
2075 }
2076
2077 if (is_via_compact_memory(cc->order))
2078 return COMPACT_CONTINUE;
2079
2080 /*
2081 * Always finish scanning a pageblock to reduce the possibility of
2082 * fallbacks in the future. This is particularly important when
2083 * migration source is unmovable/reclaimable but it's not worth
2084 * special casing.
2085 */
2086 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2087 return COMPACT_CONTINUE;
2088
2089 /* Direct compactor: Is a suitable page free? */
2090 ret = COMPACT_NO_SUITABLE_PAGE;
2091 for (order = cc->order; order < MAX_ORDER; order++) {
2092 struct free_area *area = &cc->zone->free_area[order];
2093 bool can_steal;
2094
2095 /* Job done if page is free of the right migratetype */
2096 if (!free_area_empty(area, migratetype))
2097 return COMPACT_SUCCESS;
2098
2099#ifdef CONFIG_CMA
2100 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2101 if (migratetype == MIGRATE_MOVABLE &&
2102 !free_area_empty(area, MIGRATE_CMA))
2103 return COMPACT_SUCCESS;
2104#endif
2105 /*
2106 * Job done if allocation would steal freepages from
2107 * other migratetype buddy lists.
2108 */
2109 if (find_suitable_fallback(area, order, migratetype,
2110 true, &can_steal) != -1) {
2111
2112 /* movable pages are OK in any pageblock */
2113 if (migratetype == MIGRATE_MOVABLE)
2114 return COMPACT_SUCCESS;
2115
2116 /*
2117 * We are stealing for a non-movable allocation. Make
2118 * sure we finish compacting the current pageblock
2119 * first so it is as free as possible and we won't
2120 * have to steal another one soon. This only applies
2121 * to sync compaction, as async compaction operates
2122 * on pageblocks of the same migratetype.
2123 */
2124 if (cc->mode == MIGRATE_ASYNC ||
2125 IS_ALIGNED(cc->migrate_pfn,
2126 pageblock_nr_pages)) {
2127 return COMPACT_SUCCESS;
2128 }
2129
2130 ret = COMPACT_CONTINUE;
2131 break;
2132 }
2133 }
2134
2135out:
2136 if (cc->contended || fatal_signal_pending(current))
2137 ret = COMPACT_CONTENDED;
2138
2139 return ret;
2140}
2141
2142static enum compact_result compact_finished(struct compact_control *cc)
2143{
2144 int ret;
2145
2146 ret = __compact_finished(cc);
2147 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2148 if (ret == COMPACT_NO_SUITABLE_PAGE)
2149 ret = COMPACT_CONTINUE;
2150
2151 return ret;
2152}
2153
2154static enum compact_result __compaction_suitable(struct zone *zone, int order,
2155 unsigned int alloc_flags,
2156 int highest_zoneidx,
2157 unsigned long wmark_target)
2158{
2159 unsigned long watermark;
2160
2161 if (is_via_compact_memory(order))
2162 return COMPACT_CONTINUE;
2163
2164 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2165 /*
2166 * If watermarks for high-order allocation are already met, there
2167 * should be no need for compaction at all.
2168 */
2169 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2170 alloc_flags))
2171 return COMPACT_SUCCESS;
2172
2173 /*
2174 * Watermarks for order-0 must be met for compaction to be able to
2175 * isolate free pages for migration targets. This means that the
2176 * watermark and alloc_flags have to match, or be more pessimistic than
2177 * the check in __isolate_free_page(). We don't use the direct
2178 * compactor's alloc_flags, as they are not relevant for freepage
2179 * isolation. We however do use the direct compactor's highest_zoneidx
2180 * to skip over zones where lowmem reserves would prevent allocation
2181 * even if compaction succeeds.
2182 * For costly orders, we require low watermark instead of min for
2183 * compaction to proceed to increase its chances.
2184 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2185 * suitable migration targets
2186 */
2187 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2188 low_wmark_pages(zone) : min_wmark_pages(zone);
2189 watermark += compact_gap(order);
2190 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2191 ALLOC_CMA, wmark_target))
2192 return COMPACT_SKIPPED;
2193
2194 return COMPACT_CONTINUE;
2195}
2196
2197/*
2198 * compaction_suitable: Is this suitable to run compaction on this zone now?
2199 * Returns
2200 * COMPACT_SKIPPED - If there are too few free pages for compaction
2201 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2202 * COMPACT_CONTINUE - If compaction should run now
2203 */
2204enum compact_result compaction_suitable(struct zone *zone, int order,
2205 unsigned int alloc_flags,
2206 int highest_zoneidx)
2207{
2208 enum compact_result ret;
2209 int fragindex;
2210
2211 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2212 zone_page_state(zone, NR_FREE_PAGES));
2213 /*
2214 * fragmentation index determines if allocation failures are due to
2215 * low memory or external fragmentation
2216 *
2217 * index of -1000 would imply allocations might succeed depending on
2218 * watermarks, but we already failed the high-order watermark check
2219 * index towards 0 implies failure is due to lack of memory
2220 * index towards 1000 implies failure is due to fragmentation
2221 *
2222 * Only compact if a failure would be due to fragmentation. Also
2223 * ignore fragindex for non-costly orders where the alternative to
2224 * a successful reclaim/compaction is OOM. Fragindex and the
2225 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2226 * excessive compaction for costly orders, but it should not be at the
2227 * expense of system stability.
2228 */
2229 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2230 fragindex = fragmentation_index(zone, order);
2231 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2232 ret = COMPACT_NOT_SUITABLE_ZONE;
2233 }
2234
2235 trace_mm_compaction_suitable(zone, order, ret);
2236 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2237 ret = COMPACT_SKIPPED;
2238
2239 return ret;
2240}
2241
2242bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2243 int alloc_flags)
2244{
2245 struct zone *zone;
2246 struct zoneref *z;
2247
2248 /*
2249 * Make sure at least one zone would pass __compaction_suitable if we continue
2250 * retrying the reclaim.
2251 */
2252 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2253 ac->highest_zoneidx, ac->nodemask) {
2254 unsigned long available;
2255 enum compact_result compact_result;
2256
2257 /*
2258 * Do not consider all the reclaimable memory because we do not
2259 * want to trash just for a single high order allocation which
2260 * is even not guaranteed to appear even if __compaction_suitable
2261 * is happy about the watermark check.
2262 */
2263 available = zone_reclaimable_pages(zone) / order;
2264 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2265 compact_result = __compaction_suitable(zone, order, alloc_flags,
2266 ac->highest_zoneidx, available);
2267 if (compact_result != COMPACT_SKIPPED)
2268 return true;
2269 }
2270
2271 return false;
2272}
2273
2274static enum compact_result
2275compact_zone(struct compact_control *cc, struct capture_control *capc)
2276{
2277 enum compact_result ret;
2278 unsigned long start_pfn = cc->zone->zone_start_pfn;
2279 unsigned long end_pfn = zone_end_pfn(cc->zone);
2280 unsigned long last_migrated_pfn;
2281 const bool sync = cc->mode != MIGRATE_ASYNC;
2282 bool update_cached;
2283
2284 /*
2285 * These counters track activities during zone compaction. Initialize
2286 * them before compacting a new zone.
2287 */
2288 cc->total_migrate_scanned = 0;
2289 cc->total_free_scanned = 0;
2290 cc->nr_migratepages = 0;
2291 cc->nr_freepages = 0;
2292 INIT_LIST_HEAD(&cc->freepages);
2293 INIT_LIST_HEAD(&cc->migratepages);
2294
2295 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2296 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2297 cc->highest_zoneidx);
2298 /* Compaction is likely to fail */
2299 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2300 return ret;
2301
2302 /* huh, compaction_suitable is returning something unexpected */
2303 VM_BUG_ON(ret != COMPACT_CONTINUE);
2304
2305 /*
2306 * Clear pageblock skip if there were failures recently and compaction
2307 * is about to be retried after being deferred.
2308 */
2309 if (compaction_restarting(cc->zone, cc->order))
2310 __reset_isolation_suitable(cc->zone);
2311
2312 /*
2313 * Setup to move all movable pages to the end of the zone. Used cached
2314 * information on where the scanners should start (unless we explicitly
2315 * want to compact the whole zone), but check that it is initialised
2316 * by ensuring the values are within zone boundaries.
2317 */
2318 cc->fast_start_pfn = 0;
2319 if (cc->whole_zone) {
2320 cc->migrate_pfn = start_pfn;
2321 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2322 } else {
2323 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2324 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2325 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2326 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2327 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2328 }
2329 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2330 cc->migrate_pfn = start_pfn;
2331 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2332 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2333 }
2334
2335 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2336 cc->whole_zone = true;
2337 }
2338
2339 last_migrated_pfn = 0;
2340
2341 /*
2342 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2343 * the basis that some migrations will fail in ASYNC mode. However,
2344 * if the cached PFNs match and pageblocks are skipped due to having
2345 * no isolation candidates, then the sync state does not matter.
2346 * Until a pageblock with isolation candidates is found, keep the
2347 * cached PFNs in sync to avoid revisiting the same blocks.
2348 */
2349 update_cached = !sync &&
2350 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2351
2352 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2353 cc->free_pfn, end_pfn, sync);
2354
2355 /* lru_add_drain_all could be expensive with involving other CPUs */
2356 lru_add_drain();
2357
2358 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2359 int err;
2360 unsigned long iteration_start_pfn = cc->migrate_pfn;
2361
2362 /*
2363 * Avoid multiple rescans which can happen if a page cannot be
2364 * isolated (dirty/writeback in async mode) or if the migrated
2365 * pages are being allocated before the pageblock is cleared.
2366 * The first rescan will capture the entire pageblock for
2367 * migration. If it fails, it'll be marked skip and scanning
2368 * will proceed as normal.
2369 */
2370 cc->rescan = false;
2371 if (pageblock_start_pfn(last_migrated_pfn) ==
2372 pageblock_start_pfn(iteration_start_pfn)) {
2373 cc->rescan = true;
2374 }
2375
2376 switch (isolate_migratepages(cc)) {
2377 case ISOLATE_ABORT:
2378 ret = COMPACT_CONTENDED;
2379 putback_movable_pages(&cc->migratepages);
2380 cc->nr_migratepages = 0;
2381 goto out;
2382 case ISOLATE_NONE:
2383 if (update_cached) {
2384 cc->zone->compact_cached_migrate_pfn[1] =
2385 cc->zone->compact_cached_migrate_pfn[0];
2386 }
2387
2388 /*
2389 * We haven't isolated and migrated anything, but
2390 * there might still be unflushed migrations from
2391 * previous cc->order aligned block.
2392 */
2393 goto check_drain;
2394 case ISOLATE_SUCCESS:
2395 update_cached = false;
2396 last_migrated_pfn = iteration_start_pfn;
2397 }
2398
2399 err = migrate_pages(&cc->migratepages, compaction_alloc,
2400 compaction_free, (unsigned long)cc, cc->mode,
2401 MR_COMPACTION);
2402
2403 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2404 &cc->migratepages);
2405
2406 /* All pages were either migrated or will be released */
2407 cc->nr_migratepages = 0;
2408 if (err) {
2409 putback_movable_pages(&cc->migratepages);
2410 /*
2411 * migrate_pages() may return -ENOMEM when scanners meet
2412 * and we want compact_finished() to detect it
2413 */
2414 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2415 ret = COMPACT_CONTENDED;
2416 goto out;
2417 }
2418 /*
2419 * We failed to migrate at least one page in the current
2420 * order-aligned block, so skip the rest of it.
2421 */
2422 if (cc->direct_compaction &&
2423 (cc->mode == MIGRATE_ASYNC)) {
2424 cc->migrate_pfn = block_end_pfn(
2425 cc->migrate_pfn - 1, cc->order);
2426 /* Draining pcplists is useless in this case */
2427 last_migrated_pfn = 0;
2428 }
2429 }
2430
2431check_drain:
2432 /*
2433 * Has the migration scanner moved away from the previous
2434 * cc->order aligned block where we migrated from? If yes,
2435 * flush the pages that were freed, so that they can merge and
2436 * compact_finished() can detect immediately if allocation
2437 * would succeed.
2438 */
2439 if (cc->order > 0 && last_migrated_pfn) {
2440 unsigned long current_block_start =
2441 block_start_pfn(cc->migrate_pfn, cc->order);
2442
2443 if (last_migrated_pfn < current_block_start) {
2444 lru_add_drain_cpu_zone(cc->zone);
2445 /* No more flushing until we migrate again */
2446 last_migrated_pfn = 0;
2447 }
2448 }
2449
2450 /* Stop if a page has been captured */
2451 if (capc && capc->page) {
2452 ret = COMPACT_SUCCESS;
2453 break;
2454 }
2455 }
2456
2457out:
2458 /*
2459 * Release free pages and update where the free scanner should restart,
2460 * so we don't leave any returned pages behind in the next attempt.
2461 */
2462 if (cc->nr_freepages > 0) {
2463 unsigned long free_pfn = release_freepages(&cc->freepages);
2464
2465 cc->nr_freepages = 0;
2466 VM_BUG_ON(free_pfn == 0);
2467 /* The cached pfn is always the first in a pageblock */
2468 free_pfn = pageblock_start_pfn(free_pfn);
2469 /*
2470 * Only go back, not forward. The cached pfn might have been
2471 * already reset to zone end in compact_finished()
2472 */
2473 if (free_pfn > cc->zone->compact_cached_free_pfn)
2474 cc->zone->compact_cached_free_pfn = free_pfn;
2475 }
2476
2477 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2478 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2479
2480 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2481 cc->free_pfn, end_pfn, sync, ret);
2482
2483 return ret;
2484}
2485
2486static enum compact_result compact_zone_order(struct zone *zone, int order,
2487 gfp_t gfp_mask, enum compact_priority prio,
2488 unsigned int alloc_flags, int highest_zoneidx,
2489 struct page **capture)
2490{
2491 enum compact_result ret;
2492 struct compact_control cc = {
2493 .order = order,
2494 .search_order = order,
2495 .gfp_mask = gfp_mask,
2496 .zone = zone,
2497 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2498 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2499 .alloc_flags = alloc_flags,
2500 .highest_zoneidx = highest_zoneidx,
2501 .direct_compaction = true,
2502 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2503 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2504 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2505 };
2506 struct capture_control capc = {
2507 .cc = &cc,
2508 .page = NULL,
2509 };
2510
2511 /*
2512 * Make sure the structs are really initialized before we expose the
2513 * capture control, in case we are interrupted and the interrupt handler
2514 * frees a page.
2515 */
2516 barrier();
2517 WRITE_ONCE(current->capture_control, &capc);
2518
2519 ret = compact_zone(&cc, &capc);
2520
2521 VM_BUG_ON(!list_empty(&cc.freepages));
2522 VM_BUG_ON(!list_empty(&cc.migratepages));
2523
2524 /*
2525 * Make sure we hide capture control first before we read the captured
2526 * page pointer, otherwise an interrupt could free and capture a page
2527 * and we would leak it.
2528 */
2529 WRITE_ONCE(current->capture_control, NULL);
2530 *capture = READ_ONCE(capc.page);
2531 /*
2532 * Technically, it is also possible that compaction is skipped but
2533 * the page is still captured out of luck(IRQ came and freed the page).
2534 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2535 * the COMPACT[STALL|FAIL] when compaction is skipped.
2536 */
2537 if (*capture)
2538 ret = COMPACT_SUCCESS;
2539
2540 return ret;
2541}
2542
2543int sysctl_extfrag_threshold = 500;
2544
2545/**
2546 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2547 * @gfp_mask: The GFP mask of the current allocation
2548 * @order: The order of the current allocation
2549 * @alloc_flags: The allocation flags of the current allocation
2550 * @ac: The context of current allocation
2551 * @prio: Determines how hard direct compaction should try to succeed
2552 * @capture: Pointer to free page created by compaction will be stored here
2553 *
2554 * This is the main entry point for direct page compaction.
2555 */
2556enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2557 unsigned int alloc_flags, const struct alloc_context *ac,
2558 enum compact_priority prio, struct page **capture)
2559{
2560 int may_perform_io = gfp_mask & __GFP_IO;
2561 struct zoneref *z;
2562 struct zone *zone;
2563 enum compact_result rc = COMPACT_SKIPPED;
2564
2565 /*
2566 * Check if the GFP flags allow compaction - GFP_NOIO is really
2567 * tricky context because the migration might require IO
2568 */
2569 if (!may_perform_io)
2570 return COMPACT_SKIPPED;
2571
2572 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2573
2574 /* Compact each zone in the list */
2575 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2576 ac->highest_zoneidx, ac->nodemask) {
2577 enum compact_result status;
2578
2579 if (prio > MIN_COMPACT_PRIORITY
2580 && compaction_deferred(zone, order)) {
2581 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2582 continue;
2583 }
2584
2585 status = compact_zone_order(zone, order, gfp_mask, prio,
2586 alloc_flags, ac->highest_zoneidx, capture);
2587 rc = max(status, rc);
2588
2589 /* The allocation should succeed, stop compacting */
2590 if (status == COMPACT_SUCCESS) {
2591 /*
2592 * We think the allocation will succeed in this zone,
2593 * but it is not certain, hence the false. The caller
2594 * will repeat this with true if allocation indeed
2595 * succeeds in this zone.
2596 */
2597 compaction_defer_reset(zone, order, false);
2598
2599 break;
2600 }
2601
2602 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2603 status == COMPACT_PARTIAL_SKIPPED))
2604 /*
2605 * We think that allocation won't succeed in this zone
2606 * so we defer compaction there. If it ends up
2607 * succeeding after all, it will be reset.
2608 */
2609 defer_compaction(zone, order);
2610
2611 /*
2612 * We might have stopped compacting due to need_resched() in
2613 * async compaction, or due to a fatal signal detected. In that
2614 * case do not try further zones
2615 */
2616 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2617 || fatal_signal_pending(current))
2618 break;
2619 }
2620
2621 return rc;
2622}
2623
2624/*
2625 * Compact all zones within a node till each zone's fragmentation score
2626 * reaches within proactive compaction thresholds (as determined by the
2627 * proactiveness tunable).
2628 *
2629 * It is possible that the function returns before reaching score targets
2630 * due to various back-off conditions, such as, contention on per-node or
2631 * per-zone locks.
2632 */
2633static void proactive_compact_node(pg_data_t *pgdat)
2634{
2635 int zoneid;
2636 struct zone *zone;
2637 struct compact_control cc = {
2638 .order = -1,
2639 .mode = MIGRATE_SYNC_LIGHT,
2640 .ignore_skip_hint = true,
2641 .whole_zone = true,
2642 .gfp_mask = GFP_KERNEL,
2643 .proactive_compaction = true,
2644 };
2645
2646 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2647 zone = &pgdat->node_zones[zoneid];
2648 if (!populated_zone(zone))
2649 continue;
2650
2651 cc.zone = zone;
2652
2653 compact_zone(&cc, NULL);
2654
2655 VM_BUG_ON(!list_empty(&cc.freepages));
2656 VM_BUG_ON(!list_empty(&cc.migratepages));
2657 }
2658}
2659
2660/* Compact all zones within a node */
2661static void compact_node(int nid)
2662{
2663 pg_data_t *pgdat = NODE_DATA(nid);
2664 int zoneid;
2665 struct zone *zone;
2666 struct compact_control cc = {
2667 .order = -1,
2668 .mode = MIGRATE_SYNC,
2669 .ignore_skip_hint = true,
2670 .whole_zone = true,
2671 .gfp_mask = GFP_KERNEL,
2672 };
2673
2674
2675 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2676
2677 zone = &pgdat->node_zones[zoneid];
2678 if (!populated_zone(zone))
2679 continue;
2680
2681 cc.zone = zone;
2682
2683 compact_zone(&cc, NULL);
2684
2685 VM_BUG_ON(!list_empty(&cc.freepages));
2686 VM_BUG_ON(!list_empty(&cc.migratepages));
2687 }
2688}
2689
2690/* Compact all nodes in the system */
2691static void compact_nodes(void)
2692{
2693 int nid;
2694
2695 /* Flush pending updates to the LRU lists */
2696 lru_add_drain_all();
2697
2698 for_each_online_node(nid)
2699 compact_node(nid);
2700}
2701
2702/*
2703 * Tunable for proactive compaction. It determines how
2704 * aggressively the kernel should compact memory in the
2705 * background. It takes values in the range [0, 100].
2706 */
2707unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2708
2709/*
2710 * This is the entry point for compacting all nodes via
2711 * /proc/sys/vm/compact_memory
2712 */
2713int sysctl_compaction_handler(struct ctl_table *table, int write,
2714 void *buffer, size_t *length, loff_t *ppos)
2715{
2716 if (write)
2717 compact_nodes();
2718
2719 return 0;
2720}
2721
2722#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2723static ssize_t compact_store(struct device *dev,
2724 struct device_attribute *attr,
2725 const char *buf, size_t count)
2726{
2727 int nid = dev->id;
2728
2729 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2730 /* Flush pending updates to the LRU lists */
2731 lru_add_drain_all();
2732
2733 compact_node(nid);
2734 }
2735
2736 return count;
2737}
2738static DEVICE_ATTR_WO(compact);
2739
2740int compaction_register_node(struct node *node)
2741{
2742 return device_create_file(&node->dev, &dev_attr_compact);
2743}
2744
2745void compaction_unregister_node(struct node *node)
2746{
2747 return device_remove_file(&node->dev, &dev_attr_compact);
2748}
2749#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2750
2751static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2752{
2753 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2754}
2755
2756static bool kcompactd_node_suitable(pg_data_t *pgdat)
2757{
2758 int zoneid;
2759 struct zone *zone;
2760 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2761
2762 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2763 zone = &pgdat->node_zones[zoneid];
2764
2765 if (!populated_zone(zone))
2766 continue;
2767
2768 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2769 highest_zoneidx) == COMPACT_CONTINUE)
2770 return true;
2771 }
2772
2773 return false;
2774}
2775
2776static void kcompactd_do_work(pg_data_t *pgdat)
2777{
2778 /*
2779 * With no special task, compact all zones so that a page of requested
2780 * order is allocatable.
2781 */
2782 int zoneid;
2783 struct zone *zone;
2784 struct compact_control cc = {
2785 .order = pgdat->kcompactd_max_order,
2786 .search_order = pgdat->kcompactd_max_order,
2787 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2788 .mode = MIGRATE_SYNC_LIGHT,
2789 .ignore_skip_hint = false,
2790 .gfp_mask = GFP_KERNEL,
2791 };
2792 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2793 cc.highest_zoneidx);
2794 count_compact_event(KCOMPACTD_WAKE);
2795
2796 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2797 int status;
2798
2799 zone = &pgdat->node_zones[zoneid];
2800 if (!populated_zone(zone))
2801 continue;
2802
2803 if (compaction_deferred(zone, cc.order))
2804 continue;
2805
2806 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2807 COMPACT_CONTINUE)
2808 continue;
2809
2810 if (kthread_should_stop())
2811 return;
2812
2813 cc.zone = zone;
2814 status = compact_zone(&cc, NULL);
2815
2816 if (status == COMPACT_SUCCESS) {
2817 compaction_defer_reset(zone, cc.order, false);
2818 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2819 /*
2820 * Buddy pages may become stranded on pcps that could
2821 * otherwise coalesce on the zone's free area for
2822 * order >= cc.order. This is ratelimited by the
2823 * upcoming deferral.
2824 */
2825 drain_all_pages(zone);
2826
2827 /*
2828 * We use sync migration mode here, so we defer like
2829 * sync direct compaction does.
2830 */
2831 defer_compaction(zone, cc.order);
2832 }
2833
2834 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2835 cc.total_migrate_scanned);
2836 count_compact_events(KCOMPACTD_FREE_SCANNED,
2837 cc.total_free_scanned);
2838
2839 VM_BUG_ON(!list_empty(&cc.freepages));
2840 VM_BUG_ON(!list_empty(&cc.migratepages));
2841 }
2842
2843 /*
2844 * Regardless of success, we are done until woken up next. But remember
2845 * the requested order/highest_zoneidx in case it was higher/tighter
2846 * than our current ones
2847 */
2848 if (pgdat->kcompactd_max_order <= cc.order)
2849 pgdat->kcompactd_max_order = 0;
2850 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2851 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2852}
2853
2854void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2855{
2856 if (!order)
2857 return;
2858
2859 if (pgdat->kcompactd_max_order < order)
2860 pgdat->kcompactd_max_order = order;
2861
2862 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2863 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2864
2865 /*
2866 * Pairs with implicit barrier in wait_event_freezable()
2867 * such that wakeups are not missed.
2868 */
2869 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2870 return;
2871
2872 if (!kcompactd_node_suitable(pgdat))
2873 return;
2874
2875 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2876 highest_zoneidx);
2877 wake_up_interruptible(&pgdat->kcompactd_wait);
2878}
2879
2880/*
2881 * The background compaction daemon, started as a kernel thread
2882 * from the init process.
2883 */
2884static int kcompactd(void *p)
2885{
2886 pg_data_t *pgdat = (pg_data_t *)p;
2887 struct task_struct *tsk = current;
2888 unsigned int proactive_defer = 0;
2889
2890 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2891
2892 if (!cpumask_empty(cpumask))
2893 set_cpus_allowed_ptr(tsk, cpumask);
2894
2895 set_freezable();
2896
2897 pgdat->kcompactd_max_order = 0;
2898 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2899
2900 while (!kthread_should_stop()) {
2901 unsigned long pflags;
2902
2903 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2904 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2905 kcompactd_work_requested(pgdat),
2906 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2907
2908 psi_memstall_enter(&pflags);
2909 kcompactd_do_work(pgdat);
2910 psi_memstall_leave(&pflags);
2911 continue;
2912 }
2913
2914 /* kcompactd wait timeout */
2915 if (should_proactive_compact_node(pgdat)) {
2916 unsigned int prev_score, score;
2917
2918 if (proactive_defer) {
2919 proactive_defer--;
2920 continue;
2921 }
2922 prev_score = fragmentation_score_node(pgdat);
2923 proactive_compact_node(pgdat);
2924 score = fragmentation_score_node(pgdat);
2925 /*
2926 * Defer proactive compaction if the fragmentation
2927 * score did not go down i.e. no progress made.
2928 */
2929 proactive_defer = score < prev_score ?
2930 0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2931 }
2932 }
2933
2934 return 0;
2935}
2936
2937/*
2938 * This kcompactd start function will be called by init and node-hot-add.
2939 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2940 */
2941int kcompactd_run(int nid)
2942{
2943 pg_data_t *pgdat = NODE_DATA(nid);
2944 int ret = 0;
2945
2946 if (pgdat->kcompactd)
2947 return 0;
2948
2949 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2950 if (IS_ERR(pgdat->kcompactd)) {
2951 pr_err("Failed to start kcompactd on node %d\n", nid);
2952 ret = PTR_ERR(pgdat->kcompactd);
2953 pgdat->kcompactd = NULL;
2954 }
2955 return ret;
2956}
2957
2958/*
2959 * Called by memory hotplug when all memory in a node is offlined. Caller must
2960 * hold mem_hotplug_begin/end().
2961 */
2962void kcompactd_stop(int nid)
2963{
2964 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2965
2966 if (kcompactd) {
2967 kthread_stop(kcompactd);
2968 NODE_DATA(nid)->kcompactd = NULL;
2969 }
2970}
2971
2972/*
2973 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2974 * not required for correctness. So if the last cpu in a node goes
2975 * away, we get changed to run anywhere: as the first one comes back,
2976 * restore their cpu bindings.
2977 */
2978static int kcompactd_cpu_online(unsigned int cpu)
2979{
2980 int nid;
2981
2982 for_each_node_state(nid, N_MEMORY) {
2983 pg_data_t *pgdat = NODE_DATA(nid);
2984 const struct cpumask *mask;
2985
2986 mask = cpumask_of_node(pgdat->node_id);
2987
2988 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2989 /* One of our CPUs online: restore mask */
2990 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2991 }
2992 return 0;
2993}
2994
2995static int __init kcompactd_init(void)
2996{
2997 int nid;
2998 int ret;
2999
3000 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3001 "mm/compaction:online",
3002 kcompactd_cpu_online, NULL);
3003 if (ret < 0) {
3004 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3005 return ret;
3006 }
3007
3008 for_each_node_state(nid, N_MEMORY)
3009 kcompactd_run(nid);
3010 return 0;
3011}
3012subsys_initcall(kcompactd_init)
3013
3014#endif /* CONFIG_COMPACTION */