Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2
   3/*
   4 * NXP FlexSPI(FSPI) controller driver.
   5 *
   6 * Copyright 2019-2020 NXP
   7 * Copyright 2020 Puresoftware Ltd.
   8 *
   9 * FlexSPI is a flexsible SPI host controller which supports two SPI
  10 * channels and up to 4 external devices. Each channel supports
  11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
  12 * data lines).
  13 *
  14 * FlexSPI controller is driven by the LUT(Look-up Table) registers
  15 * LUT registers are a look-up-table for sequences of instructions.
  16 * A valid sequence consists of four LUT registers.
  17 * Maximum 32 LUT sequences can be programmed simultaneously.
  18 *
  19 * LUTs are being created at run-time based on the commands passed
  20 * from the spi-mem framework, thus using single LUT index.
  21 *
  22 * Software triggered Flash read/write access by IP Bus.
  23 *
  24 * Memory mapped read access by AHB Bus.
  25 *
  26 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
  27 *
  28 * Author:
  29 *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
  30 *     Boris Brezillon <bbrezillon@kernel.org>
  31 *     Frieder Schrempf <frieder.schrempf@kontron.de>
  32 */
  33
  34#include <linux/acpi.h>
  35#include <linux/bitops.h>
  36#include <linux/bitfield.h>
  37#include <linux/clk.h>
  38#include <linux/completion.h>
  39#include <linux/delay.h>
  40#include <linux/err.h>
  41#include <linux/errno.h>
  42#include <linux/interrupt.h>
  43#include <linux/io.h>
  44#include <linux/iopoll.h>
  45#include <linux/jiffies.h>
  46#include <linux/kernel.h>
  47#include <linux/module.h>
  48#include <linux/mutex.h>
  49#include <linux/of.h>
 
  50#include <linux/platform_device.h>
  51#include <linux/pm_qos.h>
  52#include <linux/regmap.h>
  53#include <linux/sizes.h>
  54#include <linux/sys_soc.h>
  55
  56#include <linux/mfd/syscon.h>
  57#include <linux/spi/spi.h>
  58#include <linux/spi/spi-mem.h>
  59
  60/*
  61 * The driver only uses one single LUT entry, that is updated on
  62 * each call of exec_op(). Index 0 is preset at boot with a basic
  63 * read operation, so let's use the last entry (31).
  64 */
  65#define	SEQID_LUT			31
  66
  67/* Registers used by the driver */
  68#define FSPI_MCR0			0x00
  69#define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
  70#define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
  71#define FSPI_MCR0_LEARN_EN		BIT(15)
  72#define FSPI_MCR0_SCRFRUN_EN		BIT(14)
  73#define FSPI_MCR0_OCTCOMB_EN		BIT(13)
  74#define FSPI_MCR0_DOZE_EN		BIT(12)
  75#define FSPI_MCR0_HSEN			BIT(11)
  76#define FSPI_MCR0_SERCLKDIV		BIT(8)
  77#define FSPI_MCR0_ATDF_EN		BIT(7)
  78#define FSPI_MCR0_ARDF_EN		BIT(6)
  79#define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
  80#define FSPI_MCR0_END_CFG(x)		((x) << 2)
  81#define FSPI_MCR0_MDIS			BIT(1)
  82#define FSPI_MCR0_SWRST			BIT(0)
  83
  84#define FSPI_MCR1			0x04
  85#define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
  86#define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
  87
  88#define FSPI_MCR2			0x08
  89#define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
  90#define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
  91#define FSPI_MCR2_CLRLRPHS		BIT(14)
  92#define FSPI_MCR2_ABRDATSZ		BIT(8)
  93#define FSPI_MCR2_ABRLEARN		BIT(7)
  94#define FSPI_MCR2_ABR_READ		BIT(6)
  95#define FSPI_MCR2_ABRWRITE		BIT(5)
  96#define FSPI_MCR2_ABRDUMMY		BIT(4)
  97#define FSPI_MCR2_ABR_MODE		BIT(3)
  98#define FSPI_MCR2_ABRCADDR		BIT(2)
  99#define FSPI_MCR2_ABRRADDR		BIT(1)
 100#define FSPI_MCR2_ABR_CMD		BIT(0)
 101
 102#define FSPI_AHBCR			0x0c
 103#define FSPI_AHBCR_RDADDROPT		BIT(6)
 104#define FSPI_AHBCR_PREF_EN		BIT(5)
 105#define FSPI_AHBCR_BUFF_EN		BIT(4)
 106#define FSPI_AHBCR_CACH_EN		BIT(3)
 107#define FSPI_AHBCR_CLRTXBUF		BIT(2)
 108#define FSPI_AHBCR_CLRRXBUF		BIT(1)
 109#define FSPI_AHBCR_PAR_EN		BIT(0)
 110
 111#define FSPI_INTEN			0x10
 112#define FSPI_INTEN_SCLKSBWR		BIT(9)
 113#define FSPI_INTEN_SCLKSBRD		BIT(8)
 114#define FSPI_INTEN_DATALRNFL		BIT(7)
 115#define FSPI_INTEN_IPTXWE		BIT(6)
 116#define FSPI_INTEN_IPRXWA		BIT(5)
 117#define FSPI_INTEN_AHBCMDERR		BIT(4)
 118#define FSPI_INTEN_IPCMDERR		BIT(3)
 119#define FSPI_INTEN_AHBCMDGE		BIT(2)
 120#define FSPI_INTEN_IPCMDGE		BIT(1)
 121#define FSPI_INTEN_IPCMDDONE		BIT(0)
 122
 123#define FSPI_INTR			0x14
 124#define FSPI_INTR_SCLKSBWR		BIT(9)
 125#define FSPI_INTR_SCLKSBRD		BIT(8)
 126#define FSPI_INTR_DATALRNFL		BIT(7)
 127#define FSPI_INTR_IPTXWE		BIT(6)
 128#define FSPI_INTR_IPRXWA		BIT(5)
 129#define FSPI_INTR_AHBCMDERR		BIT(4)
 130#define FSPI_INTR_IPCMDERR		BIT(3)
 131#define FSPI_INTR_AHBCMDGE		BIT(2)
 132#define FSPI_INTR_IPCMDGE		BIT(1)
 133#define FSPI_INTR_IPCMDDONE		BIT(0)
 134
 135#define FSPI_LUTKEY			0x18
 136#define FSPI_LUTKEY_VALUE		0x5AF05AF0
 137
 138#define FSPI_LCKCR			0x1C
 139
 140#define FSPI_LCKER_LOCK			0x1
 141#define FSPI_LCKER_UNLOCK		0x2
 142
 143#define FSPI_BUFXCR_INVALID_MSTRID	0xE
 144#define FSPI_AHBRX_BUF0CR0		0x20
 145#define FSPI_AHBRX_BUF1CR0		0x24
 146#define FSPI_AHBRX_BUF2CR0		0x28
 147#define FSPI_AHBRX_BUF3CR0		0x2C
 148#define FSPI_AHBRX_BUF4CR0		0x30
 149#define FSPI_AHBRX_BUF5CR0		0x34
 150#define FSPI_AHBRX_BUF6CR0		0x38
 151#define FSPI_AHBRX_BUF7CR0		0x3C
 152#define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
 153
 154#define FSPI_AHBRX_BUF0CR1		0x40
 155#define FSPI_AHBRX_BUF1CR1		0x44
 156#define FSPI_AHBRX_BUF2CR1		0x48
 157#define FSPI_AHBRX_BUF3CR1		0x4C
 158#define FSPI_AHBRX_BUF4CR1		0x50
 159#define FSPI_AHBRX_BUF5CR1		0x54
 160#define FSPI_AHBRX_BUF6CR1		0x58
 161#define FSPI_AHBRX_BUF7CR1		0x5C
 162
 163#define FSPI_FLSHA1CR0			0x60
 164#define FSPI_FLSHA2CR0			0x64
 165#define FSPI_FLSHB1CR0			0x68
 166#define FSPI_FLSHB2CR0			0x6C
 167#define FSPI_FLSHXCR0_SZ_KB		10
 168#define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
 169
 170#define FSPI_FLSHA1CR1			0x70
 171#define FSPI_FLSHA2CR1			0x74
 172#define FSPI_FLSHB1CR1			0x78
 173#define FSPI_FLSHB2CR1			0x7C
 174#define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
 175#define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
 176#define FSPI_FLSHXCR1_WA		BIT(10)
 177#define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
 178#define FSPI_FLSHXCR1_TCSS(x)		(x)
 179
 180#define FSPI_FLSHA1CR2			0x80
 181#define FSPI_FLSHA2CR2			0x84
 182#define FSPI_FLSHB1CR2			0x88
 183#define FSPI_FLSHB2CR2			0x8C
 184#define FSPI_FLSHXCR2_CLRINSP		BIT(24)
 185#define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
 186#define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
 187#define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
 188#define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
 189#define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
 190
 191#define FSPI_IPCR0			0xA0
 192
 193#define FSPI_IPCR1			0xA4
 194#define FSPI_IPCR1_IPAREN		BIT(31)
 195#define FSPI_IPCR1_SEQNUM_SHIFT		24
 196#define FSPI_IPCR1_SEQID_SHIFT		16
 197#define FSPI_IPCR1_IDATSZ(x)		(x)
 198
 199#define FSPI_IPCMD			0xB0
 200#define FSPI_IPCMD_TRG			BIT(0)
 201
 202#define FSPI_DLPR			0xB4
 203
 204#define FSPI_IPRXFCR			0xB8
 205#define FSPI_IPRXFCR_CLR		BIT(0)
 206#define FSPI_IPRXFCR_DMA_EN		BIT(1)
 207#define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
 208
 209#define FSPI_IPTXFCR			0xBC
 210#define FSPI_IPTXFCR_CLR		BIT(0)
 211#define FSPI_IPTXFCR_DMA_EN		BIT(1)
 212#define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
 213
 214#define FSPI_DLLACR			0xC0
 215#define FSPI_DLLACR_OVRDEN		BIT(8)
 216#define FSPI_DLLACR_SLVDLY(x)		((x) << 3)
 217#define FSPI_DLLACR_DLLRESET		BIT(1)
 218#define FSPI_DLLACR_DLLEN		BIT(0)
 219
 220#define FSPI_DLLBCR			0xC4
 221#define FSPI_DLLBCR_OVRDEN		BIT(8)
 222#define FSPI_DLLBCR_SLVDLY(x)		((x) << 3)
 223#define FSPI_DLLBCR_DLLRESET		BIT(1)
 224#define FSPI_DLLBCR_DLLEN		BIT(0)
 225
 226#define FSPI_STS0			0xE0
 227#define FSPI_STS0_DLPHB(x)		((x) << 8)
 228#define FSPI_STS0_DLPHA(x)		((x) << 4)
 229#define FSPI_STS0_CMD_SRC(x)		((x) << 2)
 230#define FSPI_STS0_ARB_IDLE		BIT(1)
 231#define FSPI_STS0_SEQ_IDLE		BIT(0)
 232
 233#define FSPI_STS1			0xE4
 234#define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
 235#define FSPI_STS1_IP_ERRID(x)		((x) << 16)
 236#define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
 237#define FSPI_STS1_AHB_ERRID(x)		(x)
 238
 239#define FSPI_STS2			0xE8
 240#define FSPI_STS2_BREFLOCK		BIT(17)
 241#define FSPI_STS2_BSLVLOCK		BIT(16)
 242#define FSPI_STS2_AREFLOCK		BIT(1)
 243#define FSPI_STS2_ASLVLOCK		BIT(0)
 244#define FSPI_STS2_AB_LOCK		(FSPI_STS2_BREFLOCK | \
 245					 FSPI_STS2_BSLVLOCK | \
 246					 FSPI_STS2_AREFLOCK | \
 247					 FSPI_STS2_ASLVLOCK)
 248
 249#define FSPI_AHBSPNST			0xEC
 250#define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
 251#define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
 252#define FSPI_AHBSPNST_ACTIVE		BIT(0)
 253
 254#define FSPI_IPRXFSTS			0xF0
 255#define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
 256#define FSPI_IPRXFSTS_FILL(x)		(x)
 257
 258#define FSPI_IPTXFSTS			0xF4
 259#define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
 260#define FSPI_IPTXFSTS_FILL(x)		(x)
 261
 262#define FSPI_RFDR			0x100
 263#define FSPI_TFDR			0x180
 264
 265#define FSPI_LUT_BASE			0x200
 266#define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
 267#define FSPI_LUT_REG(idx) \
 268	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
 269
 270/* register map end */
 271
 272/* Instruction set for the LUT register. */
 273#define LUT_STOP			0x00
 274#define LUT_CMD				0x01
 275#define LUT_ADDR			0x02
 276#define LUT_CADDR_SDR			0x03
 277#define LUT_MODE			0x04
 278#define LUT_MODE2			0x05
 279#define LUT_MODE4			0x06
 280#define LUT_MODE8			0x07
 281#define LUT_NXP_WRITE			0x08
 282#define LUT_NXP_READ			0x09
 283#define LUT_LEARN_SDR			0x0A
 284#define LUT_DATSZ_SDR			0x0B
 285#define LUT_DUMMY			0x0C
 286#define LUT_DUMMY_RWDS_SDR		0x0D
 287#define LUT_JMP_ON_CS			0x1F
 288#define LUT_CMD_DDR			0x21
 289#define LUT_ADDR_DDR			0x22
 290#define LUT_CADDR_DDR			0x23
 291#define LUT_MODE_DDR			0x24
 292#define LUT_MODE2_DDR			0x25
 293#define LUT_MODE4_DDR			0x26
 294#define LUT_MODE8_DDR			0x27
 295#define LUT_WRITE_DDR			0x28
 296#define LUT_READ_DDR			0x29
 297#define LUT_LEARN_DDR			0x2A
 298#define LUT_DATSZ_DDR			0x2B
 299#define LUT_DUMMY_DDR			0x2C
 300#define LUT_DUMMY_RWDS_DDR		0x2D
 301
 302/*
 303 * Calculate number of required PAD bits for LUT register.
 304 *
 305 * The pad stands for the number of IO lines [0:7].
 306 * For example, the octal read needs eight IO lines,
 307 * so you should use LUT_PAD(8). This macro
 308 * returns 3 i.e. use eight (2^3) IP lines for read.
 309 */
 310#define LUT_PAD(x) (fls(x) - 1)
 311
 312/*
 313 * Macro for constructing the LUT entries with the following
 314 * register layout:
 315 *
 316 *  ---------------------------------------------------
 317 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 318 *  ---------------------------------------------------
 319 */
 320#define PAD_SHIFT		8
 321#define INSTR_SHIFT		10
 322#define OPRND_SHIFT		16
 323
 324/* Macros for constructing the LUT register. */
 325#define LUT_DEF(idx, ins, pad, opr)			  \
 326	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
 327	(opr)) << (((idx) % 2) * OPRND_SHIFT))
 328
 329#define POLL_TOUT		5000
 330#define NXP_FSPI_MAX_CHIPSELECT		4
 331#define NXP_FSPI_MIN_IOMAP	SZ_4M
 332
 333#define DCFG_RCWSR1		0x100
 334#define SYS_PLL_RAT		GENMASK(6, 2)
 335
 336/* Access flash memory using IP bus only */
 337#define FSPI_QUIRK_USE_IP_ONLY	BIT(0)
 338
 339struct nxp_fspi_devtype_data {
 340	unsigned int rxfifo;
 341	unsigned int txfifo;
 342	unsigned int ahb_buf_size;
 343	unsigned int quirks;
 344	bool little_endian;
 345};
 346
 347static struct nxp_fspi_devtype_data lx2160a_data = {
 348	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 349	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 350	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 351	.quirks = 0,
 352	.little_endian = true,  /* little-endian    */
 353};
 354
 355static struct nxp_fspi_devtype_data imx8mm_data = {
 356	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 357	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 358	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 359	.quirks = 0,
 360	.little_endian = true,  /* little-endian    */
 361};
 362
 363static struct nxp_fspi_devtype_data imx8qxp_data = {
 364	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 365	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 366	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 367	.quirks = 0,
 368	.little_endian = true,  /* little-endian    */
 369};
 370
 371static struct nxp_fspi_devtype_data imx8dxl_data = {
 372	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 373	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 374	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 375	.quirks = FSPI_QUIRK_USE_IP_ONLY,
 376	.little_endian = true,  /* little-endian    */
 377};
 378
 379struct nxp_fspi {
 380	void __iomem *iobase;
 381	void __iomem *ahb_addr;
 382	u32 memmap_phy;
 383	u32 memmap_phy_size;
 384	u32 memmap_start;
 385	u32 memmap_len;
 386	struct clk *clk, *clk_en;
 387	struct device *dev;
 388	struct completion c;
 389	struct nxp_fspi_devtype_data *devtype_data;
 390	struct mutex lock;
 391	struct pm_qos_request pm_qos_req;
 392	int selected;
 393};
 394
 395static inline int needs_ip_only(struct nxp_fspi *f)
 396{
 397	return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
 398}
 399
 400/*
 401 * R/W functions for big- or little-endian registers:
 402 * The FSPI controller's endianness is independent of
 403 * the CPU core's endianness. So far, although the CPU
 404 * core is little-endian the FSPI controller can use
 405 * big-endian or little-endian.
 406 */
 407static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
 408{
 409	if (f->devtype_data->little_endian)
 410		iowrite32(val, addr);
 411	else
 412		iowrite32be(val, addr);
 413}
 414
 415static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
 416{
 417	if (f->devtype_data->little_endian)
 418		return ioread32(addr);
 419	else
 420		return ioread32be(addr);
 421}
 422
 423static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
 424{
 425	struct nxp_fspi *f = dev_id;
 426	u32 reg;
 427
 428	/* clear interrupt */
 429	reg = fspi_readl(f, f->iobase + FSPI_INTR);
 430	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
 431
 432	if (reg & FSPI_INTR_IPCMDDONE)
 433		complete(&f->c);
 434
 435	return IRQ_HANDLED;
 436}
 437
 438static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
 439{
 440	switch (width) {
 441	case 1:
 442	case 2:
 443	case 4:
 444	case 8:
 445		return 0;
 446	}
 447
 448	return -ENOTSUPP;
 449}
 450
 451static bool nxp_fspi_supports_op(struct spi_mem *mem,
 452				 const struct spi_mem_op *op)
 453{
 454	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
 455	int ret;
 456
 457	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
 458
 459	if (op->addr.nbytes)
 460		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
 461
 462	if (op->dummy.nbytes)
 463		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
 464
 465	if (op->data.nbytes)
 466		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
 467
 468	if (ret)
 469		return false;
 470
 471	/*
 472	 * The number of address bytes should be equal to or less than 4 bytes.
 473	 */
 474	if (op->addr.nbytes > 4)
 475		return false;
 476
 477	/*
 478	 * If requested address value is greater than controller assigned
 479	 * memory mapped space, return error as it didn't fit in the range
 480	 * of assigned address space.
 481	 */
 482	if (op->addr.val >= f->memmap_phy_size)
 483		return false;
 484
 485	/* Max 64 dummy clock cycles supported */
 486	if (op->dummy.buswidth &&
 487	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
 488		return false;
 489
 490	/* Max data length, check controller limits and alignment */
 491	if (op->data.dir == SPI_MEM_DATA_IN &&
 492	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
 493	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
 494	      !IS_ALIGNED(op->data.nbytes, 8))))
 495		return false;
 496
 497	if (op->data.dir == SPI_MEM_DATA_OUT &&
 498	    op->data.nbytes > f->devtype_data->txfifo)
 499		return false;
 500
 501	return spi_mem_default_supports_op(mem, op);
 502}
 503
 504/* Instead of busy looping invoke readl_poll_timeout functionality. */
 505static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
 506				u32 mask, u32 delay_us,
 507				u32 timeout_us, bool c)
 508{
 509	u32 reg;
 510
 511	if (!f->devtype_data->little_endian)
 512		mask = (u32)cpu_to_be32(mask);
 513
 514	if (c)
 515		return readl_poll_timeout(base, reg, (reg & mask),
 516					  delay_us, timeout_us);
 517	else
 518		return readl_poll_timeout(base, reg, !(reg & mask),
 519					  delay_us, timeout_us);
 520}
 521
 522/*
 523 * If the target device content being changed by Write/Erase, need to
 524 * invalidate the AHB buffer. This can be achieved by doing the reset
 525 * of controller after setting MCR0[SWRESET] bit.
 526 */
 527static inline void nxp_fspi_invalid(struct nxp_fspi *f)
 528{
 529	u32 reg;
 530	int ret;
 531
 532	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
 533	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
 534
 535	/* w1c register, wait unit clear */
 536	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 537				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 538	WARN_ON(ret);
 539}
 540
 541static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
 542				 const struct spi_mem_op *op)
 543{
 544	void __iomem *base = f->iobase;
 545	u32 lutval[4] = {};
 546	int lutidx = 1, i;
 547
 548	/* cmd */
 549	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
 550			     op->cmd.opcode);
 551
 552	/* addr bytes */
 553	if (op->addr.nbytes) {
 554		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
 555					      LUT_PAD(op->addr.buswidth),
 556					      op->addr.nbytes * 8);
 557		lutidx++;
 558	}
 559
 560	/* dummy bytes, if needed */
 561	if (op->dummy.nbytes) {
 562		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
 563		/*
 564		 * Due to FlexSPI controller limitation number of PAD for dummy
 565		 * buswidth needs to be programmed as equal to data buswidth.
 566		 */
 567					      LUT_PAD(op->data.buswidth),
 568					      op->dummy.nbytes * 8 /
 569					      op->dummy.buswidth);
 570		lutidx++;
 571	}
 572
 573	/* read/write data bytes */
 574	if (op->data.nbytes) {
 575		lutval[lutidx / 2] |= LUT_DEF(lutidx,
 576					      op->data.dir == SPI_MEM_DATA_IN ?
 577					      LUT_NXP_READ : LUT_NXP_WRITE,
 578					      LUT_PAD(op->data.buswidth),
 579					      0);
 580		lutidx++;
 581	}
 582
 583	/* stop condition. */
 584	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
 585
 586	/* unlock LUT */
 587	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 588	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
 589
 590	/* fill LUT */
 591	for (i = 0; i < ARRAY_SIZE(lutval); i++)
 592		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
 593
 594	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
 595		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
 596
 597	/* lock LUT */
 598	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 599	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
 600}
 601
 602static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
 603{
 604	int ret;
 605
 606	if (is_acpi_node(dev_fwnode(f->dev)))
 607		return 0;
 608
 609	ret = clk_prepare_enable(f->clk_en);
 610	if (ret)
 611		return ret;
 612
 613	ret = clk_prepare_enable(f->clk);
 614	if (ret) {
 615		clk_disable_unprepare(f->clk_en);
 616		return ret;
 617	}
 618
 619	return 0;
 620}
 621
 622static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
 623{
 624	if (is_acpi_node(dev_fwnode(f->dev)))
 625		return 0;
 626
 627	clk_disable_unprepare(f->clk);
 628	clk_disable_unprepare(f->clk_en);
 629
 630	return 0;
 631}
 632
 633static void nxp_fspi_dll_calibration(struct nxp_fspi *f)
 634{
 635	int ret;
 636
 637	/* Reset the DLL, set the DLLRESET to 1 and then set to 0 */
 638	fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR);
 639	fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR);
 640	fspi_writel(f, 0, f->iobase + FSPI_DLLACR);
 641	fspi_writel(f, 0, f->iobase + FSPI_DLLBCR);
 642
 643	/*
 644	 * Enable the DLL calibration mode.
 645	 * The delay target for slave delay line is:
 646	 *   ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock.
 647	 * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which
 648	 * means half of clock cycle of reference clock.
 649	 */
 650	fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF),
 651		    f->iobase + FSPI_DLLACR);
 652	fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF),
 653		    f->iobase + FSPI_DLLBCR);
 654
 655	/* Wait to get REF/SLV lock */
 656	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK,
 657				   0, POLL_TOUT, true);
 658	if (ret)
 659		dev_warn(f->dev, "DLL lock failed, please fix it!\n");
 660}
 661
 662/*
 663 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
 664 * register and start base address of the target device.
 665 *
 666 *							    (Higher address)
 667 *				--------    <-- FLSHB2CR0
 668 *				|  B2  |
 669 *				|      |
 670 *	B2 start address -->	--------    <-- FLSHB1CR0
 671 *				|  B1  |
 672 *				|      |
 673 *	B1 start address -->	--------    <-- FLSHA2CR0
 674 *				|  A2  |
 675 *				|      |
 676 *	A2 start address -->	--------    <-- FLSHA1CR0
 677 *				|  A1  |
 678 *				|      |
 679 *	A1 start address -->	--------		    (Lower address)
 680 *
 681 *
 682 * Start base address defines the starting address range for given CS and
 683 * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS.
 684 *
 685 * But, different targets are having different combinations of number of CS,
 686 * some targets only have single CS or two CS covering controller's full
 687 * memory mapped space area.
 688 * Thus, implementation is being done as independent of the size and number
 689 * of the connected target device.
 690 * Assign controller memory mapped space size as the size to the connected
 691 * target device.
 692 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
 693 * chip-select Flash configuration register.
 694 *
 695 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
 696 * memory mapped size of the controller.
 697 * Value for rest of the CS FLSHxxCR0 register would be zero.
 698 *
 699 */
 700static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
 701{
 702	unsigned long rate = spi->max_speed_hz;
 703	int ret;
 704	uint64_t size_kb;
 705
 706	/*
 707	 * Return, if previously selected target device is same as current
 708	 * requested target device.
 709	 */
 710	if (f->selected == spi_get_chipselect(spi, 0))
 711		return;
 712
 713	/* Reset FLSHxxCR0 registers */
 714	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
 715	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
 716	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
 717	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
 718
 719	/* Assign controller memory mapped space as size, KBytes, of flash. */
 720	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
 721
 722	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
 723		    4 * spi_get_chipselect(spi, 0));
 724
 725	dev_dbg(f->dev, "Target device [CS:%x] selected\n", spi_get_chipselect(spi, 0));
 726
 727	nxp_fspi_clk_disable_unprep(f);
 728
 729	ret = clk_set_rate(f->clk, rate);
 730	if (ret)
 731		return;
 732
 733	ret = nxp_fspi_clk_prep_enable(f);
 734	if (ret)
 735		return;
 736
 737	/*
 738	 * If clock rate > 100MHz, then switch from DLL override mode to
 739	 * DLL calibration mode.
 740	 */
 741	if (rate > 100000000)
 742		nxp_fspi_dll_calibration(f);
 743
 744	f->selected = spi_get_chipselect(spi, 0);
 745}
 746
 747static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
 748{
 749	u32 start = op->addr.val;
 750	u32 len = op->data.nbytes;
 751
 752	/* if necessary, ioremap before AHB read */
 753	if ((!f->ahb_addr) || start < f->memmap_start ||
 754	     start + len > f->memmap_start + f->memmap_len) {
 755		if (f->ahb_addr)
 756			iounmap(f->ahb_addr);
 757
 758		f->memmap_start = start;
 759		f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
 760				len : NXP_FSPI_MIN_IOMAP;
 761
 762		f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start,
 763					 f->memmap_len);
 764
 765		if (!f->ahb_addr) {
 766			dev_err(f->dev, "failed to alloc memory\n");
 767			return -ENOMEM;
 768		}
 769	}
 770
 771	/* Read out the data directly from the AHB buffer. */
 772	memcpy_fromio(op->data.buf.in,
 773		      f->ahb_addr + start - f->memmap_start, len);
 774
 775	return 0;
 776}
 777
 778static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
 779				 const struct spi_mem_op *op)
 780{
 781	void __iomem *base = f->iobase;
 782	int i, ret;
 783	u8 *buf = (u8 *) op->data.buf.out;
 784
 785	/* clear the TX FIFO. */
 786	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
 787
 788	/*
 789	 * Default value of water mark level is 8 bytes, hence in single
 790	 * write request controller can write max 8 bytes of data.
 791	 */
 792
 793	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
 794		/* Wait for TXFIFO empty */
 795		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 796					   FSPI_INTR_IPTXWE, 0,
 797					   POLL_TOUT, true);
 798		WARN_ON(ret);
 799
 800		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
 801		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
 802		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 803	}
 804
 805	if (i < op->data.nbytes) {
 806		u32 data = 0;
 807		int j;
 808		/* Wait for TXFIFO empty */
 809		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 810					   FSPI_INTR_IPTXWE, 0,
 811					   POLL_TOUT, true);
 812		WARN_ON(ret);
 813
 814		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
 815			memcpy(&data, buf + i + j, 4);
 816			fspi_writel(f, data, base + FSPI_TFDR + j);
 817		}
 818		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 819	}
 820}
 821
 822static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
 823			  const struct spi_mem_op *op)
 824{
 825	void __iomem *base = f->iobase;
 826	int i, ret;
 827	int len = op->data.nbytes;
 828	u8 *buf = (u8 *) op->data.buf.in;
 829
 830	/*
 831	 * Default value of water mark level is 8 bytes, hence in single
 832	 * read request controller can read max 8 bytes of data.
 833	 */
 834	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
 835		/* Wait for RXFIFO available */
 836		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 837					   FSPI_INTR_IPRXWA, 0,
 838					   POLL_TOUT, true);
 839		WARN_ON(ret);
 840
 841		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
 842		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
 843		/* move the FIFO pointer */
 844		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 845	}
 846
 847	if (i < len) {
 848		u32 tmp;
 849		int size, j;
 850
 851		buf = op->data.buf.in + i;
 852		/* Wait for RXFIFO available */
 853		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 854					   FSPI_INTR_IPRXWA, 0,
 855					   POLL_TOUT, true);
 856		WARN_ON(ret);
 857
 858		len = op->data.nbytes - i;
 859		for (j = 0; j < op->data.nbytes - i; j += 4) {
 860			tmp = fspi_readl(f, base + FSPI_RFDR + j);
 861			size = min(len, 4);
 862			memcpy(buf + j, &tmp, size);
 863			len -= size;
 864		}
 865	}
 866
 867	/* invalid the RXFIFO */
 868	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
 869	/* move the FIFO pointer */
 870	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 871}
 872
 873static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
 874{
 875	void __iomem *base = f->iobase;
 876	int seqnum = 0;
 877	int err = 0;
 878	u32 reg;
 879
 880	reg = fspi_readl(f, base + FSPI_IPRXFCR);
 881	/* invalid RXFIFO first */
 882	reg &= ~FSPI_IPRXFCR_DMA_EN;
 883	reg = reg | FSPI_IPRXFCR_CLR;
 884	fspi_writel(f, reg, base + FSPI_IPRXFCR);
 885
 886	init_completion(&f->c);
 887
 888	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
 889	/*
 890	 * Always start the sequence at the same index since we update
 891	 * the LUT at each exec_op() call. And also specify the DATA
 892	 * length, since it's has not been specified in the LUT.
 893	 */
 894	fspi_writel(f, op->data.nbytes |
 895		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
 896		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
 897		 base + FSPI_IPCR1);
 898
 899	/* Trigger the LUT now. */
 900	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
 901
 902	/* Wait for the interrupt. */
 903	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
 904		err = -ETIMEDOUT;
 905
 906	/* Invoke IP data read, if request is of data read. */
 907	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
 908		nxp_fspi_read_rxfifo(f, op);
 909
 910	return err;
 911}
 912
 913static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
 914{
 915	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
 916	int err = 0;
 917
 918	mutex_lock(&f->lock);
 919
 920	/* Wait for controller being ready. */
 921	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
 922				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
 923	WARN_ON(err);
 924
 925	nxp_fspi_select_mem(f, mem->spi);
 926
 927	nxp_fspi_prepare_lut(f, op);
 928	/*
 929	 * If we have large chunks of data, we read them through the AHB bus by
 930	 * accessing the mapped memory. In all other cases we use IP commands
 931	 * to access the flash. Read via AHB bus may be corrupted due to
 932	 * existence of an errata and therefore discard AHB read in such cases.
 933	 */
 934	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
 935	    op->data.dir == SPI_MEM_DATA_IN &&
 936	    !needs_ip_only(f)) {
 937		err = nxp_fspi_read_ahb(f, op);
 938	} else {
 939		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
 940			nxp_fspi_fill_txfifo(f, op);
 941
 942		err = nxp_fspi_do_op(f, op);
 943	}
 944
 945	/* Invalidate the data in the AHB buffer. */
 946	nxp_fspi_invalid(f);
 947
 948	mutex_unlock(&f->lock);
 949
 950	return err;
 951}
 952
 953static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
 954{
 955	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
 956
 957	if (op->data.dir == SPI_MEM_DATA_OUT) {
 958		if (op->data.nbytes > f->devtype_data->txfifo)
 959			op->data.nbytes = f->devtype_data->txfifo;
 960	} else {
 961		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
 962			op->data.nbytes = f->devtype_data->ahb_buf_size;
 963		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
 964			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
 965	}
 966
 967	/* Limit data bytes to RX FIFO in case of IP read only */
 968	if (op->data.dir == SPI_MEM_DATA_IN &&
 969	    needs_ip_only(f) &&
 970	    op->data.nbytes > f->devtype_data->rxfifo)
 971		op->data.nbytes = f->devtype_data->rxfifo;
 972
 973	return 0;
 974}
 975
 976static void erratum_err050568(struct nxp_fspi *f)
 977{
 978	static const struct soc_device_attribute ls1028a_soc_attr[] = {
 979		{ .family = "QorIQ LS1028A" },
 980		{ /* sentinel */ }
 981	};
 
 982	struct regmap *map;
 983	u32 val, sys_pll_ratio;
 984	int ret;
 985
 986	/* Check for LS1028A family */
 987	if (!soc_device_match(ls1028a_soc_attr)) {
 988		dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
 989		return;
 990	}
 991
 
 992	map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
 993	if (IS_ERR(map)) {
 994		dev_err(f->dev, "No syscon regmap\n");
 995		goto err;
 996	}
 997
 998	ret = regmap_read(map, DCFG_RCWSR1, &val);
 999	if (ret < 0)
1000		goto err;
1001
1002	sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
1003	dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
 
 
 
 
 
 
 
 
 
 
 
 
1004
1005	/* Use IP bus only if platform clock is 300MHz */
1006	if (sys_pll_ratio == 3)
1007		f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
1008
1009	return;
1010
1011err:
1012	dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
1013}
1014
1015static int nxp_fspi_default_setup(struct nxp_fspi *f)
1016{
1017	void __iomem *base = f->iobase;
1018	int ret, i;
1019	u32 reg;
1020
1021	/* disable and unprepare clock to avoid glitch pass to controller */
1022	nxp_fspi_clk_disable_unprep(f);
1023
1024	/* the default frequency, we will change it later if necessary. */
1025	ret = clk_set_rate(f->clk, 20000000);
1026	if (ret)
1027		return ret;
1028
1029	ret = nxp_fspi_clk_prep_enable(f);
1030	if (ret)
1031		return ret;
1032
1033	/*
1034	 * ERR050568: Flash access by FlexSPI AHB command may not work with
1035	 * platform frequency equal to 300 MHz on LS1028A.
1036	 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
1037	 * Layerscape LS1028A platform.
1038	 */
1039	if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
1040		erratum_err050568(f);
1041
1042	/* Reset the module */
1043	/* w1c register, wait unit clear */
1044	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
1045				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
1046	WARN_ON(ret);
1047
1048	/* Disable the module */
1049	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
1050
1051	/*
1052	 * Config the DLL register to default value, enable the target clock delay
1053	 * line delay cell override mode, and use 1 fixed delay cell in DLL delay
1054	 * chain, this is the suggested setting when clock rate < 100MHz.
1055	 */
1056	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
1057	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
1058
1059	/* enable module */
1060	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1061		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1062		    base + FSPI_MCR0);
1063
1064	/*
1065	 * Disable same device enable bit and configure all target devices
1066	 * independently.
1067	 */
1068	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1069	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1070	fspi_writel(f, reg, base + FSPI_MCR2);
1071
1072	/* AHB configuration for access buffer 0~7. */
1073	for (i = 0; i < 7; i++)
1074		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1075
1076	/*
1077	 * Set ADATSZ with the maximum AHB buffer size to improve the read
1078	 * performance.
1079	 */
1080	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1081		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1082
1083	/* prefetch and no start address alignment limitation */
1084	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1085		 base + FSPI_AHBCR);
1086
1087	/* Reset the FLSHxCR1 registers. */
1088	reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
1089	fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
1090	fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
1091	fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
1092	fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
1093
1094	/* AHB Read - Set lut sequence ID for all CS. */
1095	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
1096	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
1097	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
1098	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
1099
1100	f->selected = -1;
1101
1102	/* enable the interrupt */
1103	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1104
1105	return 0;
1106}
1107
1108static const char *nxp_fspi_get_name(struct spi_mem *mem)
1109{
1110	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
1111	struct device *dev = &mem->spi->dev;
1112	const char *name;
1113
1114	// Set custom name derived from the platform_device of the controller.
1115	if (of_get_available_child_count(f->dev->of_node) == 1)
1116		return dev_name(f->dev);
1117
1118	name = devm_kasprintf(dev, GFP_KERNEL,
1119			      "%s-%d", dev_name(f->dev),
1120			      spi_get_chipselect(mem->spi, 0));
1121
1122	if (!name) {
1123		dev_err(dev, "failed to get memory for custom flash name\n");
1124		return ERR_PTR(-ENOMEM);
1125	}
1126
1127	return name;
1128}
1129
1130static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1131	.adjust_op_size = nxp_fspi_adjust_op_size,
1132	.supports_op = nxp_fspi_supports_op,
1133	.exec_op = nxp_fspi_exec_op,
1134	.get_name = nxp_fspi_get_name,
1135};
1136
1137static int nxp_fspi_probe(struct platform_device *pdev)
1138{
1139	struct spi_controller *ctlr;
1140	struct device *dev = &pdev->dev;
1141	struct device_node *np = dev->of_node;
1142	struct resource *res;
1143	struct nxp_fspi *f;
1144	int ret;
1145	u32 reg;
1146
1147	ctlr = spi_alloc_host(&pdev->dev, sizeof(*f));
1148	if (!ctlr)
1149		return -ENOMEM;
1150
1151	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1152			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1153
1154	f = spi_controller_get_devdata(ctlr);
1155	f->dev = dev;
1156	f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
1157	if (!f->devtype_data) {
1158		ret = -ENODEV;
1159		goto err_put_ctrl;
1160	}
1161
1162	platform_set_drvdata(pdev, f);
1163
1164	/* find the resources - configuration register address space */
1165	if (is_acpi_node(dev_fwnode(f->dev)))
1166		f->iobase = devm_platform_ioremap_resource(pdev, 0);
1167	else
1168		f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base");
 
1169
 
1170	if (IS_ERR(f->iobase)) {
1171		ret = PTR_ERR(f->iobase);
1172		goto err_put_ctrl;
1173	}
1174
1175	/* find the resources - controller memory mapped space */
1176	if (is_acpi_node(dev_fwnode(f->dev)))
1177		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1178	else
1179		res = platform_get_resource_byname(pdev,
1180				IORESOURCE_MEM, "fspi_mmap");
1181
1182	if (!res) {
1183		ret = -ENODEV;
1184		goto err_put_ctrl;
1185	}
1186
1187	/* assign memory mapped starting address and mapped size. */
1188	f->memmap_phy = res->start;
1189	f->memmap_phy_size = resource_size(res);
1190
1191	/* find the clocks */
1192	if (dev_of_node(&pdev->dev)) {
1193		f->clk_en = devm_clk_get(dev, "fspi_en");
1194		if (IS_ERR(f->clk_en)) {
1195			ret = PTR_ERR(f->clk_en);
1196			goto err_put_ctrl;
1197		}
1198
1199		f->clk = devm_clk_get(dev, "fspi");
1200		if (IS_ERR(f->clk)) {
1201			ret = PTR_ERR(f->clk);
1202			goto err_put_ctrl;
1203		}
1204
1205		ret = nxp_fspi_clk_prep_enable(f);
1206		if (ret) {
1207			dev_err(dev, "can not enable the clock\n");
1208			goto err_put_ctrl;
1209		}
1210	}
1211
1212	/* Clear potential interrupts */
1213	reg = fspi_readl(f, f->iobase + FSPI_INTR);
1214	if (reg)
1215		fspi_writel(f, reg, f->iobase + FSPI_INTR);
1216
1217	/* find the irq */
1218	ret = platform_get_irq(pdev, 0);
1219	if (ret < 0)
1220		goto err_disable_clk;
1221
1222	ret = devm_request_irq(dev, ret,
1223			nxp_fspi_irq_handler, 0, pdev->name, f);
1224	if (ret) {
1225		dev_err(dev, "failed to request irq: %d\n", ret);
1226		goto err_disable_clk;
1227	}
1228
1229	mutex_init(&f->lock);
1230
1231	ctlr->bus_num = -1;
1232	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1233	ctlr->mem_ops = &nxp_fspi_mem_ops;
1234
1235	nxp_fspi_default_setup(f);
1236
1237	ctlr->dev.of_node = np;
1238
1239	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1240	if (ret)
1241		goto err_destroy_mutex;
1242
1243	return 0;
1244
1245err_destroy_mutex:
1246	mutex_destroy(&f->lock);
1247
1248err_disable_clk:
1249	nxp_fspi_clk_disable_unprep(f);
1250
1251err_put_ctrl:
1252	spi_controller_put(ctlr);
1253
1254	dev_err(dev, "NXP FSPI probe failed\n");
1255	return ret;
1256}
1257
1258static void nxp_fspi_remove(struct platform_device *pdev)
1259{
1260	struct nxp_fspi *f = platform_get_drvdata(pdev);
1261
1262	/* disable the hardware */
1263	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1264
1265	nxp_fspi_clk_disable_unprep(f);
1266
1267	mutex_destroy(&f->lock);
1268
1269	if (f->ahb_addr)
1270		iounmap(f->ahb_addr);
 
 
1271}
1272
1273static int nxp_fspi_suspend(struct device *dev)
1274{
1275	return 0;
1276}
1277
1278static int nxp_fspi_resume(struct device *dev)
1279{
1280	struct nxp_fspi *f = dev_get_drvdata(dev);
1281
1282	nxp_fspi_default_setup(f);
1283
1284	return 0;
1285}
1286
1287static const struct of_device_id nxp_fspi_dt_ids[] = {
1288	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1289	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1290	{ .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
1291	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1292	{ .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
1293	{ /* sentinel */ }
1294};
1295MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1296
1297#ifdef CONFIG_ACPI
1298static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1299	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1300	{}
1301};
1302MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1303#endif
1304
1305static const struct dev_pm_ops nxp_fspi_pm_ops = {
1306	.suspend	= nxp_fspi_suspend,
1307	.resume		= nxp_fspi_resume,
1308};
1309
1310static struct platform_driver nxp_fspi_driver = {
1311	.driver = {
1312		.name	= "nxp-fspi",
1313		.of_match_table = nxp_fspi_dt_ids,
1314		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1315		.pm =   &nxp_fspi_pm_ops,
1316	},
1317	.probe          = nxp_fspi_probe,
1318	.remove_new	= nxp_fspi_remove,
1319};
1320module_platform_driver(nxp_fspi_driver);
1321
1322MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1323MODULE_AUTHOR("NXP Semiconductor");
1324MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1325MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1326MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1327MODULE_LICENSE("GPL v2");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0+
   2
   3/*
   4 * NXP FlexSPI(FSPI) controller driver.
   5 *
   6 * Copyright 2019-2020 NXP
   7 * Copyright 2020 Puresoftware Ltd.
   8 *
   9 * FlexSPI is a flexsible SPI host controller which supports two SPI
  10 * channels and up to 4 external devices. Each channel supports
  11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
  12 * data lines).
  13 *
  14 * FlexSPI controller is driven by the LUT(Look-up Table) registers
  15 * LUT registers are a look-up-table for sequences of instructions.
  16 * A valid sequence consists of four LUT registers.
  17 * Maximum 32 LUT sequences can be programmed simultaneously.
  18 *
  19 * LUTs are being created at run-time based on the commands passed
  20 * from the spi-mem framework, thus using single LUT index.
  21 *
  22 * Software triggered Flash read/write access by IP Bus.
  23 *
  24 * Memory mapped read access by AHB Bus.
  25 *
  26 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
  27 *
  28 * Author:
  29 *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
  30 *     Boris Brezillon <bbrezillon@kernel.org>
  31 *     Frieder Schrempf <frieder.schrempf@kontron.de>
  32 */
  33
  34#include <linux/acpi.h>
  35#include <linux/bitops.h>
 
  36#include <linux/clk.h>
  37#include <linux/completion.h>
  38#include <linux/delay.h>
  39#include <linux/err.h>
  40#include <linux/errno.h>
  41#include <linux/interrupt.h>
  42#include <linux/io.h>
  43#include <linux/iopoll.h>
  44#include <linux/jiffies.h>
  45#include <linux/kernel.h>
  46#include <linux/module.h>
  47#include <linux/mutex.h>
  48#include <linux/of.h>
  49#include <linux/of_device.h>
  50#include <linux/platform_device.h>
  51#include <linux/pm_qos.h>
  52#include <linux/regmap.h>
  53#include <linux/sizes.h>
  54#include <linux/sys_soc.h>
  55
  56#include <linux/mfd/syscon.h>
  57#include <linux/spi/spi.h>
  58#include <linux/spi/spi-mem.h>
  59
  60/*
  61 * The driver only uses one single LUT entry, that is updated on
  62 * each call of exec_op(). Index 0 is preset at boot with a basic
  63 * read operation, so let's use the last entry (31).
  64 */
  65#define	SEQID_LUT			31
  66
  67/* Registers used by the driver */
  68#define FSPI_MCR0			0x00
  69#define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
  70#define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
  71#define FSPI_MCR0_LEARN_EN		BIT(15)
  72#define FSPI_MCR0_SCRFRUN_EN		BIT(14)
  73#define FSPI_MCR0_OCTCOMB_EN		BIT(13)
  74#define FSPI_MCR0_DOZE_EN		BIT(12)
  75#define FSPI_MCR0_HSEN			BIT(11)
  76#define FSPI_MCR0_SERCLKDIV		BIT(8)
  77#define FSPI_MCR0_ATDF_EN		BIT(7)
  78#define FSPI_MCR0_ARDF_EN		BIT(6)
  79#define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
  80#define FSPI_MCR0_END_CFG(x)		((x) << 2)
  81#define FSPI_MCR0_MDIS			BIT(1)
  82#define FSPI_MCR0_SWRST			BIT(0)
  83
  84#define FSPI_MCR1			0x04
  85#define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
  86#define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
  87
  88#define FSPI_MCR2			0x08
  89#define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
  90#define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
  91#define FSPI_MCR2_CLRLRPHS		BIT(14)
  92#define FSPI_MCR2_ABRDATSZ		BIT(8)
  93#define FSPI_MCR2_ABRLEARN		BIT(7)
  94#define FSPI_MCR2_ABR_READ		BIT(6)
  95#define FSPI_MCR2_ABRWRITE		BIT(5)
  96#define FSPI_MCR2_ABRDUMMY		BIT(4)
  97#define FSPI_MCR2_ABR_MODE		BIT(3)
  98#define FSPI_MCR2_ABRCADDR		BIT(2)
  99#define FSPI_MCR2_ABRRADDR		BIT(1)
 100#define FSPI_MCR2_ABR_CMD		BIT(0)
 101
 102#define FSPI_AHBCR			0x0c
 103#define FSPI_AHBCR_RDADDROPT		BIT(6)
 104#define FSPI_AHBCR_PREF_EN		BIT(5)
 105#define FSPI_AHBCR_BUFF_EN		BIT(4)
 106#define FSPI_AHBCR_CACH_EN		BIT(3)
 107#define FSPI_AHBCR_CLRTXBUF		BIT(2)
 108#define FSPI_AHBCR_CLRRXBUF		BIT(1)
 109#define FSPI_AHBCR_PAR_EN		BIT(0)
 110
 111#define FSPI_INTEN			0x10
 112#define FSPI_INTEN_SCLKSBWR		BIT(9)
 113#define FSPI_INTEN_SCLKSBRD		BIT(8)
 114#define FSPI_INTEN_DATALRNFL		BIT(7)
 115#define FSPI_INTEN_IPTXWE		BIT(6)
 116#define FSPI_INTEN_IPRXWA		BIT(5)
 117#define FSPI_INTEN_AHBCMDERR		BIT(4)
 118#define FSPI_INTEN_IPCMDERR		BIT(3)
 119#define FSPI_INTEN_AHBCMDGE		BIT(2)
 120#define FSPI_INTEN_IPCMDGE		BIT(1)
 121#define FSPI_INTEN_IPCMDDONE		BIT(0)
 122
 123#define FSPI_INTR			0x14
 124#define FSPI_INTR_SCLKSBWR		BIT(9)
 125#define FSPI_INTR_SCLKSBRD		BIT(8)
 126#define FSPI_INTR_DATALRNFL		BIT(7)
 127#define FSPI_INTR_IPTXWE		BIT(6)
 128#define FSPI_INTR_IPRXWA		BIT(5)
 129#define FSPI_INTR_AHBCMDERR		BIT(4)
 130#define FSPI_INTR_IPCMDERR		BIT(3)
 131#define FSPI_INTR_AHBCMDGE		BIT(2)
 132#define FSPI_INTR_IPCMDGE		BIT(1)
 133#define FSPI_INTR_IPCMDDONE		BIT(0)
 134
 135#define FSPI_LUTKEY			0x18
 136#define FSPI_LUTKEY_VALUE		0x5AF05AF0
 137
 138#define FSPI_LCKCR			0x1C
 139
 140#define FSPI_LCKER_LOCK			0x1
 141#define FSPI_LCKER_UNLOCK		0x2
 142
 143#define FSPI_BUFXCR_INVALID_MSTRID	0xE
 144#define FSPI_AHBRX_BUF0CR0		0x20
 145#define FSPI_AHBRX_BUF1CR0		0x24
 146#define FSPI_AHBRX_BUF2CR0		0x28
 147#define FSPI_AHBRX_BUF3CR0		0x2C
 148#define FSPI_AHBRX_BUF4CR0		0x30
 149#define FSPI_AHBRX_BUF5CR0		0x34
 150#define FSPI_AHBRX_BUF6CR0		0x38
 151#define FSPI_AHBRX_BUF7CR0		0x3C
 152#define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
 153
 154#define FSPI_AHBRX_BUF0CR1		0x40
 155#define FSPI_AHBRX_BUF1CR1		0x44
 156#define FSPI_AHBRX_BUF2CR1		0x48
 157#define FSPI_AHBRX_BUF3CR1		0x4C
 158#define FSPI_AHBRX_BUF4CR1		0x50
 159#define FSPI_AHBRX_BUF5CR1		0x54
 160#define FSPI_AHBRX_BUF6CR1		0x58
 161#define FSPI_AHBRX_BUF7CR1		0x5C
 162
 163#define FSPI_FLSHA1CR0			0x60
 164#define FSPI_FLSHA2CR0			0x64
 165#define FSPI_FLSHB1CR0			0x68
 166#define FSPI_FLSHB2CR0			0x6C
 167#define FSPI_FLSHXCR0_SZ_KB		10
 168#define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
 169
 170#define FSPI_FLSHA1CR1			0x70
 171#define FSPI_FLSHA2CR1			0x74
 172#define FSPI_FLSHB1CR1			0x78
 173#define FSPI_FLSHB2CR1			0x7C
 174#define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
 175#define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
 176#define FSPI_FLSHXCR1_WA		BIT(10)
 177#define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
 178#define FSPI_FLSHXCR1_TCSS(x)		(x)
 179
 180#define FSPI_FLSHA1CR2			0x80
 181#define FSPI_FLSHA2CR2			0x84
 182#define FSPI_FLSHB1CR2			0x88
 183#define FSPI_FLSHB2CR2			0x8C
 184#define FSPI_FLSHXCR2_CLRINSP		BIT(24)
 185#define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
 186#define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
 187#define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
 188#define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
 189#define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
 190
 191#define FSPI_IPCR0			0xA0
 192
 193#define FSPI_IPCR1			0xA4
 194#define FSPI_IPCR1_IPAREN		BIT(31)
 195#define FSPI_IPCR1_SEQNUM_SHIFT		24
 196#define FSPI_IPCR1_SEQID_SHIFT		16
 197#define FSPI_IPCR1_IDATSZ(x)		(x)
 198
 199#define FSPI_IPCMD			0xB0
 200#define FSPI_IPCMD_TRG			BIT(0)
 201
 202#define FSPI_DLPR			0xB4
 203
 204#define FSPI_IPRXFCR			0xB8
 205#define FSPI_IPRXFCR_CLR		BIT(0)
 206#define FSPI_IPRXFCR_DMA_EN		BIT(1)
 207#define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
 208
 209#define FSPI_IPTXFCR			0xBC
 210#define FSPI_IPTXFCR_CLR		BIT(0)
 211#define FSPI_IPTXFCR_DMA_EN		BIT(1)
 212#define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
 213
 214#define FSPI_DLLACR			0xC0
 215#define FSPI_DLLACR_OVRDEN		BIT(8)
 
 
 
 216
 217#define FSPI_DLLBCR			0xC4
 218#define FSPI_DLLBCR_OVRDEN		BIT(8)
 
 
 
 219
 220#define FSPI_STS0			0xE0
 221#define FSPI_STS0_DLPHB(x)		((x) << 8)
 222#define FSPI_STS0_DLPHA(x)		((x) << 4)
 223#define FSPI_STS0_CMD_SRC(x)		((x) << 2)
 224#define FSPI_STS0_ARB_IDLE		BIT(1)
 225#define FSPI_STS0_SEQ_IDLE		BIT(0)
 226
 227#define FSPI_STS1			0xE4
 228#define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
 229#define FSPI_STS1_IP_ERRID(x)		((x) << 16)
 230#define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
 231#define FSPI_STS1_AHB_ERRID(x)		(x)
 232
 
 
 
 
 
 
 
 
 
 
 233#define FSPI_AHBSPNST			0xEC
 234#define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
 235#define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
 236#define FSPI_AHBSPNST_ACTIVE		BIT(0)
 237
 238#define FSPI_IPRXFSTS			0xF0
 239#define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
 240#define FSPI_IPRXFSTS_FILL(x)		(x)
 241
 242#define FSPI_IPTXFSTS			0xF4
 243#define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
 244#define FSPI_IPTXFSTS_FILL(x)		(x)
 245
 246#define FSPI_RFDR			0x100
 247#define FSPI_TFDR			0x180
 248
 249#define FSPI_LUT_BASE			0x200
 250#define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
 251#define FSPI_LUT_REG(idx) \
 252	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
 253
 254/* register map end */
 255
 256/* Instruction set for the LUT register. */
 257#define LUT_STOP			0x00
 258#define LUT_CMD				0x01
 259#define LUT_ADDR			0x02
 260#define LUT_CADDR_SDR			0x03
 261#define LUT_MODE			0x04
 262#define LUT_MODE2			0x05
 263#define LUT_MODE4			0x06
 264#define LUT_MODE8			0x07
 265#define LUT_NXP_WRITE			0x08
 266#define LUT_NXP_READ			0x09
 267#define LUT_LEARN_SDR			0x0A
 268#define LUT_DATSZ_SDR			0x0B
 269#define LUT_DUMMY			0x0C
 270#define LUT_DUMMY_RWDS_SDR		0x0D
 271#define LUT_JMP_ON_CS			0x1F
 272#define LUT_CMD_DDR			0x21
 273#define LUT_ADDR_DDR			0x22
 274#define LUT_CADDR_DDR			0x23
 275#define LUT_MODE_DDR			0x24
 276#define LUT_MODE2_DDR			0x25
 277#define LUT_MODE4_DDR			0x26
 278#define LUT_MODE8_DDR			0x27
 279#define LUT_WRITE_DDR			0x28
 280#define LUT_READ_DDR			0x29
 281#define LUT_LEARN_DDR			0x2A
 282#define LUT_DATSZ_DDR			0x2B
 283#define LUT_DUMMY_DDR			0x2C
 284#define LUT_DUMMY_RWDS_DDR		0x2D
 285
 286/*
 287 * Calculate number of required PAD bits for LUT register.
 288 *
 289 * The pad stands for the number of IO lines [0:7].
 290 * For example, the octal read needs eight IO lines,
 291 * so you should use LUT_PAD(8). This macro
 292 * returns 3 i.e. use eight (2^3) IP lines for read.
 293 */
 294#define LUT_PAD(x) (fls(x) - 1)
 295
 296/*
 297 * Macro for constructing the LUT entries with the following
 298 * register layout:
 299 *
 300 *  ---------------------------------------------------
 301 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 302 *  ---------------------------------------------------
 303 */
 304#define PAD_SHIFT		8
 305#define INSTR_SHIFT		10
 306#define OPRND_SHIFT		16
 307
 308/* Macros for constructing the LUT register. */
 309#define LUT_DEF(idx, ins, pad, opr)			  \
 310	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
 311	(opr)) << (((idx) % 2) * OPRND_SHIFT))
 312
 313#define POLL_TOUT		5000
 314#define NXP_FSPI_MAX_CHIPSELECT		4
 315#define NXP_FSPI_MIN_IOMAP	SZ_4M
 316
 317#define DCFG_RCWSR1		0x100
 
 318
 319/* Access flash memory using IP bus only */
 320#define FSPI_QUIRK_USE_IP_ONLY	BIT(0)
 321
 322struct nxp_fspi_devtype_data {
 323	unsigned int rxfifo;
 324	unsigned int txfifo;
 325	unsigned int ahb_buf_size;
 326	unsigned int quirks;
 327	bool little_endian;
 328};
 329
 330static struct nxp_fspi_devtype_data lx2160a_data = {
 331	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 332	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 333	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 334	.quirks = 0,
 335	.little_endian = true,  /* little-endian    */
 336};
 337
 338static struct nxp_fspi_devtype_data imx8mm_data = {
 339	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 340	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 341	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 342	.quirks = 0,
 343	.little_endian = true,  /* little-endian    */
 344};
 345
 346static struct nxp_fspi_devtype_data imx8qxp_data = {
 347	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 348	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 349	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 350	.quirks = 0,
 351	.little_endian = true,  /* little-endian    */
 352};
 353
 354static struct nxp_fspi_devtype_data imx8dxl_data = {
 355	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
 356	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
 357	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 358	.quirks = FSPI_QUIRK_USE_IP_ONLY,
 359	.little_endian = true,  /* little-endian    */
 360};
 361
 362struct nxp_fspi {
 363	void __iomem *iobase;
 364	void __iomem *ahb_addr;
 365	u32 memmap_phy;
 366	u32 memmap_phy_size;
 367	u32 memmap_start;
 368	u32 memmap_len;
 369	struct clk *clk, *clk_en;
 370	struct device *dev;
 371	struct completion c;
 372	struct nxp_fspi_devtype_data *devtype_data;
 373	struct mutex lock;
 374	struct pm_qos_request pm_qos_req;
 375	int selected;
 376};
 377
 378static inline int needs_ip_only(struct nxp_fspi *f)
 379{
 380	return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
 381}
 382
 383/*
 384 * R/W functions for big- or little-endian registers:
 385 * The FSPI controller's endianness is independent of
 386 * the CPU core's endianness. So far, although the CPU
 387 * core is little-endian the FSPI controller can use
 388 * big-endian or little-endian.
 389 */
 390static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
 391{
 392	if (f->devtype_data->little_endian)
 393		iowrite32(val, addr);
 394	else
 395		iowrite32be(val, addr);
 396}
 397
 398static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
 399{
 400	if (f->devtype_data->little_endian)
 401		return ioread32(addr);
 402	else
 403		return ioread32be(addr);
 404}
 405
 406static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
 407{
 408	struct nxp_fspi *f = dev_id;
 409	u32 reg;
 410
 411	/* clear interrupt */
 412	reg = fspi_readl(f, f->iobase + FSPI_INTR);
 413	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
 414
 415	if (reg & FSPI_INTR_IPCMDDONE)
 416		complete(&f->c);
 417
 418	return IRQ_HANDLED;
 419}
 420
 421static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
 422{
 423	switch (width) {
 424	case 1:
 425	case 2:
 426	case 4:
 427	case 8:
 428		return 0;
 429	}
 430
 431	return -ENOTSUPP;
 432}
 433
 434static bool nxp_fspi_supports_op(struct spi_mem *mem,
 435				 const struct spi_mem_op *op)
 436{
 437	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 438	int ret;
 439
 440	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
 441
 442	if (op->addr.nbytes)
 443		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
 444
 445	if (op->dummy.nbytes)
 446		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
 447
 448	if (op->data.nbytes)
 449		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
 450
 451	if (ret)
 452		return false;
 453
 454	/*
 455	 * The number of address bytes should be equal to or less than 4 bytes.
 456	 */
 457	if (op->addr.nbytes > 4)
 458		return false;
 459
 460	/*
 461	 * If requested address value is greater than controller assigned
 462	 * memory mapped space, return error as it didn't fit in the range
 463	 * of assigned address space.
 464	 */
 465	if (op->addr.val >= f->memmap_phy_size)
 466		return false;
 467
 468	/* Max 64 dummy clock cycles supported */
 469	if (op->dummy.buswidth &&
 470	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
 471		return false;
 472
 473	/* Max data length, check controller limits and alignment */
 474	if (op->data.dir == SPI_MEM_DATA_IN &&
 475	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
 476	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
 477	      !IS_ALIGNED(op->data.nbytes, 8))))
 478		return false;
 479
 480	if (op->data.dir == SPI_MEM_DATA_OUT &&
 481	    op->data.nbytes > f->devtype_data->txfifo)
 482		return false;
 483
 484	return spi_mem_default_supports_op(mem, op);
 485}
 486
 487/* Instead of busy looping invoke readl_poll_timeout functionality. */
 488static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
 489				u32 mask, u32 delay_us,
 490				u32 timeout_us, bool c)
 491{
 492	u32 reg;
 493
 494	if (!f->devtype_data->little_endian)
 495		mask = (u32)cpu_to_be32(mask);
 496
 497	if (c)
 498		return readl_poll_timeout(base, reg, (reg & mask),
 499					  delay_us, timeout_us);
 500	else
 501		return readl_poll_timeout(base, reg, !(reg & mask),
 502					  delay_us, timeout_us);
 503}
 504
 505/*
 506 * If the slave device content being changed by Write/Erase, need to
 507 * invalidate the AHB buffer. This can be achieved by doing the reset
 508 * of controller after setting MCR0[SWRESET] bit.
 509 */
 510static inline void nxp_fspi_invalid(struct nxp_fspi *f)
 511{
 512	u32 reg;
 513	int ret;
 514
 515	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
 516	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
 517
 518	/* w1c register, wait unit clear */
 519	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 520				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 521	WARN_ON(ret);
 522}
 523
 524static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
 525				 const struct spi_mem_op *op)
 526{
 527	void __iomem *base = f->iobase;
 528	u32 lutval[4] = {};
 529	int lutidx = 1, i;
 530
 531	/* cmd */
 532	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
 533			     op->cmd.opcode);
 534
 535	/* addr bytes */
 536	if (op->addr.nbytes) {
 537		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
 538					      LUT_PAD(op->addr.buswidth),
 539					      op->addr.nbytes * 8);
 540		lutidx++;
 541	}
 542
 543	/* dummy bytes, if needed */
 544	if (op->dummy.nbytes) {
 545		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
 546		/*
 547		 * Due to FlexSPI controller limitation number of PAD for dummy
 548		 * buswidth needs to be programmed as equal to data buswidth.
 549		 */
 550					      LUT_PAD(op->data.buswidth),
 551					      op->dummy.nbytes * 8 /
 552					      op->dummy.buswidth);
 553		lutidx++;
 554	}
 555
 556	/* read/write data bytes */
 557	if (op->data.nbytes) {
 558		lutval[lutidx / 2] |= LUT_DEF(lutidx,
 559					      op->data.dir == SPI_MEM_DATA_IN ?
 560					      LUT_NXP_READ : LUT_NXP_WRITE,
 561					      LUT_PAD(op->data.buswidth),
 562					      0);
 563		lutidx++;
 564	}
 565
 566	/* stop condition. */
 567	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
 568
 569	/* unlock LUT */
 570	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 571	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
 572
 573	/* fill LUT */
 574	for (i = 0; i < ARRAY_SIZE(lutval); i++)
 575		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
 576
 577	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
 578		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
 579
 580	/* lock LUT */
 581	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 582	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
 583}
 584
 585static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
 586{
 587	int ret;
 588
 589	if (is_acpi_node(f->dev->fwnode))
 590		return 0;
 591
 592	ret = clk_prepare_enable(f->clk_en);
 593	if (ret)
 594		return ret;
 595
 596	ret = clk_prepare_enable(f->clk);
 597	if (ret) {
 598		clk_disable_unprepare(f->clk_en);
 599		return ret;
 600	}
 601
 602	return 0;
 603}
 604
 605static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
 606{
 607	if (is_acpi_node(f->dev->fwnode))
 608		return 0;
 609
 610	clk_disable_unprepare(f->clk);
 611	clk_disable_unprepare(f->clk_en);
 612
 613	return 0;
 614}
 615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616/*
 617 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
 618 * register and start base address of the slave device.
 619 *
 620 *							    (Higher address)
 621 *				--------    <-- FLSHB2CR0
 622 *				|  B2  |
 623 *				|      |
 624 *	B2 start address -->	--------    <-- FLSHB1CR0
 625 *				|  B1  |
 626 *				|      |
 627 *	B1 start address -->	--------    <-- FLSHA2CR0
 628 *				|  A2  |
 629 *				|      |
 630 *	A2 start address -->	--------    <-- FLSHA1CR0
 631 *				|  A1  |
 632 *				|      |
 633 *	A1 start address -->	--------		    (Lower address)
 634 *
 635 *
 636 * Start base address defines the starting address range for given CS and
 637 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
 638 *
 639 * But, different targets are having different combinations of number of CS,
 640 * some targets only have single CS or two CS covering controller's full
 641 * memory mapped space area.
 642 * Thus, implementation is being done as independent of the size and number
 643 * of the connected slave device.
 644 * Assign controller memory mapped space size as the size to the connected
 645 * slave device.
 646 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
 647 * chip-select Flash configuration register.
 648 *
 649 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
 650 * memory mapped size of the controller.
 651 * Value for rest of the CS FLSHxxCR0 register would be zero.
 652 *
 653 */
 654static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
 655{
 656	unsigned long rate = spi->max_speed_hz;
 657	int ret;
 658	uint64_t size_kb;
 659
 660	/*
 661	 * Return, if previously selected slave device is same as current
 662	 * requested slave device.
 663	 */
 664	if (f->selected == spi->chip_select)
 665		return;
 666
 667	/* Reset FLSHxxCR0 registers */
 668	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
 669	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
 670	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
 671	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
 672
 673	/* Assign controller memory mapped space as size, KBytes, of flash. */
 674	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
 675
 676	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
 677		    4 * spi->chip_select);
 678
 679	dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
 680
 681	nxp_fspi_clk_disable_unprep(f);
 682
 683	ret = clk_set_rate(f->clk, rate);
 684	if (ret)
 685		return;
 686
 687	ret = nxp_fspi_clk_prep_enable(f);
 688	if (ret)
 689		return;
 690
 691	f->selected = spi->chip_select;
 
 
 
 
 
 
 
 692}
 693
 694static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
 695{
 696	u32 start = op->addr.val;
 697	u32 len = op->data.nbytes;
 698
 699	/* if necessary, ioremap before AHB read */
 700	if ((!f->ahb_addr) || start < f->memmap_start ||
 701	     start + len > f->memmap_start + f->memmap_len) {
 702		if (f->ahb_addr)
 703			iounmap(f->ahb_addr);
 704
 705		f->memmap_start = start;
 706		f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
 707				len : NXP_FSPI_MIN_IOMAP;
 708
 709		f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
 710					 f->memmap_len);
 711
 712		if (!f->ahb_addr) {
 713			dev_err(f->dev, "failed to alloc memory\n");
 714			return -ENOMEM;
 715		}
 716	}
 717
 718	/* Read out the data directly from the AHB buffer. */
 719	memcpy_fromio(op->data.buf.in,
 720		      f->ahb_addr + start - f->memmap_start, len);
 721
 722	return 0;
 723}
 724
 725static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
 726				 const struct spi_mem_op *op)
 727{
 728	void __iomem *base = f->iobase;
 729	int i, ret;
 730	u8 *buf = (u8 *) op->data.buf.out;
 731
 732	/* clear the TX FIFO. */
 733	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
 734
 735	/*
 736	 * Default value of water mark level is 8 bytes, hence in single
 737	 * write request controller can write max 8 bytes of data.
 738	 */
 739
 740	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
 741		/* Wait for TXFIFO empty */
 742		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 743					   FSPI_INTR_IPTXWE, 0,
 744					   POLL_TOUT, true);
 745		WARN_ON(ret);
 746
 747		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
 748		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
 749		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 750	}
 751
 752	if (i < op->data.nbytes) {
 753		u32 data = 0;
 754		int j;
 755		/* Wait for TXFIFO empty */
 756		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 757					   FSPI_INTR_IPTXWE, 0,
 758					   POLL_TOUT, true);
 759		WARN_ON(ret);
 760
 761		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
 762			memcpy(&data, buf + i + j, 4);
 763			fspi_writel(f, data, base + FSPI_TFDR + j);
 764		}
 765		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 766	}
 767}
 768
 769static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
 770			  const struct spi_mem_op *op)
 771{
 772	void __iomem *base = f->iobase;
 773	int i, ret;
 774	int len = op->data.nbytes;
 775	u8 *buf = (u8 *) op->data.buf.in;
 776
 777	/*
 778	 * Default value of water mark level is 8 bytes, hence in single
 779	 * read request controller can read max 8 bytes of data.
 780	 */
 781	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
 782		/* Wait for RXFIFO available */
 783		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 784					   FSPI_INTR_IPRXWA, 0,
 785					   POLL_TOUT, true);
 786		WARN_ON(ret);
 787
 788		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
 789		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
 790		/* move the FIFO pointer */
 791		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 792	}
 793
 794	if (i < len) {
 795		u32 tmp;
 796		int size, j;
 797
 798		buf = op->data.buf.in + i;
 799		/* Wait for RXFIFO available */
 800		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 801					   FSPI_INTR_IPRXWA, 0,
 802					   POLL_TOUT, true);
 803		WARN_ON(ret);
 804
 805		len = op->data.nbytes - i;
 806		for (j = 0; j < op->data.nbytes - i; j += 4) {
 807			tmp = fspi_readl(f, base + FSPI_RFDR + j);
 808			size = min(len, 4);
 809			memcpy(buf + j, &tmp, size);
 810			len -= size;
 811		}
 812	}
 813
 814	/* invalid the RXFIFO */
 815	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
 816	/* move the FIFO pointer */
 817	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 818}
 819
 820static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
 821{
 822	void __iomem *base = f->iobase;
 823	int seqnum = 0;
 824	int err = 0;
 825	u32 reg;
 826
 827	reg = fspi_readl(f, base + FSPI_IPRXFCR);
 828	/* invalid RXFIFO first */
 829	reg &= ~FSPI_IPRXFCR_DMA_EN;
 830	reg = reg | FSPI_IPRXFCR_CLR;
 831	fspi_writel(f, reg, base + FSPI_IPRXFCR);
 832
 833	init_completion(&f->c);
 834
 835	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
 836	/*
 837	 * Always start the sequence at the same index since we update
 838	 * the LUT at each exec_op() call. And also specify the DATA
 839	 * length, since it's has not been specified in the LUT.
 840	 */
 841	fspi_writel(f, op->data.nbytes |
 842		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
 843		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
 844		 base + FSPI_IPCR1);
 845
 846	/* Trigger the LUT now. */
 847	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
 848
 849	/* Wait for the interrupt. */
 850	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
 851		err = -ETIMEDOUT;
 852
 853	/* Invoke IP data read, if request is of data read. */
 854	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
 855		nxp_fspi_read_rxfifo(f, op);
 856
 857	return err;
 858}
 859
 860static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
 861{
 862	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 863	int err = 0;
 864
 865	mutex_lock(&f->lock);
 866
 867	/* Wait for controller being ready. */
 868	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
 869				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
 870	WARN_ON(err);
 871
 872	nxp_fspi_select_mem(f, mem->spi);
 873
 874	nxp_fspi_prepare_lut(f, op);
 875	/*
 876	 * If we have large chunks of data, we read them through the AHB bus by
 877	 * accessing the mapped memory. In all other cases we use IP commands
 878	 * to access the flash. Read via AHB bus may be corrupted due to
 879	 * existence of an errata and therefore discard AHB read in such cases.
 880	 */
 881	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
 882	    op->data.dir == SPI_MEM_DATA_IN &&
 883	    !needs_ip_only(f)) {
 884		err = nxp_fspi_read_ahb(f, op);
 885	} else {
 886		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
 887			nxp_fspi_fill_txfifo(f, op);
 888
 889		err = nxp_fspi_do_op(f, op);
 890	}
 891
 892	/* Invalidate the data in the AHB buffer. */
 893	nxp_fspi_invalid(f);
 894
 895	mutex_unlock(&f->lock);
 896
 897	return err;
 898}
 899
 900static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
 901{
 902	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 903
 904	if (op->data.dir == SPI_MEM_DATA_OUT) {
 905		if (op->data.nbytes > f->devtype_data->txfifo)
 906			op->data.nbytes = f->devtype_data->txfifo;
 907	} else {
 908		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
 909			op->data.nbytes = f->devtype_data->ahb_buf_size;
 910		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
 911			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
 912	}
 913
 914	/* Limit data bytes to RX FIFO in case of IP read only */
 915	if (op->data.dir == SPI_MEM_DATA_IN &&
 916	    needs_ip_only(f) &&
 917	    op->data.nbytes > f->devtype_data->rxfifo)
 918		op->data.nbytes = f->devtype_data->rxfifo;
 919
 920	return 0;
 921}
 922
 923static void erratum_err050568(struct nxp_fspi *f)
 924{
 925	const struct soc_device_attribute ls1028a_soc_attr[] = {
 926		{ .family = "QorIQ LS1028A" },
 927		{ /* sentinel */ }
 928	};
 929	struct device_node *np;
 930	struct regmap *map;
 931	u32 val = 0, sysclk = 0;
 932	int ret;
 933
 934	/* Check for LS1028A family */
 935	if (!soc_device_match(ls1028a_soc_attr)) {
 936		dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
 937		return;
 938	}
 939
 940	/* Compute system clock frequency multiplier ratio */
 941	map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
 942	if (IS_ERR(map)) {
 943		dev_err(f->dev, "No syscon regmap\n");
 944		goto err;
 945	}
 946
 947	ret = regmap_read(map, DCFG_RCWSR1, &val);
 948	if (ret < 0)
 949		goto err;
 950
 951	/* Strap bits 6:2 define SYS_PLL_RAT i.e frequency multiplier ratio */
 952	val = (val >> 2) & 0x1F;
 953	WARN(val == 0, "Strapping is zero: Cannot determine ratio");
 954
 955	/* Compute system clock frequency */
 956	np = of_find_node_by_name(NULL, "clock-sysclk");
 957	if (!np)
 958		goto err;
 959
 960	if (of_property_read_u32(np, "clock-frequency", &sysclk))
 961		goto err;
 962
 963	sysclk = (sysclk * val) / 1000000; /* Convert sysclk to Mhz */
 964	dev_dbg(f->dev, "val: 0x%08x, sysclk: %dMhz\n", val, sysclk);
 965
 966	/* Use IP bus only if PLL is 300MHz */
 967	if (sysclk == 300)
 968		f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
 969
 970	return;
 971
 972err:
 973	dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
 974}
 975
 976static int nxp_fspi_default_setup(struct nxp_fspi *f)
 977{
 978	void __iomem *base = f->iobase;
 979	int ret, i;
 980	u32 reg;
 981
 982	/* disable and unprepare clock to avoid glitch pass to controller */
 983	nxp_fspi_clk_disable_unprep(f);
 984
 985	/* the default frequency, we will change it later if necessary. */
 986	ret = clk_set_rate(f->clk, 20000000);
 987	if (ret)
 988		return ret;
 989
 990	ret = nxp_fspi_clk_prep_enable(f);
 991	if (ret)
 992		return ret;
 993
 994	/*
 995	 * ERR050568: Flash access by FlexSPI AHB command may not work with
 996	 * platform frequency equal to 300 MHz on LS1028A.
 997	 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
 998	 * Layerscape LS1028A platform.
 999	 */
1000	if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
1001		erratum_err050568(f);
1002
1003	/* Reset the module */
1004	/* w1c register, wait unit clear */
1005	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
1006				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
1007	WARN_ON(ret);
1008
1009	/* Disable the module */
1010	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
1011
1012	/* Reset the DLL register to default value */
 
 
 
 
1013	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
1014	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
1015
1016	/* enable module */
1017	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1018		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1019		    base + FSPI_MCR0);
1020
1021	/*
1022	 * Disable same device enable bit and configure all slave devices
1023	 * independently.
1024	 */
1025	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1026	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1027	fspi_writel(f, reg, base + FSPI_MCR2);
1028
1029	/* AHB configuration for access buffer 0~7. */
1030	for (i = 0; i < 7; i++)
1031		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1032
1033	/*
1034	 * Set ADATSZ with the maximum AHB buffer size to improve the read
1035	 * performance.
1036	 */
1037	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1038		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1039
1040	/* prefetch and no start address alignment limitation */
1041	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1042		 base + FSPI_AHBCR);
1043
 
 
 
 
 
 
 
1044	/* AHB Read - Set lut sequence ID for all CS. */
1045	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
1046	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
1047	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
1048	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
1049
1050	f->selected = -1;
1051
1052	/* enable the interrupt */
1053	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1054
1055	return 0;
1056}
1057
1058static const char *nxp_fspi_get_name(struct spi_mem *mem)
1059{
1060	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
1061	struct device *dev = &mem->spi->dev;
1062	const char *name;
1063
1064	// Set custom name derived from the platform_device of the controller.
1065	if (of_get_available_child_count(f->dev->of_node) == 1)
1066		return dev_name(f->dev);
1067
1068	name = devm_kasprintf(dev, GFP_KERNEL,
1069			      "%s-%d", dev_name(f->dev),
1070			      mem->spi->chip_select);
1071
1072	if (!name) {
1073		dev_err(dev, "failed to get memory for custom flash name\n");
1074		return ERR_PTR(-ENOMEM);
1075	}
1076
1077	return name;
1078}
1079
1080static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1081	.adjust_op_size = nxp_fspi_adjust_op_size,
1082	.supports_op = nxp_fspi_supports_op,
1083	.exec_op = nxp_fspi_exec_op,
1084	.get_name = nxp_fspi_get_name,
1085};
1086
1087static int nxp_fspi_probe(struct platform_device *pdev)
1088{
1089	struct spi_controller *ctlr;
1090	struct device *dev = &pdev->dev;
1091	struct device_node *np = dev->of_node;
1092	struct resource *res;
1093	struct nxp_fspi *f;
1094	int ret;
1095	u32 reg;
1096
1097	ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
1098	if (!ctlr)
1099		return -ENOMEM;
1100
1101	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1102			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1103
1104	f = spi_controller_get_devdata(ctlr);
1105	f->dev = dev;
1106	f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
1107	if (!f->devtype_data) {
1108		ret = -ENODEV;
1109		goto err_put_ctrl;
1110	}
1111
1112	platform_set_drvdata(pdev, f);
1113
1114	/* find the resources - configuration register address space */
1115	if (is_acpi_node(f->dev->fwnode))
1116		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1117	else
1118		res = platform_get_resource_byname(pdev,
1119				IORESOURCE_MEM, "fspi_base");
1120
1121	f->iobase = devm_ioremap_resource(dev, res);
1122	if (IS_ERR(f->iobase)) {
1123		ret = PTR_ERR(f->iobase);
1124		goto err_put_ctrl;
1125	}
1126
1127	/* find the resources - controller memory mapped space */
1128	if (is_acpi_node(f->dev->fwnode))
1129		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1130	else
1131		res = platform_get_resource_byname(pdev,
1132				IORESOURCE_MEM, "fspi_mmap");
1133
1134	if (!res) {
1135		ret = -ENODEV;
1136		goto err_put_ctrl;
1137	}
1138
1139	/* assign memory mapped starting address and mapped size. */
1140	f->memmap_phy = res->start;
1141	f->memmap_phy_size = resource_size(res);
1142
1143	/* find the clocks */
1144	if (dev_of_node(&pdev->dev)) {
1145		f->clk_en = devm_clk_get(dev, "fspi_en");
1146		if (IS_ERR(f->clk_en)) {
1147			ret = PTR_ERR(f->clk_en);
1148			goto err_put_ctrl;
1149		}
1150
1151		f->clk = devm_clk_get(dev, "fspi");
1152		if (IS_ERR(f->clk)) {
1153			ret = PTR_ERR(f->clk);
1154			goto err_put_ctrl;
1155		}
1156
1157		ret = nxp_fspi_clk_prep_enable(f);
1158		if (ret) {
1159			dev_err(dev, "can not enable the clock\n");
1160			goto err_put_ctrl;
1161		}
1162	}
1163
1164	/* Clear potential interrupts */
1165	reg = fspi_readl(f, f->iobase + FSPI_INTR);
1166	if (reg)
1167		fspi_writel(f, reg, f->iobase + FSPI_INTR);
1168
1169	/* find the irq */
1170	ret = platform_get_irq(pdev, 0);
1171	if (ret < 0)
1172		goto err_disable_clk;
1173
1174	ret = devm_request_irq(dev, ret,
1175			nxp_fspi_irq_handler, 0, pdev->name, f);
1176	if (ret) {
1177		dev_err(dev, "failed to request irq: %d\n", ret);
1178		goto err_disable_clk;
1179	}
1180
1181	mutex_init(&f->lock);
1182
1183	ctlr->bus_num = -1;
1184	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1185	ctlr->mem_ops = &nxp_fspi_mem_ops;
1186
1187	nxp_fspi_default_setup(f);
1188
1189	ctlr->dev.of_node = np;
1190
1191	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1192	if (ret)
1193		goto err_destroy_mutex;
1194
1195	return 0;
1196
1197err_destroy_mutex:
1198	mutex_destroy(&f->lock);
1199
1200err_disable_clk:
1201	nxp_fspi_clk_disable_unprep(f);
1202
1203err_put_ctrl:
1204	spi_controller_put(ctlr);
1205
1206	dev_err(dev, "NXP FSPI probe failed\n");
1207	return ret;
1208}
1209
1210static int nxp_fspi_remove(struct platform_device *pdev)
1211{
1212	struct nxp_fspi *f = platform_get_drvdata(pdev);
1213
1214	/* disable the hardware */
1215	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1216
1217	nxp_fspi_clk_disable_unprep(f);
1218
1219	mutex_destroy(&f->lock);
1220
1221	if (f->ahb_addr)
1222		iounmap(f->ahb_addr);
1223
1224	return 0;
1225}
1226
1227static int nxp_fspi_suspend(struct device *dev)
1228{
1229	return 0;
1230}
1231
1232static int nxp_fspi_resume(struct device *dev)
1233{
1234	struct nxp_fspi *f = dev_get_drvdata(dev);
1235
1236	nxp_fspi_default_setup(f);
1237
1238	return 0;
1239}
1240
1241static const struct of_device_id nxp_fspi_dt_ids[] = {
1242	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1243	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1244	{ .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
1245	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1246	{ .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
1247	{ /* sentinel */ }
1248};
1249MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1250
1251#ifdef CONFIG_ACPI
1252static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1253	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1254	{}
1255};
1256MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1257#endif
1258
1259static const struct dev_pm_ops nxp_fspi_pm_ops = {
1260	.suspend	= nxp_fspi_suspend,
1261	.resume		= nxp_fspi_resume,
1262};
1263
1264static struct platform_driver nxp_fspi_driver = {
1265	.driver = {
1266		.name	= "nxp-fspi",
1267		.of_match_table = nxp_fspi_dt_ids,
1268		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1269		.pm =   &nxp_fspi_pm_ops,
1270	},
1271	.probe          = nxp_fspi_probe,
1272	.remove		= nxp_fspi_remove,
1273};
1274module_platform_driver(nxp_fspi_driver);
1275
1276MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1277MODULE_AUTHOR("NXP Semiconductor");
1278MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1279MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1280MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1281MODULE_LICENSE("GPL v2");