Loading...
1// SPDX-License-Identifier: GPL-2.0+
2
3/*
4 * NXP FlexSPI(FSPI) controller driver.
5 *
6 * Copyright 2019-2020 NXP
7 * Copyright 2020 Puresoftware Ltd.
8 *
9 * FlexSPI is a flexsible SPI host controller which supports two SPI
10 * channels and up to 4 external devices. Each channel supports
11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
12 * data lines).
13 *
14 * FlexSPI controller is driven by the LUT(Look-up Table) registers
15 * LUT registers are a look-up-table for sequences of instructions.
16 * A valid sequence consists of four LUT registers.
17 * Maximum 32 LUT sequences can be programmed simultaneously.
18 *
19 * LUTs are being created at run-time based on the commands passed
20 * from the spi-mem framework, thus using single LUT index.
21 *
22 * Software triggered Flash read/write access by IP Bus.
23 *
24 * Memory mapped read access by AHB Bus.
25 *
26 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
27 *
28 * Author:
29 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
30 * Boris Brezillon <bbrezillon@kernel.org>
31 * Frieder Schrempf <frieder.schrempf@kontron.de>
32 */
33
34#include <linux/acpi.h>
35#include <linux/bitops.h>
36#include <linux/bitfield.h>
37#include <linux/clk.h>
38#include <linux/completion.h>
39#include <linux/delay.h>
40#include <linux/err.h>
41#include <linux/errno.h>
42#include <linux/interrupt.h>
43#include <linux/io.h>
44#include <linux/iopoll.h>
45#include <linux/jiffies.h>
46#include <linux/kernel.h>
47#include <linux/module.h>
48#include <linux/mutex.h>
49#include <linux/of.h>
50#include <linux/platform_device.h>
51#include <linux/pm_qos.h>
52#include <linux/regmap.h>
53#include <linux/sizes.h>
54#include <linux/sys_soc.h>
55
56#include <linux/mfd/syscon.h>
57#include <linux/spi/spi.h>
58#include <linux/spi/spi-mem.h>
59
60/*
61 * The driver only uses one single LUT entry, that is updated on
62 * each call of exec_op(). Index 0 is preset at boot with a basic
63 * read operation, so let's use the last entry (31).
64 */
65#define SEQID_LUT 31
66
67/* Registers used by the driver */
68#define FSPI_MCR0 0x00
69#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
70#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
71#define FSPI_MCR0_LEARN_EN BIT(15)
72#define FSPI_MCR0_SCRFRUN_EN BIT(14)
73#define FSPI_MCR0_OCTCOMB_EN BIT(13)
74#define FSPI_MCR0_DOZE_EN BIT(12)
75#define FSPI_MCR0_HSEN BIT(11)
76#define FSPI_MCR0_SERCLKDIV BIT(8)
77#define FSPI_MCR0_ATDF_EN BIT(7)
78#define FSPI_MCR0_ARDF_EN BIT(6)
79#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
80#define FSPI_MCR0_END_CFG(x) ((x) << 2)
81#define FSPI_MCR0_MDIS BIT(1)
82#define FSPI_MCR0_SWRST BIT(0)
83
84#define FSPI_MCR1 0x04
85#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
86#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
87
88#define FSPI_MCR2 0x08
89#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
90#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
91#define FSPI_MCR2_CLRLRPHS BIT(14)
92#define FSPI_MCR2_ABRDATSZ BIT(8)
93#define FSPI_MCR2_ABRLEARN BIT(7)
94#define FSPI_MCR2_ABR_READ BIT(6)
95#define FSPI_MCR2_ABRWRITE BIT(5)
96#define FSPI_MCR2_ABRDUMMY BIT(4)
97#define FSPI_MCR2_ABR_MODE BIT(3)
98#define FSPI_MCR2_ABRCADDR BIT(2)
99#define FSPI_MCR2_ABRRADDR BIT(1)
100#define FSPI_MCR2_ABR_CMD BIT(0)
101
102#define FSPI_AHBCR 0x0c
103#define FSPI_AHBCR_RDADDROPT BIT(6)
104#define FSPI_AHBCR_PREF_EN BIT(5)
105#define FSPI_AHBCR_BUFF_EN BIT(4)
106#define FSPI_AHBCR_CACH_EN BIT(3)
107#define FSPI_AHBCR_CLRTXBUF BIT(2)
108#define FSPI_AHBCR_CLRRXBUF BIT(1)
109#define FSPI_AHBCR_PAR_EN BIT(0)
110
111#define FSPI_INTEN 0x10
112#define FSPI_INTEN_SCLKSBWR BIT(9)
113#define FSPI_INTEN_SCLKSBRD BIT(8)
114#define FSPI_INTEN_DATALRNFL BIT(7)
115#define FSPI_INTEN_IPTXWE BIT(6)
116#define FSPI_INTEN_IPRXWA BIT(5)
117#define FSPI_INTEN_AHBCMDERR BIT(4)
118#define FSPI_INTEN_IPCMDERR BIT(3)
119#define FSPI_INTEN_AHBCMDGE BIT(2)
120#define FSPI_INTEN_IPCMDGE BIT(1)
121#define FSPI_INTEN_IPCMDDONE BIT(0)
122
123#define FSPI_INTR 0x14
124#define FSPI_INTR_SCLKSBWR BIT(9)
125#define FSPI_INTR_SCLKSBRD BIT(8)
126#define FSPI_INTR_DATALRNFL BIT(7)
127#define FSPI_INTR_IPTXWE BIT(6)
128#define FSPI_INTR_IPRXWA BIT(5)
129#define FSPI_INTR_AHBCMDERR BIT(4)
130#define FSPI_INTR_IPCMDERR BIT(3)
131#define FSPI_INTR_AHBCMDGE BIT(2)
132#define FSPI_INTR_IPCMDGE BIT(1)
133#define FSPI_INTR_IPCMDDONE BIT(0)
134
135#define FSPI_LUTKEY 0x18
136#define FSPI_LUTKEY_VALUE 0x5AF05AF0
137
138#define FSPI_LCKCR 0x1C
139
140#define FSPI_LCKER_LOCK 0x1
141#define FSPI_LCKER_UNLOCK 0x2
142
143#define FSPI_BUFXCR_INVALID_MSTRID 0xE
144#define FSPI_AHBRX_BUF0CR0 0x20
145#define FSPI_AHBRX_BUF1CR0 0x24
146#define FSPI_AHBRX_BUF2CR0 0x28
147#define FSPI_AHBRX_BUF3CR0 0x2C
148#define FSPI_AHBRX_BUF4CR0 0x30
149#define FSPI_AHBRX_BUF5CR0 0x34
150#define FSPI_AHBRX_BUF6CR0 0x38
151#define FSPI_AHBRX_BUF7CR0 0x3C
152#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
153
154#define FSPI_AHBRX_BUF0CR1 0x40
155#define FSPI_AHBRX_BUF1CR1 0x44
156#define FSPI_AHBRX_BUF2CR1 0x48
157#define FSPI_AHBRX_BUF3CR1 0x4C
158#define FSPI_AHBRX_BUF4CR1 0x50
159#define FSPI_AHBRX_BUF5CR1 0x54
160#define FSPI_AHBRX_BUF6CR1 0x58
161#define FSPI_AHBRX_BUF7CR1 0x5C
162
163#define FSPI_FLSHA1CR0 0x60
164#define FSPI_FLSHA2CR0 0x64
165#define FSPI_FLSHB1CR0 0x68
166#define FSPI_FLSHB2CR0 0x6C
167#define FSPI_FLSHXCR0_SZ_KB 10
168#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
169
170#define FSPI_FLSHA1CR1 0x70
171#define FSPI_FLSHA2CR1 0x74
172#define FSPI_FLSHB1CR1 0x78
173#define FSPI_FLSHB2CR1 0x7C
174#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
175#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
176#define FSPI_FLSHXCR1_WA BIT(10)
177#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
178#define FSPI_FLSHXCR1_TCSS(x) (x)
179
180#define FSPI_FLSHA1CR2 0x80
181#define FSPI_FLSHA2CR2 0x84
182#define FSPI_FLSHB1CR2 0x88
183#define FSPI_FLSHB2CR2 0x8C
184#define FSPI_FLSHXCR2_CLRINSP BIT(24)
185#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
186#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
187#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
188#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
189#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
190
191#define FSPI_IPCR0 0xA0
192
193#define FSPI_IPCR1 0xA4
194#define FSPI_IPCR1_IPAREN BIT(31)
195#define FSPI_IPCR1_SEQNUM_SHIFT 24
196#define FSPI_IPCR1_SEQID_SHIFT 16
197#define FSPI_IPCR1_IDATSZ(x) (x)
198
199#define FSPI_IPCMD 0xB0
200#define FSPI_IPCMD_TRG BIT(0)
201
202#define FSPI_DLPR 0xB4
203
204#define FSPI_IPRXFCR 0xB8
205#define FSPI_IPRXFCR_CLR BIT(0)
206#define FSPI_IPRXFCR_DMA_EN BIT(1)
207#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
208
209#define FSPI_IPTXFCR 0xBC
210#define FSPI_IPTXFCR_CLR BIT(0)
211#define FSPI_IPTXFCR_DMA_EN BIT(1)
212#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
213
214#define FSPI_DLLACR 0xC0
215#define FSPI_DLLACR_OVRDEN BIT(8)
216#define FSPI_DLLACR_SLVDLY(x) ((x) << 3)
217#define FSPI_DLLACR_DLLRESET BIT(1)
218#define FSPI_DLLACR_DLLEN BIT(0)
219
220#define FSPI_DLLBCR 0xC4
221#define FSPI_DLLBCR_OVRDEN BIT(8)
222#define FSPI_DLLBCR_SLVDLY(x) ((x) << 3)
223#define FSPI_DLLBCR_DLLRESET BIT(1)
224#define FSPI_DLLBCR_DLLEN BIT(0)
225
226#define FSPI_STS0 0xE0
227#define FSPI_STS0_DLPHB(x) ((x) << 8)
228#define FSPI_STS0_DLPHA(x) ((x) << 4)
229#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
230#define FSPI_STS0_ARB_IDLE BIT(1)
231#define FSPI_STS0_SEQ_IDLE BIT(0)
232
233#define FSPI_STS1 0xE4
234#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
235#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
236#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
237#define FSPI_STS1_AHB_ERRID(x) (x)
238
239#define FSPI_STS2 0xE8
240#define FSPI_STS2_BREFLOCK BIT(17)
241#define FSPI_STS2_BSLVLOCK BIT(16)
242#define FSPI_STS2_AREFLOCK BIT(1)
243#define FSPI_STS2_ASLVLOCK BIT(0)
244#define FSPI_STS2_AB_LOCK (FSPI_STS2_BREFLOCK | \
245 FSPI_STS2_BSLVLOCK | \
246 FSPI_STS2_AREFLOCK | \
247 FSPI_STS2_ASLVLOCK)
248
249#define FSPI_AHBSPNST 0xEC
250#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
251#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
252#define FSPI_AHBSPNST_ACTIVE BIT(0)
253
254#define FSPI_IPRXFSTS 0xF0
255#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
256#define FSPI_IPRXFSTS_FILL(x) (x)
257
258#define FSPI_IPTXFSTS 0xF4
259#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
260#define FSPI_IPTXFSTS_FILL(x) (x)
261
262#define FSPI_RFDR 0x100
263#define FSPI_TFDR 0x180
264
265#define FSPI_LUT_BASE 0x200
266#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
267#define FSPI_LUT_REG(idx) \
268 (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
269
270/* register map end */
271
272/* Instruction set for the LUT register. */
273#define LUT_STOP 0x00
274#define LUT_CMD 0x01
275#define LUT_ADDR 0x02
276#define LUT_CADDR_SDR 0x03
277#define LUT_MODE 0x04
278#define LUT_MODE2 0x05
279#define LUT_MODE4 0x06
280#define LUT_MODE8 0x07
281#define LUT_NXP_WRITE 0x08
282#define LUT_NXP_READ 0x09
283#define LUT_LEARN_SDR 0x0A
284#define LUT_DATSZ_SDR 0x0B
285#define LUT_DUMMY 0x0C
286#define LUT_DUMMY_RWDS_SDR 0x0D
287#define LUT_JMP_ON_CS 0x1F
288#define LUT_CMD_DDR 0x21
289#define LUT_ADDR_DDR 0x22
290#define LUT_CADDR_DDR 0x23
291#define LUT_MODE_DDR 0x24
292#define LUT_MODE2_DDR 0x25
293#define LUT_MODE4_DDR 0x26
294#define LUT_MODE8_DDR 0x27
295#define LUT_WRITE_DDR 0x28
296#define LUT_READ_DDR 0x29
297#define LUT_LEARN_DDR 0x2A
298#define LUT_DATSZ_DDR 0x2B
299#define LUT_DUMMY_DDR 0x2C
300#define LUT_DUMMY_RWDS_DDR 0x2D
301
302/*
303 * Calculate number of required PAD bits for LUT register.
304 *
305 * The pad stands for the number of IO lines [0:7].
306 * For example, the octal read needs eight IO lines,
307 * so you should use LUT_PAD(8). This macro
308 * returns 3 i.e. use eight (2^3) IP lines for read.
309 */
310#define LUT_PAD(x) (fls(x) - 1)
311
312/*
313 * Macro for constructing the LUT entries with the following
314 * register layout:
315 *
316 * ---------------------------------------------------
317 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
318 * ---------------------------------------------------
319 */
320#define PAD_SHIFT 8
321#define INSTR_SHIFT 10
322#define OPRND_SHIFT 16
323
324/* Macros for constructing the LUT register. */
325#define LUT_DEF(idx, ins, pad, opr) \
326 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
327 (opr)) << (((idx) % 2) * OPRND_SHIFT))
328
329#define POLL_TOUT 5000
330#define NXP_FSPI_MAX_CHIPSELECT 4
331#define NXP_FSPI_MIN_IOMAP SZ_4M
332
333#define DCFG_RCWSR1 0x100
334#define SYS_PLL_RAT GENMASK(6, 2)
335
336/* Access flash memory using IP bus only */
337#define FSPI_QUIRK_USE_IP_ONLY BIT(0)
338
339struct nxp_fspi_devtype_data {
340 unsigned int rxfifo;
341 unsigned int txfifo;
342 unsigned int ahb_buf_size;
343 unsigned int quirks;
344 bool little_endian;
345};
346
347static struct nxp_fspi_devtype_data lx2160a_data = {
348 .rxfifo = SZ_512, /* (64 * 64 bits) */
349 .txfifo = SZ_1K, /* (128 * 64 bits) */
350 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
351 .quirks = 0,
352 .little_endian = true, /* little-endian */
353};
354
355static struct nxp_fspi_devtype_data imx8mm_data = {
356 .rxfifo = SZ_512, /* (64 * 64 bits) */
357 .txfifo = SZ_1K, /* (128 * 64 bits) */
358 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
359 .quirks = 0,
360 .little_endian = true, /* little-endian */
361};
362
363static struct nxp_fspi_devtype_data imx8qxp_data = {
364 .rxfifo = SZ_512, /* (64 * 64 bits) */
365 .txfifo = SZ_1K, /* (128 * 64 bits) */
366 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
367 .quirks = 0,
368 .little_endian = true, /* little-endian */
369};
370
371static struct nxp_fspi_devtype_data imx8dxl_data = {
372 .rxfifo = SZ_512, /* (64 * 64 bits) */
373 .txfifo = SZ_1K, /* (128 * 64 bits) */
374 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
375 .quirks = FSPI_QUIRK_USE_IP_ONLY,
376 .little_endian = true, /* little-endian */
377};
378
379struct nxp_fspi {
380 void __iomem *iobase;
381 void __iomem *ahb_addr;
382 u32 memmap_phy;
383 u32 memmap_phy_size;
384 u32 memmap_start;
385 u32 memmap_len;
386 struct clk *clk, *clk_en;
387 struct device *dev;
388 struct completion c;
389 struct nxp_fspi_devtype_data *devtype_data;
390 struct mutex lock;
391 struct pm_qos_request pm_qos_req;
392 int selected;
393};
394
395static inline int needs_ip_only(struct nxp_fspi *f)
396{
397 return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
398}
399
400/*
401 * R/W functions for big- or little-endian registers:
402 * The FSPI controller's endianness is independent of
403 * the CPU core's endianness. So far, although the CPU
404 * core is little-endian the FSPI controller can use
405 * big-endian or little-endian.
406 */
407static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
408{
409 if (f->devtype_data->little_endian)
410 iowrite32(val, addr);
411 else
412 iowrite32be(val, addr);
413}
414
415static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
416{
417 if (f->devtype_data->little_endian)
418 return ioread32(addr);
419 else
420 return ioread32be(addr);
421}
422
423static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
424{
425 struct nxp_fspi *f = dev_id;
426 u32 reg;
427
428 /* clear interrupt */
429 reg = fspi_readl(f, f->iobase + FSPI_INTR);
430 fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
431
432 if (reg & FSPI_INTR_IPCMDDONE)
433 complete(&f->c);
434
435 return IRQ_HANDLED;
436}
437
438static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
439{
440 switch (width) {
441 case 1:
442 case 2:
443 case 4:
444 case 8:
445 return 0;
446 }
447
448 return -ENOTSUPP;
449}
450
451static bool nxp_fspi_supports_op(struct spi_mem *mem,
452 const struct spi_mem_op *op)
453{
454 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
455 int ret;
456
457 ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
458
459 if (op->addr.nbytes)
460 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
461
462 if (op->dummy.nbytes)
463 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
464
465 if (op->data.nbytes)
466 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
467
468 if (ret)
469 return false;
470
471 /*
472 * The number of address bytes should be equal to or less than 4 bytes.
473 */
474 if (op->addr.nbytes > 4)
475 return false;
476
477 /*
478 * If requested address value is greater than controller assigned
479 * memory mapped space, return error as it didn't fit in the range
480 * of assigned address space.
481 */
482 if (op->addr.val >= f->memmap_phy_size)
483 return false;
484
485 /* Max 64 dummy clock cycles supported */
486 if (op->dummy.buswidth &&
487 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
488 return false;
489
490 /* Max data length, check controller limits and alignment */
491 if (op->data.dir == SPI_MEM_DATA_IN &&
492 (op->data.nbytes > f->devtype_data->ahb_buf_size ||
493 (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
494 !IS_ALIGNED(op->data.nbytes, 8))))
495 return false;
496
497 if (op->data.dir == SPI_MEM_DATA_OUT &&
498 op->data.nbytes > f->devtype_data->txfifo)
499 return false;
500
501 return spi_mem_default_supports_op(mem, op);
502}
503
504/* Instead of busy looping invoke readl_poll_timeout functionality. */
505static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
506 u32 mask, u32 delay_us,
507 u32 timeout_us, bool c)
508{
509 u32 reg;
510
511 if (!f->devtype_data->little_endian)
512 mask = (u32)cpu_to_be32(mask);
513
514 if (c)
515 return readl_poll_timeout(base, reg, (reg & mask),
516 delay_us, timeout_us);
517 else
518 return readl_poll_timeout(base, reg, !(reg & mask),
519 delay_us, timeout_us);
520}
521
522/*
523 * If the target device content being changed by Write/Erase, need to
524 * invalidate the AHB buffer. This can be achieved by doing the reset
525 * of controller after setting MCR0[SWRESET] bit.
526 */
527static inline void nxp_fspi_invalid(struct nxp_fspi *f)
528{
529 u32 reg;
530 int ret;
531
532 reg = fspi_readl(f, f->iobase + FSPI_MCR0);
533 fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
534
535 /* w1c register, wait unit clear */
536 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
537 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
538 WARN_ON(ret);
539}
540
541static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
542 const struct spi_mem_op *op)
543{
544 void __iomem *base = f->iobase;
545 u32 lutval[4] = {};
546 int lutidx = 1, i;
547
548 /* cmd */
549 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
550 op->cmd.opcode);
551
552 /* addr bytes */
553 if (op->addr.nbytes) {
554 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
555 LUT_PAD(op->addr.buswidth),
556 op->addr.nbytes * 8);
557 lutidx++;
558 }
559
560 /* dummy bytes, if needed */
561 if (op->dummy.nbytes) {
562 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
563 /*
564 * Due to FlexSPI controller limitation number of PAD for dummy
565 * buswidth needs to be programmed as equal to data buswidth.
566 */
567 LUT_PAD(op->data.buswidth),
568 op->dummy.nbytes * 8 /
569 op->dummy.buswidth);
570 lutidx++;
571 }
572
573 /* read/write data bytes */
574 if (op->data.nbytes) {
575 lutval[lutidx / 2] |= LUT_DEF(lutidx,
576 op->data.dir == SPI_MEM_DATA_IN ?
577 LUT_NXP_READ : LUT_NXP_WRITE,
578 LUT_PAD(op->data.buswidth),
579 0);
580 lutidx++;
581 }
582
583 /* stop condition. */
584 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
585
586 /* unlock LUT */
587 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
588 fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
589
590 /* fill LUT */
591 for (i = 0; i < ARRAY_SIZE(lutval); i++)
592 fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
593
594 dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
595 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
596
597 /* lock LUT */
598 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
599 fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
600}
601
602static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
603{
604 int ret;
605
606 if (is_acpi_node(dev_fwnode(f->dev)))
607 return 0;
608
609 ret = clk_prepare_enable(f->clk_en);
610 if (ret)
611 return ret;
612
613 ret = clk_prepare_enable(f->clk);
614 if (ret) {
615 clk_disable_unprepare(f->clk_en);
616 return ret;
617 }
618
619 return 0;
620}
621
622static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
623{
624 if (is_acpi_node(dev_fwnode(f->dev)))
625 return 0;
626
627 clk_disable_unprepare(f->clk);
628 clk_disable_unprepare(f->clk_en);
629
630 return 0;
631}
632
633static void nxp_fspi_dll_calibration(struct nxp_fspi *f)
634{
635 int ret;
636
637 /* Reset the DLL, set the DLLRESET to 1 and then set to 0 */
638 fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR);
639 fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR);
640 fspi_writel(f, 0, f->iobase + FSPI_DLLACR);
641 fspi_writel(f, 0, f->iobase + FSPI_DLLBCR);
642
643 /*
644 * Enable the DLL calibration mode.
645 * The delay target for slave delay line is:
646 * ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock.
647 * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which
648 * means half of clock cycle of reference clock.
649 */
650 fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF),
651 f->iobase + FSPI_DLLACR);
652 fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF),
653 f->iobase + FSPI_DLLBCR);
654
655 /* Wait to get REF/SLV lock */
656 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK,
657 0, POLL_TOUT, true);
658 if (ret)
659 dev_warn(f->dev, "DLL lock failed, please fix it!\n");
660}
661
662/*
663 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
664 * register and start base address of the target device.
665 *
666 * (Higher address)
667 * -------- <-- FLSHB2CR0
668 * | B2 |
669 * | |
670 * B2 start address --> -------- <-- FLSHB1CR0
671 * | B1 |
672 * | |
673 * B1 start address --> -------- <-- FLSHA2CR0
674 * | A2 |
675 * | |
676 * A2 start address --> -------- <-- FLSHA1CR0
677 * | A1 |
678 * | |
679 * A1 start address --> -------- (Lower address)
680 *
681 *
682 * Start base address defines the starting address range for given CS and
683 * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS.
684 *
685 * But, different targets are having different combinations of number of CS,
686 * some targets only have single CS or two CS covering controller's full
687 * memory mapped space area.
688 * Thus, implementation is being done as independent of the size and number
689 * of the connected target device.
690 * Assign controller memory mapped space size as the size to the connected
691 * target device.
692 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
693 * chip-select Flash configuration register.
694 *
695 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
696 * memory mapped size of the controller.
697 * Value for rest of the CS FLSHxxCR0 register would be zero.
698 *
699 */
700static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
701{
702 unsigned long rate = spi->max_speed_hz;
703 int ret;
704 uint64_t size_kb;
705
706 /*
707 * Return, if previously selected target device is same as current
708 * requested target device.
709 */
710 if (f->selected == spi_get_chipselect(spi, 0))
711 return;
712
713 /* Reset FLSHxxCR0 registers */
714 fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
715 fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
716 fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
717 fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
718
719 /* Assign controller memory mapped space as size, KBytes, of flash. */
720 size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
721
722 fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
723 4 * spi_get_chipselect(spi, 0));
724
725 dev_dbg(f->dev, "Target device [CS:%x] selected\n", spi_get_chipselect(spi, 0));
726
727 nxp_fspi_clk_disable_unprep(f);
728
729 ret = clk_set_rate(f->clk, rate);
730 if (ret)
731 return;
732
733 ret = nxp_fspi_clk_prep_enable(f);
734 if (ret)
735 return;
736
737 /*
738 * If clock rate > 100MHz, then switch from DLL override mode to
739 * DLL calibration mode.
740 */
741 if (rate > 100000000)
742 nxp_fspi_dll_calibration(f);
743
744 f->selected = spi_get_chipselect(spi, 0);
745}
746
747static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
748{
749 u32 start = op->addr.val;
750 u32 len = op->data.nbytes;
751
752 /* if necessary, ioremap before AHB read */
753 if ((!f->ahb_addr) || start < f->memmap_start ||
754 start + len > f->memmap_start + f->memmap_len) {
755 if (f->ahb_addr)
756 iounmap(f->ahb_addr);
757
758 f->memmap_start = start;
759 f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
760 len : NXP_FSPI_MIN_IOMAP;
761
762 f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start,
763 f->memmap_len);
764
765 if (!f->ahb_addr) {
766 dev_err(f->dev, "failed to alloc memory\n");
767 return -ENOMEM;
768 }
769 }
770
771 /* Read out the data directly from the AHB buffer. */
772 memcpy_fromio(op->data.buf.in,
773 f->ahb_addr + start - f->memmap_start, len);
774
775 return 0;
776}
777
778static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
779 const struct spi_mem_op *op)
780{
781 void __iomem *base = f->iobase;
782 int i, ret;
783 u8 *buf = (u8 *) op->data.buf.out;
784
785 /* clear the TX FIFO. */
786 fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
787
788 /*
789 * Default value of water mark level is 8 bytes, hence in single
790 * write request controller can write max 8 bytes of data.
791 */
792
793 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
794 /* Wait for TXFIFO empty */
795 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
796 FSPI_INTR_IPTXWE, 0,
797 POLL_TOUT, true);
798 WARN_ON(ret);
799
800 fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
801 fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
802 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
803 }
804
805 if (i < op->data.nbytes) {
806 u32 data = 0;
807 int j;
808 /* Wait for TXFIFO empty */
809 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
810 FSPI_INTR_IPTXWE, 0,
811 POLL_TOUT, true);
812 WARN_ON(ret);
813
814 for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
815 memcpy(&data, buf + i + j, 4);
816 fspi_writel(f, data, base + FSPI_TFDR + j);
817 }
818 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
819 }
820}
821
822static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
823 const struct spi_mem_op *op)
824{
825 void __iomem *base = f->iobase;
826 int i, ret;
827 int len = op->data.nbytes;
828 u8 *buf = (u8 *) op->data.buf.in;
829
830 /*
831 * Default value of water mark level is 8 bytes, hence in single
832 * read request controller can read max 8 bytes of data.
833 */
834 for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
835 /* Wait for RXFIFO available */
836 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
837 FSPI_INTR_IPRXWA, 0,
838 POLL_TOUT, true);
839 WARN_ON(ret);
840
841 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
842 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
843 /* move the FIFO pointer */
844 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
845 }
846
847 if (i < len) {
848 u32 tmp;
849 int size, j;
850
851 buf = op->data.buf.in + i;
852 /* Wait for RXFIFO available */
853 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
854 FSPI_INTR_IPRXWA, 0,
855 POLL_TOUT, true);
856 WARN_ON(ret);
857
858 len = op->data.nbytes - i;
859 for (j = 0; j < op->data.nbytes - i; j += 4) {
860 tmp = fspi_readl(f, base + FSPI_RFDR + j);
861 size = min(len, 4);
862 memcpy(buf + j, &tmp, size);
863 len -= size;
864 }
865 }
866
867 /* invalid the RXFIFO */
868 fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
869 /* move the FIFO pointer */
870 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
871}
872
873static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
874{
875 void __iomem *base = f->iobase;
876 int seqnum = 0;
877 int err = 0;
878 u32 reg;
879
880 reg = fspi_readl(f, base + FSPI_IPRXFCR);
881 /* invalid RXFIFO first */
882 reg &= ~FSPI_IPRXFCR_DMA_EN;
883 reg = reg | FSPI_IPRXFCR_CLR;
884 fspi_writel(f, reg, base + FSPI_IPRXFCR);
885
886 init_completion(&f->c);
887
888 fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
889 /*
890 * Always start the sequence at the same index since we update
891 * the LUT at each exec_op() call. And also specify the DATA
892 * length, since it's has not been specified in the LUT.
893 */
894 fspi_writel(f, op->data.nbytes |
895 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
896 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
897 base + FSPI_IPCR1);
898
899 /* Trigger the LUT now. */
900 fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
901
902 /* Wait for the interrupt. */
903 if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
904 err = -ETIMEDOUT;
905
906 /* Invoke IP data read, if request is of data read. */
907 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
908 nxp_fspi_read_rxfifo(f, op);
909
910 return err;
911}
912
913static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
914{
915 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
916 int err = 0;
917
918 mutex_lock(&f->lock);
919
920 /* Wait for controller being ready. */
921 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
922 FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
923 WARN_ON(err);
924
925 nxp_fspi_select_mem(f, mem->spi);
926
927 nxp_fspi_prepare_lut(f, op);
928 /*
929 * If we have large chunks of data, we read them through the AHB bus by
930 * accessing the mapped memory. In all other cases we use IP commands
931 * to access the flash. Read via AHB bus may be corrupted due to
932 * existence of an errata and therefore discard AHB read in such cases.
933 */
934 if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
935 op->data.dir == SPI_MEM_DATA_IN &&
936 !needs_ip_only(f)) {
937 err = nxp_fspi_read_ahb(f, op);
938 } else {
939 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
940 nxp_fspi_fill_txfifo(f, op);
941
942 err = nxp_fspi_do_op(f, op);
943 }
944
945 /* Invalidate the data in the AHB buffer. */
946 nxp_fspi_invalid(f);
947
948 mutex_unlock(&f->lock);
949
950 return err;
951}
952
953static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
954{
955 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
956
957 if (op->data.dir == SPI_MEM_DATA_OUT) {
958 if (op->data.nbytes > f->devtype_data->txfifo)
959 op->data.nbytes = f->devtype_data->txfifo;
960 } else {
961 if (op->data.nbytes > f->devtype_data->ahb_buf_size)
962 op->data.nbytes = f->devtype_data->ahb_buf_size;
963 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
964 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
965 }
966
967 /* Limit data bytes to RX FIFO in case of IP read only */
968 if (op->data.dir == SPI_MEM_DATA_IN &&
969 needs_ip_only(f) &&
970 op->data.nbytes > f->devtype_data->rxfifo)
971 op->data.nbytes = f->devtype_data->rxfifo;
972
973 return 0;
974}
975
976static void erratum_err050568(struct nxp_fspi *f)
977{
978 static const struct soc_device_attribute ls1028a_soc_attr[] = {
979 { .family = "QorIQ LS1028A" },
980 { /* sentinel */ }
981 };
982 struct regmap *map;
983 u32 val, sys_pll_ratio;
984 int ret;
985
986 /* Check for LS1028A family */
987 if (!soc_device_match(ls1028a_soc_attr)) {
988 dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
989 return;
990 }
991
992 map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
993 if (IS_ERR(map)) {
994 dev_err(f->dev, "No syscon regmap\n");
995 goto err;
996 }
997
998 ret = regmap_read(map, DCFG_RCWSR1, &val);
999 if (ret < 0)
1000 goto err;
1001
1002 sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
1003 dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
1004
1005 /* Use IP bus only if platform clock is 300MHz */
1006 if (sys_pll_ratio == 3)
1007 f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
1008
1009 return;
1010
1011err:
1012 dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
1013}
1014
1015static int nxp_fspi_default_setup(struct nxp_fspi *f)
1016{
1017 void __iomem *base = f->iobase;
1018 int ret, i;
1019 u32 reg;
1020
1021 /* disable and unprepare clock to avoid glitch pass to controller */
1022 nxp_fspi_clk_disable_unprep(f);
1023
1024 /* the default frequency, we will change it later if necessary. */
1025 ret = clk_set_rate(f->clk, 20000000);
1026 if (ret)
1027 return ret;
1028
1029 ret = nxp_fspi_clk_prep_enable(f);
1030 if (ret)
1031 return ret;
1032
1033 /*
1034 * ERR050568: Flash access by FlexSPI AHB command may not work with
1035 * platform frequency equal to 300 MHz on LS1028A.
1036 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
1037 * Layerscape LS1028A platform.
1038 */
1039 if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
1040 erratum_err050568(f);
1041
1042 /* Reset the module */
1043 /* w1c register, wait unit clear */
1044 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
1045 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
1046 WARN_ON(ret);
1047
1048 /* Disable the module */
1049 fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
1050
1051 /*
1052 * Config the DLL register to default value, enable the target clock delay
1053 * line delay cell override mode, and use 1 fixed delay cell in DLL delay
1054 * chain, this is the suggested setting when clock rate < 100MHz.
1055 */
1056 fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
1057 fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
1058
1059 /* enable module */
1060 fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1061 FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1062 base + FSPI_MCR0);
1063
1064 /*
1065 * Disable same device enable bit and configure all target devices
1066 * independently.
1067 */
1068 reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1069 reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1070 fspi_writel(f, reg, base + FSPI_MCR2);
1071
1072 /* AHB configuration for access buffer 0~7. */
1073 for (i = 0; i < 7; i++)
1074 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1075
1076 /*
1077 * Set ADATSZ with the maximum AHB buffer size to improve the read
1078 * performance.
1079 */
1080 fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1081 FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1082
1083 /* prefetch and no start address alignment limitation */
1084 fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1085 base + FSPI_AHBCR);
1086
1087 /* Reset the FLSHxCR1 registers. */
1088 reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
1089 fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
1090 fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
1091 fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
1092 fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
1093
1094 /* AHB Read - Set lut sequence ID for all CS. */
1095 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
1096 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
1097 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
1098 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
1099
1100 f->selected = -1;
1101
1102 /* enable the interrupt */
1103 fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1104
1105 return 0;
1106}
1107
1108static const char *nxp_fspi_get_name(struct spi_mem *mem)
1109{
1110 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
1111 struct device *dev = &mem->spi->dev;
1112 const char *name;
1113
1114 // Set custom name derived from the platform_device of the controller.
1115 if (of_get_available_child_count(f->dev->of_node) == 1)
1116 return dev_name(f->dev);
1117
1118 name = devm_kasprintf(dev, GFP_KERNEL,
1119 "%s-%d", dev_name(f->dev),
1120 spi_get_chipselect(mem->spi, 0));
1121
1122 if (!name) {
1123 dev_err(dev, "failed to get memory for custom flash name\n");
1124 return ERR_PTR(-ENOMEM);
1125 }
1126
1127 return name;
1128}
1129
1130static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1131 .adjust_op_size = nxp_fspi_adjust_op_size,
1132 .supports_op = nxp_fspi_supports_op,
1133 .exec_op = nxp_fspi_exec_op,
1134 .get_name = nxp_fspi_get_name,
1135};
1136
1137static int nxp_fspi_probe(struct platform_device *pdev)
1138{
1139 struct spi_controller *ctlr;
1140 struct device *dev = &pdev->dev;
1141 struct device_node *np = dev->of_node;
1142 struct resource *res;
1143 struct nxp_fspi *f;
1144 int ret;
1145 u32 reg;
1146
1147 ctlr = spi_alloc_host(&pdev->dev, sizeof(*f));
1148 if (!ctlr)
1149 return -ENOMEM;
1150
1151 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1152 SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1153
1154 f = spi_controller_get_devdata(ctlr);
1155 f->dev = dev;
1156 f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
1157 if (!f->devtype_data) {
1158 ret = -ENODEV;
1159 goto err_put_ctrl;
1160 }
1161
1162 platform_set_drvdata(pdev, f);
1163
1164 /* find the resources - configuration register address space */
1165 if (is_acpi_node(dev_fwnode(f->dev)))
1166 f->iobase = devm_platform_ioremap_resource(pdev, 0);
1167 else
1168 f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base");
1169
1170 if (IS_ERR(f->iobase)) {
1171 ret = PTR_ERR(f->iobase);
1172 goto err_put_ctrl;
1173 }
1174
1175 /* find the resources - controller memory mapped space */
1176 if (is_acpi_node(dev_fwnode(f->dev)))
1177 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1178 else
1179 res = platform_get_resource_byname(pdev,
1180 IORESOURCE_MEM, "fspi_mmap");
1181
1182 if (!res) {
1183 ret = -ENODEV;
1184 goto err_put_ctrl;
1185 }
1186
1187 /* assign memory mapped starting address and mapped size. */
1188 f->memmap_phy = res->start;
1189 f->memmap_phy_size = resource_size(res);
1190
1191 /* find the clocks */
1192 if (dev_of_node(&pdev->dev)) {
1193 f->clk_en = devm_clk_get(dev, "fspi_en");
1194 if (IS_ERR(f->clk_en)) {
1195 ret = PTR_ERR(f->clk_en);
1196 goto err_put_ctrl;
1197 }
1198
1199 f->clk = devm_clk_get(dev, "fspi");
1200 if (IS_ERR(f->clk)) {
1201 ret = PTR_ERR(f->clk);
1202 goto err_put_ctrl;
1203 }
1204
1205 ret = nxp_fspi_clk_prep_enable(f);
1206 if (ret) {
1207 dev_err(dev, "can not enable the clock\n");
1208 goto err_put_ctrl;
1209 }
1210 }
1211
1212 /* Clear potential interrupts */
1213 reg = fspi_readl(f, f->iobase + FSPI_INTR);
1214 if (reg)
1215 fspi_writel(f, reg, f->iobase + FSPI_INTR);
1216
1217 /* find the irq */
1218 ret = platform_get_irq(pdev, 0);
1219 if (ret < 0)
1220 goto err_disable_clk;
1221
1222 ret = devm_request_irq(dev, ret,
1223 nxp_fspi_irq_handler, 0, pdev->name, f);
1224 if (ret) {
1225 dev_err(dev, "failed to request irq: %d\n", ret);
1226 goto err_disable_clk;
1227 }
1228
1229 mutex_init(&f->lock);
1230
1231 ctlr->bus_num = -1;
1232 ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1233 ctlr->mem_ops = &nxp_fspi_mem_ops;
1234
1235 nxp_fspi_default_setup(f);
1236
1237 ctlr->dev.of_node = np;
1238
1239 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1240 if (ret)
1241 goto err_destroy_mutex;
1242
1243 return 0;
1244
1245err_destroy_mutex:
1246 mutex_destroy(&f->lock);
1247
1248err_disable_clk:
1249 nxp_fspi_clk_disable_unprep(f);
1250
1251err_put_ctrl:
1252 spi_controller_put(ctlr);
1253
1254 dev_err(dev, "NXP FSPI probe failed\n");
1255 return ret;
1256}
1257
1258static void nxp_fspi_remove(struct platform_device *pdev)
1259{
1260 struct nxp_fspi *f = platform_get_drvdata(pdev);
1261
1262 /* disable the hardware */
1263 fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1264
1265 nxp_fspi_clk_disable_unprep(f);
1266
1267 mutex_destroy(&f->lock);
1268
1269 if (f->ahb_addr)
1270 iounmap(f->ahb_addr);
1271}
1272
1273static int nxp_fspi_suspend(struct device *dev)
1274{
1275 return 0;
1276}
1277
1278static int nxp_fspi_resume(struct device *dev)
1279{
1280 struct nxp_fspi *f = dev_get_drvdata(dev);
1281
1282 nxp_fspi_default_setup(f);
1283
1284 return 0;
1285}
1286
1287static const struct of_device_id nxp_fspi_dt_ids[] = {
1288 { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1289 { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1290 { .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
1291 { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1292 { .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
1293 { /* sentinel */ }
1294};
1295MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1296
1297#ifdef CONFIG_ACPI
1298static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1299 { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1300 {}
1301};
1302MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1303#endif
1304
1305static const struct dev_pm_ops nxp_fspi_pm_ops = {
1306 .suspend = nxp_fspi_suspend,
1307 .resume = nxp_fspi_resume,
1308};
1309
1310static struct platform_driver nxp_fspi_driver = {
1311 .driver = {
1312 .name = "nxp-fspi",
1313 .of_match_table = nxp_fspi_dt_ids,
1314 .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1315 .pm = &nxp_fspi_pm_ops,
1316 },
1317 .probe = nxp_fspi_probe,
1318 .remove_new = nxp_fspi_remove,
1319};
1320module_platform_driver(nxp_fspi_driver);
1321
1322MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1323MODULE_AUTHOR("NXP Semiconductor");
1324MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1325MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1326MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1327MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0+
2
3/*
4 * NXP FlexSPI(FSPI) controller driver.
5 *
6 * Copyright 2019-2020 NXP
7 * Copyright 2020 Puresoftware Ltd.
8 *
9 * FlexSPI is a flexsible SPI host controller which supports two SPI
10 * channels and up to 4 external devices. Each channel supports
11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
12 * data lines).
13 *
14 * FlexSPI controller is driven by the LUT(Look-up Table) registers
15 * LUT registers are a look-up-table for sequences of instructions.
16 * A valid sequence consists of four LUT registers.
17 * Maximum 32 LUT sequences can be programmed simultaneously.
18 *
19 * LUTs are being created at run-time based on the commands passed
20 * from the spi-mem framework, thus using single LUT index.
21 *
22 * Software triggered Flash read/write access by IP Bus.
23 *
24 * Memory mapped read access by AHB Bus.
25 *
26 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
27 *
28 * Author:
29 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
30 * Boris Brezillon <bbrezillon@kernel.org>
31 * Frieder Schrempf <frieder.schrempf@kontron.de>
32 */
33
34#include <linux/acpi.h>
35#include <linux/bitops.h>
36#include <linux/bitfield.h>
37#include <linux/clk.h>
38#include <linux/completion.h>
39#include <linux/delay.h>
40#include <linux/err.h>
41#include <linux/errno.h>
42#include <linux/interrupt.h>
43#include <linux/io.h>
44#include <linux/iopoll.h>
45#include <linux/jiffies.h>
46#include <linux/kernel.h>
47#include <linux/module.h>
48#include <linux/mutex.h>
49#include <linux/of.h>
50#include <linux/platform_device.h>
51#include <linux/pm_qos.h>
52#include <linux/regmap.h>
53#include <linux/sizes.h>
54#include <linux/sys_soc.h>
55
56#include <linux/mfd/syscon.h>
57#include <linux/spi/spi.h>
58#include <linux/spi/spi-mem.h>
59
60/* Registers used by the driver */
61#define FSPI_MCR0 0x00
62#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
63#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
64#define FSPI_MCR0_LEARN_EN BIT(15)
65#define FSPI_MCR0_SCRFRUN_EN BIT(14)
66#define FSPI_MCR0_OCTCOMB_EN BIT(13)
67#define FSPI_MCR0_DOZE_EN BIT(12)
68#define FSPI_MCR0_HSEN BIT(11)
69#define FSPI_MCR0_SERCLKDIV BIT(8)
70#define FSPI_MCR0_ATDF_EN BIT(7)
71#define FSPI_MCR0_ARDF_EN BIT(6)
72#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
73#define FSPI_MCR0_END_CFG(x) ((x) << 2)
74#define FSPI_MCR0_MDIS BIT(1)
75#define FSPI_MCR0_SWRST BIT(0)
76
77#define FSPI_MCR1 0x04
78#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
79#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
80
81#define FSPI_MCR2 0x08
82#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
83#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
84#define FSPI_MCR2_CLRLRPHS BIT(14)
85#define FSPI_MCR2_ABRDATSZ BIT(8)
86#define FSPI_MCR2_ABRLEARN BIT(7)
87#define FSPI_MCR2_ABR_READ BIT(6)
88#define FSPI_MCR2_ABRWRITE BIT(5)
89#define FSPI_MCR2_ABRDUMMY BIT(4)
90#define FSPI_MCR2_ABR_MODE BIT(3)
91#define FSPI_MCR2_ABRCADDR BIT(2)
92#define FSPI_MCR2_ABRRADDR BIT(1)
93#define FSPI_MCR2_ABR_CMD BIT(0)
94
95#define FSPI_AHBCR 0x0c
96#define FSPI_AHBCR_RDADDROPT BIT(6)
97#define FSPI_AHBCR_PREF_EN BIT(5)
98#define FSPI_AHBCR_BUFF_EN BIT(4)
99#define FSPI_AHBCR_CACH_EN BIT(3)
100#define FSPI_AHBCR_CLRTXBUF BIT(2)
101#define FSPI_AHBCR_CLRRXBUF BIT(1)
102#define FSPI_AHBCR_PAR_EN BIT(0)
103
104#define FSPI_INTEN 0x10
105#define FSPI_INTEN_SCLKSBWR BIT(9)
106#define FSPI_INTEN_SCLKSBRD BIT(8)
107#define FSPI_INTEN_DATALRNFL BIT(7)
108#define FSPI_INTEN_IPTXWE BIT(6)
109#define FSPI_INTEN_IPRXWA BIT(5)
110#define FSPI_INTEN_AHBCMDERR BIT(4)
111#define FSPI_INTEN_IPCMDERR BIT(3)
112#define FSPI_INTEN_AHBCMDGE BIT(2)
113#define FSPI_INTEN_IPCMDGE BIT(1)
114#define FSPI_INTEN_IPCMDDONE BIT(0)
115
116#define FSPI_INTR 0x14
117#define FSPI_INTR_SCLKSBWR BIT(9)
118#define FSPI_INTR_SCLKSBRD BIT(8)
119#define FSPI_INTR_DATALRNFL BIT(7)
120#define FSPI_INTR_IPTXWE BIT(6)
121#define FSPI_INTR_IPRXWA BIT(5)
122#define FSPI_INTR_AHBCMDERR BIT(4)
123#define FSPI_INTR_IPCMDERR BIT(3)
124#define FSPI_INTR_AHBCMDGE BIT(2)
125#define FSPI_INTR_IPCMDGE BIT(1)
126#define FSPI_INTR_IPCMDDONE BIT(0)
127
128#define FSPI_LUTKEY 0x18
129#define FSPI_LUTKEY_VALUE 0x5AF05AF0
130
131#define FSPI_LCKCR 0x1C
132
133#define FSPI_LCKER_LOCK 0x1
134#define FSPI_LCKER_UNLOCK 0x2
135
136#define FSPI_BUFXCR_INVALID_MSTRID 0xE
137#define FSPI_AHBRX_BUF0CR0 0x20
138#define FSPI_AHBRX_BUF1CR0 0x24
139#define FSPI_AHBRX_BUF2CR0 0x28
140#define FSPI_AHBRX_BUF3CR0 0x2C
141#define FSPI_AHBRX_BUF4CR0 0x30
142#define FSPI_AHBRX_BUF5CR0 0x34
143#define FSPI_AHBRX_BUF6CR0 0x38
144#define FSPI_AHBRX_BUF7CR0 0x3C
145#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
146
147#define FSPI_AHBRX_BUF0CR1 0x40
148#define FSPI_AHBRX_BUF1CR1 0x44
149#define FSPI_AHBRX_BUF2CR1 0x48
150#define FSPI_AHBRX_BUF3CR1 0x4C
151#define FSPI_AHBRX_BUF4CR1 0x50
152#define FSPI_AHBRX_BUF5CR1 0x54
153#define FSPI_AHBRX_BUF6CR1 0x58
154#define FSPI_AHBRX_BUF7CR1 0x5C
155
156#define FSPI_FLSHA1CR0 0x60
157#define FSPI_FLSHA2CR0 0x64
158#define FSPI_FLSHB1CR0 0x68
159#define FSPI_FLSHB2CR0 0x6C
160#define FSPI_FLSHXCR0_SZ_KB 10
161#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
162
163#define FSPI_FLSHA1CR1 0x70
164#define FSPI_FLSHA2CR1 0x74
165#define FSPI_FLSHB1CR1 0x78
166#define FSPI_FLSHB2CR1 0x7C
167#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
168#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
169#define FSPI_FLSHXCR1_WA BIT(10)
170#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
171#define FSPI_FLSHXCR1_TCSS(x) (x)
172
173#define FSPI_FLSHA1CR2 0x80
174#define FSPI_FLSHA2CR2 0x84
175#define FSPI_FLSHB1CR2 0x88
176#define FSPI_FLSHB2CR2 0x8C
177#define FSPI_FLSHXCR2_CLRINSP BIT(24)
178#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
179#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
180#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
181#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
182#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
183
184#define FSPI_IPCR0 0xA0
185
186#define FSPI_IPCR1 0xA4
187#define FSPI_IPCR1_IPAREN BIT(31)
188#define FSPI_IPCR1_SEQNUM_SHIFT 24
189#define FSPI_IPCR1_SEQID_SHIFT 16
190#define FSPI_IPCR1_IDATSZ(x) (x)
191
192#define FSPI_IPCMD 0xB0
193#define FSPI_IPCMD_TRG BIT(0)
194
195#define FSPI_DLPR 0xB4
196
197#define FSPI_IPRXFCR 0xB8
198#define FSPI_IPRXFCR_CLR BIT(0)
199#define FSPI_IPRXFCR_DMA_EN BIT(1)
200#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
201
202#define FSPI_IPTXFCR 0xBC
203#define FSPI_IPTXFCR_CLR BIT(0)
204#define FSPI_IPTXFCR_DMA_EN BIT(1)
205#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
206
207#define FSPI_DLLACR 0xC0
208#define FSPI_DLLACR_OVRDEN BIT(8)
209#define FSPI_DLLACR_SLVDLY(x) ((x) << 3)
210#define FSPI_DLLACR_DLLRESET BIT(1)
211#define FSPI_DLLACR_DLLEN BIT(0)
212
213#define FSPI_DLLBCR 0xC4
214#define FSPI_DLLBCR_OVRDEN BIT(8)
215#define FSPI_DLLBCR_SLVDLY(x) ((x) << 3)
216#define FSPI_DLLBCR_DLLRESET BIT(1)
217#define FSPI_DLLBCR_DLLEN BIT(0)
218
219#define FSPI_STS0 0xE0
220#define FSPI_STS0_DLPHB(x) ((x) << 8)
221#define FSPI_STS0_DLPHA(x) ((x) << 4)
222#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
223#define FSPI_STS0_ARB_IDLE BIT(1)
224#define FSPI_STS0_SEQ_IDLE BIT(0)
225
226#define FSPI_STS1 0xE4
227#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
228#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
229#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
230#define FSPI_STS1_AHB_ERRID(x) (x)
231
232#define FSPI_STS2 0xE8
233#define FSPI_STS2_BREFLOCK BIT(17)
234#define FSPI_STS2_BSLVLOCK BIT(16)
235#define FSPI_STS2_AREFLOCK BIT(1)
236#define FSPI_STS2_ASLVLOCK BIT(0)
237#define FSPI_STS2_AB_LOCK (FSPI_STS2_BREFLOCK | \
238 FSPI_STS2_BSLVLOCK | \
239 FSPI_STS2_AREFLOCK | \
240 FSPI_STS2_ASLVLOCK)
241
242#define FSPI_AHBSPNST 0xEC
243#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
244#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
245#define FSPI_AHBSPNST_ACTIVE BIT(0)
246
247#define FSPI_IPRXFSTS 0xF0
248#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
249#define FSPI_IPRXFSTS_FILL(x) (x)
250
251#define FSPI_IPTXFSTS 0xF4
252#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
253#define FSPI_IPTXFSTS_FILL(x) (x)
254
255#define FSPI_RFDR 0x100
256#define FSPI_TFDR 0x180
257
258#define FSPI_LUT_BASE 0x200
259
260/* register map end */
261
262/* Instruction set for the LUT register. */
263#define LUT_STOP 0x00
264#define LUT_CMD 0x01
265#define LUT_ADDR 0x02
266#define LUT_CADDR_SDR 0x03
267#define LUT_MODE 0x04
268#define LUT_MODE2 0x05
269#define LUT_MODE4 0x06
270#define LUT_MODE8 0x07
271#define LUT_NXP_WRITE 0x08
272#define LUT_NXP_READ 0x09
273#define LUT_LEARN_SDR 0x0A
274#define LUT_DATSZ_SDR 0x0B
275#define LUT_DUMMY 0x0C
276#define LUT_DUMMY_RWDS_SDR 0x0D
277#define LUT_JMP_ON_CS 0x1F
278#define LUT_CMD_DDR 0x21
279#define LUT_ADDR_DDR 0x22
280#define LUT_CADDR_DDR 0x23
281#define LUT_MODE_DDR 0x24
282#define LUT_MODE2_DDR 0x25
283#define LUT_MODE4_DDR 0x26
284#define LUT_MODE8_DDR 0x27
285#define LUT_WRITE_DDR 0x28
286#define LUT_READ_DDR 0x29
287#define LUT_LEARN_DDR 0x2A
288#define LUT_DATSZ_DDR 0x2B
289#define LUT_DUMMY_DDR 0x2C
290#define LUT_DUMMY_RWDS_DDR 0x2D
291
292/*
293 * Calculate number of required PAD bits for LUT register.
294 *
295 * The pad stands for the number of IO lines [0:7].
296 * For example, the octal read needs eight IO lines,
297 * so you should use LUT_PAD(8). This macro
298 * returns 3 i.e. use eight (2^3) IP lines for read.
299 */
300#define LUT_PAD(x) (fls(x) - 1)
301
302/*
303 * Macro for constructing the LUT entries with the following
304 * register layout:
305 *
306 * ---------------------------------------------------
307 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
308 * ---------------------------------------------------
309 */
310#define PAD_SHIFT 8
311#define INSTR_SHIFT 10
312#define OPRND_SHIFT 16
313
314/* Macros for constructing the LUT register. */
315#define LUT_DEF(idx, ins, pad, opr) \
316 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
317 (opr)) << (((idx) % 2) * OPRND_SHIFT))
318
319#define POLL_TOUT 5000
320#define NXP_FSPI_MAX_CHIPSELECT 4
321#define NXP_FSPI_MIN_IOMAP SZ_4M
322
323#define DCFG_RCWSR1 0x100
324#define SYS_PLL_RAT GENMASK(6, 2)
325
326/* Access flash memory using IP bus only */
327#define FSPI_QUIRK_USE_IP_ONLY BIT(0)
328
329struct nxp_fspi_devtype_data {
330 unsigned int rxfifo;
331 unsigned int txfifo;
332 unsigned int ahb_buf_size;
333 unsigned int quirks;
334 unsigned int lut_num;
335 bool little_endian;
336};
337
338static struct nxp_fspi_devtype_data lx2160a_data = {
339 .rxfifo = SZ_512, /* (64 * 64 bits) */
340 .txfifo = SZ_1K, /* (128 * 64 bits) */
341 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
342 .quirks = 0,
343 .lut_num = 32,
344 .little_endian = true, /* little-endian */
345};
346
347static struct nxp_fspi_devtype_data imx8mm_data = {
348 .rxfifo = SZ_512, /* (64 * 64 bits) */
349 .txfifo = SZ_1K, /* (128 * 64 bits) */
350 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
351 .quirks = 0,
352 .lut_num = 32,
353 .little_endian = true, /* little-endian */
354};
355
356static struct nxp_fspi_devtype_data imx8qxp_data = {
357 .rxfifo = SZ_512, /* (64 * 64 bits) */
358 .txfifo = SZ_1K, /* (128 * 64 bits) */
359 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
360 .quirks = 0,
361 .lut_num = 32,
362 .little_endian = true, /* little-endian */
363};
364
365static struct nxp_fspi_devtype_data imx8dxl_data = {
366 .rxfifo = SZ_512, /* (64 * 64 bits) */
367 .txfifo = SZ_1K, /* (128 * 64 bits) */
368 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
369 .quirks = FSPI_QUIRK_USE_IP_ONLY,
370 .lut_num = 32,
371 .little_endian = true, /* little-endian */
372};
373
374static struct nxp_fspi_devtype_data imx8ulp_data = {
375 .rxfifo = SZ_512, /* (64 * 64 bits) */
376 .txfifo = SZ_1K, /* (128 * 64 bits) */
377 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
378 .quirks = 0,
379 .lut_num = 16,
380 .little_endian = true, /* little-endian */
381};
382
383struct nxp_fspi {
384 void __iomem *iobase;
385 void __iomem *ahb_addr;
386 u32 memmap_phy;
387 u32 memmap_phy_size;
388 u32 memmap_start;
389 u32 memmap_len;
390 struct clk *clk, *clk_en;
391 struct device *dev;
392 struct completion c;
393 struct nxp_fspi_devtype_data *devtype_data;
394 struct mutex lock;
395 struct pm_qos_request pm_qos_req;
396 int selected;
397};
398
399static inline int needs_ip_only(struct nxp_fspi *f)
400{
401 return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
402}
403
404/*
405 * R/W functions for big- or little-endian registers:
406 * The FSPI controller's endianness is independent of
407 * the CPU core's endianness. So far, although the CPU
408 * core is little-endian the FSPI controller can use
409 * big-endian or little-endian.
410 */
411static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
412{
413 if (f->devtype_data->little_endian)
414 iowrite32(val, addr);
415 else
416 iowrite32be(val, addr);
417}
418
419static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
420{
421 if (f->devtype_data->little_endian)
422 return ioread32(addr);
423 else
424 return ioread32be(addr);
425}
426
427static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
428{
429 struct nxp_fspi *f = dev_id;
430 u32 reg;
431
432 /* clear interrupt */
433 reg = fspi_readl(f, f->iobase + FSPI_INTR);
434 fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
435
436 if (reg & FSPI_INTR_IPCMDDONE)
437 complete(&f->c);
438
439 return IRQ_HANDLED;
440}
441
442static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
443{
444 switch (width) {
445 case 1:
446 case 2:
447 case 4:
448 case 8:
449 return 0;
450 }
451
452 return -ENOTSUPP;
453}
454
455static bool nxp_fspi_supports_op(struct spi_mem *mem,
456 const struct spi_mem_op *op)
457{
458 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
459 int ret;
460
461 ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
462
463 if (op->addr.nbytes)
464 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
465
466 if (op->dummy.nbytes)
467 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
468
469 if (op->data.nbytes)
470 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
471
472 if (ret)
473 return false;
474
475 /*
476 * The number of address bytes should be equal to or less than 4 bytes.
477 */
478 if (op->addr.nbytes > 4)
479 return false;
480
481 /*
482 * If requested address value is greater than controller assigned
483 * memory mapped space, return error as it didn't fit in the range
484 * of assigned address space.
485 */
486 if (op->addr.val >= f->memmap_phy_size)
487 return false;
488
489 /* Max 64 dummy clock cycles supported */
490 if (op->dummy.buswidth &&
491 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
492 return false;
493
494 /* Max data length, check controller limits and alignment */
495 if (op->data.dir == SPI_MEM_DATA_IN &&
496 (op->data.nbytes > f->devtype_data->ahb_buf_size ||
497 (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
498 !IS_ALIGNED(op->data.nbytes, 8))))
499 return false;
500
501 if (op->data.dir == SPI_MEM_DATA_OUT &&
502 op->data.nbytes > f->devtype_data->txfifo)
503 return false;
504
505 return spi_mem_default_supports_op(mem, op);
506}
507
508/* Instead of busy looping invoke readl_poll_timeout functionality. */
509static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
510 u32 mask, u32 delay_us,
511 u32 timeout_us, bool c)
512{
513 u32 reg;
514
515 if (!f->devtype_data->little_endian)
516 mask = (u32)cpu_to_be32(mask);
517
518 if (c)
519 return readl_poll_timeout(base, reg, (reg & mask),
520 delay_us, timeout_us);
521 else
522 return readl_poll_timeout(base, reg, !(reg & mask),
523 delay_us, timeout_us);
524}
525
526/*
527 * If the target device content being changed by Write/Erase, need to
528 * invalidate the AHB buffer. This can be achieved by doing the reset
529 * of controller after setting MCR0[SWRESET] bit.
530 */
531static inline void nxp_fspi_invalid(struct nxp_fspi *f)
532{
533 u32 reg;
534 int ret;
535
536 reg = fspi_readl(f, f->iobase + FSPI_MCR0);
537 fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
538
539 /* w1c register, wait unit clear */
540 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
541 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
542 WARN_ON(ret);
543}
544
545static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
546 const struct spi_mem_op *op)
547{
548 void __iomem *base = f->iobase;
549 u32 lutval[4] = {};
550 int lutidx = 1, i;
551 u32 lut_offset = (f->devtype_data->lut_num - 1) * 4 * 4;
552 u32 target_lut_reg;
553
554 /* cmd */
555 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
556 op->cmd.opcode);
557
558 /* addr bytes */
559 if (op->addr.nbytes) {
560 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
561 LUT_PAD(op->addr.buswidth),
562 op->addr.nbytes * 8);
563 lutidx++;
564 }
565
566 /* dummy bytes, if needed */
567 if (op->dummy.nbytes) {
568 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
569 /*
570 * Due to FlexSPI controller limitation number of PAD for dummy
571 * buswidth needs to be programmed as equal to data buswidth.
572 */
573 LUT_PAD(op->data.buswidth),
574 op->dummy.nbytes * 8 /
575 op->dummy.buswidth);
576 lutidx++;
577 }
578
579 /* read/write data bytes */
580 if (op->data.nbytes) {
581 lutval[lutidx / 2] |= LUT_DEF(lutidx,
582 op->data.dir == SPI_MEM_DATA_IN ?
583 LUT_NXP_READ : LUT_NXP_WRITE,
584 LUT_PAD(op->data.buswidth),
585 0);
586 lutidx++;
587 }
588
589 /* stop condition. */
590 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
591
592 /* unlock LUT */
593 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
594 fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
595
596 /* fill LUT */
597 for (i = 0; i < ARRAY_SIZE(lutval); i++) {
598 target_lut_reg = FSPI_LUT_BASE + lut_offset + i * 4;
599 fspi_writel(f, lutval[i], base + target_lut_reg);
600 }
601
602 dev_dbg(f->dev, "CMD[%02x] lutval[0:%08x 1:%08x 2:%08x 3:%08x], size: 0x%08x\n",
603 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
604
605 /* lock LUT */
606 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
607 fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
608}
609
610static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
611{
612 int ret;
613
614 if (is_acpi_node(dev_fwnode(f->dev)))
615 return 0;
616
617 ret = clk_prepare_enable(f->clk_en);
618 if (ret)
619 return ret;
620
621 ret = clk_prepare_enable(f->clk);
622 if (ret) {
623 clk_disable_unprepare(f->clk_en);
624 return ret;
625 }
626
627 return 0;
628}
629
630static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
631{
632 if (is_acpi_node(dev_fwnode(f->dev)))
633 return 0;
634
635 clk_disable_unprepare(f->clk);
636 clk_disable_unprepare(f->clk_en);
637
638 return 0;
639}
640
641static void nxp_fspi_dll_calibration(struct nxp_fspi *f)
642{
643 int ret;
644
645 /* Reset the DLL, set the DLLRESET to 1 and then set to 0 */
646 fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR);
647 fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR);
648 fspi_writel(f, 0, f->iobase + FSPI_DLLACR);
649 fspi_writel(f, 0, f->iobase + FSPI_DLLBCR);
650
651 /*
652 * Enable the DLL calibration mode.
653 * The delay target for slave delay line is:
654 * ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock.
655 * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which
656 * means half of clock cycle of reference clock.
657 */
658 fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF),
659 f->iobase + FSPI_DLLACR);
660 fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF),
661 f->iobase + FSPI_DLLBCR);
662
663 /* Wait to get REF/SLV lock */
664 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK,
665 0, POLL_TOUT, true);
666 if (ret)
667 dev_warn(f->dev, "DLL lock failed, please fix it!\n");
668}
669
670/*
671 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
672 * register and start base address of the target device.
673 *
674 * (Higher address)
675 * -------- <-- FLSHB2CR0
676 * | B2 |
677 * | |
678 * B2 start address --> -------- <-- FLSHB1CR0
679 * | B1 |
680 * | |
681 * B1 start address --> -------- <-- FLSHA2CR0
682 * | A2 |
683 * | |
684 * A2 start address --> -------- <-- FLSHA1CR0
685 * | A1 |
686 * | |
687 * A1 start address --> -------- (Lower address)
688 *
689 *
690 * Start base address defines the starting address range for given CS and
691 * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS.
692 *
693 * But, different targets are having different combinations of number of CS,
694 * some targets only have single CS or two CS covering controller's full
695 * memory mapped space area.
696 * Thus, implementation is being done as independent of the size and number
697 * of the connected target device.
698 * Assign controller memory mapped space size as the size to the connected
699 * target device.
700 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
701 * chip-select Flash configuration register.
702 *
703 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
704 * memory mapped size of the controller.
705 * Value for rest of the CS FLSHxxCR0 register would be zero.
706 *
707 */
708static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
709{
710 unsigned long rate = spi->max_speed_hz;
711 int ret;
712 uint64_t size_kb;
713
714 /*
715 * Return, if previously selected target device is same as current
716 * requested target device.
717 */
718 if (f->selected == spi_get_chipselect(spi, 0))
719 return;
720
721 /* Reset FLSHxxCR0 registers */
722 fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
723 fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
724 fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
725 fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
726
727 /* Assign controller memory mapped space as size, KBytes, of flash. */
728 size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
729
730 fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
731 4 * spi_get_chipselect(spi, 0));
732
733 dev_dbg(f->dev, "Target device [CS:%x] selected\n", spi_get_chipselect(spi, 0));
734
735 nxp_fspi_clk_disable_unprep(f);
736
737 ret = clk_set_rate(f->clk, rate);
738 if (ret)
739 return;
740
741 ret = nxp_fspi_clk_prep_enable(f);
742 if (ret)
743 return;
744
745 /*
746 * If clock rate > 100MHz, then switch from DLL override mode to
747 * DLL calibration mode.
748 */
749 if (rate > 100000000)
750 nxp_fspi_dll_calibration(f);
751
752 f->selected = spi_get_chipselect(spi, 0);
753}
754
755static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
756{
757 u32 start = op->addr.val;
758 u32 len = op->data.nbytes;
759
760 /* if necessary, ioremap before AHB read */
761 if ((!f->ahb_addr) || start < f->memmap_start ||
762 start + len > f->memmap_start + f->memmap_len) {
763 if (f->ahb_addr)
764 iounmap(f->ahb_addr);
765
766 f->memmap_start = start;
767 f->memmap_len = max_t(u32, len, NXP_FSPI_MIN_IOMAP);
768
769 f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start,
770 f->memmap_len);
771
772 if (!f->ahb_addr) {
773 dev_err(f->dev, "failed to alloc memory\n");
774 return -ENOMEM;
775 }
776 }
777
778 /* Read out the data directly from the AHB buffer. */
779 memcpy_fromio(op->data.buf.in,
780 f->ahb_addr + start - f->memmap_start, len);
781
782 return 0;
783}
784
785static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
786 const struct spi_mem_op *op)
787{
788 void __iomem *base = f->iobase;
789 int i, ret;
790 u8 *buf = (u8 *) op->data.buf.out;
791
792 /* clear the TX FIFO. */
793 fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
794
795 /*
796 * Default value of water mark level is 8 bytes, hence in single
797 * write request controller can write max 8 bytes of data.
798 */
799
800 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
801 /* Wait for TXFIFO empty */
802 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
803 FSPI_INTR_IPTXWE, 0,
804 POLL_TOUT, true);
805 WARN_ON(ret);
806
807 fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
808 fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
809 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
810 }
811
812 if (i < op->data.nbytes) {
813 u32 data = 0;
814 int j;
815 int remaining = op->data.nbytes - i;
816 /* Wait for TXFIFO empty */
817 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
818 FSPI_INTR_IPTXWE, 0,
819 POLL_TOUT, true);
820 WARN_ON(ret);
821
822 for (j = 0; j < ALIGN(remaining, 4); j += 4) {
823 memcpy(&data, buf + i + j, min_t(int, 4, remaining - j));
824 fspi_writel(f, data, base + FSPI_TFDR + j);
825 }
826 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
827 }
828}
829
830static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
831 const struct spi_mem_op *op)
832{
833 void __iomem *base = f->iobase;
834 int i, ret;
835 int len = op->data.nbytes;
836 u8 *buf = (u8 *) op->data.buf.in;
837
838 /*
839 * Default value of water mark level is 8 bytes, hence in single
840 * read request controller can read max 8 bytes of data.
841 */
842 for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
843 /* Wait for RXFIFO available */
844 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
845 FSPI_INTR_IPRXWA, 0,
846 POLL_TOUT, true);
847 WARN_ON(ret);
848
849 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
850 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
851 /* move the FIFO pointer */
852 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
853 }
854
855 if (i < len) {
856 u32 tmp;
857 int size, j;
858
859 buf = op->data.buf.in + i;
860 /* Wait for RXFIFO available */
861 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
862 FSPI_INTR_IPRXWA, 0,
863 POLL_TOUT, true);
864 WARN_ON(ret);
865
866 len = op->data.nbytes - i;
867 for (j = 0; j < op->data.nbytes - i; j += 4) {
868 tmp = fspi_readl(f, base + FSPI_RFDR + j);
869 size = min(len, 4);
870 memcpy(buf + j, &tmp, size);
871 len -= size;
872 }
873 }
874
875 /* invalid the RXFIFO */
876 fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
877 /* move the FIFO pointer */
878 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
879}
880
881static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
882{
883 void __iomem *base = f->iobase;
884 int seqnum = 0;
885 int err = 0;
886 u32 reg, seqid_lut;
887
888 reg = fspi_readl(f, base + FSPI_IPRXFCR);
889 /* invalid RXFIFO first */
890 reg &= ~FSPI_IPRXFCR_DMA_EN;
891 reg = reg | FSPI_IPRXFCR_CLR;
892 fspi_writel(f, reg, base + FSPI_IPRXFCR);
893
894 init_completion(&f->c);
895
896 fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
897 /*
898 * Always start the sequence at the same index since we update
899 * the LUT at each exec_op() call. And also specify the DATA
900 * length, since it's has not been specified in the LUT.
901 */
902 seqid_lut = f->devtype_data->lut_num - 1;
903 fspi_writel(f, op->data.nbytes |
904 (seqid_lut << FSPI_IPCR1_SEQID_SHIFT) |
905 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
906 base + FSPI_IPCR1);
907
908 /* Trigger the LUT now. */
909 fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
910
911 /* Wait for the interrupt. */
912 if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
913 err = -ETIMEDOUT;
914
915 /* Invoke IP data read, if request is of data read. */
916 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
917 nxp_fspi_read_rxfifo(f, op);
918
919 return err;
920}
921
922static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
923{
924 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
925 int err = 0;
926
927 mutex_lock(&f->lock);
928
929 /* Wait for controller being ready. */
930 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
931 FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
932 WARN_ON(err);
933
934 nxp_fspi_select_mem(f, mem->spi);
935
936 nxp_fspi_prepare_lut(f, op);
937 /*
938 * If we have large chunks of data, we read them through the AHB bus by
939 * accessing the mapped memory. In all other cases we use IP commands
940 * to access the flash. Read via AHB bus may be corrupted due to
941 * existence of an errata and therefore discard AHB read in such cases.
942 */
943 if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
944 op->data.dir == SPI_MEM_DATA_IN &&
945 !needs_ip_only(f)) {
946 err = nxp_fspi_read_ahb(f, op);
947 } else {
948 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
949 nxp_fspi_fill_txfifo(f, op);
950
951 err = nxp_fspi_do_op(f, op);
952 }
953
954 /* Invalidate the data in the AHB buffer. */
955 nxp_fspi_invalid(f);
956
957 mutex_unlock(&f->lock);
958
959 return err;
960}
961
962static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
963{
964 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
965
966 if (op->data.dir == SPI_MEM_DATA_OUT) {
967 if (op->data.nbytes > f->devtype_data->txfifo)
968 op->data.nbytes = f->devtype_data->txfifo;
969 } else {
970 if (op->data.nbytes > f->devtype_data->ahb_buf_size)
971 op->data.nbytes = f->devtype_data->ahb_buf_size;
972 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
973 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
974 }
975
976 /* Limit data bytes to RX FIFO in case of IP read only */
977 if (op->data.dir == SPI_MEM_DATA_IN &&
978 needs_ip_only(f) &&
979 op->data.nbytes > f->devtype_data->rxfifo)
980 op->data.nbytes = f->devtype_data->rxfifo;
981
982 return 0;
983}
984
985static void erratum_err050568(struct nxp_fspi *f)
986{
987 static const struct soc_device_attribute ls1028a_soc_attr[] = {
988 { .family = "QorIQ LS1028A" },
989 { /* sentinel */ }
990 };
991 struct regmap *map;
992 u32 val, sys_pll_ratio;
993 int ret;
994
995 /* Check for LS1028A family */
996 if (!soc_device_match(ls1028a_soc_attr)) {
997 dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
998 return;
999 }
1000
1001 map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
1002 if (IS_ERR(map)) {
1003 dev_err(f->dev, "No syscon regmap\n");
1004 goto err;
1005 }
1006
1007 ret = regmap_read(map, DCFG_RCWSR1, &val);
1008 if (ret < 0)
1009 goto err;
1010
1011 sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
1012 dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
1013
1014 /* Use IP bus only if platform clock is 300MHz */
1015 if (sys_pll_ratio == 3)
1016 f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
1017
1018 return;
1019
1020err:
1021 dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
1022}
1023
1024static int nxp_fspi_default_setup(struct nxp_fspi *f)
1025{
1026 void __iomem *base = f->iobase;
1027 int ret, i;
1028 u32 reg, seqid_lut;
1029
1030 /* disable and unprepare clock to avoid glitch pass to controller */
1031 nxp_fspi_clk_disable_unprep(f);
1032
1033 /* the default frequency, we will change it later if necessary. */
1034 ret = clk_set_rate(f->clk, 20000000);
1035 if (ret)
1036 return ret;
1037
1038 ret = nxp_fspi_clk_prep_enable(f);
1039 if (ret)
1040 return ret;
1041
1042 /*
1043 * ERR050568: Flash access by FlexSPI AHB command may not work with
1044 * platform frequency equal to 300 MHz on LS1028A.
1045 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
1046 * Layerscape LS1028A platform.
1047 */
1048 if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
1049 erratum_err050568(f);
1050
1051 /* Reset the module */
1052 /* w1c register, wait unit clear */
1053 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
1054 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
1055 WARN_ON(ret);
1056
1057 /* Disable the module */
1058 fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
1059
1060 /*
1061 * Config the DLL register to default value, enable the target clock delay
1062 * line delay cell override mode, and use 1 fixed delay cell in DLL delay
1063 * chain, this is the suggested setting when clock rate < 100MHz.
1064 */
1065 fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
1066 fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
1067
1068 /* enable module */
1069 fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1070 FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1071 base + FSPI_MCR0);
1072
1073 /*
1074 * Disable same device enable bit and configure all target devices
1075 * independently.
1076 */
1077 reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1078 reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1079 fspi_writel(f, reg, base + FSPI_MCR2);
1080
1081 /* AHB configuration for access buffer 0~7. */
1082 for (i = 0; i < 7; i++)
1083 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1084
1085 /*
1086 * Set ADATSZ with the maximum AHB buffer size to improve the read
1087 * performance.
1088 */
1089 fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1090 FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1091
1092 /* prefetch and no start address alignment limitation */
1093 fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1094 base + FSPI_AHBCR);
1095
1096 /* Reset the FLSHxCR1 registers. */
1097 reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
1098 fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
1099 fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
1100 fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
1101 fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
1102
1103 /*
1104 * The driver only uses one single LUT entry, that is updated on
1105 * each call of exec_op(). Index 0 is preset at boot with a basic
1106 * read operation, so let's use the last entry.
1107 */
1108 seqid_lut = f->devtype_data->lut_num - 1;
1109 /* AHB Read - Set lut sequence ID for all CS. */
1110 fspi_writel(f, seqid_lut, base + FSPI_FLSHA1CR2);
1111 fspi_writel(f, seqid_lut, base + FSPI_FLSHA2CR2);
1112 fspi_writel(f, seqid_lut, base + FSPI_FLSHB1CR2);
1113 fspi_writel(f, seqid_lut, base + FSPI_FLSHB2CR2);
1114
1115 f->selected = -1;
1116
1117 /* enable the interrupt */
1118 fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1119
1120 return 0;
1121}
1122
1123static const char *nxp_fspi_get_name(struct spi_mem *mem)
1124{
1125 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
1126 struct device *dev = &mem->spi->dev;
1127 const char *name;
1128
1129 // Set custom name derived from the platform_device of the controller.
1130 if (of_get_available_child_count(f->dev->of_node) == 1)
1131 return dev_name(f->dev);
1132
1133 name = devm_kasprintf(dev, GFP_KERNEL,
1134 "%s-%d", dev_name(f->dev),
1135 spi_get_chipselect(mem->spi, 0));
1136
1137 if (!name) {
1138 dev_err(dev, "failed to get memory for custom flash name\n");
1139 return ERR_PTR(-ENOMEM);
1140 }
1141
1142 return name;
1143}
1144
1145static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1146 .adjust_op_size = nxp_fspi_adjust_op_size,
1147 .supports_op = nxp_fspi_supports_op,
1148 .exec_op = nxp_fspi_exec_op,
1149 .get_name = nxp_fspi_get_name,
1150};
1151
1152static int nxp_fspi_probe(struct platform_device *pdev)
1153{
1154 struct spi_controller *ctlr;
1155 struct device *dev = &pdev->dev;
1156 struct device_node *np = dev->of_node;
1157 struct resource *res;
1158 struct nxp_fspi *f;
1159 int ret;
1160 u32 reg;
1161
1162 ctlr = spi_alloc_host(&pdev->dev, sizeof(*f));
1163 if (!ctlr)
1164 return -ENOMEM;
1165
1166 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1167 SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1168
1169 f = spi_controller_get_devdata(ctlr);
1170 f->dev = dev;
1171 f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
1172 if (!f->devtype_data) {
1173 ret = -ENODEV;
1174 goto err_put_ctrl;
1175 }
1176
1177 platform_set_drvdata(pdev, f);
1178
1179 /* find the resources - configuration register address space */
1180 if (is_acpi_node(dev_fwnode(f->dev)))
1181 f->iobase = devm_platform_ioremap_resource(pdev, 0);
1182 else
1183 f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base");
1184
1185 if (IS_ERR(f->iobase)) {
1186 ret = PTR_ERR(f->iobase);
1187 goto err_put_ctrl;
1188 }
1189
1190 /* find the resources - controller memory mapped space */
1191 if (is_acpi_node(dev_fwnode(f->dev)))
1192 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1193 else
1194 res = platform_get_resource_byname(pdev,
1195 IORESOURCE_MEM, "fspi_mmap");
1196
1197 if (!res) {
1198 ret = -ENODEV;
1199 goto err_put_ctrl;
1200 }
1201
1202 /* assign memory mapped starting address and mapped size. */
1203 f->memmap_phy = res->start;
1204 f->memmap_phy_size = resource_size(res);
1205
1206 /* find the clocks */
1207 if (dev_of_node(&pdev->dev)) {
1208 f->clk_en = devm_clk_get(dev, "fspi_en");
1209 if (IS_ERR(f->clk_en)) {
1210 ret = PTR_ERR(f->clk_en);
1211 goto err_put_ctrl;
1212 }
1213
1214 f->clk = devm_clk_get(dev, "fspi");
1215 if (IS_ERR(f->clk)) {
1216 ret = PTR_ERR(f->clk);
1217 goto err_put_ctrl;
1218 }
1219
1220 ret = nxp_fspi_clk_prep_enable(f);
1221 if (ret) {
1222 dev_err(dev, "can not enable the clock\n");
1223 goto err_put_ctrl;
1224 }
1225 }
1226
1227 /* Clear potential interrupts */
1228 reg = fspi_readl(f, f->iobase + FSPI_INTR);
1229 if (reg)
1230 fspi_writel(f, reg, f->iobase + FSPI_INTR);
1231
1232 /* find the irq */
1233 ret = platform_get_irq(pdev, 0);
1234 if (ret < 0)
1235 goto err_disable_clk;
1236
1237 ret = devm_request_irq(dev, ret,
1238 nxp_fspi_irq_handler, 0, pdev->name, f);
1239 if (ret) {
1240 dev_err(dev, "failed to request irq: %d\n", ret);
1241 goto err_disable_clk;
1242 }
1243
1244 mutex_init(&f->lock);
1245
1246 ctlr->bus_num = -1;
1247 ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1248 ctlr->mem_ops = &nxp_fspi_mem_ops;
1249
1250 nxp_fspi_default_setup(f);
1251
1252 ctlr->dev.of_node = np;
1253
1254 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1255 if (ret)
1256 goto err_destroy_mutex;
1257
1258 return 0;
1259
1260err_destroy_mutex:
1261 mutex_destroy(&f->lock);
1262
1263err_disable_clk:
1264 nxp_fspi_clk_disable_unprep(f);
1265
1266err_put_ctrl:
1267 spi_controller_put(ctlr);
1268
1269 dev_err(dev, "NXP FSPI probe failed\n");
1270 return ret;
1271}
1272
1273static void nxp_fspi_remove(struct platform_device *pdev)
1274{
1275 struct nxp_fspi *f = platform_get_drvdata(pdev);
1276
1277 /* disable the hardware */
1278 fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1279
1280 nxp_fspi_clk_disable_unprep(f);
1281
1282 mutex_destroy(&f->lock);
1283
1284 if (f->ahb_addr)
1285 iounmap(f->ahb_addr);
1286}
1287
1288static int nxp_fspi_suspend(struct device *dev)
1289{
1290 return 0;
1291}
1292
1293static int nxp_fspi_resume(struct device *dev)
1294{
1295 struct nxp_fspi *f = dev_get_drvdata(dev);
1296
1297 nxp_fspi_default_setup(f);
1298
1299 return 0;
1300}
1301
1302static const struct of_device_id nxp_fspi_dt_ids[] = {
1303 { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1304 { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1305 { .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
1306 { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1307 { .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
1308 { .compatible = "nxp,imx8ulp-fspi", .data = (void *)&imx8ulp_data, },
1309 { /* sentinel */ }
1310};
1311MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1312
1313#ifdef CONFIG_ACPI
1314static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1315 { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1316 {}
1317};
1318MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1319#endif
1320
1321static const struct dev_pm_ops nxp_fspi_pm_ops = {
1322 .suspend = nxp_fspi_suspend,
1323 .resume = nxp_fspi_resume,
1324};
1325
1326static struct platform_driver nxp_fspi_driver = {
1327 .driver = {
1328 .name = "nxp-fspi",
1329 .of_match_table = nxp_fspi_dt_ids,
1330 .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1331 .pm = &nxp_fspi_pm_ops,
1332 },
1333 .probe = nxp_fspi_probe,
1334 .remove = nxp_fspi_remove,
1335};
1336module_platform_driver(nxp_fspi_driver);
1337
1338MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1339MODULE_AUTHOR("NXP Semiconductor");
1340MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1341MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1342MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1343MODULE_LICENSE("GPL v2");