Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Synopsys DDR ECC Driver
4 * This driver is based on ppc4xx_edac.c drivers
5 *
6 * Copyright (C) 2012 - 2014 Xilinx, Inc.
7 */
8
9#include <linux/edac.h>
10#include <linux/module.h>
11#include <linux/platform_device.h>
12#include <linux/interrupt.h>
13#include <linux/of.h>
14
15#include "edac_module.h"
16
17/* Number of cs_rows needed per memory controller */
18#define SYNPS_EDAC_NR_CSROWS 1
19
20/* Number of channels per memory controller */
21#define SYNPS_EDAC_NR_CHANS 1
22
23/* Granularity of reported error in bytes */
24#define SYNPS_EDAC_ERR_GRAIN 1
25
26#define SYNPS_EDAC_MSG_SIZE 256
27
28#define SYNPS_EDAC_MOD_STRING "synps_edac"
29#define SYNPS_EDAC_MOD_VER "1"
30
31/* Synopsys DDR memory controller registers that are relevant to ECC */
32#define CTRL_OFST 0x0
33#define T_ZQ_OFST 0xA4
34
35/* ECC control register */
36#define ECC_CTRL_OFST 0xC4
37/* ECC log register */
38#define CE_LOG_OFST 0xC8
39/* ECC address register */
40#define CE_ADDR_OFST 0xCC
41/* ECC data[31:0] register */
42#define CE_DATA_31_0_OFST 0xD0
43
44/* Uncorrectable error info registers */
45#define UE_LOG_OFST 0xDC
46#define UE_ADDR_OFST 0xE0
47#define UE_DATA_31_0_OFST 0xE4
48
49#define STAT_OFST 0xF0
50#define SCRUB_OFST 0xF4
51
52/* Control register bit field definitions */
53#define CTRL_BW_MASK 0xC
54#define CTRL_BW_SHIFT 2
55
56#define DDRCTL_WDTH_16 1
57#define DDRCTL_WDTH_32 0
58
59/* ZQ register bit field definitions */
60#define T_ZQ_DDRMODE_MASK 0x2
61
62/* ECC control register bit field definitions */
63#define ECC_CTRL_CLR_CE_ERR 0x2
64#define ECC_CTRL_CLR_UE_ERR 0x1
65
66/* ECC correctable/uncorrectable error log register definitions */
67#define LOG_VALID 0x1
68#define CE_LOG_BITPOS_MASK 0xFE
69#define CE_LOG_BITPOS_SHIFT 1
70
71/* ECC correctable/uncorrectable error address register definitions */
72#define ADDR_COL_MASK 0xFFF
73#define ADDR_ROW_MASK 0xFFFF000
74#define ADDR_ROW_SHIFT 12
75#define ADDR_BANK_MASK 0x70000000
76#define ADDR_BANK_SHIFT 28
77
78/* ECC statistic register definitions */
79#define STAT_UECNT_MASK 0xFF
80#define STAT_CECNT_MASK 0xFF00
81#define STAT_CECNT_SHIFT 8
82
83/* ECC scrub register definitions */
84#define SCRUB_MODE_MASK 0x7
85#define SCRUB_MODE_SECDED 0x4
86
87/* DDR ECC Quirks */
88#define DDR_ECC_INTR_SUPPORT BIT(0)
89#define DDR_ECC_DATA_POISON_SUPPORT BIT(1)
90#define DDR_ECC_INTR_SELF_CLEAR BIT(2)
91
92/* ZynqMP Enhanced DDR memory controller registers that are relevant to ECC */
93/* ECC Configuration Registers */
94#define ECC_CFG0_OFST 0x70
95#define ECC_CFG1_OFST 0x74
96
97/* ECC Status Register */
98#define ECC_STAT_OFST 0x78
99
100/* ECC Clear Register */
101#define ECC_CLR_OFST 0x7C
102
103/* ECC Error count Register */
104#define ECC_ERRCNT_OFST 0x80
105
106/* ECC Corrected Error Address Register */
107#define ECC_CEADDR0_OFST 0x84
108#define ECC_CEADDR1_OFST 0x88
109
110/* ECC Syndrome Registers */
111#define ECC_CSYND0_OFST 0x8C
112#define ECC_CSYND1_OFST 0x90
113#define ECC_CSYND2_OFST 0x94
114
115/* ECC Bit Mask0 Address Register */
116#define ECC_BITMASK0_OFST 0x98
117#define ECC_BITMASK1_OFST 0x9C
118#define ECC_BITMASK2_OFST 0xA0
119
120/* ECC UnCorrected Error Address Register */
121#define ECC_UEADDR0_OFST 0xA4
122#define ECC_UEADDR1_OFST 0xA8
123
124/* ECC Syndrome Registers */
125#define ECC_UESYND0_OFST 0xAC
126#define ECC_UESYND1_OFST 0xB0
127#define ECC_UESYND2_OFST 0xB4
128
129/* ECC Poison Address Reg */
130#define ECC_POISON0_OFST 0xB8
131#define ECC_POISON1_OFST 0xBC
132
133#define ECC_ADDRMAP0_OFFSET 0x200
134
135/* Control register bitfield definitions */
136#define ECC_CTRL_BUSWIDTH_MASK 0x3000
137#define ECC_CTRL_BUSWIDTH_SHIFT 12
138#define ECC_CTRL_CLR_CE_ERRCNT BIT(2)
139#define ECC_CTRL_CLR_UE_ERRCNT BIT(3)
140
141/* DDR Control Register width definitions */
142#define DDRCTL_EWDTH_16 2
143#define DDRCTL_EWDTH_32 1
144#define DDRCTL_EWDTH_64 0
145
146/* ECC status register definitions */
147#define ECC_STAT_UECNT_MASK 0xF0000
148#define ECC_STAT_UECNT_SHIFT 16
149#define ECC_STAT_CECNT_MASK 0xF00
150#define ECC_STAT_CECNT_SHIFT 8
151#define ECC_STAT_BITNUM_MASK 0x7F
152
153/* ECC error count register definitions */
154#define ECC_ERRCNT_UECNT_MASK 0xFFFF0000
155#define ECC_ERRCNT_UECNT_SHIFT 16
156#define ECC_ERRCNT_CECNT_MASK 0xFFFF
157
158/* DDR QOS Interrupt register definitions */
159#define DDR_QOS_IRQ_STAT_OFST 0x20200
160#define DDR_QOSUE_MASK 0x4
161#define DDR_QOSCE_MASK 0x2
162#define ECC_CE_UE_INTR_MASK 0x6
163#define DDR_QOS_IRQ_EN_OFST 0x20208
164#define DDR_QOS_IRQ_DB_OFST 0x2020C
165
166/* DDR QOS Interrupt register definitions */
167#define DDR_UE_MASK BIT(9)
168#define DDR_CE_MASK BIT(8)
169
170/* ECC Corrected Error Register Mask and Shifts*/
171#define ECC_CEADDR0_RW_MASK 0x3FFFF
172#define ECC_CEADDR0_RNK_MASK BIT(24)
173#define ECC_CEADDR1_BNKGRP_MASK 0x3000000
174#define ECC_CEADDR1_BNKNR_MASK 0x70000
175#define ECC_CEADDR1_BLKNR_MASK 0xFFF
176#define ECC_CEADDR1_BNKGRP_SHIFT 24
177#define ECC_CEADDR1_BNKNR_SHIFT 16
178
179/* ECC Poison register shifts */
180#define ECC_POISON0_RANK_SHIFT 24
181#define ECC_POISON0_RANK_MASK BIT(24)
182#define ECC_POISON0_COLUMN_SHIFT 0
183#define ECC_POISON0_COLUMN_MASK 0xFFF
184#define ECC_POISON1_BG_SHIFT 28
185#define ECC_POISON1_BG_MASK 0x30000000
186#define ECC_POISON1_BANKNR_SHIFT 24
187#define ECC_POISON1_BANKNR_MASK 0x7000000
188#define ECC_POISON1_ROW_SHIFT 0
189#define ECC_POISON1_ROW_MASK 0x3FFFF
190
191/* DDR Memory type defines */
192#define MEM_TYPE_DDR3 0x1
193#define MEM_TYPE_LPDDR3 0x8
194#define MEM_TYPE_DDR2 0x4
195#define MEM_TYPE_DDR4 0x10
196#define MEM_TYPE_LPDDR4 0x20
197
198/* DDRC Software control register */
199#define DDRC_SWCTL 0x320
200
201/* DDRC ECC CE & UE poison mask */
202#define ECC_CEPOISON_MASK 0x3
203#define ECC_UEPOISON_MASK 0x1
204
205/* DDRC Device config masks */
206#define DDRC_MSTR_CFG_MASK 0xC0000000
207#define DDRC_MSTR_CFG_SHIFT 30
208#define DDRC_MSTR_CFG_X4_MASK 0x0
209#define DDRC_MSTR_CFG_X8_MASK 0x1
210#define DDRC_MSTR_CFG_X16_MASK 0x2
211#define DDRC_MSTR_CFG_X32_MASK 0x3
212
213#define DDR_MAX_ROW_SHIFT 18
214#define DDR_MAX_COL_SHIFT 14
215#define DDR_MAX_BANK_SHIFT 3
216#define DDR_MAX_BANKGRP_SHIFT 2
217
218#define ROW_MAX_VAL_MASK 0xF
219#define COL_MAX_VAL_MASK 0xF
220#define BANK_MAX_VAL_MASK 0x1F
221#define BANKGRP_MAX_VAL_MASK 0x1F
222#define RANK_MAX_VAL_MASK 0x1F
223
224#define ROW_B0_BASE 6
225#define ROW_B1_BASE 7
226#define ROW_B2_BASE 8
227#define ROW_B3_BASE 9
228#define ROW_B4_BASE 10
229#define ROW_B5_BASE 11
230#define ROW_B6_BASE 12
231#define ROW_B7_BASE 13
232#define ROW_B8_BASE 14
233#define ROW_B9_BASE 15
234#define ROW_B10_BASE 16
235#define ROW_B11_BASE 17
236#define ROW_B12_BASE 18
237#define ROW_B13_BASE 19
238#define ROW_B14_BASE 20
239#define ROW_B15_BASE 21
240#define ROW_B16_BASE 22
241#define ROW_B17_BASE 23
242
243#define COL_B2_BASE 2
244#define COL_B3_BASE 3
245#define COL_B4_BASE 4
246#define COL_B5_BASE 5
247#define COL_B6_BASE 6
248#define COL_B7_BASE 7
249#define COL_B8_BASE 8
250#define COL_B9_BASE 9
251#define COL_B10_BASE 10
252#define COL_B11_BASE 11
253#define COL_B12_BASE 12
254#define COL_B13_BASE 13
255
256#define BANK_B0_BASE 2
257#define BANK_B1_BASE 3
258#define BANK_B2_BASE 4
259
260#define BANKGRP_B0_BASE 2
261#define BANKGRP_B1_BASE 3
262
263#define RANK_B0_BASE 6
264
265/**
266 * struct ecc_error_info - ECC error log information.
267 * @row: Row number.
268 * @col: Column number.
269 * @bank: Bank number.
270 * @bitpos: Bit position.
271 * @data: Data causing the error.
272 * @bankgrpnr: Bank group number.
273 * @blknr: Block number.
274 */
275struct ecc_error_info {
276 u32 row;
277 u32 col;
278 u32 bank;
279 u32 bitpos;
280 u32 data;
281 u32 bankgrpnr;
282 u32 blknr;
283};
284
285/**
286 * struct synps_ecc_status - ECC status information to report.
287 * @ce_cnt: Correctable error count.
288 * @ue_cnt: Uncorrectable error count.
289 * @ceinfo: Correctable error log information.
290 * @ueinfo: Uncorrectable error log information.
291 */
292struct synps_ecc_status {
293 u32 ce_cnt;
294 u32 ue_cnt;
295 struct ecc_error_info ceinfo;
296 struct ecc_error_info ueinfo;
297};
298
299/**
300 * struct synps_edac_priv - DDR memory controller private instance data.
301 * @baseaddr: Base address of the DDR controller.
302 * @message: Buffer for framing the event specific info.
303 * @stat: ECC status information.
304 * @p_data: Platform data.
305 * @ce_cnt: Correctable Error count.
306 * @ue_cnt: Uncorrectable Error count.
307 * @poison_addr: Data poison address.
308 * @row_shift: Bit shifts for row bit.
309 * @col_shift: Bit shifts for column bit.
310 * @bank_shift: Bit shifts for bank bit.
311 * @bankgrp_shift: Bit shifts for bank group bit.
312 * @rank_shift: Bit shifts for rank bit.
313 */
314struct synps_edac_priv {
315 void __iomem *baseaddr;
316 char message[SYNPS_EDAC_MSG_SIZE];
317 struct synps_ecc_status stat;
318 const struct synps_platform_data *p_data;
319 u32 ce_cnt;
320 u32 ue_cnt;
321#ifdef CONFIG_EDAC_DEBUG
322 ulong poison_addr;
323 u32 row_shift[18];
324 u32 col_shift[14];
325 u32 bank_shift[3];
326 u32 bankgrp_shift[2];
327 u32 rank_shift[1];
328#endif
329};
330
331/**
332 * struct synps_platform_data - synps platform data structure.
333 * @get_error_info: Get EDAC error info.
334 * @get_mtype: Get mtype.
335 * @get_dtype: Get dtype.
336 * @get_ecc_state: Get ECC state.
337 * @quirks: To differentiate IPs.
338 */
339struct synps_platform_data {
340 int (*get_error_info)(struct synps_edac_priv *priv);
341 enum mem_type (*get_mtype)(const void __iomem *base);
342 enum dev_type (*get_dtype)(const void __iomem *base);
343 bool (*get_ecc_state)(void __iomem *base);
344 int quirks;
345};
346
347/**
348 * zynq_get_error_info - Get the current ECC error info.
349 * @priv: DDR memory controller private instance data.
350 *
351 * Return: one if there is no error, otherwise zero.
352 */
353static int zynq_get_error_info(struct synps_edac_priv *priv)
354{
355 struct synps_ecc_status *p;
356 u32 regval, clearval = 0;
357 void __iomem *base;
358
359 base = priv->baseaddr;
360 p = &priv->stat;
361
362 regval = readl(base + STAT_OFST);
363 if (!regval)
364 return 1;
365
366 p->ce_cnt = (regval & STAT_CECNT_MASK) >> STAT_CECNT_SHIFT;
367 p->ue_cnt = regval & STAT_UECNT_MASK;
368
369 regval = readl(base + CE_LOG_OFST);
370 if (!(p->ce_cnt && (regval & LOG_VALID)))
371 goto ue_err;
372
373 p->ceinfo.bitpos = (regval & CE_LOG_BITPOS_MASK) >> CE_LOG_BITPOS_SHIFT;
374 regval = readl(base + CE_ADDR_OFST);
375 p->ceinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
376 p->ceinfo.col = regval & ADDR_COL_MASK;
377 p->ceinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
378 p->ceinfo.data = readl(base + CE_DATA_31_0_OFST);
379 edac_dbg(3, "CE bit position: %d data: %d\n", p->ceinfo.bitpos,
380 p->ceinfo.data);
381 clearval = ECC_CTRL_CLR_CE_ERR;
382
383ue_err:
384 regval = readl(base + UE_LOG_OFST);
385 if (!(p->ue_cnt && (regval & LOG_VALID)))
386 goto out;
387
388 regval = readl(base + UE_ADDR_OFST);
389 p->ueinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
390 p->ueinfo.col = regval & ADDR_COL_MASK;
391 p->ueinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
392 p->ueinfo.data = readl(base + UE_DATA_31_0_OFST);
393 clearval |= ECC_CTRL_CLR_UE_ERR;
394
395out:
396 writel(clearval, base + ECC_CTRL_OFST);
397 writel(0x0, base + ECC_CTRL_OFST);
398
399 return 0;
400}
401
402/**
403 * zynqmp_get_error_info - Get the current ECC error info.
404 * @priv: DDR memory controller private instance data.
405 *
406 * Return: one if there is no error otherwise returns zero.
407 */
408static int zynqmp_get_error_info(struct synps_edac_priv *priv)
409{
410 struct synps_ecc_status *p;
411 u32 regval, clearval = 0;
412 void __iomem *base;
413
414 base = priv->baseaddr;
415 p = &priv->stat;
416
417 regval = readl(base + ECC_ERRCNT_OFST);
418 p->ce_cnt = regval & ECC_ERRCNT_CECNT_MASK;
419 p->ue_cnt = (regval & ECC_ERRCNT_UECNT_MASK) >> ECC_ERRCNT_UECNT_SHIFT;
420 if (!p->ce_cnt)
421 goto ue_err;
422
423 regval = readl(base + ECC_STAT_OFST);
424 if (!regval)
425 return 1;
426
427 p->ceinfo.bitpos = (regval & ECC_STAT_BITNUM_MASK);
428
429 regval = readl(base + ECC_CEADDR0_OFST);
430 p->ceinfo.row = (regval & ECC_CEADDR0_RW_MASK);
431 regval = readl(base + ECC_CEADDR1_OFST);
432 p->ceinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
433 ECC_CEADDR1_BNKNR_SHIFT;
434 p->ceinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
435 ECC_CEADDR1_BNKGRP_SHIFT;
436 p->ceinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
437 p->ceinfo.data = readl(base + ECC_CSYND0_OFST);
438 edac_dbg(2, "ECCCSYN0: 0x%08X ECCCSYN1: 0x%08X ECCCSYN2: 0x%08X\n",
439 readl(base + ECC_CSYND0_OFST), readl(base + ECC_CSYND1_OFST),
440 readl(base + ECC_CSYND2_OFST));
441ue_err:
442 if (!p->ue_cnt)
443 goto out;
444
445 regval = readl(base + ECC_UEADDR0_OFST);
446 p->ueinfo.row = (regval & ECC_CEADDR0_RW_MASK);
447 regval = readl(base + ECC_UEADDR1_OFST);
448 p->ueinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
449 ECC_CEADDR1_BNKGRP_SHIFT;
450 p->ueinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
451 ECC_CEADDR1_BNKNR_SHIFT;
452 p->ueinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
453 p->ueinfo.data = readl(base + ECC_UESYND0_OFST);
454out:
455 clearval = ECC_CTRL_CLR_CE_ERR | ECC_CTRL_CLR_CE_ERRCNT;
456 clearval |= ECC_CTRL_CLR_UE_ERR | ECC_CTRL_CLR_UE_ERRCNT;
457 writel(clearval, base + ECC_CLR_OFST);
458 writel(0x0, base + ECC_CLR_OFST);
459
460 return 0;
461}
462
463/**
464 * handle_error - Handle Correctable and Uncorrectable errors.
465 * @mci: EDAC memory controller instance.
466 * @p: Synopsys ECC status structure.
467 *
468 * Handles ECC correctable and uncorrectable errors.
469 */
470static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p)
471{
472 struct synps_edac_priv *priv = mci->pvt_info;
473 struct ecc_error_info *pinf;
474
475 if (p->ce_cnt) {
476 pinf = &p->ceinfo;
477 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
478 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
479 "DDR ECC error type:%s Row %d Bank %d BankGroup Number %d Block Number %d Bit Position: %d Data: 0x%08x",
480 "CE", pinf->row, pinf->bank,
481 pinf->bankgrpnr, pinf->blknr,
482 pinf->bitpos, pinf->data);
483 } else {
484 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
485 "DDR ECC error type:%s Row %d Bank %d Col %d Bit Position: %d Data: 0x%08x",
486 "CE", pinf->row, pinf->bank, pinf->col,
487 pinf->bitpos, pinf->data);
488 }
489
490 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
491 p->ce_cnt, 0, 0, 0, 0, 0, -1,
492 priv->message, "");
493 }
494
495 if (p->ue_cnt) {
496 pinf = &p->ueinfo;
497 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
498 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
499 "DDR ECC error type :%s Row %d Bank %d BankGroup Number %d Block Number %d",
500 "UE", pinf->row, pinf->bank,
501 pinf->bankgrpnr, pinf->blknr);
502 } else {
503 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
504 "DDR ECC error type :%s Row %d Bank %d Col %d ",
505 "UE", pinf->row, pinf->bank, pinf->col);
506 }
507
508 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
509 p->ue_cnt, 0, 0, 0, 0, 0, -1,
510 priv->message, "");
511 }
512
513 memset(p, 0, sizeof(*p));
514}
515
516static void enable_intr(struct synps_edac_priv *priv)
517{
518 /* Enable UE/CE Interrupts */
519 if (priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)
520 writel(DDR_UE_MASK | DDR_CE_MASK,
521 priv->baseaddr + ECC_CLR_OFST);
522 else
523 writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
524 priv->baseaddr + DDR_QOS_IRQ_EN_OFST);
525
526}
527
528static void disable_intr(struct synps_edac_priv *priv)
529{
530 /* Disable UE/CE Interrupts */
531 if (priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)
532 writel(0x0, priv->baseaddr + ECC_CLR_OFST);
533 else
534 writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
535 priv->baseaddr + DDR_QOS_IRQ_DB_OFST);
536}
537
538/**
539 * intr_handler - Interrupt Handler for ECC interrupts.
540 * @irq: IRQ number.
541 * @dev_id: Device ID.
542 *
543 * Return: IRQ_NONE, if interrupt not set or IRQ_HANDLED otherwise.
544 */
545static irqreturn_t intr_handler(int irq, void *dev_id)
546{
547 const struct synps_platform_data *p_data;
548 struct mem_ctl_info *mci = dev_id;
549 struct synps_edac_priv *priv;
550 int status, regval;
551
552 priv = mci->pvt_info;
553 p_data = priv->p_data;
554
555 /*
556 * v3.0 of the controller has the ce/ue bits cleared automatically,
557 * so this condition does not apply.
558 */
559 if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)) {
560 regval = readl(priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
561 regval &= (DDR_QOSCE_MASK | DDR_QOSUE_MASK);
562 if (!(regval & ECC_CE_UE_INTR_MASK))
563 return IRQ_NONE;
564 }
565
566 status = p_data->get_error_info(priv);
567 if (status)
568 return IRQ_NONE;
569
570 priv->ce_cnt += priv->stat.ce_cnt;
571 priv->ue_cnt += priv->stat.ue_cnt;
572 handle_error(mci, &priv->stat);
573
574 edac_dbg(3, "Total error count CE %d UE %d\n",
575 priv->ce_cnt, priv->ue_cnt);
576 /* v3.0 of the controller does not have this register */
577 if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR))
578 writel(regval, priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
579 else
580 enable_intr(priv);
581
582 return IRQ_HANDLED;
583}
584
585/**
586 * check_errors - Check controller for ECC errors.
587 * @mci: EDAC memory controller instance.
588 *
589 * Check and post ECC errors. Called by the polling thread.
590 */
591static void check_errors(struct mem_ctl_info *mci)
592{
593 const struct synps_platform_data *p_data;
594 struct synps_edac_priv *priv;
595 int status;
596
597 priv = mci->pvt_info;
598 p_data = priv->p_data;
599
600 status = p_data->get_error_info(priv);
601 if (status)
602 return;
603
604 priv->ce_cnt += priv->stat.ce_cnt;
605 priv->ue_cnt += priv->stat.ue_cnt;
606 handle_error(mci, &priv->stat);
607
608 edac_dbg(3, "Total error count CE %d UE %d\n",
609 priv->ce_cnt, priv->ue_cnt);
610}
611
612/**
613 * zynq_get_dtype - Return the controller memory width.
614 * @base: DDR memory controller base address.
615 *
616 * Get the EDAC device type width appropriate for the current controller
617 * configuration.
618 *
619 * Return: a device type width enumeration.
620 */
621static enum dev_type zynq_get_dtype(const void __iomem *base)
622{
623 enum dev_type dt;
624 u32 width;
625
626 width = readl(base + CTRL_OFST);
627 width = (width & CTRL_BW_MASK) >> CTRL_BW_SHIFT;
628
629 switch (width) {
630 case DDRCTL_WDTH_16:
631 dt = DEV_X2;
632 break;
633 case DDRCTL_WDTH_32:
634 dt = DEV_X4;
635 break;
636 default:
637 dt = DEV_UNKNOWN;
638 }
639
640 return dt;
641}
642
643/**
644 * zynqmp_get_dtype - Return the controller memory width.
645 * @base: DDR memory controller base address.
646 *
647 * Get the EDAC device type width appropriate for the current controller
648 * configuration.
649 *
650 * Return: a device type width enumeration.
651 */
652static enum dev_type zynqmp_get_dtype(const void __iomem *base)
653{
654 enum dev_type dt;
655 u32 width;
656
657 width = readl(base + CTRL_OFST);
658 width = (width & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
659 switch (width) {
660 case DDRCTL_EWDTH_16:
661 dt = DEV_X2;
662 break;
663 case DDRCTL_EWDTH_32:
664 dt = DEV_X4;
665 break;
666 case DDRCTL_EWDTH_64:
667 dt = DEV_X8;
668 break;
669 default:
670 dt = DEV_UNKNOWN;
671 }
672
673 return dt;
674}
675
676/**
677 * zynq_get_ecc_state - Return the controller ECC enable/disable status.
678 * @base: DDR memory controller base address.
679 *
680 * Get the ECC enable/disable status of the controller.
681 *
682 * Return: true if enabled, otherwise false.
683 */
684static bool zynq_get_ecc_state(void __iomem *base)
685{
686 enum dev_type dt;
687 u32 ecctype;
688
689 dt = zynq_get_dtype(base);
690 if (dt == DEV_UNKNOWN)
691 return false;
692
693 ecctype = readl(base + SCRUB_OFST) & SCRUB_MODE_MASK;
694 if ((ecctype == SCRUB_MODE_SECDED) && (dt == DEV_X2))
695 return true;
696
697 return false;
698}
699
700/**
701 * zynqmp_get_ecc_state - Return the controller ECC enable/disable status.
702 * @base: DDR memory controller base address.
703 *
704 * Get the ECC enable/disable status for the controller.
705 *
706 * Return: a ECC status boolean i.e true/false - enabled/disabled.
707 */
708static bool zynqmp_get_ecc_state(void __iomem *base)
709{
710 enum dev_type dt;
711 u32 ecctype;
712
713 dt = zynqmp_get_dtype(base);
714 if (dt == DEV_UNKNOWN)
715 return false;
716
717 ecctype = readl(base + ECC_CFG0_OFST) & SCRUB_MODE_MASK;
718 if ((ecctype == SCRUB_MODE_SECDED) &&
719 ((dt == DEV_X2) || (dt == DEV_X4) || (dt == DEV_X8)))
720 return true;
721
722 return false;
723}
724
725/**
726 * get_memsize - Read the size of the attached memory device.
727 *
728 * Return: the memory size in bytes.
729 */
730static u32 get_memsize(void)
731{
732 struct sysinfo inf;
733
734 si_meminfo(&inf);
735
736 return inf.totalram * inf.mem_unit;
737}
738
739/**
740 * zynq_get_mtype - Return the controller memory type.
741 * @base: Synopsys ECC status structure.
742 *
743 * Get the EDAC memory type appropriate for the current controller
744 * configuration.
745 *
746 * Return: a memory type enumeration.
747 */
748static enum mem_type zynq_get_mtype(const void __iomem *base)
749{
750 enum mem_type mt;
751 u32 memtype;
752
753 memtype = readl(base + T_ZQ_OFST);
754
755 if (memtype & T_ZQ_DDRMODE_MASK)
756 mt = MEM_DDR3;
757 else
758 mt = MEM_DDR2;
759
760 return mt;
761}
762
763/**
764 * zynqmp_get_mtype - Returns controller memory type.
765 * @base: Synopsys ECC status structure.
766 *
767 * Get the EDAC memory type appropriate for the current controller
768 * configuration.
769 *
770 * Return: a memory type enumeration.
771 */
772static enum mem_type zynqmp_get_mtype(const void __iomem *base)
773{
774 enum mem_type mt;
775 u32 memtype;
776
777 memtype = readl(base + CTRL_OFST);
778
779 if ((memtype & MEM_TYPE_DDR3) || (memtype & MEM_TYPE_LPDDR3))
780 mt = MEM_DDR3;
781 else if (memtype & MEM_TYPE_DDR2)
782 mt = MEM_RDDR2;
783 else if ((memtype & MEM_TYPE_LPDDR4) || (memtype & MEM_TYPE_DDR4))
784 mt = MEM_DDR4;
785 else
786 mt = MEM_EMPTY;
787
788 return mt;
789}
790
791/**
792 * init_csrows - Initialize the csrow data.
793 * @mci: EDAC memory controller instance.
794 *
795 * Initialize the chip select rows associated with the EDAC memory
796 * controller instance.
797 */
798static void init_csrows(struct mem_ctl_info *mci)
799{
800 struct synps_edac_priv *priv = mci->pvt_info;
801 const struct synps_platform_data *p_data;
802 struct csrow_info *csi;
803 struct dimm_info *dimm;
804 u32 size, row;
805 int j;
806
807 p_data = priv->p_data;
808
809 for (row = 0; row < mci->nr_csrows; row++) {
810 csi = mci->csrows[row];
811 size = get_memsize();
812
813 for (j = 0; j < csi->nr_channels; j++) {
814 dimm = csi->channels[j]->dimm;
815 dimm->edac_mode = EDAC_SECDED;
816 dimm->mtype = p_data->get_mtype(priv->baseaddr);
817 dimm->nr_pages = (size >> PAGE_SHIFT) / csi->nr_channels;
818 dimm->grain = SYNPS_EDAC_ERR_GRAIN;
819 dimm->dtype = p_data->get_dtype(priv->baseaddr);
820 }
821 }
822}
823
824/**
825 * mc_init - Initialize one driver instance.
826 * @mci: EDAC memory controller instance.
827 * @pdev: platform device.
828 *
829 * Perform initialization of the EDAC memory controller instance and
830 * related driver-private data associated with the memory controller the
831 * instance is bound to.
832 */
833static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev)
834{
835 struct synps_edac_priv *priv;
836
837 mci->pdev = &pdev->dev;
838 priv = mci->pvt_info;
839 platform_set_drvdata(pdev, mci);
840
841 /* Initialize controller capabilities and configuration */
842 mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR2;
843 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
844 mci->scrub_cap = SCRUB_HW_SRC;
845 mci->scrub_mode = SCRUB_NONE;
846
847 mci->edac_cap = EDAC_FLAG_SECDED;
848 mci->ctl_name = "synps_ddr_controller";
849 mci->dev_name = SYNPS_EDAC_MOD_STRING;
850 mci->mod_name = SYNPS_EDAC_MOD_VER;
851
852 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
853 edac_op_state = EDAC_OPSTATE_INT;
854 } else {
855 edac_op_state = EDAC_OPSTATE_POLL;
856 mci->edac_check = check_errors;
857 }
858
859 mci->ctl_page_to_phys = NULL;
860
861 init_csrows(mci);
862}
863
864static int setup_irq(struct mem_ctl_info *mci,
865 struct platform_device *pdev)
866{
867 struct synps_edac_priv *priv = mci->pvt_info;
868 int ret, irq;
869
870 irq = platform_get_irq(pdev, 0);
871 if (irq < 0) {
872 edac_printk(KERN_ERR, EDAC_MC,
873 "No IRQ %d in DT\n", irq);
874 return irq;
875 }
876
877 ret = devm_request_irq(&pdev->dev, irq, intr_handler,
878 0, dev_name(&pdev->dev), mci);
879 if (ret < 0) {
880 edac_printk(KERN_ERR, EDAC_MC, "Failed to request IRQ\n");
881 return ret;
882 }
883
884 enable_intr(priv);
885
886 return 0;
887}
888
889static const struct synps_platform_data zynq_edac_def = {
890 .get_error_info = zynq_get_error_info,
891 .get_mtype = zynq_get_mtype,
892 .get_dtype = zynq_get_dtype,
893 .get_ecc_state = zynq_get_ecc_state,
894 .quirks = 0,
895};
896
897static const struct synps_platform_data zynqmp_edac_def = {
898 .get_error_info = zynqmp_get_error_info,
899 .get_mtype = zynqmp_get_mtype,
900 .get_dtype = zynqmp_get_dtype,
901 .get_ecc_state = zynqmp_get_ecc_state,
902 .quirks = (DDR_ECC_INTR_SUPPORT
903#ifdef CONFIG_EDAC_DEBUG
904 | DDR_ECC_DATA_POISON_SUPPORT
905#endif
906 ),
907};
908
909static const struct synps_platform_data synopsys_edac_def = {
910 .get_error_info = zynqmp_get_error_info,
911 .get_mtype = zynqmp_get_mtype,
912 .get_dtype = zynqmp_get_dtype,
913 .get_ecc_state = zynqmp_get_ecc_state,
914 .quirks = (DDR_ECC_INTR_SUPPORT | DDR_ECC_INTR_SELF_CLEAR
915#ifdef CONFIG_EDAC_DEBUG
916 | DDR_ECC_DATA_POISON_SUPPORT
917#endif
918 ),
919};
920
921
922static const struct of_device_id synps_edac_match[] = {
923 {
924 .compatible = "xlnx,zynq-ddrc-a05",
925 .data = (void *)&zynq_edac_def
926 },
927 {
928 .compatible = "xlnx,zynqmp-ddrc-2.40a",
929 .data = (void *)&zynqmp_edac_def
930 },
931 {
932 .compatible = "snps,ddrc-3.80a",
933 .data = (void *)&synopsys_edac_def
934 },
935 {
936 /* end of table */
937 }
938};
939
940MODULE_DEVICE_TABLE(of, synps_edac_match);
941
942#ifdef CONFIG_EDAC_DEBUG
943#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
944
945/**
946 * ddr_poison_setup - Update poison registers.
947 * @priv: DDR memory controller private instance data.
948 *
949 * Update poison registers as per DDR mapping.
950 * Return: none.
951 */
952static void ddr_poison_setup(struct synps_edac_priv *priv)
953{
954 int col = 0, row = 0, bank = 0, bankgrp = 0, rank = 0, regval;
955 int index;
956 ulong hif_addr = 0;
957
958 hif_addr = priv->poison_addr >> 3;
959
960 for (index = 0; index < DDR_MAX_ROW_SHIFT; index++) {
961 if (priv->row_shift[index])
962 row |= (((hif_addr >> priv->row_shift[index]) &
963 BIT(0)) << index);
964 else
965 break;
966 }
967
968 for (index = 0; index < DDR_MAX_COL_SHIFT; index++) {
969 if (priv->col_shift[index] || index < 3)
970 col |= (((hif_addr >> priv->col_shift[index]) &
971 BIT(0)) << index);
972 else
973 break;
974 }
975
976 for (index = 0; index < DDR_MAX_BANK_SHIFT; index++) {
977 if (priv->bank_shift[index])
978 bank |= (((hif_addr >> priv->bank_shift[index]) &
979 BIT(0)) << index);
980 else
981 break;
982 }
983
984 for (index = 0; index < DDR_MAX_BANKGRP_SHIFT; index++) {
985 if (priv->bankgrp_shift[index])
986 bankgrp |= (((hif_addr >> priv->bankgrp_shift[index])
987 & BIT(0)) << index);
988 else
989 break;
990 }
991
992 if (priv->rank_shift[0])
993 rank = (hif_addr >> priv->rank_shift[0]) & BIT(0);
994
995 regval = (rank << ECC_POISON0_RANK_SHIFT) & ECC_POISON0_RANK_MASK;
996 regval |= (col << ECC_POISON0_COLUMN_SHIFT) & ECC_POISON0_COLUMN_MASK;
997 writel(regval, priv->baseaddr + ECC_POISON0_OFST);
998
999 regval = (bankgrp << ECC_POISON1_BG_SHIFT) & ECC_POISON1_BG_MASK;
1000 regval |= (bank << ECC_POISON1_BANKNR_SHIFT) & ECC_POISON1_BANKNR_MASK;
1001 regval |= (row << ECC_POISON1_ROW_SHIFT) & ECC_POISON1_ROW_MASK;
1002 writel(regval, priv->baseaddr + ECC_POISON1_OFST);
1003}
1004
1005static ssize_t inject_data_error_show(struct device *dev,
1006 struct device_attribute *mattr,
1007 char *data)
1008{
1009 struct mem_ctl_info *mci = to_mci(dev);
1010 struct synps_edac_priv *priv = mci->pvt_info;
1011
1012 return sprintf(data, "Poison0 Addr: 0x%08x\n\rPoison1 Addr: 0x%08x\n\r"
1013 "Error injection Address: 0x%lx\n\r",
1014 readl(priv->baseaddr + ECC_POISON0_OFST),
1015 readl(priv->baseaddr + ECC_POISON1_OFST),
1016 priv->poison_addr);
1017}
1018
1019static ssize_t inject_data_error_store(struct device *dev,
1020 struct device_attribute *mattr,
1021 const char *data, size_t count)
1022{
1023 struct mem_ctl_info *mci = to_mci(dev);
1024 struct synps_edac_priv *priv = mci->pvt_info;
1025
1026 if (kstrtoul(data, 0, &priv->poison_addr))
1027 return -EINVAL;
1028
1029 ddr_poison_setup(priv);
1030
1031 return count;
1032}
1033
1034static ssize_t inject_data_poison_show(struct device *dev,
1035 struct device_attribute *mattr,
1036 char *data)
1037{
1038 struct mem_ctl_info *mci = to_mci(dev);
1039 struct synps_edac_priv *priv = mci->pvt_info;
1040
1041 return sprintf(data, "Data Poisoning: %s\n\r",
1042 (((readl(priv->baseaddr + ECC_CFG1_OFST)) & 0x3) == 0x3)
1043 ? ("Correctable Error") : ("UnCorrectable Error"));
1044}
1045
1046static ssize_t inject_data_poison_store(struct device *dev,
1047 struct device_attribute *mattr,
1048 const char *data, size_t count)
1049{
1050 struct mem_ctl_info *mci = to_mci(dev);
1051 struct synps_edac_priv *priv = mci->pvt_info;
1052
1053 writel(0, priv->baseaddr + DDRC_SWCTL);
1054 if (strncmp(data, "CE", 2) == 0)
1055 writel(ECC_CEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1056 else
1057 writel(ECC_UEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1058 writel(1, priv->baseaddr + DDRC_SWCTL);
1059
1060 return count;
1061}
1062
1063static DEVICE_ATTR_RW(inject_data_error);
1064static DEVICE_ATTR_RW(inject_data_poison);
1065
1066static int edac_create_sysfs_attributes(struct mem_ctl_info *mci)
1067{
1068 int rc;
1069
1070 rc = device_create_file(&mci->dev, &dev_attr_inject_data_error);
1071 if (rc < 0)
1072 return rc;
1073 rc = device_create_file(&mci->dev, &dev_attr_inject_data_poison);
1074 if (rc < 0)
1075 return rc;
1076 return 0;
1077}
1078
1079static void edac_remove_sysfs_attributes(struct mem_ctl_info *mci)
1080{
1081 device_remove_file(&mci->dev, &dev_attr_inject_data_error);
1082 device_remove_file(&mci->dev, &dev_attr_inject_data_poison);
1083}
1084
1085static void setup_row_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1086{
1087 u32 addrmap_row_b2_10;
1088 int index;
1089
1090 priv->row_shift[0] = (addrmap[5] & ROW_MAX_VAL_MASK) + ROW_B0_BASE;
1091 priv->row_shift[1] = ((addrmap[5] >> 8) &
1092 ROW_MAX_VAL_MASK) + ROW_B1_BASE;
1093
1094 addrmap_row_b2_10 = (addrmap[5] >> 16) & ROW_MAX_VAL_MASK;
1095 if (addrmap_row_b2_10 != ROW_MAX_VAL_MASK) {
1096 for (index = 2; index < 11; index++)
1097 priv->row_shift[index] = addrmap_row_b2_10 +
1098 index + ROW_B0_BASE;
1099
1100 } else {
1101 priv->row_shift[2] = (addrmap[9] &
1102 ROW_MAX_VAL_MASK) + ROW_B2_BASE;
1103 priv->row_shift[3] = ((addrmap[9] >> 8) &
1104 ROW_MAX_VAL_MASK) + ROW_B3_BASE;
1105 priv->row_shift[4] = ((addrmap[9] >> 16) &
1106 ROW_MAX_VAL_MASK) + ROW_B4_BASE;
1107 priv->row_shift[5] = ((addrmap[9] >> 24) &
1108 ROW_MAX_VAL_MASK) + ROW_B5_BASE;
1109 priv->row_shift[6] = (addrmap[10] &
1110 ROW_MAX_VAL_MASK) + ROW_B6_BASE;
1111 priv->row_shift[7] = ((addrmap[10] >> 8) &
1112 ROW_MAX_VAL_MASK) + ROW_B7_BASE;
1113 priv->row_shift[8] = ((addrmap[10] >> 16) &
1114 ROW_MAX_VAL_MASK) + ROW_B8_BASE;
1115 priv->row_shift[9] = ((addrmap[10] >> 24) &
1116 ROW_MAX_VAL_MASK) + ROW_B9_BASE;
1117 priv->row_shift[10] = (addrmap[11] &
1118 ROW_MAX_VAL_MASK) + ROW_B10_BASE;
1119 }
1120
1121 priv->row_shift[11] = (((addrmap[5] >> 24) & ROW_MAX_VAL_MASK) ==
1122 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[5] >> 24) &
1123 ROW_MAX_VAL_MASK) + ROW_B11_BASE);
1124 priv->row_shift[12] = ((addrmap[6] & ROW_MAX_VAL_MASK) ==
1125 ROW_MAX_VAL_MASK) ? 0 : ((addrmap[6] &
1126 ROW_MAX_VAL_MASK) + ROW_B12_BASE);
1127 priv->row_shift[13] = (((addrmap[6] >> 8) & ROW_MAX_VAL_MASK) ==
1128 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 8) &
1129 ROW_MAX_VAL_MASK) + ROW_B13_BASE);
1130 priv->row_shift[14] = (((addrmap[6] >> 16) & ROW_MAX_VAL_MASK) ==
1131 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 16) &
1132 ROW_MAX_VAL_MASK) + ROW_B14_BASE);
1133 priv->row_shift[15] = (((addrmap[6] >> 24) & ROW_MAX_VAL_MASK) ==
1134 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 24) &
1135 ROW_MAX_VAL_MASK) + ROW_B15_BASE);
1136 priv->row_shift[16] = ((addrmap[7] & ROW_MAX_VAL_MASK) ==
1137 ROW_MAX_VAL_MASK) ? 0 : ((addrmap[7] &
1138 ROW_MAX_VAL_MASK) + ROW_B16_BASE);
1139 priv->row_shift[17] = (((addrmap[7] >> 8) & ROW_MAX_VAL_MASK) ==
1140 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[7] >> 8) &
1141 ROW_MAX_VAL_MASK) + ROW_B17_BASE);
1142}
1143
1144static void setup_column_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1145{
1146 u32 width, memtype;
1147 int index;
1148
1149 memtype = readl(priv->baseaddr + CTRL_OFST);
1150 width = (memtype & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
1151
1152 priv->col_shift[0] = 0;
1153 priv->col_shift[1] = 1;
1154 priv->col_shift[2] = (addrmap[2] & COL_MAX_VAL_MASK) + COL_B2_BASE;
1155 priv->col_shift[3] = ((addrmap[2] >> 8) &
1156 COL_MAX_VAL_MASK) + COL_B3_BASE;
1157 priv->col_shift[4] = (((addrmap[2] >> 16) & COL_MAX_VAL_MASK) ==
1158 COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 16) &
1159 COL_MAX_VAL_MASK) + COL_B4_BASE);
1160 priv->col_shift[5] = (((addrmap[2] >> 24) & COL_MAX_VAL_MASK) ==
1161 COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 24) &
1162 COL_MAX_VAL_MASK) + COL_B5_BASE);
1163 priv->col_shift[6] = ((addrmap[3] & COL_MAX_VAL_MASK) ==
1164 COL_MAX_VAL_MASK) ? 0 : ((addrmap[3] &
1165 COL_MAX_VAL_MASK) + COL_B6_BASE);
1166 priv->col_shift[7] = (((addrmap[3] >> 8) & COL_MAX_VAL_MASK) ==
1167 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 8) &
1168 COL_MAX_VAL_MASK) + COL_B7_BASE);
1169 priv->col_shift[8] = (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) ==
1170 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 16) &
1171 COL_MAX_VAL_MASK) + COL_B8_BASE);
1172 priv->col_shift[9] = (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) ==
1173 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 24) &
1174 COL_MAX_VAL_MASK) + COL_B9_BASE);
1175 if (width == DDRCTL_EWDTH_64) {
1176 if (memtype & MEM_TYPE_LPDDR3) {
1177 priv->col_shift[10] = ((addrmap[4] &
1178 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1179 ((addrmap[4] & COL_MAX_VAL_MASK) +
1180 COL_B10_BASE);
1181 priv->col_shift[11] = (((addrmap[4] >> 8) &
1182 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1183 (((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1184 COL_B11_BASE);
1185 } else {
1186 priv->col_shift[11] = ((addrmap[4] &
1187 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1188 ((addrmap[4] & COL_MAX_VAL_MASK) +
1189 COL_B10_BASE);
1190 priv->col_shift[13] = (((addrmap[4] >> 8) &
1191 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1192 (((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1193 COL_B11_BASE);
1194 }
1195 } else if (width == DDRCTL_EWDTH_32) {
1196 if (memtype & MEM_TYPE_LPDDR3) {
1197 priv->col_shift[10] = (((addrmap[3] >> 24) &
1198 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1199 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1200 COL_B9_BASE);
1201 priv->col_shift[11] = ((addrmap[4] &
1202 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1203 ((addrmap[4] & COL_MAX_VAL_MASK) +
1204 COL_B10_BASE);
1205 } else {
1206 priv->col_shift[11] = (((addrmap[3] >> 24) &
1207 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1208 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1209 COL_B9_BASE);
1210 priv->col_shift[13] = ((addrmap[4] &
1211 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1212 ((addrmap[4] & COL_MAX_VAL_MASK) +
1213 COL_B10_BASE);
1214 }
1215 } else {
1216 if (memtype & MEM_TYPE_LPDDR3) {
1217 priv->col_shift[10] = (((addrmap[3] >> 16) &
1218 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1219 (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1220 COL_B8_BASE);
1221 priv->col_shift[11] = (((addrmap[3] >> 24) &
1222 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1223 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1224 COL_B9_BASE);
1225 priv->col_shift[13] = ((addrmap[4] &
1226 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1227 ((addrmap[4] & COL_MAX_VAL_MASK) +
1228 COL_B10_BASE);
1229 } else {
1230 priv->col_shift[11] = (((addrmap[3] >> 16) &
1231 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1232 (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1233 COL_B8_BASE);
1234 priv->col_shift[13] = (((addrmap[3] >> 24) &
1235 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1236 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1237 COL_B9_BASE);
1238 }
1239 }
1240
1241 if (width) {
1242 for (index = 9; index > width; index--) {
1243 priv->col_shift[index] = priv->col_shift[index - width];
1244 priv->col_shift[index - width] = 0;
1245 }
1246 }
1247
1248}
1249
1250static void setup_bank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1251{
1252 priv->bank_shift[0] = (addrmap[1] & BANK_MAX_VAL_MASK) + BANK_B0_BASE;
1253 priv->bank_shift[1] = ((addrmap[1] >> 8) &
1254 BANK_MAX_VAL_MASK) + BANK_B1_BASE;
1255 priv->bank_shift[2] = (((addrmap[1] >> 16) &
1256 BANK_MAX_VAL_MASK) == BANK_MAX_VAL_MASK) ? 0 :
1257 (((addrmap[1] >> 16) & BANK_MAX_VAL_MASK) +
1258 BANK_B2_BASE);
1259
1260}
1261
1262static void setup_bg_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1263{
1264 priv->bankgrp_shift[0] = (addrmap[8] &
1265 BANKGRP_MAX_VAL_MASK) + BANKGRP_B0_BASE;
1266 priv->bankgrp_shift[1] = (((addrmap[8] >> 8) & BANKGRP_MAX_VAL_MASK) ==
1267 BANKGRP_MAX_VAL_MASK) ? 0 : (((addrmap[8] >> 8)
1268 & BANKGRP_MAX_VAL_MASK) + BANKGRP_B1_BASE);
1269
1270}
1271
1272static void setup_rank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1273{
1274 priv->rank_shift[0] = ((addrmap[0] & RANK_MAX_VAL_MASK) ==
1275 RANK_MAX_VAL_MASK) ? 0 : ((addrmap[0] &
1276 RANK_MAX_VAL_MASK) + RANK_B0_BASE);
1277}
1278
1279/**
1280 * setup_address_map - Set Address Map by querying ADDRMAP registers.
1281 * @priv: DDR memory controller private instance data.
1282 *
1283 * Set Address Map by querying ADDRMAP registers.
1284 *
1285 * Return: none.
1286 */
1287static void setup_address_map(struct synps_edac_priv *priv)
1288{
1289 u32 addrmap[12];
1290 int index;
1291
1292 for (index = 0; index < 12; index++) {
1293 u32 addrmap_offset;
1294
1295 addrmap_offset = ECC_ADDRMAP0_OFFSET + (index * 4);
1296 addrmap[index] = readl(priv->baseaddr + addrmap_offset);
1297 }
1298
1299 setup_row_address_map(priv, addrmap);
1300
1301 setup_column_address_map(priv, addrmap);
1302
1303 setup_bank_address_map(priv, addrmap);
1304
1305 setup_bg_address_map(priv, addrmap);
1306
1307 setup_rank_address_map(priv, addrmap);
1308}
1309#endif /* CONFIG_EDAC_DEBUG */
1310
1311/**
1312 * mc_probe - Check controller and bind driver.
1313 * @pdev: platform device.
1314 *
1315 * Probe a specific controller instance for binding with the driver.
1316 *
1317 * Return: 0 if the controller instance was successfully bound to the
1318 * driver; otherwise, < 0 on error.
1319 */
1320static int mc_probe(struct platform_device *pdev)
1321{
1322 const struct synps_platform_data *p_data;
1323 struct edac_mc_layer layers[2];
1324 struct synps_edac_priv *priv;
1325 struct mem_ctl_info *mci;
1326 void __iomem *baseaddr;
1327 struct resource *res;
1328 int rc;
1329
1330 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1331 baseaddr = devm_ioremap_resource(&pdev->dev, res);
1332 if (IS_ERR(baseaddr))
1333 return PTR_ERR(baseaddr);
1334
1335 p_data = of_device_get_match_data(&pdev->dev);
1336 if (!p_data)
1337 return -ENODEV;
1338
1339 if (!p_data->get_ecc_state(baseaddr)) {
1340 edac_printk(KERN_INFO, EDAC_MC, "ECC not enabled\n");
1341 return -ENXIO;
1342 }
1343
1344 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
1345 layers[0].size = SYNPS_EDAC_NR_CSROWS;
1346 layers[0].is_virt_csrow = true;
1347 layers[1].type = EDAC_MC_LAYER_CHANNEL;
1348 layers[1].size = SYNPS_EDAC_NR_CHANS;
1349 layers[1].is_virt_csrow = false;
1350
1351 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
1352 sizeof(struct synps_edac_priv));
1353 if (!mci) {
1354 edac_printk(KERN_ERR, EDAC_MC,
1355 "Failed memory allocation for mc instance\n");
1356 return -ENOMEM;
1357 }
1358
1359 priv = mci->pvt_info;
1360 priv->baseaddr = baseaddr;
1361 priv->p_data = p_data;
1362
1363 mc_init(mci, pdev);
1364
1365 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
1366 rc = setup_irq(mci, pdev);
1367 if (rc)
1368 goto free_edac_mc;
1369 }
1370
1371 rc = edac_mc_add_mc(mci);
1372 if (rc) {
1373 edac_printk(KERN_ERR, EDAC_MC,
1374 "Failed to register with EDAC core\n");
1375 goto free_edac_mc;
1376 }
1377
1378#ifdef CONFIG_EDAC_DEBUG
1379 if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT) {
1380 rc = edac_create_sysfs_attributes(mci);
1381 if (rc) {
1382 edac_printk(KERN_ERR, EDAC_MC,
1383 "Failed to create sysfs entries\n");
1384 goto free_edac_mc;
1385 }
1386 }
1387
1388 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
1389 setup_address_map(priv);
1390#endif
1391
1392 /*
1393 * Start capturing the correctable and uncorrectable errors. A write of
1394 * 0 starts the counters.
1395 */
1396 if (!(priv->p_data->quirks & DDR_ECC_INTR_SUPPORT))
1397 writel(0x0, baseaddr + ECC_CTRL_OFST);
1398
1399 return rc;
1400
1401free_edac_mc:
1402 edac_mc_free(mci);
1403
1404 return rc;
1405}
1406
1407/**
1408 * mc_remove - Unbind driver from controller.
1409 * @pdev: Platform device.
1410 *
1411 * Return: Unconditionally 0
1412 */
1413static void mc_remove(struct platform_device *pdev)
1414{
1415 struct mem_ctl_info *mci = platform_get_drvdata(pdev);
1416 struct synps_edac_priv *priv = mci->pvt_info;
1417
1418 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
1419 disable_intr(priv);
1420
1421#ifdef CONFIG_EDAC_DEBUG
1422 if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT)
1423 edac_remove_sysfs_attributes(mci);
1424#endif
1425
1426 edac_mc_del_mc(&pdev->dev);
1427 edac_mc_free(mci);
1428}
1429
1430static struct platform_driver synps_edac_mc_driver = {
1431 .driver = {
1432 .name = "synopsys-edac",
1433 .of_match_table = synps_edac_match,
1434 },
1435 .probe = mc_probe,
1436 .remove_new = mc_remove,
1437};
1438
1439module_platform_driver(synps_edac_mc_driver);
1440
1441MODULE_AUTHOR("Xilinx Inc");
1442MODULE_DESCRIPTION("Synopsys DDR ECC driver");
1443MODULE_LICENSE("GPL v2");
1/*
2 * Synopsys DDR ECC Driver
3 * This driver is based on ppc4xx_edac.c drivers
4 *
5 * Copyright (C) 2012 - 2014 Xilinx, Inc.
6 *
7 * This program is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file "COPYING" in the main directory of this archive
19 * for more details
20 */
21
22#include <linux/edac.h>
23#include <linux/module.h>
24#include <linux/platform_device.h>
25#include <linux/interrupt.h>
26#include <linux/of.h>
27#include <linux/of_device.h>
28
29#include "edac_module.h"
30
31/* Number of cs_rows needed per memory controller */
32#define SYNPS_EDAC_NR_CSROWS 1
33
34/* Number of channels per memory controller */
35#define SYNPS_EDAC_NR_CHANS 1
36
37/* Granularity of reported error in bytes */
38#define SYNPS_EDAC_ERR_GRAIN 1
39
40#define SYNPS_EDAC_MSG_SIZE 256
41
42#define SYNPS_EDAC_MOD_STRING "synps_edac"
43#define SYNPS_EDAC_MOD_VER "1"
44
45/* Synopsys DDR memory controller registers that are relevant to ECC */
46#define CTRL_OFST 0x0
47#define T_ZQ_OFST 0xA4
48
49/* ECC control register */
50#define ECC_CTRL_OFST 0xC4
51/* ECC log register */
52#define CE_LOG_OFST 0xC8
53/* ECC address register */
54#define CE_ADDR_OFST 0xCC
55/* ECC data[31:0] register */
56#define CE_DATA_31_0_OFST 0xD0
57
58/* Uncorrectable error info registers */
59#define UE_LOG_OFST 0xDC
60#define UE_ADDR_OFST 0xE0
61#define UE_DATA_31_0_OFST 0xE4
62
63#define STAT_OFST 0xF0
64#define SCRUB_OFST 0xF4
65
66/* Control register bit field definitions */
67#define CTRL_BW_MASK 0xC
68#define CTRL_BW_SHIFT 2
69
70#define DDRCTL_WDTH_16 1
71#define DDRCTL_WDTH_32 0
72
73/* ZQ register bit field definitions */
74#define T_ZQ_DDRMODE_MASK 0x2
75
76/* ECC control register bit field definitions */
77#define ECC_CTRL_CLR_CE_ERR 0x2
78#define ECC_CTRL_CLR_UE_ERR 0x1
79
80/* ECC correctable/uncorrectable error log register definitions */
81#define LOG_VALID 0x1
82#define CE_LOG_BITPOS_MASK 0xFE
83#define CE_LOG_BITPOS_SHIFT 1
84
85/* ECC correctable/uncorrectable error address register definitions */
86#define ADDR_COL_MASK 0xFFF
87#define ADDR_ROW_MASK 0xFFFF000
88#define ADDR_ROW_SHIFT 12
89#define ADDR_BANK_MASK 0x70000000
90#define ADDR_BANK_SHIFT 28
91
92/* ECC statistic register definitions */
93#define STAT_UECNT_MASK 0xFF
94#define STAT_CECNT_MASK 0xFF00
95#define STAT_CECNT_SHIFT 8
96
97/* ECC scrub register definitions */
98#define SCRUB_MODE_MASK 0x7
99#define SCRUB_MODE_SECDED 0x4
100
101/* DDR ECC Quirks */
102#define DDR_ECC_INTR_SUPPORT BIT(0)
103#define DDR_ECC_DATA_POISON_SUPPORT BIT(1)
104
105/* ZynqMP Enhanced DDR memory controller registers that are relevant to ECC */
106/* ECC Configuration Registers */
107#define ECC_CFG0_OFST 0x70
108#define ECC_CFG1_OFST 0x74
109
110/* ECC Status Register */
111#define ECC_STAT_OFST 0x78
112
113/* ECC Clear Register */
114#define ECC_CLR_OFST 0x7C
115
116/* ECC Error count Register */
117#define ECC_ERRCNT_OFST 0x80
118
119/* ECC Corrected Error Address Register */
120#define ECC_CEADDR0_OFST 0x84
121#define ECC_CEADDR1_OFST 0x88
122
123/* ECC Syndrome Registers */
124#define ECC_CSYND0_OFST 0x8C
125#define ECC_CSYND1_OFST 0x90
126#define ECC_CSYND2_OFST 0x94
127
128/* ECC Bit Mask0 Address Register */
129#define ECC_BITMASK0_OFST 0x98
130#define ECC_BITMASK1_OFST 0x9C
131#define ECC_BITMASK2_OFST 0xA0
132
133/* ECC UnCorrected Error Address Register */
134#define ECC_UEADDR0_OFST 0xA4
135#define ECC_UEADDR1_OFST 0xA8
136
137/* ECC Syndrome Registers */
138#define ECC_UESYND0_OFST 0xAC
139#define ECC_UESYND1_OFST 0xB0
140#define ECC_UESYND2_OFST 0xB4
141
142/* ECC Poison Address Reg */
143#define ECC_POISON0_OFST 0xB8
144#define ECC_POISON1_OFST 0xBC
145
146#define ECC_ADDRMAP0_OFFSET 0x200
147
148/* Control register bitfield definitions */
149#define ECC_CTRL_BUSWIDTH_MASK 0x3000
150#define ECC_CTRL_BUSWIDTH_SHIFT 12
151#define ECC_CTRL_CLR_CE_ERRCNT BIT(2)
152#define ECC_CTRL_CLR_UE_ERRCNT BIT(3)
153
154/* DDR Control Register width definitions */
155#define DDRCTL_EWDTH_16 2
156#define DDRCTL_EWDTH_32 1
157#define DDRCTL_EWDTH_64 0
158
159/* ECC status register definitions */
160#define ECC_STAT_UECNT_MASK 0xF0000
161#define ECC_STAT_UECNT_SHIFT 16
162#define ECC_STAT_CECNT_MASK 0xF00
163#define ECC_STAT_CECNT_SHIFT 8
164#define ECC_STAT_BITNUM_MASK 0x7F
165
166/* DDR QOS Interrupt register definitions */
167#define DDR_QOS_IRQ_STAT_OFST 0x20200
168#define DDR_QOSUE_MASK 0x4
169#define DDR_QOSCE_MASK 0x2
170#define ECC_CE_UE_INTR_MASK 0x6
171#define DDR_QOS_IRQ_EN_OFST 0x20208
172#define DDR_QOS_IRQ_DB_OFST 0x2020C
173
174/* ECC Corrected Error Register Mask and Shifts*/
175#define ECC_CEADDR0_RW_MASK 0x3FFFF
176#define ECC_CEADDR0_RNK_MASK BIT(24)
177#define ECC_CEADDR1_BNKGRP_MASK 0x3000000
178#define ECC_CEADDR1_BNKNR_MASK 0x70000
179#define ECC_CEADDR1_BLKNR_MASK 0xFFF
180#define ECC_CEADDR1_BNKGRP_SHIFT 24
181#define ECC_CEADDR1_BNKNR_SHIFT 16
182
183/* ECC Poison register shifts */
184#define ECC_POISON0_RANK_SHIFT 24
185#define ECC_POISON0_RANK_MASK BIT(24)
186#define ECC_POISON0_COLUMN_SHIFT 0
187#define ECC_POISON0_COLUMN_MASK 0xFFF
188#define ECC_POISON1_BG_SHIFT 28
189#define ECC_POISON1_BG_MASK 0x30000000
190#define ECC_POISON1_BANKNR_SHIFT 24
191#define ECC_POISON1_BANKNR_MASK 0x7000000
192#define ECC_POISON1_ROW_SHIFT 0
193#define ECC_POISON1_ROW_MASK 0x3FFFF
194
195/* DDR Memory type defines */
196#define MEM_TYPE_DDR3 0x1
197#define MEM_TYPE_LPDDR3 0x8
198#define MEM_TYPE_DDR2 0x4
199#define MEM_TYPE_DDR4 0x10
200#define MEM_TYPE_LPDDR4 0x20
201
202/* DDRC Software control register */
203#define DDRC_SWCTL 0x320
204
205/* DDRC ECC CE & UE poison mask */
206#define ECC_CEPOISON_MASK 0x3
207#define ECC_UEPOISON_MASK 0x1
208
209/* DDRC Device config masks */
210#define DDRC_MSTR_CFG_MASK 0xC0000000
211#define DDRC_MSTR_CFG_SHIFT 30
212#define DDRC_MSTR_CFG_X4_MASK 0x0
213#define DDRC_MSTR_CFG_X8_MASK 0x1
214#define DDRC_MSTR_CFG_X16_MASK 0x2
215#define DDRC_MSTR_CFG_X32_MASK 0x3
216
217#define DDR_MAX_ROW_SHIFT 18
218#define DDR_MAX_COL_SHIFT 14
219#define DDR_MAX_BANK_SHIFT 3
220#define DDR_MAX_BANKGRP_SHIFT 2
221
222#define ROW_MAX_VAL_MASK 0xF
223#define COL_MAX_VAL_MASK 0xF
224#define BANK_MAX_VAL_MASK 0x1F
225#define BANKGRP_MAX_VAL_MASK 0x1F
226#define RANK_MAX_VAL_MASK 0x1F
227
228#define ROW_B0_BASE 6
229#define ROW_B1_BASE 7
230#define ROW_B2_BASE 8
231#define ROW_B3_BASE 9
232#define ROW_B4_BASE 10
233#define ROW_B5_BASE 11
234#define ROW_B6_BASE 12
235#define ROW_B7_BASE 13
236#define ROW_B8_BASE 14
237#define ROW_B9_BASE 15
238#define ROW_B10_BASE 16
239#define ROW_B11_BASE 17
240#define ROW_B12_BASE 18
241#define ROW_B13_BASE 19
242#define ROW_B14_BASE 20
243#define ROW_B15_BASE 21
244#define ROW_B16_BASE 22
245#define ROW_B17_BASE 23
246
247#define COL_B2_BASE 2
248#define COL_B3_BASE 3
249#define COL_B4_BASE 4
250#define COL_B5_BASE 5
251#define COL_B6_BASE 6
252#define COL_B7_BASE 7
253#define COL_B8_BASE 8
254#define COL_B9_BASE 9
255#define COL_B10_BASE 10
256#define COL_B11_BASE 11
257#define COL_B12_BASE 12
258#define COL_B13_BASE 13
259
260#define BANK_B0_BASE 2
261#define BANK_B1_BASE 3
262#define BANK_B2_BASE 4
263
264#define BANKGRP_B0_BASE 2
265#define BANKGRP_B1_BASE 3
266
267#define RANK_B0_BASE 6
268
269/**
270 * struct ecc_error_info - ECC error log information.
271 * @row: Row number.
272 * @col: Column number.
273 * @bank: Bank number.
274 * @bitpos: Bit position.
275 * @data: Data causing the error.
276 * @bankgrpnr: Bank group number.
277 * @blknr: Block number.
278 */
279struct ecc_error_info {
280 u32 row;
281 u32 col;
282 u32 bank;
283 u32 bitpos;
284 u32 data;
285 u32 bankgrpnr;
286 u32 blknr;
287};
288
289/**
290 * struct synps_ecc_status - ECC status information to report.
291 * @ce_cnt: Correctable error count.
292 * @ue_cnt: Uncorrectable error count.
293 * @ceinfo: Correctable error log information.
294 * @ueinfo: Uncorrectable error log information.
295 */
296struct synps_ecc_status {
297 u32 ce_cnt;
298 u32 ue_cnt;
299 struct ecc_error_info ceinfo;
300 struct ecc_error_info ueinfo;
301};
302
303/**
304 * struct synps_edac_priv - DDR memory controller private instance data.
305 * @baseaddr: Base address of the DDR controller.
306 * @message: Buffer for framing the event specific info.
307 * @stat: ECC status information.
308 * @p_data: Platform data.
309 * @ce_cnt: Correctable Error count.
310 * @ue_cnt: Uncorrectable Error count.
311 * @poison_addr: Data poison address.
312 * @row_shift: Bit shifts for row bit.
313 * @col_shift: Bit shifts for column bit.
314 * @bank_shift: Bit shifts for bank bit.
315 * @bankgrp_shift: Bit shifts for bank group bit.
316 * @rank_shift: Bit shifts for rank bit.
317 */
318struct synps_edac_priv {
319 void __iomem *baseaddr;
320 char message[SYNPS_EDAC_MSG_SIZE];
321 struct synps_ecc_status stat;
322 const struct synps_platform_data *p_data;
323 u32 ce_cnt;
324 u32 ue_cnt;
325#ifdef CONFIG_EDAC_DEBUG
326 ulong poison_addr;
327 u32 row_shift[18];
328 u32 col_shift[14];
329 u32 bank_shift[3];
330 u32 bankgrp_shift[2];
331 u32 rank_shift[1];
332#endif
333};
334
335/**
336 * struct synps_platform_data - synps platform data structure.
337 * @get_error_info: Get EDAC error info.
338 * @get_mtype: Get mtype.
339 * @get_dtype: Get dtype.
340 * @get_ecc_state: Get ECC state.
341 * @quirks: To differentiate IPs.
342 */
343struct synps_platform_data {
344 int (*get_error_info)(struct synps_edac_priv *priv);
345 enum mem_type (*get_mtype)(const void __iomem *base);
346 enum dev_type (*get_dtype)(const void __iomem *base);
347 bool (*get_ecc_state)(void __iomem *base);
348 int quirks;
349};
350
351/**
352 * zynq_get_error_info - Get the current ECC error info.
353 * @priv: DDR memory controller private instance data.
354 *
355 * Return: one if there is no error, otherwise zero.
356 */
357static int zynq_get_error_info(struct synps_edac_priv *priv)
358{
359 struct synps_ecc_status *p;
360 u32 regval, clearval = 0;
361 void __iomem *base;
362
363 base = priv->baseaddr;
364 p = &priv->stat;
365
366 regval = readl(base + STAT_OFST);
367 if (!regval)
368 return 1;
369
370 p->ce_cnt = (regval & STAT_CECNT_MASK) >> STAT_CECNT_SHIFT;
371 p->ue_cnt = regval & STAT_UECNT_MASK;
372
373 regval = readl(base + CE_LOG_OFST);
374 if (!(p->ce_cnt && (regval & LOG_VALID)))
375 goto ue_err;
376
377 p->ceinfo.bitpos = (regval & CE_LOG_BITPOS_MASK) >> CE_LOG_BITPOS_SHIFT;
378 regval = readl(base + CE_ADDR_OFST);
379 p->ceinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
380 p->ceinfo.col = regval & ADDR_COL_MASK;
381 p->ceinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
382 p->ceinfo.data = readl(base + CE_DATA_31_0_OFST);
383 edac_dbg(3, "CE bit position: %d data: %d\n", p->ceinfo.bitpos,
384 p->ceinfo.data);
385 clearval = ECC_CTRL_CLR_CE_ERR;
386
387ue_err:
388 regval = readl(base + UE_LOG_OFST);
389 if (!(p->ue_cnt && (regval & LOG_VALID)))
390 goto out;
391
392 regval = readl(base + UE_ADDR_OFST);
393 p->ueinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
394 p->ueinfo.col = regval & ADDR_COL_MASK;
395 p->ueinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
396 p->ueinfo.data = readl(base + UE_DATA_31_0_OFST);
397 clearval |= ECC_CTRL_CLR_UE_ERR;
398
399out:
400 writel(clearval, base + ECC_CTRL_OFST);
401 writel(0x0, base + ECC_CTRL_OFST);
402
403 return 0;
404}
405
406/**
407 * zynqmp_get_error_info - Get the current ECC error info.
408 * @priv: DDR memory controller private instance data.
409 *
410 * Return: one if there is no error otherwise returns zero.
411 */
412static int zynqmp_get_error_info(struct synps_edac_priv *priv)
413{
414 struct synps_ecc_status *p;
415 u32 regval, clearval = 0;
416 void __iomem *base;
417
418 base = priv->baseaddr;
419 p = &priv->stat;
420
421 regval = readl(base + ECC_STAT_OFST);
422 if (!regval)
423 return 1;
424
425 p->ce_cnt = (regval & ECC_STAT_CECNT_MASK) >> ECC_STAT_CECNT_SHIFT;
426 p->ue_cnt = (regval & ECC_STAT_UECNT_MASK) >> ECC_STAT_UECNT_SHIFT;
427 if (!p->ce_cnt)
428 goto ue_err;
429
430 p->ceinfo.bitpos = (regval & ECC_STAT_BITNUM_MASK);
431
432 regval = readl(base + ECC_CEADDR0_OFST);
433 p->ceinfo.row = (regval & ECC_CEADDR0_RW_MASK);
434 regval = readl(base + ECC_CEADDR1_OFST);
435 p->ceinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
436 ECC_CEADDR1_BNKNR_SHIFT;
437 p->ceinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
438 ECC_CEADDR1_BNKGRP_SHIFT;
439 p->ceinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
440 p->ceinfo.data = readl(base + ECC_CSYND0_OFST);
441 edac_dbg(2, "ECCCSYN0: 0x%08X ECCCSYN1: 0x%08X ECCCSYN2: 0x%08X\n",
442 readl(base + ECC_CSYND0_OFST), readl(base + ECC_CSYND1_OFST),
443 readl(base + ECC_CSYND2_OFST));
444ue_err:
445 if (!p->ue_cnt)
446 goto out;
447
448 regval = readl(base + ECC_UEADDR0_OFST);
449 p->ueinfo.row = (regval & ECC_CEADDR0_RW_MASK);
450 regval = readl(base + ECC_UEADDR1_OFST);
451 p->ueinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
452 ECC_CEADDR1_BNKGRP_SHIFT;
453 p->ueinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
454 ECC_CEADDR1_BNKNR_SHIFT;
455 p->ueinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
456 p->ueinfo.data = readl(base + ECC_UESYND0_OFST);
457out:
458 clearval = ECC_CTRL_CLR_CE_ERR | ECC_CTRL_CLR_CE_ERRCNT;
459 clearval |= ECC_CTRL_CLR_UE_ERR | ECC_CTRL_CLR_UE_ERRCNT;
460 writel(clearval, base + ECC_CLR_OFST);
461 writel(0x0, base + ECC_CLR_OFST);
462
463 return 0;
464}
465
466/**
467 * handle_error - Handle Correctable and Uncorrectable errors.
468 * @mci: EDAC memory controller instance.
469 * @p: Synopsys ECC status structure.
470 *
471 * Handles ECC correctable and uncorrectable errors.
472 */
473static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p)
474{
475 struct synps_edac_priv *priv = mci->pvt_info;
476 struct ecc_error_info *pinf;
477
478 if (p->ce_cnt) {
479 pinf = &p->ceinfo;
480 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
481 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
482 "DDR ECC error type:%s Row %d Bank %d BankGroup Number %d Block Number %d Bit Position: %d Data: 0x%08x",
483 "CE", pinf->row, pinf->bank,
484 pinf->bankgrpnr, pinf->blknr,
485 pinf->bitpos, pinf->data);
486 } else {
487 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
488 "DDR ECC error type:%s Row %d Bank %d Col %d Bit Position: %d Data: 0x%08x",
489 "CE", pinf->row, pinf->bank, pinf->col,
490 pinf->bitpos, pinf->data);
491 }
492
493 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
494 p->ce_cnt, 0, 0, 0, 0, 0, -1,
495 priv->message, "");
496 }
497
498 if (p->ue_cnt) {
499 pinf = &p->ueinfo;
500 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
501 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
502 "DDR ECC error type :%s Row %d Bank %d BankGroup Number %d Block Number %d",
503 "UE", pinf->row, pinf->bank,
504 pinf->bankgrpnr, pinf->blknr);
505 } else {
506 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
507 "DDR ECC error type :%s Row %d Bank %d Col %d ",
508 "UE", pinf->row, pinf->bank, pinf->col);
509 }
510
511 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
512 p->ue_cnt, 0, 0, 0, 0, 0, -1,
513 priv->message, "");
514 }
515
516 memset(p, 0, sizeof(*p));
517}
518
519/**
520 * intr_handler - Interrupt Handler for ECC interrupts.
521 * @irq: IRQ number.
522 * @dev_id: Device ID.
523 *
524 * Return: IRQ_NONE, if interrupt not set or IRQ_HANDLED otherwise.
525 */
526static irqreturn_t intr_handler(int irq, void *dev_id)
527{
528 const struct synps_platform_data *p_data;
529 struct mem_ctl_info *mci = dev_id;
530 struct synps_edac_priv *priv;
531 int status, regval;
532
533 priv = mci->pvt_info;
534 p_data = priv->p_data;
535
536 regval = readl(priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
537 regval &= (DDR_QOSCE_MASK | DDR_QOSUE_MASK);
538 if (!(regval & ECC_CE_UE_INTR_MASK))
539 return IRQ_NONE;
540
541 status = p_data->get_error_info(priv);
542 if (status)
543 return IRQ_NONE;
544
545 priv->ce_cnt += priv->stat.ce_cnt;
546 priv->ue_cnt += priv->stat.ue_cnt;
547 handle_error(mci, &priv->stat);
548
549 edac_dbg(3, "Total error count CE %d UE %d\n",
550 priv->ce_cnt, priv->ue_cnt);
551 writel(regval, priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
552 return IRQ_HANDLED;
553}
554
555/**
556 * check_errors - Check controller for ECC errors.
557 * @mci: EDAC memory controller instance.
558 *
559 * Check and post ECC errors. Called by the polling thread.
560 */
561static void check_errors(struct mem_ctl_info *mci)
562{
563 const struct synps_platform_data *p_data;
564 struct synps_edac_priv *priv;
565 int status;
566
567 priv = mci->pvt_info;
568 p_data = priv->p_data;
569
570 status = p_data->get_error_info(priv);
571 if (status)
572 return;
573
574 priv->ce_cnt += priv->stat.ce_cnt;
575 priv->ue_cnt += priv->stat.ue_cnt;
576 handle_error(mci, &priv->stat);
577
578 edac_dbg(3, "Total error count CE %d UE %d\n",
579 priv->ce_cnt, priv->ue_cnt);
580}
581
582/**
583 * zynq_get_dtype - Return the controller memory width.
584 * @base: DDR memory controller base address.
585 *
586 * Get the EDAC device type width appropriate for the current controller
587 * configuration.
588 *
589 * Return: a device type width enumeration.
590 */
591static enum dev_type zynq_get_dtype(const void __iomem *base)
592{
593 enum dev_type dt;
594 u32 width;
595
596 width = readl(base + CTRL_OFST);
597 width = (width & CTRL_BW_MASK) >> CTRL_BW_SHIFT;
598
599 switch (width) {
600 case DDRCTL_WDTH_16:
601 dt = DEV_X2;
602 break;
603 case DDRCTL_WDTH_32:
604 dt = DEV_X4;
605 break;
606 default:
607 dt = DEV_UNKNOWN;
608 }
609
610 return dt;
611}
612
613/**
614 * zynqmp_get_dtype - Return the controller memory width.
615 * @base: DDR memory controller base address.
616 *
617 * Get the EDAC device type width appropriate for the current controller
618 * configuration.
619 *
620 * Return: a device type width enumeration.
621 */
622static enum dev_type zynqmp_get_dtype(const void __iomem *base)
623{
624 enum dev_type dt;
625 u32 width;
626
627 width = readl(base + CTRL_OFST);
628 width = (width & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
629 switch (width) {
630 case DDRCTL_EWDTH_16:
631 dt = DEV_X2;
632 break;
633 case DDRCTL_EWDTH_32:
634 dt = DEV_X4;
635 break;
636 case DDRCTL_EWDTH_64:
637 dt = DEV_X8;
638 break;
639 default:
640 dt = DEV_UNKNOWN;
641 }
642
643 return dt;
644}
645
646/**
647 * zynq_get_ecc_state - Return the controller ECC enable/disable status.
648 * @base: DDR memory controller base address.
649 *
650 * Get the ECC enable/disable status of the controller.
651 *
652 * Return: true if enabled, otherwise false.
653 */
654static bool zynq_get_ecc_state(void __iomem *base)
655{
656 enum dev_type dt;
657 u32 ecctype;
658
659 dt = zynq_get_dtype(base);
660 if (dt == DEV_UNKNOWN)
661 return false;
662
663 ecctype = readl(base + SCRUB_OFST) & SCRUB_MODE_MASK;
664 if ((ecctype == SCRUB_MODE_SECDED) && (dt == DEV_X2))
665 return true;
666
667 return false;
668}
669
670/**
671 * zynqmp_get_ecc_state - Return the controller ECC enable/disable status.
672 * @base: DDR memory controller base address.
673 *
674 * Get the ECC enable/disable status for the controller.
675 *
676 * Return: a ECC status boolean i.e true/false - enabled/disabled.
677 */
678static bool zynqmp_get_ecc_state(void __iomem *base)
679{
680 enum dev_type dt;
681 u32 ecctype;
682
683 dt = zynqmp_get_dtype(base);
684 if (dt == DEV_UNKNOWN)
685 return false;
686
687 ecctype = readl(base + ECC_CFG0_OFST) & SCRUB_MODE_MASK;
688 if ((ecctype == SCRUB_MODE_SECDED) &&
689 ((dt == DEV_X2) || (dt == DEV_X4) || (dt == DEV_X8)))
690 return true;
691
692 return false;
693}
694
695/**
696 * get_memsize - Read the size of the attached memory device.
697 *
698 * Return: the memory size in bytes.
699 */
700static u32 get_memsize(void)
701{
702 struct sysinfo inf;
703
704 si_meminfo(&inf);
705
706 return inf.totalram * inf.mem_unit;
707}
708
709/**
710 * zynq_get_mtype - Return the controller memory type.
711 * @base: Synopsys ECC status structure.
712 *
713 * Get the EDAC memory type appropriate for the current controller
714 * configuration.
715 *
716 * Return: a memory type enumeration.
717 */
718static enum mem_type zynq_get_mtype(const void __iomem *base)
719{
720 enum mem_type mt;
721 u32 memtype;
722
723 memtype = readl(base + T_ZQ_OFST);
724
725 if (memtype & T_ZQ_DDRMODE_MASK)
726 mt = MEM_DDR3;
727 else
728 mt = MEM_DDR2;
729
730 return mt;
731}
732
733/**
734 * zynqmp_get_mtype - Returns controller memory type.
735 * @base: Synopsys ECC status structure.
736 *
737 * Get the EDAC memory type appropriate for the current controller
738 * configuration.
739 *
740 * Return: a memory type enumeration.
741 */
742static enum mem_type zynqmp_get_mtype(const void __iomem *base)
743{
744 enum mem_type mt;
745 u32 memtype;
746
747 memtype = readl(base + CTRL_OFST);
748
749 if ((memtype & MEM_TYPE_DDR3) || (memtype & MEM_TYPE_LPDDR3))
750 mt = MEM_DDR3;
751 else if (memtype & MEM_TYPE_DDR2)
752 mt = MEM_RDDR2;
753 else if ((memtype & MEM_TYPE_LPDDR4) || (memtype & MEM_TYPE_DDR4))
754 mt = MEM_DDR4;
755 else
756 mt = MEM_EMPTY;
757
758 return mt;
759}
760
761/**
762 * init_csrows - Initialize the csrow data.
763 * @mci: EDAC memory controller instance.
764 *
765 * Initialize the chip select rows associated with the EDAC memory
766 * controller instance.
767 */
768static void init_csrows(struct mem_ctl_info *mci)
769{
770 struct synps_edac_priv *priv = mci->pvt_info;
771 const struct synps_platform_data *p_data;
772 struct csrow_info *csi;
773 struct dimm_info *dimm;
774 u32 size, row;
775 int j;
776
777 p_data = priv->p_data;
778
779 for (row = 0; row < mci->nr_csrows; row++) {
780 csi = mci->csrows[row];
781 size = get_memsize();
782
783 for (j = 0; j < csi->nr_channels; j++) {
784 dimm = csi->channels[j]->dimm;
785 dimm->edac_mode = EDAC_FLAG_SECDED;
786 dimm->mtype = p_data->get_mtype(priv->baseaddr);
787 dimm->nr_pages = (size >> PAGE_SHIFT) / csi->nr_channels;
788 dimm->grain = SYNPS_EDAC_ERR_GRAIN;
789 dimm->dtype = p_data->get_dtype(priv->baseaddr);
790 }
791 }
792}
793
794/**
795 * mc_init - Initialize one driver instance.
796 * @mci: EDAC memory controller instance.
797 * @pdev: platform device.
798 *
799 * Perform initialization of the EDAC memory controller instance and
800 * related driver-private data associated with the memory controller the
801 * instance is bound to.
802 */
803static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev)
804{
805 struct synps_edac_priv *priv;
806
807 mci->pdev = &pdev->dev;
808 priv = mci->pvt_info;
809 platform_set_drvdata(pdev, mci);
810
811 /* Initialize controller capabilities and configuration */
812 mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR2;
813 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
814 mci->scrub_cap = SCRUB_HW_SRC;
815 mci->scrub_mode = SCRUB_NONE;
816
817 mci->edac_cap = EDAC_FLAG_SECDED;
818 mci->ctl_name = "synps_ddr_controller";
819 mci->dev_name = SYNPS_EDAC_MOD_STRING;
820 mci->mod_name = SYNPS_EDAC_MOD_VER;
821
822 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
823 edac_op_state = EDAC_OPSTATE_INT;
824 } else {
825 edac_op_state = EDAC_OPSTATE_POLL;
826 mci->edac_check = check_errors;
827 }
828
829 mci->ctl_page_to_phys = NULL;
830
831 init_csrows(mci);
832}
833
834static void enable_intr(struct synps_edac_priv *priv)
835{
836 /* Enable UE/CE Interrupts */
837 writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
838 priv->baseaddr + DDR_QOS_IRQ_EN_OFST);
839}
840
841static void disable_intr(struct synps_edac_priv *priv)
842{
843 /* Disable UE/CE Interrupts */
844 writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
845 priv->baseaddr + DDR_QOS_IRQ_DB_OFST);
846}
847
848static int setup_irq(struct mem_ctl_info *mci,
849 struct platform_device *pdev)
850{
851 struct synps_edac_priv *priv = mci->pvt_info;
852 int ret, irq;
853
854 irq = platform_get_irq(pdev, 0);
855 if (irq < 0) {
856 edac_printk(KERN_ERR, EDAC_MC,
857 "No IRQ %d in DT\n", irq);
858 return irq;
859 }
860
861 ret = devm_request_irq(&pdev->dev, irq, intr_handler,
862 0, dev_name(&pdev->dev), mci);
863 if (ret < 0) {
864 edac_printk(KERN_ERR, EDAC_MC, "Failed to request IRQ\n");
865 return ret;
866 }
867
868 enable_intr(priv);
869
870 return 0;
871}
872
873static const struct synps_platform_data zynq_edac_def = {
874 .get_error_info = zynq_get_error_info,
875 .get_mtype = zynq_get_mtype,
876 .get_dtype = zynq_get_dtype,
877 .get_ecc_state = zynq_get_ecc_state,
878 .quirks = 0,
879};
880
881static const struct synps_platform_data zynqmp_edac_def = {
882 .get_error_info = zynqmp_get_error_info,
883 .get_mtype = zynqmp_get_mtype,
884 .get_dtype = zynqmp_get_dtype,
885 .get_ecc_state = zynqmp_get_ecc_state,
886 .quirks = (DDR_ECC_INTR_SUPPORT
887#ifdef CONFIG_EDAC_DEBUG
888 | DDR_ECC_DATA_POISON_SUPPORT
889#endif
890 ),
891};
892
893static const struct of_device_id synps_edac_match[] = {
894 {
895 .compatible = "xlnx,zynq-ddrc-a05",
896 .data = (void *)&zynq_edac_def
897 },
898 {
899 .compatible = "xlnx,zynqmp-ddrc-2.40a",
900 .data = (void *)&zynqmp_edac_def
901 },
902 {
903 /* end of table */
904 }
905};
906
907MODULE_DEVICE_TABLE(of, synps_edac_match);
908
909#ifdef CONFIG_EDAC_DEBUG
910#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
911
912/**
913 * ddr_poison_setup - Update poison registers.
914 * @priv: DDR memory controller private instance data.
915 *
916 * Update poison registers as per DDR mapping.
917 * Return: none.
918 */
919static void ddr_poison_setup(struct synps_edac_priv *priv)
920{
921 int col = 0, row = 0, bank = 0, bankgrp = 0, rank = 0, regval;
922 int index;
923 ulong hif_addr = 0;
924
925 hif_addr = priv->poison_addr >> 3;
926
927 for (index = 0; index < DDR_MAX_ROW_SHIFT; index++) {
928 if (priv->row_shift[index])
929 row |= (((hif_addr >> priv->row_shift[index]) &
930 BIT(0)) << index);
931 else
932 break;
933 }
934
935 for (index = 0; index < DDR_MAX_COL_SHIFT; index++) {
936 if (priv->col_shift[index] || index < 3)
937 col |= (((hif_addr >> priv->col_shift[index]) &
938 BIT(0)) << index);
939 else
940 break;
941 }
942
943 for (index = 0; index < DDR_MAX_BANK_SHIFT; index++) {
944 if (priv->bank_shift[index])
945 bank |= (((hif_addr >> priv->bank_shift[index]) &
946 BIT(0)) << index);
947 else
948 break;
949 }
950
951 for (index = 0; index < DDR_MAX_BANKGRP_SHIFT; index++) {
952 if (priv->bankgrp_shift[index])
953 bankgrp |= (((hif_addr >> priv->bankgrp_shift[index])
954 & BIT(0)) << index);
955 else
956 break;
957 }
958
959 if (priv->rank_shift[0])
960 rank = (hif_addr >> priv->rank_shift[0]) & BIT(0);
961
962 regval = (rank << ECC_POISON0_RANK_SHIFT) & ECC_POISON0_RANK_MASK;
963 regval |= (col << ECC_POISON0_COLUMN_SHIFT) & ECC_POISON0_COLUMN_MASK;
964 writel(regval, priv->baseaddr + ECC_POISON0_OFST);
965
966 regval = (bankgrp << ECC_POISON1_BG_SHIFT) & ECC_POISON1_BG_MASK;
967 regval |= (bank << ECC_POISON1_BANKNR_SHIFT) & ECC_POISON1_BANKNR_MASK;
968 regval |= (row << ECC_POISON1_ROW_SHIFT) & ECC_POISON1_ROW_MASK;
969 writel(regval, priv->baseaddr + ECC_POISON1_OFST);
970}
971
972static ssize_t inject_data_error_show(struct device *dev,
973 struct device_attribute *mattr,
974 char *data)
975{
976 struct mem_ctl_info *mci = to_mci(dev);
977 struct synps_edac_priv *priv = mci->pvt_info;
978
979 return sprintf(data, "Poison0 Addr: 0x%08x\n\rPoison1 Addr: 0x%08x\n\r"
980 "Error injection Address: 0x%lx\n\r",
981 readl(priv->baseaddr + ECC_POISON0_OFST),
982 readl(priv->baseaddr + ECC_POISON1_OFST),
983 priv->poison_addr);
984}
985
986static ssize_t inject_data_error_store(struct device *dev,
987 struct device_attribute *mattr,
988 const char *data, size_t count)
989{
990 struct mem_ctl_info *mci = to_mci(dev);
991 struct synps_edac_priv *priv = mci->pvt_info;
992
993 if (kstrtoul(data, 0, &priv->poison_addr))
994 return -EINVAL;
995
996 ddr_poison_setup(priv);
997
998 return count;
999}
1000
1001static ssize_t inject_data_poison_show(struct device *dev,
1002 struct device_attribute *mattr,
1003 char *data)
1004{
1005 struct mem_ctl_info *mci = to_mci(dev);
1006 struct synps_edac_priv *priv = mci->pvt_info;
1007
1008 return sprintf(data, "Data Poisoning: %s\n\r",
1009 (((readl(priv->baseaddr + ECC_CFG1_OFST)) & 0x3) == 0x3)
1010 ? ("Correctable Error") : ("UnCorrectable Error"));
1011}
1012
1013static ssize_t inject_data_poison_store(struct device *dev,
1014 struct device_attribute *mattr,
1015 const char *data, size_t count)
1016{
1017 struct mem_ctl_info *mci = to_mci(dev);
1018 struct synps_edac_priv *priv = mci->pvt_info;
1019
1020 writel(0, priv->baseaddr + DDRC_SWCTL);
1021 if (strncmp(data, "CE", 2) == 0)
1022 writel(ECC_CEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1023 else
1024 writel(ECC_UEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1025 writel(1, priv->baseaddr + DDRC_SWCTL);
1026
1027 return count;
1028}
1029
1030static DEVICE_ATTR_RW(inject_data_error);
1031static DEVICE_ATTR_RW(inject_data_poison);
1032
1033static int edac_create_sysfs_attributes(struct mem_ctl_info *mci)
1034{
1035 int rc;
1036
1037 rc = device_create_file(&mci->dev, &dev_attr_inject_data_error);
1038 if (rc < 0)
1039 return rc;
1040 rc = device_create_file(&mci->dev, &dev_attr_inject_data_poison);
1041 if (rc < 0)
1042 return rc;
1043 return 0;
1044}
1045
1046static void edac_remove_sysfs_attributes(struct mem_ctl_info *mci)
1047{
1048 device_remove_file(&mci->dev, &dev_attr_inject_data_error);
1049 device_remove_file(&mci->dev, &dev_attr_inject_data_poison);
1050}
1051
1052static void setup_row_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1053{
1054 u32 addrmap_row_b2_10;
1055 int index;
1056
1057 priv->row_shift[0] = (addrmap[5] & ROW_MAX_VAL_MASK) + ROW_B0_BASE;
1058 priv->row_shift[1] = ((addrmap[5] >> 8) &
1059 ROW_MAX_VAL_MASK) + ROW_B1_BASE;
1060
1061 addrmap_row_b2_10 = (addrmap[5] >> 16) & ROW_MAX_VAL_MASK;
1062 if (addrmap_row_b2_10 != ROW_MAX_VAL_MASK) {
1063 for (index = 2; index < 11; index++)
1064 priv->row_shift[index] = addrmap_row_b2_10 +
1065 index + ROW_B0_BASE;
1066
1067 } else {
1068 priv->row_shift[2] = (addrmap[9] &
1069 ROW_MAX_VAL_MASK) + ROW_B2_BASE;
1070 priv->row_shift[3] = ((addrmap[9] >> 8) &
1071 ROW_MAX_VAL_MASK) + ROW_B3_BASE;
1072 priv->row_shift[4] = ((addrmap[9] >> 16) &
1073 ROW_MAX_VAL_MASK) + ROW_B4_BASE;
1074 priv->row_shift[5] = ((addrmap[9] >> 24) &
1075 ROW_MAX_VAL_MASK) + ROW_B5_BASE;
1076 priv->row_shift[6] = (addrmap[10] &
1077 ROW_MAX_VAL_MASK) + ROW_B6_BASE;
1078 priv->row_shift[7] = ((addrmap[10] >> 8) &
1079 ROW_MAX_VAL_MASK) + ROW_B7_BASE;
1080 priv->row_shift[8] = ((addrmap[10] >> 16) &
1081 ROW_MAX_VAL_MASK) + ROW_B8_BASE;
1082 priv->row_shift[9] = ((addrmap[10] >> 24) &
1083 ROW_MAX_VAL_MASK) + ROW_B9_BASE;
1084 priv->row_shift[10] = (addrmap[11] &
1085 ROW_MAX_VAL_MASK) + ROW_B10_BASE;
1086 }
1087
1088 priv->row_shift[11] = (((addrmap[5] >> 24) & ROW_MAX_VAL_MASK) ==
1089 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[5] >> 24) &
1090 ROW_MAX_VAL_MASK) + ROW_B11_BASE);
1091 priv->row_shift[12] = ((addrmap[6] & ROW_MAX_VAL_MASK) ==
1092 ROW_MAX_VAL_MASK) ? 0 : ((addrmap[6] &
1093 ROW_MAX_VAL_MASK) + ROW_B12_BASE);
1094 priv->row_shift[13] = (((addrmap[6] >> 8) & ROW_MAX_VAL_MASK) ==
1095 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 8) &
1096 ROW_MAX_VAL_MASK) + ROW_B13_BASE);
1097 priv->row_shift[14] = (((addrmap[6] >> 16) & ROW_MAX_VAL_MASK) ==
1098 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 16) &
1099 ROW_MAX_VAL_MASK) + ROW_B14_BASE);
1100 priv->row_shift[15] = (((addrmap[6] >> 24) & ROW_MAX_VAL_MASK) ==
1101 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 24) &
1102 ROW_MAX_VAL_MASK) + ROW_B15_BASE);
1103 priv->row_shift[16] = ((addrmap[7] & ROW_MAX_VAL_MASK) ==
1104 ROW_MAX_VAL_MASK) ? 0 : ((addrmap[7] &
1105 ROW_MAX_VAL_MASK) + ROW_B16_BASE);
1106 priv->row_shift[17] = (((addrmap[7] >> 8) & ROW_MAX_VAL_MASK) ==
1107 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[7] >> 8) &
1108 ROW_MAX_VAL_MASK) + ROW_B17_BASE);
1109}
1110
1111static void setup_column_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1112{
1113 u32 width, memtype;
1114 int index;
1115
1116 memtype = readl(priv->baseaddr + CTRL_OFST);
1117 width = (memtype & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
1118
1119 priv->col_shift[0] = 0;
1120 priv->col_shift[1] = 1;
1121 priv->col_shift[2] = (addrmap[2] & COL_MAX_VAL_MASK) + COL_B2_BASE;
1122 priv->col_shift[3] = ((addrmap[2] >> 8) &
1123 COL_MAX_VAL_MASK) + COL_B3_BASE;
1124 priv->col_shift[4] = (((addrmap[2] >> 16) & COL_MAX_VAL_MASK) ==
1125 COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 16) &
1126 COL_MAX_VAL_MASK) + COL_B4_BASE);
1127 priv->col_shift[5] = (((addrmap[2] >> 24) & COL_MAX_VAL_MASK) ==
1128 COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 24) &
1129 COL_MAX_VAL_MASK) + COL_B5_BASE);
1130 priv->col_shift[6] = ((addrmap[3] & COL_MAX_VAL_MASK) ==
1131 COL_MAX_VAL_MASK) ? 0 : ((addrmap[3] &
1132 COL_MAX_VAL_MASK) + COL_B6_BASE);
1133 priv->col_shift[7] = (((addrmap[3] >> 8) & COL_MAX_VAL_MASK) ==
1134 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 8) &
1135 COL_MAX_VAL_MASK) + COL_B7_BASE);
1136 priv->col_shift[8] = (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) ==
1137 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 16) &
1138 COL_MAX_VAL_MASK) + COL_B8_BASE);
1139 priv->col_shift[9] = (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) ==
1140 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 24) &
1141 COL_MAX_VAL_MASK) + COL_B9_BASE);
1142 if (width == DDRCTL_EWDTH_64) {
1143 if (memtype & MEM_TYPE_LPDDR3) {
1144 priv->col_shift[10] = ((addrmap[4] &
1145 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1146 ((addrmap[4] & COL_MAX_VAL_MASK) +
1147 COL_B10_BASE);
1148 priv->col_shift[11] = (((addrmap[4] >> 8) &
1149 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1150 (((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1151 COL_B11_BASE);
1152 } else {
1153 priv->col_shift[11] = ((addrmap[4] &
1154 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1155 ((addrmap[4] & COL_MAX_VAL_MASK) +
1156 COL_B10_BASE);
1157 priv->col_shift[13] = (((addrmap[4] >> 8) &
1158 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1159 (((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1160 COL_B11_BASE);
1161 }
1162 } else if (width == DDRCTL_EWDTH_32) {
1163 if (memtype & MEM_TYPE_LPDDR3) {
1164 priv->col_shift[10] = (((addrmap[3] >> 24) &
1165 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1166 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1167 COL_B9_BASE);
1168 priv->col_shift[11] = ((addrmap[4] &
1169 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1170 ((addrmap[4] & COL_MAX_VAL_MASK) +
1171 COL_B10_BASE);
1172 } else {
1173 priv->col_shift[11] = (((addrmap[3] >> 24) &
1174 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1175 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1176 COL_B9_BASE);
1177 priv->col_shift[13] = ((addrmap[4] &
1178 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1179 ((addrmap[4] & COL_MAX_VAL_MASK) +
1180 COL_B10_BASE);
1181 }
1182 } else {
1183 if (memtype & MEM_TYPE_LPDDR3) {
1184 priv->col_shift[10] = (((addrmap[3] >> 16) &
1185 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1186 (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1187 COL_B8_BASE);
1188 priv->col_shift[11] = (((addrmap[3] >> 24) &
1189 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1190 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1191 COL_B9_BASE);
1192 priv->col_shift[13] = ((addrmap[4] &
1193 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1194 ((addrmap[4] & COL_MAX_VAL_MASK) +
1195 COL_B10_BASE);
1196 } else {
1197 priv->col_shift[11] = (((addrmap[3] >> 16) &
1198 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1199 (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1200 COL_B8_BASE);
1201 priv->col_shift[13] = (((addrmap[3] >> 24) &
1202 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1203 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1204 COL_B9_BASE);
1205 }
1206 }
1207
1208 if (width) {
1209 for (index = 9; index > width; index--) {
1210 priv->col_shift[index] = priv->col_shift[index - width];
1211 priv->col_shift[index - width] = 0;
1212 }
1213 }
1214
1215}
1216
1217static void setup_bank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1218{
1219 priv->bank_shift[0] = (addrmap[1] & BANK_MAX_VAL_MASK) + BANK_B0_BASE;
1220 priv->bank_shift[1] = ((addrmap[1] >> 8) &
1221 BANK_MAX_VAL_MASK) + BANK_B1_BASE;
1222 priv->bank_shift[2] = (((addrmap[1] >> 16) &
1223 BANK_MAX_VAL_MASK) == BANK_MAX_VAL_MASK) ? 0 :
1224 (((addrmap[1] >> 16) & BANK_MAX_VAL_MASK) +
1225 BANK_B2_BASE);
1226
1227}
1228
1229static void setup_bg_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1230{
1231 priv->bankgrp_shift[0] = (addrmap[8] &
1232 BANKGRP_MAX_VAL_MASK) + BANKGRP_B0_BASE;
1233 priv->bankgrp_shift[1] = (((addrmap[8] >> 8) & BANKGRP_MAX_VAL_MASK) ==
1234 BANKGRP_MAX_VAL_MASK) ? 0 : (((addrmap[8] >> 8)
1235 & BANKGRP_MAX_VAL_MASK) + BANKGRP_B1_BASE);
1236
1237}
1238
1239static void setup_rank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1240{
1241 priv->rank_shift[0] = ((addrmap[0] & RANK_MAX_VAL_MASK) ==
1242 RANK_MAX_VAL_MASK) ? 0 : ((addrmap[0] &
1243 RANK_MAX_VAL_MASK) + RANK_B0_BASE);
1244}
1245
1246/**
1247 * setup_address_map - Set Address Map by querying ADDRMAP registers.
1248 * @priv: DDR memory controller private instance data.
1249 *
1250 * Set Address Map by querying ADDRMAP registers.
1251 *
1252 * Return: none.
1253 */
1254static void setup_address_map(struct synps_edac_priv *priv)
1255{
1256 u32 addrmap[12];
1257 int index;
1258
1259 for (index = 0; index < 12; index++) {
1260 u32 addrmap_offset;
1261
1262 addrmap_offset = ECC_ADDRMAP0_OFFSET + (index * 4);
1263 addrmap[index] = readl(priv->baseaddr + addrmap_offset);
1264 }
1265
1266 setup_row_address_map(priv, addrmap);
1267
1268 setup_column_address_map(priv, addrmap);
1269
1270 setup_bank_address_map(priv, addrmap);
1271
1272 setup_bg_address_map(priv, addrmap);
1273
1274 setup_rank_address_map(priv, addrmap);
1275}
1276#endif /* CONFIG_EDAC_DEBUG */
1277
1278/**
1279 * mc_probe - Check controller and bind driver.
1280 * @pdev: platform device.
1281 *
1282 * Probe a specific controller instance for binding with the driver.
1283 *
1284 * Return: 0 if the controller instance was successfully bound to the
1285 * driver; otherwise, < 0 on error.
1286 */
1287static int mc_probe(struct platform_device *pdev)
1288{
1289 const struct synps_platform_data *p_data;
1290 struct edac_mc_layer layers[2];
1291 struct synps_edac_priv *priv;
1292 struct mem_ctl_info *mci;
1293 void __iomem *baseaddr;
1294 struct resource *res;
1295 int rc;
1296
1297 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1298 baseaddr = devm_ioremap_resource(&pdev->dev, res);
1299 if (IS_ERR(baseaddr))
1300 return PTR_ERR(baseaddr);
1301
1302 p_data = of_device_get_match_data(&pdev->dev);
1303 if (!p_data)
1304 return -ENODEV;
1305
1306 if (!p_data->get_ecc_state(baseaddr)) {
1307 edac_printk(KERN_INFO, EDAC_MC, "ECC not enabled\n");
1308 return -ENXIO;
1309 }
1310
1311 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
1312 layers[0].size = SYNPS_EDAC_NR_CSROWS;
1313 layers[0].is_virt_csrow = true;
1314 layers[1].type = EDAC_MC_LAYER_CHANNEL;
1315 layers[1].size = SYNPS_EDAC_NR_CHANS;
1316 layers[1].is_virt_csrow = false;
1317
1318 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
1319 sizeof(struct synps_edac_priv));
1320 if (!mci) {
1321 edac_printk(KERN_ERR, EDAC_MC,
1322 "Failed memory allocation for mc instance\n");
1323 return -ENOMEM;
1324 }
1325
1326 priv = mci->pvt_info;
1327 priv->baseaddr = baseaddr;
1328 priv->p_data = p_data;
1329
1330 mc_init(mci, pdev);
1331
1332 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
1333 rc = setup_irq(mci, pdev);
1334 if (rc)
1335 goto free_edac_mc;
1336 }
1337
1338 rc = edac_mc_add_mc(mci);
1339 if (rc) {
1340 edac_printk(KERN_ERR, EDAC_MC,
1341 "Failed to register with EDAC core\n");
1342 goto free_edac_mc;
1343 }
1344
1345#ifdef CONFIG_EDAC_DEBUG
1346 if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT) {
1347 if (edac_create_sysfs_attributes(mci)) {
1348 edac_printk(KERN_ERR, EDAC_MC,
1349 "Failed to create sysfs entries\n");
1350 goto free_edac_mc;
1351 }
1352 }
1353
1354 if (of_device_is_compatible(pdev->dev.of_node,
1355 "xlnx,zynqmp-ddrc-2.40a"))
1356 setup_address_map(priv);
1357#endif
1358
1359 /*
1360 * Start capturing the correctable and uncorrectable errors. A write of
1361 * 0 starts the counters.
1362 */
1363 if (!(priv->p_data->quirks & DDR_ECC_INTR_SUPPORT))
1364 writel(0x0, baseaddr + ECC_CTRL_OFST);
1365
1366 return rc;
1367
1368free_edac_mc:
1369 edac_mc_free(mci);
1370
1371 return rc;
1372}
1373
1374/**
1375 * mc_remove - Unbind driver from controller.
1376 * @pdev: Platform device.
1377 *
1378 * Return: Unconditionally 0
1379 */
1380static int mc_remove(struct platform_device *pdev)
1381{
1382 struct mem_ctl_info *mci = platform_get_drvdata(pdev);
1383 struct synps_edac_priv *priv = mci->pvt_info;
1384
1385 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
1386 disable_intr(priv);
1387
1388#ifdef CONFIG_EDAC_DEBUG
1389 if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT)
1390 edac_remove_sysfs_attributes(mci);
1391#endif
1392
1393 edac_mc_del_mc(&pdev->dev);
1394 edac_mc_free(mci);
1395
1396 return 0;
1397}
1398
1399static struct platform_driver synps_edac_mc_driver = {
1400 .driver = {
1401 .name = "synopsys-edac",
1402 .of_match_table = synps_edac_match,
1403 },
1404 .probe = mc_probe,
1405 .remove = mc_remove,
1406};
1407
1408module_platform_driver(synps_edac_mc_driver);
1409
1410MODULE_AUTHOR("Xilinx Inc");
1411MODULE_DESCRIPTION("Synopsys DDR ECC driver");
1412MODULE_LICENSE("GPL v2");