Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/usb.h>
  12#include <linux/overflow.h>
  13#include <linux/pci.h>
  14#include <linux/slab.h>
  15#include <linux/dmapool.h>
  16#include <linux/dma-mapping.h>
  17
  18#include "xhci.h"
  19#include "xhci-trace.h"
  20#include "xhci-debugfs.h"
  21
  22/*
  23 * Allocates a generic ring segment from the ring pool, sets the dma address,
  24 * initializes the segment to zero, and sets the private next pointer to NULL.
  25 *
  26 * Section 4.11.1.1:
  27 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  28 */
  29static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  30					       unsigned int cycle_state,
  31					       unsigned int max_packet,
  32					       unsigned int num,
  33					       gfp_t flags)
  34{
  35	struct xhci_segment *seg;
  36	dma_addr_t	dma;
  37	int		i;
  38	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
  39
  40	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
  41	if (!seg)
  42		return NULL;
  43
  44	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  45	if (!seg->trbs) {
  46		kfree(seg);
  47		return NULL;
  48	}
  49
  50	if (max_packet) {
  51		seg->bounce_buf = kzalloc_node(max_packet, flags,
  52					dev_to_node(dev));
  53		if (!seg->bounce_buf) {
  54			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  55			kfree(seg);
  56			return NULL;
  57		}
  58	}
  59	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  60	if (cycle_state == 0) {
  61		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  62			seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
  63	}
  64	seg->num = num;
  65	seg->dma = dma;
  66	seg->next = NULL;
  67
  68	return seg;
  69}
  70
  71static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  72{
  73	if (seg->trbs) {
  74		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  75		seg->trbs = NULL;
  76	}
  77	kfree(seg->bounce_buf);
  78	kfree(seg);
  79}
  80
  81static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  82				struct xhci_segment *first)
  83{
  84	struct xhci_segment *seg;
  85
  86	seg = first->next;
  87	while (seg != first) {
  88		struct xhci_segment *next = seg->next;
  89		xhci_segment_free(xhci, seg);
  90		seg = next;
  91	}
  92	xhci_segment_free(xhci, first);
  93}
  94
  95/*
  96 * Make the prev segment point to the next segment.
  97 *
  98 * Change the last TRB in the prev segment to be a Link TRB which points to the
  99 * DMA address of the next segment.  The caller needs to set any Link TRB
 100 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 101 */
 102static void xhci_link_segments(struct xhci_segment *prev,
 103			       struct xhci_segment *next,
 104			       enum xhci_ring_type type, bool chain_links)
 105{
 106	u32 val;
 107
 108	if (!prev || !next)
 109		return;
 110	prev->next = next;
 111	if (type != TYPE_EVENT) {
 112		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 113			cpu_to_le64(next->dma);
 114
 115		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 116		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 117		val &= ~TRB_TYPE_BITMASK;
 118		val |= TRB_TYPE(TRB_LINK);
 119		if (chain_links)
 120			val |= TRB_CHAIN;
 121		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 122	}
 123}
 124
 125/*
 126 * Link the ring to the new segments.
 127 * Set Toggle Cycle for the new ring if needed.
 128 */
 129static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 130		struct xhci_segment *first, struct xhci_segment *last,
 131		unsigned int num_segs)
 132{
 133	struct xhci_segment *next, *seg;
 134	bool chain_links;
 135
 136	if (!ring || !first || !last)
 137		return;
 138
 139	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 140	chain_links = !!(xhci_link_trb_quirk(xhci) ||
 141			 (ring->type == TYPE_ISOC &&
 142			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
 143
 144	next = ring->enq_seg->next;
 145	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
 146	xhci_link_segments(last, next, ring->type, chain_links);
 147	ring->num_segs += num_segs;
 
 148
 149	if (ring->enq_seg == ring->last_seg) {
 150		if (ring->type != TYPE_EVENT) {
 151			ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 152				&= ~cpu_to_le32(LINK_TOGGLE);
 153			last->trbs[TRBS_PER_SEGMENT-1].link.control
 154				|= cpu_to_le32(LINK_TOGGLE);
 155		}
 156		ring->last_seg = last;
 157	}
 158
 159	for (seg = last; seg != ring->last_seg; seg = seg->next)
 160		seg->next->num = seg->num + 1;
 161}
 162
 163/*
 164 * We need a radix tree for mapping physical addresses of TRBs to which stream
 165 * ID they belong to.  We need to do this because the host controller won't tell
 166 * us which stream ring the TRB came from.  We could store the stream ID in an
 167 * event data TRB, but that doesn't help us for the cancellation case, since the
 168 * endpoint may stop before it reaches that event data TRB.
 169 *
 170 * The radix tree maps the upper portion of the TRB DMA address to a ring
 171 * segment that has the same upper portion of DMA addresses.  For example, say I
 172 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 173 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 174 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 175 * pass the radix tree a key to get the right stream ID:
 176 *
 177 *	0x10c90fff >> 10 = 0x43243
 178 *	0x10c912c0 >> 10 = 0x43244
 179 *	0x10c91400 >> 10 = 0x43245
 180 *
 181 * Obviously, only those TRBs with DMA addresses that are within the segment
 182 * will make the radix tree return the stream ID for that ring.
 183 *
 184 * Caveats for the radix tree:
 185 *
 186 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 187 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 188 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 189 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 190 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 191 * extended systems (where the DMA address can be bigger than 32-bits),
 192 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 193 */
 194static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 195		struct xhci_ring *ring,
 196		struct xhci_segment *seg,
 197		gfp_t mem_flags)
 198{
 199	unsigned long key;
 200	int ret;
 201
 202	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 203	/* Skip any segments that were already added. */
 204	if (radix_tree_lookup(trb_address_map, key))
 205		return 0;
 206
 207	ret = radix_tree_maybe_preload(mem_flags);
 208	if (ret)
 209		return ret;
 210	ret = radix_tree_insert(trb_address_map,
 211			key, ring);
 212	radix_tree_preload_end();
 213	return ret;
 214}
 215
 216static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 217		struct xhci_segment *seg)
 218{
 219	unsigned long key;
 220
 221	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 222	if (radix_tree_lookup(trb_address_map, key))
 223		radix_tree_delete(trb_address_map, key);
 224}
 225
 226static int xhci_update_stream_segment_mapping(
 227		struct radix_tree_root *trb_address_map,
 228		struct xhci_ring *ring,
 229		struct xhci_segment *first_seg,
 230		struct xhci_segment *last_seg,
 231		gfp_t mem_flags)
 232{
 233	struct xhci_segment *seg;
 234	struct xhci_segment *failed_seg;
 235	int ret;
 236
 237	if (WARN_ON_ONCE(trb_address_map == NULL))
 238		return 0;
 239
 240	seg = first_seg;
 241	do {
 242		ret = xhci_insert_segment_mapping(trb_address_map,
 243				ring, seg, mem_flags);
 244		if (ret)
 245			goto remove_streams;
 246		if (seg == last_seg)
 247			return 0;
 248		seg = seg->next;
 249	} while (seg != first_seg);
 250
 251	return 0;
 252
 253remove_streams:
 254	failed_seg = seg;
 255	seg = first_seg;
 256	do {
 257		xhci_remove_segment_mapping(trb_address_map, seg);
 258		if (seg == failed_seg)
 259			return ret;
 260		seg = seg->next;
 261	} while (seg != first_seg);
 262
 263	return ret;
 264}
 265
 266static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 267{
 268	struct xhci_segment *seg;
 269
 270	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 271		return;
 272
 273	seg = ring->first_seg;
 274	do {
 275		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 276		seg = seg->next;
 277	} while (seg != ring->first_seg);
 278}
 279
 280static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 281{
 282	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 283			ring->first_seg, ring->last_seg, mem_flags);
 284}
 285
 286/* XXX: Do we need the hcd structure in all these functions? */
 287void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 288{
 289	if (!ring)
 290		return;
 291
 292	trace_xhci_ring_free(ring);
 293
 294	if (ring->first_seg) {
 295		if (ring->type == TYPE_STREAM)
 296			xhci_remove_stream_mapping(ring);
 297		xhci_free_segments_for_ring(xhci, ring->first_seg);
 298	}
 299
 300	kfree(ring);
 301}
 302
 303void xhci_initialize_ring_info(struct xhci_ring *ring,
 304			       unsigned int cycle_state)
 305{
 306	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 307	ring->enqueue = ring->first_seg->trbs;
 308	ring->enq_seg = ring->first_seg;
 309	ring->dequeue = ring->enqueue;
 310	ring->deq_seg = ring->first_seg;
 311	/* The ring is initialized to 0. The producer must write 1 to the cycle
 312	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 313	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 314	 *
 315	 * New rings are initialized with cycle state equal to 1; if we are
 316	 * handling ring expansion, set the cycle state equal to the old ring.
 317	 */
 318	ring->cycle_state = cycle_state;
 319
 320	/*
 321	 * Each segment has a link TRB, and leave an extra TRB for SW
 322	 * accounting purpose
 323	 */
 324	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 325}
 326EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
 327
 328/* Allocate segments and link them for a ring */
 329static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 330		struct xhci_segment **first, struct xhci_segment **last,
 331		unsigned int num_segs, unsigned int num,
 332		unsigned int cycle_state, enum xhci_ring_type type,
 333		unsigned int max_packet, gfp_t flags)
 334{
 335	struct xhci_segment *prev;
 336	bool chain_links;
 337
 338	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 339	chain_links = !!(xhci_link_trb_quirk(xhci) ||
 340			 (type == TYPE_ISOC &&
 341			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
 342
 343	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags);
 344	if (!prev)
 345		return -ENOMEM;
 346	num++;
 347
 348	*first = prev;
 349	while (num < num_segs) {
 350		struct xhci_segment	*next;
 351
 352		next = xhci_segment_alloc(xhci, cycle_state, max_packet, num,
 353					  flags);
 354		if (!next) {
 355			prev = *first;
 356			while (prev) {
 357				next = prev->next;
 358				xhci_segment_free(xhci, prev);
 359				prev = next;
 360			}
 361			return -ENOMEM;
 362		}
 363		xhci_link_segments(prev, next, type, chain_links);
 364
 365		prev = next;
 366		num++;
 367	}
 368	xhci_link_segments(prev, *first, type, chain_links);
 369	*last = prev;
 370
 371	return 0;
 372}
 373
 374/*
 375 * Create a new ring with zero or more segments.
 376 *
 377 * Link each segment together into a ring.
 378 * Set the end flag and the cycle toggle bit on the last segment.
 379 * See section 4.9.1 and figures 15 and 16.
 380 */
 381struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 382		unsigned int num_segs, unsigned int cycle_state,
 383		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 384{
 385	struct xhci_ring	*ring;
 386	int ret;
 387	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 388
 389	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
 390	if (!ring)
 391		return NULL;
 392
 393	ring->num_segs = num_segs;
 394	ring->bounce_buf_len = max_packet;
 395	INIT_LIST_HEAD(&ring->td_list);
 396	ring->type = type;
 397	if (num_segs == 0)
 398		return ring;
 399
 400	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 401			&ring->last_seg, num_segs, 0, cycle_state, type,
 402			max_packet, flags);
 403	if (ret)
 404		goto fail;
 405
 406	/* Only event ring does not use link TRB */
 407	if (type != TYPE_EVENT) {
 408		/* See section 4.9.2.1 and 6.4.4.1 */
 409		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 410			cpu_to_le32(LINK_TOGGLE);
 411	}
 412	xhci_initialize_ring_info(ring, cycle_state);
 413	trace_xhci_ring_alloc(ring);
 414	return ring;
 415
 416fail:
 417	kfree(ring);
 418	return NULL;
 419}
 420
 421void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
 422		struct xhci_virt_device *virt_dev,
 423		unsigned int ep_index)
 424{
 425	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 426	virt_dev->eps[ep_index].ring = NULL;
 427}
 428
 429/*
 430 * Expand an existing ring.
 431 * Allocate a new ring which has same segment numbers and link the two rings.
 432 */
 433int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 434				unsigned int num_new_segs, gfp_t flags)
 435{
 436	struct xhci_segment	*first;
 437	struct xhci_segment	*last;
 
 
 438	int			ret;
 439
 
 
 
 
 
 
 
 440	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 441			num_new_segs, ring->enq_seg->num + 1,
 442			ring->cycle_state, ring->type,
 443			ring->bounce_buf_len, flags);
 444	if (ret)
 445		return -ENOMEM;
 446
 447	if (ring->type == TYPE_STREAM)
 448		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 449						ring, first, last, flags);
 450	if (ret) {
 451		struct xhci_segment *next;
 452		do {
 453			next = first->next;
 454			xhci_segment_free(xhci, first);
 455			if (first == last)
 456				break;
 457			first = next;
 458		} while (true);
 459		return ret;
 460	}
 461
 462	xhci_link_rings(xhci, ring, first, last, num_new_segs);
 463	trace_xhci_ring_expansion(ring);
 464	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 465			"ring expansion succeed, now has %d segments",
 466			ring->num_segs);
 467
 468	return 0;
 469}
 470
 471struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 472						    int type, gfp_t flags)
 473{
 474	struct xhci_container_ctx *ctx;
 475	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 476
 477	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 478		return NULL;
 479
 480	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
 481	if (!ctx)
 482		return NULL;
 483
 484	ctx->type = type;
 485	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 486	if (type == XHCI_CTX_TYPE_INPUT)
 487		ctx->size += CTX_SIZE(xhci->hcc_params);
 488
 489	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 490	if (!ctx->bytes) {
 491		kfree(ctx);
 492		return NULL;
 493	}
 494	return ctx;
 495}
 496
 497void xhci_free_container_ctx(struct xhci_hcd *xhci,
 498			     struct xhci_container_ctx *ctx)
 499{
 500	if (!ctx)
 501		return;
 502	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 503	kfree(ctx);
 504}
 505
 506struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 507					      struct xhci_container_ctx *ctx)
 508{
 509	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 510		return NULL;
 511
 512	return (struct xhci_input_control_ctx *)ctx->bytes;
 513}
 514
 515struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 516					struct xhci_container_ctx *ctx)
 517{
 518	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 519		return (struct xhci_slot_ctx *)ctx->bytes;
 520
 521	return (struct xhci_slot_ctx *)
 522		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 523}
 524
 525struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 526				    struct xhci_container_ctx *ctx,
 527				    unsigned int ep_index)
 528{
 529	/* increment ep index by offset of start of ep ctx array */
 530	ep_index++;
 531	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 532		ep_index++;
 533
 534	return (struct xhci_ep_ctx *)
 535		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 536}
 537EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
 538
 539/***************** Streams structures manipulation *************************/
 540
 541static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 542		unsigned int num_stream_ctxs,
 543		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 544{
 545	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 546	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 547
 548	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 549		dma_free_coherent(dev, size, stream_ctx, dma);
 550	else if (size > SMALL_STREAM_ARRAY_SIZE)
 551		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
 
 
 552	else
 553		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
 
 554}
 555
 556/*
 557 * The stream context array for each endpoint with bulk streams enabled can
 558 * vary in size, based on:
 559 *  - how many streams the endpoint supports,
 560 *  - the maximum primary stream array size the host controller supports,
 561 *  - and how many streams the device driver asks for.
 562 *
 563 * The stream context array must be a power of 2, and can be as small as
 564 * 64 bytes or as large as 1MB.
 565 */
 566static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 567		unsigned int num_stream_ctxs, dma_addr_t *dma,
 568		gfp_t mem_flags)
 569{
 570	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 571	size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
 572
 573	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 574		return dma_alloc_coherent(dev, size, dma, mem_flags);
 575	if (size > SMALL_STREAM_ARRAY_SIZE)
 576		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
 
 
 577	else
 578		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
 
 579}
 580
 581struct xhci_ring *xhci_dma_to_transfer_ring(
 582		struct xhci_virt_ep *ep,
 583		u64 address)
 584{
 585	if (ep->ep_state & EP_HAS_STREAMS)
 586		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 587				address >> TRB_SEGMENT_SHIFT);
 588	return ep->ring;
 589}
 590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591/*
 592 * Change an endpoint's internal structure so it supports stream IDs.  The
 593 * number of requested streams includes stream 0, which cannot be used by device
 594 * drivers.
 595 *
 596 * The number of stream contexts in the stream context array may be bigger than
 597 * the number of streams the driver wants to use.  This is because the number of
 598 * stream context array entries must be a power of two.
 599 */
 600struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 601		unsigned int num_stream_ctxs,
 602		unsigned int num_streams,
 603		unsigned int max_packet, gfp_t mem_flags)
 604{
 605	struct xhci_stream_info *stream_info;
 606	u32 cur_stream;
 607	struct xhci_ring *cur_ring;
 608	u64 addr;
 609	int ret;
 610	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 611
 612	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
 
 613			num_streams, num_stream_ctxs);
 614	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 615		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 616		return NULL;
 617	}
 618	xhci->cmd_ring_reserved_trbs++;
 619
 620	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
 621			dev_to_node(dev));
 622	if (!stream_info)
 623		goto cleanup_trbs;
 624
 625	stream_info->num_streams = num_streams;
 626	stream_info->num_stream_ctxs = num_stream_ctxs;
 627
 628	/* Initialize the array of virtual pointers to stream rings. */
 629	stream_info->stream_rings = kcalloc_node(
 630			num_streams, sizeof(struct xhci_ring *), mem_flags,
 631			dev_to_node(dev));
 632	if (!stream_info->stream_rings)
 633		goto cleanup_info;
 634
 635	/* Initialize the array of DMA addresses for stream rings for the HW. */
 636	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 637			num_stream_ctxs, &stream_info->ctx_array_dma,
 638			mem_flags);
 639	if (!stream_info->stream_ctx_array)
 640		goto cleanup_ring_array;
 
 
 641
 642	/* Allocate everything needed to free the stream rings later */
 643	stream_info->free_streams_command =
 644		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
 645	if (!stream_info->free_streams_command)
 646		goto cleanup_ctx;
 647
 648	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 649
 650	/* Allocate rings for all the streams that the driver will use,
 651	 * and add their segment DMA addresses to the radix tree.
 652	 * Stream 0 is reserved.
 653	 */
 654
 655	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 656		stream_info->stream_rings[cur_stream] =
 657			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
 658					mem_flags);
 659		cur_ring = stream_info->stream_rings[cur_stream];
 660		if (!cur_ring)
 661			goto cleanup_rings;
 662		cur_ring->stream_id = cur_stream;
 663		cur_ring->trb_address_map = &stream_info->trb_address_map;
 664		/* Set deq ptr, cycle bit, and stream context type */
 665		addr = cur_ring->first_seg->dma |
 666			SCT_FOR_CTX(SCT_PRI_TR) |
 667			cur_ring->cycle_state;
 668		stream_info->stream_ctx_array[cur_stream].stream_ring =
 669			cpu_to_le64(addr);
 670		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
 
 671
 672		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 673		if (ret) {
 674			xhci_ring_free(xhci, cur_ring);
 675			stream_info->stream_rings[cur_stream] = NULL;
 676			goto cleanup_rings;
 677		}
 678	}
 679	/* Leave the other unused stream ring pointers in the stream context
 680	 * array initialized to zero.  This will cause the xHC to give us an
 681	 * error if the device asks for a stream ID we don't have setup (if it
 682	 * was any other way, the host controller would assume the ring is
 683	 * "empty" and wait forever for data to be queued to that stream ID).
 684	 */
 685
 686	return stream_info;
 687
 688cleanup_rings:
 689	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 690		cur_ring = stream_info->stream_rings[cur_stream];
 691		if (cur_ring) {
 692			xhci_ring_free(xhci, cur_ring);
 693			stream_info->stream_rings[cur_stream] = NULL;
 694		}
 695	}
 696	xhci_free_command(xhci, stream_info->free_streams_command);
 697cleanup_ctx:
 698	xhci_free_stream_ctx(xhci,
 699		stream_info->num_stream_ctxs,
 700		stream_info->stream_ctx_array,
 701		stream_info->ctx_array_dma);
 702cleanup_ring_array:
 703	kfree(stream_info->stream_rings);
 704cleanup_info:
 705	kfree(stream_info);
 706cleanup_trbs:
 707	xhci->cmd_ring_reserved_trbs--;
 708	return NULL;
 709}
 710/*
 711 * Sets the MaxPStreams field and the Linear Stream Array field.
 712 * Sets the dequeue pointer to the stream context array.
 713 */
 714void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 715		struct xhci_ep_ctx *ep_ctx,
 716		struct xhci_stream_info *stream_info)
 717{
 718	u32 max_primary_streams;
 719	/* MaxPStreams is the number of stream context array entries, not the
 720	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 721	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 722	 */
 723	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 724	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 725			"Setting number of stream ctx array entries to %u",
 726			1 << (max_primary_streams + 1));
 727	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 728	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 729				       | EP_HAS_LSA);
 730	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 731}
 732
 733/*
 734 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 735 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 736 * not at the beginning of the ring).
 737 */
 738void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 739		struct xhci_virt_ep *ep)
 740{
 741	dma_addr_t addr;
 742	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 743	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 744	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 745}
 746
 747/* Frees all stream contexts associated with the endpoint,
 748 *
 749 * Caller should fix the endpoint context streams fields.
 750 */
 751void xhci_free_stream_info(struct xhci_hcd *xhci,
 752		struct xhci_stream_info *stream_info)
 753{
 754	int cur_stream;
 755	struct xhci_ring *cur_ring;
 756
 757	if (!stream_info)
 758		return;
 759
 760	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 761			cur_stream++) {
 762		cur_ring = stream_info->stream_rings[cur_stream];
 763		if (cur_ring) {
 764			xhci_ring_free(xhci, cur_ring);
 765			stream_info->stream_rings[cur_stream] = NULL;
 766		}
 767	}
 768	xhci_free_command(xhci, stream_info->free_streams_command);
 769	xhci->cmd_ring_reserved_trbs--;
 770	if (stream_info->stream_ctx_array)
 771		xhci_free_stream_ctx(xhci,
 772				stream_info->num_stream_ctxs,
 773				stream_info->stream_ctx_array,
 774				stream_info->ctx_array_dma);
 775
 776	kfree(stream_info->stream_rings);
 777	kfree(stream_info);
 778}
 779
 780
 781/***************** Device context manipulation *************************/
 782
 
 
 
 
 
 
 
 
 783static void xhci_free_tt_info(struct xhci_hcd *xhci,
 784		struct xhci_virt_device *virt_dev,
 785		int slot_id)
 786{
 787	struct list_head *tt_list_head;
 788	struct xhci_tt_bw_info *tt_info, *next;
 789	bool slot_found = false;
 790
 791	/* If the device never made it past the Set Address stage,
 792	 * it may not have the real_port set correctly.
 793	 */
 794	if (virt_dev->real_port == 0 ||
 795			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 796		xhci_dbg(xhci, "Bad real port.\n");
 797		return;
 798	}
 799
 800	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 801	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 802		/* Multi-TT hubs will have more than one entry */
 803		if (tt_info->slot_id == slot_id) {
 804			slot_found = true;
 805			list_del(&tt_info->tt_list);
 806			kfree(tt_info);
 807		} else if (slot_found) {
 808			break;
 809		}
 810	}
 811}
 812
 813int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 814		struct xhci_virt_device *virt_dev,
 815		struct usb_device *hdev,
 816		struct usb_tt *tt, gfp_t mem_flags)
 817{
 818	struct xhci_tt_bw_info		*tt_info;
 819	unsigned int			num_ports;
 820	int				i, j;
 821	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 822
 823	if (!tt->multi)
 824		num_ports = 1;
 825	else
 826		num_ports = hdev->maxchild;
 827
 828	for (i = 0; i < num_ports; i++, tt_info++) {
 829		struct xhci_interval_bw_table *bw_table;
 830
 831		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
 832				dev_to_node(dev));
 833		if (!tt_info)
 834			goto free_tts;
 835		INIT_LIST_HEAD(&tt_info->tt_list);
 836		list_add(&tt_info->tt_list,
 837				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 838		tt_info->slot_id = virt_dev->udev->slot_id;
 839		if (tt->multi)
 840			tt_info->ttport = i+1;
 841		bw_table = &tt_info->bw_table;
 842		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 843			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 844	}
 845	return 0;
 846
 847free_tts:
 848	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 849	return -ENOMEM;
 850}
 851
 852
 853/* All the xhci_tds in the ring's TD list should be freed at this point.
 854 * Should be called with xhci->lock held if there is any chance the TT lists
 855 * will be manipulated by the configure endpoint, allocate device, or update
 856 * hub functions while this function is removing the TT entries from the list.
 857 */
 858void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 859{
 860	struct xhci_virt_device *dev;
 861	int i;
 862	int old_active_eps = 0;
 863
 864	/* Slot ID 0 is reserved */
 865	if (slot_id == 0 || !xhci->devs[slot_id])
 866		return;
 867
 868	dev = xhci->devs[slot_id];
 869
 870	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 871	if (!dev)
 872		return;
 873
 874	trace_xhci_free_virt_device(dev);
 875
 876	if (dev->tt_info)
 877		old_active_eps = dev->tt_info->active_eps;
 878
 879	for (i = 0; i < 31; i++) {
 880		if (dev->eps[i].ring)
 881			xhci_ring_free(xhci, dev->eps[i].ring);
 882		if (dev->eps[i].stream_info)
 883			xhci_free_stream_info(xhci,
 884					dev->eps[i].stream_info);
 885		/*
 886		 * Endpoints are normally deleted from the bandwidth list when
 887		 * endpoints are dropped, before device is freed.
 888		 * If host is dying or being removed then endpoints aren't
 889		 * dropped cleanly, so delete the endpoint from list here.
 890		 * Only applicable for hosts with software bandwidth checking.
 891		 */
 892
 893		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
 894			list_del_init(&dev->eps[i].bw_endpoint_list);
 895			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
 896				 slot_id, i);
 897		}
 898	}
 899	/* If this is a hub, free the TT(s) from the TT list */
 900	xhci_free_tt_info(xhci, dev, slot_id);
 901	/* If necessary, update the number of active TTs on this root port */
 902	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 903
 904	if (dev->in_ctx)
 905		xhci_free_container_ctx(xhci, dev->in_ctx);
 906	if (dev->out_ctx)
 907		xhci_free_container_ctx(xhci, dev->out_ctx);
 908
 909	if (dev->udev && dev->udev->slot_id)
 910		dev->udev->slot_id = 0;
 911	kfree(xhci->devs[slot_id]);
 912	xhci->devs[slot_id] = NULL;
 913}
 914
 915/*
 916 * Free a virt_device structure.
 917 * If the virt_device added a tt_info (a hub) and has children pointing to
 918 * that tt_info, then free the child first. Recursive.
 919 * We can't rely on udev at this point to find child-parent relationships.
 920 */
 921static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 922{
 923	struct xhci_virt_device *vdev;
 924	struct list_head *tt_list_head;
 925	struct xhci_tt_bw_info *tt_info, *next;
 926	int i;
 927
 928	vdev = xhci->devs[slot_id];
 929	if (!vdev)
 930		return;
 931
 932	if (vdev->real_port == 0 ||
 933			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 934		xhci_dbg(xhci, "Bad vdev->real_port.\n");
 935		goto out;
 936	}
 937
 938	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
 939	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 940		/* is this a hub device that added a tt_info to the tts list */
 941		if (tt_info->slot_id == slot_id) {
 942			/* are any devices using this tt_info? */
 943			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
 944				vdev = xhci->devs[i];
 945				if (vdev && (vdev->tt_info == tt_info))
 946					xhci_free_virt_devices_depth_first(
 947						xhci, i);
 948			}
 949		}
 950	}
 951out:
 952	/* we are now at a leaf device */
 953	xhci_debugfs_remove_slot(xhci, slot_id);
 954	xhci_free_virt_device(xhci, slot_id);
 955}
 956
 957int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 958		struct usb_device *udev, gfp_t flags)
 959{
 960	struct xhci_virt_device *dev;
 961	int i;
 962
 963	/* Slot ID 0 is reserved */
 964	if (slot_id == 0 || xhci->devs[slot_id]) {
 965		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 966		return 0;
 967	}
 968
 969	dev = kzalloc(sizeof(*dev), flags);
 970	if (!dev)
 971		return 0;
 972
 973	dev->slot_id = slot_id;
 974
 975	/* Allocate the (output) device context that will be used in the HC. */
 976	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 977	if (!dev->out_ctx)
 978		goto fail;
 979
 980	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
 
 981
 982	/* Allocate the (input) device context for address device command */
 983	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 984	if (!dev->in_ctx)
 985		goto fail;
 986
 987	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
 
 988
 989	/* Initialize the cancellation and bandwidth list for each ep */
 990	for (i = 0; i < 31; i++) {
 991		dev->eps[i].ep_index = i;
 992		dev->eps[i].vdev = dev;
 993		dev->eps[i].xhci = xhci;
 994		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
 995		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
 996	}
 997
 998	/* Allocate endpoint 0 ring */
 999	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1000	if (!dev->eps[0].ring)
1001		goto fail;
1002
1003	dev->udev = udev;
1004
1005	/* Point to output device context in dcbaa. */
1006	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1007	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1008		 slot_id,
1009		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1010		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1011
1012	trace_xhci_alloc_virt_device(dev);
1013
1014	xhci->devs[slot_id] = dev;
1015
1016	return 1;
1017fail:
1018
1019	if (dev->in_ctx)
1020		xhci_free_container_ctx(xhci, dev->in_ctx);
1021	if (dev->out_ctx)
1022		xhci_free_container_ctx(xhci, dev->out_ctx);
1023	kfree(dev);
1024
1025	return 0;
1026}
1027
1028void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1029		struct usb_device *udev)
1030{
1031	struct xhci_virt_device *virt_dev;
1032	struct xhci_ep_ctx	*ep0_ctx;
1033	struct xhci_ring	*ep_ring;
1034
1035	virt_dev = xhci->devs[udev->slot_id];
1036	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1037	ep_ring = virt_dev->eps[0].ring;
1038	/*
1039	 * FIXME we don't keep track of the dequeue pointer very well after a
1040	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1041	 * host to our enqueue pointer.  This should only be called after a
1042	 * configured device has reset, so all control transfers should have
1043	 * been completed or cancelled before the reset.
1044	 */
1045	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1046							ep_ring->enqueue)
1047				   | ep_ring->cycle_state);
1048}
1049
1050/*
1051 * The xHCI roothub may have ports of differing speeds in any order in the port
1052 * status registers.
1053 *
1054 * The xHCI hardware wants to know the roothub port number that the USB device
1055 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1056 * know is the index of that port under either the USB 2.0 or the USB 3.0
1057 * roothub, but that doesn't give us the real index into the HW port status
1058 * registers. Call xhci_find_raw_port_number() to get real index.
1059 */
1060static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1061		struct usb_device *udev)
1062{
1063	struct usb_device *top_dev;
1064	struct usb_hcd *hcd;
1065
1066	if (udev->speed >= USB_SPEED_SUPER)
1067		hcd = xhci_get_usb3_hcd(xhci);
1068	else
1069		hcd = xhci->main_hcd;
1070
1071	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1072			top_dev = top_dev->parent)
1073		/* Found device below root hub */;
1074
1075	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1076}
1077
1078/* Setup an xHCI virtual device for a Set Address command */
1079int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1080{
1081	struct xhci_virt_device *dev;
1082	struct xhci_ep_ctx	*ep0_ctx;
1083	struct xhci_slot_ctx    *slot_ctx;
1084	u32			port_num;
1085	u32			max_packets;
1086	struct usb_device *top_dev;
1087
1088	dev = xhci->devs[udev->slot_id];
1089	/* Slot ID 0 is reserved */
1090	if (udev->slot_id == 0 || !dev) {
1091		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1092				udev->slot_id);
1093		return -EINVAL;
1094	}
1095	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1096	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1097
1098	/* 3) Only the control endpoint is valid - one endpoint context */
1099	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1100	switch (udev->speed) {
1101	case USB_SPEED_SUPER_PLUS:
1102		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1103		max_packets = MAX_PACKET(512);
1104		break;
1105	case USB_SPEED_SUPER:
1106		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1107		max_packets = MAX_PACKET(512);
1108		break;
1109	case USB_SPEED_HIGH:
1110		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1111		max_packets = MAX_PACKET(64);
1112		break;
1113	/* USB core guesses at a 64-byte max packet first for FS devices */
1114	case USB_SPEED_FULL:
1115		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1116		max_packets = MAX_PACKET(64);
1117		break;
1118	case USB_SPEED_LOW:
1119		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1120		max_packets = MAX_PACKET(8);
1121		break;
 
 
 
 
1122	default:
1123		/* Speed was set earlier, this shouldn't happen. */
1124		return -EINVAL;
1125	}
1126	/* Find the root hub port this device is under */
1127	port_num = xhci_find_real_port_number(xhci, udev);
1128	if (!port_num)
1129		return -EINVAL;
1130	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1131	/* Set the port number in the virtual_device to the faked port number */
1132	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1133			top_dev = top_dev->parent)
1134		/* Found device below root hub */;
1135	dev->fake_port = top_dev->portnum;
1136	dev->real_port = port_num;
1137	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1138	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1139
1140	/* Find the right bandwidth table that this device will be a part of.
1141	 * If this is a full speed device attached directly to a root port (or a
1142	 * decendent of one), it counts as a primary bandwidth domain, not a
1143	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1144	 * will never be created for the HS root hub.
1145	 */
1146	if (!udev->tt || !udev->tt->hub->parent) {
1147		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1148	} else {
1149		struct xhci_root_port_bw_info *rh_bw;
1150		struct xhci_tt_bw_info *tt_bw;
1151
1152		rh_bw = &xhci->rh_bw[port_num - 1];
1153		/* Find the right TT. */
1154		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1155			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1156				continue;
1157
1158			if (!dev->udev->tt->multi ||
1159					(udev->tt->multi &&
1160					 tt_bw->ttport == dev->udev->ttport)) {
1161				dev->bw_table = &tt_bw->bw_table;
1162				dev->tt_info = tt_bw;
1163				break;
1164			}
1165		}
1166		if (!dev->tt_info)
1167			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1168	}
1169
1170	/* Is this a LS/FS device under an external HS hub? */
1171	if (udev->tt && udev->tt->hub->parent) {
1172		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1173						(udev->ttport << 8));
1174		if (udev->tt->multi)
1175			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1176	}
1177	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1178	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1179
1180	/* Step 4 - ring already allocated */
1181	/* Step 5 */
1182	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1183
1184	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1185	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1186					 max_packets);
1187
1188	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1189				   dev->eps[0].ring->cycle_state);
1190
1191	trace_xhci_setup_addressable_virt_device(dev);
1192
1193	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1194
1195	return 0;
1196}
1197
1198/*
1199 * Convert interval expressed as 2^(bInterval - 1) == interval into
1200 * straight exponent value 2^n == interval.
1201 *
1202 */
1203static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1204		struct usb_host_endpoint *ep)
1205{
1206	unsigned int interval;
1207
1208	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1209	if (interval != ep->desc.bInterval - 1)
1210		dev_warn(&udev->dev,
1211			 "ep %#x - rounding interval to %d %sframes\n",
1212			 ep->desc.bEndpointAddress,
1213			 1 << interval,
1214			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1215
1216	if (udev->speed == USB_SPEED_FULL) {
1217		/*
1218		 * Full speed isoc endpoints specify interval in frames,
1219		 * not microframes. We are using microframes everywhere,
1220		 * so adjust accordingly.
1221		 */
1222		interval += 3;	/* 1 frame = 2^3 uframes */
1223	}
1224
1225	return interval;
1226}
1227
1228/*
1229 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1230 * microframes, rounded down to nearest power of 2.
1231 */
1232static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1233		struct usb_host_endpoint *ep, unsigned int desc_interval,
1234		unsigned int min_exponent, unsigned int max_exponent)
1235{
1236	unsigned int interval;
1237
1238	interval = fls(desc_interval) - 1;
1239	interval = clamp_val(interval, min_exponent, max_exponent);
1240	if ((1 << interval) != desc_interval)
1241		dev_dbg(&udev->dev,
1242			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1243			 ep->desc.bEndpointAddress,
1244			 1 << interval,
1245			 desc_interval);
1246
1247	return interval;
1248}
1249
1250static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1251		struct usb_host_endpoint *ep)
1252{
1253	if (ep->desc.bInterval == 0)
1254		return 0;
1255	return xhci_microframes_to_exponent(udev, ep,
1256			ep->desc.bInterval, 0, 15);
1257}
1258
1259
1260static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1261		struct usb_host_endpoint *ep)
1262{
1263	return xhci_microframes_to_exponent(udev, ep,
1264			ep->desc.bInterval * 8, 3, 10);
1265}
1266
1267/* Return the polling or NAK interval.
1268 *
1269 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1270 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1271 *
1272 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1273 * is set to 0.
1274 */
1275static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1276		struct usb_host_endpoint *ep)
1277{
1278	unsigned int interval = 0;
1279
1280	switch (udev->speed) {
1281	case USB_SPEED_HIGH:
1282		/* Max NAK rate */
1283		if (usb_endpoint_xfer_control(&ep->desc) ||
1284		    usb_endpoint_xfer_bulk(&ep->desc)) {
1285			interval = xhci_parse_microframe_interval(udev, ep);
1286			break;
1287		}
1288		fallthrough;	/* SS and HS isoc/int have same decoding */
1289
1290	case USB_SPEED_SUPER_PLUS:
1291	case USB_SPEED_SUPER:
1292		if (usb_endpoint_xfer_int(&ep->desc) ||
1293		    usb_endpoint_xfer_isoc(&ep->desc)) {
1294			interval = xhci_parse_exponent_interval(udev, ep);
1295		}
1296		break;
1297
1298	case USB_SPEED_FULL:
1299		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1300			interval = xhci_parse_exponent_interval(udev, ep);
1301			break;
1302		}
1303		/*
1304		 * Fall through for interrupt endpoint interval decoding
1305		 * since it uses the same rules as low speed interrupt
1306		 * endpoints.
1307		 */
1308		fallthrough;
1309
1310	case USB_SPEED_LOW:
1311		if (usb_endpoint_xfer_int(&ep->desc) ||
1312		    usb_endpoint_xfer_isoc(&ep->desc)) {
1313
1314			interval = xhci_parse_frame_interval(udev, ep);
1315		}
1316		break;
1317
1318	default:
1319		BUG();
1320	}
1321	return interval;
1322}
1323
1324/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1325 * High speed endpoint descriptors can define "the number of additional
1326 * transaction opportunities per microframe", but that goes in the Max Burst
1327 * endpoint context field.
1328 */
1329static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1330		struct usb_host_endpoint *ep)
1331{
1332	if (udev->speed < USB_SPEED_SUPER ||
1333			!usb_endpoint_xfer_isoc(&ep->desc))
1334		return 0;
1335	return ep->ss_ep_comp.bmAttributes;
1336}
1337
1338static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1339				       struct usb_host_endpoint *ep)
1340{
1341	/* Super speed and Plus have max burst in ep companion desc */
1342	if (udev->speed >= USB_SPEED_SUPER)
1343		return ep->ss_ep_comp.bMaxBurst;
1344
1345	if (udev->speed == USB_SPEED_HIGH &&
1346	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1347	     usb_endpoint_xfer_int(&ep->desc)))
1348		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1349
1350	return 0;
1351}
1352
1353static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1354{
1355	int in;
1356
1357	in = usb_endpoint_dir_in(&ep->desc);
1358
1359	switch (usb_endpoint_type(&ep->desc)) {
1360	case USB_ENDPOINT_XFER_CONTROL:
1361		return CTRL_EP;
1362	case USB_ENDPOINT_XFER_BULK:
1363		return in ? BULK_IN_EP : BULK_OUT_EP;
1364	case USB_ENDPOINT_XFER_ISOC:
1365		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1366	case USB_ENDPOINT_XFER_INT:
1367		return in ? INT_IN_EP : INT_OUT_EP;
1368	}
1369	return 0;
1370}
1371
1372/* Return the maximum endpoint service interval time (ESIT) payload.
1373 * Basically, this is the maxpacket size, multiplied by the burst size
1374 * and mult size.
1375 */
1376static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1377		struct usb_host_endpoint *ep)
1378{
1379	int max_burst;
1380	int max_packet;
1381
1382	/* Only applies for interrupt or isochronous endpoints */
1383	if (usb_endpoint_xfer_control(&ep->desc) ||
1384			usb_endpoint_xfer_bulk(&ep->desc))
1385		return 0;
1386
1387	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1388	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1389	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1390		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1391
1392	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1393	if (udev->speed >= USB_SPEED_SUPER)
1394		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1395
1396	max_packet = usb_endpoint_maxp(&ep->desc);
1397	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1398	/* A 0 in max burst means 1 transfer per ESIT */
1399	return max_packet * max_burst;
1400}
1401
1402/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1403 * Drivers will have to call usb_alloc_streams() to do that.
1404 */
1405int xhci_endpoint_init(struct xhci_hcd *xhci,
1406		struct xhci_virt_device *virt_dev,
1407		struct usb_device *udev,
1408		struct usb_host_endpoint *ep,
1409		gfp_t mem_flags)
1410{
1411	unsigned int ep_index;
1412	struct xhci_ep_ctx *ep_ctx;
1413	struct xhci_ring *ep_ring;
1414	unsigned int max_packet;
1415	enum xhci_ring_type ring_type;
1416	u32 max_esit_payload;
1417	u32 endpoint_type;
1418	unsigned int max_burst;
1419	unsigned int interval;
1420	unsigned int mult;
1421	unsigned int avg_trb_len;
1422	unsigned int err_count = 0;
1423
1424	ep_index = xhci_get_endpoint_index(&ep->desc);
1425	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1426
1427	endpoint_type = xhci_get_endpoint_type(ep);
1428	if (!endpoint_type)
1429		return -EINVAL;
1430
1431	ring_type = usb_endpoint_type(&ep->desc);
1432
1433	/*
1434	 * Get values to fill the endpoint context, mostly from ep descriptor.
1435	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1436	 * have no clue on scatter gather list entry size. For Isoc and Int,
1437	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1438	 */
1439	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1440	interval = xhci_get_endpoint_interval(udev, ep);
1441
1442	/* Periodic endpoint bInterval limit quirk */
1443	if (usb_endpoint_xfer_int(&ep->desc) ||
1444	    usb_endpoint_xfer_isoc(&ep->desc)) {
1445		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1446		    udev->speed >= USB_SPEED_HIGH &&
1447		    interval >= 7) {
1448			interval = 6;
1449		}
1450	}
1451
1452	mult = xhci_get_endpoint_mult(udev, ep);
1453	max_packet = usb_endpoint_maxp(&ep->desc);
1454	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1455	avg_trb_len = max_esit_payload;
1456
1457	/* FIXME dig Mult and streams info out of ep companion desc */
1458
1459	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1460	if (!usb_endpoint_xfer_isoc(&ep->desc))
1461		err_count = 3;
1462	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1463	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1464		if (udev->speed == USB_SPEED_HIGH)
1465			max_packet = 512;
1466		if (udev->speed == USB_SPEED_FULL) {
1467			max_packet = rounddown_pow_of_two(max_packet);
1468			max_packet = clamp_val(max_packet, 8, 64);
1469		}
1470	}
1471	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1472	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1473		avg_trb_len = 8;
1474	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1475	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1476		mult = 0;
1477
1478	/* Set up the endpoint ring */
1479	virt_dev->eps[ep_index].new_ring =
1480		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1481	if (!virt_dev->eps[ep_index].new_ring)
1482		return -ENOMEM;
1483
1484	virt_dev->eps[ep_index].skip = false;
1485	ep_ring = virt_dev->eps[ep_index].new_ring;
1486
1487	/* Fill the endpoint context */
1488	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1489				      EP_INTERVAL(interval) |
1490				      EP_MULT(mult));
1491	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1492				       MAX_PACKET(max_packet) |
1493				       MAX_BURST(max_burst) |
1494				       ERROR_COUNT(err_count));
1495	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1496				  ep_ring->cycle_state);
1497
1498	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1499				      EP_AVG_TRB_LENGTH(avg_trb_len));
1500
1501	return 0;
1502}
1503
1504void xhci_endpoint_zero(struct xhci_hcd *xhci,
1505		struct xhci_virt_device *virt_dev,
1506		struct usb_host_endpoint *ep)
1507{
1508	unsigned int ep_index;
1509	struct xhci_ep_ctx *ep_ctx;
1510
1511	ep_index = xhci_get_endpoint_index(&ep->desc);
1512	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1513
1514	ep_ctx->ep_info = 0;
1515	ep_ctx->ep_info2 = 0;
1516	ep_ctx->deq = 0;
1517	ep_ctx->tx_info = 0;
1518	/* Don't free the endpoint ring until the set interface or configuration
1519	 * request succeeds.
1520	 */
1521}
1522
1523void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1524{
1525	bw_info->ep_interval = 0;
1526	bw_info->mult = 0;
1527	bw_info->num_packets = 0;
1528	bw_info->max_packet_size = 0;
1529	bw_info->type = 0;
1530	bw_info->max_esit_payload = 0;
1531}
1532
1533void xhci_update_bw_info(struct xhci_hcd *xhci,
1534		struct xhci_container_ctx *in_ctx,
1535		struct xhci_input_control_ctx *ctrl_ctx,
1536		struct xhci_virt_device *virt_dev)
1537{
1538	struct xhci_bw_info *bw_info;
1539	struct xhci_ep_ctx *ep_ctx;
1540	unsigned int ep_type;
1541	int i;
1542
1543	for (i = 1; i < 31; i++) {
1544		bw_info = &virt_dev->eps[i].bw_info;
1545
1546		/* We can't tell what endpoint type is being dropped, but
1547		 * unconditionally clearing the bandwidth info for non-periodic
1548		 * endpoints should be harmless because the info will never be
1549		 * set in the first place.
1550		 */
1551		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1552			/* Dropped endpoint */
1553			xhci_clear_endpoint_bw_info(bw_info);
1554			continue;
1555		}
1556
1557		if (EP_IS_ADDED(ctrl_ctx, i)) {
1558			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1559			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1560
1561			/* Ignore non-periodic endpoints */
1562			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1563					ep_type != ISOC_IN_EP &&
1564					ep_type != INT_IN_EP)
1565				continue;
1566
1567			/* Added or changed endpoint */
1568			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1569					le32_to_cpu(ep_ctx->ep_info));
1570			/* Number of packets and mult are zero-based in the
1571			 * input context, but we want one-based for the
1572			 * interval table.
1573			 */
1574			bw_info->mult = CTX_TO_EP_MULT(
1575					le32_to_cpu(ep_ctx->ep_info)) + 1;
1576			bw_info->num_packets = CTX_TO_MAX_BURST(
1577					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1578			bw_info->max_packet_size = MAX_PACKET_DECODED(
1579					le32_to_cpu(ep_ctx->ep_info2));
1580			bw_info->type = ep_type;
1581			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1582					le32_to_cpu(ep_ctx->tx_info));
1583		}
1584	}
1585}
1586
1587/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1588 * Useful when you want to change one particular aspect of the endpoint and then
1589 * issue a configure endpoint command.
1590 */
1591void xhci_endpoint_copy(struct xhci_hcd *xhci,
1592		struct xhci_container_ctx *in_ctx,
1593		struct xhci_container_ctx *out_ctx,
1594		unsigned int ep_index)
1595{
1596	struct xhci_ep_ctx *out_ep_ctx;
1597	struct xhci_ep_ctx *in_ep_ctx;
1598
1599	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1600	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1601
1602	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1603	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1604	in_ep_ctx->deq = out_ep_ctx->deq;
1605	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1606	if (xhci->quirks & XHCI_MTK_HOST) {
1607		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1608		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1609	}
1610}
1611
1612/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1613 * Useful when you want to change one particular aspect of the endpoint and then
1614 * issue a configure endpoint command.  Only the context entries field matters,
1615 * but we'll copy the whole thing anyway.
1616 */
1617void xhci_slot_copy(struct xhci_hcd *xhci,
1618		struct xhci_container_ctx *in_ctx,
1619		struct xhci_container_ctx *out_ctx)
1620{
1621	struct xhci_slot_ctx *in_slot_ctx;
1622	struct xhci_slot_ctx *out_slot_ctx;
1623
1624	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1625	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1626
1627	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1628	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1629	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1630	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1631}
1632
1633/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1634static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1635{
1636	int i;
1637	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1638	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1639
1640	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1641			"Allocating %d scratchpad buffers", num_sp);
1642
1643	if (!num_sp)
1644		return 0;
1645
1646	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1647				dev_to_node(dev));
1648	if (!xhci->scratchpad)
1649		goto fail_sp;
1650
1651	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1652				     size_mul(sizeof(u64), num_sp),
1653				     &xhci->scratchpad->sp_dma, flags);
1654	if (!xhci->scratchpad->sp_array)
1655		goto fail_sp2;
1656
1657	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1658					flags, dev_to_node(dev));
1659	if (!xhci->scratchpad->sp_buffers)
1660		goto fail_sp3;
1661
1662	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1663	for (i = 0; i < num_sp; i++) {
1664		dma_addr_t dma;
1665		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1666					       flags);
1667		if (!buf)
1668			goto fail_sp4;
1669
1670		xhci->scratchpad->sp_array[i] = dma;
1671		xhci->scratchpad->sp_buffers[i] = buf;
1672	}
1673
1674	return 0;
1675
1676 fail_sp4:
1677	while (i--)
1678		dma_free_coherent(dev, xhci->page_size,
1679				    xhci->scratchpad->sp_buffers[i],
1680				    xhci->scratchpad->sp_array[i]);
 
1681
1682	kfree(xhci->scratchpad->sp_buffers);
1683
1684 fail_sp3:
1685	dma_free_coherent(dev, num_sp * sizeof(u64),
1686			    xhci->scratchpad->sp_array,
1687			    xhci->scratchpad->sp_dma);
1688
1689 fail_sp2:
1690	kfree(xhci->scratchpad);
1691	xhci->scratchpad = NULL;
1692
1693 fail_sp:
1694	return -ENOMEM;
1695}
1696
1697static void scratchpad_free(struct xhci_hcd *xhci)
1698{
1699	int num_sp;
1700	int i;
1701	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1702
1703	if (!xhci->scratchpad)
1704		return;
1705
1706	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1707
1708	for (i = 0; i < num_sp; i++) {
1709		dma_free_coherent(dev, xhci->page_size,
1710				    xhci->scratchpad->sp_buffers[i],
1711				    xhci->scratchpad->sp_array[i]);
1712	}
1713	kfree(xhci->scratchpad->sp_buffers);
1714	dma_free_coherent(dev, num_sp * sizeof(u64),
1715			    xhci->scratchpad->sp_array,
1716			    xhci->scratchpad->sp_dma);
1717	kfree(xhci->scratchpad);
1718	xhci->scratchpad = NULL;
1719}
1720
1721struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1722		bool allocate_completion, gfp_t mem_flags)
1723{
1724	struct xhci_command *command;
1725	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1726
1727	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1728	if (!command)
1729		return NULL;
1730
1731	if (allocate_completion) {
1732		command->completion =
1733			kzalloc_node(sizeof(struct completion), mem_flags,
1734				dev_to_node(dev));
1735		if (!command->completion) {
1736			kfree(command);
1737			return NULL;
1738		}
1739		init_completion(command->completion);
1740	}
1741
1742	command->status = 0;
1743	/* set default timeout to 5000 ms */
1744	command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1745	INIT_LIST_HEAD(&command->cmd_list);
1746	return command;
1747}
1748
1749struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1750		bool allocate_completion, gfp_t mem_flags)
1751{
1752	struct xhci_command *command;
1753
1754	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1755	if (!command)
1756		return NULL;
1757
1758	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1759						   mem_flags);
1760	if (!command->in_ctx) {
1761		kfree(command->completion);
1762		kfree(command);
1763		return NULL;
1764	}
1765	return command;
1766}
1767
1768void xhci_urb_free_priv(struct urb_priv *urb_priv)
1769{
1770	kfree(urb_priv);
1771}
1772
1773void xhci_free_command(struct xhci_hcd *xhci,
1774		struct xhci_command *command)
1775{
1776	xhci_free_container_ctx(xhci,
1777			command->in_ctx);
1778	kfree(command->completion);
1779	kfree(command);
1780}
1781
1782static int xhci_alloc_erst(struct xhci_hcd *xhci,
1783		    struct xhci_ring *evt_ring,
1784		    struct xhci_erst *erst,
1785		    gfp_t flags)
1786{
1787	size_t size;
1788	unsigned int val;
1789	struct xhci_segment *seg;
1790	struct xhci_erst_entry *entry;
1791
1792	size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1793	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1794					   size, &erst->erst_dma_addr, flags);
1795	if (!erst->entries)
1796		return -ENOMEM;
1797
1798	erst->num_entries = evt_ring->num_segs;
1799
1800	seg = evt_ring->first_seg;
1801	for (val = 0; val < evt_ring->num_segs; val++) {
1802		entry = &erst->entries[val];
1803		entry->seg_addr = cpu_to_le64(seg->dma);
1804		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1805		entry->rsvd = 0;
1806		seg = seg->next;
1807	}
1808
1809	return 0;
1810}
1811
1812static void
1813xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1814{
1815	u32 tmp;
1816
1817	if (!ir)
1818		return;
1819
1820	/*
1821	 * Clean out interrupter registers except ERSTBA. Clearing either the
1822	 * low or high 32 bits of ERSTBA immediately causes the controller to
1823	 * dereference the partially cleared 64 bit address, causing IOMMU error.
1824	 */
1825	if (ir->ir_set) {
1826		tmp = readl(&ir->ir_set->erst_size);
1827		tmp &= ERST_SIZE_MASK;
1828		writel(tmp, &ir->ir_set->erst_size);
1829
1830		xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue);
1831	}
1832}
1833
1834static void
1835xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1836{
 
1837	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1838	size_t erst_size;
1839
1840	if (!ir)
1841		return;
1842
1843	erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries;
1844	if (ir->erst.entries)
1845		dma_free_coherent(dev, erst_size,
1846				  ir->erst.entries,
1847				  ir->erst.erst_dma_addr);
1848	ir->erst.entries = NULL;
1849
1850	/* free interrupter event ring */
1851	if (ir->event_ring)
1852		xhci_ring_free(xhci, ir->event_ring);
1853
1854	ir->event_ring = NULL;
1855
1856	kfree(ir);
 
 
 
 
 
1857}
1858
1859void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1860{
1861	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1862	unsigned int intr_num;
1863
1864	spin_lock_irq(&xhci->lock);
1865
1866	/* interrupter 0 is primary interrupter, don't touch it */
1867	if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1868		xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1869		spin_unlock_irq(&xhci->lock);
1870		return;
1871	}
1872
1873	intr_num = ir->intr_num;
1874
1875	xhci_remove_interrupter(xhci, ir);
1876	xhci->interrupters[intr_num] = NULL;
1877
1878	spin_unlock_irq(&xhci->lock);
1879
1880	xhci_free_interrupter(xhci, ir);
1881}
1882EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1883
1884void xhci_mem_cleanup(struct xhci_hcd *xhci)
1885{
1886	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1887	int i, j, num_ports;
1888
1889	cancel_delayed_work_sync(&xhci->cmd_timer);
1890
1891	for (i = 0; i < xhci->max_interrupters; i++) {
1892		if (xhci->interrupters[i]) {
1893			xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1894			xhci_free_interrupter(xhci, xhci->interrupters[i]);
1895			xhci->interrupters[i] = NULL;
1896		}
1897	}
1898	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1899
 
 
 
 
 
 
 
 
1900	if (xhci->cmd_ring)
1901		xhci_ring_free(xhci, xhci->cmd_ring);
1902	xhci->cmd_ring = NULL;
1903	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1904	xhci_cleanup_command_queue(xhci);
1905
1906	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1907	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1908		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1909		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1910			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1911			while (!list_empty(ep))
1912				list_del_init(ep->next);
1913		}
1914	}
1915
1916	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1917		xhci_free_virt_devices_depth_first(xhci, i);
1918
1919	dma_pool_destroy(xhci->segment_pool);
1920	xhci->segment_pool = NULL;
1921	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1922
1923	dma_pool_destroy(xhci->device_pool);
1924	xhci->device_pool = NULL;
1925	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1926
1927	dma_pool_destroy(xhci->small_streams_pool);
1928	xhci->small_streams_pool = NULL;
1929	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1930			"Freed small stream array pool");
1931
1932	dma_pool_destroy(xhci->medium_streams_pool);
1933	xhci->medium_streams_pool = NULL;
1934	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1935			"Freed medium stream array pool");
1936
1937	if (xhci->dcbaa)
1938		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1939				xhci->dcbaa, xhci->dcbaa->dma);
1940	xhci->dcbaa = NULL;
1941
1942	scratchpad_free(xhci);
1943
1944	if (!xhci->rh_bw)
1945		goto no_bw;
1946
1947	for (i = 0; i < num_ports; i++) {
1948		struct xhci_tt_bw_info *tt, *n;
1949		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1950			list_del(&tt->tt_list);
1951			kfree(tt);
1952		}
1953	}
1954
1955no_bw:
1956	xhci->cmd_ring_reserved_trbs = 0;
1957	xhci->usb2_rhub.num_ports = 0;
1958	xhci->usb3_rhub.num_ports = 0;
1959	xhci->num_active_eps = 0;
1960	kfree(xhci->usb2_rhub.ports);
1961	kfree(xhci->usb3_rhub.ports);
1962	kfree(xhci->hw_ports);
1963	kfree(xhci->rh_bw);
1964	kfree(xhci->ext_caps);
1965	for (i = 0; i < xhci->num_port_caps; i++)
1966		kfree(xhci->port_caps[i].psi);
1967	kfree(xhci->port_caps);
1968	kfree(xhci->interrupters);
1969	xhci->num_port_caps = 0;
1970
1971	xhci->usb2_rhub.ports = NULL;
1972	xhci->usb3_rhub.ports = NULL;
1973	xhci->hw_ports = NULL;
1974	xhci->rh_bw = NULL;
1975	xhci->ext_caps = NULL;
1976	xhci->port_caps = NULL;
1977	xhci->interrupters = NULL;
1978
1979	xhci->page_size = 0;
1980	xhci->page_shift = 0;
1981	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1982	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1983}
1984
1985static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1986{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987	dma_addr_t deq;
1988
1989	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1990			ir->event_ring->dequeue);
1991	if (!deq)
1992		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
 
1993	/* Update HC event ring dequeue pointer */
 
 
1994	/* Don't clear the EHB bit (which is RW1C) because
1995	 * there might be more events to service.
1996	 */
 
1997	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1998		       "// Write event ring dequeue pointer, preserving EHB bit");
1999	xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
 
 
2000}
2001
2002static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2003		__le32 __iomem *addr, int max_caps)
2004{
2005	u32 temp, port_offset, port_count;
2006	int i;
2007	u8 major_revision, minor_revision, tmp_minor_revision;
2008	struct xhci_hub *rhub;
2009	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2010	struct xhci_port_cap *port_cap;
2011
2012	temp = readl(addr);
2013	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2014	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2015
2016	if (major_revision == 0x03) {
2017		rhub = &xhci->usb3_rhub;
2018		/*
2019		 * Some hosts incorrectly use sub-minor version for minor
2020		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2021		 * for bcdUSB 0x310). Since there is no USB release with sub
2022		 * minor version 0x301 to 0x309, we can assume that they are
2023		 * incorrect and fix it here.
2024		 */
2025		if (minor_revision > 0x00 && minor_revision < 0x10)
2026			minor_revision <<= 4;
2027		/*
2028		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2029		 * but only support Gen1.
2030		 */
2031		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2032			tmp_minor_revision = minor_revision;
2033			minor_revision = 0;
2034		}
2035
2036	} else if (major_revision <= 0x02) {
2037		rhub = &xhci->usb2_rhub;
2038	} else {
2039		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
 
2040				addr, major_revision);
2041		/* Ignoring port protocol we can't understand. FIXME */
2042		return;
2043	}
 
 
 
 
2044
2045	/* Port offset and count in the third dword, see section 7.2 */
2046	temp = readl(addr + 2);
2047	port_offset = XHCI_EXT_PORT_OFF(temp);
2048	port_count = XHCI_EXT_PORT_COUNT(temp);
2049	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2050		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2051		       addr, port_offset, port_count, major_revision);
 
2052	/* Port count includes the current port offset */
2053	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2054		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2055		return;
2056
2057	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2058	if (xhci->num_port_caps > max_caps)
2059		return;
2060
 
 
2061	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2062
2063	if (port_cap->psi_count) {
2064		port_cap->psi = kcalloc_node(port_cap->psi_count,
2065					     sizeof(*port_cap->psi),
2066					     GFP_KERNEL, dev_to_node(dev));
2067		if (!port_cap->psi)
2068			port_cap->psi_count = 0;
2069
2070		port_cap->psi_uid_count++;
2071		for (i = 0; i < port_cap->psi_count; i++) {
2072			port_cap->psi[i] = readl(addr + 4 + i);
2073
2074			/* count unique ID values, two consecutive entries can
2075			 * have the same ID if link is assymetric
2076			 */
2077			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2078				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2079				port_cap->psi_uid_count++;
2080
2081			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2082			    major_revision == 0x03 &&
2083			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2084				minor_revision = tmp_minor_revision;
2085
2086			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2087				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2088				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2089				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2090				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2091				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2092				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2093		}
2094	}
2095
2096	rhub->maj_rev = major_revision;
2097
2098	if (rhub->min_rev < minor_revision)
2099		rhub->min_rev = minor_revision;
2100
2101	port_cap->maj_rev = major_revision;
2102	port_cap->min_rev = minor_revision;
2103
2104	/* cache usb2 port capabilities */
2105	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2106		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2107
2108	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2109		 (temp & XHCI_HLC)) {
2110		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2111			       "xHCI 1.0: support USB2 hardware lpm");
2112		xhci->hw_lpm_support = 1;
2113	}
2114
2115	port_offset--;
2116	for (i = port_offset; i < (port_offset + port_count); i++) {
2117		struct xhci_port *hw_port = &xhci->hw_ports[i];
2118		/* Duplicate entry.  Ignore the port if the revisions differ. */
2119		if (hw_port->rhub) {
2120			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2121			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
 
 
2122					hw_port->rhub->maj_rev, major_revision);
2123			/* Only adjust the roothub port counts if we haven't
2124			 * found a similar duplicate.
2125			 */
2126			if (hw_port->rhub != rhub &&
2127				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2128				hw_port->rhub->num_ports--;
2129				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2130			}
2131			continue;
2132		}
2133		hw_port->rhub = rhub;
2134		hw_port->port_cap = port_cap;
2135		rhub->num_ports++;
2136	}
2137	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2138}
2139
2140static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2141					struct xhci_hub *rhub, gfp_t flags)
2142{
2143	int port_index = 0;
2144	int i;
2145	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2146
2147	if (!rhub->num_ports)
2148		return;
2149	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2150			flags, dev_to_node(dev));
2151	if (!rhub->ports)
2152		return;
2153
2154	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2155		if (xhci->hw_ports[i].rhub != rhub ||
2156		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2157			continue;
2158		xhci->hw_ports[i].hcd_portnum = port_index;
2159		rhub->ports[port_index] = &xhci->hw_ports[i];
2160		port_index++;
2161		if (port_index == rhub->num_ports)
2162			break;
2163	}
2164}
2165
2166/*
2167 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2168 * specify what speeds each port is supposed to be.  We can't count on the port
2169 * speed bits in the PORTSC register being correct until a device is connected,
2170 * but we need to set up the two fake roothubs with the correct number of USB
2171 * 3.0 and USB 2.0 ports at host controller initialization time.
2172 */
2173static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2174{
2175	void __iomem *base;
2176	u32 offset;
2177	unsigned int num_ports;
2178	int i, j;
2179	int cap_count = 0;
2180	u32 cap_start;
2181	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2182
2183	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2184	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2185				flags, dev_to_node(dev));
2186	if (!xhci->hw_ports)
2187		return -ENOMEM;
2188
2189	for (i = 0; i < num_ports; i++) {
2190		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2191			NUM_PORT_REGS * i;
2192		xhci->hw_ports[i].hw_portnum = i;
2193
2194		init_completion(&xhci->hw_ports[i].rexit_done);
2195		init_completion(&xhci->hw_ports[i].u3exit_done);
2196	}
2197
2198	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2199				   dev_to_node(dev));
2200	if (!xhci->rh_bw)
2201		return -ENOMEM;
2202	for (i = 0; i < num_ports; i++) {
2203		struct xhci_interval_bw_table *bw_table;
2204
2205		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2206		bw_table = &xhci->rh_bw[i].bw_table;
2207		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2208			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2209	}
2210	base = &xhci->cap_regs->hc_capbase;
2211
2212	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2213	if (!cap_start) {
2214		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2215		return -ENODEV;
2216	}
2217
2218	offset = cap_start;
2219	/* count extended protocol capability entries for later caching */
2220	while (offset) {
2221		cap_count++;
2222		offset = xhci_find_next_ext_cap(base, offset,
2223						      XHCI_EXT_CAPS_PROTOCOL);
2224	}
2225
2226	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2227				flags, dev_to_node(dev));
2228	if (!xhci->ext_caps)
2229		return -ENOMEM;
2230
2231	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2232				flags, dev_to_node(dev));
2233	if (!xhci->port_caps)
2234		return -ENOMEM;
2235
2236	offset = cap_start;
2237
2238	while (offset) {
2239		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2240		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2241		    num_ports)
2242			break;
2243		offset = xhci_find_next_ext_cap(base, offset,
2244						XHCI_EXT_CAPS_PROTOCOL);
2245	}
2246	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2247		xhci_warn(xhci, "No ports on the roothubs?\n");
2248		return -ENODEV;
2249	}
2250	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2251		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2252		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2253
2254	/* Place limits on the number of roothub ports so that the hub
2255	 * descriptors aren't longer than the USB core will allocate.
2256	 */
2257	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2258		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2259				"Limiting USB 3.0 roothub ports to %u.",
2260				USB_SS_MAXPORTS);
2261		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2262	}
2263	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2264		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2265				"Limiting USB 2.0 roothub ports to %u.",
2266				USB_MAXCHILDREN);
2267		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2268	}
2269
2270	if (!xhci->usb2_rhub.num_ports)
2271		xhci_info(xhci, "USB2 root hub has no ports\n");
2272
2273	if (!xhci->usb3_rhub.num_ports)
2274		xhci_info(xhci, "USB3 root hub has no ports\n");
2275
2276	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2277	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2278
2279	return 0;
2280}
2281
2282static struct xhci_interrupter *
2283xhci_alloc_interrupter(struct xhci_hcd *xhci, int segs, gfp_t flags)
2284{
2285	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2286	struct xhci_interrupter *ir;
2287	unsigned int num_segs = segs;
2288	int ret;
2289
2290	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2291	if (!ir)
2292		return NULL;
2293
2294	/* number of ring segments should be greater than 0 */
2295	if (segs <= 0)
2296		num_segs = min_t(unsigned int, 1 << HCS_ERST_MAX(xhci->hcs_params2),
2297			 ERST_MAX_SEGS);
2298
2299	ir->event_ring = xhci_ring_alloc(xhci, num_segs, 1, TYPE_EVENT, 0,
2300					 flags);
2301	if (!ir->event_ring) {
2302		xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2303		kfree(ir);
2304		return NULL;
2305	}
2306
2307	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2308	if (ret) {
2309		xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2310		xhci_ring_free(xhci, ir->event_ring);
2311		kfree(ir);
2312		return NULL;
2313	}
2314
2315	return ir;
2316}
2317
2318static int
2319xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2320		     unsigned int intr_num)
2321{
2322	u64 erst_base;
2323	u32 erst_size;
2324
2325	if (intr_num >= xhci->max_interrupters) {
2326		xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2327			  intr_num, xhci->max_interrupters);
2328		return -EINVAL;
2329	}
2330
2331	if (xhci->interrupters[intr_num]) {
2332		xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2333		return -EINVAL;
2334	}
2335
2336	xhci->interrupters[intr_num] = ir;
2337	ir->intr_num = intr_num;
2338	ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2339
2340	/* set ERST count with the number of entries in the segment table */
2341	erst_size = readl(&ir->ir_set->erst_size);
2342	erst_size &= ERST_SIZE_MASK;
2343	erst_size |= ir->event_ring->num_segs;
2344	writel(erst_size, &ir->ir_set->erst_size);
2345
2346	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2347	erst_base &= ERST_BASE_RSVDP;
2348	erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2349	xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2350
2351	/* Set the event ring dequeue address of this interrupter */
2352	xhci_set_hc_event_deq(xhci, ir);
2353
2354	return 0;
2355}
2356
2357struct xhci_interrupter *
2358xhci_create_secondary_interrupter(struct usb_hcd *hcd, int num_seg)
2359{
2360	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2361	struct xhci_interrupter *ir;
2362	unsigned int i;
2363	int err = -ENOSPC;
2364
2365	if (!xhci->interrupters || xhci->max_interrupters <= 1)
2366		return NULL;
2367
2368	ir = xhci_alloc_interrupter(xhci, num_seg, GFP_KERNEL);
2369	if (!ir)
2370		return NULL;
2371
2372	spin_lock_irq(&xhci->lock);
2373
2374	/* Find available secondary interrupter, interrupter 0 is reserved for primary */
2375	for (i = 1; i < xhci->max_interrupters; i++) {
2376		if (xhci->interrupters[i] == NULL) {
2377			err = xhci_add_interrupter(xhci, ir, i);
2378			break;
2379		}
2380	}
2381
2382	spin_unlock_irq(&xhci->lock);
2383
2384	if (err) {
2385		xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2386			  xhci->max_interrupters);
2387		xhci_free_interrupter(xhci, ir);
2388		return NULL;
2389	}
2390
2391	xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2392		 i, xhci->max_interrupters);
2393
2394	return ir;
2395}
2396EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2397
2398int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2399{
2400	struct xhci_interrupter *ir;
2401	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2402	dma_addr_t	dma;
 
2403	unsigned int	val, val2;
2404	u64		val_64;
2405	u32		page_size, temp;
2406	int		i;
2407
2408	INIT_LIST_HEAD(&xhci->cmd_list);
2409
2410	/* init command timeout work */
2411	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2412	init_completion(&xhci->cmd_ring_stop_completion);
2413
2414	page_size = readl(&xhci->op_regs->page_size);
2415	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416			"Supported page size register = 0x%x", page_size);
2417	i = ffs(page_size);
 
 
 
 
2418	if (i < 16)
2419		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420			"Supported page size of %iK", (1 << (i+12)) / 1024);
2421	else
2422		xhci_warn(xhci, "WARN: no supported page size\n");
2423	/* Use 4K pages, since that's common and the minimum the HC supports */
2424	xhci->page_shift = 12;
2425	xhci->page_size = 1 << xhci->page_shift;
2426	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2427			"HCD page size set to %iK", xhci->page_size / 1024);
2428
2429	/*
2430	 * Program the Number of Device Slots Enabled field in the CONFIG
2431	 * register with the max value of slots the HC can handle.
2432	 */
2433	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2434	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2435			"// xHC can handle at most %d device slots.", val);
2436	val2 = readl(&xhci->op_regs->config_reg);
2437	val |= (val2 & ~HCS_SLOTS_MASK);
2438	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2439			"// Setting Max device slots reg = 0x%x.", val);
2440	writel(val, &xhci->op_regs->config_reg);
2441
2442	/*
2443	 * xHCI section 5.4.6 - Device Context array must be
2444	 * "physically contiguous and 64-byte (cache line) aligned".
2445	 */
2446	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2447			flags);
2448	if (!xhci->dcbaa)
2449		goto fail;
2450	xhci->dcbaa->dma = dma;
2451	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2452			"// Device context base array address = 0x%pad (DMA), %p (virt)",
2453			&xhci->dcbaa->dma, xhci->dcbaa);
2454	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2455
2456	/*
2457	 * Initialize the ring segment pool.  The ring must be a contiguous
2458	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2459	 * however, the command ring segment needs 64-byte aligned segments
2460	 * and our use of dma addresses in the trb_address_map radix tree needs
2461	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2462	 */
2463	if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2464		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2465				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2466	else
2467		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2468				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2469
2470	/* See Table 46 and Note on Figure 55 */
2471	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2472			2112, 64, xhci->page_size);
2473	if (!xhci->segment_pool || !xhci->device_pool)
2474		goto fail;
2475
2476	/* Linear stream context arrays don't have any boundary restrictions,
2477	 * and only need to be 16-byte aligned.
2478	 */
2479	xhci->small_streams_pool =
2480		dma_pool_create("xHCI 256 byte stream ctx arrays",
2481			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2482	xhci->medium_streams_pool =
2483		dma_pool_create("xHCI 1KB stream ctx arrays",
2484			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2485	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2486	 * will be allocated with dma_alloc_coherent()
2487	 */
2488
2489	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2490		goto fail;
2491
2492	/* Set up the command ring to have one segments for now. */
2493	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2494	if (!xhci->cmd_ring)
2495		goto fail;
2496	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2497			"Allocated command ring at %p", xhci->cmd_ring);
2498	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2499			&xhci->cmd_ring->first_seg->dma);
2500
2501	/* Set the address in the Command Ring Control register */
2502	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2503	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2504		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2505		xhci->cmd_ring->cycle_state;
2506	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2507			"// Setting command ring address to 0x%016llx", val_64);
2508	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2509
 
 
 
 
2510	/* Reserve one command ring TRB for disabling LPM.
2511	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2512	 * disabling LPM, we only need to reserve one TRB for all devices.
2513	 */
2514	xhci->cmd_ring_reserved_trbs++;
2515
2516	val = readl(&xhci->cap_regs->db_off);
2517	val &= DBOFF_MASK;
2518	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2519		       "// Doorbell array is located at offset 0x%x from cap regs base addr",
2520		       val);
2521	xhci->dba = (void __iomem *) xhci->cap_regs + val;
 
 
2522
2523	/* Allocate and set up primary interrupter 0 with an event ring. */
2524	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2525		       "Allocating primary event ring");
2526	xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2527					  flags, dev_to_node(dev));
2528
2529	ir = xhci_alloc_interrupter(xhci, 0, flags);
2530	if (!ir)
 
 
2531		goto fail;
2532
2533	if (xhci_add_interrupter(xhci, ir, 0))
 
2534		goto fail;
2535
2536	xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2537
2538	/*
2539	 * XXX: Might need to set the Interrupter Moderation Register to
2540	 * something other than the default (~1ms minimum between interrupts).
2541	 * See section 5.5.1.2.
2542	 */
2543	for (i = 0; i < MAX_HC_SLOTS; i++)
2544		xhci->devs[i] = NULL;
 
 
 
 
 
 
 
2545
2546	if (scratchpad_alloc(xhci, flags))
2547		goto fail;
2548	if (xhci_setup_port_arrays(xhci, flags))
2549		goto fail;
2550
2551	/* Enable USB 3.0 device notifications for function remote wake, which
2552	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2553	 * U3 (device suspend).
2554	 */
2555	temp = readl(&xhci->op_regs->dev_notification);
2556	temp &= ~DEV_NOTE_MASK;
2557	temp |= DEV_NOTE_FWAKE;
2558	writel(temp, &xhci->op_regs->dev_notification);
2559
2560	return 0;
2561
2562fail:
2563	xhci_halt(xhci);
2564	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2565	xhci_mem_cleanup(xhci);
2566	return -ENOMEM;
2567}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/usb.h>
 
  12#include <linux/pci.h>
  13#include <linux/slab.h>
  14#include <linux/dmapool.h>
  15#include <linux/dma-mapping.h>
  16
  17#include "xhci.h"
  18#include "xhci-trace.h"
  19#include "xhci-debugfs.h"
  20
  21/*
  22 * Allocates a generic ring segment from the ring pool, sets the dma address,
  23 * initializes the segment to zero, and sets the private next pointer to NULL.
  24 *
  25 * Section 4.11.1.1:
  26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  27 */
  28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  29					       unsigned int cycle_state,
  30					       unsigned int max_packet,
 
  31					       gfp_t flags)
  32{
  33	struct xhci_segment *seg;
  34	dma_addr_t	dma;
  35	int		i;
  36	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
  37
  38	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
  39	if (!seg)
  40		return NULL;
  41
  42	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  43	if (!seg->trbs) {
  44		kfree(seg);
  45		return NULL;
  46	}
  47
  48	if (max_packet) {
  49		seg->bounce_buf = kzalloc_node(max_packet, flags,
  50					dev_to_node(dev));
  51		if (!seg->bounce_buf) {
  52			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  53			kfree(seg);
  54			return NULL;
  55		}
  56	}
  57	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  58	if (cycle_state == 0) {
  59		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  60			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
  61	}
 
  62	seg->dma = dma;
  63	seg->next = NULL;
  64
  65	return seg;
  66}
  67
  68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  69{
  70	if (seg->trbs) {
  71		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  72		seg->trbs = NULL;
  73	}
  74	kfree(seg->bounce_buf);
  75	kfree(seg);
  76}
  77
  78static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  79				struct xhci_segment *first)
  80{
  81	struct xhci_segment *seg;
  82
  83	seg = first->next;
  84	while (seg != first) {
  85		struct xhci_segment *next = seg->next;
  86		xhci_segment_free(xhci, seg);
  87		seg = next;
  88	}
  89	xhci_segment_free(xhci, first);
  90}
  91
  92/*
  93 * Make the prev segment point to the next segment.
  94 *
  95 * Change the last TRB in the prev segment to be a Link TRB which points to the
  96 * DMA address of the next segment.  The caller needs to set any Link TRB
  97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  98 */
  99static void xhci_link_segments(struct xhci_segment *prev,
 100			       struct xhci_segment *next,
 101			       enum xhci_ring_type type, bool chain_links)
 102{
 103	u32 val;
 104
 105	if (!prev || !next)
 106		return;
 107	prev->next = next;
 108	if (type != TYPE_EVENT) {
 109		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 110			cpu_to_le64(next->dma);
 111
 112		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 113		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 114		val &= ~TRB_TYPE_BITMASK;
 115		val |= TRB_TYPE(TRB_LINK);
 116		if (chain_links)
 117			val |= TRB_CHAIN;
 118		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 119	}
 120}
 121
 122/*
 123 * Link the ring to the new segments.
 124 * Set Toggle Cycle for the new ring if needed.
 125 */
 126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 127		struct xhci_segment *first, struct xhci_segment *last,
 128		unsigned int num_segs)
 129{
 130	struct xhci_segment *next;
 131	bool chain_links;
 132
 133	if (!ring || !first || !last)
 134		return;
 135
 136	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 137	chain_links = !!(xhci_link_trb_quirk(xhci) ||
 138			 (ring->type == TYPE_ISOC &&
 139			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
 140
 141	next = ring->enq_seg->next;
 142	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
 143	xhci_link_segments(last, next, ring->type, chain_links);
 144	ring->num_segs += num_segs;
 145	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 146
 147	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 148		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 149			&= ~cpu_to_le32(LINK_TOGGLE);
 150		last->trbs[TRBS_PER_SEGMENT-1].link.control
 151			|= cpu_to_le32(LINK_TOGGLE);
 
 
 152		ring->last_seg = last;
 153	}
 
 
 
 154}
 155
 156/*
 157 * We need a radix tree for mapping physical addresses of TRBs to which stream
 158 * ID they belong to.  We need to do this because the host controller won't tell
 159 * us which stream ring the TRB came from.  We could store the stream ID in an
 160 * event data TRB, but that doesn't help us for the cancellation case, since the
 161 * endpoint may stop before it reaches that event data TRB.
 162 *
 163 * The radix tree maps the upper portion of the TRB DMA address to a ring
 164 * segment that has the same upper portion of DMA addresses.  For example, say I
 165 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 166 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 167 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 168 * pass the radix tree a key to get the right stream ID:
 169 *
 170 *	0x10c90fff >> 10 = 0x43243
 171 *	0x10c912c0 >> 10 = 0x43244
 172 *	0x10c91400 >> 10 = 0x43245
 173 *
 174 * Obviously, only those TRBs with DMA addresses that are within the segment
 175 * will make the radix tree return the stream ID for that ring.
 176 *
 177 * Caveats for the radix tree:
 178 *
 179 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 181 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 183 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 184 * extended systems (where the DMA address can be bigger than 32-bits),
 185 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 186 */
 187static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 188		struct xhci_ring *ring,
 189		struct xhci_segment *seg,
 190		gfp_t mem_flags)
 191{
 192	unsigned long key;
 193	int ret;
 194
 195	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 196	/* Skip any segments that were already added. */
 197	if (radix_tree_lookup(trb_address_map, key))
 198		return 0;
 199
 200	ret = radix_tree_maybe_preload(mem_flags);
 201	if (ret)
 202		return ret;
 203	ret = radix_tree_insert(trb_address_map,
 204			key, ring);
 205	radix_tree_preload_end();
 206	return ret;
 207}
 208
 209static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 210		struct xhci_segment *seg)
 211{
 212	unsigned long key;
 213
 214	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 215	if (radix_tree_lookup(trb_address_map, key))
 216		radix_tree_delete(trb_address_map, key);
 217}
 218
 219static int xhci_update_stream_segment_mapping(
 220		struct radix_tree_root *trb_address_map,
 221		struct xhci_ring *ring,
 222		struct xhci_segment *first_seg,
 223		struct xhci_segment *last_seg,
 224		gfp_t mem_flags)
 225{
 226	struct xhci_segment *seg;
 227	struct xhci_segment *failed_seg;
 228	int ret;
 229
 230	if (WARN_ON_ONCE(trb_address_map == NULL))
 231		return 0;
 232
 233	seg = first_seg;
 234	do {
 235		ret = xhci_insert_segment_mapping(trb_address_map,
 236				ring, seg, mem_flags);
 237		if (ret)
 238			goto remove_streams;
 239		if (seg == last_seg)
 240			return 0;
 241		seg = seg->next;
 242	} while (seg != first_seg);
 243
 244	return 0;
 245
 246remove_streams:
 247	failed_seg = seg;
 248	seg = first_seg;
 249	do {
 250		xhci_remove_segment_mapping(trb_address_map, seg);
 251		if (seg == failed_seg)
 252			return ret;
 253		seg = seg->next;
 254	} while (seg != first_seg);
 255
 256	return ret;
 257}
 258
 259static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 260{
 261	struct xhci_segment *seg;
 262
 263	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 264		return;
 265
 266	seg = ring->first_seg;
 267	do {
 268		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 269		seg = seg->next;
 270	} while (seg != ring->first_seg);
 271}
 272
 273static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 274{
 275	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 276			ring->first_seg, ring->last_seg, mem_flags);
 277}
 278
 279/* XXX: Do we need the hcd structure in all these functions? */
 280void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 281{
 282	if (!ring)
 283		return;
 284
 285	trace_xhci_ring_free(ring);
 286
 287	if (ring->first_seg) {
 288		if (ring->type == TYPE_STREAM)
 289			xhci_remove_stream_mapping(ring);
 290		xhci_free_segments_for_ring(xhci, ring->first_seg);
 291	}
 292
 293	kfree(ring);
 294}
 295
 296void xhci_initialize_ring_info(struct xhci_ring *ring,
 297			       unsigned int cycle_state)
 298{
 299	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 300	ring->enqueue = ring->first_seg->trbs;
 301	ring->enq_seg = ring->first_seg;
 302	ring->dequeue = ring->enqueue;
 303	ring->deq_seg = ring->first_seg;
 304	/* The ring is initialized to 0. The producer must write 1 to the cycle
 305	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 306	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 307	 *
 308	 * New rings are initialized with cycle state equal to 1; if we are
 309	 * handling ring expansion, set the cycle state equal to the old ring.
 310	 */
 311	ring->cycle_state = cycle_state;
 312
 313	/*
 314	 * Each segment has a link TRB, and leave an extra TRB for SW
 315	 * accounting purpose
 316	 */
 317	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 318}
 
 319
 320/* Allocate segments and link them for a ring */
 321static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 322		struct xhci_segment **first, struct xhci_segment **last,
 323		unsigned int num_segs, unsigned int cycle_state,
 324		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 
 325{
 326	struct xhci_segment *prev;
 327	bool chain_links;
 328
 329	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 330	chain_links = !!(xhci_link_trb_quirk(xhci) ||
 331			 (type == TYPE_ISOC &&
 332			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
 333
 334	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 335	if (!prev)
 336		return -ENOMEM;
 337	num_segs--;
 338
 339	*first = prev;
 340	while (num_segs > 0) {
 341		struct xhci_segment	*next;
 342
 343		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 
 344		if (!next) {
 345			prev = *first;
 346			while (prev) {
 347				next = prev->next;
 348				xhci_segment_free(xhci, prev);
 349				prev = next;
 350			}
 351			return -ENOMEM;
 352		}
 353		xhci_link_segments(prev, next, type, chain_links);
 354
 355		prev = next;
 356		num_segs--;
 357	}
 358	xhci_link_segments(prev, *first, type, chain_links);
 359	*last = prev;
 360
 361	return 0;
 362}
 363
 364/*
 365 * Create a new ring with zero or more segments.
 366 *
 367 * Link each segment together into a ring.
 368 * Set the end flag and the cycle toggle bit on the last segment.
 369 * See section 4.9.1 and figures 15 and 16.
 370 */
 371struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 372		unsigned int num_segs, unsigned int cycle_state,
 373		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 374{
 375	struct xhci_ring	*ring;
 376	int ret;
 377	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 378
 379	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
 380	if (!ring)
 381		return NULL;
 382
 383	ring->num_segs = num_segs;
 384	ring->bounce_buf_len = max_packet;
 385	INIT_LIST_HEAD(&ring->td_list);
 386	ring->type = type;
 387	if (num_segs == 0)
 388		return ring;
 389
 390	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 391			&ring->last_seg, num_segs, cycle_state, type,
 392			max_packet, flags);
 393	if (ret)
 394		goto fail;
 395
 396	/* Only event ring does not use link TRB */
 397	if (type != TYPE_EVENT) {
 398		/* See section 4.9.2.1 and 6.4.4.1 */
 399		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 400			cpu_to_le32(LINK_TOGGLE);
 401	}
 402	xhci_initialize_ring_info(ring, cycle_state);
 403	trace_xhci_ring_alloc(ring);
 404	return ring;
 405
 406fail:
 407	kfree(ring);
 408	return NULL;
 409}
 410
 411void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
 412		struct xhci_virt_device *virt_dev,
 413		unsigned int ep_index)
 414{
 415	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 416	virt_dev->eps[ep_index].ring = NULL;
 417}
 418
 419/*
 420 * Expand an existing ring.
 421 * Allocate a new ring which has same segment numbers and link the two rings.
 422 */
 423int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 424				unsigned int num_trbs, gfp_t flags)
 425{
 426	struct xhci_segment	*first;
 427	struct xhci_segment	*last;
 428	unsigned int		num_segs;
 429	unsigned int		num_segs_needed;
 430	int			ret;
 431
 432	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 433				(TRBS_PER_SEGMENT - 1);
 434
 435	/* Allocate number of segments we needed, or double the ring size */
 436	num_segs = ring->num_segs > num_segs_needed ?
 437			ring->num_segs : num_segs_needed;
 438
 439	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 440			num_segs, ring->cycle_state, ring->type,
 
 441			ring->bounce_buf_len, flags);
 442	if (ret)
 443		return -ENOMEM;
 444
 445	if (ring->type == TYPE_STREAM)
 446		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 447						ring, first, last, flags);
 448	if (ret) {
 449		struct xhci_segment *next;
 450		do {
 451			next = first->next;
 452			xhci_segment_free(xhci, first);
 453			if (first == last)
 454				break;
 455			first = next;
 456		} while (true);
 457		return ret;
 458	}
 459
 460	xhci_link_rings(xhci, ring, first, last, num_segs);
 461	trace_xhci_ring_expansion(ring);
 462	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 463			"ring expansion succeed, now has %d segments",
 464			ring->num_segs);
 465
 466	return 0;
 467}
 468
 469struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 470						    int type, gfp_t flags)
 471{
 472	struct xhci_container_ctx *ctx;
 473	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 474
 475	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 476		return NULL;
 477
 478	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
 479	if (!ctx)
 480		return NULL;
 481
 482	ctx->type = type;
 483	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 484	if (type == XHCI_CTX_TYPE_INPUT)
 485		ctx->size += CTX_SIZE(xhci->hcc_params);
 486
 487	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 488	if (!ctx->bytes) {
 489		kfree(ctx);
 490		return NULL;
 491	}
 492	return ctx;
 493}
 494
 495void xhci_free_container_ctx(struct xhci_hcd *xhci,
 496			     struct xhci_container_ctx *ctx)
 497{
 498	if (!ctx)
 499		return;
 500	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 501	kfree(ctx);
 502}
 503
 504struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 505					      struct xhci_container_ctx *ctx)
 506{
 507	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 508		return NULL;
 509
 510	return (struct xhci_input_control_ctx *)ctx->bytes;
 511}
 512
 513struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 514					struct xhci_container_ctx *ctx)
 515{
 516	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 517		return (struct xhci_slot_ctx *)ctx->bytes;
 518
 519	return (struct xhci_slot_ctx *)
 520		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 521}
 522
 523struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 524				    struct xhci_container_ctx *ctx,
 525				    unsigned int ep_index)
 526{
 527	/* increment ep index by offset of start of ep ctx array */
 528	ep_index++;
 529	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 530		ep_index++;
 531
 532	return (struct xhci_ep_ctx *)
 533		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 534}
 535
 536
 537/***************** Streams structures manipulation *************************/
 538
 539static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 540		unsigned int num_stream_ctxs,
 541		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 542{
 543	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 544	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 545
 546	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 547		dma_free_coherent(dev, size,
 548				stream_ctx, dma);
 549	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 550		return dma_pool_free(xhci->small_streams_pool,
 551				stream_ctx, dma);
 552	else
 553		return dma_pool_free(xhci->medium_streams_pool,
 554				stream_ctx, dma);
 555}
 556
 557/*
 558 * The stream context array for each endpoint with bulk streams enabled can
 559 * vary in size, based on:
 560 *  - how many streams the endpoint supports,
 561 *  - the maximum primary stream array size the host controller supports,
 562 *  - and how many streams the device driver asks for.
 563 *
 564 * The stream context array must be a power of 2, and can be as small as
 565 * 64 bytes or as large as 1MB.
 566 */
 567static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 568		unsigned int num_stream_ctxs, dma_addr_t *dma,
 569		gfp_t mem_flags)
 570{
 571	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 572	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 573
 574	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 575		return dma_alloc_coherent(dev, size,
 576				dma, mem_flags);
 577	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 578		return dma_pool_alloc(xhci->small_streams_pool,
 579				mem_flags, dma);
 580	else
 581		return dma_pool_alloc(xhci->medium_streams_pool,
 582				mem_flags, dma);
 583}
 584
 585struct xhci_ring *xhci_dma_to_transfer_ring(
 586		struct xhci_virt_ep *ep,
 587		u64 address)
 588{
 589	if (ep->ep_state & EP_HAS_STREAMS)
 590		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 591				address >> TRB_SEGMENT_SHIFT);
 592	return ep->ring;
 593}
 594
 595struct xhci_ring *xhci_stream_id_to_ring(
 596		struct xhci_virt_device *dev,
 597		unsigned int ep_index,
 598		unsigned int stream_id)
 599{
 600	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 601
 602	if (stream_id == 0)
 603		return ep->ring;
 604	if (!ep->stream_info)
 605		return NULL;
 606
 607	if (stream_id >= ep->stream_info->num_streams)
 608		return NULL;
 609	return ep->stream_info->stream_rings[stream_id];
 610}
 611
 612/*
 613 * Change an endpoint's internal structure so it supports stream IDs.  The
 614 * number of requested streams includes stream 0, which cannot be used by device
 615 * drivers.
 616 *
 617 * The number of stream contexts in the stream context array may be bigger than
 618 * the number of streams the driver wants to use.  This is because the number of
 619 * stream context array entries must be a power of two.
 620 */
 621struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 622		unsigned int num_stream_ctxs,
 623		unsigned int num_streams,
 624		unsigned int max_packet, gfp_t mem_flags)
 625{
 626	struct xhci_stream_info *stream_info;
 627	u32 cur_stream;
 628	struct xhci_ring *cur_ring;
 629	u64 addr;
 630	int ret;
 631	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 632
 633	xhci_dbg(xhci, "Allocating %u streams and %u "
 634			"stream context array entries.\n",
 635			num_streams, num_stream_ctxs);
 636	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 637		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 638		return NULL;
 639	}
 640	xhci->cmd_ring_reserved_trbs++;
 641
 642	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
 643			dev_to_node(dev));
 644	if (!stream_info)
 645		goto cleanup_trbs;
 646
 647	stream_info->num_streams = num_streams;
 648	stream_info->num_stream_ctxs = num_stream_ctxs;
 649
 650	/* Initialize the array of virtual pointers to stream rings. */
 651	stream_info->stream_rings = kcalloc_node(
 652			num_streams, sizeof(struct xhci_ring *), mem_flags,
 653			dev_to_node(dev));
 654	if (!stream_info->stream_rings)
 655		goto cleanup_info;
 656
 657	/* Initialize the array of DMA addresses for stream rings for the HW. */
 658	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 659			num_stream_ctxs, &stream_info->ctx_array_dma,
 660			mem_flags);
 661	if (!stream_info->stream_ctx_array)
 662		goto cleanup_ctx;
 663	memset(stream_info->stream_ctx_array, 0,
 664			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 665
 666	/* Allocate everything needed to free the stream rings later */
 667	stream_info->free_streams_command =
 668		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
 669	if (!stream_info->free_streams_command)
 670		goto cleanup_ctx;
 671
 672	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 673
 674	/* Allocate rings for all the streams that the driver will use,
 675	 * and add their segment DMA addresses to the radix tree.
 676	 * Stream 0 is reserved.
 677	 */
 678
 679	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 680		stream_info->stream_rings[cur_stream] =
 681			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
 682					mem_flags);
 683		cur_ring = stream_info->stream_rings[cur_stream];
 684		if (!cur_ring)
 685			goto cleanup_rings;
 686		cur_ring->stream_id = cur_stream;
 687		cur_ring->trb_address_map = &stream_info->trb_address_map;
 688		/* Set deq ptr, cycle bit, and stream context type */
 689		addr = cur_ring->first_seg->dma |
 690			SCT_FOR_CTX(SCT_PRI_TR) |
 691			cur_ring->cycle_state;
 692		stream_info->stream_ctx_array[cur_stream].stream_ring =
 693			cpu_to_le64(addr);
 694		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 695				cur_stream, (unsigned long long) addr);
 696
 697		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 698		if (ret) {
 699			xhci_ring_free(xhci, cur_ring);
 700			stream_info->stream_rings[cur_stream] = NULL;
 701			goto cleanup_rings;
 702		}
 703	}
 704	/* Leave the other unused stream ring pointers in the stream context
 705	 * array initialized to zero.  This will cause the xHC to give us an
 706	 * error if the device asks for a stream ID we don't have setup (if it
 707	 * was any other way, the host controller would assume the ring is
 708	 * "empty" and wait forever for data to be queued to that stream ID).
 709	 */
 710
 711	return stream_info;
 712
 713cleanup_rings:
 714	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 715		cur_ring = stream_info->stream_rings[cur_stream];
 716		if (cur_ring) {
 717			xhci_ring_free(xhci, cur_ring);
 718			stream_info->stream_rings[cur_stream] = NULL;
 719		}
 720	}
 721	xhci_free_command(xhci, stream_info->free_streams_command);
 722cleanup_ctx:
 
 
 
 
 
 723	kfree(stream_info->stream_rings);
 724cleanup_info:
 725	kfree(stream_info);
 726cleanup_trbs:
 727	xhci->cmd_ring_reserved_trbs--;
 728	return NULL;
 729}
 730/*
 731 * Sets the MaxPStreams field and the Linear Stream Array field.
 732 * Sets the dequeue pointer to the stream context array.
 733 */
 734void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 735		struct xhci_ep_ctx *ep_ctx,
 736		struct xhci_stream_info *stream_info)
 737{
 738	u32 max_primary_streams;
 739	/* MaxPStreams is the number of stream context array entries, not the
 740	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 741	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 742	 */
 743	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 744	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 745			"Setting number of stream ctx array entries to %u",
 746			1 << (max_primary_streams + 1));
 747	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 748	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 749				       | EP_HAS_LSA);
 750	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 751}
 752
 753/*
 754 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 755 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 756 * not at the beginning of the ring).
 757 */
 758void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 759		struct xhci_virt_ep *ep)
 760{
 761	dma_addr_t addr;
 762	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 763	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 764	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 765}
 766
 767/* Frees all stream contexts associated with the endpoint,
 768 *
 769 * Caller should fix the endpoint context streams fields.
 770 */
 771void xhci_free_stream_info(struct xhci_hcd *xhci,
 772		struct xhci_stream_info *stream_info)
 773{
 774	int cur_stream;
 775	struct xhci_ring *cur_ring;
 776
 777	if (!stream_info)
 778		return;
 779
 780	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 781			cur_stream++) {
 782		cur_ring = stream_info->stream_rings[cur_stream];
 783		if (cur_ring) {
 784			xhci_ring_free(xhci, cur_ring);
 785			stream_info->stream_rings[cur_stream] = NULL;
 786		}
 787	}
 788	xhci_free_command(xhci, stream_info->free_streams_command);
 789	xhci->cmd_ring_reserved_trbs--;
 790	if (stream_info->stream_ctx_array)
 791		xhci_free_stream_ctx(xhci,
 792				stream_info->num_stream_ctxs,
 793				stream_info->stream_ctx_array,
 794				stream_info->ctx_array_dma);
 795
 796	kfree(stream_info->stream_rings);
 797	kfree(stream_info);
 798}
 799
 800
 801/***************** Device context manipulation *************************/
 802
 803static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 804		struct xhci_virt_ep *ep)
 805{
 806	timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
 807		    0);
 808	ep->xhci = xhci;
 809}
 810
 811static void xhci_free_tt_info(struct xhci_hcd *xhci,
 812		struct xhci_virt_device *virt_dev,
 813		int slot_id)
 814{
 815	struct list_head *tt_list_head;
 816	struct xhci_tt_bw_info *tt_info, *next;
 817	bool slot_found = false;
 818
 819	/* If the device never made it past the Set Address stage,
 820	 * it may not have the real_port set correctly.
 821	 */
 822	if (virt_dev->real_port == 0 ||
 823			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 824		xhci_dbg(xhci, "Bad real port.\n");
 825		return;
 826	}
 827
 828	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 829	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 830		/* Multi-TT hubs will have more than one entry */
 831		if (tt_info->slot_id == slot_id) {
 832			slot_found = true;
 833			list_del(&tt_info->tt_list);
 834			kfree(tt_info);
 835		} else if (slot_found) {
 836			break;
 837		}
 838	}
 839}
 840
 841int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 842		struct xhci_virt_device *virt_dev,
 843		struct usb_device *hdev,
 844		struct usb_tt *tt, gfp_t mem_flags)
 845{
 846	struct xhci_tt_bw_info		*tt_info;
 847	unsigned int			num_ports;
 848	int				i, j;
 849	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 850
 851	if (!tt->multi)
 852		num_ports = 1;
 853	else
 854		num_ports = hdev->maxchild;
 855
 856	for (i = 0; i < num_ports; i++, tt_info++) {
 857		struct xhci_interval_bw_table *bw_table;
 858
 859		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
 860				dev_to_node(dev));
 861		if (!tt_info)
 862			goto free_tts;
 863		INIT_LIST_HEAD(&tt_info->tt_list);
 864		list_add(&tt_info->tt_list,
 865				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 866		tt_info->slot_id = virt_dev->udev->slot_id;
 867		if (tt->multi)
 868			tt_info->ttport = i+1;
 869		bw_table = &tt_info->bw_table;
 870		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 871			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 872	}
 873	return 0;
 874
 875free_tts:
 876	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 877	return -ENOMEM;
 878}
 879
 880
 881/* All the xhci_tds in the ring's TD list should be freed at this point.
 882 * Should be called with xhci->lock held if there is any chance the TT lists
 883 * will be manipulated by the configure endpoint, allocate device, or update
 884 * hub functions while this function is removing the TT entries from the list.
 885 */
 886void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 887{
 888	struct xhci_virt_device *dev;
 889	int i;
 890	int old_active_eps = 0;
 891
 892	/* Slot ID 0 is reserved */
 893	if (slot_id == 0 || !xhci->devs[slot_id])
 894		return;
 895
 896	dev = xhci->devs[slot_id];
 897
 898	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 899	if (!dev)
 900		return;
 901
 902	trace_xhci_free_virt_device(dev);
 903
 904	if (dev->tt_info)
 905		old_active_eps = dev->tt_info->active_eps;
 906
 907	for (i = 0; i < 31; i++) {
 908		if (dev->eps[i].ring)
 909			xhci_ring_free(xhci, dev->eps[i].ring);
 910		if (dev->eps[i].stream_info)
 911			xhci_free_stream_info(xhci,
 912					dev->eps[i].stream_info);
 913		/* Endpoints on the TT/root port lists should have been removed
 914		 * when usb_disable_device() was called for the device.
 915		 * We can't drop them anyway, because the udev might have gone
 916		 * away by this point, and we can't tell what speed it was.
 
 
 917		 */
 918		if (!list_empty(&dev->eps[i].bw_endpoint_list))
 919			xhci_warn(xhci, "Slot %u endpoint %u "
 920					"not removed from BW list!\n",
 921					slot_id, i);
 
 
 922	}
 923	/* If this is a hub, free the TT(s) from the TT list */
 924	xhci_free_tt_info(xhci, dev, slot_id);
 925	/* If necessary, update the number of active TTs on this root port */
 926	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 927
 928	if (dev->in_ctx)
 929		xhci_free_container_ctx(xhci, dev->in_ctx);
 930	if (dev->out_ctx)
 931		xhci_free_container_ctx(xhci, dev->out_ctx);
 932
 933	if (dev->udev && dev->udev->slot_id)
 934		dev->udev->slot_id = 0;
 935	kfree(xhci->devs[slot_id]);
 936	xhci->devs[slot_id] = NULL;
 937}
 938
 939/*
 940 * Free a virt_device structure.
 941 * If the virt_device added a tt_info (a hub) and has children pointing to
 942 * that tt_info, then free the child first. Recursive.
 943 * We can't rely on udev at this point to find child-parent relationships.
 944 */
 945static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 946{
 947	struct xhci_virt_device *vdev;
 948	struct list_head *tt_list_head;
 949	struct xhci_tt_bw_info *tt_info, *next;
 950	int i;
 951
 952	vdev = xhci->devs[slot_id];
 953	if (!vdev)
 954		return;
 955
 956	if (vdev->real_port == 0 ||
 957			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 958		xhci_dbg(xhci, "Bad vdev->real_port.\n");
 959		goto out;
 960	}
 961
 962	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
 963	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 964		/* is this a hub device that added a tt_info to the tts list */
 965		if (tt_info->slot_id == slot_id) {
 966			/* are any devices using this tt_info? */
 967			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
 968				vdev = xhci->devs[i];
 969				if (vdev && (vdev->tt_info == tt_info))
 970					xhci_free_virt_devices_depth_first(
 971						xhci, i);
 972			}
 973		}
 974	}
 975out:
 976	/* we are now at a leaf device */
 977	xhci_debugfs_remove_slot(xhci, slot_id);
 978	xhci_free_virt_device(xhci, slot_id);
 979}
 980
 981int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 982		struct usb_device *udev, gfp_t flags)
 983{
 984	struct xhci_virt_device *dev;
 985	int i;
 986
 987	/* Slot ID 0 is reserved */
 988	if (slot_id == 0 || xhci->devs[slot_id]) {
 989		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 990		return 0;
 991	}
 992
 993	dev = kzalloc(sizeof(*dev), flags);
 994	if (!dev)
 995		return 0;
 996
 
 
 997	/* Allocate the (output) device context that will be used in the HC. */
 998	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 999	if (!dev->out_ctx)
1000		goto fail;
1001
1002	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1003			(unsigned long long)dev->out_ctx->dma);
1004
1005	/* Allocate the (input) device context for address device command */
1006	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1007	if (!dev->in_ctx)
1008		goto fail;
1009
1010	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1011			(unsigned long long)dev->in_ctx->dma);
1012
1013	/* Initialize the cancellation list and watchdog timers for each ep */
1014	for (i = 0; i < 31; i++) {
1015		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
 
 
1016		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1017		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1018	}
1019
1020	/* Allocate endpoint 0 ring */
1021	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1022	if (!dev->eps[0].ring)
1023		goto fail;
1024
1025	dev->udev = udev;
1026
1027	/* Point to output device context in dcbaa. */
1028	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1029	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1030		 slot_id,
1031		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1032		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1033
1034	trace_xhci_alloc_virt_device(dev);
1035
1036	xhci->devs[slot_id] = dev;
1037
1038	return 1;
1039fail:
1040
1041	if (dev->in_ctx)
1042		xhci_free_container_ctx(xhci, dev->in_ctx);
1043	if (dev->out_ctx)
1044		xhci_free_container_ctx(xhci, dev->out_ctx);
1045	kfree(dev);
1046
1047	return 0;
1048}
1049
1050void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1051		struct usb_device *udev)
1052{
1053	struct xhci_virt_device *virt_dev;
1054	struct xhci_ep_ctx	*ep0_ctx;
1055	struct xhci_ring	*ep_ring;
1056
1057	virt_dev = xhci->devs[udev->slot_id];
1058	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1059	ep_ring = virt_dev->eps[0].ring;
1060	/*
1061	 * FIXME we don't keep track of the dequeue pointer very well after a
1062	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1063	 * host to our enqueue pointer.  This should only be called after a
1064	 * configured device has reset, so all control transfers should have
1065	 * been completed or cancelled before the reset.
1066	 */
1067	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1068							ep_ring->enqueue)
1069				   | ep_ring->cycle_state);
1070}
1071
1072/*
1073 * The xHCI roothub may have ports of differing speeds in any order in the port
1074 * status registers.
1075 *
1076 * The xHCI hardware wants to know the roothub port number that the USB device
1077 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1078 * know is the index of that port under either the USB 2.0 or the USB 3.0
1079 * roothub, but that doesn't give us the real index into the HW port status
1080 * registers. Call xhci_find_raw_port_number() to get real index.
1081 */
1082static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1083		struct usb_device *udev)
1084{
1085	struct usb_device *top_dev;
1086	struct usb_hcd *hcd;
1087
1088	if (udev->speed >= USB_SPEED_SUPER)
1089		hcd = xhci->shared_hcd;
1090	else
1091		hcd = xhci->main_hcd;
1092
1093	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1094			top_dev = top_dev->parent)
1095		/* Found device below root hub */;
1096
1097	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1098}
1099
1100/* Setup an xHCI virtual device for a Set Address command */
1101int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1102{
1103	struct xhci_virt_device *dev;
1104	struct xhci_ep_ctx	*ep0_ctx;
1105	struct xhci_slot_ctx    *slot_ctx;
1106	u32			port_num;
1107	u32			max_packets;
1108	struct usb_device *top_dev;
1109
1110	dev = xhci->devs[udev->slot_id];
1111	/* Slot ID 0 is reserved */
1112	if (udev->slot_id == 0 || !dev) {
1113		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1114				udev->slot_id);
1115		return -EINVAL;
1116	}
1117	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1118	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1119
1120	/* 3) Only the control endpoint is valid - one endpoint context */
1121	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1122	switch (udev->speed) {
1123	case USB_SPEED_SUPER_PLUS:
1124		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1125		max_packets = MAX_PACKET(512);
1126		break;
1127	case USB_SPEED_SUPER:
1128		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1129		max_packets = MAX_PACKET(512);
1130		break;
1131	case USB_SPEED_HIGH:
1132		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1133		max_packets = MAX_PACKET(64);
1134		break;
1135	/* USB core guesses at a 64-byte max packet first for FS devices */
1136	case USB_SPEED_FULL:
1137		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1138		max_packets = MAX_PACKET(64);
1139		break;
1140	case USB_SPEED_LOW:
1141		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1142		max_packets = MAX_PACKET(8);
1143		break;
1144	case USB_SPEED_WIRELESS:
1145		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1146		return -EINVAL;
1147		break;
1148	default:
1149		/* Speed was set earlier, this shouldn't happen. */
1150		return -EINVAL;
1151	}
1152	/* Find the root hub port this device is under */
1153	port_num = xhci_find_real_port_number(xhci, udev);
1154	if (!port_num)
1155		return -EINVAL;
1156	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1157	/* Set the port number in the virtual_device to the faked port number */
1158	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1159			top_dev = top_dev->parent)
1160		/* Found device below root hub */;
1161	dev->fake_port = top_dev->portnum;
1162	dev->real_port = port_num;
1163	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1164	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1165
1166	/* Find the right bandwidth table that this device will be a part of.
1167	 * If this is a full speed device attached directly to a root port (or a
1168	 * decendent of one), it counts as a primary bandwidth domain, not a
1169	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1170	 * will never be created for the HS root hub.
1171	 */
1172	if (!udev->tt || !udev->tt->hub->parent) {
1173		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1174	} else {
1175		struct xhci_root_port_bw_info *rh_bw;
1176		struct xhci_tt_bw_info *tt_bw;
1177
1178		rh_bw = &xhci->rh_bw[port_num - 1];
1179		/* Find the right TT. */
1180		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1181			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1182				continue;
1183
1184			if (!dev->udev->tt->multi ||
1185					(udev->tt->multi &&
1186					 tt_bw->ttport == dev->udev->ttport)) {
1187				dev->bw_table = &tt_bw->bw_table;
1188				dev->tt_info = tt_bw;
1189				break;
1190			}
1191		}
1192		if (!dev->tt_info)
1193			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1194	}
1195
1196	/* Is this a LS/FS device under an external HS hub? */
1197	if (udev->tt && udev->tt->hub->parent) {
1198		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1199						(udev->ttport << 8));
1200		if (udev->tt->multi)
1201			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1202	}
1203	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1204	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1205
1206	/* Step 4 - ring already allocated */
1207	/* Step 5 */
1208	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1209
1210	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1211	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1212					 max_packets);
1213
1214	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1215				   dev->eps[0].ring->cycle_state);
1216
1217	trace_xhci_setup_addressable_virt_device(dev);
1218
1219	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1220
1221	return 0;
1222}
1223
1224/*
1225 * Convert interval expressed as 2^(bInterval - 1) == interval into
1226 * straight exponent value 2^n == interval.
1227 *
1228 */
1229static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1230		struct usb_host_endpoint *ep)
1231{
1232	unsigned int interval;
1233
1234	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1235	if (interval != ep->desc.bInterval - 1)
1236		dev_warn(&udev->dev,
1237			 "ep %#x - rounding interval to %d %sframes\n",
1238			 ep->desc.bEndpointAddress,
1239			 1 << interval,
1240			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1241
1242	if (udev->speed == USB_SPEED_FULL) {
1243		/*
1244		 * Full speed isoc endpoints specify interval in frames,
1245		 * not microframes. We are using microframes everywhere,
1246		 * so adjust accordingly.
1247		 */
1248		interval += 3;	/* 1 frame = 2^3 uframes */
1249	}
1250
1251	return interval;
1252}
1253
1254/*
1255 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1256 * microframes, rounded down to nearest power of 2.
1257 */
1258static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1259		struct usb_host_endpoint *ep, unsigned int desc_interval,
1260		unsigned int min_exponent, unsigned int max_exponent)
1261{
1262	unsigned int interval;
1263
1264	interval = fls(desc_interval) - 1;
1265	interval = clamp_val(interval, min_exponent, max_exponent);
1266	if ((1 << interval) != desc_interval)
1267		dev_dbg(&udev->dev,
1268			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1269			 ep->desc.bEndpointAddress,
1270			 1 << interval,
1271			 desc_interval);
1272
1273	return interval;
1274}
1275
1276static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1277		struct usb_host_endpoint *ep)
1278{
1279	if (ep->desc.bInterval == 0)
1280		return 0;
1281	return xhci_microframes_to_exponent(udev, ep,
1282			ep->desc.bInterval, 0, 15);
1283}
1284
1285
1286static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1287		struct usb_host_endpoint *ep)
1288{
1289	return xhci_microframes_to_exponent(udev, ep,
1290			ep->desc.bInterval * 8, 3, 10);
1291}
1292
1293/* Return the polling or NAK interval.
1294 *
1295 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1296 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1297 *
1298 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1299 * is set to 0.
1300 */
1301static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1302		struct usb_host_endpoint *ep)
1303{
1304	unsigned int interval = 0;
1305
1306	switch (udev->speed) {
1307	case USB_SPEED_HIGH:
1308		/* Max NAK rate */
1309		if (usb_endpoint_xfer_control(&ep->desc) ||
1310		    usb_endpoint_xfer_bulk(&ep->desc)) {
1311			interval = xhci_parse_microframe_interval(udev, ep);
1312			break;
1313		}
1314		fallthrough;	/* SS and HS isoc/int have same decoding */
1315
1316	case USB_SPEED_SUPER_PLUS:
1317	case USB_SPEED_SUPER:
1318		if (usb_endpoint_xfer_int(&ep->desc) ||
1319		    usb_endpoint_xfer_isoc(&ep->desc)) {
1320			interval = xhci_parse_exponent_interval(udev, ep);
1321		}
1322		break;
1323
1324	case USB_SPEED_FULL:
1325		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1326			interval = xhci_parse_exponent_interval(udev, ep);
1327			break;
1328		}
1329		/*
1330		 * Fall through for interrupt endpoint interval decoding
1331		 * since it uses the same rules as low speed interrupt
1332		 * endpoints.
1333		 */
1334		fallthrough;
1335
1336	case USB_SPEED_LOW:
1337		if (usb_endpoint_xfer_int(&ep->desc) ||
1338		    usb_endpoint_xfer_isoc(&ep->desc)) {
1339
1340			interval = xhci_parse_frame_interval(udev, ep);
1341		}
1342		break;
1343
1344	default:
1345		BUG();
1346	}
1347	return interval;
1348}
1349
1350/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1351 * High speed endpoint descriptors can define "the number of additional
1352 * transaction opportunities per microframe", but that goes in the Max Burst
1353 * endpoint context field.
1354 */
1355static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1356		struct usb_host_endpoint *ep)
1357{
1358	if (udev->speed < USB_SPEED_SUPER ||
1359			!usb_endpoint_xfer_isoc(&ep->desc))
1360		return 0;
1361	return ep->ss_ep_comp.bmAttributes;
1362}
1363
1364static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1365				       struct usb_host_endpoint *ep)
1366{
1367	/* Super speed and Plus have max burst in ep companion desc */
1368	if (udev->speed >= USB_SPEED_SUPER)
1369		return ep->ss_ep_comp.bMaxBurst;
1370
1371	if (udev->speed == USB_SPEED_HIGH &&
1372	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1373	     usb_endpoint_xfer_int(&ep->desc)))
1374		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1375
1376	return 0;
1377}
1378
1379static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1380{
1381	int in;
1382
1383	in = usb_endpoint_dir_in(&ep->desc);
1384
1385	switch (usb_endpoint_type(&ep->desc)) {
1386	case USB_ENDPOINT_XFER_CONTROL:
1387		return CTRL_EP;
1388	case USB_ENDPOINT_XFER_BULK:
1389		return in ? BULK_IN_EP : BULK_OUT_EP;
1390	case USB_ENDPOINT_XFER_ISOC:
1391		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1392	case USB_ENDPOINT_XFER_INT:
1393		return in ? INT_IN_EP : INT_OUT_EP;
1394	}
1395	return 0;
1396}
1397
1398/* Return the maximum endpoint service interval time (ESIT) payload.
1399 * Basically, this is the maxpacket size, multiplied by the burst size
1400 * and mult size.
1401 */
1402static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1403		struct usb_host_endpoint *ep)
1404{
1405	int max_burst;
1406	int max_packet;
1407
1408	/* Only applies for interrupt or isochronous endpoints */
1409	if (usb_endpoint_xfer_control(&ep->desc) ||
1410			usb_endpoint_xfer_bulk(&ep->desc))
1411		return 0;
1412
1413	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1414	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1415	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1416		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
 
1417	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1418	else if (udev->speed >= USB_SPEED_SUPER)
1419		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1420
1421	max_packet = usb_endpoint_maxp(&ep->desc);
1422	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1423	/* A 0 in max burst means 1 transfer per ESIT */
1424	return max_packet * max_burst;
1425}
1426
1427/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1428 * Drivers will have to call usb_alloc_streams() to do that.
1429 */
1430int xhci_endpoint_init(struct xhci_hcd *xhci,
1431		struct xhci_virt_device *virt_dev,
1432		struct usb_device *udev,
1433		struct usb_host_endpoint *ep,
1434		gfp_t mem_flags)
1435{
1436	unsigned int ep_index;
1437	struct xhci_ep_ctx *ep_ctx;
1438	struct xhci_ring *ep_ring;
1439	unsigned int max_packet;
1440	enum xhci_ring_type ring_type;
1441	u32 max_esit_payload;
1442	u32 endpoint_type;
1443	unsigned int max_burst;
1444	unsigned int interval;
1445	unsigned int mult;
1446	unsigned int avg_trb_len;
1447	unsigned int err_count = 0;
1448
1449	ep_index = xhci_get_endpoint_index(&ep->desc);
1450	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1451
1452	endpoint_type = xhci_get_endpoint_type(ep);
1453	if (!endpoint_type)
1454		return -EINVAL;
1455
1456	ring_type = usb_endpoint_type(&ep->desc);
1457
1458	/*
1459	 * Get values to fill the endpoint context, mostly from ep descriptor.
1460	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1461	 * have no clue on scatter gather list entry size. For Isoc and Int,
1462	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1463	 */
1464	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1465	interval = xhci_get_endpoint_interval(udev, ep);
1466
1467	/* Periodic endpoint bInterval limit quirk */
1468	if (usb_endpoint_xfer_int(&ep->desc) ||
1469	    usb_endpoint_xfer_isoc(&ep->desc)) {
1470		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1471		    udev->speed >= USB_SPEED_HIGH &&
1472		    interval >= 7) {
1473			interval = 6;
1474		}
1475	}
1476
1477	mult = xhci_get_endpoint_mult(udev, ep);
1478	max_packet = usb_endpoint_maxp(&ep->desc);
1479	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1480	avg_trb_len = max_esit_payload;
1481
1482	/* FIXME dig Mult and streams info out of ep companion desc */
1483
1484	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1485	if (!usb_endpoint_xfer_isoc(&ep->desc))
1486		err_count = 3;
1487	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1488	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1489		if (udev->speed == USB_SPEED_HIGH)
1490			max_packet = 512;
1491		if (udev->speed == USB_SPEED_FULL) {
1492			max_packet = rounddown_pow_of_two(max_packet);
1493			max_packet = clamp_val(max_packet, 8, 64);
1494		}
1495	}
1496	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1497	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1498		avg_trb_len = 8;
1499	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1500	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1501		mult = 0;
1502
1503	/* Set up the endpoint ring */
1504	virt_dev->eps[ep_index].new_ring =
1505		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1506	if (!virt_dev->eps[ep_index].new_ring)
1507		return -ENOMEM;
1508
1509	virt_dev->eps[ep_index].skip = false;
1510	ep_ring = virt_dev->eps[ep_index].new_ring;
1511
1512	/* Fill the endpoint context */
1513	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1514				      EP_INTERVAL(interval) |
1515				      EP_MULT(mult));
1516	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1517				       MAX_PACKET(max_packet) |
1518				       MAX_BURST(max_burst) |
1519				       ERROR_COUNT(err_count));
1520	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1521				  ep_ring->cycle_state);
1522
1523	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1524				      EP_AVG_TRB_LENGTH(avg_trb_len));
1525
1526	return 0;
1527}
1528
1529void xhci_endpoint_zero(struct xhci_hcd *xhci,
1530		struct xhci_virt_device *virt_dev,
1531		struct usb_host_endpoint *ep)
1532{
1533	unsigned int ep_index;
1534	struct xhci_ep_ctx *ep_ctx;
1535
1536	ep_index = xhci_get_endpoint_index(&ep->desc);
1537	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1538
1539	ep_ctx->ep_info = 0;
1540	ep_ctx->ep_info2 = 0;
1541	ep_ctx->deq = 0;
1542	ep_ctx->tx_info = 0;
1543	/* Don't free the endpoint ring until the set interface or configuration
1544	 * request succeeds.
1545	 */
1546}
1547
1548void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1549{
1550	bw_info->ep_interval = 0;
1551	bw_info->mult = 0;
1552	bw_info->num_packets = 0;
1553	bw_info->max_packet_size = 0;
1554	bw_info->type = 0;
1555	bw_info->max_esit_payload = 0;
1556}
1557
1558void xhci_update_bw_info(struct xhci_hcd *xhci,
1559		struct xhci_container_ctx *in_ctx,
1560		struct xhci_input_control_ctx *ctrl_ctx,
1561		struct xhci_virt_device *virt_dev)
1562{
1563	struct xhci_bw_info *bw_info;
1564	struct xhci_ep_ctx *ep_ctx;
1565	unsigned int ep_type;
1566	int i;
1567
1568	for (i = 1; i < 31; i++) {
1569		bw_info = &virt_dev->eps[i].bw_info;
1570
1571		/* We can't tell what endpoint type is being dropped, but
1572		 * unconditionally clearing the bandwidth info for non-periodic
1573		 * endpoints should be harmless because the info will never be
1574		 * set in the first place.
1575		 */
1576		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1577			/* Dropped endpoint */
1578			xhci_clear_endpoint_bw_info(bw_info);
1579			continue;
1580		}
1581
1582		if (EP_IS_ADDED(ctrl_ctx, i)) {
1583			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1584			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1585
1586			/* Ignore non-periodic endpoints */
1587			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1588					ep_type != ISOC_IN_EP &&
1589					ep_type != INT_IN_EP)
1590				continue;
1591
1592			/* Added or changed endpoint */
1593			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1594					le32_to_cpu(ep_ctx->ep_info));
1595			/* Number of packets and mult are zero-based in the
1596			 * input context, but we want one-based for the
1597			 * interval table.
1598			 */
1599			bw_info->mult = CTX_TO_EP_MULT(
1600					le32_to_cpu(ep_ctx->ep_info)) + 1;
1601			bw_info->num_packets = CTX_TO_MAX_BURST(
1602					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1603			bw_info->max_packet_size = MAX_PACKET_DECODED(
1604					le32_to_cpu(ep_ctx->ep_info2));
1605			bw_info->type = ep_type;
1606			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1607					le32_to_cpu(ep_ctx->tx_info));
1608		}
1609	}
1610}
1611
1612/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1613 * Useful when you want to change one particular aspect of the endpoint and then
1614 * issue a configure endpoint command.
1615 */
1616void xhci_endpoint_copy(struct xhci_hcd *xhci,
1617		struct xhci_container_ctx *in_ctx,
1618		struct xhci_container_ctx *out_ctx,
1619		unsigned int ep_index)
1620{
1621	struct xhci_ep_ctx *out_ep_ctx;
1622	struct xhci_ep_ctx *in_ep_ctx;
1623
1624	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1625	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1626
1627	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1628	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1629	in_ep_ctx->deq = out_ep_ctx->deq;
1630	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1631	if (xhci->quirks & XHCI_MTK_HOST) {
1632		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1633		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1634	}
1635}
1636
1637/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1638 * Useful when you want to change one particular aspect of the endpoint and then
1639 * issue a configure endpoint command.  Only the context entries field matters,
1640 * but we'll copy the whole thing anyway.
1641 */
1642void xhci_slot_copy(struct xhci_hcd *xhci,
1643		struct xhci_container_ctx *in_ctx,
1644		struct xhci_container_ctx *out_ctx)
1645{
1646	struct xhci_slot_ctx *in_slot_ctx;
1647	struct xhci_slot_ctx *out_slot_ctx;
1648
1649	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1650	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1651
1652	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1653	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1654	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1655	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1656}
1657
1658/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1659static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1660{
1661	int i;
1662	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1663	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1664
1665	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1666			"Allocating %d scratchpad buffers", num_sp);
1667
1668	if (!num_sp)
1669		return 0;
1670
1671	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1672				dev_to_node(dev));
1673	if (!xhci->scratchpad)
1674		goto fail_sp;
1675
1676	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1677				     num_sp * sizeof(u64),
1678				     &xhci->scratchpad->sp_dma, flags);
1679	if (!xhci->scratchpad->sp_array)
1680		goto fail_sp2;
1681
1682	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1683					flags, dev_to_node(dev));
1684	if (!xhci->scratchpad->sp_buffers)
1685		goto fail_sp3;
1686
1687	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1688	for (i = 0; i < num_sp; i++) {
1689		dma_addr_t dma;
1690		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1691					       flags);
1692		if (!buf)
1693			goto fail_sp4;
1694
1695		xhci->scratchpad->sp_array[i] = dma;
1696		xhci->scratchpad->sp_buffers[i] = buf;
1697	}
1698
1699	return 0;
1700
1701 fail_sp4:
1702	for (i = i - 1; i >= 0; i--) {
1703		dma_free_coherent(dev, xhci->page_size,
1704				    xhci->scratchpad->sp_buffers[i],
1705				    xhci->scratchpad->sp_array[i]);
1706	}
1707
1708	kfree(xhci->scratchpad->sp_buffers);
1709
1710 fail_sp3:
1711	dma_free_coherent(dev, num_sp * sizeof(u64),
1712			    xhci->scratchpad->sp_array,
1713			    xhci->scratchpad->sp_dma);
1714
1715 fail_sp2:
1716	kfree(xhci->scratchpad);
1717	xhci->scratchpad = NULL;
1718
1719 fail_sp:
1720	return -ENOMEM;
1721}
1722
1723static void scratchpad_free(struct xhci_hcd *xhci)
1724{
1725	int num_sp;
1726	int i;
1727	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1728
1729	if (!xhci->scratchpad)
1730		return;
1731
1732	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1733
1734	for (i = 0; i < num_sp; i++) {
1735		dma_free_coherent(dev, xhci->page_size,
1736				    xhci->scratchpad->sp_buffers[i],
1737				    xhci->scratchpad->sp_array[i]);
1738	}
1739	kfree(xhci->scratchpad->sp_buffers);
1740	dma_free_coherent(dev, num_sp * sizeof(u64),
1741			    xhci->scratchpad->sp_array,
1742			    xhci->scratchpad->sp_dma);
1743	kfree(xhci->scratchpad);
1744	xhci->scratchpad = NULL;
1745}
1746
1747struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1748		bool allocate_completion, gfp_t mem_flags)
1749{
1750	struct xhci_command *command;
1751	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1752
1753	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1754	if (!command)
1755		return NULL;
1756
1757	if (allocate_completion) {
1758		command->completion =
1759			kzalloc_node(sizeof(struct completion), mem_flags,
1760				dev_to_node(dev));
1761		if (!command->completion) {
1762			kfree(command);
1763			return NULL;
1764		}
1765		init_completion(command->completion);
1766	}
1767
1768	command->status = 0;
 
 
1769	INIT_LIST_HEAD(&command->cmd_list);
1770	return command;
1771}
1772
1773struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1774		bool allocate_completion, gfp_t mem_flags)
1775{
1776	struct xhci_command *command;
1777
1778	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1779	if (!command)
1780		return NULL;
1781
1782	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1783						   mem_flags);
1784	if (!command->in_ctx) {
1785		kfree(command->completion);
1786		kfree(command);
1787		return NULL;
1788	}
1789	return command;
1790}
1791
1792void xhci_urb_free_priv(struct urb_priv *urb_priv)
1793{
1794	kfree(urb_priv);
1795}
1796
1797void xhci_free_command(struct xhci_hcd *xhci,
1798		struct xhci_command *command)
1799{
1800	xhci_free_container_ctx(xhci,
1801			command->in_ctx);
1802	kfree(command->completion);
1803	kfree(command);
1804}
1805
1806int xhci_alloc_erst(struct xhci_hcd *xhci,
1807		    struct xhci_ring *evt_ring,
1808		    struct xhci_erst *erst,
1809		    gfp_t flags)
1810{
1811	size_t size;
1812	unsigned int val;
1813	struct xhci_segment *seg;
1814	struct xhci_erst_entry *entry;
1815
1816	size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1817	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1818					   size, &erst->erst_dma_addr, flags);
1819	if (!erst->entries)
1820		return -ENOMEM;
1821
1822	erst->num_entries = evt_ring->num_segs;
1823
1824	seg = evt_ring->first_seg;
1825	for (val = 0; val < evt_ring->num_segs; val++) {
1826		entry = &erst->entries[val];
1827		entry->seg_addr = cpu_to_le64(seg->dma);
1828		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1829		entry->rsvd = 0;
1830		seg = seg->next;
1831	}
1832
1833	return 0;
1834}
1835
1836void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1837{
1838	size_t size;
1839	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1840
1841	size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1842	if (erst->entries)
1843		dma_free_coherent(dev, size,
1844				erst->entries,
1845				erst->erst_dma_addr);
1846	erst->entries = NULL;
1847}
1848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1849void xhci_mem_cleanup(struct xhci_hcd *xhci)
1850{
1851	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1852	int i, j, num_ports;
1853
1854	cancel_delayed_work_sync(&xhci->cmd_timer);
1855
1856	xhci_free_erst(xhci, &xhci->erst);
 
 
 
 
 
 
 
1857
1858	if (xhci->event_ring)
1859		xhci_ring_free(xhci, xhci->event_ring);
1860	xhci->event_ring = NULL;
1861	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1862
1863	if (xhci->lpm_command)
1864		xhci_free_command(xhci, xhci->lpm_command);
1865	xhci->lpm_command = NULL;
1866	if (xhci->cmd_ring)
1867		xhci_ring_free(xhci, xhci->cmd_ring);
1868	xhci->cmd_ring = NULL;
1869	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1870	xhci_cleanup_command_queue(xhci);
1871
1872	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1873	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1874		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1875		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1876			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1877			while (!list_empty(ep))
1878				list_del_init(ep->next);
1879		}
1880	}
1881
1882	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1883		xhci_free_virt_devices_depth_first(xhci, i);
1884
1885	dma_pool_destroy(xhci->segment_pool);
1886	xhci->segment_pool = NULL;
1887	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1888
1889	dma_pool_destroy(xhci->device_pool);
1890	xhci->device_pool = NULL;
1891	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1892
1893	dma_pool_destroy(xhci->small_streams_pool);
1894	xhci->small_streams_pool = NULL;
1895	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1896			"Freed small stream array pool");
1897
1898	dma_pool_destroy(xhci->medium_streams_pool);
1899	xhci->medium_streams_pool = NULL;
1900	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1901			"Freed medium stream array pool");
1902
1903	if (xhci->dcbaa)
1904		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1905				xhci->dcbaa, xhci->dcbaa->dma);
1906	xhci->dcbaa = NULL;
1907
1908	scratchpad_free(xhci);
1909
1910	if (!xhci->rh_bw)
1911		goto no_bw;
1912
1913	for (i = 0; i < num_ports; i++) {
1914		struct xhci_tt_bw_info *tt, *n;
1915		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1916			list_del(&tt->tt_list);
1917			kfree(tt);
1918		}
1919	}
1920
1921no_bw:
1922	xhci->cmd_ring_reserved_trbs = 0;
1923	xhci->usb2_rhub.num_ports = 0;
1924	xhci->usb3_rhub.num_ports = 0;
1925	xhci->num_active_eps = 0;
1926	kfree(xhci->usb2_rhub.ports);
1927	kfree(xhci->usb3_rhub.ports);
1928	kfree(xhci->hw_ports);
1929	kfree(xhci->rh_bw);
1930	kfree(xhci->ext_caps);
1931	for (i = 0; i < xhci->num_port_caps; i++)
1932		kfree(xhci->port_caps[i].psi);
1933	kfree(xhci->port_caps);
 
1934	xhci->num_port_caps = 0;
1935
1936	xhci->usb2_rhub.ports = NULL;
1937	xhci->usb3_rhub.ports = NULL;
1938	xhci->hw_ports = NULL;
1939	xhci->rh_bw = NULL;
1940	xhci->ext_caps = NULL;
 
 
1941
1942	xhci->page_size = 0;
1943	xhci->page_shift = 0;
1944	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1945	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1946}
1947
1948static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1949		struct xhci_segment *input_seg,
1950		union xhci_trb *start_trb,
1951		union xhci_trb *end_trb,
1952		dma_addr_t input_dma,
1953		struct xhci_segment *result_seg,
1954		char *test_name, int test_number)
1955{
1956	unsigned long long start_dma;
1957	unsigned long long end_dma;
1958	struct xhci_segment *seg;
1959
1960	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1961	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1962
1963	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1964	if (seg != result_seg) {
1965		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1966				test_name, test_number);
1967		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1968				"input DMA 0x%llx\n",
1969				input_seg,
1970				(unsigned long long) input_dma);
1971		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1972				"ending TRB %p (0x%llx DMA)\n",
1973				start_trb, start_dma,
1974				end_trb, end_dma);
1975		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1976				result_seg, seg);
1977		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1978			  true);
1979		return -1;
1980	}
1981	return 0;
1982}
1983
1984/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1985static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1986{
1987	struct {
1988		dma_addr_t		input_dma;
1989		struct xhci_segment	*result_seg;
1990	} simple_test_vector [] = {
1991		/* A zeroed DMA field should fail */
1992		{ 0, NULL },
1993		/* One TRB before the ring start should fail */
1994		{ xhci->event_ring->first_seg->dma - 16, NULL },
1995		/* One byte before the ring start should fail */
1996		{ xhci->event_ring->first_seg->dma - 1, NULL },
1997		/* Starting TRB should succeed */
1998		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1999		/* Ending TRB should succeed */
2000		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2001			xhci->event_ring->first_seg },
2002		/* One byte after the ring end should fail */
2003		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2004		/* One TRB after the ring end should fail */
2005		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2006		/* An address of all ones should fail */
2007		{ (dma_addr_t) (~0), NULL },
2008	};
2009	struct {
2010		struct xhci_segment	*input_seg;
2011		union xhci_trb		*start_trb;
2012		union xhci_trb		*end_trb;
2013		dma_addr_t		input_dma;
2014		struct xhci_segment	*result_seg;
2015	} complex_test_vector [] = {
2016		/* Test feeding a valid DMA address from a different ring */
2017		{	.input_seg = xhci->event_ring->first_seg,
2018			.start_trb = xhci->event_ring->first_seg->trbs,
2019			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2020			.input_dma = xhci->cmd_ring->first_seg->dma,
2021			.result_seg = NULL,
2022		},
2023		/* Test feeding a valid end TRB from a different ring */
2024		{	.input_seg = xhci->event_ring->first_seg,
2025			.start_trb = xhci->event_ring->first_seg->trbs,
2026			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2027			.input_dma = xhci->cmd_ring->first_seg->dma,
2028			.result_seg = NULL,
2029		},
2030		/* Test feeding a valid start and end TRB from a different ring */
2031		{	.input_seg = xhci->event_ring->first_seg,
2032			.start_trb = xhci->cmd_ring->first_seg->trbs,
2033			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2034			.input_dma = xhci->cmd_ring->first_seg->dma,
2035			.result_seg = NULL,
2036		},
2037		/* TRB in this ring, but after this TD */
2038		{	.input_seg = xhci->event_ring->first_seg,
2039			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2040			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2041			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2042			.result_seg = NULL,
2043		},
2044		/* TRB in this ring, but before this TD */
2045		{	.input_seg = xhci->event_ring->first_seg,
2046			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2047			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2048			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2049			.result_seg = NULL,
2050		},
2051		/* TRB in this ring, but after this wrapped TD */
2052		{	.input_seg = xhci->event_ring->first_seg,
2053			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2054			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2055			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2056			.result_seg = NULL,
2057		},
2058		/* TRB in this ring, but before this wrapped TD */
2059		{	.input_seg = xhci->event_ring->first_seg,
2060			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2061			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2062			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2063			.result_seg = NULL,
2064		},
2065		/* TRB not in this ring, and we have a wrapped TD */
2066		{	.input_seg = xhci->event_ring->first_seg,
2067			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2068			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2069			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2070			.result_seg = NULL,
2071		},
2072	};
2073
2074	unsigned int num_tests;
2075	int i, ret;
2076
2077	num_tests = ARRAY_SIZE(simple_test_vector);
2078	for (i = 0; i < num_tests; i++) {
2079		ret = xhci_test_trb_in_td(xhci,
2080				xhci->event_ring->first_seg,
2081				xhci->event_ring->first_seg->trbs,
2082				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2083				simple_test_vector[i].input_dma,
2084				simple_test_vector[i].result_seg,
2085				"Simple", i);
2086		if (ret < 0)
2087			return ret;
2088	}
2089
2090	num_tests = ARRAY_SIZE(complex_test_vector);
2091	for (i = 0; i < num_tests; i++) {
2092		ret = xhci_test_trb_in_td(xhci,
2093				complex_test_vector[i].input_seg,
2094				complex_test_vector[i].start_trb,
2095				complex_test_vector[i].end_trb,
2096				complex_test_vector[i].input_dma,
2097				complex_test_vector[i].result_seg,
2098				"Complex", i);
2099		if (ret < 0)
2100			return ret;
2101	}
2102	xhci_dbg(xhci, "TRB math tests passed.\n");
2103	return 0;
2104}
2105
2106static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2107{
2108	u64 temp;
2109	dma_addr_t deq;
2110
2111	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2112			xhci->event_ring->dequeue);
2113	if (deq == 0 && !in_interrupt())
2114		xhci_warn(xhci, "WARN something wrong with SW event ring "
2115				"dequeue ptr.\n");
2116	/* Update HC event ring dequeue pointer */
2117	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2118	temp &= ERST_PTR_MASK;
2119	/* Don't clear the EHB bit (which is RW1C) because
2120	 * there might be more events to service.
2121	 */
2122	temp &= ~ERST_EHB;
2123	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2124			"// Write event ring dequeue pointer, "
2125			"preserving EHB bit");
2126	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2127			&xhci->ir_set->erst_dequeue);
2128}
2129
2130static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2131		__le32 __iomem *addr, int max_caps)
2132{
2133	u32 temp, port_offset, port_count;
2134	int i;
2135	u8 major_revision, minor_revision;
2136	struct xhci_hub *rhub;
2137	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2138	struct xhci_port_cap *port_cap;
2139
2140	temp = readl(addr);
2141	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2142	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2143
2144	if (major_revision == 0x03) {
2145		rhub = &xhci->usb3_rhub;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2146	} else if (major_revision <= 0x02) {
2147		rhub = &xhci->usb2_rhub;
2148	} else {
2149		xhci_warn(xhci, "Ignoring unknown port speed, "
2150				"Ext Cap %p, revision = 0x%x\n",
2151				addr, major_revision);
2152		/* Ignoring port protocol we can't understand. FIXME */
2153		return;
2154	}
2155	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2156
2157	if (rhub->min_rev < minor_revision)
2158		rhub->min_rev = minor_revision;
2159
2160	/* Port offset and count in the third dword, see section 7.2 */
2161	temp = readl(addr + 2);
2162	port_offset = XHCI_EXT_PORT_OFF(temp);
2163	port_count = XHCI_EXT_PORT_COUNT(temp);
2164	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2165			"Ext Cap %p, port offset = %u, "
2166			"count = %u, revision = 0x%x",
2167			addr, port_offset, port_count, major_revision);
2168	/* Port count includes the current port offset */
2169	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2170		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2171		return;
2172
2173	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2174	if (xhci->num_port_caps > max_caps)
2175		return;
2176
2177	port_cap->maj_rev = major_revision;
2178	port_cap->min_rev = minor_revision;
2179	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2180
2181	if (port_cap->psi_count) {
2182		port_cap->psi = kcalloc_node(port_cap->psi_count,
2183					     sizeof(*port_cap->psi),
2184					     GFP_KERNEL, dev_to_node(dev));
2185		if (!port_cap->psi)
2186			port_cap->psi_count = 0;
2187
2188		port_cap->psi_uid_count++;
2189		for (i = 0; i < port_cap->psi_count; i++) {
2190			port_cap->psi[i] = readl(addr + 4 + i);
2191
2192			/* count unique ID values, two consecutive entries can
2193			 * have the same ID if link is assymetric
2194			 */
2195			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2196				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2197				port_cap->psi_uid_count++;
2198
 
 
 
 
 
2199			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2200				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2201				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2202				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2203				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2204				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2205				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2206		}
2207	}
 
 
 
 
 
 
 
 
 
2208	/* cache usb2 port capabilities */
2209	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2210		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2211
2212	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2213		 (temp & XHCI_HLC)) {
2214		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2215			       "xHCI 1.0: support USB2 hardware lpm");
2216		xhci->hw_lpm_support = 1;
2217	}
2218
2219	port_offset--;
2220	for (i = port_offset; i < (port_offset + port_count); i++) {
2221		struct xhci_port *hw_port = &xhci->hw_ports[i];
2222		/* Duplicate entry.  Ignore the port if the revisions differ. */
2223		if (hw_port->rhub) {
2224			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2225					" port %u\n", addr, i);
2226			xhci_warn(xhci, "Port was marked as USB %u, "
2227					"duplicated as USB %u\n",
2228					hw_port->rhub->maj_rev, major_revision);
2229			/* Only adjust the roothub port counts if we haven't
2230			 * found a similar duplicate.
2231			 */
2232			if (hw_port->rhub != rhub &&
2233				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2234				hw_port->rhub->num_ports--;
2235				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2236			}
2237			continue;
2238		}
2239		hw_port->rhub = rhub;
2240		hw_port->port_cap = port_cap;
2241		rhub->num_ports++;
2242	}
2243	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2244}
2245
2246static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2247					struct xhci_hub *rhub, gfp_t flags)
2248{
2249	int port_index = 0;
2250	int i;
2251	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2252
2253	if (!rhub->num_ports)
2254		return;
2255	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(rhub->ports), flags,
2256			dev_to_node(dev));
 
 
 
2257	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2258		if (xhci->hw_ports[i].rhub != rhub ||
2259		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2260			continue;
2261		xhci->hw_ports[i].hcd_portnum = port_index;
2262		rhub->ports[port_index] = &xhci->hw_ports[i];
2263		port_index++;
2264		if (port_index == rhub->num_ports)
2265			break;
2266	}
2267}
2268
2269/*
2270 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2271 * specify what speeds each port is supposed to be.  We can't count on the port
2272 * speed bits in the PORTSC register being correct until a device is connected,
2273 * but we need to set up the two fake roothubs with the correct number of USB
2274 * 3.0 and USB 2.0 ports at host controller initialization time.
2275 */
2276static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2277{
2278	void __iomem *base;
2279	u32 offset;
2280	unsigned int num_ports;
2281	int i, j;
2282	int cap_count = 0;
2283	u32 cap_start;
2284	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2285
2286	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2287	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2288				flags, dev_to_node(dev));
2289	if (!xhci->hw_ports)
2290		return -ENOMEM;
2291
2292	for (i = 0; i < num_ports; i++) {
2293		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2294			NUM_PORT_REGS * i;
2295		xhci->hw_ports[i].hw_portnum = i;
 
 
 
2296	}
2297
2298	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2299				   dev_to_node(dev));
2300	if (!xhci->rh_bw)
2301		return -ENOMEM;
2302	for (i = 0; i < num_ports; i++) {
2303		struct xhci_interval_bw_table *bw_table;
2304
2305		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2306		bw_table = &xhci->rh_bw[i].bw_table;
2307		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2308			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2309	}
2310	base = &xhci->cap_regs->hc_capbase;
2311
2312	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2313	if (!cap_start) {
2314		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2315		return -ENODEV;
2316	}
2317
2318	offset = cap_start;
2319	/* count extended protocol capability entries for later caching */
2320	while (offset) {
2321		cap_count++;
2322		offset = xhci_find_next_ext_cap(base, offset,
2323						      XHCI_EXT_CAPS_PROTOCOL);
2324	}
2325
2326	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2327				flags, dev_to_node(dev));
2328	if (!xhci->ext_caps)
2329		return -ENOMEM;
2330
2331	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2332				flags, dev_to_node(dev));
2333	if (!xhci->port_caps)
2334		return -ENOMEM;
2335
2336	offset = cap_start;
2337
2338	while (offset) {
2339		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2340		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2341		    num_ports)
2342			break;
2343		offset = xhci_find_next_ext_cap(base, offset,
2344						XHCI_EXT_CAPS_PROTOCOL);
2345	}
2346	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2347		xhci_warn(xhci, "No ports on the roothubs?\n");
2348		return -ENODEV;
2349	}
2350	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2351		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2352		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2353
2354	/* Place limits on the number of roothub ports so that the hub
2355	 * descriptors aren't longer than the USB core will allocate.
2356	 */
2357	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2358		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2359				"Limiting USB 3.0 roothub ports to %u.",
2360				USB_SS_MAXPORTS);
2361		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2362	}
2363	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2364		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2365				"Limiting USB 2.0 roothub ports to %u.",
2366				USB_MAXCHILDREN);
2367		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2368	}
2369
2370	/*
2371	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2372	 * Not sure how the USB core will handle a hub with no ports...
2373	 */
 
2374
2375	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2376	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2377
2378	return 0;
2379}
2380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2381int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2382{
 
 
2383	dma_addr_t	dma;
2384	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2385	unsigned int	val, val2;
2386	u64		val_64;
2387	u32		page_size, temp;
2388	int		i, ret;
2389
2390	INIT_LIST_HEAD(&xhci->cmd_list);
2391
2392	/* init command timeout work */
2393	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2394	init_completion(&xhci->cmd_ring_stop_completion);
2395
2396	page_size = readl(&xhci->op_regs->page_size);
2397	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2398			"Supported page size register = 0x%x", page_size);
2399	for (i = 0; i < 16; i++) {
2400		if ((0x1 & page_size) != 0)
2401			break;
2402		page_size = page_size >> 1;
2403	}
2404	if (i < 16)
2405		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2406			"Supported page size of %iK", (1 << (i+12)) / 1024);
2407	else
2408		xhci_warn(xhci, "WARN: no supported page size\n");
2409	/* Use 4K pages, since that's common and the minimum the HC supports */
2410	xhci->page_shift = 12;
2411	xhci->page_size = 1 << xhci->page_shift;
2412	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2413			"HCD page size set to %iK", xhci->page_size / 1024);
2414
2415	/*
2416	 * Program the Number of Device Slots Enabled field in the CONFIG
2417	 * register with the max value of slots the HC can handle.
2418	 */
2419	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2420	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2421			"// xHC can handle at most %d device slots.", val);
2422	val2 = readl(&xhci->op_regs->config_reg);
2423	val |= (val2 & ~HCS_SLOTS_MASK);
2424	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2425			"// Setting Max device slots reg = 0x%x.", val);
2426	writel(val, &xhci->op_regs->config_reg);
2427
2428	/*
2429	 * xHCI section 5.4.6 - doorbell array must be
2430	 * "physically contiguous and 64-byte (cache line) aligned".
2431	 */
2432	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2433			flags);
2434	if (!xhci->dcbaa)
2435		goto fail;
2436	xhci->dcbaa->dma = dma;
2437	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2438			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2439			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2440	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2441
2442	/*
2443	 * Initialize the ring segment pool.  The ring must be a contiguous
2444	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2445	 * however, the command ring segment needs 64-byte aligned segments
2446	 * and our use of dma addresses in the trb_address_map radix tree needs
2447	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2448	 */
2449	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2450			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
 
 
 
 
2451
2452	/* See Table 46 and Note on Figure 55 */
2453	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2454			2112, 64, xhci->page_size);
2455	if (!xhci->segment_pool || !xhci->device_pool)
2456		goto fail;
2457
2458	/* Linear stream context arrays don't have any boundary restrictions,
2459	 * and only need to be 16-byte aligned.
2460	 */
2461	xhci->small_streams_pool =
2462		dma_pool_create("xHCI 256 byte stream ctx arrays",
2463			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2464	xhci->medium_streams_pool =
2465		dma_pool_create("xHCI 1KB stream ctx arrays",
2466			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2467	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2468	 * will be allocated with dma_alloc_coherent()
2469	 */
2470
2471	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2472		goto fail;
2473
2474	/* Set up the command ring to have one segments for now. */
2475	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2476	if (!xhci->cmd_ring)
2477		goto fail;
2478	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2479			"Allocated command ring at %p", xhci->cmd_ring);
2480	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2481			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2482
2483	/* Set the address in the Command Ring Control register */
2484	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2485	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2486		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2487		xhci->cmd_ring->cycle_state;
2488	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2489			"// Setting command ring address to 0x%016llx", val_64);
2490	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2491
2492	xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2493	if (!xhci->lpm_command)
2494		goto fail;
2495
2496	/* Reserve one command ring TRB for disabling LPM.
2497	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2498	 * disabling LPM, we only need to reserve one TRB for all devices.
2499	 */
2500	xhci->cmd_ring_reserved_trbs++;
2501
2502	val = readl(&xhci->cap_regs->db_off);
2503	val &= DBOFF_MASK;
2504	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2505			"// Doorbell array is located at offset 0x%x"
2506			" from cap regs base addr", val);
2507	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2508	/* Set ir_set to interrupt register set 0 */
2509	xhci->ir_set = &xhci->run_regs->ir_set[0];
2510
2511	/*
2512	 * Event ring setup: Allocate a normal ring, but also setup
2513	 * the event ring segment table (ERST).  Section 4.9.3.
2514	 */
2515	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2516	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2517					0, flags);
2518	if (!xhci->event_ring)
2519		goto fail;
2520	if (xhci_check_trb_in_td_math(xhci) < 0)
2521		goto fail;
2522
2523	ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2524	if (ret)
2525		goto fail;
2526
2527	/* set ERST count with the number of entries in the segment table */
2528	val = readl(&xhci->ir_set->erst_size);
2529	val &= ERST_SIZE_MASK;
2530	val |= ERST_NUM_SEGS;
2531	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2532			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2533			val);
2534	writel(val, &xhci->ir_set->erst_size);
2535
2536	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2537			"// Set ERST entries to point to event ring.");
2538	/* set the segment table base address */
2539	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2540			"// Set ERST base address for ir_set 0 = 0x%llx",
2541			(unsigned long long)xhci->erst.erst_dma_addr);
2542	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2543	val_64 &= ERST_PTR_MASK;
2544	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2545	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2546
2547	/* Set the event ring dequeue address */
2548	xhci_set_hc_event_deq(xhci);
2549	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2550			"Wrote ERST address to ir_set 0.");
2551
2552	/*
2553	 * XXX: Might need to set the Interrupter Moderation Register to
2554	 * something other than the default (~1ms minimum between interrupts).
2555	 * See section 5.5.1.2.
2556	 */
2557	for (i = 0; i < MAX_HC_SLOTS; i++)
2558		xhci->devs[i] = NULL;
2559	for (i = 0; i < USB_MAXCHILDREN; i++) {
2560		xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2561		xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2562		/* Only the USB 2.0 completions will ever be used. */
2563		init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2564		init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2565	}
2566
2567	if (scratchpad_alloc(xhci, flags))
2568		goto fail;
2569	if (xhci_setup_port_arrays(xhci, flags))
2570		goto fail;
2571
2572	/* Enable USB 3.0 device notifications for function remote wake, which
2573	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2574	 * U3 (device suspend).
2575	 */
2576	temp = readl(&xhci->op_regs->dev_notification);
2577	temp &= ~DEV_NOTE_MASK;
2578	temp |= DEV_NOTE_FWAKE;
2579	writel(temp, &xhci->op_regs->dev_notification);
2580
2581	return 0;
2582
2583fail:
2584	xhci_halt(xhci);
2585	xhci_reset(xhci);
2586	xhci_mem_cleanup(xhci);
2587	return -ENOMEM;
2588}