Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/usb.h>
12#include <linux/overflow.h>
13#include <linux/pci.h>
14#include <linux/slab.h>
15#include <linux/dmapool.h>
16#include <linux/dma-mapping.h>
17
18#include "xhci.h"
19#include "xhci-trace.h"
20#include "xhci-debugfs.h"
21
22/*
23 * Allocates a generic ring segment from the ring pool, sets the dma address,
24 * initializes the segment to zero, and sets the private next pointer to NULL.
25 *
26 * Section 4.11.1.1:
27 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28 */
29static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30 unsigned int cycle_state,
31 unsigned int max_packet,
32 unsigned int num,
33 gfp_t flags)
34{
35 struct xhci_segment *seg;
36 dma_addr_t dma;
37 int i;
38 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
39
40 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
41 if (!seg)
42 return NULL;
43
44 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
45 if (!seg->trbs) {
46 kfree(seg);
47 return NULL;
48 }
49
50 if (max_packet) {
51 seg->bounce_buf = kzalloc_node(max_packet, flags,
52 dev_to_node(dev));
53 if (!seg->bounce_buf) {
54 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
55 kfree(seg);
56 return NULL;
57 }
58 }
59 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
60 if (cycle_state == 0) {
61 for (i = 0; i < TRBS_PER_SEGMENT; i++)
62 seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
63 }
64 seg->num = num;
65 seg->dma = dma;
66 seg->next = NULL;
67
68 return seg;
69}
70
71static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
72{
73 if (seg->trbs) {
74 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
75 seg->trbs = NULL;
76 }
77 kfree(seg->bounce_buf);
78 kfree(seg);
79}
80
81static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
82 struct xhci_segment *first)
83{
84 struct xhci_segment *seg;
85
86 seg = first->next;
87 while (seg != first) {
88 struct xhci_segment *next = seg->next;
89 xhci_segment_free(xhci, seg);
90 seg = next;
91 }
92 xhci_segment_free(xhci, first);
93}
94
95/*
96 * Make the prev segment point to the next segment.
97 *
98 * Change the last TRB in the prev segment to be a Link TRB which points to the
99 * DMA address of the next segment. The caller needs to set any Link TRB
100 * related flags, such as End TRB, Toggle Cycle, and no snoop.
101 */
102static void xhci_link_segments(struct xhci_segment *prev,
103 struct xhci_segment *next,
104 enum xhci_ring_type type, bool chain_links)
105{
106 u32 val;
107
108 if (!prev || !next)
109 return;
110 prev->next = next;
111 if (type != TYPE_EVENT) {
112 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
113 cpu_to_le64(next->dma);
114
115 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
116 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
117 val &= ~TRB_TYPE_BITMASK;
118 val |= TRB_TYPE(TRB_LINK);
119 if (chain_links)
120 val |= TRB_CHAIN;
121 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
122 }
123}
124
125/*
126 * Link the ring to the new segments.
127 * Set Toggle Cycle for the new ring if needed.
128 */
129static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
130 struct xhci_segment *first, struct xhci_segment *last,
131 unsigned int num_segs)
132{
133 struct xhci_segment *next, *seg;
134 bool chain_links;
135
136 if (!ring || !first || !last)
137 return;
138
139 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
140 chain_links = !!(xhci_link_trb_quirk(xhci) ||
141 (ring->type == TYPE_ISOC &&
142 (xhci->quirks & XHCI_AMD_0x96_HOST)));
143
144 next = ring->enq_seg->next;
145 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
146 xhci_link_segments(last, next, ring->type, chain_links);
147 ring->num_segs += num_segs;
148
149 if (ring->enq_seg == ring->last_seg) {
150 if (ring->type != TYPE_EVENT) {
151 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
152 &= ~cpu_to_le32(LINK_TOGGLE);
153 last->trbs[TRBS_PER_SEGMENT-1].link.control
154 |= cpu_to_le32(LINK_TOGGLE);
155 }
156 ring->last_seg = last;
157 }
158
159 for (seg = last; seg != ring->last_seg; seg = seg->next)
160 seg->next->num = seg->num + 1;
161}
162
163/*
164 * We need a radix tree for mapping physical addresses of TRBs to which stream
165 * ID they belong to. We need to do this because the host controller won't tell
166 * us which stream ring the TRB came from. We could store the stream ID in an
167 * event data TRB, but that doesn't help us for the cancellation case, since the
168 * endpoint may stop before it reaches that event data TRB.
169 *
170 * The radix tree maps the upper portion of the TRB DMA address to a ring
171 * segment that has the same upper portion of DMA addresses. For example, say I
172 * have segments of size 1KB, that are always 1KB aligned. A segment may
173 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
174 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
175 * pass the radix tree a key to get the right stream ID:
176 *
177 * 0x10c90fff >> 10 = 0x43243
178 * 0x10c912c0 >> 10 = 0x43244
179 * 0x10c91400 >> 10 = 0x43245
180 *
181 * Obviously, only those TRBs with DMA addresses that are within the segment
182 * will make the radix tree return the stream ID for that ring.
183 *
184 * Caveats for the radix tree:
185 *
186 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
187 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
188 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
189 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
190 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
191 * extended systems (where the DMA address can be bigger than 32-bits),
192 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
193 */
194static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
195 struct xhci_ring *ring,
196 struct xhci_segment *seg,
197 gfp_t mem_flags)
198{
199 unsigned long key;
200 int ret;
201
202 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
203 /* Skip any segments that were already added. */
204 if (radix_tree_lookup(trb_address_map, key))
205 return 0;
206
207 ret = radix_tree_maybe_preload(mem_flags);
208 if (ret)
209 return ret;
210 ret = radix_tree_insert(trb_address_map,
211 key, ring);
212 radix_tree_preload_end();
213 return ret;
214}
215
216static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
217 struct xhci_segment *seg)
218{
219 unsigned long key;
220
221 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
222 if (radix_tree_lookup(trb_address_map, key))
223 radix_tree_delete(trb_address_map, key);
224}
225
226static int xhci_update_stream_segment_mapping(
227 struct radix_tree_root *trb_address_map,
228 struct xhci_ring *ring,
229 struct xhci_segment *first_seg,
230 struct xhci_segment *last_seg,
231 gfp_t mem_flags)
232{
233 struct xhci_segment *seg;
234 struct xhci_segment *failed_seg;
235 int ret;
236
237 if (WARN_ON_ONCE(trb_address_map == NULL))
238 return 0;
239
240 seg = first_seg;
241 do {
242 ret = xhci_insert_segment_mapping(trb_address_map,
243 ring, seg, mem_flags);
244 if (ret)
245 goto remove_streams;
246 if (seg == last_seg)
247 return 0;
248 seg = seg->next;
249 } while (seg != first_seg);
250
251 return 0;
252
253remove_streams:
254 failed_seg = seg;
255 seg = first_seg;
256 do {
257 xhci_remove_segment_mapping(trb_address_map, seg);
258 if (seg == failed_seg)
259 return ret;
260 seg = seg->next;
261 } while (seg != first_seg);
262
263 return ret;
264}
265
266static void xhci_remove_stream_mapping(struct xhci_ring *ring)
267{
268 struct xhci_segment *seg;
269
270 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
271 return;
272
273 seg = ring->first_seg;
274 do {
275 xhci_remove_segment_mapping(ring->trb_address_map, seg);
276 seg = seg->next;
277 } while (seg != ring->first_seg);
278}
279
280static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
281{
282 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
283 ring->first_seg, ring->last_seg, mem_flags);
284}
285
286/* XXX: Do we need the hcd structure in all these functions? */
287void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
288{
289 if (!ring)
290 return;
291
292 trace_xhci_ring_free(ring);
293
294 if (ring->first_seg) {
295 if (ring->type == TYPE_STREAM)
296 xhci_remove_stream_mapping(ring);
297 xhci_free_segments_for_ring(xhci, ring->first_seg);
298 }
299
300 kfree(ring);
301}
302
303void xhci_initialize_ring_info(struct xhci_ring *ring,
304 unsigned int cycle_state)
305{
306 /* The ring is empty, so the enqueue pointer == dequeue pointer */
307 ring->enqueue = ring->first_seg->trbs;
308 ring->enq_seg = ring->first_seg;
309 ring->dequeue = ring->enqueue;
310 ring->deq_seg = ring->first_seg;
311 /* The ring is initialized to 0. The producer must write 1 to the cycle
312 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
313 * compare CCS to the cycle bit to check ownership, so CCS = 1.
314 *
315 * New rings are initialized with cycle state equal to 1; if we are
316 * handling ring expansion, set the cycle state equal to the old ring.
317 */
318 ring->cycle_state = cycle_state;
319
320 /*
321 * Each segment has a link TRB, and leave an extra TRB for SW
322 * accounting purpose
323 */
324 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325}
326EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
327
328/* Allocate segments and link them for a ring */
329static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
330 struct xhci_segment **first, struct xhci_segment **last,
331 unsigned int num_segs, unsigned int num,
332 unsigned int cycle_state, enum xhci_ring_type type,
333 unsigned int max_packet, gfp_t flags)
334{
335 struct xhci_segment *prev;
336 bool chain_links;
337
338 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
339 chain_links = !!(xhci_link_trb_quirk(xhci) ||
340 (type == TYPE_ISOC &&
341 (xhci->quirks & XHCI_AMD_0x96_HOST)));
342
343 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags);
344 if (!prev)
345 return -ENOMEM;
346 num++;
347
348 *first = prev;
349 while (num < num_segs) {
350 struct xhci_segment *next;
351
352 next = xhci_segment_alloc(xhci, cycle_state, max_packet, num,
353 flags);
354 if (!next) {
355 prev = *first;
356 while (prev) {
357 next = prev->next;
358 xhci_segment_free(xhci, prev);
359 prev = next;
360 }
361 return -ENOMEM;
362 }
363 xhci_link_segments(prev, next, type, chain_links);
364
365 prev = next;
366 num++;
367 }
368 xhci_link_segments(prev, *first, type, chain_links);
369 *last = prev;
370
371 return 0;
372}
373
374/*
375 * Create a new ring with zero or more segments.
376 *
377 * Link each segment together into a ring.
378 * Set the end flag and the cycle toggle bit on the last segment.
379 * See section 4.9.1 and figures 15 and 16.
380 */
381struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
382 unsigned int num_segs, unsigned int cycle_state,
383 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
384{
385 struct xhci_ring *ring;
386 int ret;
387 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
388
389 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
390 if (!ring)
391 return NULL;
392
393 ring->num_segs = num_segs;
394 ring->bounce_buf_len = max_packet;
395 INIT_LIST_HEAD(&ring->td_list);
396 ring->type = type;
397 if (num_segs == 0)
398 return ring;
399
400 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
401 &ring->last_seg, num_segs, 0, cycle_state, type,
402 max_packet, flags);
403 if (ret)
404 goto fail;
405
406 /* Only event ring does not use link TRB */
407 if (type != TYPE_EVENT) {
408 /* See section 4.9.2.1 and 6.4.4.1 */
409 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
410 cpu_to_le32(LINK_TOGGLE);
411 }
412 xhci_initialize_ring_info(ring, cycle_state);
413 trace_xhci_ring_alloc(ring);
414 return ring;
415
416fail:
417 kfree(ring);
418 return NULL;
419}
420
421void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
422 struct xhci_virt_device *virt_dev,
423 unsigned int ep_index)
424{
425 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
426 virt_dev->eps[ep_index].ring = NULL;
427}
428
429/*
430 * Expand an existing ring.
431 * Allocate a new ring which has same segment numbers and link the two rings.
432 */
433int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
434 unsigned int num_new_segs, gfp_t flags)
435{
436 struct xhci_segment *first;
437 struct xhci_segment *last;
438 int ret;
439
440 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
441 num_new_segs, ring->enq_seg->num + 1,
442 ring->cycle_state, ring->type,
443 ring->bounce_buf_len, flags);
444 if (ret)
445 return -ENOMEM;
446
447 if (ring->type == TYPE_STREAM)
448 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
449 ring, first, last, flags);
450 if (ret) {
451 struct xhci_segment *next;
452 do {
453 next = first->next;
454 xhci_segment_free(xhci, first);
455 if (first == last)
456 break;
457 first = next;
458 } while (true);
459 return ret;
460 }
461
462 xhci_link_rings(xhci, ring, first, last, num_new_segs);
463 trace_xhci_ring_expansion(ring);
464 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
465 "ring expansion succeed, now has %d segments",
466 ring->num_segs);
467
468 return 0;
469}
470
471struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
472 int type, gfp_t flags)
473{
474 struct xhci_container_ctx *ctx;
475 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
476
477 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
478 return NULL;
479
480 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
481 if (!ctx)
482 return NULL;
483
484 ctx->type = type;
485 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
486 if (type == XHCI_CTX_TYPE_INPUT)
487 ctx->size += CTX_SIZE(xhci->hcc_params);
488
489 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
490 if (!ctx->bytes) {
491 kfree(ctx);
492 return NULL;
493 }
494 return ctx;
495}
496
497void xhci_free_container_ctx(struct xhci_hcd *xhci,
498 struct xhci_container_ctx *ctx)
499{
500 if (!ctx)
501 return;
502 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
503 kfree(ctx);
504}
505
506struct xhci_input_control_ctx *xhci_get_input_control_ctx(
507 struct xhci_container_ctx *ctx)
508{
509 if (ctx->type != XHCI_CTX_TYPE_INPUT)
510 return NULL;
511
512 return (struct xhci_input_control_ctx *)ctx->bytes;
513}
514
515struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
516 struct xhci_container_ctx *ctx)
517{
518 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
519 return (struct xhci_slot_ctx *)ctx->bytes;
520
521 return (struct xhci_slot_ctx *)
522 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
523}
524
525struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
526 struct xhci_container_ctx *ctx,
527 unsigned int ep_index)
528{
529 /* increment ep index by offset of start of ep ctx array */
530 ep_index++;
531 if (ctx->type == XHCI_CTX_TYPE_INPUT)
532 ep_index++;
533
534 return (struct xhci_ep_ctx *)
535 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
536}
537EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
538
539/***************** Streams structures manipulation *************************/
540
541static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
542 unsigned int num_stream_ctxs,
543 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
544{
545 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
546 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
547
548 if (size > MEDIUM_STREAM_ARRAY_SIZE)
549 dma_free_coherent(dev, size, stream_ctx, dma);
550 else if (size > SMALL_STREAM_ARRAY_SIZE)
551 dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
552 else
553 dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
554}
555
556/*
557 * The stream context array for each endpoint with bulk streams enabled can
558 * vary in size, based on:
559 * - how many streams the endpoint supports,
560 * - the maximum primary stream array size the host controller supports,
561 * - and how many streams the device driver asks for.
562 *
563 * The stream context array must be a power of 2, and can be as small as
564 * 64 bytes or as large as 1MB.
565 */
566static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
567 unsigned int num_stream_ctxs, dma_addr_t *dma,
568 gfp_t mem_flags)
569{
570 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
571 size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
572
573 if (size > MEDIUM_STREAM_ARRAY_SIZE)
574 return dma_alloc_coherent(dev, size, dma, mem_flags);
575 if (size > SMALL_STREAM_ARRAY_SIZE)
576 return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
577 else
578 return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
579}
580
581struct xhci_ring *xhci_dma_to_transfer_ring(
582 struct xhci_virt_ep *ep,
583 u64 address)
584{
585 if (ep->ep_state & EP_HAS_STREAMS)
586 return radix_tree_lookup(&ep->stream_info->trb_address_map,
587 address >> TRB_SEGMENT_SHIFT);
588 return ep->ring;
589}
590
591/*
592 * Change an endpoint's internal structure so it supports stream IDs. The
593 * number of requested streams includes stream 0, which cannot be used by device
594 * drivers.
595 *
596 * The number of stream contexts in the stream context array may be bigger than
597 * the number of streams the driver wants to use. This is because the number of
598 * stream context array entries must be a power of two.
599 */
600struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
601 unsigned int num_stream_ctxs,
602 unsigned int num_streams,
603 unsigned int max_packet, gfp_t mem_flags)
604{
605 struct xhci_stream_info *stream_info;
606 u32 cur_stream;
607 struct xhci_ring *cur_ring;
608 u64 addr;
609 int ret;
610 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
611
612 xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
613 num_streams, num_stream_ctxs);
614 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
615 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
616 return NULL;
617 }
618 xhci->cmd_ring_reserved_trbs++;
619
620 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
621 dev_to_node(dev));
622 if (!stream_info)
623 goto cleanup_trbs;
624
625 stream_info->num_streams = num_streams;
626 stream_info->num_stream_ctxs = num_stream_ctxs;
627
628 /* Initialize the array of virtual pointers to stream rings. */
629 stream_info->stream_rings = kcalloc_node(
630 num_streams, sizeof(struct xhci_ring *), mem_flags,
631 dev_to_node(dev));
632 if (!stream_info->stream_rings)
633 goto cleanup_info;
634
635 /* Initialize the array of DMA addresses for stream rings for the HW. */
636 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
637 num_stream_ctxs, &stream_info->ctx_array_dma,
638 mem_flags);
639 if (!stream_info->stream_ctx_array)
640 goto cleanup_ring_array;
641
642 /* Allocate everything needed to free the stream rings later */
643 stream_info->free_streams_command =
644 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
645 if (!stream_info->free_streams_command)
646 goto cleanup_ctx;
647
648 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
649
650 /* Allocate rings for all the streams that the driver will use,
651 * and add their segment DMA addresses to the radix tree.
652 * Stream 0 is reserved.
653 */
654
655 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
656 stream_info->stream_rings[cur_stream] =
657 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
658 mem_flags);
659 cur_ring = stream_info->stream_rings[cur_stream];
660 if (!cur_ring)
661 goto cleanup_rings;
662 cur_ring->stream_id = cur_stream;
663 cur_ring->trb_address_map = &stream_info->trb_address_map;
664 /* Set deq ptr, cycle bit, and stream context type */
665 addr = cur_ring->first_seg->dma |
666 SCT_FOR_CTX(SCT_PRI_TR) |
667 cur_ring->cycle_state;
668 stream_info->stream_ctx_array[cur_stream].stream_ring =
669 cpu_to_le64(addr);
670 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
671
672 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
673 if (ret) {
674 xhci_ring_free(xhci, cur_ring);
675 stream_info->stream_rings[cur_stream] = NULL;
676 goto cleanup_rings;
677 }
678 }
679 /* Leave the other unused stream ring pointers in the stream context
680 * array initialized to zero. This will cause the xHC to give us an
681 * error if the device asks for a stream ID we don't have setup (if it
682 * was any other way, the host controller would assume the ring is
683 * "empty" and wait forever for data to be queued to that stream ID).
684 */
685
686 return stream_info;
687
688cleanup_rings:
689 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
690 cur_ring = stream_info->stream_rings[cur_stream];
691 if (cur_ring) {
692 xhci_ring_free(xhci, cur_ring);
693 stream_info->stream_rings[cur_stream] = NULL;
694 }
695 }
696 xhci_free_command(xhci, stream_info->free_streams_command);
697cleanup_ctx:
698 xhci_free_stream_ctx(xhci,
699 stream_info->num_stream_ctxs,
700 stream_info->stream_ctx_array,
701 stream_info->ctx_array_dma);
702cleanup_ring_array:
703 kfree(stream_info->stream_rings);
704cleanup_info:
705 kfree(stream_info);
706cleanup_trbs:
707 xhci->cmd_ring_reserved_trbs--;
708 return NULL;
709}
710/*
711 * Sets the MaxPStreams field and the Linear Stream Array field.
712 * Sets the dequeue pointer to the stream context array.
713 */
714void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
715 struct xhci_ep_ctx *ep_ctx,
716 struct xhci_stream_info *stream_info)
717{
718 u32 max_primary_streams;
719 /* MaxPStreams is the number of stream context array entries, not the
720 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
721 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
722 */
723 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
724 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
725 "Setting number of stream ctx array entries to %u",
726 1 << (max_primary_streams + 1));
727 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
728 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
729 | EP_HAS_LSA);
730 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
731}
732
733/*
734 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
735 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
736 * not at the beginning of the ring).
737 */
738void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
739 struct xhci_virt_ep *ep)
740{
741 dma_addr_t addr;
742 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
743 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
744 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
745}
746
747/* Frees all stream contexts associated with the endpoint,
748 *
749 * Caller should fix the endpoint context streams fields.
750 */
751void xhci_free_stream_info(struct xhci_hcd *xhci,
752 struct xhci_stream_info *stream_info)
753{
754 int cur_stream;
755 struct xhci_ring *cur_ring;
756
757 if (!stream_info)
758 return;
759
760 for (cur_stream = 1; cur_stream < stream_info->num_streams;
761 cur_stream++) {
762 cur_ring = stream_info->stream_rings[cur_stream];
763 if (cur_ring) {
764 xhci_ring_free(xhci, cur_ring);
765 stream_info->stream_rings[cur_stream] = NULL;
766 }
767 }
768 xhci_free_command(xhci, stream_info->free_streams_command);
769 xhci->cmd_ring_reserved_trbs--;
770 if (stream_info->stream_ctx_array)
771 xhci_free_stream_ctx(xhci,
772 stream_info->num_stream_ctxs,
773 stream_info->stream_ctx_array,
774 stream_info->ctx_array_dma);
775
776 kfree(stream_info->stream_rings);
777 kfree(stream_info);
778}
779
780
781/***************** Device context manipulation *************************/
782
783static void xhci_free_tt_info(struct xhci_hcd *xhci,
784 struct xhci_virt_device *virt_dev,
785 int slot_id)
786{
787 struct list_head *tt_list_head;
788 struct xhci_tt_bw_info *tt_info, *next;
789 bool slot_found = false;
790
791 /* If the device never made it past the Set Address stage,
792 * it may not have the real_port set correctly.
793 */
794 if (virt_dev->real_port == 0 ||
795 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
796 xhci_dbg(xhci, "Bad real port.\n");
797 return;
798 }
799
800 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
801 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
802 /* Multi-TT hubs will have more than one entry */
803 if (tt_info->slot_id == slot_id) {
804 slot_found = true;
805 list_del(&tt_info->tt_list);
806 kfree(tt_info);
807 } else if (slot_found) {
808 break;
809 }
810 }
811}
812
813int xhci_alloc_tt_info(struct xhci_hcd *xhci,
814 struct xhci_virt_device *virt_dev,
815 struct usb_device *hdev,
816 struct usb_tt *tt, gfp_t mem_flags)
817{
818 struct xhci_tt_bw_info *tt_info;
819 unsigned int num_ports;
820 int i, j;
821 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
822
823 if (!tt->multi)
824 num_ports = 1;
825 else
826 num_ports = hdev->maxchild;
827
828 for (i = 0; i < num_ports; i++, tt_info++) {
829 struct xhci_interval_bw_table *bw_table;
830
831 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
832 dev_to_node(dev));
833 if (!tt_info)
834 goto free_tts;
835 INIT_LIST_HEAD(&tt_info->tt_list);
836 list_add(&tt_info->tt_list,
837 &xhci->rh_bw[virt_dev->real_port - 1].tts);
838 tt_info->slot_id = virt_dev->udev->slot_id;
839 if (tt->multi)
840 tt_info->ttport = i+1;
841 bw_table = &tt_info->bw_table;
842 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
843 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
844 }
845 return 0;
846
847free_tts:
848 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
849 return -ENOMEM;
850}
851
852
853/* All the xhci_tds in the ring's TD list should be freed at this point.
854 * Should be called with xhci->lock held if there is any chance the TT lists
855 * will be manipulated by the configure endpoint, allocate device, or update
856 * hub functions while this function is removing the TT entries from the list.
857 */
858void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
859{
860 struct xhci_virt_device *dev;
861 int i;
862 int old_active_eps = 0;
863
864 /* Slot ID 0 is reserved */
865 if (slot_id == 0 || !xhci->devs[slot_id])
866 return;
867
868 dev = xhci->devs[slot_id];
869
870 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
871 if (!dev)
872 return;
873
874 trace_xhci_free_virt_device(dev);
875
876 if (dev->tt_info)
877 old_active_eps = dev->tt_info->active_eps;
878
879 for (i = 0; i < 31; i++) {
880 if (dev->eps[i].ring)
881 xhci_ring_free(xhci, dev->eps[i].ring);
882 if (dev->eps[i].stream_info)
883 xhci_free_stream_info(xhci,
884 dev->eps[i].stream_info);
885 /*
886 * Endpoints are normally deleted from the bandwidth list when
887 * endpoints are dropped, before device is freed.
888 * If host is dying or being removed then endpoints aren't
889 * dropped cleanly, so delete the endpoint from list here.
890 * Only applicable for hosts with software bandwidth checking.
891 */
892
893 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
894 list_del_init(&dev->eps[i].bw_endpoint_list);
895 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
896 slot_id, i);
897 }
898 }
899 /* If this is a hub, free the TT(s) from the TT list */
900 xhci_free_tt_info(xhci, dev, slot_id);
901 /* If necessary, update the number of active TTs on this root port */
902 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
903
904 if (dev->in_ctx)
905 xhci_free_container_ctx(xhci, dev->in_ctx);
906 if (dev->out_ctx)
907 xhci_free_container_ctx(xhci, dev->out_ctx);
908
909 if (dev->udev && dev->udev->slot_id)
910 dev->udev->slot_id = 0;
911 kfree(xhci->devs[slot_id]);
912 xhci->devs[slot_id] = NULL;
913}
914
915/*
916 * Free a virt_device structure.
917 * If the virt_device added a tt_info (a hub) and has children pointing to
918 * that tt_info, then free the child first. Recursive.
919 * We can't rely on udev at this point to find child-parent relationships.
920 */
921static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
922{
923 struct xhci_virt_device *vdev;
924 struct list_head *tt_list_head;
925 struct xhci_tt_bw_info *tt_info, *next;
926 int i;
927
928 vdev = xhci->devs[slot_id];
929 if (!vdev)
930 return;
931
932 if (vdev->real_port == 0 ||
933 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
934 xhci_dbg(xhci, "Bad vdev->real_port.\n");
935 goto out;
936 }
937
938 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
939 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
940 /* is this a hub device that added a tt_info to the tts list */
941 if (tt_info->slot_id == slot_id) {
942 /* are any devices using this tt_info? */
943 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
944 vdev = xhci->devs[i];
945 if (vdev && (vdev->tt_info == tt_info))
946 xhci_free_virt_devices_depth_first(
947 xhci, i);
948 }
949 }
950 }
951out:
952 /* we are now at a leaf device */
953 xhci_debugfs_remove_slot(xhci, slot_id);
954 xhci_free_virt_device(xhci, slot_id);
955}
956
957int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
958 struct usb_device *udev, gfp_t flags)
959{
960 struct xhci_virt_device *dev;
961 int i;
962
963 /* Slot ID 0 is reserved */
964 if (slot_id == 0 || xhci->devs[slot_id]) {
965 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
966 return 0;
967 }
968
969 dev = kzalloc(sizeof(*dev), flags);
970 if (!dev)
971 return 0;
972
973 dev->slot_id = slot_id;
974
975 /* Allocate the (output) device context that will be used in the HC. */
976 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
977 if (!dev->out_ctx)
978 goto fail;
979
980 xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
981
982 /* Allocate the (input) device context for address device command */
983 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
984 if (!dev->in_ctx)
985 goto fail;
986
987 xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
988
989 /* Initialize the cancellation and bandwidth list for each ep */
990 for (i = 0; i < 31; i++) {
991 dev->eps[i].ep_index = i;
992 dev->eps[i].vdev = dev;
993 dev->eps[i].xhci = xhci;
994 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
995 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
996 }
997
998 /* Allocate endpoint 0 ring */
999 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1000 if (!dev->eps[0].ring)
1001 goto fail;
1002
1003 dev->udev = udev;
1004
1005 /* Point to output device context in dcbaa. */
1006 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1007 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1008 slot_id,
1009 &xhci->dcbaa->dev_context_ptrs[slot_id],
1010 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1011
1012 trace_xhci_alloc_virt_device(dev);
1013
1014 xhci->devs[slot_id] = dev;
1015
1016 return 1;
1017fail:
1018
1019 if (dev->in_ctx)
1020 xhci_free_container_ctx(xhci, dev->in_ctx);
1021 if (dev->out_ctx)
1022 xhci_free_container_ctx(xhci, dev->out_ctx);
1023 kfree(dev);
1024
1025 return 0;
1026}
1027
1028void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1029 struct usb_device *udev)
1030{
1031 struct xhci_virt_device *virt_dev;
1032 struct xhci_ep_ctx *ep0_ctx;
1033 struct xhci_ring *ep_ring;
1034
1035 virt_dev = xhci->devs[udev->slot_id];
1036 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1037 ep_ring = virt_dev->eps[0].ring;
1038 /*
1039 * FIXME we don't keep track of the dequeue pointer very well after a
1040 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1041 * host to our enqueue pointer. This should only be called after a
1042 * configured device has reset, so all control transfers should have
1043 * been completed or cancelled before the reset.
1044 */
1045 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1046 ep_ring->enqueue)
1047 | ep_ring->cycle_state);
1048}
1049
1050/*
1051 * The xHCI roothub may have ports of differing speeds in any order in the port
1052 * status registers.
1053 *
1054 * The xHCI hardware wants to know the roothub port number that the USB device
1055 * is attached to (or the roothub port its ancestor hub is attached to). All we
1056 * know is the index of that port under either the USB 2.0 or the USB 3.0
1057 * roothub, but that doesn't give us the real index into the HW port status
1058 * registers. Call xhci_find_raw_port_number() to get real index.
1059 */
1060static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1061 struct usb_device *udev)
1062{
1063 struct usb_device *top_dev;
1064 struct usb_hcd *hcd;
1065
1066 if (udev->speed >= USB_SPEED_SUPER)
1067 hcd = xhci_get_usb3_hcd(xhci);
1068 else
1069 hcd = xhci->main_hcd;
1070
1071 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1072 top_dev = top_dev->parent)
1073 /* Found device below root hub */;
1074
1075 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1076}
1077
1078/* Setup an xHCI virtual device for a Set Address command */
1079int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1080{
1081 struct xhci_virt_device *dev;
1082 struct xhci_ep_ctx *ep0_ctx;
1083 struct xhci_slot_ctx *slot_ctx;
1084 u32 port_num;
1085 u32 max_packets;
1086 struct usb_device *top_dev;
1087
1088 dev = xhci->devs[udev->slot_id];
1089 /* Slot ID 0 is reserved */
1090 if (udev->slot_id == 0 || !dev) {
1091 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1092 udev->slot_id);
1093 return -EINVAL;
1094 }
1095 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1096 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1097
1098 /* 3) Only the control endpoint is valid - one endpoint context */
1099 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1100 switch (udev->speed) {
1101 case USB_SPEED_SUPER_PLUS:
1102 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1103 max_packets = MAX_PACKET(512);
1104 break;
1105 case USB_SPEED_SUPER:
1106 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1107 max_packets = MAX_PACKET(512);
1108 break;
1109 case USB_SPEED_HIGH:
1110 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1111 max_packets = MAX_PACKET(64);
1112 break;
1113 /* USB core guesses at a 64-byte max packet first for FS devices */
1114 case USB_SPEED_FULL:
1115 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1116 max_packets = MAX_PACKET(64);
1117 break;
1118 case USB_SPEED_LOW:
1119 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1120 max_packets = MAX_PACKET(8);
1121 break;
1122 default:
1123 /* Speed was set earlier, this shouldn't happen. */
1124 return -EINVAL;
1125 }
1126 /* Find the root hub port this device is under */
1127 port_num = xhci_find_real_port_number(xhci, udev);
1128 if (!port_num)
1129 return -EINVAL;
1130 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1131 /* Set the port number in the virtual_device to the faked port number */
1132 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1133 top_dev = top_dev->parent)
1134 /* Found device below root hub */;
1135 dev->fake_port = top_dev->portnum;
1136 dev->real_port = port_num;
1137 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1138 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1139
1140 /* Find the right bandwidth table that this device will be a part of.
1141 * If this is a full speed device attached directly to a root port (or a
1142 * decendent of one), it counts as a primary bandwidth domain, not a
1143 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1144 * will never be created for the HS root hub.
1145 */
1146 if (!udev->tt || !udev->tt->hub->parent) {
1147 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1148 } else {
1149 struct xhci_root_port_bw_info *rh_bw;
1150 struct xhci_tt_bw_info *tt_bw;
1151
1152 rh_bw = &xhci->rh_bw[port_num - 1];
1153 /* Find the right TT. */
1154 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1155 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1156 continue;
1157
1158 if (!dev->udev->tt->multi ||
1159 (udev->tt->multi &&
1160 tt_bw->ttport == dev->udev->ttport)) {
1161 dev->bw_table = &tt_bw->bw_table;
1162 dev->tt_info = tt_bw;
1163 break;
1164 }
1165 }
1166 if (!dev->tt_info)
1167 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1168 }
1169
1170 /* Is this a LS/FS device under an external HS hub? */
1171 if (udev->tt && udev->tt->hub->parent) {
1172 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1173 (udev->ttport << 8));
1174 if (udev->tt->multi)
1175 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1176 }
1177 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1178 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1179
1180 /* Step 4 - ring already allocated */
1181 /* Step 5 */
1182 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1183
1184 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1185 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1186 max_packets);
1187
1188 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1189 dev->eps[0].ring->cycle_state);
1190
1191 trace_xhci_setup_addressable_virt_device(dev);
1192
1193 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1194
1195 return 0;
1196}
1197
1198/*
1199 * Convert interval expressed as 2^(bInterval - 1) == interval into
1200 * straight exponent value 2^n == interval.
1201 *
1202 */
1203static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1204 struct usb_host_endpoint *ep)
1205{
1206 unsigned int interval;
1207
1208 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1209 if (interval != ep->desc.bInterval - 1)
1210 dev_warn(&udev->dev,
1211 "ep %#x - rounding interval to %d %sframes\n",
1212 ep->desc.bEndpointAddress,
1213 1 << interval,
1214 udev->speed == USB_SPEED_FULL ? "" : "micro");
1215
1216 if (udev->speed == USB_SPEED_FULL) {
1217 /*
1218 * Full speed isoc endpoints specify interval in frames,
1219 * not microframes. We are using microframes everywhere,
1220 * so adjust accordingly.
1221 */
1222 interval += 3; /* 1 frame = 2^3 uframes */
1223 }
1224
1225 return interval;
1226}
1227
1228/*
1229 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1230 * microframes, rounded down to nearest power of 2.
1231 */
1232static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1233 struct usb_host_endpoint *ep, unsigned int desc_interval,
1234 unsigned int min_exponent, unsigned int max_exponent)
1235{
1236 unsigned int interval;
1237
1238 interval = fls(desc_interval) - 1;
1239 interval = clamp_val(interval, min_exponent, max_exponent);
1240 if ((1 << interval) != desc_interval)
1241 dev_dbg(&udev->dev,
1242 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1243 ep->desc.bEndpointAddress,
1244 1 << interval,
1245 desc_interval);
1246
1247 return interval;
1248}
1249
1250static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1251 struct usb_host_endpoint *ep)
1252{
1253 if (ep->desc.bInterval == 0)
1254 return 0;
1255 return xhci_microframes_to_exponent(udev, ep,
1256 ep->desc.bInterval, 0, 15);
1257}
1258
1259
1260static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1261 struct usb_host_endpoint *ep)
1262{
1263 return xhci_microframes_to_exponent(udev, ep,
1264 ep->desc.bInterval * 8, 3, 10);
1265}
1266
1267/* Return the polling or NAK interval.
1268 *
1269 * The polling interval is expressed in "microframes". If xHCI's Interval field
1270 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1271 *
1272 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1273 * is set to 0.
1274 */
1275static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1276 struct usb_host_endpoint *ep)
1277{
1278 unsigned int interval = 0;
1279
1280 switch (udev->speed) {
1281 case USB_SPEED_HIGH:
1282 /* Max NAK rate */
1283 if (usb_endpoint_xfer_control(&ep->desc) ||
1284 usb_endpoint_xfer_bulk(&ep->desc)) {
1285 interval = xhci_parse_microframe_interval(udev, ep);
1286 break;
1287 }
1288 fallthrough; /* SS and HS isoc/int have same decoding */
1289
1290 case USB_SPEED_SUPER_PLUS:
1291 case USB_SPEED_SUPER:
1292 if (usb_endpoint_xfer_int(&ep->desc) ||
1293 usb_endpoint_xfer_isoc(&ep->desc)) {
1294 interval = xhci_parse_exponent_interval(udev, ep);
1295 }
1296 break;
1297
1298 case USB_SPEED_FULL:
1299 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1300 interval = xhci_parse_exponent_interval(udev, ep);
1301 break;
1302 }
1303 /*
1304 * Fall through for interrupt endpoint interval decoding
1305 * since it uses the same rules as low speed interrupt
1306 * endpoints.
1307 */
1308 fallthrough;
1309
1310 case USB_SPEED_LOW:
1311 if (usb_endpoint_xfer_int(&ep->desc) ||
1312 usb_endpoint_xfer_isoc(&ep->desc)) {
1313
1314 interval = xhci_parse_frame_interval(udev, ep);
1315 }
1316 break;
1317
1318 default:
1319 BUG();
1320 }
1321 return interval;
1322}
1323
1324/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1325 * High speed endpoint descriptors can define "the number of additional
1326 * transaction opportunities per microframe", but that goes in the Max Burst
1327 * endpoint context field.
1328 */
1329static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1330 struct usb_host_endpoint *ep)
1331{
1332 if (udev->speed < USB_SPEED_SUPER ||
1333 !usb_endpoint_xfer_isoc(&ep->desc))
1334 return 0;
1335 return ep->ss_ep_comp.bmAttributes;
1336}
1337
1338static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1339 struct usb_host_endpoint *ep)
1340{
1341 /* Super speed and Plus have max burst in ep companion desc */
1342 if (udev->speed >= USB_SPEED_SUPER)
1343 return ep->ss_ep_comp.bMaxBurst;
1344
1345 if (udev->speed == USB_SPEED_HIGH &&
1346 (usb_endpoint_xfer_isoc(&ep->desc) ||
1347 usb_endpoint_xfer_int(&ep->desc)))
1348 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1349
1350 return 0;
1351}
1352
1353static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1354{
1355 int in;
1356
1357 in = usb_endpoint_dir_in(&ep->desc);
1358
1359 switch (usb_endpoint_type(&ep->desc)) {
1360 case USB_ENDPOINT_XFER_CONTROL:
1361 return CTRL_EP;
1362 case USB_ENDPOINT_XFER_BULK:
1363 return in ? BULK_IN_EP : BULK_OUT_EP;
1364 case USB_ENDPOINT_XFER_ISOC:
1365 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1366 case USB_ENDPOINT_XFER_INT:
1367 return in ? INT_IN_EP : INT_OUT_EP;
1368 }
1369 return 0;
1370}
1371
1372/* Return the maximum endpoint service interval time (ESIT) payload.
1373 * Basically, this is the maxpacket size, multiplied by the burst size
1374 * and mult size.
1375 */
1376static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1377 struct usb_host_endpoint *ep)
1378{
1379 int max_burst;
1380 int max_packet;
1381
1382 /* Only applies for interrupt or isochronous endpoints */
1383 if (usb_endpoint_xfer_control(&ep->desc) ||
1384 usb_endpoint_xfer_bulk(&ep->desc))
1385 return 0;
1386
1387 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1388 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1389 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1390 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1391
1392 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1393 if (udev->speed >= USB_SPEED_SUPER)
1394 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1395
1396 max_packet = usb_endpoint_maxp(&ep->desc);
1397 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1398 /* A 0 in max burst means 1 transfer per ESIT */
1399 return max_packet * max_burst;
1400}
1401
1402/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1403 * Drivers will have to call usb_alloc_streams() to do that.
1404 */
1405int xhci_endpoint_init(struct xhci_hcd *xhci,
1406 struct xhci_virt_device *virt_dev,
1407 struct usb_device *udev,
1408 struct usb_host_endpoint *ep,
1409 gfp_t mem_flags)
1410{
1411 unsigned int ep_index;
1412 struct xhci_ep_ctx *ep_ctx;
1413 struct xhci_ring *ep_ring;
1414 unsigned int max_packet;
1415 enum xhci_ring_type ring_type;
1416 u32 max_esit_payload;
1417 u32 endpoint_type;
1418 unsigned int max_burst;
1419 unsigned int interval;
1420 unsigned int mult;
1421 unsigned int avg_trb_len;
1422 unsigned int err_count = 0;
1423
1424 ep_index = xhci_get_endpoint_index(&ep->desc);
1425 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1426
1427 endpoint_type = xhci_get_endpoint_type(ep);
1428 if (!endpoint_type)
1429 return -EINVAL;
1430
1431 ring_type = usb_endpoint_type(&ep->desc);
1432
1433 /*
1434 * Get values to fill the endpoint context, mostly from ep descriptor.
1435 * The average TRB buffer lengt for bulk endpoints is unclear as we
1436 * have no clue on scatter gather list entry size. For Isoc and Int,
1437 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1438 */
1439 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1440 interval = xhci_get_endpoint_interval(udev, ep);
1441
1442 /* Periodic endpoint bInterval limit quirk */
1443 if (usb_endpoint_xfer_int(&ep->desc) ||
1444 usb_endpoint_xfer_isoc(&ep->desc)) {
1445 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1446 udev->speed >= USB_SPEED_HIGH &&
1447 interval >= 7) {
1448 interval = 6;
1449 }
1450 }
1451
1452 mult = xhci_get_endpoint_mult(udev, ep);
1453 max_packet = usb_endpoint_maxp(&ep->desc);
1454 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1455 avg_trb_len = max_esit_payload;
1456
1457 /* FIXME dig Mult and streams info out of ep companion desc */
1458
1459 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1460 if (!usb_endpoint_xfer_isoc(&ep->desc))
1461 err_count = 3;
1462 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1463 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1464 if (udev->speed == USB_SPEED_HIGH)
1465 max_packet = 512;
1466 if (udev->speed == USB_SPEED_FULL) {
1467 max_packet = rounddown_pow_of_two(max_packet);
1468 max_packet = clamp_val(max_packet, 8, 64);
1469 }
1470 }
1471 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1472 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1473 avg_trb_len = 8;
1474 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1475 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1476 mult = 0;
1477
1478 /* Set up the endpoint ring */
1479 virt_dev->eps[ep_index].new_ring =
1480 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1481 if (!virt_dev->eps[ep_index].new_ring)
1482 return -ENOMEM;
1483
1484 virt_dev->eps[ep_index].skip = false;
1485 ep_ring = virt_dev->eps[ep_index].new_ring;
1486
1487 /* Fill the endpoint context */
1488 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1489 EP_INTERVAL(interval) |
1490 EP_MULT(mult));
1491 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1492 MAX_PACKET(max_packet) |
1493 MAX_BURST(max_burst) |
1494 ERROR_COUNT(err_count));
1495 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1496 ep_ring->cycle_state);
1497
1498 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1499 EP_AVG_TRB_LENGTH(avg_trb_len));
1500
1501 return 0;
1502}
1503
1504void xhci_endpoint_zero(struct xhci_hcd *xhci,
1505 struct xhci_virt_device *virt_dev,
1506 struct usb_host_endpoint *ep)
1507{
1508 unsigned int ep_index;
1509 struct xhci_ep_ctx *ep_ctx;
1510
1511 ep_index = xhci_get_endpoint_index(&ep->desc);
1512 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1513
1514 ep_ctx->ep_info = 0;
1515 ep_ctx->ep_info2 = 0;
1516 ep_ctx->deq = 0;
1517 ep_ctx->tx_info = 0;
1518 /* Don't free the endpoint ring until the set interface or configuration
1519 * request succeeds.
1520 */
1521}
1522
1523void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1524{
1525 bw_info->ep_interval = 0;
1526 bw_info->mult = 0;
1527 bw_info->num_packets = 0;
1528 bw_info->max_packet_size = 0;
1529 bw_info->type = 0;
1530 bw_info->max_esit_payload = 0;
1531}
1532
1533void xhci_update_bw_info(struct xhci_hcd *xhci,
1534 struct xhci_container_ctx *in_ctx,
1535 struct xhci_input_control_ctx *ctrl_ctx,
1536 struct xhci_virt_device *virt_dev)
1537{
1538 struct xhci_bw_info *bw_info;
1539 struct xhci_ep_ctx *ep_ctx;
1540 unsigned int ep_type;
1541 int i;
1542
1543 for (i = 1; i < 31; i++) {
1544 bw_info = &virt_dev->eps[i].bw_info;
1545
1546 /* We can't tell what endpoint type is being dropped, but
1547 * unconditionally clearing the bandwidth info for non-periodic
1548 * endpoints should be harmless because the info will never be
1549 * set in the first place.
1550 */
1551 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1552 /* Dropped endpoint */
1553 xhci_clear_endpoint_bw_info(bw_info);
1554 continue;
1555 }
1556
1557 if (EP_IS_ADDED(ctrl_ctx, i)) {
1558 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1559 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1560
1561 /* Ignore non-periodic endpoints */
1562 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1563 ep_type != ISOC_IN_EP &&
1564 ep_type != INT_IN_EP)
1565 continue;
1566
1567 /* Added or changed endpoint */
1568 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1569 le32_to_cpu(ep_ctx->ep_info));
1570 /* Number of packets and mult are zero-based in the
1571 * input context, but we want one-based for the
1572 * interval table.
1573 */
1574 bw_info->mult = CTX_TO_EP_MULT(
1575 le32_to_cpu(ep_ctx->ep_info)) + 1;
1576 bw_info->num_packets = CTX_TO_MAX_BURST(
1577 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1578 bw_info->max_packet_size = MAX_PACKET_DECODED(
1579 le32_to_cpu(ep_ctx->ep_info2));
1580 bw_info->type = ep_type;
1581 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1582 le32_to_cpu(ep_ctx->tx_info));
1583 }
1584 }
1585}
1586
1587/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1588 * Useful when you want to change one particular aspect of the endpoint and then
1589 * issue a configure endpoint command.
1590 */
1591void xhci_endpoint_copy(struct xhci_hcd *xhci,
1592 struct xhci_container_ctx *in_ctx,
1593 struct xhci_container_ctx *out_ctx,
1594 unsigned int ep_index)
1595{
1596 struct xhci_ep_ctx *out_ep_ctx;
1597 struct xhci_ep_ctx *in_ep_ctx;
1598
1599 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1600 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1601
1602 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1603 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1604 in_ep_ctx->deq = out_ep_ctx->deq;
1605 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1606 if (xhci->quirks & XHCI_MTK_HOST) {
1607 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1608 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1609 }
1610}
1611
1612/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1613 * Useful when you want to change one particular aspect of the endpoint and then
1614 * issue a configure endpoint command. Only the context entries field matters,
1615 * but we'll copy the whole thing anyway.
1616 */
1617void xhci_slot_copy(struct xhci_hcd *xhci,
1618 struct xhci_container_ctx *in_ctx,
1619 struct xhci_container_ctx *out_ctx)
1620{
1621 struct xhci_slot_ctx *in_slot_ctx;
1622 struct xhci_slot_ctx *out_slot_ctx;
1623
1624 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1625 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1626
1627 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1628 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1629 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1630 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1631}
1632
1633/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1634static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1635{
1636 int i;
1637 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1638 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1639
1640 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1641 "Allocating %d scratchpad buffers", num_sp);
1642
1643 if (!num_sp)
1644 return 0;
1645
1646 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1647 dev_to_node(dev));
1648 if (!xhci->scratchpad)
1649 goto fail_sp;
1650
1651 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1652 size_mul(sizeof(u64), num_sp),
1653 &xhci->scratchpad->sp_dma, flags);
1654 if (!xhci->scratchpad->sp_array)
1655 goto fail_sp2;
1656
1657 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1658 flags, dev_to_node(dev));
1659 if (!xhci->scratchpad->sp_buffers)
1660 goto fail_sp3;
1661
1662 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1663 for (i = 0; i < num_sp; i++) {
1664 dma_addr_t dma;
1665 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1666 flags);
1667 if (!buf)
1668 goto fail_sp4;
1669
1670 xhci->scratchpad->sp_array[i] = dma;
1671 xhci->scratchpad->sp_buffers[i] = buf;
1672 }
1673
1674 return 0;
1675
1676 fail_sp4:
1677 while (i--)
1678 dma_free_coherent(dev, xhci->page_size,
1679 xhci->scratchpad->sp_buffers[i],
1680 xhci->scratchpad->sp_array[i]);
1681
1682 kfree(xhci->scratchpad->sp_buffers);
1683
1684 fail_sp3:
1685 dma_free_coherent(dev, num_sp * sizeof(u64),
1686 xhci->scratchpad->sp_array,
1687 xhci->scratchpad->sp_dma);
1688
1689 fail_sp2:
1690 kfree(xhci->scratchpad);
1691 xhci->scratchpad = NULL;
1692
1693 fail_sp:
1694 return -ENOMEM;
1695}
1696
1697static void scratchpad_free(struct xhci_hcd *xhci)
1698{
1699 int num_sp;
1700 int i;
1701 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1702
1703 if (!xhci->scratchpad)
1704 return;
1705
1706 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1707
1708 for (i = 0; i < num_sp; i++) {
1709 dma_free_coherent(dev, xhci->page_size,
1710 xhci->scratchpad->sp_buffers[i],
1711 xhci->scratchpad->sp_array[i]);
1712 }
1713 kfree(xhci->scratchpad->sp_buffers);
1714 dma_free_coherent(dev, num_sp * sizeof(u64),
1715 xhci->scratchpad->sp_array,
1716 xhci->scratchpad->sp_dma);
1717 kfree(xhci->scratchpad);
1718 xhci->scratchpad = NULL;
1719}
1720
1721struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1722 bool allocate_completion, gfp_t mem_flags)
1723{
1724 struct xhci_command *command;
1725 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1726
1727 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1728 if (!command)
1729 return NULL;
1730
1731 if (allocate_completion) {
1732 command->completion =
1733 kzalloc_node(sizeof(struct completion), mem_flags,
1734 dev_to_node(dev));
1735 if (!command->completion) {
1736 kfree(command);
1737 return NULL;
1738 }
1739 init_completion(command->completion);
1740 }
1741
1742 command->status = 0;
1743 /* set default timeout to 5000 ms */
1744 command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1745 INIT_LIST_HEAD(&command->cmd_list);
1746 return command;
1747}
1748
1749struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1750 bool allocate_completion, gfp_t mem_flags)
1751{
1752 struct xhci_command *command;
1753
1754 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1755 if (!command)
1756 return NULL;
1757
1758 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1759 mem_flags);
1760 if (!command->in_ctx) {
1761 kfree(command->completion);
1762 kfree(command);
1763 return NULL;
1764 }
1765 return command;
1766}
1767
1768void xhci_urb_free_priv(struct urb_priv *urb_priv)
1769{
1770 kfree(urb_priv);
1771}
1772
1773void xhci_free_command(struct xhci_hcd *xhci,
1774 struct xhci_command *command)
1775{
1776 xhci_free_container_ctx(xhci,
1777 command->in_ctx);
1778 kfree(command->completion);
1779 kfree(command);
1780}
1781
1782static int xhci_alloc_erst(struct xhci_hcd *xhci,
1783 struct xhci_ring *evt_ring,
1784 struct xhci_erst *erst,
1785 gfp_t flags)
1786{
1787 size_t size;
1788 unsigned int val;
1789 struct xhci_segment *seg;
1790 struct xhci_erst_entry *entry;
1791
1792 size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1793 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1794 size, &erst->erst_dma_addr, flags);
1795 if (!erst->entries)
1796 return -ENOMEM;
1797
1798 erst->num_entries = evt_ring->num_segs;
1799
1800 seg = evt_ring->first_seg;
1801 for (val = 0; val < evt_ring->num_segs; val++) {
1802 entry = &erst->entries[val];
1803 entry->seg_addr = cpu_to_le64(seg->dma);
1804 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1805 entry->rsvd = 0;
1806 seg = seg->next;
1807 }
1808
1809 return 0;
1810}
1811
1812static void
1813xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1814{
1815 u32 tmp;
1816
1817 if (!ir)
1818 return;
1819
1820 /*
1821 * Clean out interrupter registers except ERSTBA. Clearing either the
1822 * low or high 32 bits of ERSTBA immediately causes the controller to
1823 * dereference the partially cleared 64 bit address, causing IOMMU error.
1824 */
1825 if (ir->ir_set) {
1826 tmp = readl(&ir->ir_set->erst_size);
1827 tmp &= ERST_SIZE_MASK;
1828 writel(tmp, &ir->ir_set->erst_size);
1829
1830 xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue);
1831 }
1832}
1833
1834static void
1835xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1836{
1837 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1838 size_t erst_size;
1839
1840 if (!ir)
1841 return;
1842
1843 erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries;
1844 if (ir->erst.entries)
1845 dma_free_coherent(dev, erst_size,
1846 ir->erst.entries,
1847 ir->erst.erst_dma_addr);
1848 ir->erst.entries = NULL;
1849
1850 /* free interrupter event ring */
1851 if (ir->event_ring)
1852 xhci_ring_free(xhci, ir->event_ring);
1853
1854 ir->event_ring = NULL;
1855
1856 kfree(ir);
1857}
1858
1859void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1860{
1861 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1862 unsigned int intr_num;
1863
1864 spin_lock_irq(&xhci->lock);
1865
1866 /* interrupter 0 is primary interrupter, don't touch it */
1867 if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1868 xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1869 spin_unlock_irq(&xhci->lock);
1870 return;
1871 }
1872
1873 intr_num = ir->intr_num;
1874
1875 xhci_remove_interrupter(xhci, ir);
1876 xhci->interrupters[intr_num] = NULL;
1877
1878 spin_unlock_irq(&xhci->lock);
1879
1880 xhci_free_interrupter(xhci, ir);
1881}
1882EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1883
1884void xhci_mem_cleanup(struct xhci_hcd *xhci)
1885{
1886 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1887 int i, j, num_ports;
1888
1889 cancel_delayed_work_sync(&xhci->cmd_timer);
1890
1891 for (i = 0; i < xhci->max_interrupters; i++) {
1892 if (xhci->interrupters[i]) {
1893 xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1894 xhci_free_interrupter(xhci, xhci->interrupters[i]);
1895 xhci->interrupters[i] = NULL;
1896 }
1897 }
1898 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1899
1900 if (xhci->cmd_ring)
1901 xhci_ring_free(xhci, xhci->cmd_ring);
1902 xhci->cmd_ring = NULL;
1903 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1904 xhci_cleanup_command_queue(xhci);
1905
1906 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1907 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1908 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1909 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1910 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1911 while (!list_empty(ep))
1912 list_del_init(ep->next);
1913 }
1914 }
1915
1916 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1917 xhci_free_virt_devices_depth_first(xhci, i);
1918
1919 dma_pool_destroy(xhci->segment_pool);
1920 xhci->segment_pool = NULL;
1921 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1922
1923 dma_pool_destroy(xhci->device_pool);
1924 xhci->device_pool = NULL;
1925 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1926
1927 dma_pool_destroy(xhci->small_streams_pool);
1928 xhci->small_streams_pool = NULL;
1929 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1930 "Freed small stream array pool");
1931
1932 dma_pool_destroy(xhci->medium_streams_pool);
1933 xhci->medium_streams_pool = NULL;
1934 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1935 "Freed medium stream array pool");
1936
1937 if (xhci->dcbaa)
1938 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1939 xhci->dcbaa, xhci->dcbaa->dma);
1940 xhci->dcbaa = NULL;
1941
1942 scratchpad_free(xhci);
1943
1944 if (!xhci->rh_bw)
1945 goto no_bw;
1946
1947 for (i = 0; i < num_ports; i++) {
1948 struct xhci_tt_bw_info *tt, *n;
1949 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1950 list_del(&tt->tt_list);
1951 kfree(tt);
1952 }
1953 }
1954
1955no_bw:
1956 xhci->cmd_ring_reserved_trbs = 0;
1957 xhci->usb2_rhub.num_ports = 0;
1958 xhci->usb3_rhub.num_ports = 0;
1959 xhci->num_active_eps = 0;
1960 kfree(xhci->usb2_rhub.ports);
1961 kfree(xhci->usb3_rhub.ports);
1962 kfree(xhci->hw_ports);
1963 kfree(xhci->rh_bw);
1964 kfree(xhci->ext_caps);
1965 for (i = 0; i < xhci->num_port_caps; i++)
1966 kfree(xhci->port_caps[i].psi);
1967 kfree(xhci->port_caps);
1968 kfree(xhci->interrupters);
1969 xhci->num_port_caps = 0;
1970
1971 xhci->usb2_rhub.ports = NULL;
1972 xhci->usb3_rhub.ports = NULL;
1973 xhci->hw_ports = NULL;
1974 xhci->rh_bw = NULL;
1975 xhci->ext_caps = NULL;
1976 xhci->port_caps = NULL;
1977 xhci->interrupters = NULL;
1978
1979 xhci->page_size = 0;
1980 xhci->page_shift = 0;
1981 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1982 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1983}
1984
1985static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1986{
1987 dma_addr_t deq;
1988
1989 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1990 ir->event_ring->dequeue);
1991 if (!deq)
1992 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1993 /* Update HC event ring dequeue pointer */
1994 /* Don't clear the EHB bit (which is RW1C) because
1995 * there might be more events to service.
1996 */
1997 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1998 "// Write event ring dequeue pointer, preserving EHB bit");
1999 xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
2000}
2001
2002static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2003 __le32 __iomem *addr, int max_caps)
2004{
2005 u32 temp, port_offset, port_count;
2006 int i;
2007 u8 major_revision, minor_revision, tmp_minor_revision;
2008 struct xhci_hub *rhub;
2009 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2010 struct xhci_port_cap *port_cap;
2011
2012 temp = readl(addr);
2013 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2014 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2015
2016 if (major_revision == 0x03) {
2017 rhub = &xhci->usb3_rhub;
2018 /*
2019 * Some hosts incorrectly use sub-minor version for minor
2020 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2021 * for bcdUSB 0x310). Since there is no USB release with sub
2022 * minor version 0x301 to 0x309, we can assume that they are
2023 * incorrect and fix it here.
2024 */
2025 if (minor_revision > 0x00 && minor_revision < 0x10)
2026 minor_revision <<= 4;
2027 /*
2028 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2029 * but only support Gen1.
2030 */
2031 if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2032 tmp_minor_revision = minor_revision;
2033 minor_revision = 0;
2034 }
2035
2036 } else if (major_revision <= 0x02) {
2037 rhub = &xhci->usb2_rhub;
2038 } else {
2039 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2040 addr, major_revision);
2041 /* Ignoring port protocol we can't understand. FIXME */
2042 return;
2043 }
2044
2045 /* Port offset and count in the third dword, see section 7.2 */
2046 temp = readl(addr + 2);
2047 port_offset = XHCI_EXT_PORT_OFF(temp);
2048 port_count = XHCI_EXT_PORT_COUNT(temp);
2049 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2050 "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2051 addr, port_offset, port_count, major_revision);
2052 /* Port count includes the current port offset */
2053 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2054 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2055 return;
2056
2057 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2058 if (xhci->num_port_caps > max_caps)
2059 return;
2060
2061 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2062
2063 if (port_cap->psi_count) {
2064 port_cap->psi = kcalloc_node(port_cap->psi_count,
2065 sizeof(*port_cap->psi),
2066 GFP_KERNEL, dev_to_node(dev));
2067 if (!port_cap->psi)
2068 port_cap->psi_count = 0;
2069
2070 port_cap->psi_uid_count++;
2071 for (i = 0; i < port_cap->psi_count; i++) {
2072 port_cap->psi[i] = readl(addr + 4 + i);
2073
2074 /* count unique ID values, two consecutive entries can
2075 * have the same ID if link is assymetric
2076 */
2077 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2078 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2079 port_cap->psi_uid_count++;
2080
2081 if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2082 major_revision == 0x03 &&
2083 XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2084 minor_revision = tmp_minor_revision;
2085
2086 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2087 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2088 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2089 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2090 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2091 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2092 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2093 }
2094 }
2095
2096 rhub->maj_rev = major_revision;
2097
2098 if (rhub->min_rev < minor_revision)
2099 rhub->min_rev = minor_revision;
2100
2101 port_cap->maj_rev = major_revision;
2102 port_cap->min_rev = minor_revision;
2103
2104 /* cache usb2 port capabilities */
2105 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2106 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2107
2108 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2109 (temp & XHCI_HLC)) {
2110 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2111 "xHCI 1.0: support USB2 hardware lpm");
2112 xhci->hw_lpm_support = 1;
2113 }
2114
2115 port_offset--;
2116 for (i = port_offset; i < (port_offset + port_count); i++) {
2117 struct xhci_port *hw_port = &xhci->hw_ports[i];
2118 /* Duplicate entry. Ignore the port if the revisions differ. */
2119 if (hw_port->rhub) {
2120 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2121 xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2122 hw_port->rhub->maj_rev, major_revision);
2123 /* Only adjust the roothub port counts if we haven't
2124 * found a similar duplicate.
2125 */
2126 if (hw_port->rhub != rhub &&
2127 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2128 hw_port->rhub->num_ports--;
2129 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2130 }
2131 continue;
2132 }
2133 hw_port->rhub = rhub;
2134 hw_port->port_cap = port_cap;
2135 rhub->num_ports++;
2136 }
2137 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2138}
2139
2140static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2141 struct xhci_hub *rhub, gfp_t flags)
2142{
2143 int port_index = 0;
2144 int i;
2145 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2146
2147 if (!rhub->num_ports)
2148 return;
2149 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2150 flags, dev_to_node(dev));
2151 if (!rhub->ports)
2152 return;
2153
2154 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2155 if (xhci->hw_ports[i].rhub != rhub ||
2156 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2157 continue;
2158 xhci->hw_ports[i].hcd_portnum = port_index;
2159 rhub->ports[port_index] = &xhci->hw_ports[i];
2160 port_index++;
2161 if (port_index == rhub->num_ports)
2162 break;
2163 }
2164}
2165
2166/*
2167 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2168 * specify what speeds each port is supposed to be. We can't count on the port
2169 * speed bits in the PORTSC register being correct until a device is connected,
2170 * but we need to set up the two fake roothubs with the correct number of USB
2171 * 3.0 and USB 2.0 ports at host controller initialization time.
2172 */
2173static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2174{
2175 void __iomem *base;
2176 u32 offset;
2177 unsigned int num_ports;
2178 int i, j;
2179 int cap_count = 0;
2180 u32 cap_start;
2181 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2182
2183 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2184 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2185 flags, dev_to_node(dev));
2186 if (!xhci->hw_ports)
2187 return -ENOMEM;
2188
2189 for (i = 0; i < num_ports; i++) {
2190 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2191 NUM_PORT_REGS * i;
2192 xhci->hw_ports[i].hw_portnum = i;
2193
2194 init_completion(&xhci->hw_ports[i].rexit_done);
2195 init_completion(&xhci->hw_ports[i].u3exit_done);
2196 }
2197
2198 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2199 dev_to_node(dev));
2200 if (!xhci->rh_bw)
2201 return -ENOMEM;
2202 for (i = 0; i < num_ports; i++) {
2203 struct xhci_interval_bw_table *bw_table;
2204
2205 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2206 bw_table = &xhci->rh_bw[i].bw_table;
2207 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2208 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2209 }
2210 base = &xhci->cap_regs->hc_capbase;
2211
2212 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2213 if (!cap_start) {
2214 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2215 return -ENODEV;
2216 }
2217
2218 offset = cap_start;
2219 /* count extended protocol capability entries for later caching */
2220 while (offset) {
2221 cap_count++;
2222 offset = xhci_find_next_ext_cap(base, offset,
2223 XHCI_EXT_CAPS_PROTOCOL);
2224 }
2225
2226 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2227 flags, dev_to_node(dev));
2228 if (!xhci->ext_caps)
2229 return -ENOMEM;
2230
2231 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2232 flags, dev_to_node(dev));
2233 if (!xhci->port_caps)
2234 return -ENOMEM;
2235
2236 offset = cap_start;
2237
2238 while (offset) {
2239 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2240 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2241 num_ports)
2242 break;
2243 offset = xhci_find_next_ext_cap(base, offset,
2244 XHCI_EXT_CAPS_PROTOCOL);
2245 }
2246 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2247 xhci_warn(xhci, "No ports on the roothubs?\n");
2248 return -ENODEV;
2249 }
2250 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2251 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2252 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2253
2254 /* Place limits on the number of roothub ports so that the hub
2255 * descriptors aren't longer than the USB core will allocate.
2256 */
2257 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2258 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2259 "Limiting USB 3.0 roothub ports to %u.",
2260 USB_SS_MAXPORTS);
2261 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2262 }
2263 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2264 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2265 "Limiting USB 2.0 roothub ports to %u.",
2266 USB_MAXCHILDREN);
2267 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2268 }
2269
2270 if (!xhci->usb2_rhub.num_ports)
2271 xhci_info(xhci, "USB2 root hub has no ports\n");
2272
2273 if (!xhci->usb3_rhub.num_ports)
2274 xhci_info(xhci, "USB3 root hub has no ports\n");
2275
2276 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2277 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2278
2279 return 0;
2280}
2281
2282static struct xhci_interrupter *
2283xhci_alloc_interrupter(struct xhci_hcd *xhci, int segs, gfp_t flags)
2284{
2285 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2286 struct xhci_interrupter *ir;
2287 unsigned int num_segs = segs;
2288 int ret;
2289
2290 ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2291 if (!ir)
2292 return NULL;
2293
2294 /* number of ring segments should be greater than 0 */
2295 if (segs <= 0)
2296 num_segs = min_t(unsigned int, 1 << HCS_ERST_MAX(xhci->hcs_params2),
2297 ERST_MAX_SEGS);
2298
2299 ir->event_ring = xhci_ring_alloc(xhci, num_segs, 1, TYPE_EVENT, 0,
2300 flags);
2301 if (!ir->event_ring) {
2302 xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2303 kfree(ir);
2304 return NULL;
2305 }
2306
2307 ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2308 if (ret) {
2309 xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2310 xhci_ring_free(xhci, ir->event_ring);
2311 kfree(ir);
2312 return NULL;
2313 }
2314
2315 return ir;
2316}
2317
2318static int
2319xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2320 unsigned int intr_num)
2321{
2322 u64 erst_base;
2323 u32 erst_size;
2324
2325 if (intr_num >= xhci->max_interrupters) {
2326 xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2327 intr_num, xhci->max_interrupters);
2328 return -EINVAL;
2329 }
2330
2331 if (xhci->interrupters[intr_num]) {
2332 xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2333 return -EINVAL;
2334 }
2335
2336 xhci->interrupters[intr_num] = ir;
2337 ir->intr_num = intr_num;
2338 ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2339
2340 /* set ERST count with the number of entries in the segment table */
2341 erst_size = readl(&ir->ir_set->erst_size);
2342 erst_size &= ERST_SIZE_MASK;
2343 erst_size |= ir->event_ring->num_segs;
2344 writel(erst_size, &ir->ir_set->erst_size);
2345
2346 erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2347 erst_base &= ERST_BASE_RSVDP;
2348 erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2349 xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2350
2351 /* Set the event ring dequeue address of this interrupter */
2352 xhci_set_hc_event_deq(xhci, ir);
2353
2354 return 0;
2355}
2356
2357struct xhci_interrupter *
2358xhci_create_secondary_interrupter(struct usb_hcd *hcd, int num_seg)
2359{
2360 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2361 struct xhci_interrupter *ir;
2362 unsigned int i;
2363 int err = -ENOSPC;
2364
2365 if (!xhci->interrupters || xhci->max_interrupters <= 1)
2366 return NULL;
2367
2368 ir = xhci_alloc_interrupter(xhci, num_seg, GFP_KERNEL);
2369 if (!ir)
2370 return NULL;
2371
2372 spin_lock_irq(&xhci->lock);
2373
2374 /* Find available secondary interrupter, interrupter 0 is reserved for primary */
2375 for (i = 1; i < xhci->max_interrupters; i++) {
2376 if (xhci->interrupters[i] == NULL) {
2377 err = xhci_add_interrupter(xhci, ir, i);
2378 break;
2379 }
2380 }
2381
2382 spin_unlock_irq(&xhci->lock);
2383
2384 if (err) {
2385 xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2386 xhci->max_interrupters);
2387 xhci_free_interrupter(xhci, ir);
2388 return NULL;
2389 }
2390
2391 xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2392 i, xhci->max_interrupters);
2393
2394 return ir;
2395}
2396EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2397
2398int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2399{
2400 struct xhci_interrupter *ir;
2401 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2402 dma_addr_t dma;
2403 unsigned int val, val2;
2404 u64 val_64;
2405 u32 page_size, temp;
2406 int i;
2407
2408 INIT_LIST_HEAD(&xhci->cmd_list);
2409
2410 /* init command timeout work */
2411 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2412 init_completion(&xhci->cmd_ring_stop_completion);
2413
2414 page_size = readl(&xhci->op_regs->page_size);
2415 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416 "Supported page size register = 0x%x", page_size);
2417 i = ffs(page_size);
2418 if (i < 16)
2419 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420 "Supported page size of %iK", (1 << (i+12)) / 1024);
2421 else
2422 xhci_warn(xhci, "WARN: no supported page size\n");
2423 /* Use 4K pages, since that's common and the minimum the HC supports */
2424 xhci->page_shift = 12;
2425 xhci->page_size = 1 << xhci->page_shift;
2426 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2427 "HCD page size set to %iK", xhci->page_size / 1024);
2428
2429 /*
2430 * Program the Number of Device Slots Enabled field in the CONFIG
2431 * register with the max value of slots the HC can handle.
2432 */
2433 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2434 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2435 "// xHC can handle at most %d device slots.", val);
2436 val2 = readl(&xhci->op_regs->config_reg);
2437 val |= (val2 & ~HCS_SLOTS_MASK);
2438 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2439 "// Setting Max device slots reg = 0x%x.", val);
2440 writel(val, &xhci->op_regs->config_reg);
2441
2442 /*
2443 * xHCI section 5.4.6 - Device Context array must be
2444 * "physically contiguous and 64-byte (cache line) aligned".
2445 */
2446 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2447 flags);
2448 if (!xhci->dcbaa)
2449 goto fail;
2450 xhci->dcbaa->dma = dma;
2451 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2452 "// Device context base array address = 0x%pad (DMA), %p (virt)",
2453 &xhci->dcbaa->dma, xhci->dcbaa);
2454 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2455
2456 /*
2457 * Initialize the ring segment pool. The ring must be a contiguous
2458 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2459 * however, the command ring segment needs 64-byte aligned segments
2460 * and our use of dma addresses in the trb_address_map radix tree needs
2461 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2462 */
2463 if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2464 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2465 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2466 else
2467 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2468 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2469
2470 /* See Table 46 and Note on Figure 55 */
2471 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2472 2112, 64, xhci->page_size);
2473 if (!xhci->segment_pool || !xhci->device_pool)
2474 goto fail;
2475
2476 /* Linear stream context arrays don't have any boundary restrictions,
2477 * and only need to be 16-byte aligned.
2478 */
2479 xhci->small_streams_pool =
2480 dma_pool_create("xHCI 256 byte stream ctx arrays",
2481 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2482 xhci->medium_streams_pool =
2483 dma_pool_create("xHCI 1KB stream ctx arrays",
2484 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2485 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2486 * will be allocated with dma_alloc_coherent()
2487 */
2488
2489 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2490 goto fail;
2491
2492 /* Set up the command ring to have one segments for now. */
2493 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2494 if (!xhci->cmd_ring)
2495 goto fail;
2496 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2497 "Allocated command ring at %p", xhci->cmd_ring);
2498 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2499 &xhci->cmd_ring->first_seg->dma);
2500
2501 /* Set the address in the Command Ring Control register */
2502 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2503 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2504 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2505 xhci->cmd_ring->cycle_state;
2506 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2507 "// Setting command ring address to 0x%016llx", val_64);
2508 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2509
2510 /* Reserve one command ring TRB for disabling LPM.
2511 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2512 * disabling LPM, we only need to reserve one TRB for all devices.
2513 */
2514 xhci->cmd_ring_reserved_trbs++;
2515
2516 val = readl(&xhci->cap_regs->db_off);
2517 val &= DBOFF_MASK;
2518 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2519 "// Doorbell array is located at offset 0x%x from cap regs base addr",
2520 val);
2521 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2522
2523 /* Allocate and set up primary interrupter 0 with an event ring. */
2524 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2525 "Allocating primary event ring");
2526 xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2527 flags, dev_to_node(dev));
2528
2529 ir = xhci_alloc_interrupter(xhci, 0, flags);
2530 if (!ir)
2531 goto fail;
2532
2533 if (xhci_add_interrupter(xhci, ir, 0))
2534 goto fail;
2535
2536 xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2537
2538 /*
2539 * XXX: Might need to set the Interrupter Moderation Register to
2540 * something other than the default (~1ms minimum between interrupts).
2541 * See section 5.5.1.2.
2542 */
2543 for (i = 0; i < MAX_HC_SLOTS; i++)
2544 xhci->devs[i] = NULL;
2545
2546 if (scratchpad_alloc(xhci, flags))
2547 goto fail;
2548 if (xhci_setup_port_arrays(xhci, flags))
2549 goto fail;
2550
2551 /* Enable USB 3.0 device notifications for function remote wake, which
2552 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2553 * U3 (device suspend).
2554 */
2555 temp = readl(&xhci->op_regs->dev_notification);
2556 temp &= ~DEV_NOTE_MASK;
2557 temp |= DEV_NOTE_FWAKE;
2558 writel(temp, &xhci->op_regs->dev_notification);
2559
2560 return 0;
2561
2562fail:
2563 xhci_halt(xhci);
2564 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2565 xhci_mem_cleanup(xhci);
2566 return -ENOMEM;
2567}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/usb.h>
12#include <linux/pci.h>
13#include <linux/slab.h>
14#include <linux/dmapool.h>
15#include <linux/dma-mapping.h>
16
17#include "xhci.h"
18#include "xhci-trace.h"
19#include "xhci-debugfs.h"
20
21/*
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
24 *
25 * Section 4.11.1.1:
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27 */
28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 unsigned int cycle_state,
30 unsigned int max_packet,
31 gfp_t flags)
32{
33 struct xhci_segment *seg;
34 dma_addr_t dma;
35 int i;
36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37
38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 if (!seg)
40 return NULL;
41
42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 if (!seg->trbs) {
44 kfree(seg);
45 return NULL;
46 }
47
48 if (max_packet) {
49 seg->bounce_buf = kzalloc_node(max_packet, flags,
50 dev_to_node(dev));
51 if (!seg->bounce_buf) {
52 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 kfree(seg);
54 return NULL;
55 }
56 }
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state == 0) {
59 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61 }
62 seg->dma = dma;
63 seg->next = NULL;
64
65 return seg;
66}
67
68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69{
70 if (seg->trbs) {
71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 seg->trbs = NULL;
73 }
74 kfree(seg->bounce_buf);
75 kfree(seg);
76}
77
78static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79 struct xhci_segment *first)
80{
81 struct xhci_segment *seg;
82
83 seg = first->next;
84 while (seg != first) {
85 struct xhci_segment *next = seg->next;
86 xhci_segment_free(xhci, seg);
87 seg = next;
88 }
89 xhci_segment_free(xhci, first);
90}
91
92/*
93 * Make the prev segment point to the next segment.
94 *
95 * Change the last TRB in the prev segment to be a Link TRB which points to the
96 * DMA address of the next segment. The caller needs to set any Link TRB
97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
98 */
99static void xhci_link_segments(struct xhci_segment *prev,
100 struct xhci_segment *next,
101 enum xhci_ring_type type, bool chain_links)
102{
103 u32 val;
104
105 if (!prev || !next)
106 return;
107 prev->next = next;
108 if (type != TYPE_EVENT) {
109 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110 cpu_to_le64(next->dma);
111
112 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114 val &= ~TRB_TYPE_BITMASK;
115 val |= TRB_TYPE(TRB_LINK);
116 if (chain_links)
117 val |= TRB_CHAIN;
118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 }
120}
121
122/*
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
125 */
126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 struct xhci_segment *first, struct xhci_segment *last,
128 unsigned int num_segs)
129{
130 struct xhci_segment *next;
131 bool chain_links;
132
133 if (!ring || !first || !last)
134 return;
135
136 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137 chain_links = !!(xhci_link_trb_quirk(xhci) ||
138 (ring->type == TYPE_ISOC &&
139 (xhci->quirks & XHCI_AMD_0x96_HOST)));
140
141 next = ring->enq_seg->next;
142 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143 xhci_link_segments(last, next, ring->type, chain_links);
144 ring->num_segs += num_segs;
145 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146
147 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149 &= ~cpu_to_le32(LINK_TOGGLE);
150 last->trbs[TRBS_PER_SEGMENT-1].link.control
151 |= cpu_to_le32(LINK_TOGGLE);
152 ring->last_seg = last;
153 }
154}
155
156/*
157 * We need a radix tree for mapping physical addresses of TRBs to which stream
158 * ID they belong to. We need to do this because the host controller won't tell
159 * us which stream ring the TRB came from. We could store the stream ID in an
160 * event data TRB, but that doesn't help us for the cancellation case, since the
161 * endpoint may stop before it reaches that event data TRB.
162 *
163 * The radix tree maps the upper portion of the TRB DMA address to a ring
164 * segment that has the same upper portion of DMA addresses. For example, say I
165 * have segments of size 1KB, that are always 1KB aligned. A segment may
166 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
167 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
168 * pass the radix tree a key to get the right stream ID:
169 *
170 * 0x10c90fff >> 10 = 0x43243
171 * 0x10c912c0 >> 10 = 0x43244
172 * 0x10c91400 >> 10 = 0x43245
173 *
174 * Obviously, only those TRBs with DMA addresses that are within the segment
175 * will make the radix tree return the stream ID for that ring.
176 *
177 * Caveats for the radix tree:
178 *
179 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
184 * extended systems (where the DMA address can be bigger than 32-bits),
185 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
186 */
187static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188 struct xhci_ring *ring,
189 struct xhci_segment *seg,
190 gfp_t mem_flags)
191{
192 unsigned long key;
193 int ret;
194
195 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196 /* Skip any segments that were already added. */
197 if (radix_tree_lookup(trb_address_map, key))
198 return 0;
199
200 ret = radix_tree_maybe_preload(mem_flags);
201 if (ret)
202 return ret;
203 ret = radix_tree_insert(trb_address_map,
204 key, ring);
205 radix_tree_preload_end();
206 return ret;
207}
208
209static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210 struct xhci_segment *seg)
211{
212 unsigned long key;
213
214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 if (radix_tree_lookup(trb_address_map, key))
216 radix_tree_delete(trb_address_map, key);
217}
218
219static int xhci_update_stream_segment_mapping(
220 struct radix_tree_root *trb_address_map,
221 struct xhci_ring *ring,
222 struct xhci_segment *first_seg,
223 struct xhci_segment *last_seg,
224 gfp_t mem_flags)
225{
226 struct xhci_segment *seg;
227 struct xhci_segment *failed_seg;
228 int ret;
229
230 if (WARN_ON_ONCE(trb_address_map == NULL))
231 return 0;
232
233 seg = first_seg;
234 do {
235 ret = xhci_insert_segment_mapping(trb_address_map,
236 ring, seg, mem_flags);
237 if (ret)
238 goto remove_streams;
239 if (seg == last_seg)
240 return 0;
241 seg = seg->next;
242 } while (seg != first_seg);
243
244 return 0;
245
246remove_streams:
247 failed_seg = seg;
248 seg = first_seg;
249 do {
250 xhci_remove_segment_mapping(trb_address_map, seg);
251 if (seg == failed_seg)
252 return ret;
253 seg = seg->next;
254 } while (seg != first_seg);
255
256 return ret;
257}
258
259static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260{
261 struct xhci_segment *seg;
262
263 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264 return;
265
266 seg = ring->first_seg;
267 do {
268 xhci_remove_segment_mapping(ring->trb_address_map, seg);
269 seg = seg->next;
270 } while (seg != ring->first_seg);
271}
272
273static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274{
275 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276 ring->first_seg, ring->last_seg, mem_flags);
277}
278
279/* XXX: Do we need the hcd structure in all these functions? */
280void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281{
282 if (!ring)
283 return;
284
285 trace_xhci_ring_free(ring);
286
287 if (ring->first_seg) {
288 if (ring->type == TYPE_STREAM)
289 xhci_remove_stream_mapping(ring);
290 xhci_free_segments_for_ring(xhci, ring->first_seg);
291 }
292
293 kfree(ring);
294}
295
296void xhci_initialize_ring_info(struct xhci_ring *ring,
297 unsigned int cycle_state)
298{
299 /* The ring is empty, so the enqueue pointer == dequeue pointer */
300 ring->enqueue = ring->first_seg->trbs;
301 ring->enq_seg = ring->first_seg;
302 ring->dequeue = ring->enqueue;
303 ring->deq_seg = ring->first_seg;
304 /* The ring is initialized to 0. The producer must write 1 to the cycle
305 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
306 * compare CCS to the cycle bit to check ownership, so CCS = 1.
307 *
308 * New rings are initialized with cycle state equal to 1; if we are
309 * handling ring expansion, set the cycle state equal to the old ring.
310 */
311 ring->cycle_state = cycle_state;
312
313 /*
314 * Each segment has a link TRB, and leave an extra TRB for SW
315 * accounting purpose
316 */
317 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318}
319
320/* Allocate segments and link them for a ring */
321static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322 struct xhci_segment **first, struct xhci_segment **last,
323 unsigned int num_segs, unsigned int cycle_state,
324 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325{
326 struct xhci_segment *prev;
327 bool chain_links;
328
329 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330 chain_links = !!(xhci_link_trb_quirk(xhci) ||
331 (type == TYPE_ISOC &&
332 (xhci->quirks & XHCI_AMD_0x96_HOST)));
333
334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335 if (!prev)
336 return -ENOMEM;
337 num_segs--;
338
339 *first = prev;
340 while (num_segs > 0) {
341 struct xhci_segment *next;
342
343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344 if (!next) {
345 prev = *first;
346 while (prev) {
347 next = prev->next;
348 xhci_segment_free(xhci, prev);
349 prev = next;
350 }
351 return -ENOMEM;
352 }
353 xhci_link_segments(prev, next, type, chain_links);
354
355 prev = next;
356 num_segs--;
357 }
358 xhci_link_segments(prev, *first, type, chain_links);
359 *last = prev;
360
361 return 0;
362}
363
364/*
365 * Create a new ring with zero or more segments.
366 *
367 * Link each segment together into a ring.
368 * Set the end flag and the cycle toggle bit on the last segment.
369 * See section 4.9.1 and figures 15 and 16.
370 */
371struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372 unsigned int num_segs, unsigned int cycle_state,
373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374{
375 struct xhci_ring *ring;
376 int ret;
377 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378
379 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380 if (!ring)
381 return NULL;
382
383 ring->num_segs = num_segs;
384 ring->bounce_buf_len = max_packet;
385 INIT_LIST_HEAD(&ring->td_list);
386 ring->type = type;
387 if (num_segs == 0)
388 return ring;
389
390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 &ring->last_seg, num_segs, cycle_state, type,
392 max_packet, flags);
393 if (ret)
394 goto fail;
395
396 /* Only event ring does not use link TRB */
397 if (type != TYPE_EVENT) {
398 /* See section 4.9.2.1 and 6.4.4.1 */
399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400 cpu_to_le32(LINK_TOGGLE);
401 }
402 xhci_initialize_ring_info(ring, cycle_state);
403 trace_xhci_ring_alloc(ring);
404 return ring;
405
406fail:
407 kfree(ring);
408 return NULL;
409}
410
411void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412 struct xhci_virt_device *virt_dev,
413 unsigned int ep_index)
414{
415 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416 virt_dev->eps[ep_index].ring = NULL;
417}
418
419/*
420 * Expand an existing ring.
421 * Allocate a new ring which has same segment numbers and link the two rings.
422 */
423int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424 unsigned int num_trbs, gfp_t flags)
425{
426 struct xhci_segment *first;
427 struct xhci_segment *last;
428 unsigned int num_segs;
429 unsigned int num_segs_needed;
430 int ret;
431
432 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433 (TRBS_PER_SEGMENT - 1);
434
435 /* Allocate number of segments we needed, or double the ring size */
436 num_segs = ring->num_segs > num_segs_needed ?
437 ring->num_segs : num_segs_needed;
438
439 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
440 num_segs, ring->cycle_state, ring->type,
441 ring->bounce_buf_len, flags);
442 if (ret)
443 return -ENOMEM;
444
445 if (ring->type == TYPE_STREAM)
446 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
447 ring, first, last, flags);
448 if (ret) {
449 struct xhci_segment *next;
450 do {
451 next = first->next;
452 xhci_segment_free(xhci, first);
453 if (first == last)
454 break;
455 first = next;
456 } while (true);
457 return ret;
458 }
459
460 xhci_link_rings(xhci, ring, first, last, num_segs);
461 trace_xhci_ring_expansion(ring);
462 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
463 "ring expansion succeed, now has %d segments",
464 ring->num_segs);
465
466 return 0;
467}
468
469struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
470 int type, gfp_t flags)
471{
472 struct xhci_container_ctx *ctx;
473 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
474
475 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476 return NULL;
477
478 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
479 if (!ctx)
480 return NULL;
481
482 ctx->type = type;
483 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484 if (type == XHCI_CTX_TYPE_INPUT)
485 ctx->size += CTX_SIZE(xhci->hcc_params);
486
487 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488 if (!ctx->bytes) {
489 kfree(ctx);
490 return NULL;
491 }
492 return ctx;
493}
494
495void xhci_free_container_ctx(struct xhci_hcd *xhci,
496 struct xhci_container_ctx *ctx)
497{
498 if (!ctx)
499 return;
500 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501 kfree(ctx);
502}
503
504struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505 struct xhci_container_ctx *ctx)
506{
507 if (ctx->type != XHCI_CTX_TYPE_INPUT)
508 return NULL;
509
510 return (struct xhci_input_control_ctx *)ctx->bytes;
511}
512
513struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514 struct xhci_container_ctx *ctx)
515{
516 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517 return (struct xhci_slot_ctx *)ctx->bytes;
518
519 return (struct xhci_slot_ctx *)
520 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
521}
522
523struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524 struct xhci_container_ctx *ctx,
525 unsigned int ep_index)
526{
527 /* increment ep index by offset of start of ep ctx array */
528 ep_index++;
529 if (ctx->type == XHCI_CTX_TYPE_INPUT)
530 ep_index++;
531
532 return (struct xhci_ep_ctx *)
533 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
534}
535
536
537/***************** Streams structures manipulation *************************/
538
539static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540 unsigned int num_stream_ctxs,
541 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
542{
543 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
545
546 if (size > MEDIUM_STREAM_ARRAY_SIZE)
547 dma_free_coherent(dev, size,
548 stream_ctx, dma);
549 else if (size <= SMALL_STREAM_ARRAY_SIZE)
550 return dma_pool_free(xhci->small_streams_pool,
551 stream_ctx, dma);
552 else
553 return dma_pool_free(xhci->medium_streams_pool,
554 stream_ctx, dma);
555}
556
557/*
558 * The stream context array for each endpoint with bulk streams enabled can
559 * vary in size, based on:
560 * - how many streams the endpoint supports,
561 * - the maximum primary stream array size the host controller supports,
562 * - and how many streams the device driver asks for.
563 *
564 * The stream context array must be a power of 2, and can be as small as
565 * 64 bytes or as large as 1MB.
566 */
567static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568 unsigned int num_stream_ctxs, dma_addr_t *dma,
569 gfp_t mem_flags)
570{
571 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
573
574 if (size > MEDIUM_STREAM_ARRAY_SIZE)
575 return dma_alloc_coherent(dev, size,
576 dma, mem_flags);
577 else if (size <= SMALL_STREAM_ARRAY_SIZE)
578 return dma_pool_alloc(xhci->small_streams_pool,
579 mem_flags, dma);
580 else
581 return dma_pool_alloc(xhci->medium_streams_pool,
582 mem_flags, dma);
583}
584
585struct xhci_ring *xhci_dma_to_transfer_ring(
586 struct xhci_virt_ep *ep,
587 u64 address)
588{
589 if (ep->ep_state & EP_HAS_STREAMS)
590 return radix_tree_lookup(&ep->stream_info->trb_address_map,
591 address >> TRB_SEGMENT_SHIFT);
592 return ep->ring;
593}
594
595struct xhci_ring *xhci_stream_id_to_ring(
596 struct xhci_virt_device *dev,
597 unsigned int ep_index,
598 unsigned int stream_id)
599{
600 struct xhci_virt_ep *ep = &dev->eps[ep_index];
601
602 if (stream_id == 0)
603 return ep->ring;
604 if (!ep->stream_info)
605 return NULL;
606
607 if (stream_id >= ep->stream_info->num_streams)
608 return NULL;
609 return ep->stream_info->stream_rings[stream_id];
610}
611
612/*
613 * Change an endpoint's internal structure so it supports stream IDs. The
614 * number of requested streams includes stream 0, which cannot be used by device
615 * drivers.
616 *
617 * The number of stream contexts in the stream context array may be bigger than
618 * the number of streams the driver wants to use. This is because the number of
619 * stream context array entries must be a power of two.
620 */
621struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622 unsigned int num_stream_ctxs,
623 unsigned int num_streams,
624 unsigned int max_packet, gfp_t mem_flags)
625{
626 struct xhci_stream_info *stream_info;
627 u32 cur_stream;
628 struct xhci_ring *cur_ring;
629 u64 addr;
630 int ret;
631 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
632
633 xhci_dbg(xhci, "Allocating %u streams and %u "
634 "stream context array entries.\n",
635 num_streams, num_stream_ctxs);
636 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
637 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
638 return NULL;
639 }
640 xhci->cmd_ring_reserved_trbs++;
641
642 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
643 dev_to_node(dev));
644 if (!stream_info)
645 goto cleanup_trbs;
646
647 stream_info->num_streams = num_streams;
648 stream_info->num_stream_ctxs = num_stream_ctxs;
649
650 /* Initialize the array of virtual pointers to stream rings. */
651 stream_info->stream_rings = kcalloc_node(
652 num_streams, sizeof(struct xhci_ring *), mem_flags,
653 dev_to_node(dev));
654 if (!stream_info->stream_rings)
655 goto cleanup_info;
656
657 /* Initialize the array of DMA addresses for stream rings for the HW. */
658 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
659 num_stream_ctxs, &stream_info->ctx_array_dma,
660 mem_flags);
661 if (!stream_info->stream_ctx_array)
662 goto cleanup_ctx;
663 memset(stream_info->stream_ctx_array, 0,
664 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
665
666 /* Allocate everything needed to free the stream rings later */
667 stream_info->free_streams_command =
668 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
669 if (!stream_info->free_streams_command)
670 goto cleanup_ctx;
671
672 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
673
674 /* Allocate rings for all the streams that the driver will use,
675 * and add their segment DMA addresses to the radix tree.
676 * Stream 0 is reserved.
677 */
678
679 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
680 stream_info->stream_rings[cur_stream] =
681 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
682 mem_flags);
683 cur_ring = stream_info->stream_rings[cur_stream];
684 if (!cur_ring)
685 goto cleanup_rings;
686 cur_ring->stream_id = cur_stream;
687 cur_ring->trb_address_map = &stream_info->trb_address_map;
688 /* Set deq ptr, cycle bit, and stream context type */
689 addr = cur_ring->first_seg->dma |
690 SCT_FOR_CTX(SCT_PRI_TR) |
691 cur_ring->cycle_state;
692 stream_info->stream_ctx_array[cur_stream].stream_ring =
693 cpu_to_le64(addr);
694 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
695 cur_stream, (unsigned long long) addr);
696
697 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
698 if (ret) {
699 xhci_ring_free(xhci, cur_ring);
700 stream_info->stream_rings[cur_stream] = NULL;
701 goto cleanup_rings;
702 }
703 }
704 /* Leave the other unused stream ring pointers in the stream context
705 * array initialized to zero. This will cause the xHC to give us an
706 * error if the device asks for a stream ID we don't have setup (if it
707 * was any other way, the host controller would assume the ring is
708 * "empty" and wait forever for data to be queued to that stream ID).
709 */
710
711 return stream_info;
712
713cleanup_rings:
714 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
715 cur_ring = stream_info->stream_rings[cur_stream];
716 if (cur_ring) {
717 xhci_ring_free(xhci, cur_ring);
718 stream_info->stream_rings[cur_stream] = NULL;
719 }
720 }
721 xhci_free_command(xhci, stream_info->free_streams_command);
722cleanup_ctx:
723 kfree(stream_info->stream_rings);
724cleanup_info:
725 kfree(stream_info);
726cleanup_trbs:
727 xhci->cmd_ring_reserved_trbs--;
728 return NULL;
729}
730/*
731 * Sets the MaxPStreams field and the Linear Stream Array field.
732 * Sets the dequeue pointer to the stream context array.
733 */
734void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
735 struct xhci_ep_ctx *ep_ctx,
736 struct xhci_stream_info *stream_info)
737{
738 u32 max_primary_streams;
739 /* MaxPStreams is the number of stream context array entries, not the
740 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
741 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
742 */
743 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
744 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
745 "Setting number of stream ctx array entries to %u",
746 1 << (max_primary_streams + 1));
747 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
748 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
749 | EP_HAS_LSA);
750 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
751}
752
753/*
754 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
755 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
756 * not at the beginning of the ring).
757 */
758void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
759 struct xhci_virt_ep *ep)
760{
761 dma_addr_t addr;
762 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
763 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
764 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
765}
766
767/* Frees all stream contexts associated with the endpoint,
768 *
769 * Caller should fix the endpoint context streams fields.
770 */
771void xhci_free_stream_info(struct xhci_hcd *xhci,
772 struct xhci_stream_info *stream_info)
773{
774 int cur_stream;
775 struct xhci_ring *cur_ring;
776
777 if (!stream_info)
778 return;
779
780 for (cur_stream = 1; cur_stream < stream_info->num_streams;
781 cur_stream++) {
782 cur_ring = stream_info->stream_rings[cur_stream];
783 if (cur_ring) {
784 xhci_ring_free(xhci, cur_ring);
785 stream_info->stream_rings[cur_stream] = NULL;
786 }
787 }
788 xhci_free_command(xhci, stream_info->free_streams_command);
789 xhci->cmd_ring_reserved_trbs--;
790 if (stream_info->stream_ctx_array)
791 xhci_free_stream_ctx(xhci,
792 stream_info->num_stream_ctxs,
793 stream_info->stream_ctx_array,
794 stream_info->ctx_array_dma);
795
796 kfree(stream_info->stream_rings);
797 kfree(stream_info);
798}
799
800
801/***************** Device context manipulation *************************/
802
803static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
804 struct xhci_virt_ep *ep)
805{
806 timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
807 0);
808 ep->xhci = xhci;
809}
810
811static void xhci_free_tt_info(struct xhci_hcd *xhci,
812 struct xhci_virt_device *virt_dev,
813 int slot_id)
814{
815 struct list_head *tt_list_head;
816 struct xhci_tt_bw_info *tt_info, *next;
817 bool slot_found = false;
818
819 /* If the device never made it past the Set Address stage,
820 * it may not have the real_port set correctly.
821 */
822 if (virt_dev->real_port == 0 ||
823 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
824 xhci_dbg(xhci, "Bad real port.\n");
825 return;
826 }
827
828 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
829 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
830 /* Multi-TT hubs will have more than one entry */
831 if (tt_info->slot_id == slot_id) {
832 slot_found = true;
833 list_del(&tt_info->tt_list);
834 kfree(tt_info);
835 } else if (slot_found) {
836 break;
837 }
838 }
839}
840
841int xhci_alloc_tt_info(struct xhci_hcd *xhci,
842 struct xhci_virt_device *virt_dev,
843 struct usb_device *hdev,
844 struct usb_tt *tt, gfp_t mem_flags)
845{
846 struct xhci_tt_bw_info *tt_info;
847 unsigned int num_ports;
848 int i, j;
849 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
850
851 if (!tt->multi)
852 num_ports = 1;
853 else
854 num_ports = hdev->maxchild;
855
856 for (i = 0; i < num_ports; i++, tt_info++) {
857 struct xhci_interval_bw_table *bw_table;
858
859 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
860 dev_to_node(dev));
861 if (!tt_info)
862 goto free_tts;
863 INIT_LIST_HEAD(&tt_info->tt_list);
864 list_add(&tt_info->tt_list,
865 &xhci->rh_bw[virt_dev->real_port - 1].tts);
866 tt_info->slot_id = virt_dev->udev->slot_id;
867 if (tt->multi)
868 tt_info->ttport = i+1;
869 bw_table = &tt_info->bw_table;
870 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
871 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
872 }
873 return 0;
874
875free_tts:
876 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
877 return -ENOMEM;
878}
879
880
881/* All the xhci_tds in the ring's TD list should be freed at this point.
882 * Should be called with xhci->lock held if there is any chance the TT lists
883 * will be manipulated by the configure endpoint, allocate device, or update
884 * hub functions while this function is removing the TT entries from the list.
885 */
886void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
887{
888 struct xhci_virt_device *dev;
889 int i;
890 int old_active_eps = 0;
891
892 /* Slot ID 0 is reserved */
893 if (slot_id == 0 || !xhci->devs[slot_id])
894 return;
895
896 dev = xhci->devs[slot_id];
897
898 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
899 if (!dev)
900 return;
901
902 trace_xhci_free_virt_device(dev);
903
904 if (dev->tt_info)
905 old_active_eps = dev->tt_info->active_eps;
906
907 for (i = 0; i < 31; i++) {
908 if (dev->eps[i].ring)
909 xhci_ring_free(xhci, dev->eps[i].ring);
910 if (dev->eps[i].stream_info)
911 xhci_free_stream_info(xhci,
912 dev->eps[i].stream_info);
913 /* Endpoints on the TT/root port lists should have been removed
914 * when usb_disable_device() was called for the device.
915 * We can't drop them anyway, because the udev might have gone
916 * away by this point, and we can't tell what speed it was.
917 */
918 if (!list_empty(&dev->eps[i].bw_endpoint_list))
919 xhci_warn(xhci, "Slot %u endpoint %u "
920 "not removed from BW list!\n",
921 slot_id, i);
922 }
923 /* If this is a hub, free the TT(s) from the TT list */
924 xhci_free_tt_info(xhci, dev, slot_id);
925 /* If necessary, update the number of active TTs on this root port */
926 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
927
928 if (dev->in_ctx)
929 xhci_free_container_ctx(xhci, dev->in_ctx);
930 if (dev->out_ctx)
931 xhci_free_container_ctx(xhci, dev->out_ctx);
932
933 if (dev->udev && dev->udev->slot_id)
934 dev->udev->slot_id = 0;
935 kfree(xhci->devs[slot_id]);
936 xhci->devs[slot_id] = NULL;
937}
938
939/*
940 * Free a virt_device structure.
941 * If the virt_device added a tt_info (a hub) and has children pointing to
942 * that tt_info, then free the child first. Recursive.
943 * We can't rely on udev at this point to find child-parent relationships.
944 */
945static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
946{
947 struct xhci_virt_device *vdev;
948 struct list_head *tt_list_head;
949 struct xhci_tt_bw_info *tt_info, *next;
950 int i;
951
952 vdev = xhci->devs[slot_id];
953 if (!vdev)
954 return;
955
956 if (vdev->real_port == 0 ||
957 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
958 xhci_dbg(xhci, "Bad vdev->real_port.\n");
959 goto out;
960 }
961
962 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
963 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
964 /* is this a hub device that added a tt_info to the tts list */
965 if (tt_info->slot_id == slot_id) {
966 /* are any devices using this tt_info? */
967 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
968 vdev = xhci->devs[i];
969 if (vdev && (vdev->tt_info == tt_info))
970 xhci_free_virt_devices_depth_first(
971 xhci, i);
972 }
973 }
974 }
975out:
976 /* we are now at a leaf device */
977 xhci_debugfs_remove_slot(xhci, slot_id);
978 xhci_free_virt_device(xhci, slot_id);
979}
980
981int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
982 struct usb_device *udev, gfp_t flags)
983{
984 struct xhci_virt_device *dev;
985 int i;
986
987 /* Slot ID 0 is reserved */
988 if (slot_id == 0 || xhci->devs[slot_id]) {
989 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
990 return 0;
991 }
992
993 dev = kzalloc(sizeof(*dev), flags);
994 if (!dev)
995 return 0;
996
997 /* Allocate the (output) device context that will be used in the HC. */
998 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
999 if (!dev->out_ctx)
1000 goto fail;
1001
1002 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1003 (unsigned long long)dev->out_ctx->dma);
1004
1005 /* Allocate the (input) device context for address device command */
1006 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1007 if (!dev->in_ctx)
1008 goto fail;
1009
1010 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1011 (unsigned long long)dev->in_ctx->dma);
1012
1013 /* Initialize the cancellation list and watchdog timers for each ep */
1014 for (i = 0; i < 31; i++) {
1015 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1016 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1017 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1018 }
1019
1020 /* Allocate endpoint 0 ring */
1021 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1022 if (!dev->eps[0].ring)
1023 goto fail;
1024
1025 dev->udev = udev;
1026
1027 /* Point to output device context in dcbaa. */
1028 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1029 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1030 slot_id,
1031 &xhci->dcbaa->dev_context_ptrs[slot_id],
1032 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1033
1034 trace_xhci_alloc_virt_device(dev);
1035
1036 xhci->devs[slot_id] = dev;
1037
1038 return 1;
1039fail:
1040
1041 if (dev->in_ctx)
1042 xhci_free_container_ctx(xhci, dev->in_ctx);
1043 if (dev->out_ctx)
1044 xhci_free_container_ctx(xhci, dev->out_ctx);
1045 kfree(dev);
1046
1047 return 0;
1048}
1049
1050void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1051 struct usb_device *udev)
1052{
1053 struct xhci_virt_device *virt_dev;
1054 struct xhci_ep_ctx *ep0_ctx;
1055 struct xhci_ring *ep_ring;
1056
1057 virt_dev = xhci->devs[udev->slot_id];
1058 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1059 ep_ring = virt_dev->eps[0].ring;
1060 /*
1061 * FIXME we don't keep track of the dequeue pointer very well after a
1062 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1063 * host to our enqueue pointer. This should only be called after a
1064 * configured device has reset, so all control transfers should have
1065 * been completed or cancelled before the reset.
1066 */
1067 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1068 ep_ring->enqueue)
1069 | ep_ring->cycle_state);
1070}
1071
1072/*
1073 * The xHCI roothub may have ports of differing speeds in any order in the port
1074 * status registers.
1075 *
1076 * The xHCI hardware wants to know the roothub port number that the USB device
1077 * is attached to (or the roothub port its ancestor hub is attached to). All we
1078 * know is the index of that port under either the USB 2.0 or the USB 3.0
1079 * roothub, but that doesn't give us the real index into the HW port status
1080 * registers. Call xhci_find_raw_port_number() to get real index.
1081 */
1082static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1083 struct usb_device *udev)
1084{
1085 struct usb_device *top_dev;
1086 struct usb_hcd *hcd;
1087
1088 if (udev->speed >= USB_SPEED_SUPER)
1089 hcd = xhci->shared_hcd;
1090 else
1091 hcd = xhci->main_hcd;
1092
1093 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1094 top_dev = top_dev->parent)
1095 /* Found device below root hub */;
1096
1097 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1098}
1099
1100/* Setup an xHCI virtual device for a Set Address command */
1101int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1102{
1103 struct xhci_virt_device *dev;
1104 struct xhci_ep_ctx *ep0_ctx;
1105 struct xhci_slot_ctx *slot_ctx;
1106 u32 port_num;
1107 u32 max_packets;
1108 struct usb_device *top_dev;
1109
1110 dev = xhci->devs[udev->slot_id];
1111 /* Slot ID 0 is reserved */
1112 if (udev->slot_id == 0 || !dev) {
1113 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1114 udev->slot_id);
1115 return -EINVAL;
1116 }
1117 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1118 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1119
1120 /* 3) Only the control endpoint is valid - one endpoint context */
1121 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1122 switch (udev->speed) {
1123 case USB_SPEED_SUPER_PLUS:
1124 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1125 max_packets = MAX_PACKET(512);
1126 break;
1127 case USB_SPEED_SUPER:
1128 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1129 max_packets = MAX_PACKET(512);
1130 break;
1131 case USB_SPEED_HIGH:
1132 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1133 max_packets = MAX_PACKET(64);
1134 break;
1135 /* USB core guesses at a 64-byte max packet first for FS devices */
1136 case USB_SPEED_FULL:
1137 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1138 max_packets = MAX_PACKET(64);
1139 break;
1140 case USB_SPEED_LOW:
1141 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1142 max_packets = MAX_PACKET(8);
1143 break;
1144 case USB_SPEED_WIRELESS:
1145 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1146 return -EINVAL;
1147 break;
1148 default:
1149 /* Speed was set earlier, this shouldn't happen. */
1150 return -EINVAL;
1151 }
1152 /* Find the root hub port this device is under */
1153 port_num = xhci_find_real_port_number(xhci, udev);
1154 if (!port_num)
1155 return -EINVAL;
1156 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1157 /* Set the port number in the virtual_device to the faked port number */
1158 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1159 top_dev = top_dev->parent)
1160 /* Found device below root hub */;
1161 dev->fake_port = top_dev->portnum;
1162 dev->real_port = port_num;
1163 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1164 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1165
1166 /* Find the right bandwidth table that this device will be a part of.
1167 * If this is a full speed device attached directly to a root port (or a
1168 * decendent of one), it counts as a primary bandwidth domain, not a
1169 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1170 * will never be created for the HS root hub.
1171 */
1172 if (!udev->tt || !udev->tt->hub->parent) {
1173 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1174 } else {
1175 struct xhci_root_port_bw_info *rh_bw;
1176 struct xhci_tt_bw_info *tt_bw;
1177
1178 rh_bw = &xhci->rh_bw[port_num - 1];
1179 /* Find the right TT. */
1180 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1181 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1182 continue;
1183
1184 if (!dev->udev->tt->multi ||
1185 (udev->tt->multi &&
1186 tt_bw->ttport == dev->udev->ttport)) {
1187 dev->bw_table = &tt_bw->bw_table;
1188 dev->tt_info = tt_bw;
1189 break;
1190 }
1191 }
1192 if (!dev->tt_info)
1193 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1194 }
1195
1196 /* Is this a LS/FS device under an external HS hub? */
1197 if (udev->tt && udev->tt->hub->parent) {
1198 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1199 (udev->ttport << 8));
1200 if (udev->tt->multi)
1201 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1202 }
1203 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1204 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1205
1206 /* Step 4 - ring already allocated */
1207 /* Step 5 */
1208 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1209
1210 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1211 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1212 max_packets);
1213
1214 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1215 dev->eps[0].ring->cycle_state);
1216
1217 trace_xhci_setup_addressable_virt_device(dev);
1218
1219 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1220
1221 return 0;
1222}
1223
1224/*
1225 * Convert interval expressed as 2^(bInterval - 1) == interval into
1226 * straight exponent value 2^n == interval.
1227 *
1228 */
1229static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1230 struct usb_host_endpoint *ep)
1231{
1232 unsigned int interval;
1233
1234 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1235 if (interval != ep->desc.bInterval - 1)
1236 dev_warn(&udev->dev,
1237 "ep %#x - rounding interval to %d %sframes\n",
1238 ep->desc.bEndpointAddress,
1239 1 << interval,
1240 udev->speed == USB_SPEED_FULL ? "" : "micro");
1241
1242 if (udev->speed == USB_SPEED_FULL) {
1243 /*
1244 * Full speed isoc endpoints specify interval in frames,
1245 * not microframes. We are using microframes everywhere,
1246 * so adjust accordingly.
1247 */
1248 interval += 3; /* 1 frame = 2^3 uframes */
1249 }
1250
1251 return interval;
1252}
1253
1254/*
1255 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1256 * microframes, rounded down to nearest power of 2.
1257 */
1258static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1259 struct usb_host_endpoint *ep, unsigned int desc_interval,
1260 unsigned int min_exponent, unsigned int max_exponent)
1261{
1262 unsigned int interval;
1263
1264 interval = fls(desc_interval) - 1;
1265 interval = clamp_val(interval, min_exponent, max_exponent);
1266 if ((1 << interval) != desc_interval)
1267 dev_dbg(&udev->dev,
1268 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1269 ep->desc.bEndpointAddress,
1270 1 << interval,
1271 desc_interval);
1272
1273 return interval;
1274}
1275
1276static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1277 struct usb_host_endpoint *ep)
1278{
1279 if (ep->desc.bInterval == 0)
1280 return 0;
1281 return xhci_microframes_to_exponent(udev, ep,
1282 ep->desc.bInterval, 0, 15);
1283}
1284
1285
1286static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1287 struct usb_host_endpoint *ep)
1288{
1289 return xhci_microframes_to_exponent(udev, ep,
1290 ep->desc.bInterval * 8, 3, 10);
1291}
1292
1293/* Return the polling or NAK interval.
1294 *
1295 * The polling interval is expressed in "microframes". If xHCI's Interval field
1296 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1297 *
1298 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1299 * is set to 0.
1300 */
1301static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1302 struct usb_host_endpoint *ep)
1303{
1304 unsigned int interval = 0;
1305
1306 switch (udev->speed) {
1307 case USB_SPEED_HIGH:
1308 /* Max NAK rate */
1309 if (usb_endpoint_xfer_control(&ep->desc) ||
1310 usb_endpoint_xfer_bulk(&ep->desc)) {
1311 interval = xhci_parse_microframe_interval(udev, ep);
1312 break;
1313 }
1314 fallthrough; /* SS and HS isoc/int have same decoding */
1315
1316 case USB_SPEED_SUPER_PLUS:
1317 case USB_SPEED_SUPER:
1318 if (usb_endpoint_xfer_int(&ep->desc) ||
1319 usb_endpoint_xfer_isoc(&ep->desc)) {
1320 interval = xhci_parse_exponent_interval(udev, ep);
1321 }
1322 break;
1323
1324 case USB_SPEED_FULL:
1325 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1326 interval = xhci_parse_exponent_interval(udev, ep);
1327 break;
1328 }
1329 /*
1330 * Fall through for interrupt endpoint interval decoding
1331 * since it uses the same rules as low speed interrupt
1332 * endpoints.
1333 */
1334 fallthrough;
1335
1336 case USB_SPEED_LOW:
1337 if (usb_endpoint_xfer_int(&ep->desc) ||
1338 usb_endpoint_xfer_isoc(&ep->desc)) {
1339
1340 interval = xhci_parse_frame_interval(udev, ep);
1341 }
1342 break;
1343
1344 default:
1345 BUG();
1346 }
1347 return interval;
1348}
1349
1350/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1351 * High speed endpoint descriptors can define "the number of additional
1352 * transaction opportunities per microframe", but that goes in the Max Burst
1353 * endpoint context field.
1354 */
1355static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1356 struct usb_host_endpoint *ep)
1357{
1358 if (udev->speed < USB_SPEED_SUPER ||
1359 !usb_endpoint_xfer_isoc(&ep->desc))
1360 return 0;
1361 return ep->ss_ep_comp.bmAttributes;
1362}
1363
1364static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1365 struct usb_host_endpoint *ep)
1366{
1367 /* Super speed and Plus have max burst in ep companion desc */
1368 if (udev->speed >= USB_SPEED_SUPER)
1369 return ep->ss_ep_comp.bMaxBurst;
1370
1371 if (udev->speed == USB_SPEED_HIGH &&
1372 (usb_endpoint_xfer_isoc(&ep->desc) ||
1373 usb_endpoint_xfer_int(&ep->desc)))
1374 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1375
1376 return 0;
1377}
1378
1379static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1380{
1381 int in;
1382
1383 in = usb_endpoint_dir_in(&ep->desc);
1384
1385 switch (usb_endpoint_type(&ep->desc)) {
1386 case USB_ENDPOINT_XFER_CONTROL:
1387 return CTRL_EP;
1388 case USB_ENDPOINT_XFER_BULK:
1389 return in ? BULK_IN_EP : BULK_OUT_EP;
1390 case USB_ENDPOINT_XFER_ISOC:
1391 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1392 case USB_ENDPOINT_XFER_INT:
1393 return in ? INT_IN_EP : INT_OUT_EP;
1394 }
1395 return 0;
1396}
1397
1398/* Return the maximum endpoint service interval time (ESIT) payload.
1399 * Basically, this is the maxpacket size, multiplied by the burst size
1400 * and mult size.
1401 */
1402static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1403 struct usb_host_endpoint *ep)
1404{
1405 int max_burst;
1406 int max_packet;
1407
1408 /* Only applies for interrupt or isochronous endpoints */
1409 if (usb_endpoint_xfer_control(&ep->desc) ||
1410 usb_endpoint_xfer_bulk(&ep->desc))
1411 return 0;
1412
1413 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1414 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1415 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1416 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1417 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1418 else if (udev->speed >= USB_SPEED_SUPER)
1419 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1420
1421 max_packet = usb_endpoint_maxp(&ep->desc);
1422 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1423 /* A 0 in max burst means 1 transfer per ESIT */
1424 return max_packet * max_burst;
1425}
1426
1427/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1428 * Drivers will have to call usb_alloc_streams() to do that.
1429 */
1430int xhci_endpoint_init(struct xhci_hcd *xhci,
1431 struct xhci_virt_device *virt_dev,
1432 struct usb_device *udev,
1433 struct usb_host_endpoint *ep,
1434 gfp_t mem_flags)
1435{
1436 unsigned int ep_index;
1437 struct xhci_ep_ctx *ep_ctx;
1438 struct xhci_ring *ep_ring;
1439 unsigned int max_packet;
1440 enum xhci_ring_type ring_type;
1441 u32 max_esit_payload;
1442 u32 endpoint_type;
1443 unsigned int max_burst;
1444 unsigned int interval;
1445 unsigned int mult;
1446 unsigned int avg_trb_len;
1447 unsigned int err_count = 0;
1448
1449 ep_index = xhci_get_endpoint_index(&ep->desc);
1450 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1451
1452 endpoint_type = xhci_get_endpoint_type(ep);
1453 if (!endpoint_type)
1454 return -EINVAL;
1455
1456 ring_type = usb_endpoint_type(&ep->desc);
1457
1458 /*
1459 * Get values to fill the endpoint context, mostly from ep descriptor.
1460 * The average TRB buffer lengt for bulk endpoints is unclear as we
1461 * have no clue on scatter gather list entry size. For Isoc and Int,
1462 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1463 */
1464 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1465 interval = xhci_get_endpoint_interval(udev, ep);
1466
1467 /* Periodic endpoint bInterval limit quirk */
1468 if (usb_endpoint_xfer_int(&ep->desc) ||
1469 usb_endpoint_xfer_isoc(&ep->desc)) {
1470 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1471 udev->speed >= USB_SPEED_HIGH &&
1472 interval >= 7) {
1473 interval = 6;
1474 }
1475 }
1476
1477 mult = xhci_get_endpoint_mult(udev, ep);
1478 max_packet = usb_endpoint_maxp(&ep->desc);
1479 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1480 avg_trb_len = max_esit_payload;
1481
1482 /* FIXME dig Mult and streams info out of ep companion desc */
1483
1484 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1485 if (!usb_endpoint_xfer_isoc(&ep->desc))
1486 err_count = 3;
1487 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1488 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1489 if (udev->speed == USB_SPEED_HIGH)
1490 max_packet = 512;
1491 if (udev->speed == USB_SPEED_FULL) {
1492 max_packet = rounddown_pow_of_two(max_packet);
1493 max_packet = clamp_val(max_packet, 8, 64);
1494 }
1495 }
1496 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1497 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1498 avg_trb_len = 8;
1499 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1500 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1501 mult = 0;
1502
1503 /* Set up the endpoint ring */
1504 virt_dev->eps[ep_index].new_ring =
1505 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1506 if (!virt_dev->eps[ep_index].new_ring)
1507 return -ENOMEM;
1508
1509 virt_dev->eps[ep_index].skip = false;
1510 ep_ring = virt_dev->eps[ep_index].new_ring;
1511
1512 /* Fill the endpoint context */
1513 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1514 EP_INTERVAL(interval) |
1515 EP_MULT(mult));
1516 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1517 MAX_PACKET(max_packet) |
1518 MAX_BURST(max_burst) |
1519 ERROR_COUNT(err_count));
1520 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1521 ep_ring->cycle_state);
1522
1523 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1524 EP_AVG_TRB_LENGTH(avg_trb_len));
1525
1526 return 0;
1527}
1528
1529void xhci_endpoint_zero(struct xhci_hcd *xhci,
1530 struct xhci_virt_device *virt_dev,
1531 struct usb_host_endpoint *ep)
1532{
1533 unsigned int ep_index;
1534 struct xhci_ep_ctx *ep_ctx;
1535
1536 ep_index = xhci_get_endpoint_index(&ep->desc);
1537 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1538
1539 ep_ctx->ep_info = 0;
1540 ep_ctx->ep_info2 = 0;
1541 ep_ctx->deq = 0;
1542 ep_ctx->tx_info = 0;
1543 /* Don't free the endpoint ring until the set interface or configuration
1544 * request succeeds.
1545 */
1546}
1547
1548void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1549{
1550 bw_info->ep_interval = 0;
1551 bw_info->mult = 0;
1552 bw_info->num_packets = 0;
1553 bw_info->max_packet_size = 0;
1554 bw_info->type = 0;
1555 bw_info->max_esit_payload = 0;
1556}
1557
1558void xhci_update_bw_info(struct xhci_hcd *xhci,
1559 struct xhci_container_ctx *in_ctx,
1560 struct xhci_input_control_ctx *ctrl_ctx,
1561 struct xhci_virt_device *virt_dev)
1562{
1563 struct xhci_bw_info *bw_info;
1564 struct xhci_ep_ctx *ep_ctx;
1565 unsigned int ep_type;
1566 int i;
1567
1568 for (i = 1; i < 31; i++) {
1569 bw_info = &virt_dev->eps[i].bw_info;
1570
1571 /* We can't tell what endpoint type is being dropped, but
1572 * unconditionally clearing the bandwidth info for non-periodic
1573 * endpoints should be harmless because the info will never be
1574 * set in the first place.
1575 */
1576 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1577 /* Dropped endpoint */
1578 xhci_clear_endpoint_bw_info(bw_info);
1579 continue;
1580 }
1581
1582 if (EP_IS_ADDED(ctrl_ctx, i)) {
1583 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1584 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1585
1586 /* Ignore non-periodic endpoints */
1587 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1588 ep_type != ISOC_IN_EP &&
1589 ep_type != INT_IN_EP)
1590 continue;
1591
1592 /* Added or changed endpoint */
1593 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1594 le32_to_cpu(ep_ctx->ep_info));
1595 /* Number of packets and mult are zero-based in the
1596 * input context, but we want one-based for the
1597 * interval table.
1598 */
1599 bw_info->mult = CTX_TO_EP_MULT(
1600 le32_to_cpu(ep_ctx->ep_info)) + 1;
1601 bw_info->num_packets = CTX_TO_MAX_BURST(
1602 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1603 bw_info->max_packet_size = MAX_PACKET_DECODED(
1604 le32_to_cpu(ep_ctx->ep_info2));
1605 bw_info->type = ep_type;
1606 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1607 le32_to_cpu(ep_ctx->tx_info));
1608 }
1609 }
1610}
1611
1612/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1613 * Useful when you want to change one particular aspect of the endpoint and then
1614 * issue a configure endpoint command.
1615 */
1616void xhci_endpoint_copy(struct xhci_hcd *xhci,
1617 struct xhci_container_ctx *in_ctx,
1618 struct xhci_container_ctx *out_ctx,
1619 unsigned int ep_index)
1620{
1621 struct xhci_ep_ctx *out_ep_ctx;
1622 struct xhci_ep_ctx *in_ep_ctx;
1623
1624 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1625 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1626
1627 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1628 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1629 in_ep_ctx->deq = out_ep_ctx->deq;
1630 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1631 if (xhci->quirks & XHCI_MTK_HOST) {
1632 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1633 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1634 }
1635}
1636
1637/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1638 * Useful when you want to change one particular aspect of the endpoint and then
1639 * issue a configure endpoint command. Only the context entries field matters,
1640 * but we'll copy the whole thing anyway.
1641 */
1642void xhci_slot_copy(struct xhci_hcd *xhci,
1643 struct xhci_container_ctx *in_ctx,
1644 struct xhci_container_ctx *out_ctx)
1645{
1646 struct xhci_slot_ctx *in_slot_ctx;
1647 struct xhci_slot_ctx *out_slot_ctx;
1648
1649 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1650 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1651
1652 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1653 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1654 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1655 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1656}
1657
1658/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1659static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1660{
1661 int i;
1662 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1663 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1664
1665 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1666 "Allocating %d scratchpad buffers", num_sp);
1667
1668 if (!num_sp)
1669 return 0;
1670
1671 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1672 dev_to_node(dev));
1673 if (!xhci->scratchpad)
1674 goto fail_sp;
1675
1676 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1677 num_sp * sizeof(u64),
1678 &xhci->scratchpad->sp_dma, flags);
1679 if (!xhci->scratchpad->sp_array)
1680 goto fail_sp2;
1681
1682 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1683 flags, dev_to_node(dev));
1684 if (!xhci->scratchpad->sp_buffers)
1685 goto fail_sp3;
1686
1687 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1688 for (i = 0; i < num_sp; i++) {
1689 dma_addr_t dma;
1690 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1691 flags);
1692 if (!buf)
1693 goto fail_sp4;
1694
1695 xhci->scratchpad->sp_array[i] = dma;
1696 xhci->scratchpad->sp_buffers[i] = buf;
1697 }
1698
1699 return 0;
1700
1701 fail_sp4:
1702 for (i = i - 1; i >= 0; i--) {
1703 dma_free_coherent(dev, xhci->page_size,
1704 xhci->scratchpad->sp_buffers[i],
1705 xhci->scratchpad->sp_array[i]);
1706 }
1707
1708 kfree(xhci->scratchpad->sp_buffers);
1709
1710 fail_sp3:
1711 dma_free_coherent(dev, num_sp * sizeof(u64),
1712 xhci->scratchpad->sp_array,
1713 xhci->scratchpad->sp_dma);
1714
1715 fail_sp2:
1716 kfree(xhci->scratchpad);
1717 xhci->scratchpad = NULL;
1718
1719 fail_sp:
1720 return -ENOMEM;
1721}
1722
1723static void scratchpad_free(struct xhci_hcd *xhci)
1724{
1725 int num_sp;
1726 int i;
1727 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1728
1729 if (!xhci->scratchpad)
1730 return;
1731
1732 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1733
1734 for (i = 0; i < num_sp; i++) {
1735 dma_free_coherent(dev, xhci->page_size,
1736 xhci->scratchpad->sp_buffers[i],
1737 xhci->scratchpad->sp_array[i]);
1738 }
1739 kfree(xhci->scratchpad->sp_buffers);
1740 dma_free_coherent(dev, num_sp * sizeof(u64),
1741 xhci->scratchpad->sp_array,
1742 xhci->scratchpad->sp_dma);
1743 kfree(xhci->scratchpad);
1744 xhci->scratchpad = NULL;
1745}
1746
1747struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1748 bool allocate_completion, gfp_t mem_flags)
1749{
1750 struct xhci_command *command;
1751 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1752
1753 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1754 if (!command)
1755 return NULL;
1756
1757 if (allocate_completion) {
1758 command->completion =
1759 kzalloc_node(sizeof(struct completion), mem_flags,
1760 dev_to_node(dev));
1761 if (!command->completion) {
1762 kfree(command);
1763 return NULL;
1764 }
1765 init_completion(command->completion);
1766 }
1767
1768 command->status = 0;
1769 INIT_LIST_HEAD(&command->cmd_list);
1770 return command;
1771}
1772
1773struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1774 bool allocate_completion, gfp_t mem_flags)
1775{
1776 struct xhci_command *command;
1777
1778 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1779 if (!command)
1780 return NULL;
1781
1782 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1783 mem_flags);
1784 if (!command->in_ctx) {
1785 kfree(command->completion);
1786 kfree(command);
1787 return NULL;
1788 }
1789 return command;
1790}
1791
1792void xhci_urb_free_priv(struct urb_priv *urb_priv)
1793{
1794 kfree(urb_priv);
1795}
1796
1797void xhci_free_command(struct xhci_hcd *xhci,
1798 struct xhci_command *command)
1799{
1800 xhci_free_container_ctx(xhci,
1801 command->in_ctx);
1802 kfree(command->completion);
1803 kfree(command);
1804}
1805
1806int xhci_alloc_erst(struct xhci_hcd *xhci,
1807 struct xhci_ring *evt_ring,
1808 struct xhci_erst *erst,
1809 gfp_t flags)
1810{
1811 size_t size;
1812 unsigned int val;
1813 struct xhci_segment *seg;
1814 struct xhci_erst_entry *entry;
1815
1816 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1817 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1818 size, &erst->erst_dma_addr, flags);
1819 if (!erst->entries)
1820 return -ENOMEM;
1821
1822 erst->num_entries = evt_ring->num_segs;
1823
1824 seg = evt_ring->first_seg;
1825 for (val = 0; val < evt_ring->num_segs; val++) {
1826 entry = &erst->entries[val];
1827 entry->seg_addr = cpu_to_le64(seg->dma);
1828 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1829 entry->rsvd = 0;
1830 seg = seg->next;
1831 }
1832
1833 return 0;
1834}
1835
1836void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1837{
1838 size_t size;
1839 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1840
1841 size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1842 if (erst->entries)
1843 dma_free_coherent(dev, size,
1844 erst->entries,
1845 erst->erst_dma_addr);
1846 erst->entries = NULL;
1847}
1848
1849void xhci_mem_cleanup(struct xhci_hcd *xhci)
1850{
1851 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1852 int i, j, num_ports;
1853
1854 cancel_delayed_work_sync(&xhci->cmd_timer);
1855
1856 xhci_free_erst(xhci, &xhci->erst);
1857
1858 if (xhci->event_ring)
1859 xhci_ring_free(xhci, xhci->event_ring);
1860 xhci->event_ring = NULL;
1861 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1862
1863 if (xhci->lpm_command)
1864 xhci_free_command(xhci, xhci->lpm_command);
1865 xhci->lpm_command = NULL;
1866 if (xhci->cmd_ring)
1867 xhci_ring_free(xhci, xhci->cmd_ring);
1868 xhci->cmd_ring = NULL;
1869 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1870 xhci_cleanup_command_queue(xhci);
1871
1872 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1873 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1874 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1875 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1876 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1877 while (!list_empty(ep))
1878 list_del_init(ep->next);
1879 }
1880 }
1881
1882 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1883 xhci_free_virt_devices_depth_first(xhci, i);
1884
1885 dma_pool_destroy(xhci->segment_pool);
1886 xhci->segment_pool = NULL;
1887 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1888
1889 dma_pool_destroy(xhci->device_pool);
1890 xhci->device_pool = NULL;
1891 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1892
1893 dma_pool_destroy(xhci->small_streams_pool);
1894 xhci->small_streams_pool = NULL;
1895 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1896 "Freed small stream array pool");
1897
1898 dma_pool_destroy(xhci->medium_streams_pool);
1899 xhci->medium_streams_pool = NULL;
1900 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1901 "Freed medium stream array pool");
1902
1903 if (xhci->dcbaa)
1904 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1905 xhci->dcbaa, xhci->dcbaa->dma);
1906 xhci->dcbaa = NULL;
1907
1908 scratchpad_free(xhci);
1909
1910 if (!xhci->rh_bw)
1911 goto no_bw;
1912
1913 for (i = 0; i < num_ports; i++) {
1914 struct xhci_tt_bw_info *tt, *n;
1915 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1916 list_del(&tt->tt_list);
1917 kfree(tt);
1918 }
1919 }
1920
1921no_bw:
1922 xhci->cmd_ring_reserved_trbs = 0;
1923 xhci->usb2_rhub.num_ports = 0;
1924 xhci->usb3_rhub.num_ports = 0;
1925 xhci->num_active_eps = 0;
1926 kfree(xhci->usb2_rhub.ports);
1927 kfree(xhci->usb3_rhub.ports);
1928 kfree(xhci->hw_ports);
1929 kfree(xhci->rh_bw);
1930 kfree(xhci->ext_caps);
1931 for (i = 0; i < xhci->num_port_caps; i++)
1932 kfree(xhci->port_caps[i].psi);
1933 kfree(xhci->port_caps);
1934 xhci->num_port_caps = 0;
1935
1936 xhci->usb2_rhub.ports = NULL;
1937 xhci->usb3_rhub.ports = NULL;
1938 xhci->hw_ports = NULL;
1939 xhci->rh_bw = NULL;
1940 xhci->ext_caps = NULL;
1941
1942 xhci->page_size = 0;
1943 xhci->page_shift = 0;
1944 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1945 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1946}
1947
1948static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1949 struct xhci_segment *input_seg,
1950 union xhci_trb *start_trb,
1951 union xhci_trb *end_trb,
1952 dma_addr_t input_dma,
1953 struct xhci_segment *result_seg,
1954 char *test_name, int test_number)
1955{
1956 unsigned long long start_dma;
1957 unsigned long long end_dma;
1958 struct xhci_segment *seg;
1959
1960 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1961 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1962
1963 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1964 if (seg != result_seg) {
1965 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1966 test_name, test_number);
1967 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1968 "input DMA 0x%llx\n",
1969 input_seg,
1970 (unsigned long long) input_dma);
1971 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1972 "ending TRB %p (0x%llx DMA)\n",
1973 start_trb, start_dma,
1974 end_trb, end_dma);
1975 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1976 result_seg, seg);
1977 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1978 true);
1979 return -1;
1980 }
1981 return 0;
1982}
1983
1984/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1985static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1986{
1987 struct {
1988 dma_addr_t input_dma;
1989 struct xhci_segment *result_seg;
1990 } simple_test_vector [] = {
1991 /* A zeroed DMA field should fail */
1992 { 0, NULL },
1993 /* One TRB before the ring start should fail */
1994 { xhci->event_ring->first_seg->dma - 16, NULL },
1995 /* One byte before the ring start should fail */
1996 { xhci->event_ring->first_seg->dma - 1, NULL },
1997 /* Starting TRB should succeed */
1998 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1999 /* Ending TRB should succeed */
2000 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2001 xhci->event_ring->first_seg },
2002 /* One byte after the ring end should fail */
2003 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2004 /* One TRB after the ring end should fail */
2005 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2006 /* An address of all ones should fail */
2007 { (dma_addr_t) (~0), NULL },
2008 };
2009 struct {
2010 struct xhci_segment *input_seg;
2011 union xhci_trb *start_trb;
2012 union xhci_trb *end_trb;
2013 dma_addr_t input_dma;
2014 struct xhci_segment *result_seg;
2015 } complex_test_vector [] = {
2016 /* Test feeding a valid DMA address from a different ring */
2017 { .input_seg = xhci->event_ring->first_seg,
2018 .start_trb = xhci->event_ring->first_seg->trbs,
2019 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2020 .input_dma = xhci->cmd_ring->first_seg->dma,
2021 .result_seg = NULL,
2022 },
2023 /* Test feeding a valid end TRB from a different ring */
2024 { .input_seg = xhci->event_ring->first_seg,
2025 .start_trb = xhci->event_ring->first_seg->trbs,
2026 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2027 .input_dma = xhci->cmd_ring->first_seg->dma,
2028 .result_seg = NULL,
2029 },
2030 /* Test feeding a valid start and end TRB from a different ring */
2031 { .input_seg = xhci->event_ring->first_seg,
2032 .start_trb = xhci->cmd_ring->first_seg->trbs,
2033 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2034 .input_dma = xhci->cmd_ring->first_seg->dma,
2035 .result_seg = NULL,
2036 },
2037 /* TRB in this ring, but after this TD */
2038 { .input_seg = xhci->event_ring->first_seg,
2039 .start_trb = &xhci->event_ring->first_seg->trbs[0],
2040 .end_trb = &xhci->event_ring->first_seg->trbs[3],
2041 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2042 .result_seg = NULL,
2043 },
2044 /* TRB in this ring, but before this TD */
2045 { .input_seg = xhci->event_ring->first_seg,
2046 .start_trb = &xhci->event_ring->first_seg->trbs[3],
2047 .end_trb = &xhci->event_ring->first_seg->trbs[6],
2048 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2049 .result_seg = NULL,
2050 },
2051 /* TRB in this ring, but after this wrapped TD */
2052 { .input_seg = xhci->event_ring->first_seg,
2053 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2054 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2055 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2056 .result_seg = NULL,
2057 },
2058 /* TRB in this ring, but before this wrapped TD */
2059 { .input_seg = xhci->event_ring->first_seg,
2060 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2061 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2062 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2063 .result_seg = NULL,
2064 },
2065 /* TRB not in this ring, and we have a wrapped TD */
2066 { .input_seg = xhci->event_ring->first_seg,
2067 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2068 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2069 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2070 .result_seg = NULL,
2071 },
2072 };
2073
2074 unsigned int num_tests;
2075 int i, ret;
2076
2077 num_tests = ARRAY_SIZE(simple_test_vector);
2078 for (i = 0; i < num_tests; i++) {
2079 ret = xhci_test_trb_in_td(xhci,
2080 xhci->event_ring->first_seg,
2081 xhci->event_ring->first_seg->trbs,
2082 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2083 simple_test_vector[i].input_dma,
2084 simple_test_vector[i].result_seg,
2085 "Simple", i);
2086 if (ret < 0)
2087 return ret;
2088 }
2089
2090 num_tests = ARRAY_SIZE(complex_test_vector);
2091 for (i = 0; i < num_tests; i++) {
2092 ret = xhci_test_trb_in_td(xhci,
2093 complex_test_vector[i].input_seg,
2094 complex_test_vector[i].start_trb,
2095 complex_test_vector[i].end_trb,
2096 complex_test_vector[i].input_dma,
2097 complex_test_vector[i].result_seg,
2098 "Complex", i);
2099 if (ret < 0)
2100 return ret;
2101 }
2102 xhci_dbg(xhci, "TRB math tests passed.\n");
2103 return 0;
2104}
2105
2106static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2107{
2108 u64 temp;
2109 dma_addr_t deq;
2110
2111 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2112 xhci->event_ring->dequeue);
2113 if (deq == 0 && !in_interrupt())
2114 xhci_warn(xhci, "WARN something wrong with SW event ring "
2115 "dequeue ptr.\n");
2116 /* Update HC event ring dequeue pointer */
2117 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2118 temp &= ERST_PTR_MASK;
2119 /* Don't clear the EHB bit (which is RW1C) because
2120 * there might be more events to service.
2121 */
2122 temp &= ~ERST_EHB;
2123 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2124 "// Write event ring dequeue pointer, "
2125 "preserving EHB bit");
2126 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2127 &xhci->ir_set->erst_dequeue);
2128}
2129
2130static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2131 __le32 __iomem *addr, int max_caps)
2132{
2133 u32 temp, port_offset, port_count;
2134 int i;
2135 u8 major_revision, minor_revision;
2136 struct xhci_hub *rhub;
2137 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2138 struct xhci_port_cap *port_cap;
2139
2140 temp = readl(addr);
2141 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2142 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2143
2144 if (major_revision == 0x03) {
2145 rhub = &xhci->usb3_rhub;
2146 } else if (major_revision <= 0x02) {
2147 rhub = &xhci->usb2_rhub;
2148 } else {
2149 xhci_warn(xhci, "Ignoring unknown port speed, "
2150 "Ext Cap %p, revision = 0x%x\n",
2151 addr, major_revision);
2152 /* Ignoring port protocol we can't understand. FIXME */
2153 return;
2154 }
2155 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2156
2157 if (rhub->min_rev < minor_revision)
2158 rhub->min_rev = minor_revision;
2159
2160 /* Port offset and count in the third dword, see section 7.2 */
2161 temp = readl(addr + 2);
2162 port_offset = XHCI_EXT_PORT_OFF(temp);
2163 port_count = XHCI_EXT_PORT_COUNT(temp);
2164 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2165 "Ext Cap %p, port offset = %u, "
2166 "count = %u, revision = 0x%x",
2167 addr, port_offset, port_count, major_revision);
2168 /* Port count includes the current port offset */
2169 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2170 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2171 return;
2172
2173 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2174 if (xhci->num_port_caps > max_caps)
2175 return;
2176
2177 port_cap->maj_rev = major_revision;
2178 port_cap->min_rev = minor_revision;
2179 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2180
2181 if (port_cap->psi_count) {
2182 port_cap->psi = kcalloc_node(port_cap->psi_count,
2183 sizeof(*port_cap->psi),
2184 GFP_KERNEL, dev_to_node(dev));
2185 if (!port_cap->psi)
2186 port_cap->psi_count = 0;
2187
2188 port_cap->psi_uid_count++;
2189 for (i = 0; i < port_cap->psi_count; i++) {
2190 port_cap->psi[i] = readl(addr + 4 + i);
2191
2192 /* count unique ID values, two consecutive entries can
2193 * have the same ID if link is assymetric
2194 */
2195 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2196 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2197 port_cap->psi_uid_count++;
2198
2199 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2200 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2201 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2202 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2203 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2204 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2205 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2206 }
2207 }
2208 /* cache usb2 port capabilities */
2209 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2210 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2211
2212 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2213 (temp & XHCI_HLC)) {
2214 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2215 "xHCI 1.0: support USB2 hardware lpm");
2216 xhci->hw_lpm_support = 1;
2217 }
2218
2219 port_offset--;
2220 for (i = port_offset; i < (port_offset + port_count); i++) {
2221 struct xhci_port *hw_port = &xhci->hw_ports[i];
2222 /* Duplicate entry. Ignore the port if the revisions differ. */
2223 if (hw_port->rhub) {
2224 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2225 " port %u\n", addr, i);
2226 xhci_warn(xhci, "Port was marked as USB %u, "
2227 "duplicated as USB %u\n",
2228 hw_port->rhub->maj_rev, major_revision);
2229 /* Only adjust the roothub port counts if we haven't
2230 * found a similar duplicate.
2231 */
2232 if (hw_port->rhub != rhub &&
2233 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2234 hw_port->rhub->num_ports--;
2235 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2236 }
2237 continue;
2238 }
2239 hw_port->rhub = rhub;
2240 hw_port->port_cap = port_cap;
2241 rhub->num_ports++;
2242 }
2243 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2244}
2245
2246static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2247 struct xhci_hub *rhub, gfp_t flags)
2248{
2249 int port_index = 0;
2250 int i;
2251 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2252
2253 if (!rhub->num_ports)
2254 return;
2255 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(rhub->ports), flags,
2256 dev_to_node(dev));
2257 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2258 if (xhci->hw_ports[i].rhub != rhub ||
2259 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2260 continue;
2261 xhci->hw_ports[i].hcd_portnum = port_index;
2262 rhub->ports[port_index] = &xhci->hw_ports[i];
2263 port_index++;
2264 if (port_index == rhub->num_ports)
2265 break;
2266 }
2267}
2268
2269/*
2270 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2271 * specify what speeds each port is supposed to be. We can't count on the port
2272 * speed bits in the PORTSC register being correct until a device is connected,
2273 * but we need to set up the two fake roothubs with the correct number of USB
2274 * 3.0 and USB 2.0 ports at host controller initialization time.
2275 */
2276static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2277{
2278 void __iomem *base;
2279 u32 offset;
2280 unsigned int num_ports;
2281 int i, j;
2282 int cap_count = 0;
2283 u32 cap_start;
2284 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2285
2286 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2287 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2288 flags, dev_to_node(dev));
2289 if (!xhci->hw_ports)
2290 return -ENOMEM;
2291
2292 for (i = 0; i < num_ports; i++) {
2293 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2294 NUM_PORT_REGS * i;
2295 xhci->hw_ports[i].hw_portnum = i;
2296 }
2297
2298 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2299 dev_to_node(dev));
2300 if (!xhci->rh_bw)
2301 return -ENOMEM;
2302 for (i = 0; i < num_ports; i++) {
2303 struct xhci_interval_bw_table *bw_table;
2304
2305 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2306 bw_table = &xhci->rh_bw[i].bw_table;
2307 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2308 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2309 }
2310 base = &xhci->cap_regs->hc_capbase;
2311
2312 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2313 if (!cap_start) {
2314 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2315 return -ENODEV;
2316 }
2317
2318 offset = cap_start;
2319 /* count extended protocol capability entries for later caching */
2320 while (offset) {
2321 cap_count++;
2322 offset = xhci_find_next_ext_cap(base, offset,
2323 XHCI_EXT_CAPS_PROTOCOL);
2324 }
2325
2326 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2327 flags, dev_to_node(dev));
2328 if (!xhci->ext_caps)
2329 return -ENOMEM;
2330
2331 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2332 flags, dev_to_node(dev));
2333 if (!xhci->port_caps)
2334 return -ENOMEM;
2335
2336 offset = cap_start;
2337
2338 while (offset) {
2339 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2340 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2341 num_ports)
2342 break;
2343 offset = xhci_find_next_ext_cap(base, offset,
2344 XHCI_EXT_CAPS_PROTOCOL);
2345 }
2346 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2347 xhci_warn(xhci, "No ports on the roothubs?\n");
2348 return -ENODEV;
2349 }
2350 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2351 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2352 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2353
2354 /* Place limits on the number of roothub ports so that the hub
2355 * descriptors aren't longer than the USB core will allocate.
2356 */
2357 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2358 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2359 "Limiting USB 3.0 roothub ports to %u.",
2360 USB_SS_MAXPORTS);
2361 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2362 }
2363 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2364 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2365 "Limiting USB 2.0 roothub ports to %u.",
2366 USB_MAXCHILDREN);
2367 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2368 }
2369
2370 /*
2371 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2372 * Not sure how the USB core will handle a hub with no ports...
2373 */
2374
2375 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2376 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2377
2378 return 0;
2379}
2380
2381int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2382{
2383 dma_addr_t dma;
2384 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2385 unsigned int val, val2;
2386 u64 val_64;
2387 u32 page_size, temp;
2388 int i, ret;
2389
2390 INIT_LIST_HEAD(&xhci->cmd_list);
2391
2392 /* init command timeout work */
2393 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2394 init_completion(&xhci->cmd_ring_stop_completion);
2395
2396 page_size = readl(&xhci->op_regs->page_size);
2397 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2398 "Supported page size register = 0x%x", page_size);
2399 for (i = 0; i < 16; i++) {
2400 if ((0x1 & page_size) != 0)
2401 break;
2402 page_size = page_size >> 1;
2403 }
2404 if (i < 16)
2405 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2406 "Supported page size of %iK", (1 << (i+12)) / 1024);
2407 else
2408 xhci_warn(xhci, "WARN: no supported page size\n");
2409 /* Use 4K pages, since that's common and the minimum the HC supports */
2410 xhci->page_shift = 12;
2411 xhci->page_size = 1 << xhci->page_shift;
2412 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2413 "HCD page size set to %iK", xhci->page_size / 1024);
2414
2415 /*
2416 * Program the Number of Device Slots Enabled field in the CONFIG
2417 * register with the max value of slots the HC can handle.
2418 */
2419 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2420 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2421 "// xHC can handle at most %d device slots.", val);
2422 val2 = readl(&xhci->op_regs->config_reg);
2423 val |= (val2 & ~HCS_SLOTS_MASK);
2424 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2425 "// Setting Max device slots reg = 0x%x.", val);
2426 writel(val, &xhci->op_regs->config_reg);
2427
2428 /*
2429 * xHCI section 5.4.6 - doorbell array must be
2430 * "physically contiguous and 64-byte (cache line) aligned".
2431 */
2432 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2433 flags);
2434 if (!xhci->dcbaa)
2435 goto fail;
2436 xhci->dcbaa->dma = dma;
2437 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2438 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2439 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2440 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2441
2442 /*
2443 * Initialize the ring segment pool. The ring must be a contiguous
2444 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2445 * however, the command ring segment needs 64-byte aligned segments
2446 * and our use of dma addresses in the trb_address_map radix tree needs
2447 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2448 */
2449 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2450 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2451
2452 /* See Table 46 and Note on Figure 55 */
2453 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2454 2112, 64, xhci->page_size);
2455 if (!xhci->segment_pool || !xhci->device_pool)
2456 goto fail;
2457
2458 /* Linear stream context arrays don't have any boundary restrictions,
2459 * and only need to be 16-byte aligned.
2460 */
2461 xhci->small_streams_pool =
2462 dma_pool_create("xHCI 256 byte stream ctx arrays",
2463 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2464 xhci->medium_streams_pool =
2465 dma_pool_create("xHCI 1KB stream ctx arrays",
2466 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2467 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2468 * will be allocated with dma_alloc_coherent()
2469 */
2470
2471 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2472 goto fail;
2473
2474 /* Set up the command ring to have one segments for now. */
2475 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2476 if (!xhci->cmd_ring)
2477 goto fail;
2478 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2479 "Allocated command ring at %p", xhci->cmd_ring);
2480 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2481 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2482
2483 /* Set the address in the Command Ring Control register */
2484 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2485 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2486 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2487 xhci->cmd_ring->cycle_state;
2488 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2489 "// Setting command ring address to 0x%016llx", val_64);
2490 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2491
2492 xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2493 if (!xhci->lpm_command)
2494 goto fail;
2495
2496 /* Reserve one command ring TRB for disabling LPM.
2497 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2498 * disabling LPM, we only need to reserve one TRB for all devices.
2499 */
2500 xhci->cmd_ring_reserved_trbs++;
2501
2502 val = readl(&xhci->cap_regs->db_off);
2503 val &= DBOFF_MASK;
2504 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2505 "// Doorbell array is located at offset 0x%x"
2506 " from cap regs base addr", val);
2507 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2508 /* Set ir_set to interrupt register set 0 */
2509 xhci->ir_set = &xhci->run_regs->ir_set[0];
2510
2511 /*
2512 * Event ring setup: Allocate a normal ring, but also setup
2513 * the event ring segment table (ERST). Section 4.9.3.
2514 */
2515 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2516 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2517 0, flags);
2518 if (!xhci->event_ring)
2519 goto fail;
2520 if (xhci_check_trb_in_td_math(xhci) < 0)
2521 goto fail;
2522
2523 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2524 if (ret)
2525 goto fail;
2526
2527 /* set ERST count with the number of entries in the segment table */
2528 val = readl(&xhci->ir_set->erst_size);
2529 val &= ERST_SIZE_MASK;
2530 val |= ERST_NUM_SEGS;
2531 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2532 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2533 val);
2534 writel(val, &xhci->ir_set->erst_size);
2535
2536 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2537 "// Set ERST entries to point to event ring.");
2538 /* set the segment table base address */
2539 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2540 "// Set ERST base address for ir_set 0 = 0x%llx",
2541 (unsigned long long)xhci->erst.erst_dma_addr);
2542 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2543 val_64 &= ERST_PTR_MASK;
2544 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2545 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2546
2547 /* Set the event ring dequeue address */
2548 xhci_set_hc_event_deq(xhci);
2549 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2550 "Wrote ERST address to ir_set 0.");
2551
2552 /*
2553 * XXX: Might need to set the Interrupter Moderation Register to
2554 * something other than the default (~1ms minimum between interrupts).
2555 * See section 5.5.1.2.
2556 */
2557 for (i = 0; i < MAX_HC_SLOTS; i++)
2558 xhci->devs[i] = NULL;
2559 for (i = 0; i < USB_MAXCHILDREN; i++) {
2560 xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2561 xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2562 /* Only the USB 2.0 completions will ever be used. */
2563 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2564 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2565 }
2566
2567 if (scratchpad_alloc(xhci, flags))
2568 goto fail;
2569 if (xhci_setup_port_arrays(xhci, flags))
2570 goto fail;
2571
2572 /* Enable USB 3.0 device notifications for function remote wake, which
2573 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2574 * U3 (device suspend).
2575 */
2576 temp = readl(&xhci->op_regs->dev_notification);
2577 temp &= ~DEV_NOTE_MASK;
2578 temp |= DEV_NOTE_FWAKE;
2579 writel(temp, &xhci->op_regs->dev_notification);
2580
2581 return 0;
2582
2583fail:
2584 xhci_halt(xhci);
2585 xhci_reset(xhci);
2586 xhci_mem_cleanup(xhci);
2587 return -ENOMEM;
2588}