Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Synopsys DDR ECC Driver
4 * This driver is based on ppc4xx_edac.c drivers
5 *
6 * Copyright (C) 2012 - 2014 Xilinx, Inc.
7 */
8
9#include <linux/edac.h>
10#include <linux/module.h>
11#include <linux/platform_device.h>
12#include <linux/interrupt.h>
13#include <linux/of.h>
14
15#include "edac_module.h"
16
17/* Number of cs_rows needed per memory controller */
18#define SYNPS_EDAC_NR_CSROWS 1
19
20/* Number of channels per memory controller */
21#define SYNPS_EDAC_NR_CHANS 1
22
23/* Granularity of reported error in bytes */
24#define SYNPS_EDAC_ERR_GRAIN 1
25
26#define SYNPS_EDAC_MSG_SIZE 256
27
28#define SYNPS_EDAC_MOD_STRING "synps_edac"
29#define SYNPS_EDAC_MOD_VER "1"
30
31/* Synopsys DDR memory controller registers that are relevant to ECC */
32#define CTRL_OFST 0x0
33#define T_ZQ_OFST 0xA4
34
35/* ECC control register */
36#define ECC_CTRL_OFST 0xC4
37/* ECC log register */
38#define CE_LOG_OFST 0xC8
39/* ECC address register */
40#define CE_ADDR_OFST 0xCC
41/* ECC data[31:0] register */
42#define CE_DATA_31_0_OFST 0xD0
43
44/* Uncorrectable error info registers */
45#define UE_LOG_OFST 0xDC
46#define UE_ADDR_OFST 0xE0
47#define UE_DATA_31_0_OFST 0xE4
48
49#define STAT_OFST 0xF0
50#define SCRUB_OFST 0xF4
51
52/* Control register bit field definitions */
53#define CTRL_BW_MASK 0xC
54#define CTRL_BW_SHIFT 2
55
56#define DDRCTL_WDTH_16 1
57#define DDRCTL_WDTH_32 0
58
59/* ZQ register bit field definitions */
60#define T_ZQ_DDRMODE_MASK 0x2
61
62/* ECC control register bit field definitions */
63#define ECC_CTRL_CLR_CE_ERR 0x2
64#define ECC_CTRL_CLR_UE_ERR 0x1
65
66/* ECC correctable/uncorrectable error log register definitions */
67#define LOG_VALID 0x1
68#define CE_LOG_BITPOS_MASK 0xFE
69#define CE_LOG_BITPOS_SHIFT 1
70
71/* ECC correctable/uncorrectable error address register definitions */
72#define ADDR_COL_MASK 0xFFF
73#define ADDR_ROW_MASK 0xFFFF000
74#define ADDR_ROW_SHIFT 12
75#define ADDR_BANK_MASK 0x70000000
76#define ADDR_BANK_SHIFT 28
77
78/* ECC statistic register definitions */
79#define STAT_UECNT_MASK 0xFF
80#define STAT_CECNT_MASK 0xFF00
81#define STAT_CECNT_SHIFT 8
82
83/* ECC scrub register definitions */
84#define SCRUB_MODE_MASK 0x7
85#define SCRUB_MODE_SECDED 0x4
86
87/* DDR ECC Quirks */
88#define DDR_ECC_INTR_SUPPORT BIT(0)
89#define DDR_ECC_DATA_POISON_SUPPORT BIT(1)
90#define DDR_ECC_INTR_SELF_CLEAR BIT(2)
91
92/* ZynqMP Enhanced DDR memory controller registers that are relevant to ECC */
93/* ECC Configuration Registers */
94#define ECC_CFG0_OFST 0x70
95#define ECC_CFG1_OFST 0x74
96
97/* ECC Status Register */
98#define ECC_STAT_OFST 0x78
99
100/* ECC Clear Register */
101#define ECC_CLR_OFST 0x7C
102
103/* ECC Error count Register */
104#define ECC_ERRCNT_OFST 0x80
105
106/* ECC Corrected Error Address Register */
107#define ECC_CEADDR0_OFST 0x84
108#define ECC_CEADDR1_OFST 0x88
109
110/* ECC Syndrome Registers */
111#define ECC_CSYND0_OFST 0x8C
112#define ECC_CSYND1_OFST 0x90
113#define ECC_CSYND2_OFST 0x94
114
115/* ECC Bit Mask0 Address Register */
116#define ECC_BITMASK0_OFST 0x98
117#define ECC_BITMASK1_OFST 0x9C
118#define ECC_BITMASK2_OFST 0xA0
119
120/* ECC UnCorrected Error Address Register */
121#define ECC_UEADDR0_OFST 0xA4
122#define ECC_UEADDR1_OFST 0xA8
123
124/* ECC Syndrome Registers */
125#define ECC_UESYND0_OFST 0xAC
126#define ECC_UESYND1_OFST 0xB0
127#define ECC_UESYND2_OFST 0xB4
128
129/* ECC Poison Address Reg */
130#define ECC_POISON0_OFST 0xB8
131#define ECC_POISON1_OFST 0xBC
132
133#define ECC_ADDRMAP0_OFFSET 0x200
134
135/* Control register bitfield definitions */
136#define ECC_CTRL_BUSWIDTH_MASK 0x3000
137#define ECC_CTRL_BUSWIDTH_SHIFT 12
138#define ECC_CTRL_CLR_CE_ERRCNT BIT(2)
139#define ECC_CTRL_CLR_UE_ERRCNT BIT(3)
140
141/* DDR Control Register width definitions */
142#define DDRCTL_EWDTH_16 2
143#define DDRCTL_EWDTH_32 1
144#define DDRCTL_EWDTH_64 0
145
146/* ECC status register definitions */
147#define ECC_STAT_UECNT_MASK 0xF0000
148#define ECC_STAT_UECNT_SHIFT 16
149#define ECC_STAT_CECNT_MASK 0xF00
150#define ECC_STAT_CECNT_SHIFT 8
151#define ECC_STAT_BITNUM_MASK 0x7F
152
153/* ECC error count register definitions */
154#define ECC_ERRCNT_UECNT_MASK 0xFFFF0000
155#define ECC_ERRCNT_UECNT_SHIFT 16
156#define ECC_ERRCNT_CECNT_MASK 0xFFFF
157
158/* DDR QOS Interrupt register definitions */
159#define DDR_QOS_IRQ_STAT_OFST 0x20200
160#define DDR_QOSUE_MASK 0x4
161#define DDR_QOSCE_MASK 0x2
162#define ECC_CE_UE_INTR_MASK 0x6
163#define DDR_QOS_IRQ_EN_OFST 0x20208
164#define DDR_QOS_IRQ_DB_OFST 0x2020C
165
166/* DDR QOS Interrupt register definitions */
167#define DDR_UE_MASK BIT(9)
168#define DDR_CE_MASK BIT(8)
169
170/* ECC Corrected Error Register Mask and Shifts*/
171#define ECC_CEADDR0_RW_MASK 0x3FFFF
172#define ECC_CEADDR0_RNK_MASK BIT(24)
173#define ECC_CEADDR1_BNKGRP_MASK 0x3000000
174#define ECC_CEADDR1_BNKNR_MASK 0x70000
175#define ECC_CEADDR1_BLKNR_MASK 0xFFF
176#define ECC_CEADDR1_BNKGRP_SHIFT 24
177#define ECC_CEADDR1_BNKNR_SHIFT 16
178
179/* ECC Poison register shifts */
180#define ECC_POISON0_RANK_SHIFT 24
181#define ECC_POISON0_RANK_MASK BIT(24)
182#define ECC_POISON0_COLUMN_SHIFT 0
183#define ECC_POISON0_COLUMN_MASK 0xFFF
184#define ECC_POISON1_BG_SHIFT 28
185#define ECC_POISON1_BG_MASK 0x30000000
186#define ECC_POISON1_BANKNR_SHIFT 24
187#define ECC_POISON1_BANKNR_MASK 0x7000000
188#define ECC_POISON1_ROW_SHIFT 0
189#define ECC_POISON1_ROW_MASK 0x3FFFF
190
191/* DDR Memory type defines */
192#define MEM_TYPE_DDR3 0x1
193#define MEM_TYPE_LPDDR3 0x8
194#define MEM_TYPE_DDR2 0x4
195#define MEM_TYPE_DDR4 0x10
196#define MEM_TYPE_LPDDR4 0x20
197
198/* DDRC Software control register */
199#define DDRC_SWCTL 0x320
200
201/* DDRC ECC CE & UE poison mask */
202#define ECC_CEPOISON_MASK 0x3
203#define ECC_UEPOISON_MASK 0x1
204
205/* DDRC Device config masks */
206#define DDRC_MSTR_CFG_MASK 0xC0000000
207#define DDRC_MSTR_CFG_SHIFT 30
208#define DDRC_MSTR_CFG_X4_MASK 0x0
209#define DDRC_MSTR_CFG_X8_MASK 0x1
210#define DDRC_MSTR_CFG_X16_MASK 0x2
211#define DDRC_MSTR_CFG_X32_MASK 0x3
212
213#define DDR_MAX_ROW_SHIFT 18
214#define DDR_MAX_COL_SHIFT 14
215#define DDR_MAX_BANK_SHIFT 3
216#define DDR_MAX_BANKGRP_SHIFT 2
217
218#define ROW_MAX_VAL_MASK 0xF
219#define COL_MAX_VAL_MASK 0xF
220#define BANK_MAX_VAL_MASK 0x1F
221#define BANKGRP_MAX_VAL_MASK 0x1F
222#define RANK_MAX_VAL_MASK 0x1F
223
224#define ROW_B0_BASE 6
225#define ROW_B1_BASE 7
226#define ROW_B2_BASE 8
227#define ROW_B3_BASE 9
228#define ROW_B4_BASE 10
229#define ROW_B5_BASE 11
230#define ROW_B6_BASE 12
231#define ROW_B7_BASE 13
232#define ROW_B8_BASE 14
233#define ROW_B9_BASE 15
234#define ROW_B10_BASE 16
235#define ROW_B11_BASE 17
236#define ROW_B12_BASE 18
237#define ROW_B13_BASE 19
238#define ROW_B14_BASE 20
239#define ROW_B15_BASE 21
240#define ROW_B16_BASE 22
241#define ROW_B17_BASE 23
242
243#define COL_B2_BASE 2
244#define COL_B3_BASE 3
245#define COL_B4_BASE 4
246#define COL_B5_BASE 5
247#define COL_B6_BASE 6
248#define COL_B7_BASE 7
249#define COL_B8_BASE 8
250#define COL_B9_BASE 9
251#define COL_B10_BASE 10
252#define COL_B11_BASE 11
253#define COL_B12_BASE 12
254#define COL_B13_BASE 13
255
256#define BANK_B0_BASE 2
257#define BANK_B1_BASE 3
258#define BANK_B2_BASE 4
259
260#define BANKGRP_B0_BASE 2
261#define BANKGRP_B1_BASE 3
262
263#define RANK_B0_BASE 6
264
265/**
266 * struct ecc_error_info - ECC error log information.
267 * @row: Row number.
268 * @col: Column number.
269 * @bank: Bank number.
270 * @bitpos: Bit position.
271 * @data: Data causing the error.
272 * @bankgrpnr: Bank group number.
273 * @blknr: Block number.
274 */
275struct ecc_error_info {
276 u32 row;
277 u32 col;
278 u32 bank;
279 u32 bitpos;
280 u32 data;
281 u32 bankgrpnr;
282 u32 blknr;
283};
284
285/**
286 * struct synps_ecc_status - ECC status information to report.
287 * @ce_cnt: Correctable error count.
288 * @ue_cnt: Uncorrectable error count.
289 * @ceinfo: Correctable error log information.
290 * @ueinfo: Uncorrectable error log information.
291 */
292struct synps_ecc_status {
293 u32 ce_cnt;
294 u32 ue_cnt;
295 struct ecc_error_info ceinfo;
296 struct ecc_error_info ueinfo;
297};
298
299/**
300 * struct synps_edac_priv - DDR memory controller private instance data.
301 * @baseaddr: Base address of the DDR controller.
302 * @message: Buffer for framing the event specific info.
303 * @stat: ECC status information.
304 * @p_data: Platform data.
305 * @ce_cnt: Correctable Error count.
306 * @ue_cnt: Uncorrectable Error count.
307 * @poison_addr: Data poison address.
308 * @row_shift: Bit shifts for row bit.
309 * @col_shift: Bit shifts for column bit.
310 * @bank_shift: Bit shifts for bank bit.
311 * @bankgrp_shift: Bit shifts for bank group bit.
312 * @rank_shift: Bit shifts for rank bit.
313 */
314struct synps_edac_priv {
315 void __iomem *baseaddr;
316 char message[SYNPS_EDAC_MSG_SIZE];
317 struct synps_ecc_status stat;
318 const struct synps_platform_data *p_data;
319 u32 ce_cnt;
320 u32 ue_cnt;
321#ifdef CONFIG_EDAC_DEBUG
322 ulong poison_addr;
323 u32 row_shift[18];
324 u32 col_shift[14];
325 u32 bank_shift[3];
326 u32 bankgrp_shift[2];
327 u32 rank_shift[1];
328#endif
329};
330
331/**
332 * struct synps_platform_data - synps platform data structure.
333 * @get_error_info: Get EDAC error info.
334 * @get_mtype: Get mtype.
335 * @get_dtype: Get dtype.
336 * @get_ecc_state: Get ECC state.
337 * @quirks: To differentiate IPs.
338 */
339struct synps_platform_data {
340 int (*get_error_info)(struct synps_edac_priv *priv);
341 enum mem_type (*get_mtype)(const void __iomem *base);
342 enum dev_type (*get_dtype)(const void __iomem *base);
343 bool (*get_ecc_state)(void __iomem *base);
344 int quirks;
345};
346
347/**
348 * zynq_get_error_info - Get the current ECC error info.
349 * @priv: DDR memory controller private instance data.
350 *
351 * Return: one if there is no error, otherwise zero.
352 */
353static int zynq_get_error_info(struct synps_edac_priv *priv)
354{
355 struct synps_ecc_status *p;
356 u32 regval, clearval = 0;
357 void __iomem *base;
358
359 base = priv->baseaddr;
360 p = &priv->stat;
361
362 regval = readl(base + STAT_OFST);
363 if (!regval)
364 return 1;
365
366 p->ce_cnt = (regval & STAT_CECNT_MASK) >> STAT_CECNT_SHIFT;
367 p->ue_cnt = regval & STAT_UECNT_MASK;
368
369 regval = readl(base + CE_LOG_OFST);
370 if (!(p->ce_cnt && (regval & LOG_VALID)))
371 goto ue_err;
372
373 p->ceinfo.bitpos = (regval & CE_LOG_BITPOS_MASK) >> CE_LOG_BITPOS_SHIFT;
374 regval = readl(base + CE_ADDR_OFST);
375 p->ceinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
376 p->ceinfo.col = regval & ADDR_COL_MASK;
377 p->ceinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
378 p->ceinfo.data = readl(base + CE_DATA_31_0_OFST);
379 edac_dbg(3, "CE bit position: %d data: %d\n", p->ceinfo.bitpos,
380 p->ceinfo.data);
381 clearval = ECC_CTRL_CLR_CE_ERR;
382
383ue_err:
384 regval = readl(base + UE_LOG_OFST);
385 if (!(p->ue_cnt && (regval & LOG_VALID)))
386 goto out;
387
388 regval = readl(base + UE_ADDR_OFST);
389 p->ueinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
390 p->ueinfo.col = regval & ADDR_COL_MASK;
391 p->ueinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
392 p->ueinfo.data = readl(base + UE_DATA_31_0_OFST);
393 clearval |= ECC_CTRL_CLR_UE_ERR;
394
395out:
396 writel(clearval, base + ECC_CTRL_OFST);
397 writel(0x0, base + ECC_CTRL_OFST);
398
399 return 0;
400}
401
402/**
403 * zynqmp_get_error_info - Get the current ECC error info.
404 * @priv: DDR memory controller private instance data.
405 *
406 * Return: one if there is no error otherwise returns zero.
407 */
408static int zynqmp_get_error_info(struct synps_edac_priv *priv)
409{
410 struct synps_ecc_status *p;
411 u32 regval, clearval = 0;
412 void __iomem *base;
413
414 base = priv->baseaddr;
415 p = &priv->stat;
416
417 regval = readl(base + ECC_ERRCNT_OFST);
418 p->ce_cnt = regval & ECC_ERRCNT_CECNT_MASK;
419 p->ue_cnt = (regval & ECC_ERRCNT_UECNT_MASK) >> ECC_ERRCNT_UECNT_SHIFT;
420 if (!p->ce_cnt)
421 goto ue_err;
422
423 regval = readl(base + ECC_STAT_OFST);
424 if (!regval)
425 return 1;
426
427 p->ceinfo.bitpos = (regval & ECC_STAT_BITNUM_MASK);
428
429 regval = readl(base + ECC_CEADDR0_OFST);
430 p->ceinfo.row = (regval & ECC_CEADDR0_RW_MASK);
431 regval = readl(base + ECC_CEADDR1_OFST);
432 p->ceinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
433 ECC_CEADDR1_BNKNR_SHIFT;
434 p->ceinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
435 ECC_CEADDR1_BNKGRP_SHIFT;
436 p->ceinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
437 p->ceinfo.data = readl(base + ECC_CSYND0_OFST);
438 edac_dbg(2, "ECCCSYN0: 0x%08X ECCCSYN1: 0x%08X ECCCSYN2: 0x%08X\n",
439 readl(base + ECC_CSYND0_OFST), readl(base + ECC_CSYND1_OFST),
440 readl(base + ECC_CSYND2_OFST));
441ue_err:
442 if (!p->ue_cnt)
443 goto out;
444
445 regval = readl(base + ECC_UEADDR0_OFST);
446 p->ueinfo.row = (regval & ECC_CEADDR0_RW_MASK);
447 regval = readl(base + ECC_UEADDR1_OFST);
448 p->ueinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
449 ECC_CEADDR1_BNKGRP_SHIFT;
450 p->ueinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
451 ECC_CEADDR1_BNKNR_SHIFT;
452 p->ueinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
453 p->ueinfo.data = readl(base + ECC_UESYND0_OFST);
454out:
455 clearval = ECC_CTRL_CLR_CE_ERR | ECC_CTRL_CLR_CE_ERRCNT;
456 clearval |= ECC_CTRL_CLR_UE_ERR | ECC_CTRL_CLR_UE_ERRCNT;
457 writel(clearval, base + ECC_CLR_OFST);
458 writel(0x0, base + ECC_CLR_OFST);
459
460 return 0;
461}
462
463/**
464 * handle_error - Handle Correctable and Uncorrectable errors.
465 * @mci: EDAC memory controller instance.
466 * @p: Synopsys ECC status structure.
467 *
468 * Handles ECC correctable and uncorrectable errors.
469 */
470static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p)
471{
472 struct synps_edac_priv *priv = mci->pvt_info;
473 struct ecc_error_info *pinf;
474
475 if (p->ce_cnt) {
476 pinf = &p->ceinfo;
477 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
478 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
479 "DDR ECC error type:%s Row %d Bank %d BankGroup Number %d Block Number %d Bit Position: %d Data: 0x%08x",
480 "CE", pinf->row, pinf->bank,
481 pinf->bankgrpnr, pinf->blknr,
482 pinf->bitpos, pinf->data);
483 } else {
484 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
485 "DDR ECC error type:%s Row %d Bank %d Col %d Bit Position: %d Data: 0x%08x",
486 "CE", pinf->row, pinf->bank, pinf->col,
487 pinf->bitpos, pinf->data);
488 }
489
490 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
491 p->ce_cnt, 0, 0, 0, 0, 0, -1,
492 priv->message, "");
493 }
494
495 if (p->ue_cnt) {
496 pinf = &p->ueinfo;
497 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
498 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
499 "DDR ECC error type :%s Row %d Bank %d BankGroup Number %d Block Number %d",
500 "UE", pinf->row, pinf->bank,
501 pinf->bankgrpnr, pinf->blknr);
502 } else {
503 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
504 "DDR ECC error type :%s Row %d Bank %d Col %d ",
505 "UE", pinf->row, pinf->bank, pinf->col);
506 }
507
508 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
509 p->ue_cnt, 0, 0, 0, 0, 0, -1,
510 priv->message, "");
511 }
512
513 memset(p, 0, sizeof(*p));
514}
515
516static void enable_intr(struct synps_edac_priv *priv)
517{
518 /* Enable UE/CE Interrupts */
519 if (priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)
520 writel(DDR_UE_MASK | DDR_CE_MASK,
521 priv->baseaddr + ECC_CLR_OFST);
522 else
523 writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
524 priv->baseaddr + DDR_QOS_IRQ_EN_OFST);
525
526}
527
528static void disable_intr(struct synps_edac_priv *priv)
529{
530 /* Disable UE/CE Interrupts */
531 if (priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)
532 writel(0x0, priv->baseaddr + ECC_CLR_OFST);
533 else
534 writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
535 priv->baseaddr + DDR_QOS_IRQ_DB_OFST);
536}
537
538/**
539 * intr_handler - Interrupt Handler for ECC interrupts.
540 * @irq: IRQ number.
541 * @dev_id: Device ID.
542 *
543 * Return: IRQ_NONE, if interrupt not set or IRQ_HANDLED otherwise.
544 */
545static irqreturn_t intr_handler(int irq, void *dev_id)
546{
547 const struct synps_platform_data *p_data;
548 struct mem_ctl_info *mci = dev_id;
549 struct synps_edac_priv *priv;
550 int status, regval;
551
552 priv = mci->pvt_info;
553 p_data = priv->p_data;
554
555 /*
556 * v3.0 of the controller has the ce/ue bits cleared automatically,
557 * so this condition does not apply.
558 */
559 if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)) {
560 regval = readl(priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
561 regval &= (DDR_QOSCE_MASK | DDR_QOSUE_MASK);
562 if (!(regval & ECC_CE_UE_INTR_MASK))
563 return IRQ_NONE;
564 }
565
566 status = p_data->get_error_info(priv);
567 if (status)
568 return IRQ_NONE;
569
570 priv->ce_cnt += priv->stat.ce_cnt;
571 priv->ue_cnt += priv->stat.ue_cnt;
572 handle_error(mci, &priv->stat);
573
574 edac_dbg(3, "Total error count CE %d UE %d\n",
575 priv->ce_cnt, priv->ue_cnt);
576 /* v3.0 of the controller does not have this register */
577 if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR))
578 writel(regval, priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
579 else
580 enable_intr(priv);
581
582 return IRQ_HANDLED;
583}
584
585/**
586 * check_errors - Check controller for ECC errors.
587 * @mci: EDAC memory controller instance.
588 *
589 * Check and post ECC errors. Called by the polling thread.
590 */
591static void check_errors(struct mem_ctl_info *mci)
592{
593 const struct synps_platform_data *p_data;
594 struct synps_edac_priv *priv;
595 int status;
596
597 priv = mci->pvt_info;
598 p_data = priv->p_data;
599
600 status = p_data->get_error_info(priv);
601 if (status)
602 return;
603
604 priv->ce_cnt += priv->stat.ce_cnt;
605 priv->ue_cnt += priv->stat.ue_cnt;
606 handle_error(mci, &priv->stat);
607
608 edac_dbg(3, "Total error count CE %d UE %d\n",
609 priv->ce_cnt, priv->ue_cnt);
610}
611
612/**
613 * zynq_get_dtype - Return the controller memory width.
614 * @base: DDR memory controller base address.
615 *
616 * Get the EDAC device type width appropriate for the current controller
617 * configuration.
618 *
619 * Return: a device type width enumeration.
620 */
621static enum dev_type zynq_get_dtype(const void __iomem *base)
622{
623 enum dev_type dt;
624 u32 width;
625
626 width = readl(base + CTRL_OFST);
627 width = (width & CTRL_BW_MASK) >> CTRL_BW_SHIFT;
628
629 switch (width) {
630 case DDRCTL_WDTH_16:
631 dt = DEV_X2;
632 break;
633 case DDRCTL_WDTH_32:
634 dt = DEV_X4;
635 break;
636 default:
637 dt = DEV_UNKNOWN;
638 }
639
640 return dt;
641}
642
643/**
644 * zynqmp_get_dtype - Return the controller memory width.
645 * @base: DDR memory controller base address.
646 *
647 * Get the EDAC device type width appropriate for the current controller
648 * configuration.
649 *
650 * Return: a device type width enumeration.
651 */
652static enum dev_type zynqmp_get_dtype(const void __iomem *base)
653{
654 enum dev_type dt;
655 u32 width;
656
657 width = readl(base + CTRL_OFST);
658 width = (width & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
659 switch (width) {
660 case DDRCTL_EWDTH_16:
661 dt = DEV_X2;
662 break;
663 case DDRCTL_EWDTH_32:
664 dt = DEV_X4;
665 break;
666 case DDRCTL_EWDTH_64:
667 dt = DEV_X8;
668 break;
669 default:
670 dt = DEV_UNKNOWN;
671 }
672
673 return dt;
674}
675
676/**
677 * zynq_get_ecc_state - Return the controller ECC enable/disable status.
678 * @base: DDR memory controller base address.
679 *
680 * Get the ECC enable/disable status of the controller.
681 *
682 * Return: true if enabled, otherwise false.
683 */
684static bool zynq_get_ecc_state(void __iomem *base)
685{
686 enum dev_type dt;
687 u32 ecctype;
688
689 dt = zynq_get_dtype(base);
690 if (dt == DEV_UNKNOWN)
691 return false;
692
693 ecctype = readl(base + SCRUB_OFST) & SCRUB_MODE_MASK;
694 if ((ecctype == SCRUB_MODE_SECDED) && (dt == DEV_X2))
695 return true;
696
697 return false;
698}
699
700/**
701 * zynqmp_get_ecc_state - Return the controller ECC enable/disable status.
702 * @base: DDR memory controller base address.
703 *
704 * Get the ECC enable/disable status for the controller.
705 *
706 * Return: a ECC status boolean i.e true/false - enabled/disabled.
707 */
708static bool zynqmp_get_ecc_state(void __iomem *base)
709{
710 enum dev_type dt;
711 u32 ecctype;
712
713 dt = zynqmp_get_dtype(base);
714 if (dt == DEV_UNKNOWN)
715 return false;
716
717 ecctype = readl(base + ECC_CFG0_OFST) & SCRUB_MODE_MASK;
718 if ((ecctype == SCRUB_MODE_SECDED) &&
719 ((dt == DEV_X2) || (dt == DEV_X4) || (dt == DEV_X8)))
720 return true;
721
722 return false;
723}
724
725/**
726 * get_memsize - Read the size of the attached memory device.
727 *
728 * Return: the memory size in bytes.
729 */
730static u32 get_memsize(void)
731{
732 struct sysinfo inf;
733
734 si_meminfo(&inf);
735
736 return inf.totalram * inf.mem_unit;
737}
738
739/**
740 * zynq_get_mtype - Return the controller memory type.
741 * @base: Synopsys ECC status structure.
742 *
743 * Get the EDAC memory type appropriate for the current controller
744 * configuration.
745 *
746 * Return: a memory type enumeration.
747 */
748static enum mem_type zynq_get_mtype(const void __iomem *base)
749{
750 enum mem_type mt;
751 u32 memtype;
752
753 memtype = readl(base + T_ZQ_OFST);
754
755 if (memtype & T_ZQ_DDRMODE_MASK)
756 mt = MEM_DDR3;
757 else
758 mt = MEM_DDR2;
759
760 return mt;
761}
762
763/**
764 * zynqmp_get_mtype - Returns controller memory type.
765 * @base: Synopsys ECC status structure.
766 *
767 * Get the EDAC memory type appropriate for the current controller
768 * configuration.
769 *
770 * Return: a memory type enumeration.
771 */
772static enum mem_type zynqmp_get_mtype(const void __iomem *base)
773{
774 enum mem_type mt;
775 u32 memtype;
776
777 memtype = readl(base + CTRL_OFST);
778
779 if ((memtype & MEM_TYPE_DDR3) || (memtype & MEM_TYPE_LPDDR3))
780 mt = MEM_DDR3;
781 else if (memtype & MEM_TYPE_DDR2)
782 mt = MEM_RDDR2;
783 else if ((memtype & MEM_TYPE_LPDDR4) || (memtype & MEM_TYPE_DDR4))
784 mt = MEM_DDR4;
785 else
786 mt = MEM_EMPTY;
787
788 return mt;
789}
790
791/**
792 * init_csrows - Initialize the csrow data.
793 * @mci: EDAC memory controller instance.
794 *
795 * Initialize the chip select rows associated with the EDAC memory
796 * controller instance.
797 */
798static void init_csrows(struct mem_ctl_info *mci)
799{
800 struct synps_edac_priv *priv = mci->pvt_info;
801 const struct synps_platform_data *p_data;
802 struct csrow_info *csi;
803 struct dimm_info *dimm;
804 u32 size, row;
805 int j;
806
807 p_data = priv->p_data;
808
809 for (row = 0; row < mci->nr_csrows; row++) {
810 csi = mci->csrows[row];
811 size = get_memsize();
812
813 for (j = 0; j < csi->nr_channels; j++) {
814 dimm = csi->channels[j]->dimm;
815 dimm->edac_mode = EDAC_SECDED;
816 dimm->mtype = p_data->get_mtype(priv->baseaddr);
817 dimm->nr_pages = (size >> PAGE_SHIFT) / csi->nr_channels;
818 dimm->grain = SYNPS_EDAC_ERR_GRAIN;
819 dimm->dtype = p_data->get_dtype(priv->baseaddr);
820 }
821 }
822}
823
824/**
825 * mc_init - Initialize one driver instance.
826 * @mci: EDAC memory controller instance.
827 * @pdev: platform device.
828 *
829 * Perform initialization of the EDAC memory controller instance and
830 * related driver-private data associated with the memory controller the
831 * instance is bound to.
832 */
833static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev)
834{
835 struct synps_edac_priv *priv;
836
837 mci->pdev = &pdev->dev;
838 priv = mci->pvt_info;
839 platform_set_drvdata(pdev, mci);
840
841 /* Initialize controller capabilities and configuration */
842 mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR2;
843 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
844 mci->scrub_cap = SCRUB_HW_SRC;
845 mci->scrub_mode = SCRUB_NONE;
846
847 mci->edac_cap = EDAC_FLAG_SECDED;
848 mci->ctl_name = "synps_ddr_controller";
849 mci->dev_name = SYNPS_EDAC_MOD_STRING;
850 mci->mod_name = SYNPS_EDAC_MOD_VER;
851
852 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
853 edac_op_state = EDAC_OPSTATE_INT;
854 } else {
855 edac_op_state = EDAC_OPSTATE_POLL;
856 mci->edac_check = check_errors;
857 }
858
859 mci->ctl_page_to_phys = NULL;
860
861 init_csrows(mci);
862}
863
864static int setup_irq(struct mem_ctl_info *mci,
865 struct platform_device *pdev)
866{
867 struct synps_edac_priv *priv = mci->pvt_info;
868 int ret, irq;
869
870 irq = platform_get_irq(pdev, 0);
871 if (irq < 0) {
872 edac_printk(KERN_ERR, EDAC_MC,
873 "No IRQ %d in DT\n", irq);
874 return irq;
875 }
876
877 ret = devm_request_irq(&pdev->dev, irq, intr_handler,
878 0, dev_name(&pdev->dev), mci);
879 if (ret < 0) {
880 edac_printk(KERN_ERR, EDAC_MC, "Failed to request IRQ\n");
881 return ret;
882 }
883
884 enable_intr(priv);
885
886 return 0;
887}
888
889static const struct synps_platform_data zynq_edac_def = {
890 .get_error_info = zynq_get_error_info,
891 .get_mtype = zynq_get_mtype,
892 .get_dtype = zynq_get_dtype,
893 .get_ecc_state = zynq_get_ecc_state,
894 .quirks = 0,
895};
896
897static const struct synps_platform_data zynqmp_edac_def = {
898 .get_error_info = zynqmp_get_error_info,
899 .get_mtype = zynqmp_get_mtype,
900 .get_dtype = zynqmp_get_dtype,
901 .get_ecc_state = zynqmp_get_ecc_state,
902 .quirks = (DDR_ECC_INTR_SUPPORT
903#ifdef CONFIG_EDAC_DEBUG
904 | DDR_ECC_DATA_POISON_SUPPORT
905#endif
906 ),
907};
908
909static const struct synps_platform_data synopsys_edac_def = {
910 .get_error_info = zynqmp_get_error_info,
911 .get_mtype = zynqmp_get_mtype,
912 .get_dtype = zynqmp_get_dtype,
913 .get_ecc_state = zynqmp_get_ecc_state,
914 .quirks = (DDR_ECC_INTR_SUPPORT | DDR_ECC_INTR_SELF_CLEAR
915#ifdef CONFIG_EDAC_DEBUG
916 | DDR_ECC_DATA_POISON_SUPPORT
917#endif
918 ),
919};
920
921
922static const struct of_device_id synps_edac_match[] = {
923 {
924 .compatible = "xlnx,zynq-ddrc-a05",
925 .data = (void *)&zynq_edac_def
926 },
927 {
928 .compatible = "xlnx,zynqmp-ddrc-2.40a",
929 .data = (void *)&zynqmp_edac_def
930 },
931 {
932 .compatible = "snps,ddrc-3.80a",
933 .data = (void *)&synopsys_edac_def
934 },
935 {
936 /* end of table */
937 }
938};
939
940MODULE_DEVICE_TABLE(of, synps_edac_match);
941
942#ifdef CONFIG_EDAC_DEBUG
943#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
944
945/**
946 * ddr_poison_setup - Update poison registers.
947 * @priv: DDR memory controller private instance data.
948 *
949 * Update poison registers as per DDR mapping.
950 * Return: none.
951 */
952static void ddr_poison_setup(struct synps_edac_priv *priv)
953{
954 int col = 0, row = 0, bank = 0, bankgrp = 0, rank = 0, regval;
955 int index;
956 ulong hif_addr = 0;
957
958 hif_addr = priv->poison_addr >> 3;
959
960 for (index = 0; index < DDR_MAX_ROW_SHIFT; index++) {
961 if (priv->row_shift[index])
962 row |= (((hif_addr >> priv->row_shift[index]) &
963 BIT(0)) << index);
964 else
965 break;
966 }
967
968 for (index = 0; index < DDR_MAX_COL_SHIFT; index++) {
969 if (priv->col_shift[index] || index < 3)
970 col |= (((hif_addr >> priv->col_shift[index]) &
971 BIT(0)) << index);
972 else
973 break;
974 }
975
976 for (index = 0; index < DDR_MAX_BANK_SHIFT; index++) {
977 if (priv->bank_shift[index])
978 bank |= (((hif_addr >> priv->bank_shift[index]) &
979 BIT(0)) << index);
980 else
981 break;
982 }
983
984 for (index = 0; index < DDR_MAX_BANKGRP_SHIFT; index++) {
985 if (priv->bankgrp_shift[index])
986 bankgrp |= (((hif_addr >> priv->bankgrp_shift[index])
987 & BIT(0)) << index);
988 else
989 break;
990 }
991
992 if (priv->rank_shift[0])
993 rank = (hif_addr >> priv->rank_shift[0]) & BIT(0);
994
995 regval = (rank << ECC_POISON0_RANK_SHIFT) & ECC_POISON0_RANK_MASK;
996 regval |= (col << ECC_POISON0_COLUMN_SHIFT) & ECC_POISON0_COLUMN_MASK;
997 writel(regval, priv->baseaddr + ECC_POISON0_OFST);
998
999 regval = (bankgrp << ECC_POISON1_BG_SHIFT) & ECC_POISON1_BG_MASK;
1000 regval |= (bank << ECC_POISON1_BANKNR_SHIFT) & ECC_POISON1_BANKNR_MASK;
1001 regval |= (row << ECC_POISON1_ROW_SHIFT) & ECC_POISON1_ROW_MASK;
1002 writel(regval, priv->baseaddr + ECC_POISON1_OFST);
1003}
1004
1005static ssize_t inject_data_error_show(struct device *dev,
1006 struct device_attribute *mattr,
1007 char *data)
1008{
1009 struct mem_ctl_info *mci = to_mci(dev);
1010 struct synps_edac_priv *priv = mci->pvt_info;
1011
1012 return sprintf(data, "Poison0 Addr: 0x%08x\n\rPoison1 Addr: 0x%08x\n\r"
1013 "Error injection Address: 0x%lx\n\r",
1014 readl(priv->baseaddr + ECC_POISON0_OFST),
1015 readl(priv->baseaddr + ECC_POISON1_OFST),
1016 priv->poison_addr);
1017}
1018
1019static ssize_t inject_data_error_store(struct device *dev,
1020 struct device_attribute *mattr,
1021 const char *data, size_t count)
1022{
1023 struct mem_ctl_info *mci = to_mci(dev);
1024 struct synps_edac_priv *priv = mci->pvt_info;
1025
1026 if (kstrtoul(data, 0, &priv->poison_addr))
1027 return -EINVAL;
1028
1029 ddr_poison_setup(priv);
1030
1031 return count;
1032}
1033
1034static ssize_t inject_data_poison_show(struct device *dev,
1035 struct device_attribute *mattr,
1036 char *data)
1037{
1038 struct mem_ctl_info *mci = to_mci(dev);
1039 struct synps_edac_priv *priv = mci->pvt_info;
1040
1041 return sprintf(data, "Data Poisoning: %s\n\r",
1042 (((readl(priv->baseaddr + ECC_CFG1_OFST)) & 0x3) == 0x3)
1043 ? ("Correctable Error") : ("UnCorrectable Error"));
1044}
1045
1046static ssize_t inject_data_poison_store(struct device *dev,
1047 struct device_attribute *mattr,
1048 const char *data, size_t count)
1049{
1050 struct mem_ctl_info *mci = to_mci(dev);
1051 struct synps_edac_priv *priv = mci->pvt_info;
1052
1053 writel(0, priv->baseaddr + DDRC_SWCTL);
1054 if (strncmp(data, "CE", 2) == 0)
1055 writel(ECC_CEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1056 else
1057 writel(ECC_UEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1058 writel(1, priv->baseaddr + DDRC_SWCTL);
1059
1060 return count;
1061}
1062
1063static DEVICE_ATTR_RW(inject_data_error);
1064static DEVICE_ATTR_RW(inject_data_poison);
1065
1066static int edac_create_sysfs_attributes(struct mem_ctl_info *mci)
1067{
1068 int rc;
1069
1070 rc = device_create_file(&mci->dev, &dev_attr_inject_data_error);
1071 if (rc < 0)
1072 return rc;
1073 rc = device_create_file(&mci->dev, &dev_attr_inject_data_poison);
1074 if (rc < 0)
1075 return rc;
1076 return 0;
1077}
1078
1079static void edac_remove_sysfs_attributes(struct mem_ctl_info *mci)
1080{
1081 device_remove_file(&mci->dev, &dev_attr_inject_data_error);
1082 device_remove_file(&mci->dev, &dev_attr_inject_data_poison);
1083}
1084
1085static void setup_row_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1086{
1087 u32 addrmap_row_b2_10;
1088 int index;
1089
1090 priv->row_shift[0] = (addrmap[5] & ROW_MAX_VAL_MASK) + ROW_B0_BASE;
1091 priv->row_shift[1] = ((addrmap[5] >> 8) &
1092 ROW_MAX_VAL_MASK) + ROW_B1_BASE;
1093
1094 addrmap_row_b2_10 = (addrmap[5] >> 16) & ROW_MAX_VAL_MASK;
1095 if (addrmap_row_b2_10 != ROW_MAX_VAL_MASK) {
1096 for (index = 2; index < 11; index++)
1097 priv->row_shift[index] = addrmap_row_b2_10 +
1098 index + ROW_B0_BASE;
1099
1100 } else {
1101 priv->row_shift[2] = (addrmap[9] &
1102 ROW_MAX_VAL_MASK) + ROW_B2_BASE;
1103 priv->row_shift[3] = ((addrmap[9] >> 8) &
1104 ROW_MAX_VAL_MASK) + ROW_B3_BASE;
1105 priv->row_shift[4] = ((addrmap[9] >> 16) &
1106 ROW_MAX_VAL_MASK) + ROW_B4_BASE;
1107 priv->row_shift[5] = ((addrmap[9] >> 24) &
1108 ROW_MAX_VAL_MASK) + ROW_B5_BASE;
1109 priv->row_shift[6] = (addrmap[10] &
1110 ROW_MAX_VAL_MASK) + ROW_B6_BASE;
1111 priv->row_shift[7] = ((addrmap[10] >> 8) &
1112 ROW_MAX_VAL_MASK) + ROW_B7_BASE;
1113 priv->row_shift[8] = ((addrmap[10] >> 16) &
1114 ROW_MAX_VAL_MASK) + ROW_B8_BASE;
1115 priv->row_shift[9] = ((addrmap[10] >> 24) &
1116 ROW_MAX_VAL_MASK) + ROW_B9_BASE;
1117 priv->row_shift[10] = (addrmap[11] &
1118 ROW_MAX_VAL_MASK) + ROW_B10_BASE;
1119 }
1120
1121 priv->row_shift[11] = (((addrmap[5] >> 24) & ROW_MAX_VAL_MASK) ==
1122 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[5] >> 24) &
1123 ROW_MAX_VAL_MASK) + ROW_B11_BASE);
1124 priv->row_shift[12] = ((addrmap[6] & ROW_MAX_VAL_MASK) ==
1125 ROW_MAX_VAL_MASK) ? 0 : ((addrmap[6] &
1126 ROW_MAX_VAL_MASK) + ROW_B12_BASE);
1127 priv->row_shift[13] = (((addrmap[6] >> 8) & ROW_MAX_VAL_MASK) ==
1128 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 8) &
1129 ROW_MAX_VAL_MASK) + ROW_B13_BASE);
1130 priv->row_shift[14] = (((addrmap[6] >> 16) & ROW_MAX_VAL_MASK) ==
1131 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 16) &
1132 ROW_MAX_VAL_MASK) + ROW_B14_BASE);
1133 priv->row_shift[15] = (((addrmap[6] >> 24) & ROW_MAX_VAL_MASK) ==
1134 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 24) &
1135 ROW_MAX_VAL_MASK) + ROW_B15_BASE);
1136 priv->row_shift[16] = ((addrmap[7] & ROW_MAX_VAL_MASK) ==
1137 ROW_MAX_VAL_MASK) ? 0 : ((addrmap[7] &
1138 ROW_MAX_VAL_MASK) + ROW_B16_BASE);
1139 priv->row_shift[17] = (((addrmap[7] >> 8) & ROW_MAX_VAL_MASK) ==
1140 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[7] >> 8) &
1141 ROW_MAX_VAL_MASK) + ROW_B17_BASE);
1142}
1143
1144static void setup_column_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1145{
1146 u32 width, memtype;
1147 int index;
1148
1149 memtype = readl(priv->baseaddr + CTRL_OFST);
1150 width = (memtype & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
1151
1152 priv->col_shift[0] = 0;
1153 priv->col_shift[1] = 1;
1154 priv->col_shift[2] = (addrmap[2] & COL_MAX_VAL_MASK) + COL_B2_BASE;
1155 priv->col_shift[3] = ((addrmap[2] >> 8) &
1156 COL_MAX_VAL_MASK) + COL_B3_BASE;
1157 priv->col_shift[4] = (((addrmap[2] >> 16) & COL_MAX_VAL_MASK) ==
1158 COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 16) &
1159 COL_MAX_VAL_MASK) + COL_B4_BASE);
1160 priv->col_shift[5] = (((addrmap[2] >> 24) & COL_MAX_VAL_MASK) ==
1161 COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 24) &
1162 COL_MAX_VAL_MASK) + COL_B5_BASE);
1163 priv->col_shift[6] = ((addrmap[3] & COL_MAX_VAL_MASK) ==
1164 COL_MAX_VAL_MASK) ? 0 : ((addrmap[3] &
1165 COL_MAX_VAL_MASK) + COL_B6_BASE);
1166 priv->col_shift[7] = (((addrmap[3] >> 8) & COL_MAX_VAL_MASK) ==
1167 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 8) &
1168 COL_MAX_VAL_MASK) + COL_B7_BASE);
1169 priv->col_shift[8] = (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) ==
1170 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 16) &
1171 COL_MAX_VAL_MASK) + COL_B8_BASE);
1172 priv->col_shift[9] = (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) ==
1173 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 24) &
1174 COL_MAX_VAL_MASK) + COL_B9_BASE);
1175 if (width == DDRCTL_EWDTH_64) {
1176 if (memtype & MEM_TYPE_LPDDR3) {
1177 priv->col_shift[10] = ((addrmap[4] &
1178 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1179 ((addrmap[4] & COL_MAX_VAL_MASK) +
1180 COL_B10_BASE);
1181 priv->col_shift[11] = (((addrmap[4] >> 8) &
1182 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1183 (((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1184 COL_B11_BASE);
1185 } else {
1186 priv->col_shift[11] = ((addrmap[4] &
1187 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1188 ((addrmap[4] & COL_MAX_VAL_MASK) +
1189 COL_B10_BASE);
1190 priv->col_shift[13] = (((addrmap[4] >> 8) &
1191 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1192 (((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1193 COL_B11_BASE);
1194 }
1195 } else if (width == DDRCTL_EWDTH_32) {
1196 if (memtype & MEM_TYPE_LPDDR3) {
1197 priv->col_shift[10] = (((addrmap[3] >> 24) &
1198 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1199 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1200 COL_B9_BASE);
1201 priv->col_shift[11] = ((addrmap[4] &
1202 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1203 ((addrmap[4] & COL_MAX_VAL_MASK) +
1204 COL_B10_BASE);
1205 } else {
1206 priv->col_shift[11] = (((addrmap[3] >> 24) &
1207 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1208 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1209 COL_B9_BASE);
1210 priv->col_shift[13] = ((addrmap[4] &
1211 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1212 ((addrmap[4] & COL_MAX_VAL_MASK) +
1213 COL_B10_BASE);
1214 }
1215 } else {
1216 if (memtype & MEM_TYPE_LPDDR3) {
1217 priv->col_shift[10] = (((addrmap[3] >> 16) &
1218 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1219 (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1220 COL_B8_BASE);
1221 priv->col_shift[11] = (((addrmap[3] >> 24) &
1222 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1223 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1224 COL_B9_BASE);
1225 priv->col_shift[13] = ((addrmap[4] &
1226 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1227 ((addrmap[4] & COL_MAX_VAL_MASK) +
1228 COL_B10_BASE);
1229 } else {
1230 priv->col_shift[11] = (((addrmap[3] >> 16) &
1231 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1232 (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1233 COL_B8_BASE);
1234 priv->col_shift[13] = (((addrmap[3] >> 24) &
1235 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1236 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1237 COL_B9_BASE);
1238 }
1239 }
1240
1241 if (width) {
1242 for (index = 9; index > width; index--) {
1243 priv->col_shift[index] = priv->col_shift[index - width];
1244 priv->col_shift[index - width] = 0;
1245 }
1246 }
1247
1248}
1249
1250static void setup_bank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1251{
1252 priv->bank_shift[0] = (addrmap[1] & BANK_MAX_VAL_MASK) + BANK_B0_BASE;
1253 priv->bank_shift[1] = ((addrmap[1] >> 8) &
1254 BANK_MAX_VAL_MASK) + BANK_B1_BASE;
1255 priv->bank_shift[2] = (((addrmap[1] >> 16) &
1256 BANK_MAX_VAL_MASK) == BANK_MAX_VAL_MASK) ? 0 :
1257 (((addrmap[1] >> 16) & BANK_MAX_VAL_MASK) +
1258 BANK_B2_BASE);
1259
1260}
1261
1262static void setup_bg_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1263{
1264 priv->bankgrp_shift[0] = (addrmap[8] &
1265 BANKGRP_MAX_VAL_MASK) + BANKGRP_B0_BASE;
1266 priv->bankgrp_shift[1] = (((addrmap[8] >> 8) & BANKGRP_MAX_VAL_MASK) ==
1267 BANKGRP_MAX_VAL_MASK) ? 0 : (((addrmap[8] >> 8)
1268 & BANKGRP_MAX_VAL_MASK) + BANKGRP_B1_BASE);
1269
1270}
1271
1272static void setup_rank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1273{
1274 priv->rank_shift[0] = ((addrmap[0] & RANK_MAX_VAL_MASK) ==
1275 RANK_MAX_VAL_MASK) ? 0 : ((addrmap[0] &
1276 RANK_MAX_VAL_MASK) + RANK_B0_BASE);
1277}
1278
1279/**
1280 * setup_address_map - Set Address Map by querying ADDRMAP registers.
1281 * @priv: DDR memory controller private instance data.
1282 *
1283 * Set Address Map by querying ADDRMAP registers.
1284 *
1285 * Return: none.
1286 */
1287static void setup_address_map(struct synps_edac_priv *priv)
1288{
1289 u32 addrmap[12];
1290 int index;
1291
1292 for (index = 0; index < 12; index++) {
1293 u32 addrmap_offset;
1294
1295 addrmap_offset = ECC_ADDRMAP0_OFFSET + (index * 4);
1296 addrmap[index] = readl(priv->baseaddr + addrmap_offset);
1297 }
1298
1299 setup_row_address_map(priv, addrmap);
1300
1301 setup_column_address_map(priv, addrmap);
1302
1303 setup_bank_address_map(priv, addrmap);
1304
1305 setup_bg_address_map(priv, addrmap);
1306
1307 setup_rank_address_map(priv, addrmap);
1308}
1309#endif /* CONFIG_EDAC_DEBUG */
1310
1311/**
1312 * mc_probe - Check controller and bind driver.
1313 * @pdev: platform device.
1314 *
1315 * Probe a specific controller instance for binding with the driver.
1316 *
1317 * Return: 0 if the controller instance was successfully bound to the
1318 * driver; otherwise, < 0 on error.
1319 */
1320static int mc_probe(struct platform_device *pdev)
1321{
1322 const struct synps_platform_data *p_data;
1323 struct edac_mc_layer layers[2];
1324 struct synps_edac_priv *priv;
1325 struct mem_ctl_info *mci;
1326 void __iomem *baseaddr;
1327 struct resource *res;
1328 int rc;
1329
1330 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1331 baseaddr = devm_ioremap_resource(&pdev->dev, res);
1332 if (IS_ERR(baseaddr))
1333 return PTR_ERR(baseaddr);
1334
1335 p_data = of_device_get_match_data(&pdev->dev);
1336 if (!p_data)
1337 return -ENODEV;
1338
1339 if (!p_data->get_ecc_state(baseaddr)) {
1340 edac_printk(KERN_INFO, EDAC_MC, "ECC not enabled\n");
1341 return -ENXIO;
1342 }
1343
1344 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
1345 layers[0].size = SYNPS_EDAC_NR_CSROWS;
1346 layers[0].is_virt_csrow = true;
1347 layers[1].type = EDAC_MC_LAYER_CHANNEL;
1348 layers[1].size = SYNPS_EDAC_NR_CHANS;
1349 layers[1].is_virt_csrow = false;
1350
1351 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
1352 sizeof(struct synps_edac_priv));
1353 if (!mci) {
1354 edac_printk(KERN_ERR, EDAC_MC,
1355 "Failed memory allocation for mc instance\n");
1356 return -ENOMEM;
1357 }
1358
1359 priv = mci->pvt_info;
1360 priv->baseaddr = baseaddr;
1361 priv->p_data = p_data;
1362
1363 mc_init(mci, pdev);
1364
1365 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
1366 rc = setup_irq(mci, pdev);
1367 if (rc)
1368 goto free_edac_mc;
1369 }
1370
1371 rc = edac_mc_add_mc(mci);
1372 if (rc) {
1373 edac_printk(KERN_ERR, EDAC_MC,
1374 "Failed to register with EDAC core\n");
1375 goto free_edac_mc;
1376 }
1377
1378#ifdef CONFIG_EDAC_DEBUG
1379 if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT) {
1380 rc = edac_create_sysfs_attributes(mci);
1381 if (rc) {
1382 edac_printk(KERN_ERR, EDAC_MC,
1383 "Failed to create sysfs entries\n");
1384 goto free_edac_mc;
1385 }
1386 }
1387
1388 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
1389 setup_address_map(priv);
1390#endif
1391
1392 /*
1393 * Start capturing the correctable and uncorrectable errors. A write of
1394 * 0 starts the counters.
1395 */
1396 if (!(priv->p_data->quirks & DDR_ECC_INTR_SUPPORT))
1397 writel(0x0, baseaddr + ECC_CTRL_OFST);
1398
1399 return rc;
1400
1401free_edac_mc:
1402 edac_mc_free(mci);
1403
1404 return rc;
1405}
1406
1407/**
1408 * mc_remove - Unbind driver from controller.
1409 * @pdev: Platform device.
1410 *
1411 * Return: Unconditionally 0
1412 */
1413static void mc_remove(struct platform_device *pdev)
1414{
1415 struct mem_ctl_info *mci = platform_get_drvdata(pdev);
1416 struct synps_edac_priv *priv = mci->pvt_info;
1417
1418 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
1419 disable_intr(priv);
1420
1421#ifdef CONFIG_EDAC_DEBUG
1422 if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT)
1423 edac_remove_sysfs_attributes(mci);
1424#endif
1425
1426 edac_mc_del_mc(&pdev->dev);
1427 edac_mc_free(mci);
1428}
1429
1430static struct platform_driver synps_edac_mc_driver = {
1431 .driver = {
1432 .name = "synopsys-edac",
1433 .of_match_table = synps_edac_match,
1434 },
1435 .probe = mc_probe,
1436 .remove_new = mc_remove,
1437};
1438
1439module_platform_driver(synps_edac_mc_driver);
1440
1441MODULE_AUTHOR("Xilinx Inc");
1442MODULE_DESCRIPTION("Synopsys DDR ECC driver");
1443MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Synopsys DDR ECC Driver
4 * This driver is based on ppc4xx_edac.c drivers
5 *
6 * Copyright (C) 2012 - 2014 Xilinx, Inc.
7 */
8
9#include <linux/edac.h>
10#include <linux/module.h>
11#include <linux/platform_device.h>
12#include <linux/spinlock.h>
13#include <linux/sizes.h>
14#include <linux/interrupt.h>
15#include <linux/of.h>
16
17#include "edac_module.h"
18
19/* Number of cs_rows needed per memory controller */
20#define SYNPS_EDAC_NR_CSROWS 1
21
22/* Number of channels per memory controller */
23#define SYNPS_EDAC_NR_CHANS 1
24
25/* Granularity of reported error in bytes */
26#define SYNPS_EDAC_ERR_GRAIN 1
27
28#define SYNPS_EDAC_MSG_SIZE 256
29
30#define SYNPS_EDAC_MOD_STRING "synps_edac"
31#define SYNPS_EDAC_MOD_VER "1"
32
33/* Synopsys DDR memory controller registers that are relevant to ECC */
34#define CTRL_OFST 0x0
35#define T_ZQ_OFST 0xA4
36
37/* ECC control register */
38#define ECC_CTRL_OFST 0xC4
39/* ECC log register */
40#define CE_LOG_OFST 0xC8
41/* ECC address register */
42#define CE_ADDR_OFST 0xCC
43/* ECC data[31:0] register */
44#define CE_DATA_31_0_OFST 0xD0
45
46/* Uncorrectable error info registers */
47#define UE_LOG_OFST 0xDC
48#define UE_ADDR_OFST 0xE0
49#define UE_DATA_31_0_OFST 0xE4
50
51#define STAT_OFST 0xF0
52#define SCRUB_OFST 0xF4
53
54/* Control register bit field definitions */
55#define CTRL_BW_MASK 0xC
56#define CTRL_BW_SHIFT 2
57
58#define DDRCTL_WDTH_16 1
59#define DDRCTL_WDTH_32 0
60
61/* ZQ register bit field definitions */
62#define T_ZQ_DDRMODE_MASK 0x2
63
64/* ECC control register bit field definitions */
65#define ECC_CTRL_CLR_CE_ERR 0x2
66#define ECC_CTRL_CLR_UE_ERR 0x1
67
68/* ECC correctable/uncorrectable error log register definitions */
69#define LOG_VALID 0x1
70#define CE_LOG_BITPOS_MASK 0xFE
71#define CE_LOG_BITPOS_SHIFT 1
72
73/* ECC correctable/uncorrectable error address register definitions */
74#define ADDR_COL_MASK 0xFFF
75#define ADDR_ROW_MASK 0xFFFF000
76#define ADDR_ROW_SHIFT 12
77#define ADDR_BANK_MASK 0x70000000
78#define ADDR_BANK_SHIFT 28
79
80/* ECC statistic register definitions */
81#define STAT_UECNT_MASK 0xFF
82#define STAT_CECNT_MASK 0xFF00
83#define STAT_CECNT_SHIFT 8
84
85/* ECC scrub register definitions */
86#define SCRUB_MODE_MASK 0x7
87#define SCRUB_MODE_SECDED 0x4
88
89/* DDR ECC Quirks */
90#define DDR_ECC_INTR_SUPPORT BIT(0)
91#define DDR_ECC_DATA_POISON_SUPPORT BIT(1)
92#define DDR_ECC_INTR_SELF_CLEAR BIT(2)
93
94/* ZynqMP Enhanced DDR memory controller registers that are relevant to ECC */
95/* ECC Configuration Registers */
96#define ECC_CFG0_OFST 0x70
97#define ECC_CFG1_OFST 0x74
98
99/* ECC Status Register */
100#define ECC_STAT_OFST 0x78
101
102/* ECC Clear Register */
103#define ECC_CLR_OFST 0x7C
104
105/* ECC Error count Register */
106#define ECC_ERRCNT_OFST 0x80
107
108/* ECC Corrected Error Address Register */
109#define ECC_CEADDR0_OFST 0x84
110#define ECC_CEADDR1_OFST 0x88
111
112/* ECC Syndrome Registers */
113#define ECC_CSYND0_OFST 0x8C
114#define ECC_CSYND1_OFST 0x90
115#define ECC_CSYND2_OFST 0x94
116
117/* ECC Bit Mask0 Address Register */
118#define ECC_BITMASK0_OFST 0x98
119#define ECC_BITMASK1_OFST 0x9C
120#define ECC_BITMASK2_OFST 0xA0
121
122/* ECC UnCorrected Error Address Register */
123#define ECC_UEADDR0_OFST 0xA4
124#define ECC_UEADDR1_OFST 0xA8
125
126/* ECC Syndrome Registers */
127#define ECC_UESYND0_OFST 0xAC
128#define ECC_UESYND1_OFST 0xB0
129#define ECC_UESYND2_OFST 0xB4
130
131/* ECC Poison Address Reg */
132#define ECC_POISON0_OFST 0xB8
133#define ECC_POISON1_OFST 0xBC
134
135#define ECC_ADDRMAP0_OFFSET 0x200
136
137/* Control register bitfield definitions */
138#define ECC_CTRL_BUSWIDTH_MASK 0x3000
139#define ECC_CTRL_BUSWIDTH_SHIFT 12
140#define ECC_CTRL_CLR_CE_ERRCNT BIT(2)
141#define ECC_CTRL_CLR_UE_ERRCNT BIT(3)
142
143/* DDR Control Register width definitions */
144#define DDRCTL_EWDTH_16 2
145#define DDRCTL_EWDTH_32 1
146#define DDRCTL_EWDTH_64 0
147
148/* ECC status register definitions */
149#define ECC_STAT_UECNT_MASK 0xF0000
150#define ECC_STAT_UECNT_SHIFT 16
151#define ECC_STAT_CECNT_MASK 0xF00
152#define ECC_STAT_CECNT_SHIFT 8
153#define ECC_STAT_BITNUM_MASK 0x7F
154
155/* ECC error count register definitions */
156#define ECC_ERRCNT_UECNT_MASK 0xFFFF0000
157#define ECC_ERRCNT_UECNT_SHIFT 16
158#define ECC_ERRCNT_CECNT_MASK 0xFFFF
159
160/* DDR QOS Interrupt register definitions */
161#define DDR_QOS_IRQ_STAT_OFST 0x20200
162#define DDR_QOSUE_MASK 0x4
163#define DDR_QOSCE_MASK 0x2
164#define ECC_CE_UE_INTR_MASK 0x6
165#define DDR_QOS_IRQ_EN_OFST 0x20208
166#define DDR_QOS_IRQ_DB_OFST 0x2020C
167
168/* DDR QOS Interrupt register definitions */
169#define DDR_UE_MASK BIT(9)
170#define DDR_CE_MASK BIT(8)
171
172/* ECC Corrected Error Register Mask and Shifts*/
173#define ECC_CEADDR0_RW_MASK 0x3FFFF
174#define ECC_CEADDR0_RNK_MASK BIT(24)
175#define ECC_CEADDR1_BNKGRP_MASK 0x3000000
176#define ECC_CEADDR1_BNKNR_MASK 0x70000
177#define ECC_CEADDR1_BLKNR_MASK 0xFFF
178#define ECC_CEADDR1_BNKGRP_SHIFT 24
179#define ECC_CEADDR1_BNKNR_SHIFT 16
180
181/* ECC Poison register shifts */
182#define ECC_POISON0_RANK_SHIFT 24
183#define ECC_POISON0_RANK_MASK BIT(24)
184#define ECC_POISON0_COLUMN_SHIFT 0
185#define ECC_POISON0_COLUMN_MASK 0xFFF
186#define ECC_POISON1_BG_SHIFT 28
187#define ECC_POISON1_BG_MASK 0x30000000
188#define ECC_POISON1_BANKNR_SHIFT 24
189#define ECC_POISON1_BANKNR_MASK 0x7000000
190#define ECC_POISON1_ROW_SHIFT 0
191#define ECC_POISON1_ROW_MASK 0x3FFFF
192
193/* DDR Memory type defines */
194#define MEM_TYPE_DDR3 0x1
195#define MEM_TYPE_LPDDR3 0x8
196#define MEM_TYPE_DDR2 0x4
197#define MEM_TYPE_DDR4 0x10
198#define MEM_TYPE_LPDDR4 0x20
199
200/* DDRC Software control register */
201#define DDRC_SWCTL 0x320
202
203/* DDRC ECC CE & UE poison mask */
204#define ECC_CEPOISON_MASK 0x3
205#define ECC_UEPOISON_MASK 0x1
206
207/* DDRC Device config masks */
208#define DDRC_MSTR_CFG_MASK 0xC0000000
209#define DDRC_MSTR_CFG_SHIFT 30
210#define DDRC_MSTR_CFG_X4_MASK 0x0
211#define DDRC_MSTR_CFG_X8_MASK 0x1
212#define DDRC_MSTR_CFG_X16_MASK 0x2
213#define DDRC_MSTR_CFG_X32_MASK 0x3
214
215#define DDR_MAX_ROW_SHIFT 18
216#define DDR_MAX_COL_SHIFT 14
217#define DDR_MAX_BANK_SHIFT 3
218#define DDR_MAX_BANKGRP_SHIFT 2
219
220#define ROW_MAX_VAL_MASK 0xF
221#define COL_MAX_VAL_MASK 0xF
222#define BANK_MAX_VAL_MASK 0x1F
223#define BANKGRP_MAX_VAL_MASK 0x1F
224#define RANK_MAX_VAL_MASK 0x1F
225
226#define ROW_B0_BASE 6
227#define ROW_B1_BASE 7
228#define ROW_B2_BASE 8
229#define ROW_B3_BASE 9
230#define ROW_B4_BASE 10
231#define ROW_B5_BASE 11
232#define ROW_B6_BASE 12
233#define ROW_B7_BASE 13
234#define ROW_B8_BASE 14
235#define ROW_B9_BASE 15
236#define ROW_B10_BASE 16
237#define ROW_B11_BASE 17
238#define ROW_B12_BASE 18
239#define ROW_B13_BASE 19
240#define ROW_B14_BASE 20
241#define ROW_B15_BASE 21
242#define ROW_B16_BASE 22
243#define ROW_B17_BASE 23
244
245#define COL_B2_BASE 2
246#define COL_B3_BASE 3
247#define COL_B4_BASE 4
248#define COL_B5_BASE 5
249#define COL_B6_BASE 6
250#define COL_B7_BASE 7
251#define COL_B8_BASE 8
252#define COL_B9_BASE 9
253#define COL_B10_BASE 10
254#define COL_B11_BASE 11
255#define COL_B12_BASE 12
256#define COL_B13_BASE 13
257
258#define BANK_B0_BASE 2
259#define BANK_B1_BASE 3
260#define BANK_B2_BASE 4
261
262#define BANKGRP_B0_BASE 2
263#define BANKGRP_B1_BASE 3
264
265#define RANK_B0_BASE 6
266
267/**
268 * struct ecc_error_info - ECC error log information.
269 * @row: Row number.
270 * @col: Column number.
271 * @bank: Bank number.
272 * @bitpos: Bit position.
273 * @data: Data causing the error.
274 * @bankgrpnr: Bank group number.
275 * @blknr: Block number.
276 */
277struct ecc_error_info {
278 u32 row;
279 u32 col;
280 u32 bank;
281 u32 bitpos;
282 u32 data;
283 u32 bankgrpnr;
284 u32 blknr;
285};
286
287/**
288 * struct synps_ecc_status - ECC status information to report.
289 * @ce_cnt: Correctable error count.
290 * @ue_cnt: Uncorrectable error count.
291 * @ceinfo: Correctable error log information.
292 * @ueinfo: Uncorrectable error log information.
293 */
294struct synps_ecc_status {
295 u32 ce_cnt;
296 u32 ue_cnt;
297 struct ecc_error_info ceinfo;
298 struct ecc_error_info ueinfo;
299};
300
301/**
302 * struct synps_edac_priv - DDR memory controller private instance data.
303 * @baseaddr: Base address of the DDR controller.
304 * @reglock: Concurrent CSRs access lock.
305 * @message: Buffer for framing the event specific info.
306 * @stat: ECC status information.
307 * @p_data: Platform data.
308 * @ce_cnt: Correctable Error count.
309 * @ue_cnt: Uncorrectable Error count.
310 * @poison_addr: Data poison address.
311 * @row_shift: Bit shifts for row bit.
312 * @col_shift: Bit shifts for column bit.
313 * @bank_shift: Bit shifts for bank bit.
314 * @bankgrp_shift: Bit shifts for bank group bit.
315 * @rank_shift: Bit shifts for rank bit.
316 */
317struct synps_edac_priv {
318 void __iomem *baseaddr;
319 spinlock_t reglock;
320 char message[SYNPS_EDAC_MSG_SIZE];
321 struct synps_ecc_status stat;
322 const struct synps_platform_data *p_data;
323 u32 ce_cnt;
324 u32 ue_cnt;
325#ifdef CONFIG_EDAC_DEBUG
326 ulong poison_addr;
327 u32 row_shift[18];
328 u32 col_shift[14];
329 u32 bank_shift[3];
330 u32 bankgrp_shift[2];
331 u32 rank_shift[1];
332#endif
333};
334
335/**
336 * struct synps_platform_data - synps platform data structure.
337 * @get_error_info: Get EDAC error info.
338 * @get_mtype: Get mtype.
339 * @get_dtype: Get dtype.
340 * @get_ecc_state: Get ECC state.
341 * @get_mem_info: Get EDAC memory info
342 * @quirks: To differentiate IPs.
343 */
344struct synps_platform_data {
345 int (*get_error_info)(struct synps_edac_priv *priv);
346 enum mem_type (*get_mtype)(const void __iomem *base);
347 enum dev_type (*get_dtype)(const void __iomem *base);
348 bool (*get_ecc_state)(void __iomem *base);
349#ifdef CONFIG_EDAC_DEBUG
350 u64 (*get_mem_info)(struct synps_edac_priv *priv);
351#endif
352 int quirks;
353};
354
355/**
356 * zynq_get_error_info - Get the current ECC error info.
357 * @priv: DDR memory controller private instance data.
358 *
359 * Return: one if there is no error, otherwise zero.
360 */
361static int zynq_get_error_info(struct synps_edac_priv *priv)
362{
363 struct synps_ecc_status *p;
364 u32 regval, clearval = 0;
365 void __iomem *base;
366
367 base = priv->baseaddr;
368 p = &priv->stat;
369
370 regval = readl(base + STAT_OFST);
371 if (!regval)
372 return 1;
373
374 p->ce_cnt = (regval & STAT_CECNT_MASK) >> STAT_CECNT_SHIFT;
375 p->ue_cnt = regval & STAT_UECNT_MASK;
376
377 regval = readl(base + CE_LOG_OFST);
378 if (!(p->ce_cnt && (regval & LOG_VALID)))
379 goto ue_err;
380
381 p->ceinfo.bitpos = (regval & CE_LOG_BITPOS_MASK) >> CE_LOG_BITPOS_SHIFT;
382 regval = readl(base + CE_ADDR_OFST);
383 p->ceinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
384 p->ceinfo.col = regval & ADDR_COL_MASK;
385 p->ceinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
386 p->ceinfo.data = readl(base + CE_DATA_31_0_OFST);
387 edac_dbg(3, "CE bit position: %d data: %d\n", p->ceinfo.bitpos,
388 p->ceinfo.data);
389 clearval = ECC_CTRL_CLR_CE_ERR;
390
391ue_err:
392 regval = readl(base + UE_LOG_OFST);
393 if (!(p->ue_cnt && (regval & LOG_VALID)))
394 goto out;
395
396 regval = readl(base + UE_ADDR_OFST);
397 p->ueinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
398 p->ueinfo.col = regval & ADDR_COL_MASK;
399 p->ueinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
400 p->ueinfo.data = readl(base + UE_DATA_31_0_OFST);
401 clearval |= ECC_CTRL_CLR_UE_ERR;
402
403out:
404 writel(clearval, base + ECC_CTRL_OFST);
405 writel(0x0, base + ECC_CTRL_OFST);
406
407 return 0;
408}
409
410#ifdef CONFIG_EDAC_DEBUG
411/**
412 * zynqmp_get_mem_info - Get the current memory info.
413 * @priv: DDR memory controller private instance data.
414 *
415 * Return: host interface address.
416 */
417static u64 zynqmp_get_mem_info(struct synps_edac_priv *priv)
418{
419 u64 hif_addr = 0, linear_addr;
420
421 linear_addr = priv->poison_addr;
422 if (linear_addr >= SZ_32G)
423 linear_addr = linear_addr - SZ_32G + SZ_2G;
424 hif_addr = linear_addr >> 3;
425 return hif_addr;
426}
427#endif
428
429/**
430 * zynqmp_get_error_info - Get the current ECC error info.
431 * @priv: DDR memory controller private instance data.
432 *
433 * Return: one if there is no error otherwise returns zero.
434 */
435static int zynqmp_get_error_info(struct synps_edac_priv *priv)
436{
437 struct synps_ecc_status *p;
438 u32 regval, clearval;
439 unsigned long flags;
440 void __iomem *base;
441
442 base = priv->baseaddr;
443 p = &priv->stat;
444
445 regval = readl(base + ECC_ERRCNT_OFST);
446 p->ce_cnt = regval & ECC_ERRCNT_CECNT_MASK;
447 p->ue_cnt = (regval & ECC_ERRCNT_UECNT_MASK) >> ECC_ERRCNT_UECNT_SHIFT;
448 if (!p->ce_cnt)
449 goto ue_err;
450
451 regval = readl(base + ECC_STAT_OFST);
452 if (!regval)
453 return 1;
454
455 p->ceinfo.bitpos = (regval & ECC_STAT_BITNUM_MASK);
456
457 regval = readl(base + ECC_CEADDR0_OFST);
458 p->ceinfo.row = (regval & ECC_CEADDR0_RW_MASK);
459 regval = readl(base + ECC_CEADDR1_OFST);
460 p->ceinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
461 ECC_CEADDR1_BNKNR_SHIFT;
462 p->ceinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
463 ECC_CEADDR1_BNKGRP_SHIFT;
464 p->ceinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
465 p->ceinfo.data = readl(base + ECC_CSYND0_OFST);
466 edac_dbg(2, "ECCCSYN0: 0x%08X ECCCSYN1: 0x%08X ECCCSYN2: 0x%08X\n",
467 readl(base + ECC_CSYND0_OFST), readl(base + ECC_CSYND1_OFST),
468 readl(base + ECC_CSYND2_OFST));
469ue_err:
470 if (!p->ue_cnt)
471 goto out;
472
473 regval = readl(base + ECC_UEADDR0_OFST);
474 p->ueinfo.row = (regval & ECC_CEADDR0_RW_MASK);
475 regval = readl(base + ECC_UEADDR1_OFST);
476 p->ueinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
477 ECC_CEADDR1_BNKGRP_SHIFT;
478 p->ueinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
479 ECC_CEADDR1_BNKNR_SHIFT;
480 p->ueinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
481 p->ueinfo.data = readl(base + ECC_UESYND0_OFST);
482out:
483 spin_lock_irqsave(&priv->reglock, flags);
484
485 clearval = readl(base + ECC_CLR_OFST) |
486 ECC_CTRL_CLR_CE_ERR | ECC_CTRL_CLR_CE_ERRCNT |
487 ECC_CTRL_CLR_UE_ERR | ECC_CTRL_CLR_UE_ERRCNT;
488 writel(clearval, base + ECC_CLR_OFST);
489
490 spin_unlock_irqrestore(&priv->reglock, flags);
491
492 return 0;
493}
494
495/**
496 * handle_error - Handle Correctable and Uncorrectable errors.
497 * @mci: EDAC memory controller instance.
498 * @p: Synopsys ECC status structure.
499 *
500 * Handles ECC correctable and uncorrectable errors.
501 */
502static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p)
503{
504 struct synps_edac_priv *priv = mci->pvt_info;
505 struct ecc_error_info *pinf;
506
507 if (p->ce_cnt) {
508 pinf = &p->ceinfo;
509 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
510 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
511 "DDR ECC error type:%s Row %d Bank %d BankGroup Number %d Block Number %d Bit Position: %d Data: 0x%08x",
512 "CE", pinf->row, pinf->bank,
513 pinf->bankgrpnr, pinf->blknr,
514 pinf->bitpos, pinf->data);
515 } else {
516 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
517 "DDR ECC error type:%s Row %d Bank %d Col %d Bit Position: %d Data: 0x%08x",
518 "CE", pinf->row, pinf->bank, pinf->col,
519 pinf->bitpos, pinf->data);
520 }
521
522 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
523 p->ce_cnt, 0, 0, 0, 0, 0, -1,
524 priv->message, "");
525 }
526
527 if (p->ue_cnt) {
528 pinf = &p->ueinfo;
529 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
530 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
531 "DDR ECC error type :%s Row %d Bank %d BankGroup Number %d Block Number %d",
532 "UE", pinf->row, pinf->bank,
533 pinf->bankgrpnr, pinf->blknr);
534 } else {
535 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
536 "DDR ECC error type :%s Row %d Bank %d Col %d ",
537 "UE", pinf->row, pinf->bank, pinf->col);
538 }
539
540 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
541 p->ue_cnt, 0, 0, 0, 0, 0, -1,
542 priv->message, "");
543 }
544
545 memset(p, 0, sizeof(*p));
546}
547
548static void enable_intr(struct synps_edac_priv *priv)
549{
550 unsigned long flags;
551
552 /* Enable UE/CE Interrupts */
553 if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)) {
554 writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
555 priv->baseaddr + DDR_QOS_IRQ_EN_OFST);
556
557 return;
558 }
559
560 spin_lock_irqsave(&priv->reglock, flags);
561
562 writel(DDR_UE_MASK | DDR_CE_MASK,
563 priv->baseaddr + ECC_CLR_OFST);
564
565 spin_unlock_irqrestore(&priv->reglock, flags);
566}
567
568static void disable_intr(struct synps_edac_priv *priv)
569{
570 unsigned long flags;
571
572 /* Disable UE/CE Interrupts */
573 if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)) {
574 writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
575 priv->baseaddr + DDR_QOS_IRQ_DB_OFST);
576
577 return;
578 }
579
580 spin_lock_irqsave(&priv->reglock, flags);
581
582 writel(0, priv->baseaddr + ECC_CLR_OFST);
583
584 spin_unlock_irqrestore(&priv->reglock, flags);
585}
586
587/**
588 * intr_handler - Interrupt Handler for ECC interrupts.
589 * @irq: IRQ number.
590 * @dev_id: Device ID.
591 *
592 * Return: IRQ_NONE, if interrupt not set or IRQ_HANDLED otherwise.
593 */
594static irqreturn_t intr_handler(int irq, void *dev_id)
595{
596 const struct synps_platform_data *p_data;
597 struct mem_ctl_info *mci = dev_id;
598 struct synps_edac_priv *priv;
599 int status, regval;
600
601 priv = mci->pvt_info;
602 p_data = priv->p_data;
603
604 /*
605 * v3.0 of the controller has the ce/ue bits cleared automatically,
606 * so this condition does not apply.
607 */
608 if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)) {
609 regval = readl(priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
610 regval &= (DDR_QOSCE_MASK | DDR_QOSUE_MASK);
611 if (!(regval & ECC_CE_UE_INTR_MASK))
612 return IRQ_NONE;
613 }
614
615 status = p_data->get_error_info(priv);
616 if (status)
617 return IRQ_NONE;
618
619 priv->ce_cnt += priv->stat.ce_cnt;
620 priv->ue_cnt += priv->stat.ue_cnt;
621 handle_error(mci, &priv->stat);
622
623 edac_dbg(3, "Total error count CE %d UE %d\n",
624 priv->ce_cnt, priv->ue_cnt);
625 /* v3.0 of the controller does not have this register */
626 if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR))
627 writel(regval, priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
628
629 return IRQ_HANDLED;
630}
631
632/**
633 * check_errors - Check controller for ECC errors.
634 * @mci: EDAC memory controller instance.
635 *
636 * Check and post ECC errors. Called by the polling thread.
637 */
638static void check_errors(struct mem_ctl_info *mci)
639{
640 const struct synps_platform_data *p_data;
641 struct synps_edac_priv *priv;
642 int status;
643
644 priv = mci->pvt_info;
645 p_data = priv->p_data;
646
647 status = p_data->get_error_info(priv);
648 if (status)
649 return;
650
651 priv->ce_cnt += priv->stat.ce_cnt;
652 priv->ue_cnt += priv->stat.ue_cnt;
653 handle_error(mci, &priv->stat);
654
655 edac_dbg(3, "Total error count CE %d UE %d\n",
656 priv->ce_cnt, priv->ue_cnt);
657}
658
659/**
660 * zynq_get_dtype - Return the controller memory width.
661 * @base: DDR memory controller base address.
662 *
663 * Get the EDAC device type width appropriate for the current controller
664 * configuration.
665 *
666 * Return: a device type width enumeration.
667 */
668static enum dev_type zynq_get_dtype(const void __iomem *base)
669{
670 enum dev_type dt;
671 u32 width;
672
673 width = readl(base + CTRL_OFST);
674 width = (width & CTRL_BW_MASK) >> CTRL_BW_SHIFT;
675
676 switch (width) {
677 case DDRCTL_WDTH_16:
678 dt = DEV_X2;
679 break;
680 case DDRCTL_WDTH_32:
681 dt = DEV_X4;
682 break;
683 default:
684 dt = DEV_UNKNOWN;
685 }
686
687 return dt;
688}
689
690/**
691 * zynqmp_get_dtype - Return the controller memory width.
692 * @base: DDR memory controller base address.
693 *
694 * Get the EDAC device type width appropriate for the current controller
695 * configuration.
696 *
697 * Return: a device type width enumeration.
698 */
699static enum dev_type zynqmp_get_dtype(const void __iomem *base)
700{
701 enum dev_type dt;
702 u32 width;
703
704 width = readl(base + CTRL_OFST);
705 width = (width & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
706 switch (width) {
707 case DDRCTL_EWDTH_16:
708 dt = DEV_X2;
709 break;
710 case DDRCTL_EWDTH_32:
711 dt = DEV_X4;
712 break;
713 case DDRCTL_EWDTH_64:
714 dt = DEV_X8;
715 break;
716 default:
717 dt = DEV_UNKNOWN;
718 }
719
720 return dt;
721}
722
723/**
724 * zynq_get_ecc_state - Return the controller ECC enable/disable status.
725 * @base: DDR memory controller base address.
726 *
727 * Get the ECC enable/disable status of the controller.
728 *
729 * Return: true if enabled, otherwise false.
730 */
731static bool zynq_get_ecc_state(void __iomem *base)
732{
733 enum dev_type dt;
734 u32 ecctype;
735
736 dt = zynq_get_dtype(base);
737 if (dt == DEV_UNKNOWN)
738 return false;
739
740 ecctype = readl(base + SCRUB_OFST) & SCRUB_MODE_MASK;
741 if ((ecctype == SCRUB_MODE_SECDED) && (dt == DEV_X2))
742 return true;
743
744 return false;
745}
746
747/**
748 * zynqmp_get_ecc_state - Return the controller ECC enable/disable status.
749 * @base: DDR memory controller base address.
750 *
751 * Get the ECC enable/disable status for the controller.
752 *
753 * Return: a ECC status boolean i.e true/false - enabled/disabled.
754 */
755static bool zynqmp_get_ecc_state(void __iomem *base)
756{
757 enum dev_type dt;
758 u32 ecctype;
759
760 dt = zynqmp_get_dtype(base);
761 if (dt == DEV_UNKNOWN)
762 return false;
763
764 ecctype = readl(base + ECC_CFG0_OFST) & SCRUB_MODE_MASK;
765 if ((ecctype == SCRUB_MODE_SECDED) &&
766 ((dt == DEV_X2) || (dt == DEV_X4) || (dt == DEV_X8)))
767 return true;
768
769 return false;
770}
771
772/**
773 * get_memsize - Read the size of the attached memory device.
774 *
775 * Return: the memory size in bytes.
776 */
777static u32 get_memsize(void)
778{
779 struct sysinfo inf;
780
781 si_meminfo(&inf);
782
783 return inf.totalram * inf.mem_unit;
784}
785
786/**
787 * zynq_get_mtype - Return the controller memory type.
788 * @base: Synopsys ECC status structure.
789 *
790 * Get the EDAC memory type appropriate for the current controller
791 * configuration.
792 *
793 * Return: a memory type enumeration.
794 */
795static enum mem_type zynq_get_mtype(const void __iomem *base)
796{
797 enum mem_type mt;
798 u32 memtype;
799
800 memtype = readl(base + T_ZQ_OFST);
801
802 if (memtype & T_ZQ_DDRMODE_MASK)
803 mt = MEM_DDR3;
804 else
805 mt = MEM_DDR2;
806
807 return mt;
808}
809
810/**
811 * zynqmp_get_mtype - Returns controller memory type.
812 * @base: Synopsys ECC status structure.
813 *
814 * Get the EDAC memory type appropriate for the current controller
815 * configuration.
816 *
817 * Return: a memory type enumeration.
818 */
819static enum mem_type zynqmp_get_mtype(const void __iomem *base)
820{
821 enum mem_type mt;
822 u32 memtype;
823
824 memtype = readl(base + CTRL_OFST);
825
826 if ((memtype & MEM_TYPE_DDR3) || (memtype & MEM_TYPE_LPDDR3))
827 mt = MEM_DDR3;
828 else if (memtype & MEM_TYPE_DDR2)
829 mt = MEM_RDDR2;
830 else if ((memtype & MEM_TYPE_LPDDR4) || (memtype & MEM_TYPE_DDR4))
831 mt = MEM_DDR4;
832 else
833 mt = MEM_EMPTY;
834
835 return mt;
836}
837
838/**
839 * init_csrows - Initialize the csrow data.
840 * @mci: EDAC memory controller instance.
841 *
842 * Initialize the chip select rows associated with the EDAC memory
843 * controller instance.
844 */
845static void init_csrows(struct mem_ctl_info *mci)
846{
847 struct synps_edac_priv *priv = mci->pvt_info;
848 const struct synps_platform_data *p_data;
849 struct csrow_info *csi;
850 struct dimm_info *dimm;
851 u32 size, row;
852 int j;
853
854 p_data = priv->p_data;
855
856 for (row = 0; row < mci->nr_csrows; row++) {
857 csi = mci->csrows[row];
858 size = get_memsize();
859
860 for (j = 0; j < csi->nr_channels; j++) {
861 dimm = csi->channels[j]->dimm;
862 dimm->edac_mode = EDAC_SECDED;
863 dimm->mtype = p_data->get_mtype(priv->baseaddr);
864 dimm->nr_pages = (size >> PAGE_SHIFT) / csi->nr_channels;
865 dimm->grain = SYNPS_EDAC_ERR_GRAIN;
866 dimm->dtype = p_data->get_dtype(priv->baseaddr);
867 }
868 }
869}
870
871/**
872 * mc_init - Initialize one driver instance.
873 * @mci: EDAC memory controller instance.
874 * @pdev: platform device.
875 *
876 * Perform initialization of the EDAC memory controller instance and
877 * related driver-private data associated with the memory controller the
878 * instance is bound to.
879 */
880static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev)
881{
882 struct synps_edac_priv *priv;
883
884 mci->pdev = &pdev->dev;
885 priv = mci->pvt_info;
886 platform_set_drvdata(pdev, mci);
887
888 /* Initialize controller capabilities and configuration */
889 mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR2;
890 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
891 mci->scrub_cap = SCRUB_HW_SRC;
892 mci->scrub_mode = SCRUB_NONE;
893
894 mci->edac_cap = EDAC_FLAG_SECDED;
895 mci->ctl_name = "synps_ddr_controller";
896 mci->dev_name = SYNPS_EDAC_MOD_STRING;
897 mci->mod_name = SYNPS_EDAC_MOD_VER;
898
899 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
900 edac_op_state = EDAC_OPSTATE_INT;
901 } else {
902 edac_op_state = EDAC_OPSTATE_POLL;
903 mci->edac_check = check_errors;
904 }
905
906 mci->ctl_page_to_phys = NULL;
907
908 init_csrows(mci);
909}
910
911static int setup_irq(struct mem_ctl_info *mci,
912 struct platform_device *pdev)
913{
914 struct synps_edac_priv *priv = mci->pvt_info;
915 int ret, irq;
916
917 irq = platform_get_irq(pdev, 0);
918 if (irq < 0) {
919 edac_printk(KERN_ERR, EDAC_MC,
920 "No IRQ %d in DT\n", irq);
921 return irq;
922 }
923
924 ret = devm_request_irq(&pdev->dev, irq, intr_handler,
925 0, dev_name(&pdev->dev), mci);
926 if (ret < 0) {
927 edac_printk(KERN_ERR, EDAC_MC, "Failed to request IRQ\n");
928 return ret;
929 }
930
931 enable_intr(priv);
932
933 return 0;
934}
935
936static const struct synps_platform_data zynq_edac_def = {
937 .get_error_info = zynq_get_error_info,
938 .get_mtype = zynq_get_mtype,
939 .get_dtype = zynq_get_dtype,
940 .get_ecc_state = zynq_get_ecc_state,
941 .quirks = 0,
942};
943
944static const struct synps_platform_data zynqmp_edac_def = {
945 .get_error_info = zynqmp_get_error_info,
946 .get_mtype = zynqmp_get_mtype,
947 .get_dtype = zynqmp_get_dtype,
948 .get_ecc_state = zynqmp_get_ecc_state,
949#ifdef CONFIG_EDAC_DEBUG
950 .get_mem_info = zynqmp_get_mem_info,
951#endif
952 .quirks = (DDR_ECC_INTR_SUPPORT
953#ifdef CONFIG_EDAC_DEBUG
954 | DDR_ECC_DATA_POISON_SUPPORT
955#endif
956 ),
957};
958
959static const struct synps_platform_data synopsys_edac_def = {
960 .get_error_info = zynqmp_get_error_info,
961 .get_mtype = zynqmp_get_mtype,
962 .get_dtype = zynqmp_get_dtype,
963 .get_ecc_state = zynqmp_get_ecc_state,
964 .quirks = (DDR_ECC_INTR_SUPPORT | DDR_ECC_INTR_SELF_CLEAR
965#ifdef CONFIG_EDAC_DEBUG
966 | DDR_ECC_DATA_POISON_SUPPORT
967#endif
968 ),
969};
970
971
972static const struct of_device_id synps_edac_match[] = {
973 {
974 .compatible = "xlnx,zynq-ddrc-a05",
975 .data = (void *)&zynq_edac_def
976 },
977 {
978 .compatible = "xlnx,zynqmp-ddrc-2.40a",
979 .data = (void *)&zynqmp_edac_def
980 },
981 {
982 .compatible = "snps,ddrc-3.80a",
983 .data = (void *)&synopsys_edac_def
984 },
985 {
986 /* end of table */
987 }
988};
989
990MODULE_DEVICE_TABLE(of, synps_edac_match);
991
992#ifdef CONFIG_EDAC_DEBUG
993#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
994
995/**
996 * ddr_poison_setup - Update poison registers.
997 * @priv: DDR memory controller private instance data.
998 *
999 * Update poison registers as per DDR mapping.
1000 * Return: none.
1001 */
1002static void ddr_poison_setup(struct synps_edac_priv *priv)
1003{
1004 int col = 0, row = 0, bank = 0, bankgrp = 0, rank = 0, regval;
1005 const struct synps_platform_data *p_data;
1006 int index;
1007 ulong hif_addr = 0;
1008
1009 p_data = priv->p_data;
1010
1011 if (p_data->get_mem_info)
1012 hif_addr = p_data->get_mem_info(priv);
1013 else
1014 hif_addr = priv->poison_addr >> 3;
1015
1016 for (index = 0; index < DDR_MAX_ROW_SHIFT; index++) {
1017 if (priv->row_shift[index])
1018 row |= (((hif_addr >> priv->row_shift[index]) &
1019 BIT(0)) << index);
1020 else
1021 break;
1022 }
1023
1024 for (index = 0; index < DDR_MAX_COL_SHIFT; index++) {
1025 if (priv->col_shift[index] || index < 3)
1026 col |= (((hif_addr >> priv->col_shift[index]) &
1027 BIT(0)) << index);
1028 else
1029 break;
1030 }
1031
1032 for (index = 0; index < DDR_MAX_BANK_SHIFT; index++) {
1033 if (priv->bank_shift[index])
1034 bank |= (((hif_addr >> priv->bank_shift[index]) &
1035 BIT(0)) << index);
1036 else
1037 break;
1038 }
1039
1040 for (index = 0; index < DDR_MAX_BANKGRP_SHIFT; index++) {
1041 if (priv->bankgrp_shift[index])
1042 bankgrp |= (((hif_addr >> priv->bankgrp_shift[index])
1043 & BIT(0)) << index);
1044 else
1045 break;
1046 }
1047
1048 if (priv->rank_shift[0])
1049 rank = (hif_addr >> priv->rank_shift[0]) & BIT(0);
1050
1051 regval = (rank << ECC_POISON0_RANK_SHIFT) & ECC_POISON0_RANK_MASK;
1052 regval |= (col << ECC_POISON0_COLUMN_SHIFT) & ECC_POISON0_COLUMN_MASK;
1053 writel(regval, priv->baseaddr + ECC_POISON0_OFST);
1054
1055 regval = (bankgrp << ECC_POISON1_BG_SHIFT) & ECC_POISON1_BG_MASK;
1056 regval |= (bank << ECC_POISON1_BANKNR_SHIFT) & ECC_POISON1_BANKNR_MASK;
1057 regval |= (row << ECC_POISON1_ROW_SHIFT) & ECC_POISON1_ROW_MASK;
1058 writel(regval, priv->baseaddr + ECC_POISON1_OFST);
1059}
1060
1061static ssize_t inject_data_error_show(struct device *dev,
1062 struct device_attribute *mattr,
1063 char *data)
1064{
1065 struct mem_ctl_info *mci = to_mci(dev);
1066 struct synps_edac_priv *priv = mci->pvt_info;
1067
1068 return sprintf(data, "Poison0 Addr: 0x%08x\n\rPoison1 Addr: 0x%08x\n\r"
1069 "Error injection Address: 0x%lx\n\r",
1070 readl(priv->baseaddr + ECC_POISON0_OFST),
1071 readl(priv->baseaddr + ECC_POISON1_OFST),
1072 priv->poison_addr);
1073}
1074
1075static ssize_t inject_data_error_store(struct device *dev,
1076 struct device_attribute *mattr,
1077 const char *data, size_t count)
1078{
1079 struct mem_ctl_info *mci = to_mci(dev);
1080 struct synps_edac_priv *priv = mci->pvt_info;
1081
1082 if (kstrtoul(data, 0, &priv->poison_addr))
1083 return -EINVAL;
1084
1085 ddr_poison_setup(priv);
1086
1087 return count;
1088}
1089
1090static ssize_t inject_data_poison_show(struct device *dev,
1091 struct device_attribute *mattr,
1092 char *data)
1093{
1094 struct mem_ctl_info *mci = to_mci(dev);
1095 struct synps_edac_priv *priv = mci->pvt_info;
1096
1097 return sprintf(data, "Data Poisoning: %s\n\r",
1098 (((readl(priv->baseaddr + ECC_CFG1_OFST)) & 0x3) == 0x3)
1099 ? ("Correctable Error") : ("UnCorrectable Error"));
1100}
1101
1102static ssize_t inject_data_poison_store(struct device *dev,
1103 struct device_attribute *mattr,
1104 const char *data, size_t count)
1105{
1106 struct mem_ctl_info *mci = to_mci(dev);
1107 struct synps_edac_priv *priv = mci->pvt_info;
1108
1109 writel(0, priv->baseaddr + DDRC_SWCTL);
1110 if (strncmp(data, "CE", 2) == 0)
1111 writel(ECC_CEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1112 else
1113 writel(ECC_UEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1114 writel(1, priv->baseaddr + DDRC_SWCTL);
1115
1116 return count;
1117}
1118
1119static DEVICE_ATTR_RW(inject_data_error);
1120static DEVICE_ATTR_RW(inject_data_poison);
1121
1122static int edac_create_sysfs_attributes(struct mem_ctl_info *mci)
1123{
1124 int rc;
1125
1126 rc = device_create_file(&mci->dev, &dev_attr_inject_data_error);
1127 if (rc < 0)
1128 return rc;
1129 rc = device_create_file(&mci->dev, &dev_attr_inject_data_poison);
1130 if (rc < 0)
1131 return rc;
1132 return 0;
1133}
1134
1135static void edac_remove_sysfs_attributes(struct mem_ctl_info *mci)
1136{
1137 device_remove_file(&mci->dev, &dev_attr_inject_data_error);
1138 device_remove_file(&mci->dev, &dev_attr_inject_data_poison);
1139}
1140
1141static void setup_row_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1142{
1143 u32 addrmap_row_b2_10;
1144 int index;
1145
1146 priv->row_shift[0] = (addrmap[5] & ROW_MAX_VAL_MASK) + ROW_B0_BASE;
1147 priv->row_shift[1] = ((addrmap[5] >> 8) &
1148 ROW_MAX_VAL_MASK) + ROW_B1_BASE;
1149
1150 addrmap_row_b2_10 = (addrmap[5] >> 16) & ROW_MAX_VAL_MASK;
1151 if (addrmap_row_b2_10 != ROW_MAX_VAL_MASK) {
1152 for (index = 2; index < 11; index++)
1153 priv->row_shift[index] = addrmap_row_b2_10 +
1154 index + ROW_B0_BASE;
1155
1156 } else {
1157 priv->row_shift[2] = (addrmap[9] &
1158 ROW_MAX_VAL_MASK) + ROW_B2_BASE;
1159 priv->row_shift[3] = ((addrmap[9] >> 8) &
1160 ROW_MAX_VAL_MASK) + ROW_B3_BASE;
1161 priv->row_shift[4] = ((addrmap[9] >> 16) &
1162 ROW_MAX_VAL_MASK) + ROW_B4_BASE;
1163 priv->row_shift[5] = ((addrmap[9] >> 24) &
1164 ROW_MAX_VAL_MASK) + ROW_B5_BASE;
1165 priv->row_shift[6] = (addrmap[10] &
1166 ROW_MAX_VAL_MASK) + ROW_B6_BASE;
1167 priv->row_shift[7] = ((addrmap[10] >> 8) &
1168 ROW_MAX_VAL_MASK) + ROW_B7_BASE;
1169 priv->row_shift[8] = ((addrmap[10] >> 16) &
1170 ROW_MAX_VAL_MASK) + ROW_B8_BASE;
1171 priv->row_shift[9] = ((addrmap[10] >> 24) &
1172 ROW_MAX_VAL_MASK) + ROW_B9_BASE;
1173 priv->row_shift[10] = (addrmap[11] &
1174 ROW_MAX_VAL_MASK) + ROW_B10_BASE;
1175 }
1176
1177 priv->row_shift[11] = (((addrmap[5] >> 24) & ROW_MAX_VAL_MASK) ==
1178 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[5] >> 24) &
1179 ROW_MAX_VAL_MASK) + ROW_B11_BASE);
1180 priv->row_shift[12] = ((addrmap[6] & ROW_MAX_VAL_MASK) ==
1181 ROW_MAX_VAL_MASK) ? 0 : ((addrmap[6] &
1182 ROW_MAX_VAL_MASK) + ROW_B12_BASE);
1183 priv->row_shift[13] = (((addrmap[6] >> 8) & ROW_MAX_VAL_MASK) ==
1184 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 8) &
1185 ROW_MAX_VAL_MASK) + ROW_B13_BASE);
1186 priv->row_shift[14] = (((addrmap[6] >> 16) & ROW_MAX_VAL_MASK) ==
1187 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 16) &
1188 ROW_MAX_VAL_MASK) + ROW_B14_BASE);
1189 priv->row_shift[15] = (((addrmap[6] >> 24) & ROW_MAX_VAL_MASK) ==
1190 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 24) &
1191 ROW_MAX_VAL_MASK) + ROW_B15_BASE);
1192 priv->row_shift[16] = ((addrmap[7] & ROW_MAX_VAL_MASK) ==
1193 ROW_MAX_VAL_MASK) ? 0 : ((addrmap[7] &
1194 ROW_MAX_VAL_MASK) + ROW_B16_BASE);
1195 priv->row_shift[17] = (((addrmap[7] >> 8) & ROW_MAX_VAL_MASK) ==
1196 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[7] >> 8) &
1197 ROW_MAX_VAL_MASK) + ROW_B17_BASE);
1198}
1199
1200static void setup_column_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1201{
1202 u32 width, memtype;
1203 int index;
1204
1205 memtype = readl(priv->baseaddr + CTRL_OFST);
1206 width = (memtype & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
1207
1208 priv->col_shift[0] = 0;
1209 priv->col_shift[1] = 1;
1210 priv->col_shift[2] = (addrmap[2] & COL_MAX_VAL_MASK) + COL_B2_BASE;
1211 priv->col_shift[3] = ((addrmap[2] >> 8) &
1212 COL_MAX_VAL_MASK) + COL_B3_BASE;
1213 priv->col_shift[4] = (((addrmap[2] >> 16) & COL_MAX_VAL_MASK) ==
1214 COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 16) &
1215 COL_MAX_VAL_MASK) + COL_B4_BASE);
1216 priv->col_shift[5] = (((addrmap[2] >> 24) & COL_MAX_VAL_MASK) ==
1217 COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 24) &
1218 COL_MAX_VAL_MASK) + COL_B5_BASE);
1219 priv->col_shift[6] = ((addrmap[3] & COL_MAX_VAL_MASK) ==
1220 COL_MAX_VAL_MASK) ? 0 : ((addrmap[3] &
1221 COL_MAX_VAL_MASK) + COL_B6_BASE);
1222 priv->col_shift[7] = (((addrmap[3] >> 8) & COL_MAX_VAL_MASK) ==
1223 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 8) &
1224 COL_MAX_VAL_MASK) + COL_B7_BASE);
1225 priv->col_shift[8] = (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) ==
1226 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 16) &
1227 COL_MAX_VAL_MASK) + COL_B8_BASE);
1228 priv->col_shift[9] = (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) ==
1229 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 24) &
1230 COL_MAX_VAL_MASK) + COL_B9_BASE);
1231 if (width == DDRCTL_EWDTH_64) {
1232 if (memtype & MEM_TYPE_LPDDR3) {
1233 priv->col_shift[10] = ((addrmap[4] &
1234 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1235 ((addrmap[4] & COL_MAX_VAL_MASK) +
1236 COL_B10_BASE);
1237 priv->col_shift[11] = (((addrmap[4] >> 8) &
1238 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1239 (((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1240 COL_B11_BASE);
1241 } else {
1242 priv->col_shift[11] = ((addrmap[4] &
1243 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1244 ((addrmap[4] & COL_MAX_VAL_MASK) +
1245 COL_B10_BASE);
1246 priv->col_shift[13] = (((addrmap[4] >> 8) &
1247 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1248 (((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1249 COL_B11_BASE);
1250 }
1251 } else if (width == DDRCTL_EWDTH_32) {
1252 if (memtype & MEM_TYPE_LPDDR3) {
1253 priv->col_shift[10] = (((addrmap[3] >> 24) &
1254 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1255 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1256 COL_B9_BASE);
1257 priv->col_shift[11] = ((addrmap[4] &
1258 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1259 ((addrmap[4] & COL_MAX_VAL_MASK) +
1260 COL_B10_BASE);
1261 } else {
1262 priv->col_shift[11] = (((addrmap[3] >> 24) &
1263 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1264 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1265 COL_B9_BASE);
1266 priv->col_shift[13] = ((addrmap[4] &
1267 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1268 ((addrmap[4] & COL_MAX_VAL_MASK) +
1269 COL_B10_BASE);
1270 }
1271 } else {
1272 if (memtype & MEM_TYPE_LPDDR3) {
1273 priv->col_shift[10] = (((addrmap[3] >> 16) &
1274 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1275 (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1276 COL_B8_BASE);
1277 priv->col_shift[11] = (((addrmap[3] >> 24) &
1278 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1279 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1280 COL_B9_BASE);
1281 priv->col_shift[13] = ((addrmap[4] &
1282 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1283 ((addrmap[4] & COL_MAX_VAL_MASK) +
1284 COL_B10_BASE);
1285 } else {
1286 priv->col_shift[11] = (((addrmap[3] >> 16) &
1287 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1288 (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1289 COL_B8_BASE);
1290 priv->col_shift[13] = (((addrmap[3] >> 24) &
1291 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1292 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1293 COL_B9_BASE);
1294 }
1295 }
1296
1297 if (width) {
1298 for (index = 9; index > width; index--) {
1299 priv->col_shift[index] = priv->col_shift[index - width];
1300 priv->col_shift[index - width] = 0;
1301 }
1302 }
1303
1304}
1305
1306static void setup_bank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1307{
1308 priv->bank_shift[0] = (addrmap[1] & BANK_MAX_VAL_MASK) + BANK_B0_BASE;
1309 priv->bank_shift[1] = ((addrmap[1] >> 8) &
1310 BANK_MAX_VAL_MASK) + BANK_B1_BASE;
1311 priv->bank_shift[2] = (((addrmap[1] >> 16) &
1312 BANK_MAX_VAL_MASK) == BANK_MAX_VAL_MASK) ? 0 :
1313 (((addrmap[1] >> 16) & BANK_MAX_VAL_MASK) +
1314 BANK_B2_BASE);
1315
1316}
1317
1318static void setup_bg_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1319{
1320 priv->bankgrp_shift[0] = (addrmap[8] &
1321 BANKGRP_MAX_VAL_MASK) + BANKGRP_B0_BASE;
1322 priv->bankgrp_shift[1] = (((addrmap[8] >> 8) & BANKGRP_MAX_VAL_MASK) ==
1323 BANKGRP_MAX_VAL_MASK) ? 0 : (((addrmap[8] >> 8)
1324 & BANKGRP_MAX_VAL_MASK) + BANKGRP_B1_BASE);
1325
1326}
1327
1328static void setup_rank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1329{
1330 priv->rank_shift[0] = ((addrmap[0] & RANK_MAX_VAL_MASK) ==
1331 RANK_MAX_VAL_MASK) ? 0 : ((addrmap[0] &
1332 RANK_MAX_VAL_MASK) + RANK_B0_BASE);
1333}
1334
1335/**
1336 * setup_address_map - Set Address Map by querying ADDRMAP registers.
1337 * @priv: DDR memory controller private instance data.
1338 *
1339 * Set Address Map by querying ADDRMAP registers.
1340 *
1341 * Return: none.
1342 */
1343static void setup_address_map(struct synps_edac_priv *priv)
1344{
1345 u32 addrmap[12];
1346 int index;
1347
1348 for (index = 0; index < 12; index++) {
1349 u32 addrmap_offset;
1350
1351 addrmap_offset = ECC_ADDRMAP0_OFFSET + (index * 4);
1352 addrmap[index] = readl(priv->baseaddr + addrmap_offset);
1353 }
1354
1355 setup_row_address_map(priv, addrmap);
1356
1357 setup_column_address_map(priv, addrmap);
1358
1359 setup_bank_address_map(priv, addrmap);
1360
1361 setup_bg_address_map(priv, addrmap);
1362
1363 setup_rank_address_map(priv, addrmap);
1364}
1365#endif /* CONFIG_EDAC_DEBUG */
1366
1367/**
1368 * mc_probe - Check controller and bind driver.
1369 * @pdev: platform device.
1370 *
1371 * Probe a specific controller instance for binding with the driver.
1372 *
1373 * Return: 0 if the controller instance was successfully bound to the
1374 * driver; otherwise, < 0 on error.
1375 */
1376static int mc_probe(struct platform_device *pdev)
1377{
1378 const struct synps_platform_data *p_data;
1379 struct edac_mc_layer layers[2];
1380 struct synps_edac_priv *priv;
1381 struct mem_ctl_info *mci;
1382 void __iomem *baseaddr;
1383 int rc;
1384
1385 baseaddr = devm_platform_ioremap_resource(pdev, 0);
1386 if (IS_ERR(baseaddr))
1387 return PTR_ERR(baseaddr);
1388
1389 p_data = of_device_get_match_data(&pdev->dev);
1390 if (!p_data)
1391 return -ENODEV;
1392
1393 if (!p_data->get_ecc_state(baseaddr)) {
1394 edac_printk(KERN_INFO, EDAC_MC, "ECC not enabled\n");
1395 return -ENXIO;
1396 }
1397
1398 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
1399 layers[0].size = SYNPS_EDAC_NR_CSROWS;
1400 layers[0].is_virt_csrow = true;
1401 layers[1].type = EDAC_MC_LAYER_CHANNEL;
1402 layers[1].size = SYNPS_EDAC_NR_CHANS;
1403 layers[1].is_virt_csrow = false;
1404
1405 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
1406 sizeof(struct synps_edac_priv));
1407 if (!mci) {
1408 edac_printk(KERN_ERR, EDAC_MC,
1409 "Failed memory allocation for mc instance\n");
1410 return -ENOMEM;
1411 }
1412
1413 priv = mci->pvt_info;
1414 priv->baseaddr = baseaddr;
1415 priv->p_data = p_data;
1416 spin_lock_init(&priv->reglock);
1417
1418 mc_init(mci, pdev);
1419
1420 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
1421 rc = setup_irq(mci, pdev);
1422 if (rc)
1423 goto free_edac_mc;
1424 }
1425
1426 rc = edac_mc_add_mc(mci);
1427 if (rc) {
1428 edac_printk(KERN_ERR, EDAC_MC,
1429 "Failed to register with EDAC core\n");
1430 goto free_edac_mc;
1431 }
1432
1433#ifdef CONFIG_EDAC_DEBUG
1434 if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT) {
1435 rc = edac_create_sysfs_attributes(mci);
1436 if (rc) {
1437 edac_printk(KERN_ERR, EDAC_MC,
1438 "Failed to create sysfs entries\n");
1439 goto free_edac_mc;
1440 }
1441 }
1442
1443 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
1444 setup_address_map(priv);
1445#endif
1446
1447 /*
1448 * Start capturing the correctable and uncorrectable errors. A write of
1449 * 0 starts the counters.
1450 */
1451 if (!(priv->p_data->quirks & DDR_ECC_INTR_SUPPORT))
1452 writel(0x0, baseaddr + ECC_CTRL_OFST);
1453
1454 return rc;
1455
1456free_edac_mc:
1457 edac_mc_free(mci);
1458
1459 return rc;
1460}
1461
1462/**
1463 * mc_remove - Unbind driver from controller.
1464 * @pdev: Platform device.
1465 *
1466 * Return: Unconditionally 0
1467 */
1468static void mc_remove(struct platform_device *pdev)
1469{
1470 struct mem_ctl_info *mci = platform_get_drvdata(pdev);
1471 struct synps_edac_priv *priv = mci->pvt_info;
1472
1473 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
1474 disable_intr(priv);
1475
1476#ifdef CONFIG_EDAC_DEBUG
1477 if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT)
1478 edac_remove_sysfs_attributes(mci);
1479#endif
1480
1481 edac_mc_del_mc(&pdev->dev);
1482 edac_mc_free(mci);
1483}
1484
1485static struct platform_driver synps_edac_mc_driver = {
1486 .driver = {
1487 .name = "synopsys-edac",
1488 .of_match_table = synps_edac_match,
1489 },
1490 .probe = mc_probe,
1491 .remove = mc_remove,
1492};
1493
1494module_platform_driver(synps_edac_mc_driver);
1495
1496MODULE_AUTHOR("Xilinx Inc");
1497MODULE_DESCRIPTION("Synopsys DDR ECC driver");
1498MODULE_LICENSE("GPL v2");