Linux Audio

Check our new training course

Loading...
v6.8
  1/*
  2 * cpuidle.c - core cpuidle infrastructure
  3 *
  4 * (C) 2006-2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  5 *               Shaohua Li <shaohua.li@intel.com>
  6 *               Adam Belay <abelay@novell.com>
  7 *
  8 * This code is licenced under the GPL.
  9 */
 10
 11#include "linux/percpu-defs.h"
 12#include <linux/clockchips.h>
 13#include <linux/kernel.h>
 14#include <linux/mutex.h>
 15#include <linux/sched.h>
 16#include <linux/sched/clock.h>
 17#include <linux/sched/idle.h>
 18#include <linux/notifier.h>
 19#include <linux/pm_qos.h>
 20#include <linux/cpu.h>
 21#include <linux/cpuidle.h>
 22#include <linux/ktime.h>
 23#include <linux/hrtimer.h>
 24#include <linux/module.h>
 25#include <linux/suspend.h>
 26#include <linux/tick.h>
 27#include <linux/mmu_context.h>
 28#include <linux/context_tracking.h>
 29#include <trace/events/power.h>
 30
 31#include "cpuidle.h"
 32
 33DEFINE_PER_CPU(struct cpuidle_device *, cpuidle_devices);
 34DEFINE_PER_CPU(struct cpuidle_device, cpuidle_dev);
 35
 36DEFINE_MUTEX(cpuidle_lock);
 37LIST_HEAD(cpuidle_detected_devices);
 38
 39static int enabled_devices;
 40static int off __read_mostly;
 41static int initialized __read_mostly;
 42
 43int cpuidle_disabled(void)
 44{
 45	return off;
 46}
 47void disable_cpuidle(void)
 48{
 49	off = 1;
 50}
 51
 52bool cpuidle_not_available(struct cpuidle_driver *drv,
 53			   struct cpuidle_device *dev)
 54{
 55	return off || !initialized || !drv || !dev || !dev->enabled;
 56}
 57
 58/**
 59 * cpuidle_play_dead - cpu off-lining
 60 *
 61 * Returns in case of an error or no driver
 62 */
 63int cpuidle_play_dead(void)
 64{
 65	struct cpuidle_device *dev = __this_cpu_read(cpuidle_devices);
 66	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
 67	int i;
 68
 69	if (!drv)
 70		return -ENODEV;
 71
 72	/* Find lowest-power state that supports long-term idle */
 73	for (i = drv->state_count - 1; i >= 0; i--)
 74		if (drv->states[i].enter_dead)
 75			return drv->states[i].enter_dead(dev, i);
 
 76
 
 
 
 
 77	return -ENODEV;
 78}
 79
 80static int find_deepest_state(struct cpuidle_driver *drv,
 81			      struct cpuidle_device *dev,
 82			      u64 max_latency_ns,
 83			      unsigned int forbidden_flags,
 84			      bool s2idle)
 85{
 86	u64 latency_req = 0;
 87	int i, ret = 0;
 88
 89	for (i = 1; i < drv->state_count; i++) {
 90		struct cpuidle_state *s = &drv->states[i];
 91
 92		if (dev->states_usage[i].disable ||
 93		    s->exit_latency_ns <= latency_req ||
 94		    s->exit_latency_ns > max_latency_ns ||
 95		    (s->flags & forbidden_flags) ||
 96		    (s2idle && !s->enter_s2idle))
 97			continue;
 98
 99		latency_req = s->exit_latency_ns;
100		ret = i;
101	}
102	return ret;
103}
104
105/**
106 * cpuidle_use_deepest_state - Set/unset governor override mode.
107 * @latency_limit_ns: Idle state exit latency limit (or no override if 0).
108 *
109 * If @latency_limit_ns is nonzero, set the current CPU to use the deepest idle
110 * state with exit latency within @latency_limit_ns (override governors going
111 * forward), or do not override governors if it is zero.
112 */
113void cpuidle_use_deepest_state(u64 latency_limit_ns)
114{
115	struct cpuidle_device *dev;
116
117	preempt_disable();
118	dev = cpuidle_get_device();
119	if (dev)
120		dev->forced_idle_latency_limit_ns = latency_limit_ns;
121	preempt_enable();
122}
123
124/**
125 * cpuidle_find_deepest_state - Find the deepest available idle state.
126 * @drv: cpuidle driver for the given CPU.
127 * @dev: cpuidle device for the given CPU.
128 * @latency_limit_ns: Idle state exit latency limit
129 *
130 * Return: the index of the deepest available idle state.
131 */
132int cpuidle_find_deepest_state(struct cpuidle_driver *drv,
133			       struct cpuidle_device *dev,
134			       u64 latency_limit_ns)
135{
136	return find_deepest_state(drv, dev, latency_limit_ns, 0, false);
137}
138
139#ifdef CONFIG_SUSPEND
140static noinstr void enter_s2idle_proper(struct cpuidle_driver *drv,
141					 struct cpuidle_device *dev, int index)
142{
143	struct cpuidle_state *target_state = &drv->states[index];
144	ktime_t time_start, time_end;
145
146	instrumentation_begin();
147
148	time_start = ns_to_ktime(local_clock_noinstr());
149
150	tick_freeze();
151	/*
152	 * The state used here cannot be a "coupled" one, because the "coupled"
153	 * cpuidle mechanism enables interrupts and doing that with timekeeping
154	 * suspended is generally unsafe.
155	 */
156	stop_critical_timings();
157	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) {
158		ct_cpuidle_enter();
159		/* Annotate away the indirect call */
160		instrumentation_begin();
161	}
162	target_state->enter_s2idle(dev, drv, index);
163	if (WARN_ON_ONCE(!irqs_disabled()))
164		raw_local_irq_disable();
165	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) {
166		instrumentation_end();
167		ct_cpuidle_exit();
168	}
169	tick_unfreeze();
170	start_critical_timings();
171
172	time_end = ns_to_ktime(local_clock_noinstr());
173
174	dev->states_usage[index].s2idle_time += ktime_us_delta(time_end, time_start);
175	dev->states_usage[index].s2idle_usage++;
176	instrumentation_end();
177}
178
179/**
180 * cpuidle_enter_s2idle - Enter an idle state suitable for suspend-to-idle.
181 * @drv: cpuidle driver for the given CPU.
182 * @dev: cpuidle device for the given CPU.
183 *
184 * If there are states with the ->enter_s2idle callback, find the deepest of
185 * them and enter it with frozen tick.
186 */
187int cpuidle_enter_s2idle(struct cpuidle_driver *drv, struct cpuidle_device *dev)
188{
189	int index;
190
191	/*
192	 * Find the deepest state with ->enter_s2idle present, which guarantees
193	 * that interrupts won't be enabled when it exits and allows the tick to
194	 * be frozen safely.
195	 */
196	index = find_deepest_state(drv, dev, U64_MAX, 0, true);
197	if (index > 0) {
198		enter_s2idle_proper(drv, dev, index);
199		local_irq_enable();
200	}
201	return index;
202}
203#endif /* CONFIG_SUSPEND */
204
205/**
206 * cpuidle_enter_state - enter the state and update stats
207 * @dev: cpuidle device for this cpu
208 * @drv: cpuidle driver for this cpu
209 * @index: index into the states table in @drv of the state to enter
210 */
211noinstr int cpuidle_enter_state(struct cpuidle_device *dev,
212				 struct cpuidle_driver *drv,
213				 int index)
214{
215	int entered_state;
216
217	struct cpuidle_state *target_state = &drv->states[index];
218	bool broadcast = !!(target_state->flags & CPUIDLE_FLAG_TIMER_STOP);
219	ktime_t time_start, time_end;
220
221	instrumentation_begin();
222
223	/*
224	 * Tell the time framework to switch to a broadcast timer because our
225	 * local timer will be shut down.  If a local timer is used from another
226	 * CPU as a broadcast timer, this call may fail if it is not available.
227	 */
228	if (broadcast && tick_broadcast_enter()) {
229		index = find_deepest_state(drv, dev, target_state->exit_latency_ns,
230					   CPUIDLE_FLAG_TIMER_STOP, false);
231		if (index < 0) {
232			default_idle_call();
233			return -EBUSY;
234		}
235		target_state = &drv->states[index];
236		broadcast = false;
237	}
238
239	if (target_state->flags & CPUIDLE_FLAG_TLB_FLUSHED)
240		leave_mm(dev->cpu);
241
242	/* Take note of the planned idle state. */
243	sched_idle_set_state(target_state);
244
245	trace_cpu_idle(index, dev->cpu);
246	time_start = ns_to_ktime(local_clock_noinstr());
247
248	stop_critical_timings();
249	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) {
250		ct_cpuidle_enter();
251		/* Annotate away the indirect call */
252		instrumentation_begin();
253	}
254
255	/*
256	 * NOTE!!
257	 *
258	 * For cpuidle_state::enter() methods that do *NOT* set
259	 * CPUIDLE_FLAG_RCU_IDLE RCU will be disabled here and these functions
260	 * must be marked either noinstr or __cpuidle.
261	 *
262	 * For cpuidle_state::enter() methods that *DO* set
263	 * CPUIDLE_FLAG_RCU_IDLE this isn't required, but they must mark the
264	 * function calling ct_cpuidle_enter() as noinstr/__cpuidle and all
265	 * functions called within the RCU-idle region.
266	 */
267	entered_state = target_state->enter(dev, drv, index);
268
269	if (WARN_ONCE(!irqs_disabled(), "%ps leaked IRQ state", target_state->enter))
270		raw_local_irq_disable();
271
272	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) {
273		instrumentation_end();
274		ct_cpuidle_exit();
275	}
276	start_critical_timings();
277
278	sched_clock_idle_wakeup_event();
279	time_end = ns_to_ktime(local_clock_noinstr());
280	trace_cpu_idle(PWR_EVENT_EXIT, dev->cpu);
281
282	/* The cpu is no longer idle or about to enter idle. */
283	sched_idle_set_state(NULL);
284
285	if (broadcast)
286		tick_broadcast_exit();
287
288	if (!cpuidle_state_is_coupled(drv, index))
289		local_irq_enable();
290
291	if (entered_state >= 0) {
292		s64 diff, delay = drv->states[entered_state].exit_latency_ns;
293		int i;
294
295		/*
296		 * Update cpuidle counters
297		 * This can be moved to within driver enter routine,
298		 * but that results in multiple copies of same code.
299		 */
300		diff = ktime_sub(time_end, time_start);
301
302		dev->last_residency_ns = diff;
303		dev->states_usage[entered_state].time_ns += diff;
304		dev->states_usage[entered_state].usage++;
305
306		if (diff < drv->states[entered_state].target_residency_ns) {
307			for (i = entered_state - 1; i >= 0; i--) {
308				if (dev->states_usage[i].disable)
309					continue;
310
311				/* Shallower states are enabled, so update. */
312				dev->states_usage[entered_state].above++;
313				trace_cpu_idle_miss(dev->cpu, entered_state, false);
314				break;
315			}
316		} else if (diff > delay) {
317			for (i = entered_state + 1; i < drv->state_count; i++) {
318				if (dev->states_usage[i].disable)
319					continue;
320
321				/*
322				 * Update if a deeper state would have been a
323				 * better match for the observed idle duration.
324				 */
325				if (diff - delay >= drv->states[i].target_residency_ns) {
326					dev->states_usage[entered_state].below++;
327					trace_cpu_idle_miss(dev->cpu, entered_state, true);
328				}
329
330				break;
331			}
332		}
333	} else {
334		dev->last_residency_ns = 0;
335		dev->states_usage[index].rejected++;
336	}
337
338	instrumentation_end();
339
340	return entered_state;
341}
342
343/**
344 * cpuidle_select - ask the cpuidle framework to choose an idle state
345 *
346 * @drv: the cpuidle driver
347 * @dev: the cpuidle device
348 * @stop_tick: indication on whether or not to stop the tick
349 *
350 * Returns the index of the idle state.  The return value must not be negative.
351 *
352 * The memory location pointed to by @stop_tick is expected to be written the
353 * 'false' boolean value if the scheduler tick should not be stopped before
354 * entering the returned state.
355 */
356int cpuidle_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
357		   bool *stop_tick)
358{
359	return cpuidle_curr_governor->select(drv, dev, stop_tick);
360}
361
362/**
363 * cpuidle_enter - enter into the specified idle state
364 *
365 * @drv:   the cpuidle driver tied with the cpu
366 * @dev:   the cpuidle device
367 * @index: the index in the idle state table
368 *
369 * Returns the index in the idle state, < 0 in case of error.
370 * The error code depends on the backend driver
371 */
372int cpuidle_enter(struct cpuidle_driver *drv, struct cpuidle_device *dev,
373		  int index)
374{
375	int ret = 0;
376
377	/*
378	 * Store the next hrtimer, which becomes either next tick or the next
379	 * timer event, whatever expires first. Additionally, to make this data
380	 * useful for consumers outside cpuidle, we rely on that the governor's
381	 * ->select() callback have decided, whether to stop the tick or not.
382	 */
383	WRITE_ONCE(dev->next_hrtimer, tick_nohz_get_next_hrtimer());
384
385	if (cpuidle_state_is_coupled(drv, index))
386		ret = cpuidle_enter_state_coupled(dev, drv, index);
387	else
388		ret = cpuidle_enter_state(dev, drv, index);
389
390	WRITE_ONCE(dev->next_hrtimer, 0);
391	return ret;
392}
393
394/**
395 * cpuidle_reflect - tell the underlying governor what was the state
396 * we were in
397 *
398 * @dev  : the cpuidle device
399 * @index: the index in the idle state table
400 *
401 */
402void cpuidle_reflect(struct cpuidle_device *dev, int index)
403{
404	if (cpuidle_curr_governor->reflect && index >= 0)
405		cpuidle_curr_governor->reflect(dev, index);
406}
407
408/*
409 * Min polling interval of 10usec is a guess. It is assuming that
410 * for most users, the time for a single ping-pong workload like
411 * perf bench pipe would generally complete within 10usec but
412 * this is hardware dependant. Actual time can be estimated with
413 *
414 * perf bench sched pipe -l 10000
415 *
416 * Run multiple times to avoid cpufreq effects.
417 */
418#define CPUIDLE_POLL_MIN 10000
419#define CPUIDLE_POLL_MAX (TICK_NSEC / 16)
420
421/**
422 * cpuidle_poll_time - return amount of time to poll for,
423 * governors can override dev->poll_limit_ns if necessary
424 *
425 * @drv:   the cpuidle driver tied with the cpu
426 * @dev:   the cpuidle device
427 *
428 */
429__cpuidle u64 cpuidle_poll_time(struct cpuidle_driver *drv,
430		      struct cpuidle_device *dev)
431{
432	int i;
433	u64 limit_ns;
434
435	BUILD_BUG_ON(CPUIDLE_POLL_MIN > CPUIDLE_POLL_MAX);
436
437	if (dev->poll_limit_ns)
438		return dev->poll_limit_ns;
439
440	limit_ns = CPUIDLE_POLL_MAX;
441	for (i = 1; i < drv->state_count; i++) {
442		u64 state_limit;
443
444		if (dev->states_usage[i].disable)
445			continue;
446
447		state_limit = drv->states[i].target_residency_ns;
448		if (state_limit < CPUIDLE_POLL_MIN)
449			continue;
450
451		limit_ns = min_t(u64, state_limit, CPUIDLE_POLL_MAX);
452		break;
453	}
454
455	dev->poll_limit_ns = limit_ns;
456
457	return dev->poll_limit_ns;
458}
459
460/**
461 * cpuidle_install_idle_handler - installs the cpuidle idle loop handler
462 */
463void cpuidle_install_idle_handler(void)
464{
465	if (enabled_devices) {
466		/* Make sure all changes finished before we switch to new idle */
467		smp_wmb();
468		initialized = 1;
469	}
470}
471
472/**
473 * cpuidle_uninstall_idle_handler - uninstalls the cpuidle idle loop handler
474 */
475void cpuidle_uninstall_idle_handler(void)
476{
477	if (enabled_devices) {
478		initialized = 0;
479		wake_up_all_idle_cpus();
480	}
481
482	/*
483	 * Make sure external observers (such as the scheduler)
484	 * are done looking at pointed idle states.
485	 */
486	synchronize_rcu();
487}
488
489/**
490 * cpuidle_pause_and_lock - temporarily disables CPUIDLE
491 */
492void cpuidle_pause_and_lock(void)
493{
494	mutex_lock(&cpuidle_lock);
495	cpuidle_uninstall_idle_handler();
496}
497
498EXPORT_SYMBOL_GPL(cpuidle_pause_and_lock);
499
500/**
501 * cpuidle_resume_and_unlock - resumes CPUIDLE operation
502 */
503void cpuidle_resume_and_unlock(void)
504{
505	cpuidle_install_idle_handler();
506	mutex_unlock(&cpuidle_lock);
507}
508
509EXPORT_SYMBOL_GPL(cpuidle_resume_and_unlock);
510
511/* Currently used in suspend/resume path to suspend cpuidle */
512void cpuidle_pause(void)
513{
514	mutex_lock(&cpuidle_lock);
515	cpuidle_uninstall_idle_handler();
516	mutex_unlock(&cpuidle_lock);
517}
518
519/* Currently used in suspend/resume path to resume cpuidle */
520void cpuidle_resume(void)
521{
522	mutex_lock(&cpuidle_lock);
523	cpuidle_install_idle_handler();
524	mutex_unlock(&cpuidle_lock);
525}
526
527/**
528 * cpuidle_enable_device - enables idle PM for a CPU
529 * @dev: the CPU
530 *
531 * This function must be called between cpuidle_pause_and_lock and
532 * cpuidle_resume_and_unlock when used externally.
533 */
534int cpuidle_enable_device(struct cpuidle_device *dev)
535{
536	int ret;
537	struct cpuidle_driver *drv;
538
539	if (!dev)
540		return -EINVAL;
541
542	if (dev->enabled)
543		return 0;
544
545	if (!cpuidle_curr_governor)
546		return -EIO;
547
548	drv = cpuidle_get_cpu_driver(dev);
549
550	if (!drv)
551		return -EIO;
552
553	if (!dev->registered)
554		return -EINVAL;
555
556	ret = cpuidle_add_device_sysfs(dev);
557	if (ret)
558		return ret;
559
560	if (cpuidle_curr_governor->enable) {
561		ret = cpuidle_curr_governor->enable(drv, dev);
562		if (ret)
563			goto fail_sysfs;
564	}
565
566	smp_wmb();
567
568	dev->enabled = 1;
569
570	enabled_devices++;
571	return 0;
572
573fail_sysfs:
574	cpuidle_remove_device_sysfs(dev);
575
576	return ret;
577}
578
579EXPORT_SYMBOL_GPL(cpuidle_enable_device);
580
581/**
582 * cpuidle_disable_device - disables idle PM for a CPU
583 * @dev: the CPU
584 *
585 * This function must be called between cpuidle_pause_and_lock and
586 * cpuidle_resume_and_unlock when used externally.
587 */
588void cpuidle_disable_device(struct cpuidle_device *dev)
589{
590	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
591
592	if (!dev || !dev->enabled)
593		return;
594
595	if (!drv || !cpuidle_curr_governor)
596		return;
597
598	dev->enabled = 0;
599
600	if (cpuidle_curr_governor->disable)
601		cpuidle_curr_governor->disable(drv, dev);
602
603	cpuidle_remove_device_sysfs(dev);
604	enabled_devices--;
605}
606
607EXPORT_SYMBOL_GPL(cpuidle_disable_device);
608
609static void __cpuidle_unregister_device(struct cpuidle_device *dev)
610{
611	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
612
613	list_del(&dev->device_list);
614	per_cpu(cpuidle_devices, dev->cpu) = NULL;
615	module_put(drv->owner);
616
617	dev->registered = 0;
618}
619
620static void __cpuidle_device_init(struct cpuidle_device *dev)
621{
622	memset(dev->states_usage, 0, sizeof(dev->states_usage));
623	dev->last_residency_ns = 0;
624	dev->next_hrtimer = 0;
625}
626
627/**
628 * __cpuidle_register_device - internal register function called before register
629 * and enable routines
630 * @dev: the cpu
631 *
632 * cpuidle_lock mutex must be held before this is called
633 */
634static int __cpuidle_register_device(struct cpuidle_device *dev)
635{
636	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
637	int i, ret;
638
639	if (!try_module_get(drv->owner))
640		return -EINVAL;
641
642	for (i = 0; i < drv->state_count; i++) {
643		if (drv->states[i].flags & CPUIDLE_FLAG_UNUSABLE)
644			dev->states_usage[i].disable |= CPUIDLE_STATE_DISABLED_BY_DRIVER;
645
646		if (drv->states[i].flags & CPUIDLE_FLAG_OFF)
647			dev->states_usage[i].disable |= CPUIDLE_STATE_DISABLED_BY_USER;
648	}
649
650	per_cpu(cpuidle_devices, dev->cpu) = dev;
651	list_add(&dev->device_list, &cpuidle_detected_devices);
652
653	ret = cpuidle_coupled_register_device(dev);
654	if (ret)
655		__cpuidle_unregister_device(dev);
656	else
657		dev->registered = 1;
658
659	return ret;
660}
661
662/**
663 * cpuidle_register_device - registers a CPU's idle PM feature
664 * @dev: the cpu
665 */
666int cpuidle_register_device(struct cpuidle_device *dev)
667{
668	int ret = -EBUSY;
669
670	if (!dev)
671		return -EINVAL;
672
673	mutex_lock(&cpuidle_lock);
674
675	if (dev->registered)
676		goto out_unlock;
677
678	__cpuidle_device_init(dev);
679
680	ret = __cpuidle_register_device(dev);
681	if (ret)
682		goto out_unlock;
683
684	ret = cpuidle_add_sysfs(dev);
685	if (ret)
686		goto out_unregister;
687
688	ret = cpuidle_enable_device(dev);
689	if (ret)
690		goto out_sysfs;
691
692	cpuidle_install_idle_handler();
693
694out_unlock:
695	mutex_unlock(&cpuidle_lock);
696
697	return ret;
698
699out_sysfs:
700	cpuidle_remove_sysfs(dev);
701out_unregister:
702	__cpuidle_unregister_device(dev);
703	goto out_unlock;
704}
705
706EXPORT_SYMBOL_GPL(cpuidle_register_device);
707
708/**
709 * cpuidle_unregister_device - unregisters a CPU's idle PM feature
710 * @dev: the cpu
711 */
712void cpuidle_unregister_device(struct cpuidle_device *dev)
713{
714	if (!dev || dev->registered == 0)
715		return;
716
717	cpuidle_pause_and_lock();
718
719	cpuidle_disable_device(dev);
720
721	cpuidle_remove_sysfs(dev);
722
723	__cpuidle_unregister_device(dev);
724
725	cpuidle_coupled_unregister_device(dev);
726
727	cpuidle_resume_and_unlock();
728}
729
730EXPORT_SYMBOL_GPL(cpuidle_unregister_device);
731
732/**
733 * cpuidle_unregister: unregister a driver and the devices. This function
734 * can be used only if the driver has been previously registered through
735 * the cpuidle_register function.
736 *
737 * @drv: a valid pointer to a struct cpuidle_driver
738 */
739void cpuidle_unregister(struct cpuidle_driver *drv)
740{
741	int cpu;
742	struct cpuidle_device *device;
743
744	for_each_cpu(cpu, drv->cpumask) {
745		device = &per_cpu(cpuidle_dev, cpu);
746		cpuidle_unregister_device(device);
747	}
748
749	cpuidle_unregister_driver(drv);
750}
751EXPORT_SYMBOL_GPL(cpuidle_unregister);
752
753/**
754 * cpuidle_register: registers the driver and the cpu devices with the
755 * coupled_cpus passed as parameter. This function is used for all common
756 * initialization pattern there are in the arch specific drivers. The
757 * devices is globally defined in this file.
758 *
759 * @drv         : a valid pointer to a struct cpuidle_driver
760 * @coupled_cpus: a cpumask for the coupled states
761 *
762 * Returns 0 on success, < 0 otherwise
763 */
764int cpuidle_register(struct cpuidle_driver *drv,
765		     const struct cpumask *const coupled_cpus)
766{
767	int ret, cpu;
768	struct cpuidle_device *device;
769
770	ret = cpuidle_register_driver(drv);
771	if (ret) {
772		pr_err("failed to register cpuidle driver\n");
773		return ret;
774	}
775
776	for_each_cpu(cpu, drv->cpumask) {
777		device = &per_cpu(cpuidle_dev, cpu);
778		device->cpu = cpu;
779
780#ifdef CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED
781		/*
782		 * On multiplatform for ARM, the coupled idle states could be
783		 * enabled in the kernel even if the cpuidle driver does not
784		 * use it. Note, coupled_cpus is a struct copy.
785		 */
786		if (coupled_cpus)
787			device->coupled_cpus = *coupled_cpus;
788#endif
789		ret = cpuidle_register_device(device);
790		if (!ret)
791			continue;
792
793		pr_err("Failed to register cpuidle device for cpu%d\n", cpu);
794
795		cpuidle_unregister(drv);
796		break;
797	}
798
799	return ret;
800}
801EXPORT_SYMBOL_GPL(cpuidle_register);
802
803/**
804 * cpuidle_init - core initializer
805 */
806static int __init cpuidle_init(void)
807{
808	if (cpuidle_disabled())
809		return -ENODEV;
810
811	return cpuidle_add_interface();
812}
813
814module_param(off, int, 0444);
815module_param_string(governor, param_governor, CPUIDLE_NAME_LEN, 0444);
816core_initcall(cpuidle_init);
v6.13.7
  1/*
  2 * cpuidle.c - core cpuidle infrastructure
  3 *
  4 * (C) 2006-2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  5 *               Shaohua Li <shaohua.li@intel.com>
  6 *               Adam Belay <abelay@novell.com>
  7 *
  8 * This code is licenced under the GPL.
  9 */
 10
 11#include "linux/percpu-defs.h"
 12#include <linux/clockchips.h>
 13#include <linux/kernel.h>
 14#include <linux/mutex.h>
 15#include <linux/sched.h>
 16#include <linux/sched/clock.h>
 17#include <linux/sched/idle.h>
 18#include <linux/notifier.h>
 19#include <linux/pm_qos.h>
 20#include <linux/cpu.h>
 21#include <linux/cpuidle.h>
 22#include <linux/ktime.h>
 23#include <linux/hrtimer.h>
 24#include <linux/module.h>
 25#include <linux/suspend.h>
 26#include <linux/tick.h>
 27#include <linux/mmu_context.h>
 28#include <linux/context_tracking.h>
 29#include <trace/events/power.h>
 30
 31#include "cpuidle.h"
 32
 33DEFINE_PER_CPU(struct cpuidle_device *, cpuidle_devices);
 34DEFINE_PER_CPU(struct cpuidle_device, cpuidle_dev);
 35
 36DEFINE_MUTEX(cpuidle_lock);
 37LIST_HEAD(cpuidle_detected_devices);
 38
 39static int enabled_devices;
 40static int off __read_mostly;
 41static int initialized __read_mostly;
 42
 43int cpuidle_disabled(void)
 44{
 45	return off;
 46}
 47void disable_cpuidle(void)
 48{
 49	off = 1;
 50}
 51
 52bool cpuidle_not_available(struct cpuidle_driver *drv,
 53			   struct cpuidle_device *dev)
 54{
 55	return off || !initialized || !drv || !dev || !dev->enabled;
 56}
 57
 58/**
 59 * cpuidle_play_dead - cpu off-lining
 60 *
 61 * Returns in case of an error or no driver
 62 */
 63int cpuidle_play_dead(void)
 64{
 65	struct cpuidle_device *dev = __this_cpu_read(cpuidle_devices);
 66	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
 67	int i;
 68
 69	if (!drv)
 70		return -ENODEV;
 71
 72	for (i = drv->state_count - 1; i >= 0; i--) {
 
 73		if (drv->states[i].enter_dead)
 74			drv->states[i].enter_dead(dev, i);
 75	}
 76
 77	/*
 78	 * If :enter_dead() is successful, it will never return, so reaching
 79	 * here means that all of them failed above or were not present.
 80	 */
 81	return -ENODEV;
 82}
 83
 84static int find_deepest_state(struct cpuidle_driver *drv,
 85			      struct cpuidle_device *dev,
 86			      u64 max_latency_ns,
 87			      unsigned int forbidden_flags,
 88			      bool s2idle)
 89{
 90	u64 latency_req = 0;
 91	int i, ret = 0;
 92
 93	for (i = 1; i < drv->state_count; i++) {
 94		struct cpuidle_state *s = &drv->states[i];
 95
 96		if (dev->states_usage[i].disable ||
 97		    s->exit_latency_ns <= latency_req ||
 98		    s->exit_latency_ns > max_latency_ns ||
 99		    (s->flags & forbidden_flags) ||
100		    (s2idle && !s->enter_s2idle))
101			continue;
102
103		latency_req = s->exit_latency_ns;
104		ret = i;
105	}
106	return ret;
107}
108
109/**
110 * cpuidle_use_deepest_state - Set/unset governor override mode.
111 * @latency_limit_ns: Idle state exit latency limit (or no override if 0).
112 *
113 * If @latency_limit_ns is nonzero, set the current CPU to use the deepest idle
114 * state with exit latency within @latency_limit_ns (override governors going
115 * forward), or do not override governors if it is zero.
116 */
117void cpuidle_use_deepest_state(u64 latency_limit_ns)
118{
119	struct cpuidle_device *dev;
120
121	preempt_disable();
122	dev = cpuidle_get_device();
123	if (dev)
124		dev->forced_idle_latency_limit_ns = latency_limit_ns;
125	preempt_enable();
126}
127
128/**
129 * cpuidle_find_deepest_state - Find the deepest available idle state.
130 * @drv: cpuidle driver for the given CPU.
131 * @dev: cpuidle device for the given CPU.
132 * @latency_limit_ns: Idle state exit latency limit
133 *
134 * Return: the index of the deepest available idle state.
135 */
136int cpuidle_find_deepest_state(struct cpuidle_driver *drv,
137			       struct cpuidle_device *dev,
138			       u64 latency_limit_ns)
139{
140	return find_deepest_state(drv, dev, latency_limit_ns, 0, false);
141}
142
143#ifdef CONFIG_SUSPEND
144static noinstr void enter_s2idle_proper(struct cpuidle_driver *drv,
145					 struct cpuidle_device *dev, int index)
146{
147	struct cpuidle_state *target_state = &drv->states[index];
148	ktime_t time_start, time_end;
149
150	instrumentation_begin();
151
152	time_start = ns_to_ktime(local_clock_noinstr());
153
154	tick_freeze();
155	/*
156	 * The state used here cannot be a "coupled" one, because the "coupled"
157	 * cpuidle mechanism enables interrupts and doing that with timekeeping
158	 * suspended is generally unsafe.
159	 */
160	stop_critical_timings();
161	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) {
162		ct_cpuidle_enter();
163		/* Annotate away the indirect call */
164		instrumentation_begin();
165	}
166	target_state->enter_s2idle(dev, drv, index);
167	if (WARN_ON_ONCE(!irqs_disabled()))
168		raw_local_irq_disable();
169	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) {
170		instrumentation_end();
171		ct_cpuidle_exit();
172	}
173	tick_unfreeze();
174	start_critical_timings();
175
176	time_end = ns_to_ktime(local_clock_noinstr());
177
178	dev->states_usage[index].s2idle_time += ktime_us_delta(time_end, time_start);
179	dev->states_usage[index].s2idle_usage++;
180	instrumentation_end();
181}
182
183/**
184 * cpuidle_enter_s2idle - Enter an idle state suitable for suspend-to-idle.
185 * @drv: cpuidle driver for the given CPU.
186 * @dev: cpuidle device for the given CPU.
187 *
188 * If there are states with the ->enter_s2idle callback, find the deepest of
189 * them and enter it with frozen tick.
190 */
191int cpuidle_enter_s2idle(struct cpuidle_driver *drv, struct cpuidle_device *dev)
192{
193	int index;
194
195	/*
196	 * Find the deepest state with ->enter_s2idle present, which guarantees
197	 * that interrupts won't be enabled when it exits and allows the tick to
198	 * be frozen safely.
199	 */
200	index = find_deepest_state(drv, dev, U64_MAX, 0, true);
201	if (index > 0) {
202		enter_s2idle_proper(drv, dev, index);
203		local_irq_enable();
204	}
205	return index;
206}
207#endif /* CONFIG_SUSPEND */
208
209/**
210 * cpuidle_enter_state - enter the state and update stats
211 * @dev: cpuidle device for this cpu
212 * @drv: cpuidle driver for this cpu
213 * @index: index into the states table in @drv of the state to enter
214 */
215noinstr int cpuidle_enter_state(struct cpuidle_device *dev,
216				 struct cpuidle_driver *drv,
217				 int index)
218{
219	int entered_state;
220
221	struct cpuidle_state *target_state = &drv->states[index];
222	bool broadcast = !!(target_state->flags & CPUIDLE_FLAG_TIMER_STOP);
223	ktime_t time_start, time_end;
224
225	instrumentation_begin();
226
227	/*
228	 * Tell the time framework to switch to a broadcast timer because our
229	 * local timer will be shut down.  If a local timer is used from another
230	 * CPU as a broadcast timer, this call may fail if it is not available.
231	 */
232	if (broadcast && tick_broadcast_enter()) {
233		index = find_deepest_state(drv, dev, target_state->exit_latency_ns,
234					   CPUIDLE_FLAG_TIMER_STOP, false);
235
 
 
 
236		target_state = &drv->states[index];
237		broadcast = false;
238	}
239
240	if (target_state->flags & CPUIDLE_FLAG_TLB_FLUSHED)
241		leave_mm();
242
243	/* Take note of the planned idle state. */
244	sched_idle_set_state(target_state);
245
246	trace_cpu_idle(index, dev->cpu);
247	time_start = ns_to_ktime(local_clock_noinstr());
248
249	stop_critical_timings();
250	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) {
251		ct_cpuidle_enter();
252		/* Annotate away the indirect call */
253		instrumentation_begin();
254	}
255
256	/*
257	 * NOTE!!
258	 *
259	 * For cpuidle_state::enter() methods that do *NOT* set
260	 * CPUIDLE_FLAG_RCU_IDLE RCU will be disabled here and these functions
261	 * must be marked either noinstr or __cpuidle.
262	 *
263	 * For cpuidle_state::enter() methods that *DO* set
264	 * CPUIDLE_FLAG_RCU_IDLE this isn't required, but they must mark the
265	 * function calling ct_cpuidle_enter() as noinstr/__cpuidle and all
266	 * functions called within the RCU-idle region.
267	 */
268	entered_state = target_state->enter(dev, drv, index);
269
270	if (WARN_ONCE(!irqs_disabled(), "%ps leaked IRQ state", target_state->enter))
271		raw_local_irq_disable();
272
273	if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) {
274		instrumentation_end();
275		ct_cpuidle_exit();
276	}
277	start_critical_timings();
278
279	sched_clock_idle_wakeup_event();
280	time_end = ns_to_ktime(local_clock_noinstr());
281	trace_cpu_idle(PWR_EVENT_EXIT, dev->cpu);
282
283	/* The cpu is no longer idle or about to enter idle. */
284	sched_idle_set_state(NULL);
285
286	if (broadcast)
287		tick_broadcast_exit();
288
289	if (!cpuidle_state_is_coupled(drv, index))
290		local_irq_enable();
291
292	if (entered_state >= 0) {
293		s64 diff, delay = drv->states[entered_state].exit_latency_ns;
294		int i;
295
296		/*
297		 * Update cpuidle counters
298		 * This can be moved to within driver enter routine,
299		 * but that results in multiple copies of same code.
300		 */
301		diff = ktime_sub(time_end, time_start);
302
303		dev->last_residency_ns = diff;
304		dev->states_usage[entered_state].time_ns += diff;
305		dev->states_usage[entered_state].usage++;
306
307		if (diff < drv->states[entered_state].target_residency_ns) {
308			for (i = entered_state - 1; i >= 0; i--) {
309				if (dev->states_usage[i].disable)
310					continue;
311
312				/* Shallower states are enabled, so update. */
313				dev->states_usage[entered_state].above++;
314				trace_cpu_idle_miss(dev->cpu, entered_state, false);
315				break;
316			}
317		} else if (diff > delay) {
318			for (i = entered_state + 1; i < drv->state_count; i++) {
319				if (dev->states_usage[i].disable)
320					continue;
321
322				/*
323				 * Update if a deeper state would have been a
324				 * better match for the observed idle duration.
325				 */
326				if (diff - delay >= drv->states[i].target_residency_ns) {
327					dev->states_usage[entered_state].below++;
328					trace_cpu_idle_miss(dev->cpu, entered_state, true);
329				}
330
331				break;
332			}
333		}
334	} else {
335		dev->last_residency_ns = 0;
336		dev->states_usage[index].rejected++;
337	}
338
339	instrumentation_end();
340
341	return entered_state;
342}
343
344/**
345 * cpuidle_select - ask the cpuidle framework to choose an idle state
346 *
347 * @drv: the cpuidle driver
348 * @dev: the cpuidle device
349 * @stop_tick: indication on whether or not to stop the tick
350 *
351 * Returns the index of the idle state.  The return value must not be negative.
352 *
353 * The memory location pointed to by @stop_tick is expected to be written the
354 * 'false' boolean value if the scheduler tick should not be stopped before
355 * entering the returned state.
356 */
357int cpuidle_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
358		   bool *stop_tick)
359{
360	return cpuidle_curr_governor->select(drv, dev, stop_tick);
361}
362
363/**
364 * cpuidle_enter - enter into the specified idle state
365 *
366 * @drv:   the cpuidle driver tied with the cpu
367 * @dev:   the cpuidle device
368 * @index: the index in the idle state table
369 *
370 * Returns the index in the idle state, < 0 in case of error.
371 * The error code depends on the backend driver
372 */
373int cpuidle_enter(struct cpuidle_driver *drv, struct cpuidle_device *dev,
374		  int index)
375{
376	int ret = 0;
377
378	/*
379	 * Store the next hrtimer, which becomes either next tick or the next
380	 * timer event, whatever expires first. Additionally, to make this data
381	 * useful for consumers outside cpuidle, we rely on that the governor's
382	 * ->select() callback have decided, whether to stop the tick or not.
383	 */
384	WRITE_ONCE(dev->next_hrtimer, tick_nohz_get_next_hrtimer());
385
386	if (cpuidle_state_is_coupled(drv, index))
387		ret = cpuidle_enter_state_coupled(dev, drv, index);
388	else
389		ret = cpuidle_enter_state(dev, drv, index);
390
391	WRITE_ONCE(dev->next_hrtimer, 0);
392	return ret;
393}
394
395/**
396 * cpuidle_reflect - tell the underlying governor what was the state
397 * we were in
398 *
399 * @dev  : the cpuidle device
400 * @index: the index in the idle state table
401 *
402 */
403void cpuidle_reflect(struct cpuidle_device *dev, int index)
404{
405	if (cpuidle_curr_governor->reflect && index >= 0)
406		cpuidle_curr_governor->reflect(dev, index);
407}
408
409/*
410 * Min polling interval of 10usec is a guess. It is assuming that
411 * for most users, the time for a single ping-pong workload like
412 * perf bench pipe would generally complete within 10usec but
413 * this is hardware dependent. Actual time can be estimated with
414 *
415 * perf bench sched pipe -l 10000
416 *
417 * Run multiple times to avoid cpufreq effects.
418 */
419#define CPUIDLE_POLL_MIN 10000
420#define CPUIDLE_POLL_MAX (TICK_NSEC / 16)
421
422/**
423 * cpuidle_poll_time - return amount of time to poll for,
424 * governors can override dev->poll_limit_ns if necessary
425 *
426 * @drv:   the cpuidle driver tied with the cpu
427 * @dev:   the cpuidle device
428 *
429 */
430__cpuidle u64 cpuidle_poll_time(struct cpuidle_driver *drv,
431		      struct cpuidle_device *dev)
432{
433	int i;
434	u64 limit_ns;
435
436	BUILD_BUG_ON(CPUIDLE_POLL_MIN > CPUIDLE_POLL_MAX);
437
438	if (dev->poll_limit_ns)
439		return dev->poll_limit_ns;
440
441	limit_ns = CPUIDLE_POLL_MAX;
442	for (i = 1; i < drv->state_count; i++) {
443		u64 state_limit;
444
445		if (dev->states_usage[i].disable)
446			continue;
447
448		state_limit = drv->states[i].target_residency_ns;
449		if (state_limit < CPUIDLE_POLL_MIN)
450			continue;
451
452		limit_ns = min_t(u64, state_limit, CPUIDLE_POLL_MAX);
453		break;
454	}
455
456	dev->poll_limit_ns = limit_ns;
457
458	return dev->poll_limit_ns;
459}
460
461/**
462 * cpuidle_install_idle_handler - installs the cpuidle idle loop handler
463 */
464void cpuidle_install_idle_handler(void)
465{
466	if (enabled_devices) {
467		/* Make sure all changes finished before we switch to new idle */
468		smp_wmb();
469		initialized = 1;
470	}
471}
472
473/**
474 * cpuidle_uninstall_idle_handler - uninstalls the cpuidle idle loop handler
475 */
476void cpuidle_uninstall_idle_handler(void)
477{
478	if (enabled_devices) {
479		initialized = 0;
480		wake_up_all_idle_cpus();
481	}
482
483	/*
484	 * Make sure external observers (such as the scheduler)
485	 * are done looking at pointed idle states.
486	 */
487	synchronize_rcu();
488}
489
490/**
491 * cpuidle_pause_and_lock - temporarily disables CPUIDLE
492 */
493void cpuidle_pause_and_lock(void)
494{
495	mutex_lock(&cpuidle_lock);
496	cpuidle_uninstall_idle_handler();
497}
498
499EXPORT_SYMBOL_GPL(cpuidle_pause_and_lock);
500
501/**
502 * cpuidle_resume_and_unlock - resumes CPUIDLE operation
503 */
504void cpuidle_resume_and_unlock(void)
505{
506	cpuidle_install_idle_handler();
507	mutex_unlock(&cpuidle_lock);
508}
509
510EXPORT_SYMBOL_GPL(cpuidle_resume_and_unlock);
511
512/* Currently used in suspend/resume path to suspend cpuidle */
513void cpuidle_pause(void)
514{
515	mutex_lock(&cpuidle_lock);
516	cpuidle_uninstall_idle_handler();
517	mutex_unlock(&cpuidle_lock);
518}
519
520/* Currently used in suspend/resume path to resume cpuidle */
521void cpuidle_resume(void)
522{
523	mutex_lock(&cpuidle_lock);
524	cpuidle_install_idle_handler();
525	mutex_unlock(&cpuidle_lock);
526}
527
528/**
529 * cpuidle_enable_device - enables idle PM for a CPU
530 * @dev: the CPU
531 *
532 * This function must be called between cpuidle_pause_and_lock and
533 * cpuidle_resume_and_unlock when used externally.
534 */
535int cpuidle_enable_device(struct cpuidle_device *dev)
536{
537	int ret;
538	struct cpuidle_driver *drv;
539
540	if (!dev)
541		return -EINVAL;
542
543	if (dev->enabled)
544		return 0;
545
546	if (!cpuidle_curr_governor)
547		return -EIO;
548
549	drv = cpuidle_get_cpu_driver(dev);
550
551	if (!drv)
552		return -EIO;
553
554	if (!dev->registered)
555		return -EINVAL;
556
557	ret = cpuidle_add_device_sysfs(dev);
558	if (ret)
559		return ret;
560
561	if (cpuidle_curr_governor->enable) {
562		ret = cpuidle_curr_governor->enable(drv, dev);
563		if (ret)
564			goto fail_sysfs;
565	}
566
567	smp_wmb();
568
569	dev->enabled = 1;
570
571	enabled_devices++;
572	return 0;
573
574fail_sysfs:
575	cpuidle_remove_device_sysfs(dev);
576
577	return ret;
578}
579
580EXPORT_SYMBOL_GPL(cpuidle_enable_device);
581
582/**
583 * cpuidle_disable_device - disables idle PM for a CPU
584 * @dev: the CPU
585 *
586 * This function must be called between cpuidle_pause_and_lock and
587 * cpuidle_resume_and_unlock when used externally.
588 */
589void cpuidle_disable_device(struct cpuidle_device *dev)
590{
591	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
592
593	if (!dev || !dev->enabled)
594		return;
595
596	if (!drv || !cpuidle_curr_governor)
597		return;
598
599	dev->enabled = 0;
600
601	if (cpuidle_curr_governor->disable)
602		cpuidle_curr_governor->disable(drv, dev);
603
604	cpuidle_remove_device_sysfs(dev);
605	enabled_devices--;
606}
607
608EXPORT_SYMBOL_GPL(cpuidle_disable_device);
609
610static void __cpuidle_unregister_device(struct cpuidle_device *dev)
611{
612	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
613
614	list_del(&dev->device_list);
615	per_cpu(cpuidle_devices, dev->cpu) = NULL;
616	module_put(drv->owner);
617
618	dev->registered = 0;
619}
620
621static void __cpuidle_device_init(struct cpuidle_device *dev)
622{
623	memset(dev->states_usage, 0, sizeof(dev->states_usage));
624	dev->last_residency_ns = 0;
625	dev->next_hrtimer = 0;
626}
627
628/**
629 * __cpuidle_register_device - internal register function called before register
630 * and enable routines
631 * @dev: the cpu
632 *
633 * cpuidle_lock mutex must be held before this is called
634 */
635static int __cpuidle_register_device(struct cpuidle_device *dev)
636{
637	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
638	int i, ret;
639
640	if (!try_module_get(drv->owner))
641		return -EINVAL;
642
643	for (i = 0; i < drv->state_count; i++) {
644		if (drv->states[i].flags & CPUIDLE_FLAG_UNUSABLE)
645			dev->states_usage[i].disable |= CPUIDLE_STATE_DISABLED_BY_DRIVER;
646
647		if (drv->states[i].flags & CPUIDLE_FLAG_OFF)
648			dev->states_usage[i].disable |= CPUIDLE_STATE_DISABLED_BY_USER;
649	}
650
651	per_cpu(cpuidle_devices, dev->cpu) = dev;
652	list_add(&dev->device_list, &cpuidle_detected_devices);
653
654	ret = cpuidle_coupled_register_device(dev);
655	if (ret)
656		__cpuidle_unregister_device(dev);
657	else
658		dev->registered = 1;
659
660	return ret;
661}
662
663/**
664 * cpuidle_register_device - registers a CPU's idle PM feature
665 * @dev: the cpu
666 */
667int cpuidle_register_device(struct cpuidle_device *dev)
668{
669	int ret = -EBUSY;
670
671	if (!dev)
672		return -EINVAL;
673
674	mutex_lock(&cpuidle_lock);
675
676	if (dev->registered)
677		goto out_unlock;
678
679	__cpuidle_device_init(dev);
680
681	ret = __cpuidle_register_device(dev);
682	if (ret)
683		goto out_unlock;
684
685	ret = cpuidle_add_sysfs(dev);
686	if (ret)
687		goto out_unregister;
688
689	ret = cpuidle_enable_device(dev);
690	if (ret)
691		goto out_sysfs;
692
693	cpuidle_install_idle_handler();
694
695out_unlock:
696	mutex_unlock(&cpuidle_lock);
697
698	return ret;
699
700out_sysfs:
701	cpuidle_remove_sysfs(dev);
702out_unregister:
703	__cpuidle_unregister_device(dev);
704	goto out_unlock;
705}
706
707EXPORT_SYMBOL_GPL(cpuidle_register_device);
708
709/**
710 * cpuidle_unregister_device - unregisters a CPU's idle PM feature
711 * @dev: the cpu
712 */
713void cpuidle_unregister_device(struct cpuidle_device *dev)
714{
715	if (!dev || dev->registered == 0)
716		return;
717
718	cpuidle_pause_and_lock();
719
720	cpuidle_disable_device(dev);
721
722	cpuidle_remove_sysfs(dev);
723
724	__cpuidle_unregister_device(dev);
725
726	cpuidle_coupled_unregister_device(dev);
727
728	cpuidle_resume_and_unlock();
729}
730
731EXPORT_SYMBOL_GPL(cpuidle_unregister_device);
732
733/**
734 * cpuidle_unregister: unregister a driver and the devices. This function
735 * can be used only if the driver has been previously registered through
736 * the cpuidle_register function.
737 *
738 * @drv: a valid pointer to a struct cpuidle_driver
739 */
740void cpuidle_unregister(struct cpuidle_driver *drv)
741{
742	int cpu;
743	struct cpuidle_device *device;
744
745	for_each_cpu(cpu, drv->cpumask) {
746		device = &per_cpu(cpuidle_dev, cpu);
747		cpuidle_unregister_device(device);
748	}
749
750	cpuidle_unregister_driver(drv);
751}
752EXPORT_SYMBOL_GPL(cpuidle_unregister);
753
754/**
755 * cpuidle_register: registers the driver and the cpu devices with the
756 * coupled_cpus passed as parameter. This function is used for all common
757 * initialization pattern there are in the arch specific drivers. The
758 * devices is globally defined in this file.
759 *
760 * @drv         : a valid pointer to a struct cpuidle_driver
761 * @coupled_cpus: a cpumask for the coupled states
762 *
763 * Returns 0 on success, < 0 otherwise
764 */
765int cpuidle_register(struct cpuidle_driver *drv,
766		     const struct cpumask *const coupled_cpus)
767{
768	int ret, cpu;
769	struct cpuidle_device *device;
770
771	ret = cpuidle_register_driver(drv);
772	if (ret) {
773		pr_err("failed to register cpuidle driver\n");
774		return ret;
775	}
776
777	for_each_cpu(cpu, drv->cpumask) {
778		device = &per_cpu(cpuidle_dev, cpu);
779		device->cpu = cpu;
780
781#ifdef CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED
782		/*
783		 * On multiplatform for ARM, the coupled idle states could be
784		 * enabled in the kernel even if the cpuidle driver does not
785		 * use it. Note, coupled_cpus is a struct copy.
786		 */
787		if (coupled_cpus)
788			device->coupled_cpus = *coupled_cpus;
789#endif
790		ret = cpuidle_register_device(device);
791		if (!ret)
792			continue;
793
794		pr_err("Failed to register cpuidle device for cpu%d\n", cpu);
795
796		cpuidle_unregister(drv);
797		break;
798	}
799
800	return ret;
801}
802EXPORT_SYMBOL_GPL(cpuidle_register);
803
804/**
805 * cpuidle_init - core initializer
806 */
807static int __init cpuidle_init(void)
808{
809	if (cpuidle_disabled())
810		return -ENODEV;
811
812	return cpuidle_add_interface();
813}
814
815module_param(off, int, 0444);
816module_param_string(governor, param_governor, CPUIDLE_NAME_LEN, 0444);
817core_initcall(cpuidle_init);