Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/usb.h>
  12#include <linux/overflow.h>
  13#include <linux/pci.h>
  14#include <linux/slab.h>
  15#include <linux/dmapool.h>
  16#include <linux/dma-mapping.h>
  17
  18#include "xhci.h"
  19#include "xhci-trace.h"
  20#include "xhci-debugfs.h"
  21
  22/*
  23 * Allocates a generic ring segment from the ring pool, sets the dma address,
  24 * initializes the segment to zero, and sets the private next pointer to NULL.
  25 *
  26 * Section 4.11.1.1:
  27 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  28 */
  29static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  30					       unsigned int cycle_state,
  31					       unsigned int max_packet,
  32					       unsigned int num,
  33					       gfp_t flags)
  34{
  35	struct xhci_segment *seg;
  36	dma_addr_t	dma;
  37	int		i;
  38	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
  39
  40	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
  41	if (!seg)
  42		return NULL;
  43
  44	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  45	if (!seg->trbs) {
  46		kfree(seg);
  47		return NULL;
  48	}
  49
  50	if (max_packet) {
  51		seg->bounce_buf = kzalloc_node(max_packet, flags,
  52					dev_to_node(dev));
  53		if (!seg->bounce_buf) {
  54			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  55			kfree(seg);
  56			return NULL;
  57		}
  58	}
  59	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  60	if (cycle_state == 0) {
  61		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  62			seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
  63	}
  64	seg->num = num;
  65	seg->dma = dma;
  66	seg->next = NULL;
  67
  68	return seg;
  69}
  70
  71static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  72{
  73	if (seg->trbs) {
  74		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  75		seg->trbs = NULL;
  76	}
  77	kfree(seg->bounce_buf);
  78	kfree(seg);
  79}
  80
  81static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  82				struct xhci_segment *first)
  83{
  84	struct xhci_segment *seg;
  85
  86	seg = first->next;
  87	while (seg != first) {
  88		struct xhci_segment *next = seg->next;
 
 
  89		xhci_segment_free(xhci, seg);
  90		seg = next;
  91	}
  92	xhci_segment_free(xhci, first);
  93}
  94
  95/*
  96 * Make the prev segment point to the next segment.
 
  97 *
  98 * Change the last TRB in the prev segment to be a Link TRB which points to the
  99 * DMA address of the next segment.  The caller needs to set any Link TRB
 100 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 101 */
 102static void xhci_link_segments(struct xhci_segment *prev,
 103			       struct xhci_segment *next,
 104			       enum xhci_ring_type type, bool chain_links)
 105{
 
 106	u32 val;
 107
 108	if (!prev || !next)
 109		return;
 110	prev->next = next;
 111	if (type != TYPE_EVENT) {
 112		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 113			cpu_to_le64(next->dma);
 114
 115		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 116		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 117		val &= ~TRB_TYPE_BITMASK;
 118		val |= TRB_TYPE(TRB_LINK);
 119		if (chain_links)
 120			val |= TRB_CHAIN;
 121		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 122	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123}
 124
 125/*
 126 * Link the ring to the new segments.
 127 * Set Toggle Cycle for the new ring if needed.
 128 */
 129static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 130		struct xhci_segment *first, struct xhci_segment *last,
 131		unsigned int num_segs)
 132{
 133	struct xhci_segment *next, *seg;
 134	bool chain_links;
 135
 136	if (!ring || !first || !last)
 137		return;
 138
 139	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 140	chain_links = !!(xhci_link_trb_quirk(xhci) ||
 141			 (ring->type == TYPE_ISOC &&
 142			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
 143
 144	next = ring->enq_seg->next;
 145	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
 146	xhci_link_segments(last, next, ring->type, chain_links);
 147	ring->num_segs += num_segs;
 148
 149	if (ring->enq_seg == ring->last_seg) {
 150		if (ring->type != TYPE_EVENT) {
 151			ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 152				&= ~cpu_to_le32(LINK_TOGGLE);
 153			last->trbs[TRBS_PER_SEGMENT-1].link.control
 154				|= cpu_to_le32(LINK_TOGGLE);
 155		}
 156		ring->last_seg = last;
 157	}
 158
 159	for (seg = last; seg != ring->last_seg; seg = seg->next)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160		seg->next->num = seg->num + 1;
 161}
 162
 163/*
 164 * We need a radix tree for mapping physical addresses of TRBs to which stream
 165 * ID they belong to.  We need to do this because the host controller won't tell
 166 * us which stream ring the TRB came from.  We could store the stream ID in an
 167 * event data TRB, but that doesn't help us for the cancellation case, since the
 168 * endpoint may stop before it reaches that event data TRB.
 169 *
 170 * The radix tree maps the upper portion of the TRB DMA address to a ring
 171 * segment that has the same upper portion of DMA addresses.  For example, say I
 172 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 173 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 174 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 175 * pass the radix tree a key to get the right stream ID:
 176 *
 177 *	0x10c90fff >> 10 = 0x43243
 178 *	0x10c912c0 >> 10 = 0x43244
 179 *	0x10c91400 >> 10 = 0x43245
 180 *
 181 * Obviously, only those TRBs with DMA addresses that are within the segment
 182 * will make the radix tree return the stream ID for that ring.
 183 *
 184 * Caveats for the radix tree:
 185 *
 186 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 187 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 188 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 189 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 190 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 191 * extended systems (where the DMA address can be bigger than 32-bits),
 192 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 193 */
 194static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 195		struct xhci_ring *ring,
 196		struct xhci_segment *seg,
 197		gfp_t mem_flags)
 198{
 199	unsigned long key;
 200	int ret;
 201
 202	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 203	/* Skip any segments that were already added. */
 204	if (radix_tree_lookup(trb_address_map, key))
 205		return 0;
 206
 207	ret = radix_tree_maybe_preload(mem_flags);
 208	if (ret)
 209		return ret;
 210	ret = radix_tree_insert(trb_address_map,
 211			key, ring);
 212	radix_tree_preload_end();
 213	return ret;
 214}
 215
 216static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 217		struct xhci_segment *seg)
 218{
 219	unsigned long key;
 220
 221	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 222	if (radix_tree_lookup(trb_address_map, key))
 223		radix_tree_delete(trb_address_map, key);
 224}
 225
 226static int xhci_update_stream_segment_mapping(
 227		struct radix_tree_root *trb_address_map,
 228		struct xhci_ring *ring,
 229		struct xhci_segment *first_seg,
 230		struct xhci_segment *last_seg,
 231		gfp_t mem_flags)
 232{
 233	struct xhci_segment *seg;
 234	struct xhci_segment *failed_seg;
 235	int ret;
 236
 237	if (WARN_ON_ONCE(trb_address_map == NULL))
 238		return 0;
 239
 240	seg = first_seg;
 241	do {
 242		ret = xhci_insert_segment_mapping(trb_address_map,
 243				ring, seg, mem_flags);
 244		if (ret)
 245			goto remove_streams;
 246		if (seg == last_seg)
 247			return 0;
 248		seg = seg->next;
 249	} while (seg != first_seg);
 250
 251	return 0;
 252
 253remove_streams:
 254	failed_seg = seg;
 255	seg = first_seg;
 256	do {
 257		xhci_remove_segment_mapping(trb_address_map, seg);
 258		if (seg == failed_seg)
 259			return ret;
 260		seg = seg->next;
 261	} while (seg != first_seg);
 262
 263	return ret;
 264}
 265
 266static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 267{
 268	struct xhci_segment *seg;
 269
 270	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 271		return;
 272
 273	seg = ring->first_seg;
 274	do {
 275		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 276		seg = seg->next;
 277	} while (seg != ring->first_seg);
 278}
 279
 280static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 281{
 282	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 283			ring->first_seg, ring->last_seg, mem_flags);
 284}
 285
 286/* XXX: Do we need the hcd structure in all these functions? */
 287void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 288{
 289	if (!ring)
 290		return;
 291
 292	trace_xhci_ring_free(ring);
 293
 294	if (ring->first_seg) {
 295		if (ring->type == TYPE_STREAM)
 296			xhci_remove_stream_mapping(ring);
 297		xhci_free_segments_for_ring(xhci, ring->first_seg);
 298	}
 299
 300	kfree(ring);
 301}
 302
 303void xhci_initialize_ring_info(struct xhci_ring *ring,
 304			       unsigned int cycle_state)
 305{
 306	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 307	ring->enqueue = ring->first_seg->trbs;
 308	ring->enq_seg = ring->first_seg;
 309	ring->dequeue = ring->enqueue;
 310	ring->deq_seg = ring->first_seg;
 311	/* The ring is initialized to 0. The producer must write 1 to the cycle
 312	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 313	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 314	 *
 315	 * New rings are initialized with cycle state equal to 1; if we are
 316	 * handling ring expansion, set the cycle state equal to the old ring.
 317	 */
 318	ring->cycle_state = cycle_state;
 319
 320	/*
 321	 * Each segment has a link TRB, and leave an extra TRB for SW
 322	 * accounting purpose
 323	 */
 324	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 325}
 326EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
 327
 328/* Allocate segments and link them for a ring */
 329static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 330		struct xhci_segment **first, struct xhci_segment **last,
 331		unsigned int num_segs, unsigned int num,
 332		unsigned int cycle_state, enum xhci_ring_type type,
 333		unsigned int max_packet, gfp_t flags)
 334{
 335	struct xhci_segment *prev;
 336	bool chain_links;
 337
 338	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 339	chain_links = !!(xhci_link_trb_quirk(xhci) ||
 340			 (type == TYPE_ISOC &&
 341			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
 342
 343	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags);
 344	if (!prev)
 345		return -ENOMEM;
 346	num++;
 347
 348	*first = prev;
 349	while (num < num_segs) {
 350		struct xhci_segment	*next;
 351
 352		next = xhci_segment_alloc(xhci, cycle_state, max_packet, num,
 353					  flags);
 354		if (!next) {
 355			prev = *first;
 356			while (prev) {
 357				next = prev->next;
 358				xhci_segment_free(xhci, prev);
 359				prev = next;
 360			}
 361			return -ENOMEM;
 362		}
 363		xhci_link_segments(prev, next, type, chain_links);
 364
 
 365		prev = next;
 366		num++;
 367	}
 368	xhci_link_segments(prev, *first, type, chain_links);
 369	*last = prev;
 370
 
 371	return 0;
 
 
 
 
 
 372}
 373
 374/*
 375 * Create a new ring with zero or more segments.
 376 *
 377 * Link each segment together into a ring.
 378 * Set the end flag and the cycle toggle bit on the last segment.
 379 * See section 4.9.1 and figures 15 and 16.
 380 */
 381struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 382		unsigned int num_segs, unsigned int cycle_state,
 383		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 384{
 385	struct xhci_ring	*ring;
 386	int ret;
 387	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 388
 389	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
 390	if (!ring)
 391		return NULL;
 392
 393	ring->num_segs = num_segs;
 394	ring->bounce_buf_len = max_packet;
 395	INIT_LIST_HEAD(&ring->td_list);
 396	ring->type = type;
 397	if (num_segs == 0)
 398		return ring;
 399
 400	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 401			&ring->last_seg, num_segs, 0, cycle_state, type,
 402			max_packet, flags);
 403	if (ret)
 404		goto fail;
 405
 406	/* Only event ring does not use link TRB */
 407	if (type != TYPE_EVENT) {
 408		/* See section 4.9.2.1 and 6.4.4.1 */
 409		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 410			cpu_to_le32(LINK_TOGGLE);
 411	}
 412	xhci_initialize_ring_info(ring, cycle_state);
 413	trace_xhci_ring_alloc(ring);
 414	return ring;
 415
 416fail:
 417	kfree(ring);
 418	return NULL;
 419}
 420
 421void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
 422		struct xhci_virt_device *virt_dev,
 423		unsigned int ep_index)
 424{
 425	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 426	virt_dev->eps[ep_index].ring = NULL;
 427}
 428
 429/*
 430 * Expand an existing ring.
 431 * Allocate a new ring which has same segment numbers and link the two rings.
 432 */
 433int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 434				unsigned int num_new_segs, gfp_t flags)
 435{
 436	struct xhci_segment	*first;
 437	struct xhci_segment	*last;
 438	int			ret;
 439
 440	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 441			num_new_segs, ring->enq_seg->num + 1,
 442			ring->cycle_state, ring->type,
 443			ring->bounce_buf_len, flags);
 
 
 444	if (ret)
 445		return -ENOMEM;
 446
 447	if (ring->type == TYPE_STREAM)
 448		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 449						ring, first, last, flags);
 450	if (ret) {
 451		struct xhci_segment *next;
 452		do {
 453			next = first->next;
 454			xhci_segment_free(xhci, first);
 455			if (first == last)
 456				break;
 457			first = next;
 458		} while (true);
 459		return ret;
 460	}
 461
 462	xhci_link_rings(xhci, ring, first, last, num_new_segs);
 463	trace_xhci_ring_expansion(ring);
 464	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 465			"ring expansion succeed, now has %d segments",
 466			ring->num_segs);
 467
 468	return 0;
 
 
 
 
 469}
 470
 471struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 472						    int type, gfp_t flags)
 473{
 474	struct xhci_container_ctx *ctx;
 475	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 476
 477	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 478		return NULL;
 479
 480	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
 481	if (!ctx)
 482		return NULL;
 483
 484	ctx->type = type;
 485	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 486	if (type == XHCI_CTX_TYPE_INPUT)
 487		ctx->size += CTX_SIZE(xhci->hcc_params);
 488
 489	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 490	if (!ctx->bytes) {
 491		kfree(ctx);
 492		return NULL;
 493	}
 494	return ctx;
 495}
 496
 497void xhci_free_container_ctx(struct xhci_hcd *xhci,
 498			     struct xhci_container_ctx *ctx)
 499{
 500	if (!ctx)
 501		return;
 502	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 503	kfree(ctx);
 504}
 505
 506struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 507					      struct xhci_container_ctx *ctx)
 508{
 509	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 510		return NULL;
 511
 512	return (struct xhci_input_control_ctx *)ctx->bytes;
 513}
 514
 515struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 516					struct xhci_container_ctx *ctx)
 517{
 518	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 519		return (struct xhci_slot_ctx *)ctx->bytes;
 520
 521	return (struct xhci_slot_ctx *)
 522		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 523}
 524
 525struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 526				    struct xhci_container_ctx *ctx,
 527				    unsigned int ep_index)
 528{
 529	/* increment ep index by offset of start of ep ctx array */
 530	ep_index++;
 531	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 532		ep_index++;
 533
 534	return (struct xhci_ep_ctx *)
 535		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 536}
 537EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
 538
 539/***************** Streams structures manipulation *************************/
 540
 541static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 542		unsigned int num_stream_ctxs,
 543		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 544{
 545	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 546	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 547
 548	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 549		dma_free_coherent(dev, size, stream_ctx, dma);
 550	else if (size > SMALL_STREAM_ARRAY_SIZE)
 551		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
 552	else
 553		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
 554}
 555
 556/*
 557 * The stream context array for each endpoint with bulk streams enabled can
 558 * vary in size, based on:
 559 *  - how many streams the endpoint supports,
 560 *  - the maximum primary stream array size the host controller supports,
 561 *  - and how many streams the device driver asks for.
 562 *
 563 * The stream context array must be a power of 2, and can be as small as
 564 * 64 bytes or as large as 1MB.
 565 */
 566static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 567		unsigned int num_stream_ctxs, dma_addr_t *dma,
 568		gfp_t mem_flags)
 569{
 570	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 571	size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
 572
 573	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 574		return dma_alloc_coherent(dev, size, dma, mem_flags);
 575	if (size > SMALL_STREAM_ARRAY_SIZE)
 576		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
 577	else
 578		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
 579}
 580
 581struct xhci_ring *xhci_dma_to_transfer_ring(
 582		struct xhci_virt_ep *ep,
 583		u64 address)
 584{
 585	if (ep->ep_state & EP_HAS_STREAMS)
 586		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 587				address >> TRB_SEGMENT_SHIFT);
 588	return ep->ring;
 589}
 590
 591/*
 592 * Change an endpoint's internal structure so it supports stream IDs.  The
 593 * number of requested streams includes stream 0, which cannot be used by device
 594 * drivers.
 595 *
 596 * The number of stream contexts in the stream context array may be bigger than
 597 * the number of streams the driver wants to use.  This is because the number of
 598 * stream context array entries must be a power of two.
 599 */
 600struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 601		unsigned int num_stream_ctxs,
 602		unsigned int num_streams,
 603		unsigned int max_packet, gfp_t mem_flags)
 604{
 605	struct xhci_stream_info *stream_info;
 606	u32 cur_stream;
 607	struct xhci_ring *cur_ring;
 608	u64 addr;
 609	int ret;
 610	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 611
 612	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
 613			num_streams, num_stream_ctxs);
 614	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 615		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 616		return NULL;
 617	}
 618	xhci->cmd_ring_reserved_trbs++;
 619
 620	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
 621			dev_to_node(dev));
 622	if (!stream_info)
 623		goto cleanup_trbs;
 624
 625	stream_info->num_streams = num_streams;
 626	stream_info->num_stream_ctxs = num_stream_ctxs;
 627
 628	/* Initialize the array of virtual pointers to stream rings. */
 629	stream_info->stream_rings = kcalloc_node(
 630			num_streams, sizeof(struct xhci_ring *), mem_flags,
 631			dev_to_node(dev));
 632	if (!stream_info->stream_rings)
 633		goto cleanup_info;
 634
 635	/* Initialize the array of DMA addresses for stream rings for the HW. */
 636	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 637			num_stream_ctxs, &stream_info->ctx_array_dma,
 638			mem_flags);
 639	if (!stream_info->stream_ctx_array)
 640		goto cleanup_ring_array;
 641
 642	/* Allocate everything needed to free the stream rings later */
 643	stream_info->free_streams_command =
 644		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
 645	if (!stream_info->free_streams_command)
 646		goto cleanup_ctx;
 647
 648	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 649
 650	/* Allocate rings for all the streams that the driver will use,
 651	 * and add their segment DMA addresses to the radix tree.
 652	 * Stream 0 is reserved.
 653	 */
 654
 655	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 656		stream_info->stream_rings[cur_stream] =
 657			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
 658					mem_flags);
 659		cur_ring = stream_info->stream_rings[cur_stream];
 660		if (!cur_ring)
 661			goto cleanup_rings;
 662		cur_ring->stream_id = cur_stream;
 663		cur_ring->trb_address_map = &stream_info->trb_address_map;
 664		/* Set deq ptr, cycle bit, and stream context type */
 665		addr = cur_ring->first_seg->dma |
 666			SCT_FOR_CTX(SCT_PRI_TR) |
 667			cur_ring->cycle_state;
 668		stream_info->stream_ctx_array[cur_stream].stream_ring =
 669			cpu_to_le64(addr);
 670		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
 671
 672		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 
 
 673		if (ret) {
 674			xhci_ring_free(xhci, cur_ring);
 675			stream_info->stream_rings[cur_stream] = NULL;
 676			goto cleanup_rings;
 677		}
 678	}
 679	/* Leave the other unused stream ring pointers in the stream context
 680	 * array initialized to zero.  This will cause the xHC to give us an
 681	 * error if the device asks for a stream ID we don't have setup (if it
 682	 * was any other way, the host controller would assume the ring is
 683	 * "empty" and wait forever for data to be queued to that stream ID).
 684	 */
 685
 686	return stream_info;
 687
 688cleanup_rings:
 689	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 690		cur_ring = stream_info->stream_rings[cur_stream];
 691		if (cur_ring) {
 692			xhci_ring_free(xhci, cur_ring);
 693			stream_info->stream_rings[cur_stream] = NULL;
 694		}
 695	}
 696	xhci_free_command(xhci, stream_info->free_streams_command);
 697cleanup_ctx:
 698	xhci_free_stream_ctx(xhci,
 699		stream_info->num_stream_ctxs,
 700		stream_info->stream_ctx_array,
 701		stream_info->ctx_array_dma);
 702cleanup_ring_array:
 703	kfree(stream_info->stream_rings);
 704cleanup_info:
 705	kfree(stream_info);
 706cleanup_trbs:
 707	xhci->cmd_ring_reserved_trbs--;
 708	return NULL;
 709}
 710/*
 711 * Sets the MaxPStreams field and the Linear Stream Array field.
 712 * Sets the dequeue pointer to the stream context array.
 713 */
 714void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 715		struct xhci_ep_ctx *ep_ctx,
 716		struct xhci_stream_info *stream_info)
 717{
 718	u32 max_primary_streams;
 719	/* MaxPStreams is the number of stream context array entries, not the
 720	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 721	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 722	 */
 723	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 724	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 725			"Setting number of stream ctx array entries to %u",
 726			1 << (max_primary_streams + 1));
 727	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 728	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 729				       | EP_HAS_LSA);
 730	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 731}
 732
 733/*
 734 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 735 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 736 * not at the beginning of the ring).
 737 */
 738void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 739		struct xhci_virt_ep *ep)
 740{
 741	dma_addr_t addr;
 742	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 743	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 744	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 745}
 746
 747/* Frees all stream contexts associated with the endpoint,
 748 *
 749 * Caller should fix the endpoint context streams fields.
 750 */
 751void xhci_free_stream_info(struct xhci_hcd *xhci,
 752		struct xhci_stream_info *stream_info)
 753{
 754	int cur_stream;
 755	struct xhci_ring *cur_ring;
 756
 757	if (!stream_info)
 758		return;
 759
 760	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 761			cur_stream++) {
 762		cur_ring = stream_info->stream_rings[cur_stream];
 763		if (cur_ring) {
 764			xhci_ring_free(xhci, cur_ring);
 765			stream_info->stream_rings[cur_stream] = NULL;
 766		}
 767	}
 768	xhci_free_command(xhci, stream_info->free_streams_command);
 769	xhci->cmd_ring_reserved_trbs--;
 770	if (stream_info->stream_ctx_array)
 771		xhci_free_stream_ctx(xhci,
 772				stream_info->num_stream_ctxs,
 773				stream_info->stream_ctx_array,
 774				stream_info->ctx_array_dma);
 775
 776	kfree(stream_info->stream_rings);
 777	kfree(stream_info);
 778}
 779
 780
 781/***************** Device context manipulation *************************/
 782
 783static void xhci_free_tt_info(struct xhci_hcd *xhci,
 784		struct xhci_virt_device *virt_dev,
 785		int slot_id)
 786{
 787	struct list_head *tt_list_head;
 788	struct xhci_tt_bw_info *tt_info, *next;
 789	bool slot_found = false;
 790
 791	/* If the device never made it past the Set Address stage,
 792	 * it may not have the real_port set correctly.
 793	 */
 794	if (virt_dev->real_port == 0 ||
 795			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 796		xhci_dbg(xhci, "Bad real port.\n");
 797		return;
 798	}
 799
 800	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 801	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 802		/* Multi-TT hubs will have more than one entry */
 803		if (tt_info->slot_id == slot_id) {
 804			slot_found = true;
 805			list_del(&tt_info->tt_list);
 806			kfree(tt_info);
 807		} else if (slot_found) {
 808			break;
 809		}
 810	}
 811}
 812
 813int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 814		struct xhci_virt_device *virt_dev,
 815		struct usb_device *hdev,
 816		struct usb_tt *tt, gfp_t mem_flags)
 817{
 818	struct xhci_tt_bw_info		*tt_info;
 819	unsigned int			num_ports;
 820	int				i, j;
 821	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 822
 823	if (!tt->multi)
 824		num_ports = 1;
 825	else
 826		num_ports = hdev->maxchild;
 827
 828	for (i = 0; i < num_ports; i++, tt_info++) {
 829		struct xhci_interval_bw_table *bw_table;
 830
 831		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
 832				dev_to_node(dev));
 833		if (!tt_info)
 834			goto free_tts;
 835		INIT_LIST_HEAD(&tt_info->tt_list);
 836		list_add(&tt_info->tt_list,
 837				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 838		tt_info->slot_id = virt_dev->udev->slot_id;
 839		if (tt->multi)
 840			tt_info->ttport = i+1;
 841		bw_table = &tt_info->bw_table;
 842		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 843			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 844	}
 845	return 0;
 846
 847free_tts:
 848	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 849	return -ENOMEM;
 850}
 851
 852
 853/* All the xhci_tds in the ring's TD list should be freed at this point.
 854 * Should be called with xhci->lock held if there is any chance the TT lists
 855 * will be manipulated by the configure endpoint, allocate device, or update
 856 * hub functions while this function is removing the TT entries from the list.
 857 */
 858void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 859{
 860	struct xhci_virt_device *dev;
 861	int i;
 862	int old_active_eps = 0;
 863
 864	/* Slot ID 0 is reserved */
 865	if (slot_id == 0 || !xhci->devs[slot_id])
 866		return;
 867
 868	dev = xhci->devs[slot_id];
 869
 870	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 871	if (!dev)
 872		return;
 873
 874	trace_xhci_free_virt_device(dev);
 875
 876	if (dev->tt_info)
 877		old_active_eps = dev->tt_info->active_eps;
 878
 879	for (i = 0; i < 31; i++) {
 880		if (dev->eps[i].ring)
 881			xhci_ring_free(xhci, dev->eps[i].ring);
 882		if (dev->eps[i].stream_info)
 883			xhci_free_stream_info(xhci,
 884					dev->eps[i].stream_info);
 885		/*
 886		 * Endpoints are normally deleted from the bandwidth list when
 887		 * endpoints are dropped, before device is freed.
 888		 * If host is dying or being removed then endpoints aren't
 889		 * dropped cleanly, so delete the endpoint from list here.
 890		 * Only applicable for hosts with software bandwidth checking.
 891		 */
 892
 893		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
 894			list_del_init(&dev->eps[i].bw_endpoint_list);
 895			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
 896				 slot_id, i);
 897		}
 898	}
 899	/* If this is a hub, free the TT(s) from the TT list */
 900	xhci_free_tt_info(xhci, dev, slot_id);
 901	/* If necessary, update the number of active TTs on this root port */
 902	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 903
 904	if (dev->in_ctx)
 905		xhci_free_container_ctx(xhci, dev->in_ctx);
 906	if (dev->out_ctx)
 907		xhci_free_container_ctx(xhci, dev->out_ctx);
 908
 909	if (dev->udev && dev->udev->slot_id)
 910		dev->udev->slot_id = 0;
 
 
 911	kfree(xhci->devs[slot_id]);
 912	xhci->devs[slot_id] = NULL;
 913}
 914
 915/*
 916 * Free a virt_device structure.
 917 * If the virt_device added a tt_info (a hub) and has children pointing to
 918 * that tt_info, then free the child first. Recursive.
 919 * We can't rely on udev at this point to find child-parent relationships.
 920 */
 921static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 922{
 923	struct xhci_virt_device *vdev;
 924	struct list_head *tt_list_head;
 925	struct xhci_tt_bw_info *tt_info, *next;
 926	int i;
 927
 928	vdev = xhci->devs[slot_id];
 929	if (!vdev)
 930		return;
 931
 932	if (vdev->real_port == 0 ||
 933			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 934		xhci_dbg(xhci, "Bad vdev->real_port.\n");
 935		goto out;
 936	}
 937
 938	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
 939	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 940		/* is this a hub device that added a tt_info to the tts list */
 941		if (tt_info->slot_id == slot_id) {
 942			/* are any devices using this tt_info? */
 943			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
 944				vdev = xhci->devs[i];
 945				if (vdev && (vdev->tt_info == tt_info))
 946					xhci_free_virt_devices_depth_first(
 947						xhci, i);
 948			}
 949		}
 950	}
 951out:
 952	/* we are now at a leaf device */
 953	xhci_debugfs_remove_slot(xhci, slot_id);
 954	xhci_free_virt_device(xhci, slot_id);
 955}
 956
 957int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 958		struct usb_device *udev, gfp_t flags)
 959{
 960	struct xhci_virt_device *dev;
 961	int i;
 962
 963	/* Slot ID 0 is reserved */
 964	if (slot_id == 0 || xhci->devs[slot_id]) {
 965		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 966		return 0;
 967	}
 968
 969	dev = kzalloc(sizeof(*dev), flags);
 970	if (!dev)
 971		return 0;
 972
 973	dev->slot_id = slot_id;
 974
 975	/* Allocate the (output) device context that will be used in the HC. */
 976	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 977	if (!dev->out_ctx)
 978		goto fail;
 979
 980	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
 981
 982	/* Allocate the (input) device context for address device command */
 983	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 984	if (!dev->in_ctx)
 985		goto fail;
 986
 987	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
 988
 989	/* Initialize the cancellation and bandwidth list for each ep */
 990	for (i = 0; i < 31; i++) {
 991		dev->eps[i].ep_index = i;
 992		dev->eps[i].vdev = dev;
 993		dev->eps[i].xhci = xhci;
 994		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
 995		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
 996	}
 997
 998	/* Allocate endpoint 0 ring */
 999	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1000	if (!dev->eps[0].ring)
1001		goto fail;
1002
1003	dev->udev = udev;
1004
1005	/* Point to output device context in dcbaa. */
1006	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1007	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1008		 slot_id,
1009		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1010		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1011
1012	trace_xhci_alloc_virt_device(dev);
1013
1014	xhci->devs[slot_id] = dev;
1015
1016	return 1;
1017fail:
1018
1019	if (dev->in_ctx)
1020		xhci_free_container_ctx(xhci, dev->in_ctx);
1021	if (dev->out_ctx)
1022		xhci_free_container_ctx(xhci, dev->out_ctx);
1023	kfree(dev);
1024
1025	return 0;
1026}
1027
1028void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1029		struct usb_device *udev)
1030{
1031	struct xhci_virt_device *virt_dev;
1032	struct xhci_ep_ctx	*ep0_ctx;
1033	struct xhci_ring	*ep_ring;
1034
1035	virt_dev = xhci->devs[udev->slot_id];
1036	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1037	ep_ring = virt_dev->eps[0].ring;
1038	/*
1039	 * FIXME we don't keep track of the dequeue pointer very well after a
1040	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1041	 * host to our enqueue pointer.  This should only be called after a
1042	 * configured device has reset, so all control transfers should have
1043	 * been completed or cancelled before the reset.
1044	 */
1045	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1046							ep_ring->enqueue)
1047				   | ep_ring->cycle_state);
1048}
1049
1050/*
1051 * The xHCI roothub may have ports of differing speeds in any order in the port
1052 * status registers.
1053 *
1054 * The xHCI hardware wants to know the roothub port number that the USB device
1055 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1056 * know is the index of that port under either the USB 2.0 or the USB 3.0
1057 * roothub, but that doesn't give us the real index into the HW port status
1058 * registers. Call xhci_find_raw_port_number() to get real index.
1059 */
1060static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1061		struct usb_device *udev)
1062{
1063	struct usb_device *top_dev;
 
1064	struct usb_hcd *hcd;
1065
1066	if (udev->speed >= USB_SPEED_SUPER)
1067		hcd = xhci_get_usb3_hcd(xhci);
1068	else
1069		hcd = xhci->main_hcd;
1070
1071	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1072			top_dev = top_dev->parent)
1073		/* Found device below root hub */;
1074
1075	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
 
1076}
1077
1078/* Setup an xHCI virtual device for a Set Address command */
1079int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1080{
1081	struct xhci_virt_device *dev;
1082	struct xhci_ep_ctx	*ep0_ctx;
1083	struct xhci_slot_ctx    *slot_ctx;
1084	u32			port_num;
1085	u32			max_packets;
1086	struct usb_device *top_dev;
1087
1088	dev = xhci->devs[udev->slot_id];
1089	/* Slot ID 0 is reserved */
1090	if (udev->slot_id == 0 || !dev) {
1091		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1092				udev->slot_id);
1093		return -EINVAL;
1094	}
1095	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1096	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1097
1098	/* 3) Only the control endpoint is valid - one endpoint context */
1099	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1100	switch (udev->speed) {
1101	case USB_SPEED_SUPER_PLUS:
1102		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1103		max_packets = MAX_PACKET(512);
1104		break;
1105	case USB_SPEED_SUPER:
1106		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1107		max_packets = MAX_PACKET(512);
1108		break;
1109	case USB_SPEED_HIGH:
1110		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1111		max_packets = MAX_PACKET(64);
1112		break;
1113	/* USB core guesses at a 64-byte max packet first for FS devices */
1114	case USB_SPEED_FULL:
1115		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1116		max_packets = MAX_PACKET(64);
1117		break;
1118	case USB_SPEED_LOW:
1119		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1120		max_packets = MAX_PACKET(8);
1121		break;
1122	default:
1123		/* Speed was set earlier, this shouldn't happen. */
1124		return -EINVAL;
1125	}
1126	/* Find the root hub port this device is under */
1127	port_num = xhci_find_real_port_number(xhci, udev);
1128	if (!port_num)
1129		return -EINVAL;
1130	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1131	/* Set the port number in the virtual_device to the faked port number */
1132	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1133			top_dev = top_dev->parent)
1134		/* Found device below root hub */;
1135	dev->fake_port = top_dev->portnum;
1136	dev->real_port = port_num;
1137	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1138	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1139
1140	/* Find the right bandwidth table that this device will be a part of.
1141	 * If this is a full speed device attached directly to a root port (or a
1142	 * decendent of one), it counts as a primary bandwidth domain, not a
1143	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1144	 * will never be created for the HS root hub.
1145	 */
1146	if (!udev->tt || !udev->tt->hub->parent) {
1147		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1148	} else {
1149		struct xhci_root_port_bw_info *rh_bw;
1150		struct xhci_tt_bw_info *tt_bw;
1151
1152		rh_bw = &xhci->rh_bw[port_num - 1];
1153		/* Find the right TT. */
1154		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1155			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1156				continue;
1157
1158			if (!dev->udev->tt->multi ||
1159					(udev->tt->multi &&
1160					 tt_bw->ttport == dev->udev->ttport)) {
1161				dev->bw_table = &tt_bw->bw_table;
1162				dev->tt_info = tt_bw;
1163				break;
1164			}
1165		}
1166		if (!dev->tt_info)
1167			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1168	}
1169
1170	/* Is this a LS/FS device under an external HS hub? */
1171	if (udev->tt && udev->tt->hub->parent) {
1172		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1173						(udev->ttport << 8));
1174		if (udev->tt->multi)
1175			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1176	}
1177	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1178	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1179
1180	/* Step 4 - ring already allocated */
1181	/* Step 5 */
1182	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1183
1184	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1185	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1186					 max_packets);
1187
1188	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1189				   dev->eps[0].ring->cycle_state);
1190
1191	trace_xhci_setup_addressable_virt_device(dev);
1192
1193	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1194
1195	return 0;
1196}
1197
1198/*
1199 * Convert interval expressed as 2^(bInterval - 1) == interval into
1200 * straight exponent value 2^n == interval.
1201 *
1202 */
1203static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1204		struct usb_host_endpoint *ep)
1205{
1206	unsigned int interval;
1207
1208	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1209	if (interval != ep->desc.bInterval - 1)
1210		dev_warn(&udev->dev,
1211			 "ep %#x - rounding interval to %d %sframes\n",
1212			 ep->desc.bEndpointAddress,
1213			 1 << interval,
1214			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1215
1216	if (udev->speed == USB_SPEED_FULL) {
1217		/*
1218		 * Full speed isoc endpoints specify interval in frames,
1219		 * not microframes. We are using microframes everywhere,
1220		 * so adjust accordingly.
1221		 */
1222		interval += 3;	/* 1 frame = 2^3 uframes */
1223	}
1224
1225	return interval;
1226}
1227
1228/*
1229 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1230 * microframes, rounded down to nearest power of 2.
1231 */
1232static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1233		struct usb_host_endpoint *ep, unsigned int desc_interval,
1234		unsigned int min_exponent, unsigned int max_exponent)
1235{
1236	unsigned int interval;
1237
1238	interval = fls(desc_interval) - 1;
1239	interval = clamp_val(interval, min_exponent, max_exponent);
1240	if ((1 << interval) != desc_interval)
1241		dev_dbg(&udev->dev,
1242			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1243			 ep->desc.bEndpointAddress,
1244			 1 << interval,
1245			 desc_interval);
1246
1247	return interval;
1248}
1249
1250static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1251		struct usb_host_endpoint *ep)
1252{
1253	if (ep->desc.bInterval == 0)
1254		return 0;
1255	return xhci_microframes_to_exponent(udev, ep,
1256			ep->desc.bInterval, 0, 15);
1257}
1258
1259
1260static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1261		struct usb_host_endpoint *ep)
1262{
1263	return xhci_microframes_to_exponent(udev, ep,
1264			ep->desc.bInterval * 8, 3, 10);
1265}
1266
1267/* Return the polling or NAK interval.
1268 *
1269 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1270 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1271 *
1272 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1273 * is set to 0.
1274 */
1275static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1276		struct usb_host_endpoint *ep)
1277{
1278	unsigned int interval = 0;
1279
1280	switch (udev->speed) {
1281	case USB_SPEED_HIGH:
1282		/* Max NAK rate */
1283		if (usb_endpoint_xfer_control(&ep->desc) ||
1284		    usb_endpoint_xfer_bulk(&ep->desc)) {
1285			interval = xhci_parse_microframe_interval(udev, ep);
1286			break;
1287		}
1288		fallthrough;	/* SS and HS isoc/int have same decoding */
1289
1290	case USB_SPEED_SUPER_PLUS:
1291	case USB_SPEED_SUPER:
1292		if (usb_endpoint_xfer_int(&ep->desc) ||
1293		    usb_endpoint_xfer_isoc(&ep->desc)) {
1294			interval = xhci_parse_exponent_interval(udev, ep);
1295		}
1296		break;
1297
1298	case USB_SPEED_FULL:
1299		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1300			interval = xhci_parse_exponent_interval(udev, ep);
1301			break;
1302		}
1303		/*
1304		 * Fall through for interrupt endpoint interval decoding
1305		 * since it uses the same rules as low speed interrupt
1306		 * endpoints.
1307		 */
1308		fallthrough;
1309
1310	case USB_SPEED_LOW:
1311		if (usb_endpoint_xfer_int(&ep->desc) ||
1312		    usb_endpoint_xfer_isoc(&ep->desc)) {
1313
1314			interval = xhci_parse_frame_interval(udev, ep);
1315		}
1316		break;
1317
1318	default:
1319		BUG();
1320	}
1321	return interval;
1322}
1323
1324/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1325 * High speed endpoint descriptors can define "the number of additional
1326 * transaction opportunities per microframe", but that goes in the Max Burst
1327 * endpoint context field.
1328 */
1329static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1330		struct usb_host_endpoint *ep)
1331{
1332	if (udev->speed < USB_SPEED_SUPER ||
1333			!usb_endpoint_xfer_isoc(&ep->desc))
1334		return 0;
1335	return ep->ss_ep_comp.bmAttributes;
1336}
1337
1338static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1339				       struct usb_host_endpoint *ep)
1340{
1341	/* Super speed and Plus have max burst in ep companion desc */
1342	if (udev->speed >= USB_SPEED_SUPER)
1343		return ep->ss_ep_comp.bMaxBurst;
1344
1345	if (udev->speed == USB_SPEED_HIGH &&
1346	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1347	     usb_endpoint_xfer_int(&ep->desc)))
1348		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1349
1350	return 0;
1351}
1352
1353static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1354{
1355	int in;
1356
1357	in = usb_endpoint_dir_in(&ep->desc);
1358
1359	switch (usb_endpoint_type(&ep->desc)) {
1360	case USB_ENDPOINT_XFER_CONTROL:
1361		return CTRL_EP;
1362	case USB_ENDPOINT_XFER_BULK:
1363		return in ? BULK_IN_EP : BULK_OUT_EP;
1364	case USB_ENDPOINT_XFER_ISOC:
1365		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1366	case USB_ENDPOINT_XFER_INT:
1367		return in ? INT_IN_EP : INT_OUT_EP;
1368	}
1369	return 0;
1370}
1371
1372/* Return the maximum endpoint service interval time (ESIT) payload.
1373 * Basically, this is the maxpacket size, multiplied by the burst size
1374 * and mult size.
1375 */
1376static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1377		struct usb_host_endpoint *ep)
1378{
1379	int max_burst;
1380	int max_packet;
1381
1382	/* Only applies for interrupt or isochronous endpoints */
1383	if (usb_endpoint_xfer_control(&ep->desc) ||
1384			usb_endpoint_xfer_bulk(&ep->desc))
1385		return 0;
1386
1387	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1388	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1389	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1390		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1391
1392	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1393	if (udev->speed >= USB_SPEED_SUPER)
1394		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1395
1396	max_packet = usb_endpoint_maxp(&ep->desc);
1397	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1398	/* A 0 in max burst means 1 transfer per ESIT */
1399	return max_packet * max_burst;
1400}
1401
1402/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1403 * Drivers will have to call usb_alloc_streams() to do that.
1404 */
1405int xhci_endpoint_init(struct xhci_hcd *xhci,
1406		struct xhci_virt_device *virt_dev,
1407		struct usb_device *udev,
1408		struct usb_host_endpoint *ep,
1409		gfp_t mem_flags)
1410{
1411	unsigned int ep_index;
1412	struct xhci_ep_ctx *ep_ctx;
1413	struct xhci_ring *ep_ring;
1414	unsigned int max_packet;
1415	enum xhci_ring_type ring_type;
1416	u32 max_esit_payload;
1417	u32 endpoint_type;
1418	unsigned int max_burst;
1419	unsigned int interval;
1420	unsigned int mult;
1421	unsigned int avg_trb_len;
1422	unsigned int err_count = 0;
1423
1424	ep_index = xhci_get_endpoint_index(&ep->desc);
1425	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1426
1427	endpoint_type = xhci_get_endpoint_type(ep);
1428	if (!endpoint_type)
1429		return -EINVAL;
1430
1431	ring_type = usb_endpoint_type(&ep->desc);
1432
1433	/*
1434	 * Get values to fill the endpoint context, mostly from ep descriptor.
1435	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1436	 * have no clue on scatter gather list entry size. For Isoc and Int,
1437	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1438	 */
1439	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1440	interval = xhci_get_endpoint_interval(udev, ep);
1441
1442	/* Periodic endpoint bInterval limit quirk */
1443	if (usb_endpoint_xfer_int(&ep->desc) ||
1444	    usb_endpoint_xfer_isoc(&ep->desc)) {
1445		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1446		    udev->speed >= USB_SPEED_HIGH &&
1447		    interval >= 7) {
1448			interval = 6;
1449		}
1450	}
1451
1452	mult = xhci_get_endpoint_mult(udev, ep);
1453	max_packet = usb_endpoint_maxp(&ep->desc);
1454	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1455	avg_trb_len = max_esit_payload;
1456
1457	/* FIXME dig Mult and streams info out of ep companion desc */
1458
1459	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1460	if (!usb_endpoint_xfer_isoc(&ep->desc))
1461		err_count = 3;
1462	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1463	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1464		if (udev->speed == USB_SPEED_HIGH)
1465			max_packet = 512;
1466		if (udev->speed == USB_SPEED_FULL) {
1467			max_packet = rounddown_pow_of_two(max_packet);
1468			max_packet = clamp_val(max_packet, 8, 64);
1469		}
1470	}
1471	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1472	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1473		avg_trb_len = 8;
1474	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1475	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1476		mult = 0;
1477
1478	/* Set up the endpoint ring */
1479	virt_dev->eps[ep_index].new_ring =
1480		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1481	if (!virt_dev->eps[ep_index].new_ring)
1482		return -ENOMEM;
1483
1484	virt_dev->eps[ep_index].skip = false;
1485	ep_ring = virt_dev->eps[ep_index].new_ring;
1486
1487	/* Fill the endpoint context */
1488	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1489				      EP_INTERVAL(interval) |
1490				      EP_MULT(mult));
1491	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1492				       MAX_PACKET(max_packet) |
1493				       MAX_BURST(max_burst) |
1494				       ERROR_COUNT(err_count));
1495	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1496				  ep_ring->cycle_state);
1497
1498	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1499				      EP_AVG_TRB_LENGTH(avg_trb_len));
1500
1501	return 0;
1502}
1503
1504void xhci_endpoint_zero(struct xhci_hcd *xhci,
1505		struct xhci_virt_device *virt_dev,
1506		struct usb_host_endpoint *ep)
1507{
1508	unsigned int ep_index;
1509	struct xhci_ep_ctx *ep_ctx;
1510
1511	ep_index = xhci_get_endpoint_index(&ep->desc);
1512	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1513
1514	ep_ctx->ep_info = 0;
1515	ep_ctx->ep_info2 = 0;
1516	ep_ctx->deq = 0;
1517	ep_ctx->tx_info = 0;
1518	/* Don't free the endpoint ring until the set interface or configuration
1519	 * request succeeds.
1520	 */
1521}
1522
1523void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1524{
1525	bw_info->ep_interval = 0;
1526	bw_info->mult = 0;
1527	bw_info->num_packets = 0;
1528	bw_info->max_packet_size = 0;
1529	bw_info->type = 0;
1530	bw_info->max_esit_payload = 0;
1531}
1532
1533void xhci_update_bw_info(struct xhci_hcd *xhci,
1534		struct xhci_container_ctx *in_ctx,
1535		struct xhci_input_control_ctx *ctrl_ctx,
1536		struct xhci_virt_device *virt_dev)
1537{
1538	struct xhci_bw_info *bw_info;
1539	struct xhci_ep_ctx *ep_ctx;
1540	unsigned int ep_type;
1541	int i;
1542
1543	for (i = 1; i < 31; i++) {
1544		bw_info = &virt_dev->eps[i].bw_info;
1545
1546		/* We can't tell what endpoint type is being dropped, but
1547		 * unconditionally clearing the bandwidth info for non-periodic
1548		 * endpoints should be harmless because the info will never be
1549		 * set in the first place.
1550		 */
1551		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1552			/* Dropped endpoint */
1553			xhci_clear_endpoint_bw_info(bw_info);
1554			continue;
1555		}
1556
1557		if (EP_IS_ADDED(ctrl_ctx, i)) {
1558			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1559			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1560
1561			/* Ignore non-periodic endpoints */
1562			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1563					ep_type != ISOC_IN_EP &&
1564					ep_type != INT_IN_EP)
1565				continue;
1566
1567			/* Added or changed endpoint */
1568			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1569					le32_to_cpu(ep_ctx->ep_info));
1570			/* Number of packets and mult are zero-based in the
1571			 * input context, but we want one-based for the
1572			 * interval table.
1573			 */
1574			bw_info->mult = CTX_TO_EP_MULT(
1575					le32_to_cpu(ep_ctx->ep_info)) + 1;
1576			bw_info->num_packets = CTX_TO_MAX_BURST(
1577					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1578			bw_info->max_packet_size = MAX_PACKET_DECODED(
1579					le32_to_cpu(ep_ctx->ep_info2));
1580			bw_info->type = ep_type;
1581			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1582					le32_to_cpu(ep_ctx->tx_info));
1583		}
1584	}
1585}
1586
1587/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1588 * Useful when you want to change one particular aspect of the endpoint and then
1589 * issue a configure endpoint command.
1590 */
1591void xhci_endpoint_copy(struct xhci_hcd *xhci,
1592		struct xhci_container_ctx *in_ctx,
1593		struct xhci_container_ctx *out_ctx,
1594		unsigned int ep_index)
1595{
1596	struct xhci_ep_ctx *out_ep_ctx;
1597	struct xhci_ep_ctx *in_ep_ctx;
1598
1599	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1600	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1601
1602	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1603	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1604	in_ep_ctx->deq = out_ep_ctx->deq;
1605	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1606	if (xhci->quirks & XHCI_MTK_HOST) {
1607		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1608		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1609	}
1610}
1611
1612/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1613 * Useful when you want to change one particular aspect of the endpoint and then
1614 * issue a configure endpoint command.  Only the context entries field matters,
1615 * but we'll copy the whole thing anyway.
1616 */
1617void xhci_slot_copy(struct xhci_hcd *xhci,
1618		struct xhci_container_ctx *in_ctx,
1619		struct xhci_container_ctx *out_ctx)
1620{
1621	struct xhci_slot_ctx *in_slot_ctx;
1622	struct xhci_slot_ctx *out_slot_ctx;
1623
1624	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1625	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1626
1627	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1628	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1629	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1630	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1631}
1632
1633/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1634static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1635{
1636	int i;
1637	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1638	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1639
1640	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1641			"Allocating %d scratchpad buffers", num_sp);
1642
1643	if (!num_sp)
1644		return 0;
1645
1646	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1647				dev_to_node(dev));
1648	if (!xhci->scratchpad)
1649		goto fail_sp;
1650
1651	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1652				     size_mul(sizeof(u64), num_sp),
1653				     &xhci->scratchpad->sp_dma, flags);
1654	if (!xhci->scratchpad->sp_array)
1655		goto fail_sp2;
1656
1657	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1658					flags, dev_to_node(dev));
1659	if (!xhci->scratchpad->sp_buffers)
1660		goto fail_sp3;
1661
1662	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1663	for (i = 0; i < num_sp; i++) {
1664		dma_addr_t dma;
1665		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1666					       flags);
1667		if (!buf)
1668			goto fail_sp4;
1669
1670		xhci->scratchpad->sp_array[i] = dma;
1671		xhci->scratchpad->sp_buffers[i] = buf;
1672	}
1673
1674	return 0;
1675
1676 fail_sp4:
1677	while (i--)
1678		dma_free_coherent(dev, xhci->page_size,
1679				    xhci->scratchpad->sp_buffers[i],
1680				    xhci->scratchpad->sp_array[i]);
1681
1682	kfree(xhci->scratchpad->sp_buffers);
1683
1684 fail_sp3:
1685	dma_free_coherent(dev, num_sp * sizeof(u64),
1686			    xhci->scratchpad->sp_array,
1687			    xhci->scratchpad->sp_dma);
1688
1689 fail_sp2:
1690	kfree(xhci->scratchpad);
1691	xhci->scratchpad = NULL;
1692
1693 fail_sp:
1694	return -ENOMEM;
1695}
1696
1697static void scratchpad_free(struct xhci_hcd *xhci)
1698{
1699	int num_sp;
1700	int i;
1701	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1702
1703	if (!xhci->scratchpad)
1704		return;
1705
1706	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1707
1708	for (i = 0; i < num_sp; i++) {
1709		dma_free_coherent(dev, xhci->page_size,
1710				    xhci->scratchpad->sp_buffers[i],
1711				    xhci->scratchpad->sp_array[i]);
1712	}
1713	kfree(xhci->scratchpad->sp_buffers);
1714	dma_free_coherent(dev, num_sp * sizeof(u64),
1715			    xhci->scratchpad->sp_array,
1716			    xhci->scratchpad->sp_dma);
1717	kfree(xhci->scratchpad);
1718	xhci->scratchpad = NULL;
1719}
1720
1721struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1722		bool allocate_completion, gfp_t mem_flags)
1723{
1724	struct xhci_command *command;
1725	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1726
1727	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1728	if (!command)
1729		return NULL;
1730
1731	if (allocate_completion) {
1732		command->completion =
1733			kzalloc_node(sizeof(struct completion), mem_flags,
1734				dev_to_node(dev));
1735		if (!command->completion) {
1736			kfree(command);
1737			return NULL;
1738		}
1739		init_completion(command->completion);
1740	}
1741
1742	command->status = 0;
1743	/* set default timeout to 5000 ms */
1744	command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1745	INIT_LIST_HEAD(&command->cmd_list);
1746	return command;
1747}
1748
1749struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1750		bool allocate_completion, gfp_t mem_flags)
1751{
1752	struct xhci_command *command;
1753
1754	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1755	if (!command)
1756		return NULL;
1757
1758	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1759						   mem_flags);
1760	if (!command->in_ctx) {
1761		kfree(command->completion);
1762		kfree(command);
1763		return NULL;
1764	}
1765	return command;
1766}
1767
1768void xhci_urb_free_priv(struct urb_priv *urb_priv)
1769{
1770	kfree(urb_priv);
1771}
1772
1773void xhci_free_command(struct xhci_hcd *xhci,
1774		struct xhci_command *command)
1775{
1776	xhci_free_container_ctx(xhci,
1777			command->in_ctx);
1778	kfree(command->completion);
1779	kfree(command);
1780}
1781
1782static int xhci_alloc_erst(struct xhci_hcd *xhci,
1783		    struct xhci_ring *evt_ring,
1784		    struct xhci_erst *erst,
1785		    gfp_t flags)
1786{
1787	size_t size;
1788	unsigned int val;
1789	struct xhci_segment *seg;
1790	struct xhci_erst_entry *entry;
1791
1792	size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1793	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1794					   size, &erst->erst_dma_addr, flags);
1795	if (!erst->entries)
1796		return -ENOMEM;
1797
1798	erst->num_entries = evt_ring->num_segs;
1799
1800	seg = evt_ring->first_seg;
1801	for (val = 0; val < evt_ring->num_segs; val++) {
1802		entry = &erst->entries[val];
1803		entry->seg_addr = cpu_to_le64(seg->dma);
1804		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1805		entry->rsvd = 0;
1806		seg = seg->next;
1807	}
1808
1809	return 0;
1810}
1811
1812static void
1813xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1814{
1815	u32 tmp;
1816
1817	if (!ir)
1818		return;
1819
1820	/*
1821	 * Clean out interrupter registers except ERSTBA. Clearing either the
1822	 * low or high 32 bits of ERSTBA immediately causes the controller to
1823	 * dereference the partially cleared 64 bit address, causing IOMMU error.
1824	 */
1825	if (ir->ir_set) {
1826		tmp = readl(&ir->ir_set->erst_size);
1827		tmp &= ERST_SIZE_MASK;
1828		writel(tmp, &ir->ir_set->erst_size);
1829
1830		xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue);
1831	}
1832}
1833
1834static void
1835xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1836{
1837	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1838	size_t erst_size;
1839
1840	if (!ir)
1841		return;
1842
1843	erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries;
1844	if (ir->erst.entries)
1845		dma_free_coherent(dev, erst_size,
1846				  ir->erst.entries,
1847				  ir->erst.erst_dma_addr);
1848	ir->erst.entries = NULL;
1849
1850	/* free interrupter event ring */
1851	if (ir->event_ring)
1852		xhci_ring_free(xhci, ir->event_ring);
1853
1854	ir->event_ring = NULL;
1855
1856	kfree(ir);
1857}
1858
1859void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1860{
1861	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1862	unsigned int intr_num;
1863
1864	spin_lock_irq(&xhci->lock);
1865
1866	/* interrupter 0 is primary interrupter, don't touch it */
1867	if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1868		xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1869		spin_unlock_irq(&xhci->lock);
1870		return;
1871	}
1872
1873	intr_num = ir->intr_num;
1874
1875	xhci_remove_interrupter(xhci, ir);
1876	xhci->interrupters[intr_num] = NULL;
1877
1878	spin_unlock_irq(&xhci->lock);
1879
1880	xhci_free_interrupter(xhci, ir);
1881}
1882EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1883
1884void xhci_mem_cleanup(struct xhci_hcd *xhci)
1885{
1886	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1887	int i, j, num_ports;
1888
1889	cancel_delayed_work_sync(&xhci->cmd_timer);
1890
1891	for (i = 0; i < xhci->max_interrupters; i++) {
1892		if (xhci->interrupters[i]) {
1893			xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1894			xhci_free_interrupter(xhci, xhci->interrupters[i]);
1895			xhci->interrupters[i] = NULL;
1896		}
1897	}
1898	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1899
1900	if (xhci->cmd_ring)
1901		xhci_ring_free(xhci, xhci->cmd_ring);
1902	xhci->cmd_ring = NULL;
1903	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1904	xhci_cleanup_command_queue(xhci);
1905
1906	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1907	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1908		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1909		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1910			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1911			while (!list_empty(ep))
1912				list_del_init(ep->next);
1913		}
1914	}
1915
1916	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1917		xhci_free_virt_devices_depth_first(xhci, i);
1918
1919	dma_pool_destroy(xhci->segment_pool);
1920	xhci->segment_pool = NULL;
1921	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1922
1923	dma_pool_destroy(xhci->device_pool);
1924	xhci->device_pool = NULL;
1925	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1926
1927	dma_pool_destroy(xhci->small_streams_pool);
1928	xhci->small_streams_pool = NULL;
1929	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1930			"Freed small stream array pool");
1931
1932	dma_pool_destroy(xhci->medium_streams_pool);
1933	xhci->medium_streams_pool = NULL;
1934	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1935			"Freed medium stream array pool");
1936
1937	if (xhci->dcbaa)
1938		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1939				xhci->dcbaa, xhci->dcbaa->dma);
1940	xhci->dcbaa = NULL;
1941
1942	scratchpad_free(xhci);
1943
1944	if (!xhci->rh_bw)
1945		goto no_bw;
1946
1947	for (i = 0; i < num_ports; i++) {
1948		struct xhci_tt_bw_info *tt, *n;
1949		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1950			list_del(&tt->tt_list);
1951			kfree(tt);
1952		}
1953	}
1954
1955no_bw:
1956	xhci->cmd_ring_reserved_trbs = 0;
1957	xhci->usb2_rhub.num_ports = 0;
1958	xhci->usb3_rhub.num_ports = 0;
1959	xhci->num_active_eps = 0;
1960	kfree(xhci->usb2_rhub.ports);
1961	kfree(xhci->usb3_rhub.ports);
1962	kfree(xhci->hw_ports);
1963	kfree(xhci->rh_bw);
1964	kfree(xhci->ext_caps);
1965	for (i = 0; i < xhci->num_port_caps; i++)
1966		kfree(xhci->port_caps[i].psi);
1967	kfree(xhci->port_caps);
1968	kfree(xhci->interrupters);
1969	xhci->num_port_caps = 0;
1970
1971	xhci->usb2_rhub.ports = NULL;
1972	xhci->usb3_rhub.ports = NULL;
1973	xhci->hw_ports = NULL;
1974	xhci->rh_bw = NULL;
1975	xhci->ext_caps = NULL;
1976	xhci->port_caps = NULL;
1977	xhci->interrupters = NULL;
1978
1979	xhci->page_size = 0;
1980	xhci->page_shift = 0;
1981	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1982	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1983}
1984
1985static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1986{
1987	dma_addr_t deq;
1988
1989	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1990			ir->event_ring->dequeue);
1991	if (!deq)
1992		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1993	/* Update HC event ring dequeue pointer */
1994	/* Don't clear the EHB bit (which is RW1C) because
1995	 * there might be more events to service.
1996	 */
1997	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1998		       "// Write event ring dequeue pointer, preserving EHB bit");
1999	xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
2000}
2001
2002static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2003		__le32 __iomem *addr, int max_caps)
2004{
2005	u32 temp, port_offset, port_count;
2006	int i;
2007	u8 major_revision, minor_revision, tmp_minor_revision;
2008	struct xhci_hub *rhub;
2009	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2010	struct xhci_port_cap *port_cap;
2011
2012	temp = readl(addr);
2013	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2014	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2015
2016	if (major_revision == 0x03) {
2017		rhub = &xhci->usb3_rhub;
2018		/*
2019		 * Some hosts incorrectly use sub-minor version for minor
2020		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2021		 * for bcdUSB 0x310). Since there is no USB release with sub
2022		 * minor version 0x301 to 0x309, we can assume that they are
2023		 * incorrect and fix it here.
2024		 */
2025		if (minor_revision > 0x00 && minor_revision < 0x10)
2026			minor_revision <<= 4;
2027		/*
2028		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2029		 * but only support Gen1.
2030		 */
2031		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2032			tmp_minor_revision = minor_revision;
2033			minor_revision = 0;
2034		}
2035
2036	} else if (major_revision <= 0x02) {
2037		rhub = &xhci->usb2_rhub;
2038	} else {
2039		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2040				addr, major_revision);
2041		/* Ignoring port protocol we can't understand. FIXME */
2042		return;
2043	}
2044
2045	/* Port offset and count in the third dword, see section 7.2 */
2046	temp = readl(addr + 2);
2047	port_offset = XHCI_EXT_PORT_OFF(temp);
2048	port_count = XHCI_EXT_PORT_COUNT(temp);
2049	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2050		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2051		       addr, port_offset, port_count, major_revision);
2052	/* Port count includes the current port offset */
2053	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2054		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2055		return;
2056
2057	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2058	if (xhci->num_port_caps > max_caps)
2059		return;
2060
2061	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2062
2063	if (port_cap->psi_count) {
2064		port_cap->psi = kcalloc_node(port_cap->psi_count,
2065					     sizeof(*port_cap->psi),
2066					     GFP_KERNEL, dev_to_node(dev));
2067		if (!port_cap->psi)
2068			port_cap->psi_count = 0;
2069
2070		port_cap->psi_uid_count++;
2071		for (i = 0; i < port_cap->psi_count; i++) {
2072			port_cap->psi[i] = readl(addr + 4 + i);
2073
2074			/* count unique ID values, two consecutive entries can
2075			 * have the same ID if link is assymetric
2076			 */
2077			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2078				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2079				port_cap->psi_uid_count++;
2080
2081			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2082			    major_revision == 0x03 &&
2083			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2084				minor_revision = tmp_minor_revision;
2085
2086			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2087				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2088				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2089				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2090				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2091				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2092				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2093		}
2094	}
2095
2096	rhub->maj_rev = major_revision;
2097
2098	if (rhub->min_rev < minor_revision)
2099		rhub->min_rev = minor_revision;
2100
2101	port_cap->maj_rev = major_revision;
2102	port_cap->min_rev = minor_revision;
2103
2104	/* cache usb2 port capabilities */
2105	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2106		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2107
2108	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2109		 (temp & XHCI_HLC)) {
2110		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2111			       "xHCI 1.0: support USB2 hardware lpm");
2112		xhci->hw_lpm_support = 1;
2113	}
2114
2115	port_offset--;
2116	for (i = port_offset; i < (port_offset + port_count); i++) {
2117		struct xhci_port *hw_port = &xhci->hw_ports[i];
2118		/* Duplicate entry.  Ignore the port if the revisions differ. */
2119		if (hw_port->rhub) {
2120			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2121			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2122					hw_port->rhub->maj_rev, major_revision);
2123			/* Only adjust the roothub port counts if we haven't
2124			 * found a similar duplicate.
2125			 */
2126			if (hw_port->rhub != rhub &&
2127				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2128				hw_port->rhub->num_ports--;
2129				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2130			}
2131			continue;
2132		}
2133		hw_port->rhub = rhub;
2134		hw_port->port_cap = port_cap;
2135		rhub->num_ports++;
2136	}
2137	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2138}
2139
2140static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2141					struct xhci_hub *rhub, gfp_t flags)
2142{
2143	int port_index = 0;
2144	int i;
2145	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2146
2147	if (!rhub->num_ports)
2148		return;
2149	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2150			flags, dev_to_node(dev));
2151	if (!rhub->ports)
2152		return;
2153
2154	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2155		if (xhci->hw_ports[i].rhub != rhub ||
2156		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2157			continue;
2158		xhci->hw_ports[i].hcd_portnum = port_index;
2159		rhub->ports[port_index] = &xhci->hw_ports[i];
2160		port_index++;
2161		if (port_index == rhub->num_ports)
2162			break;
2163	}
2164}
2165
2166/*
2167 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2168 * specify what speeds each port is supposed to be.  We can't count on the port
2169 * speed bits in the PORTSC register being correct until a device is connected,
2170 * but we need to set up the two fake roothubs with the correct number of USB
2171 * 3.0 and USB 2.0 ports at host controller initialization time.
2172 */
2173static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2174{
2175	void __iomem *base;
2176	u32 offset;
2177	unsigned int num_ports;
2178	int i, j;
2179	int cap_count = 0;
2180	u32 cap_start;
2181	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2182
2183	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2184	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2185				flags, dev_to_node(dev));
2186	if (!xhci->hw_ports)
2187		return -ENOMEM;
2188
2189	for (i = 0; i < num_ports; i++) {
2190		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2191			NUM_PORT_REGS * i;
2192		xhci->hw_ports[i].hw_portnum = i;
2193
2194		init_completion(&xhci->hw_ports[i].rexit_done);
2195		init_completion(&xhci->hw_ports[i].u3exit_done);
2196	}
2197
2198	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2199				   dev_to_node(dev));
2200	if (!xhci->rh_bw)
2201		return -ENOMEM;
2202	for (i = 0; i < num_ports; i++) {
2203		struct xhci_interval_bw_table *bw_table;
2204
2205		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2206		bw_table = &xhci->rh_bw[i].bw_table;
2207		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2208			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2209	}
2210	base = &xhci->cap_regs->hc_capbase;
2211
2212	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2213	if (!cap_start) {
2214		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2215		return -ENODEV;
2216	}
2217
2218	offset = cap_start;
2219	/* count extended protocol capability entries for later caching */
2220	while (offset) {
2221		cap_count++;
2222		offset = xhci_find_next_ext_cap(base, offset,
2223						      XHCI_EXT_CAPS_PROTOCOL);
2224	}
2225
2226	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2227				flags, dev_to_node(dev));
2228	if (!xhci->ext_caps)
2229		return -ENOMEM;
2230
2231	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2232				flags, dev_to_node(dev));
2233	if (!xhci->port_caps)
2234		return -ENOMEM;
2235
2236	offset = cap_start;
2237
2238	while (offset) {
2239		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2240		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2241		    num_ports)
2242			break;
2243		offset = xhci_find_next_ext_cap(base, offset,
2244						XHCI_EXT_CAPS_PROTOCOL);
2245	}
2246	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2247		xhci_warn(xhci, "No ports on the roothubs?\n");
2248		return -ENODEV;
2249	}
2250	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2251		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2252		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2253
2254	/* Place limits on the number of roothub ports so that the hub
2255	 * descriptors aren't longer than the USB core will allocate.
2256	 */
2257	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2258		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2259				"Limiting USB 3.0 roothub ports to %u.",
2260				USB_SS_MAXPORTS);
2261		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2262	}
2263	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2264		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2265				"Limiting USB 2.0 roothub ports to %u.",
2266				USB_MAXCHILDREN);
2267		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2268	}
2269
2270	if (!xhci->usb2_rhub.num_ports)
2271		xhci_info(xhci, "USB2 root hub has no ports\n");
2272
2273	if (!xhci->usb3_rhub.num_ports)
2274		xhci_info(xhci, "USB3 root hub has no ports\n");
2275
2276	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2277	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2278
2279	return 0;
2280}
2281
2282static struct xhci_interrupter *
2283xhci_alloc_interrupter(struct xhci_hcd *xhci, int segs, gfp_t flags)
2284{
2285	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2286	struct xhci_interrupter *ir;
2287	unsigned int num_segs = segs;
2288	int ret;
2289
 
 
 
 
 
 
2290	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2291	if (!ir)
2292		return NULL;
2293
2294	/* number of ring segments should be greater than 0 */
2295	if (segs <= 0)
2296		num_segs = min_t(unsigned int, 1 << HCS_ERST_MAX(xhci->hcs_params2),
2297			 ERST_MAX_SEGS);
2298
2299	ir->event_ring = xhci_ring_alloc(xhci, num_segs, 1, TYPE_EVENT, 0,
2300					 flags);
2301	if (!ir->event_ring) {
2302		xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2303		kfree(ir);
2304		return NULL;
2305	}
2306
2307	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2308	if (ret) {
2309		xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2310		xhci_ring_free(xhci, ir->event_ring);
2311		kfree(ir);
2312		return NULL;
2313	}
2314
2315	return ir;
2316}
2317
2318static int
2319xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2320		     unsigned int intr_num)
2321{
2322	u64 erst_base;
2323	u32 erst_size;
2324
2325	if (intr_num >= xhci->max_interrupters) {
2326		xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2327			  intr_num, xhci->max_interrupters);
2328		return -EINVAL;
2329	}
2330
2331	if (xhci->interrupters[intr_num]) {
2332		xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2333		return -EINVAL;
2334	}
2335
2336	xhci->interrupters[intr_num] = ir;
2337	ir->intr_num = intr_num;
2338	ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2339
2340	/* set ERST count with the number of entries in the segment table */
2341	erst_size = readl(&ir->ir_set->erst_size);
2342	erst_size &= ERST_SIZE_MASK;
2343	erst_size |= ir->event_ring->num_segs;
2344	writel(erst_size, &ir->ir_set->erst_size);
2345
2346	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2347	erst_base &= ERST_BASE_RSVDP;
2348	erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2349	xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
 
 
 
2350
2351	/* Set the event ring dequeue address of this interrupter */
2352	xhci_set_hc_event_deq(xhci, ir);
2353
2354	return 0;
2355}
2356
2357struct xhci_interrupter *
2358xhci_create_secondary_interrupter(struct usb_hcd *hcd, int num_seg)
 
2359{
2360	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2361	struct xhci_interrupter *ir;
2362	unsigned int i;
2363	int err = -ENOSPC;
2364
2365	if (!xhci->interrupters || xhci->max_interrupters <= 1)
2366		return NULL;
2367
2368	ir = xhci_alloc_interrupter(xhci, num_seg, GFP_KERNEL);
2369	if (!ir)
2370		return NULL;
2371
2372	spin_lock_irq(&xhci->lock);
2373
2374	/* Find available secondary interrupter, interrupter 0 is reserved for primary */
2375	for (i = 1; i < xhci->max_interrupters; i++) {
2376		if (xhci->interrupters[i] == NULL) {
2377			err = xhci_add_interrupter(xhci, ir, i);
2378			break;
2379		}
2380	}
2381
2382	spin_unlock_irq(&xhci->lock);
2383
2384	if (err) {
2385		xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2386			  xhci->max_interrupters);
2387		xhci_free_interrupter(xhci, ir);
2388		return NULL;
2389	}
2390
 
 
 
 
 
2391	xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2392		 i, xhci->max_interrupters);
2393
2394	return ir;
2395}
2396EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2397
2398int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2399{
2400	struct xhci_interrupter *ir;
2401	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2402	dma_addr_t	dma;
2403	unsigned int	val, val2;
2404	u64		val_64;
2405	u32		page_size, temp;
2406	int		i;
2407
2408	INIT_LIST_HEAD(&xhci->cmd_list);
2409
2410	/* init command timeout work */
2411	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2412	init_completion(&xhci->cmd_ring_stop_completion);
2413
2414	page_size = readl(&xhci->op_regs->page_size);
2415	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416			"Supported page size register = 0x%x", page_size);
2417	i = ffs(page_size);
2418	if (i < 16)
2419		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420			"Supported page size of %iK", (1 << (i+12)) / 1024);
2421	else
2422		xhci_warn(xhci, "WARN: no supported page size\n");
2423	/* Use 4K pages, since that's common and the minimum the HC supports */
2424	xhci->page_shift = 12;
2425	xhci->page_size = 1 << xhci->page_shift;
2426	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2427			"HCD page size set to %iK", xhci->page_size / 1024);
2428
2429	/*
2430	 * Program the Number of Device Slots Enabled field in the CONFIG
2431	 * register with the max value of slots the HC can handle.
2432	 */
2433	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2434	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2435			"// xHC can handle at most %d device slots.", val);
2436	val2 = readl(&xhci->op_regs->config_reg);
2437	val |= (val2 & ~HCS_SLOTS_MASK);
2438	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2439			"// Setting Max device slots reg = 0x%x.", val);
2440	writel(val, &xhci->op_regs->config_reg);
2441
2442	/*
2443	 * xHCI section 5.4.6 - Device Context array must be
2444	 * "physically contiguous and 64-byte (cache line) aligned".
2445	 */
2446	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2447			flags);
2448	if (!xhci->dcbaa)
2449		goto fail;
2450	xhci->dcbaa->dma = dma;
2451	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2452			"// Device context base array address = 0x%pad (DMA), %p (virt)",
2453			&xhci->dcbaa->dma, xhci->dcbaa);
2454	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2455
2456	/*
2457	 * Initialize the ring segment pool.  The ring must be a contiguous
2458	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2459	 * however, the command ring segment needs 64-byte aligned segments
2460	 * and our use of dma addresses in the trb_address_map radix tree needs
2461	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2462	 */
2463	if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
 
2464		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2465				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2466	else
2467		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2468				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2469
2470	/* See Table 46 and Note on Figure 55 */
2471	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2472			2112, 64, xhci->page_size);
2473	if (!xhci->segment_pool || !xhci->device_pool)
2474		goto fail;
2475
2476	/* Linear stream context arrays don't have any boundary restrictions,
2477	 * and only need to be 16-byte aligned.
2478	 */
2479	xhci->small_streams_pool =
2480		dma_pool_create("xHCI 256 byte stream ctx arrays",
2481			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2482	xhci->medium_streams_pool =
2483		dma_pool_create("xHCI 1KB stream ctx arrays",
2484			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2485	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2486	 * will be allocated with dma_alloc_coherent()
2487	 */
2488
2489	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2490		goto fail;
2491
2492	/* Set up the command ring to have one segments for now. */
2493	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2494	if (!xhci->cmd_ring)
2495		goto fail;
2496	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2497			"Allocated command ring at %p", xhci->cmd_ring);
2498	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2499			&xhci->cmd_ring->first_seg->dma);
2500
2501	/* Set the address in the Command Ring Control register */
2502	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2503	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2504		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2505		xhci->cmd_ring->cycle_state;
2506	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2507			"// Setting command ring address to 0x%016llx", val_64);
2508	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2509
2510	/* Reserve one command ring TRB for disabling LPM.
2511	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2512	 * disabling LPM, we only need to reserve one TRB for all devices.
2513	 */
2514	xhci->cmd_ring_reserved_trbs++;
2515
2516	val = readl(&xhci->cap_regs->db_off);
2517	val &= DBOFF_MASK;
2518	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2519		       "// Doorbell array is located at offset 0x%x from cap regs base addr",
2520		       val);
2521	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2522
2523	/* Allocate and set up primary interrupter 0 with an event ring. */
2524	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2525		       "Allocating primary event ring");
2526	xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2527					  flags, dev_to_node(dev));
2528
2529	ir = xhci_alloc_interrupter(xhci, 0, flags);
2530	if (!ir)
2531		goto fail;
2532
2533	if (xhci_add_interrupter(xhci, ir, 0))
2534		goto fail;
2535
2536	xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2537
2538	/*
2539	 * XXX: Might need to set the Interrupter Moderation Register to
2540	 * something other than the default (~1ms minimum between interrupts).
2541	 * See section 5.5.1.2.
2542	 */
2543	for (i = 0; i < MAX_HC_SLOTS; i++)
2544		xhci->devs[i] = NULL;
2545
2546	if (scratchpad_alloc(xhci, flags))
2547		goto fail;
2548	if (xhci_setup_port_arrays(xhci, flags))
2549		goto fail;
2550
2551	/* Enable USB 3.0 device notifications for function remote wake, which
2552	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2553	 * U3 (device suspend).
2554	 */
2555	temp = readl(&xhci->op_regs->dev_notification);
2556	temp &= ~DEV_NOTE_MASK;
2557	temp |= DEV_NOTE_FWAKE;
2558	writel(temp, &xhci->op_regs->dev_notification);
2559
2560	return 0;
2561
2562fail:
2563	xhci_halt(xhci);
2564	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2565	xhci_mem_cleanup(xhci);
2566	return -ENOMEM;
2567}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/usb.h>
  12#include <linux/overflow.h>
  13#include <linux/pci.h>
  14#include <linux/slab.h>
  15#include <linux/dmapool.h>
  16#include <linux/dma-mapping.h>
  17
  18#include "xhci.h"
  19#include "xhci-trace.h"
  20#include "xhci-debugfs.h"
  21
  22/*
  23 * Allocates a generic ring segment from the ring pool, sets the dma address,
  24 * initializes the segment to zero, and sets the private next pointer to NULL.
  25 *
  26 * Section 4.11.1.1:
  27 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  28 */
  29static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
 
  30					       unsigned int max_packet,
  31					       unsigned int num,
  32					       gfp_t flags)
  33{
  34	struct xhci_segment *seg;
  35	dma_addr_t	dma;
 
  36	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
  37
  38	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
  39	if (!seg)
  40		return NULL;
  41
  42	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  43	if (!seg->trbs) {
  44		kfree(seg);
  45		return NULL;
  46	}
  47
  48	if (max_packet) {
  49		seg->bounce_buf = kzalloc_node(max_packet, flags,
  50					dev_to_node(dev));
  51		if (!seg->bounce_buf) {
  52			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  53			kfree(seg);
  54			return NULL;
  55		}
  56	}
 
 
 
 
 
  57	seg->num = num;
  58	seg->dma = dma;
  59	seg->next = NULL;
  60
  61	return seg;
  62}
  63
  64static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  65{
  66	if (seg->trbs) {
  67		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  68		seg->trbs = NULL;
  69	}
  70	kfree(seg->bounce_buf);
  71	kfree(seg);
  72}
  73
  74static void xhci_ring_segments_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 
  75{
  76	struct xhci_segment *seg, *next;
  77
  78	ring->last_seg->next = NULL;
  79	seg = ring->first_seg;
  80
  81	while (seg) {
  82		next = seg->next;
  83		xhci_segment_free(xhci, seg);
  84		seg = next;
  85	}
 
  86}
  87
  88/*
  89 * Only for transfer and command rings where driver is the producer, not for
  90 * event rings.
  91 *
  92 * Change the last TRB in the segment to be a Link TRB which points to the
  93 * DMA address of the next segment.  The caller needs to set any Link TRB
  94 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  95 */
  96static void xhci_set_link_trb(struct xhci_segment *seg, bool chain_links)
 
 
  97{
  98	union xhci_trb *trb;
  99	u32 val;
 100
 101	if (!seg || !seg->next)
 102		return;
 103
 104	trb = &seg->trbs[TRBS_PER_SEGMENT - 1];
 105
 106	/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 107	val = le32_to_cpu(trb->link.control);
 108	val &= ~TRB_TYPE_BITMASK;
 109	val |= TRB_TYPE(TRB_LINK);
 110	if (chain_links)
 111		val |= TRB_CHAIN;
 112	trb->link.control = cpu_to_le32(val);
 113	trb->link.segment_ptr = cpu_to_le64(seg->next->dma);
 114}
 115
 116static void xhci_initialize_ring_segments(struct xhci_hcd *xhci, struct xhci_ring *ring)
 117{
 118	struct xhci_segment *seg;
 119	bool chain_links;
 120
 121	if (ring->type == TYPE_EVENT)
 122		return;
 123
 124	chain_links = xhci_link_chain_quirk(xhci, ring->type);
 125	xhci_for_each_ring_seg(ring->first_seg, seg)
 126		xhci_set_link_trb(seg, chain_links);
 127
 128	/* See section 4.9.2.1 and 6.4.4.1 */
 129	ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE);
 130}
 131
 132/*
 133 * Link the src ring segments to the dst ring.
 134 * Set Toggle Cycle for the new ring if needed.
 135 */
 136static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *src, struct xhci_ring *dst)
 
 
 137{
 138	struct xhci_segment *seg;
 139	bool chain_links;
 140
 141	if (!src || !dst)
 142		return;
 143
 144	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
 145	if (dst->cycle_state == 0) {
 146		xhci_for_each_ring_seg(src->first_seg, seg) {
 147			for (int i = 0; i < TRBS_PER_SEGMENT; i++)
 148				seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
 
 
 
 
 
 
 
 
 
 
 
 149		}
 
 150	}
 151
 152	src->last_seg->next = dst->enq_seg->next;
 153	dst->enq_seg->next = src->first_seg;
 154	if (dst->type != TYPE_EVENT) {
 155		chain_links = xhci_link_chain_quirk(xhci, dst->type);
 156		xhci_set_link_trb(dst->enq_seg, chain_links);
 157		xhci_set_link_trb(src->last_seg, chain_links);
 158	}
 159	dst->num_segs += src->num_segs;
 160
 161	if (dst->enq_seg == dst->last_seg) {
 162		if (dst->type != TYPE_EVENT)
 163			dst->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 164				&= ~cpu_to_le32(LINK_TOGGLE);
 165
 166		dst->last_seg = src->last_seg;
 167	} else if (dst->type != TYPE_EVENT) {
 168		src->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control &= ~cpu_to_le32(LINK_TOGGLE);
 169	}
 170
 171	for (seg = dst->enq_seg; seg != dst->last_seg; seg = seg->next)
 172		seg->next->num = seg->num + 1;
 173}
 174
 175/*
 176 * We need a radix tree for mapping physical addresses of TRBs to which stream
 177 * ID they belong to.  We need to do this because the host controller won't tell
 178 * us which stream ring the TRB came from.  We could store the stream ID in an
 179 * event data TRB, but that doesn't help us for the cancellation case, since the
 180 * endpoint may stop before it reaches that event data TRB.
 181 *
 182 * The radix tree maps the upper portion of the TRB DMA address to a ring
 183 * segment that has the same upper portion of DMA addresses.  For example, say I
 184 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 185 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 186 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 187 * pass the radix tree a key to get the right stream ID:
 188 *
 189 *	0x10c90fff >> 10 = 0x43243
 190 *	0x10c912c0 >> 10 = 0x43244
 191 *	0x10c91400 >> 10 = 0x43245
 192 *
 193 * Obviously, only those TRBs with DMA addresses that are within the segment
 194 * will make the radix tree return the stream ID for that ring.
 195 *
 196 * Caveats for the radix tree:
 197 *
 198 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 199 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 200 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 201 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 202 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 203 * extended systems (where the DMA address can be bigger than 32-bits),
 204 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 205 */
 206static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 207		struct xhci_ring *ring,
 208		struct xhci_segment *seg,
 209		gfp_t mem_flags)
 210{
 211	unsigned long key;
 212	int ret;
 213
 214	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 215	/* Skip any segments that were already added. */
 216	if (radix_tree_lookup(trb_address_map, key))
 217		return 0;
 218
 219	ret = radix_tree_maybe_preload(mem_flags);
 220	if (ret)
 221		return ret;
 222	ret = radix_tree_insert(trb_address_map,
 223			key, ring);
 224	radix_tree_preload_end();
 225	return ret;
 226}
 227
 228static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 229		struct xhci_segment *seg)
 230{
 231	unsigned long key;
 232
 233	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 234	if (radix_tree_lookup(trb_address_map, key))
 235		radix_tree_delete(trb_address_map, key);
 236}
 237
 238static int xhci_update_stream_segment_mapping(
 239		struct radix_tree_root *trb_address_map,
 240		struct xhci_ring *ring,
 241		struct xhci_segment *first_seg,
 
 242		gfp_t mem_flags)
 243{
 244	struct xhci_segment *seg;
 245	struct xhci_segment *failed_seg;
 246	int ret;
 247
 248	if (WARN_ON_ONCE(trb_address_map == NULL))
 249		return 0;
 250
 251	xhci_for_each_ring_seg(first_seg, seg) {
 
 252		ret = xhci_insert_segment_mapping(trb_address_map,
 253				ring, seg, mem_flags);
 254		if (ret)
 255			goto remove_streams;
 256	}
 
 
 
 257
 258	return 0;
 259
 260remove_streams:
 261	failed_seg = seg;
 262	xhci_for_each_ring_seg(first_seg, seg) {
 
 263		xhci_remove_segment_mapping(trb_address_map, seg);
 264		if (seg == failed_seg)
 265			return ret;
 266	}
 
 267
 268	return ret;
 269}
 270
 271static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 272{
 273	struct xhci_segment *seg;
 274
 275	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 276		return;
 277
 278	xhci_for_each_ring_seg(ring->first_seg, seg)
 
 279		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 
 
 280}
 281
 282static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 283{
 284	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 285			ring->first_seg, mem_flags);
 286}
 287
 288/* XXX: Do we need the hcd structure in all these functions? */
 289void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 290{
 291	if (!ring)
 292		return;
 293
 294	trace_xhci_ring_free(ring);
 295
 296	if (ring->first_seg) {
 297		if (ring->type == TYPE_STREAM)
 298			xhci_remove_stream_mapping(ring);
 299		xhci_ring_segments_free(xhci, ring);
 300	}
 301
 302	kfree(ring);
 303}
 304
 305void xhci_initialize_ring_info(struct xhci_ring *ring)
 
 306{
 307	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 308	ring->enqueue = ring->first_seg->trbs;
 309	ring->enq_seg = ring->first_seg;
 310	ring->dequeue = ring->enqueue;
 311	ring->deq_seg = ring->first_seg;
 312	/* The ring is initialized to 0. The producer must write 1 to the cycle
 313	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 314	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 315	 *
 316	 * New rings are initialized with cycle state equal to 1; if we are
 317	 * handling ring expansion, set the cycle state equal to the old ring.
 318	 */
 319	ring->cycle_state = 1;
 320
 321	/*
 322	 * Each segment has a link TRB, and leave an extra TRB for SW
 323	 * accounting purpose
 324	 */
 325	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 326}
 327EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
 328
 329/* Allocate segments and link them for a ring */
 330static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, gfp_t flags)
 
 
 
 
 331{
 332	struct xhci_segment *prev;
 333	unsigned int num = 0;
 
 
 
 
 
 334
 335	prev = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags);
 336	if (!prev)
 337		return -ENOMEM;
 338	num++;
 339
 340	ring->first_seg = prev;
 341	while (num < ring->num_segs) {
 342		struct xhci_segment	*next;
 343
 344		next = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags);
 345		if (!next)
 346			goto free_segments;
 
 
 
 
 
 
 
 
 
 347
 348		prev->next = next;
 349		prev = next;
 350		num++;
 351	}
 352	ring->last_seg = prev;
 
 353
 354	ring->last_seg->next = ring->first_seg;
 355	return 0;
 356
 357free_segments:
 358	ring->last_seg = prev;
 359	xhci_ring_segments_free(xhci, ring);
 360	return -ENOMEM;
 361}
 362
 363/*
 364 * Create a new ring with zero or more segments.
 365 *
 366 * Link each segment together into a ring.
 367 * Set the end flag and the cycle toggle bit on the last segment.
 368 * See section 4.9.1 and figures 15 and 16.
 369 */
 370struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, unsigned int num_segs,
 371				  enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 
 372{
 373	struct xhci_ring	*ring;
 374	int ret;
 375	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 376
 377	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
 378	if (!ring)
 379		return NULL;
 380
 381	ring->num_segs = num_segs;
 382	ring->bounce_buf_len = max_packet;
 383	INIT_LIST_HEAD(&ring->td_list);
 384	ring->type = type;
 385	if (num_segs == 0)
 386		return ring;
 387
 388	ret = xhci_alloc_segments_for_ring(xhci, ring, flags);
 
 
 389	if (ret)
 390		goto fail;
 391
 392	xhci_initialize_ring_segments(xhci, ring);
 393	xhci_initialize_ring_info(ring);
 
 
 
 
 
 394	trace_xhci_ring_alloc(ring);
 395	return ring;
 396
 397fail:
 398	kfree(ring);
 399	return NULL;
 400}
 401
 402void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
 403		struct xhci_virt_device *virt_dev,
 404		unsigned int ep_index)
 405{
 406	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 407	virt_dev->eps[ep_index].ring = NULL;
 408}
 409
 410/*
 411 * Expand an existing ring.
 412 * Allocate a new ring which has same segment numbers and link the two rings.
 413 */
 414int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 415				unsigned int num_new_segs, gfp_t flags)
 416{
 417	struct xhci_ring new_ring;
 418	int ret;
 419
 420	if (num_new_segs == 0)
 421		return 0;
 422
 423	new_ring.num_segs = num_new_segs;
 424	new_ring.bounce_buf_len = ring->bounce_buf_len;
 425	new_ring.type = ring->type;
 426	ret = xhci_alloc_segments_for_ring(xhci, &new_ring, flags);
 427	if (ret)
 428		return -ENOMEM;
 429
 430	xhci_initialize_ring_segments(xhci, &new_ring);
 431
 432	if (ring->type == TYPE_STREAM) {
 433		ret = xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 434							 new_ring.first_seg, flags);
 435		if (ret)
 436			goto free_segments;
 
 
 
 
 
 
 437	}
 438
 439	xhci_link_rings(xhci, &new_ring, ring);
 440	trace_xhci_ring_expansion(ring);
 441	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 442			"ring expansion succeed, now has %d segments",
 443			ring->num_segs);
 444
 445	return 0;
 446
 447free_segments:
 448	xhci_ring_segments_free(xhci, &new_ring);
 449	return ret;
 450}
 451
 452struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 453						    int type, gfp_t flags)
 454{
 455	struct xhci_container_ctx *ctx;
 456	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 457
 458	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 459		return NULL;
 460
 461	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
 462	if (!ctx)
 463		return NULL;
 464
 465	ctx->type = type;
 466	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 467	if (type == XHCI_CTX_TYPE_INPUT)
 468		ctx->size += CTX_SIZE(xhci->hcc_params);
 469
 470	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 471	if (!ctx->bytes) {
 472		kfree(ctx);
 473		return NULL;
 474	}
 475	return ctx;
 476}
 477
 478void xhci_free_container_ctx(struct xhci_hcd *xhci,
 479			     struct xhci_container_ctx *ctx)
 480{
 481	if (!ctx)
 482		return;
 483	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 484	kfree(ctx);
 485}
 486
 487struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 488					      struct xhci_container_ctx *ctx)
 489{
 490	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 491		return NULL;
 492
 493	return (struct xhci_input_control_ctx *)ctx->bytes;
 494}
 495
 496struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 497					struct xhci_container_ctx *ctx)
 498{
 499	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 500		return (struct xhci_slot_ctx *)ctx->bytes;
 501
 502	return (struct xhci_slot_ctx *)
 503		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 504}
 505
 506struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 507				    struct xhci_container_ctx *ctx,
 508				    unsigned int ep_index)
 509{
 510	/* increment ep index by offset of start of ep ctx array */
 511	ep_index++;
 512	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 513		ep_index++;
 514
 515	return (struct xhci_ep_ctx *)
 516		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 517}
 518EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
 519
 520/***************** Streams structures manipulation *************************/
 521
 522static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 523		unsigned int num_stream_ctxs,
 524		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 525{
 526	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 527	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
 528
 529	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 530		dma_free_coherent(dev, size, stream_ctx, dma);
 531	else if (size > SMALL_STREAM_ARRAY_SIZE)
 532		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
 533	else
 534		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
 535}
 536
 537/*
 538 * The stream context array for each endpoint with bulk streams enabled can
 539 * vary in size, based on:
 540 *  - how many streams the endpoint supports,
 541 *  - the maximum primary stream array size the host controller supports,
 542 *  - and how many streams the device driver asks for.
 543 *
 544 * The stream context array must be a power of 2, and can be as small as
 545 * 64 bytes or as large as 1MB.
 546 */
 547static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 548		unsigned int num_stream_ctxs, dma_addr_t *dma,
 549		gfp_t mem_flags)
 550{
 551	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 552	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
 553
 554	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 555		return dma_alloc_coherent(dev, size, dma, mem_flags);
 556	if (size > SMALL_STREAM_ARRAY_SIZE)
 557		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
 558	else
 559		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
 560}
 561
 562struct xhci_ring *xhci_dma_to_transfer_ring(
 563		struct xhci_virt_ep *ep,
 564		u64 address)
 565{
 566	if (ep->ep_state & EP_HAS_STREAMS)
 567		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 568				address >> TRB_SEGMENT_SHIFT);
 569	return ep->ring;
 570}
 571
 572/*
 573 * Change an endpoint's internal structure so it supports stream IDs.  The
 574 * number of requested streams includes stream 0, which cannot be used by device
 575 * drivers.
 576 *
 577 * The number of stream contexts in the stream context array may be bigger than
 578 * the number of streams the driver wants to use.  This is because the number of
 579 * stream context array entries must be a power of two.
 580 */
 581struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 582		unsigned int num_stream_ctxs,
 583		unsigned int num_streams,
 584		unsigned int max_packet, gfp_t mem_flags)
 585{
 586	struct xhci_stream_info *stream_info;
 587	u32 cur_stream;
 588	struct xhci_ring *cur_ring;
 589	u64 addr;
 590	int ret;
 591	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 592
 593	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
 594			num_streams, num_stream_ctxs);
 595	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 596		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 597		return NULL;
 598	}
 599	xhci->cmd_ring_reserved_trbs++;
 600
 601	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
 602			dev_to_node(dev));
 603	if (!stream_info)
 604		goto cleanup_trbs;
 605
 606	stream_info->num_streams = num_streams;
 607	stream_info->num_stream_ctxs = num_stream_ctxs;
 608
 609	/* Initialize the array of virtual pointers to stream rings. */
 610	stream_info->stream_rings = kcalloc_node(
 611			num_streams, sizeof(struct xhci_ring *), mem_flags,
 612			dev_to_node(dev));
 613	if (!stream_info->stream_rings)
 614		goto cleanup_info;
 615
 616	/* Initialize the array of DMA addresses for stream rings for the HW. */
 617	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 618			num_stream_ctxs, &stream_info->ctx_array_dma,
 619			mem_flags);
 620	if (!stream_info->stream_ctx_array)
 621		goto cleanup_ring_array;
 622
 623	/* Allocate everything needed to free the stream rings later */
 624	stream_info->free_streams_command =
 625		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
 626	if (!stream_info->free_streams_command)
 627		goto cleanup_ctx;
 628
 629	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 630
 631	/* Allocate rings for all the streams that the driver will use,
 632	 * and add their segment DMA addresses to the radix tree.
 633	 * Stream 0 is reserved.
 634	 */
 635
 636	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 637		stream_info->stream_rings[cur_stream] =
 638			xhci_ring_alloc(xhci, 2, TYPE_STREAM, max_packet, mem_flags);
 
 639		cur_ring = stream_info->stream_rings[cur_stream];
 640		if (!cur_ring)
 641			goto cleanup_rings;
 642		cur_ring->stream_id = cur_stream;
 643		cur_ring->trb_address_map = &stream_info->trb_address_map;
 644		/* Set deq ptr, cycle bit, and stream context type */
 645		addr = cur_ring->first_seg->dma |
 646			SCT_FOR_CTX(SCT_PRI_TR) |
 647			cur_ring->cycle_state;
 648		stream_info->stream_ctx_array[cur_stream].stream_ring =
 649			cpu_to_le64(addr);
 650		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
 651
 652		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 653
 654		trace_xhci_alloc_stream_info_ctx(stream_info, cur_stream);
 655		if (ret) {
 656			xhci_ring_free(xhci, cur_ring);
 657			stream_info->stream_rings[cur_stream] = NULL;
 658			goto cleanup_rings;
 659		}
 660	}
 661	/* Leave the other unused stream ring pointers in the stream context
 662	 * array initialized to zero.  This will cause the xHC to give us an
 663	 * error if the device asks for a stream ID we don't have setup (if it
 664	 * was any other way, the host controller would assume the ring is
 665	 * "empty" and wait forever for data to be queued to that stream ID).
 666	 */
 667
 668	return stream_info;
 669
 670cleanup_rings:
 671	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 672		cur_ring = stream_info->stream_rings[cur_stream];
 673		if (cur_ring) {
 674			xhci_ring_free(xhci, cur_ring);
 675			stream_info->stream_rings[cur_stream] = NULL;
 676		}
 677	}
 678	xhci_free_command(xhci, stream_info->free_streams_command);
 679cleanup_ctx:
 680	xhci_free_stream_ctx(xhci,
 681		stream_info->num_stream_ctxs,
 682		stream_info->stream_ctx_array,
 683		stream_info->ctx_array_dma);
 684cleanup_ring_array:
 685	kfree(stream_info->stream_rings);
 686cleanup_info:
 687	kfree(stream_info);
 688cleanup_trbs:
 689	xhci->cmd_ring_reserved_trbs--;
 690	return NULL;
 691}
 692/*
 693 * Sets the MaxPStreams field and the Linear Stream Array field.
 694 * Sets the dequeue pointer to the stream context array.
 695 */
 696void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 697		struct xhci_ep_ctx *ep_ctx,
 698		struct xhci_stream_info *stream_info)
 699{
 700	u32 max_primary_streams;
 701	/* MaxPStreams is the number of stream context array entries, not the
 702	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 703	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 704	 */
 705	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 706	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 707			"Setting number of stream ctx array entries to %u",
 708			1 << (max_primary_streams + 1));
 709	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 710	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 711				       | EP_HAS_LSA);
 712	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 713}
 714
 715/*
 716 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 717 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 718 * not at the beginning of the ring).
 719 */
 720void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 721		struct xhci_virt_ep *ep)
 722{
 723	dma_addr_t addr;
 724	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 725	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 726	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 727}
 728
 729/* Frees all stream contexts associated with the endpoint,
 730 *
 731 * Caller should fix the endpoint context streams fields.
 732 */
 733void xhci_free_stream_info(struct xhci_hcd *xhci,
 734		struct xhci_stream_info *stream_info)
 735{
 736	int cur_stream;
 737	struct xhci_ring *cur_ring;
 738
 739	if (!stream_info)
 740		return;
 741
 742	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 743			cur_stream++) {
 744		cur_ring = stream_info->stream_rings[cur_stream];
 745		if (cur_ring) {
 746			xhci_ring_free(xhci, cur_ring);
 747			stream_info->stream_rings[cur_stream] = NULL;
 748		}
 749	}
 750	xhci_free_command(xhci, stream_info->free_streams_command);
 751	xhci->cmd_ring_reserved_trbs--;
 752	if (stream_info->stream_ctx_array)
 753		xhci_free_stream_ctx(xhci,
 754				stream_info->num_stream_ctxs,
 755				stream_info->stream_ctx_array,
 756				stream_info->ctx_array_dma);
 757
 758	kfree(stream_info->stream_rings);
 759	kfree(stream_info);
 760}
 761
 762
 763/***************** Device context manipulation *************************/
 764
 765static void xhci_free_tt_info(struct xhci_hcd *xhci,
 766		struct xhci_virt_device *virt_dev,
 767		int slot_id)
 768{
 769	struct list_head *tt_list_head;
 770	struct xhci_tt_bw_info *tt_info, *next;
 771	bool slot_found = false;
 772
 773	/* If the device never made it past the Set Address stage,
 774	 * it may not have the root hub port pointer set correctly.
 775	 */
 776	if (!virt_dev->rhub_port) {
 777		xhci_dbg(xhci, "Bad rhub port.\n");
 
 778		return;
 779	}
 780
 781	tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
 782	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 783		/* Multi-TT hubs will have more than one entry */
 784		if (tt_info->slot_id == slot_id) {
 785			slot_found = true;
 786			list_del(&tt_info->tt_list);
 787			kfree(tt_info);
 788		} else if (slot_found) {
 789			break;
 790		}
 791	}
 792}
 793
 794int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 795		struct xhci_virt_device *virt_dev,
 796		struct usb_device *hdev,
 797		struct usb_tt *tt, gfp_t mem_flags)
 798{
 799	struct xhci_tt_bw_info		*tt_info;
 800	unsigned int			num_ports;
 801	int				i, j;
 802	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 803
 804	if (!tt->multi)
 805		num_ports = 1;
 806	else
 807		num_ports = hdev->maxchild;
 808
 809	for (i = 0; i < num_ports; i++, tt_info++) {
 810		struct xhci_interval_bw_table *bw_table;
 811
 812		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
 813				dev_to_node(dev));
 814		if (!tt_info)
 815			goto free_tts;
 816		INIT_LIST_HEAD(&tt_info->tt_list);
 817		list_add(&tt_info->tt_list,
 818				&xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
 819		tt_info->slot_id = virt_dev->udev->slot_id;
 820		if (tt->multi)
 821			tt_info->ttport = i+1;
 822		bw_table = &tt_info->bw_table;
 823		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 824			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 825	}
 826	return 0;
 827
 828free_tts:
 829	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 830	return -ENOMEM;
 831}
 832
 833
 834/* All the xhci_tds in the ring's TD list should be freed at this point.
 835 * Should be called with xhci->lock held if there is any chance the TT lists
 836 * will be manipulated by the configure endpoint, allocate device, or update
 837 * hub functions while this function is removing the TT entries from the list.
 838 */
 839void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 840{
 841	struct xhci_virt_device *dev;
 842	int i;
 843	int old_active_eps = 0;
 844
 845	/* Slot ID 0 is reserved */
 846	if (slot_id == 0 || !xhci->devs[slot_id])
 847		return;
 848
 849	dev = xhci->devs[slot_id];
 850
 851	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 852	if (!dev)
 853		return;
 854
 855	trace_xhci_free_virt_device(dev);
 856
 857	if (dev->tt_info)
 858		old_active_eps = dev->tt_info->active_eps;
 859
 860	for (i = 0; i < 31; i++) {
 861		if (dev->eps[i].ring)
 862			xhci_ring_free(xhci, dev->eps[i].ring);
 863		if (dev->eps[i].stream_info)
 864			xhci_free_stream_info(xhci,
 865					dev->eps[i].stream_info);
 866		/*
 867		 * Endpoints are normally deleted from the bandwidth list when
 868		 * endpoints are dropped, before device is freed.
 869		 * If host is dying or being removed then endpoints aren't
 870		 * dropped cleanly, so delete the endpoint from list here.
 871		 * Only applicable for hosts with software bandwidth checking.
 872		 */
 873
 874		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
 875			list_del_init(&dev->eps[i].bw_endpoint_list);
 876			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
 877				 slot_id, i);
 878		}
 879	}
 880	/* If this is a hub, free the TT(s) from the TT list */
 881	xhci_free_tt_info(xhci, dev, slot_id);
 882	/* If necessary, update the number of active TTs on this root port */
 883	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 884
 885	if (dev->in_ctx)
 886		xhci_free_container_ctx(xhci, dev->in_ctx);
 887	if (dev->out_ctx)
 888		xhci_free_container_ctx(xhci, dev->out_ctx);
 889
 890	if (dev->udev && dev->udev->slot_id)
 891		dev->udev->slot_id = 0;
 892	if (dev->rhub_port && dev->rhub_port->slot_id == slot_id)
 893		dev->rhub_port->slot_id = 0;
 894	kfree(xhci->devs[slot_id]);
 895	xhci->devs[slot_id] = NULL;
 896}
 897
 898/*
 899 * Free a virt_device structure.
 900 * If the virt_device added a tt_info (a hub) and has children pointing to
 901 * that tt_info, then free the child first. Recursive.
 902 * We can't rely on udev at this point to find child-parent relationships.
 903 */
 904static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 905{
 906	struct xhci_virt_device *vdev;
 907	struct list_head *tt_list_head;
 908	struct xhci_tt_bw_info *tt_info, *next;
 909	int i;
 910
 911	vdev = xhci->devs[slot_id];
 912	if (!vdev)
 913		return;
 914
 915	if (!vdev->rhub_port) {
 916		xhci_dbg(xhci, "Bad rhub port.\n");
 
 917		goto out;
 918	}
 919
 920	tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts);
 921	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 922		/* is this a hub device that added a tt_info to the tts list */
 923		if (tt_info->slot_id == slot_id) {
 924			/* are any devices using this tt_info? */
 925			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
 926				vdev = xhci->devs[i];
 927				if (vdev && (vdev->tt_info == tt_info))
 928					xhci_free_virt_devices_depth_first(
 929						xhci, i);
 930			}
 931		}
 932	}
 933out:
 934	/* we are now at a leaf device */
 935	xhci_debugfs_remove_slot(xhci, slot_id);
 936	xhci_free_virt_device(xhci, slot_id);
 937}
 938
 939int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 940		struct usb_device *udev, gfp_t flags)
 941{
 942	struct xhci_virt_device *dev;
 943	int i;
 944
 945	/* Slot ID 0 is reserved */
 946	if (slot_id == 0 || xhci->devs[slot_id]) {
 947		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 948		return 0;
 949	}
 950
 951	dev = kzalloc(sizeof(*dev), flags);
 952	if (!dev)
 953		return 0;
 954
 955	dev->slot_id = slot_id;
 956
 957	/* Allocate the (output) device context that will be used in the HC. */
 958	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 959	if (!dev->out_ctx)
 960		goto fail;
 961
 962	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
 963
 964	/* Allocate the (input) device context for address device command */
 965	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 966	if (!dev->in_ctx)
 967		goto fail;
 968
 969	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
 970
 971	/* Initialize the cancellation and bandwidth list for each ep */
 972	for (i = 0; i < 31; i++) {
 973		dev->eps[i].ep_index = i;
 974		dev->eps[i].vdev = dev;
 975		dev->eps[i].xhci = xhci;
 976		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
 977		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
 978	}
 979
 980	/* Allocate endpoint 0 ring */
 981	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, TYPE_CTRL, 0, flags);
 982	if (!dev->eps[0].ring)
 983		goto fail;
 984
 985	dev->udev = udev;
 986
 987	/* Point to output device context in dcbaa. */
 988	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
 989	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
 990		 slot_id,
 991		 &xhci->dcbaa->dev_context_ptrs[slot_id],
 992		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
 993
 994	trace_xhci_alloc_virt_device(dev);
 995
 996	xhci->devs[slot_id] = dev;
 997
 998	return 1;
 999fail:
1000
1001	if (dev->in_ctx)
1002		xhci_free_container_ctx(xhci, dev->in_ctx);
1003	if (dev->out_ctx)
1004		xhci_free_container_ctx(xhci, dev->out_ctx);
1005	kfree(dev);
1006
1007	return 0;
1008}
1009
1010void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1011		struct usb_device *udev)
1012{
1013	struct xhci_virt_device *virt_dev;
1014	struct xhci_ep_ctx	*ep0_ctx;
1015	struct xhci_ring	*ep_ring;
1016
1017	virt_dev = xhci->devs[udev->slot_id];
1018	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1019	ep_ring = virt_dev->eps[0].ring;
1020	/*
1021	 * FIXME we don't keep track of the dequeue pointer very well after a
1022	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1023	 * host to our enqueue pointer.  This should only be called after a
1024	 * configured device has reset, so all control transfers should have
1025	 * been completed or cancelled before the reset.
1026	 */
1027	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1028							ep_ring->enqueue)
1029				   | ep_ring->cycle_state);
1030}
1031
1032/*
1033 * The xHCI roothub may have ports of differing speeds in any order in the port
1034 * status registers.
1035 *
1036 * The xHCI hardware wants to know the roothub port that the USB device
1037 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1038 * know is the index of that port under either the USB 2.0 or the USB 3.0
1039 * roothub, but that doesn't give us the real index into the HW port status
1040 * registers.
1041 */
1042static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev)
 
1043{
1044	struct usb_device *top_dev;
1045	struct xhci_hub *rhub;
1046	struct usb_hcd *hcd;
1047
1048	if (udev->speed >= USB_SPEED_SUPER)
1049		hcd = xhci_get_usb3_hcd(xhci);
1050	else
1051		hcd = xhci->main_hcd;
1052
1053	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1054			top_dev = top_dev->parent)
1055		/* Found device below root hub */;
1056
1057	rhub = xhci_get_rhub(hcd);
1058	return rhub->ports[top_dev->portnum - 1];
1059}
1060
1061/* Setup an xHCI virtual device for a Set Address command */
1062int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1063{
1064	struct xhci_virt_device *dev;
1065	struct xhci_ep_ctx	*ep0_ctx;
1066	struct xhci_slot_ctx    *slot_ctx;
 
1067	u32			max_packets;
 
1068
1069	dev = xhci->devs[udev->slot_id];
1070	/* Slot ID 0 is reserved */
1071	if (udev->slot_id == 0 || !dev) {
1072		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1073				udev->slot_id);
1074		return -EINVAL;
1075	}
1076	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1077	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1078
1079	/* 3) Only the control endpoint is valid - one endpoint context */
1080	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1081	switch (udev->speed) {
1082	case USB_SPEED_SUPER_PLUS:
1083		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1084		max_packets = MAX_PACKET(512);
1085		break;
1086	case USB_SPEED_SUPER:
1087		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1088		max_packets = MAX_PACKET(512);
1089		break;
1090	case USB_SPEED_HIGH:
1091		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1092		max_packets = MAX_PACKET(64);
1093		break;
1094	/* USB core guesses at a 64-byte max packet first for FS devices */
1095	case USB_SPEED_FULL:
1096		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1097		max_packets = MAX_PACKET(64);
1098		break;
1099	case USB_SPEED_LOW:
1100		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1101		max_packets = MAX_PACKET(8);
1102		break;
1103	default:
1104		/* Speed was set earlier, this shouldn't happen. */
1105		return -EINVAL;
1106	}
1107	/* Find the root hub port this device is under */
1108	dev->rhub_port = xhci_find_rhub_port(xhci, udev);
1109	if (!dev->rhub_port)
1110		return -EINVAL;
1111	/* Slot ID is set to the device directly below the root hub */
1112	if (!udev->parent->parent)
1113		dev->rhub_port->slot_id = udev->slot_id;
1114	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1));
1115	xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n",
1116		 udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum);
 
 
 
1117
1118	/* Find the right bandwidth table that this device will be a part of.
1119	 * If this is a full speed device attached directly to a root port (or a
1120	 * decendent of one), it counts as a primary bandwidth domain, not a
1121	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1122	 * will never be created for the HS root hub.
1123	 */
1124	if (!udev->tt || !udev->tt->hub->parent) {
1125		dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table;
1126	} else {
1127		struct xhci_root_port_bw_info *rh_bw;
1128		struct xhci_tt_bw_info *tt_bw;
1129
1130		rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum];
1131		/* Find the right TT. */
1132		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1133			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1134				continue;
1135
1136			if (!dev->udev->tt->multi ||
1137					(udev->tt->multi &&
1138					 tt_bw->ttport == dev->udev->ttport)) {
1139				dev->bw_table = &tt_bw->bw_table;
1140				dev->tt_info = tt_bw;
1141				break;
1142			}
1143		}
1144		if (!dev->tt_info)
1145			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1146	}
1147
1148	/* Is this a LS/FS device under an external HS hub? */
1149	if (udev->tt && udev->tt->hub->parent) {
1150		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1151						(udev->ttport << 8));
1152		if (udev->tt->multi)
1153			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1154	}
1155	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1156	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1157
1158	/* Step 4 - ring already allocated */
1159	/* Step 5 */
1160	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1161
1162	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1163	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1164					 max_packets);
1165
1166	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1167				   dev->eps[0].ring->cycle_state);
1168
1169	trace_xhci_setup_addressable_virt_device(dev);
1170
1171	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1172
1173	return 0;
1174}
1175
1176/*
1177 * Convert interval expressed as 2^(bInterval - 1) == interval into
1178 * straight exponent value 2^n == interval.
1179 *
1180 */
1181static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1182		struct usb_host_endpoint *ep)
1183{
1184	unsigned int interval;
1185
1186	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1187	if (interval != ep->desc.bInterval - 1)
1188		dev_warn(&udev->dev,
1189			 "ep %#x - rounding interval to %d %sframes\n",
1190			 ep->desc.bEndpointAddress,
1191			 1 << interval,
1192			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1193
1194	if (udev->speed == USB_SPEED_FULL) {
1195		/*
1196		 * Full speed isoc endpoints specify interval in frames,
1197		 * not microframes. We are using microframes everywhere,
1198		 * so adjust accordingly.
1199		 */
1200		interval += 3;	/* 1 frame = 2^3 uframes */
1201	}
1202
1203	return interval;
1204}
1205
1206/*
1207 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1208 * microframes, rounded down to nearest power of 2.
1209 */
1210static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1211		struct usb_host_endpoint *ep, unsigned int desc_interval,
1212		unsigned int min_exponent, unsigned int max_exponent)
1213{
1214	unsigned int interval;
1215
1216	interval = fls(desc_interval) - 1;
1217	interval = clamp_val(interval, min_exponent, max_exponent);
1218	if ((1 << interval) != desc_interval)
1219		dev_dbg(&udev->dev,
1220			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1221			 ep->desc.bEndpointAddress,
1222			 1 << interval,
1223			 desc_interval);
1224
1225	return interval;
1226}
1227
1228static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1229		struct usb_host_endpoint *ep)
1230{
1231	if (ep->desc.bInterval == 0)
1232		return 0;
1233	return xhci_microframes_to_exponent(udev, ep,
1234			ep->desc.bInterval, 0, 15);
1235}
1236
1237
1238static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1239		struct usb_host_endpoint *ep)
1240{
1241	return xhci_microframes_to_exponent(udev, ep,
1242			ep->desc.bInterval * 8, 3, 10);
1243}
1244
1245/* Return the polling or NAK interval.
1246 *
1247 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1248 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1249 *
1250 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1251 * is set to 0.
1252 */
1253static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1254		struct usb_host_endpoint *ep)
1255{
1256	unsigned int interval = 0;
1257
1258	switch (udev->speed) {
1259	case USB_SPEED_HIGH:
1260		/* Max NAK rate */
1261		if (usb_endpoint_xfer_control(&ep->desc) ||
1262		    usb_endpoint_xfer_bulk(&ep->desc)) {
1263			interval = xhci_parse_microframe_interval(udev, ep);
1264			break;
1265		}
1266		fallthrough;	/* SS and HS isoc/int have same decoding */
1267
1268	case USB_SPEED_SUPER_PLUS:
1269	case USB_SPEED_SUPER:
1270		if (usb_endpoint_xfer_int(&ep->desc) ||
1271		    usb_endpoint_xfer_isoc(&ep->desc)) {
1272			interval = xhci_parse_exponent_interval(udev, ep);
1273		}
1274		break;
1275
1276	case USB_SPEED_FULL:
1277		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1278			interval = xhci_parse_exponent_interval(udev, ep);
1279			break;
1280		}
1281		/*
1282		 * Fall through for interrupt endpoint interval decoding
1283		 * since it uses the same rules as low speed interrupt
1284		 * endpoints.
1285		 */
1286		fallthrough;
1287
1288	case USB_SPEED_LOW:
1289		if (usb_endpoint_xfer_int(&ep->desc) ||
1290		    usb_endpoint_xfer_isoc(&ep->desc)) {
1291
1292			interval = xhci_parse_frame_interval(udev, ep);
1293		}
1294		break;
1295
1296	default:
1297		BUG();
1298	}
1299	return interval;
1300}
1301
1302/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1303 * High speed endpoint descriptors can define "the number of additional
1304 * transaction opportunities per microframe", but that goes in the Max Burst
1305 * endpoint context field.
1306 */
1307static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1308		struct usb_host_endpoint *ep)
1309{
1310	if (udev->speed < USB_SPEED_SUPER ||
1311			!usb_endpoint_xfer_isoc(&ep->desc))
1312		return 0;
1313	return ep->ss_ep_comp.bmAttributes;
1314}
1315
1316static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1317				       struct usb_host_endpoint *ep)
1318{
1319	/* Super speed and Plus have max burst in ep companion desc */
1320	if (udev->speed >= USB_SPEED_SUPER)
1321		return ep->ss_ep_comp.bMaxBurst;
1322
1323	if (udev->speed == USB_SPEED_HIGH &&
1324	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1325	     usb_endpoint_xfer_int(&ep->desc)))
1326		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1327
1328	return 0;
1329}
1330
1331static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1332{
1333	int in;
1334
1335	in = usb_endpoint_dir_in(&ep->desc);
1336
1337	switch (usb_endpoint_type(&ep->desc)) {
1338	case USB_ENDPOINT_XFER_CONTROL:
1339		return CTRL_EP;
1340	case USB_ENDPOINT_XFER_BULK:
1341		return in ? BULK_IN_EP : BULK_OUT_EP;
1342	case USB_ENDPOINT_XFER_ISOC:
1343		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1344	case USB_ENDPOINT_XFER_INT:
1345		return in ? INT_IN_EP : INT_OUT_EP;
1346	}
1347	return 0;
1348}
1349
1350/* Return the maximum endpoint service interval time (ESIT) payload.
1351 * Basically, this is the maxpacket size, multiplied by the burst size
1352 * and mult size.
1353 */
1354static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1355		struct usb_host_endpoint *ep)
1356{
1357	int max_burst;
1358	int max_packet;
1359
1360	/* Only applies for interrupt or isochronous endpoints */
1361	if (usb_endpoint_xfer_control(&ep->desc) ||
1362			usb_endpoint_xfer_bulk(&ep->desc))
1363		return 0;
1364
1365	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1366	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1367	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1368		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1369
1370	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1371	if (udev->speed >= USB_SPEED_SUPER)
1372		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1373
1374	max_packet = usb_endpoint_maxp(&ep->desc);
1375	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1376	/* A 0 in max burst means 1 transfer per ESIT */
1377	return max_packet * max_burst;
1378}
1379
1380/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1381 * Drivers will have to call usb_alloc_streams() to do that.
1382 */
1383int xhci_endpoint_init(struct xhci_hcd *xhci,
1384		struct xhci_virt_device *virt_dev,
1385		struct usb_device *udev,
1386		struct usb_host_endpoint *ep,
1387		gfp_t mem_flags)
1388{
1389	unsigned int ep_index;
1390	struct xhci_ep_ctx *ep_ctx;
1391	struct xhci_ring *ep_ring;
1392	unsigned int max_packet;
1393	enum xhci_ring_type ring_type;
1394	u32 max_esit_payload;
1395	u32 endpoint_type;
1396	unsigned int max_burst;
1397	unsigned int interval;
1398	unsigned int mult;
1399	unsigned int avg_trb_len;
1400	unsigned int err_count = 0;
1401
1402	ep_index = xhci_get_endpoint_index(&ep->desc);
1403	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1404
1405	endpoint_type = xhci_get_endpoint_type(ep);
1406	if (!endpoint_type)
1407		return -EINVAL;
1408
1409	ring_type = usb_endpoint_type(&ep->desc);
1410
1411	/*
1412	 * Get values to fill the endpoint context, mostly from ep descriptor.
1413	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1414	 * have no clue on scatter gather list entry size. For Isoc and Int,
1415	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1416	 */
1417	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1418	interval = xhci_get_endpoint_interval(udev, ep);
1419
1420	/* Periodic endpoint bInterval limit quirk */
1421	if (usb_endpoint_xfer_int(&ep->desc) ||
1422	    usb_endpoint_xfer_isoc(&ep->desc)) {
1423		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1424		    udev->speed >= USB_SPEED_HIGH &&
1425		    interval >= 7) {
1426			interval = 6;
1427		}
1428	}
1429
1430	mult = xhci_get_endpoint_mult(udev, ep);
1431	max_packet = usb_endpoint_maxp(&ep->desc);
1432	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1433	avg_trb_len = max_esit_payload;
1434
1435	/* FIXME dig Mult and streams info out of ep companion desc */
1436
1437	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1438	if (!usb_endpoint_xfer_isoc(&ep->desc))
1439		err_count = 3;
1440	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1441	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1442		if (udev->speed == USB_SPEED_HIGH)
1443			max_packet = 512;
1444		if (udev->speed == USB_SPEED_FULL) {
1445			max_packet = rounddown_pow_of_two(max_packet);
1446			max_packet = clamp_val(max_packet, 8, 64);
1447		}
1448	}
1449	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1450	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1451		avg_trb_len = 8;
1452	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1453	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1454		mult = 0;
1455
1456	/* Set up the endpoint ring */
1457	virt_dev->eps[ep_index].new_ring =
1458		xhci_ring_alloc(xhci, 2, ring_type, max_packet, mem_flags);
1459	if (!virt_dev->eps[ep_index].new_ring)
1460		return -ENOMEM;
1461
1462	virt_dev->eps[ep_index].skip = false;
1463	ep_ring = virt_dev->eps[ep_index].new_ring;
1464
1465	/* Fill the endpoint context */
1466	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1467				      EP_INTERVAL(interval) |
1468				      EP_MULT(mult));
1469	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1470				       MAX_PACKET(max_packet) |
1471				       MAX_BURST(max_burst) |
1472				       ERROR_COUNT(err_count));
1473	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1474				  ep_ring->cycle_state);
1475
1476	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1477				      EP_AVG_TRB_LENGTH(avg_trb_len));
1478
1479	return 0;
1480}
1481
1482void xhci_endpoint_zero(struct xhci_hcd *xhci,
1483		struct xhci_virt_device *virt_dev,
1484		struct usb_host_endpoint *ep)
1485{
1486	unsigned int ep_index;
1487	struct xhci_ep_ctx *ep_ctx;
1488
1489	ep_index = xhci_get_endpoint_index(&ep->desc);
1490	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1491
1492	ep_ctx->ep_info = 0;
1493	ep_ctx->ep_info2 = 0;
1494	ep_ctx->deq = 0;
1495	ep_ctx->tx_info = 0;
1496	/* Don't free the endpoint ring until the set interface or configuration
1497	 * request succeeds.
1498	 */
1499}
1500
1501void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1502{
1503	bw_info->ep_interval = 0;
1504	bw_info->mult = 0;
1505	bw_info->num_packets = 0;
1506	bw_info->max_packet_size = 0;
1507	bw_info->type = 0;
1508	bw_info->max_esit_payload = 0;
1509}
1510
1511void xhci_update_bw_info(struct xhci_hcd *xhci,
1512		struct xhci_container_ctx *in_ctx,
1513		struct xhci_input_control_ctx *ctrl_ctx,
1514		struct xhci_virt_device *virt_dev)
1515{
1516	struct xhci_bw_info *bw_info;
1517	struct xhci_ep_ctx *ep_ctx;
1518	unsigned int ep_type;
1519	int i;
1520
1521	for (i = 1; i < 31; i++) {
1522		bw_info = &virt_dev->eps[i].bw_info;
1523
1524		/* We can't tell what endpoint type is being dropped, but
1525		 * unconditionally clearing the bandwidth info for non-periodic
1526		 * endpoints should be harmless because the info will never be
1527		 * set in the first place.
1528		 */
1529		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1530			/* Dropped endpoint */
1531			xhci_clear_endpoint_bw_info(bw_info);
1532			continue;
1533		}
1534
1535		if (EP_IS_ADDED(ctrl_ctx, i)) {
1536			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1537			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1538
1539			/* Ignore non-periodic endpoints */
1540			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1541					ep_type != ISOC_IN_EP &&
1542					ep_type != INT_IN_EP)
1543				continue;
1544
1545			/* Added or changed endpoint */
1546			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1547					le32_to_cpu(ep_ctx->ep_info));
1548			/* Number of packets and mult are zero-based in the
1549			 * input context, but we want one-based for the
1550			 * interval table.
1551			 */
1552			bw_info->mult = CTX_TO_EP_MULT(
1553					le32_to_cpu(ep_ctx->ep_info)) + 1;
1554			bw_info->num_packets = CTX_TO_MAX_BURST(
1555					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1556			bw_info->max_packet_size = MAX_PACKET_DECODED(
1557					le32_to_cpu(ep_ctx->ep_info2));
1558			bw_info->type = ep_type;
1559			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1560					le32_to_cpu(ep_ctx->tx_info));
1561		}
1562	}
1563}
1564
1565/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1566 * Useful when you want to change one particular aspect of the endpoint and then
1567 * issue a configure endpoint command.
1568 */
1569void xhci_endpoint_copy(struct xhci_hcd *xhci,
1570		struct xhci_container_ctx *in_ctx,
1571		struct xhci_container_ctx *out_ctx,
1572		unsigned int ep_index)
1573{
1574	struct xhci_ep_ctx *out_ep_ctx;
1575	struct xhci_ep_ctx *in_ep_ctx;
1576
1577	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1578	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1579
1580	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1581	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1582	in_ep_ctx->deq = out_ep_ctx->deq;
1583	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1584	if (xhci->quirks & XHCI_MTK_HOST) {
1585		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1586		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1587	}
1588}
1589
1590/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1591 * Useful when you want to change one particular aspect of the endpoint and then
1592 * issue a configure endpoint command.  Only the context entries field matters,
1593 * but we'll copy the whole thing anyway.
1594 */
1595void xhci_slot_copy(struct xhci_hcd *xhci,
1596		struct xhci_container_ctx *in_ctx,
1597		struct xhci_container_ctx *out_ctx)
1598{
1599	struct xhci_slot_ctx *in_slot_ctx;
1600	struct xhci_slot_ctx *out_slot_ctx;
1601
1602	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1603	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1604
1605	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1606	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1607	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1608	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1609}
1610
1611/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1612static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1613{
1614	int i;
1615	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1616	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1617
1618	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1619			"Allocating %d scratchpad buffers", num_sp);
1620
1621	if (!num_sp)
1622		return 0;
1623
1624	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1625				dev_to_node(dev));
1626	if (!xhci->scratchpad)
1627		goto fail_sp;
1628
1629	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1630				     array_size(sizeof(u64), num_sp),
1631				     &xhci->scratchpad->sp_dma, flags);
1632	if (!xhci->scratchpad->sp_array)
1633		goto fail_sp2;
1634
1635	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1636					flags, dev_to_node(dev));
1637	if (!xhci->scratchpad->sp_buffers)
1638		goto fail_sp3;
1639
1640	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1641	for (i = 0; i < num_sp; i++) {
1642		dma_addr_t dma;
1643		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1644					       flags);
1645		if (!buf)
1646			goto fail_sp4;
1647
1648		xhci->scratchpad->sp_array[i] = dma;
1649		xhci->scratchpad->sp_buffers[i] = buf;
1650	}
1651
1652	return 0;
1653
1654 fail_sp4:
1655	while (i--)
1656		dma_free_coherent(dev, xhci->page_size,
1657				    xhci->scratchpad->sp_buffers[i],
1658				    xhci->scratchpad->sp_array[i]);
1659
1660	kfree(xhci->scratchpad->sp_buffers);
1661
1662 fail_sp3:
1663	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1664			    xhci->scratchpad->sp_array,
1665			    xhci->scratchpad->sp_dma);
1666
1667 fail_sp2:
1668	kfree(xhci->scratchpad);
1669	xhci->scratchpad = NULL;
1670
1671 fail_sp:
1672	return -ENOMEM;
1673}
1674
1675static void scratchpad_free(struct xhci_hcd *xhci)
1676{
1677	int num_sp;
1678	int i;
1679	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1680
1681	if (!xhci->scratchpad)
1682		return;
1683
1684	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1685
1686	for (i = 0; i < num_sp; i++) {
1687		dma_free_coherent(dev, xhci->page_size,
1688				    xhci->scratchpad->sp_buffers[i],
1689				    xhci->scratchpad->sp_array[i]);
1690	}
1691	kfree(xhci->scratchpad->sp_buffers);
1692	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1693			    xhci->scratchpad->sp_array,
1694			    xhci->scratchpad->sp_dma);
1695	kfree(xhci->scratchpad);
1696	xhci->scratchpad = NULL;
1697}
1698
1699struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1700		bool allocate_completion, gfp_t mem_flags)
1701{
1702	struct xhci_command *command;
1703	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1704
1705	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1706	if (!command)
1707		return NULL;
1708
1709	if (allocate_completion) {
1710		command->completion =
1711			kzalloc_node(sizeof(struct completion), mem_flags,
1712				dev_to_node(dev));
1713		if (!command->completion) {
1714			kfree(command);
1715			return NULL;
1716		}
1717		init_completion(command->completion);
1718	}
1719
1720	command->status = 0;
1721	/* set default timeout to 5000 ms */
1722	command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1723	INIT_LIST_HEAD(&command->cmd_list);
1724	return command;
1725}
1726
1727struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1728		bool allocate_completion, gfp_t mem_flags)
1729{
1730	struct xhci_command *command;
1731
1732	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1733	if (!command)
1734		return NULL;
1735
1736	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1737						   mem_flags);
1738	if (!command->in_ctx) {
1739		kfree(command->completion);
1740		kfree(command);
1741		return NULL;
1742	}
1743	return command;
1744}
1745
1746void xhci_urb_free_priv(struct urb_priv *urb_priv)
1747{
1748	kfree(urb_priv);
1749}
1750
1751void xhci_free_command(struct xhci_hcd *xhci,
1752		struct xhci_command *command)
1753{
1754	xhci_free_container_ctx(xhci,
1755			command->in_ctx);
1756	kfree(command->completion);
1757	kfree(command);
1758}
1759
1760static int xhci_alloc_erst(struct xhci_hcd *xhci,
1761		    struct xhci_ring *evt_ring,
1762		    struct xhci_erst *erst,
1763		    gfp_t flags)
1764{
1765	size_t size;
1766	unsigned int val;
1767	struct xhci_segment *seg;
1768	struct xhci_erst_entry *entry;
1769
1770	size = array_size(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1771	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1772					   size, &erst->erst_dma_addr, flags);
1773	if (!erst->entries)
1774		return -ENOMEM;
1775
1776	erst->num_entries = evt_ring->num_segs;
1777
1778	seg = evt_ring->first_seg;
1779	for (val = 0; val < evt_ring->num_segs; val++) {
1780		entry = &erst->entries[val];
1781		entry->seg_addr = cpu_to_le64(seg->dma);
1782		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1783		entry->rsvd = 0;
1784		seg = seg->next;
1785	}
1786
1787	return 0;
1788}
1789
1790static void
1791xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1792{
1793	u32 tmp;
1794
1795	if (!ir)
1796		return;
1797
1798	/*
1799	 * Clean out interrupter registers except ERSTBA. Clearing either the
1800	 * low or high 32 bits of ERSTBA immediately causes the controller to
1801	 * dereference the partially cleared 64 bit address, causing IOMMU error.
1802	 */
1803	if (ir->ir_set) {
1804		tmp = readl(&ir->ir_set->erst_size);
1805		tmp &= ERST_SIZE_MASK;
1806		writel(tmp, &ir->ir_set->erst_size);
1807
1808		xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue);
1809	}
1810}
1811
1812static void
1813xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1814{
1815	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1816	size_t erst_size;
1817
1818	if (!ir)
1819		return;
1820
1821	erst_size = array_size(sizeof(struct xhci_erst_entry), ir->erst.num_entries);
1822	if (ir->erst.entries)
1823		dma_free_coherent(dev, erst_size,
1824				  ir->erst.entries,
1825				  ir->erst.erst_dma_addr);
1826	ir->erst.entries = NULL;
1827
1828	/* free interrupter event ring */
1829	if (ir->event_ring)
1830		xhci_ring_free(xhci, ir->event_ring);
1831
1832	ir->event_ring = NULL;
1833
1834	kfree(ir);
1835}
1836
1837void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1838{
1839	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1840	unsigned int intr_num;
1841
1842	spin_lock_irq(&xhci->lock);
1843
1844	/* interrupter 0 is primary interrupter, don't touch it */
1845	if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1846		xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1847		spin_unlock_irq(&xhci->lock);
1848		return;
1849	}
1850
1851	intr_num = ir->intr_num;
1852
1853	xhci_remove_interrupter(xhci, ir);
1854	xhci->interrupters[intr_num] = NULL;
1855
1856	spin_unlock_irq(&xhci->lock);
1857
1858	xhci_free_interrupter(xhci, ir);
1859}
1860EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1861
1862void xhci_mem_cleanup(struct xhci_hcd *xhci)
1863{
1864	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1865	int i, j, num_ports;
1866
1867	cancel_delayed_work_sync(&xhci->cmd_timer);
1868
1869	for (i = 0; xhci->interrupters && i < xhci->max_interrupters; i++) {
1870		if (xhci->interrupters[i]) {
1871			xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1872			xhci_free_interrupter(xhci, xhci->interrupters[i]);
1873			xhci->interrupters[i] = NULL;
1874		}
1875	}
1876	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1877
1878	if (xhci->cmd_ring)
1879		xhci_ring_free(xhci, xhci->cmd_ring);
1880	xhci->cmd_ring = NULL;
1881	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1882	xhci_cleanup_command_queue(xhci);
1883
1884	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1885	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1886		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1887		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1888			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1889			while (!list_empty(ep))
1890				list_del_init(ep->next);
1891		}
1892	}
1893
1894	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1895		xhci_free_virt_devices_depth_first(xhci, i);
1896
1897	dma_pool_destroy(xhci->segment_pool);
1898	xhci->segment_pool = NULL;
1899	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1900
1901	dma_pool_destroy(xhci->device_pool);
1902	xhci->device_pool = NULL;
1903	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1904
1905	dma_pool_destroy(xhci->small_streams_pool);
1906	xhci->small_streams_pool = NULL;
1907	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1908			"Freed small stream array pool");
1909
1910	dma_pool_destroy(xhci->medium_streams_pool);
1911	xhci->medium_streams_pool = NULL;
1912	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1913			"Freed medium stream array pool");
1914
1915	if (xhci->dcbaa)
1916		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1917				xhci->dcbaa, xhci->dcbaa->dma);
1918	xhci->dcbaa = NULL;
1919
1920	scratchpad_free(xhci);
1921
1922	if (!xhci->rh_bw)
1923		goto no_bw;
1924
1925	for (i = 0; i < num_ports; i++) {
1926		struct xhci_tt_bw_info *tt, *n;
1927		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1928			list_del(&tt->tt_list);
1929			kfree(tt);
1930		}
1931	}
1932
1933no_bw:
1934	xhci->cmd_ring_reserved_trbs = 0;
1935	xhci->usb2_rhub.num_ports = 0;
1936	xhci->usb3_rhub.num_ports = 0;
1937	xhci->num_active_eps = 0;
1938	kfree(xhci->usb2_rhub.ports);
1939	kfree(xhci->usb3_rhub.ports);
1940	kfree(xhci->hw_ports);
1941	kfree(xhci->rh_bw);
 
1942	for (i = 0; i < xhci->num_port_caps; i++)
1943		kfree(xhci->port_caps[i].psi);
1944	kfree(xhci->port_caps);
1945	kfree(xhci->interrupters);
1946	xhci->num_port_caps = 0;
1947
1948	xhci->usb2_rhub.ports = NULL;
1949	xhci->usb3_rhub.ports = NULL;
1950	xhci->hw_ports = NULL;
1951	xhci->rh_bw = NULL;
 
1952	xhci->port_caps = NULL;
1953	xhci->interrupters = NULL;
1954
1955	xhci->page_size = 0;
1956	xhci->page_shift = 0;
1957	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1958	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1959}
1960
1961static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1962{
1963	dma_addr_t deq;
1964
1965	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1966			ir->event_ring->dequeue);
1967	if (!deq)
1968		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1969	/* Update HC event ring dequeue pointer */
1970	/* Don't clear the EHB bit (which is RW1C) because
1971	 * there might be more events to service.
1972	 */
1973	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1974		       "// Write event ring dequeue pointer, preserving EHB bit");
1975	xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
1976}
1977
1978static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1979		__le32 __iomem *addr, int max_caps)
1980{
1981	u32 temp, port_offset, port_count;
1982	int i;
1983	u8 major_revision, minor_revision, tmp_minor_revision;
1984	struct xhci_hub *rhub;
1985	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1986	struct xhci_port_cap *port_cap;
1987
1988	temp = readl(addr);
1989	major_revision = XHCI_EXT_PORT_MAJOR(temp);
1990	minor_revision = XHCI_EXT_PORT_MINOR(temp);
1991
1992	if (major_revision == 0x03) {
1993		rhub = &xhci->usb3_rhub;
1994		/*
1995		 * Some hosts incorrectly use sub-minor version for minor
1996		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
1997		 * for bcdUSB 0x310). Since there is no USB release with sub
1998		 * minor version 0x301 to 0x309, we can assume that they are
1999		 * incorrect and fix it here.
2000		 */
2001		if (minor_revision > 0x00 && minor_revision < 0x10)
2002			minor_revision <<= 4;
2003		/*
2004		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2005		 * but only support Gen1.
2006		 */
2007		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2008			tmp_minor_revision = minor_revision;
2009			minor_revision = 0;
2010		}
2011
2012	} else if (major_revision <= 0x02) {
2013		rhub = &xhci->usb2_rhub;
2014	} else {
2015		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2016				addr, major_revision);
2017		/* Ignoring port protocol we can't understand. FIXME */
2018		return;
2019	}
2020
2021	/* Port offset and count in the third dword, see section 7.2 */
2022	temp = readl(addr + 2);
2023	port_offset = XHCI_EXT_PORT_OFF(temp);
2024	port_count = XHCI_EXT_PORT_COUNT(temp);
2025	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2026		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2027		       addr, port_offset, port_count, major_revision);
2028	/* Port count includes the current port offset */
2029	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2030		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2031		return;
2032
2033	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2034	if (xhci->num_port_caps > max_caps)
2035		return;
2036
2037	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2038
2039	if (port_cap->psi_count) {
2040		port_cap->psi = kcalloc_node(port_cap->psi_count,
2041					     sizeof(*port_cap->psi),
2042					     GFP_KERNEL, dev_to_node(dev));
2043		if (!port_cap->psi)
2044			port_cap->psi_count = 0;
2045
2046		port_cap->psi_uid_count++;
2047		for (i = 0; i < port_cap->psi_count; i++) {
2048			port_cap->psi[i] = readl(addr + 4 + i);
2049
2050			/* count unique ID values, two consecutive entries can
2051			 * have the same ID if link is assymetric
2052			 */
2053			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2054				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2055				port_cap->psi_uid_count++;
2056
2057			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2058			    major_revision == 0x03 &&
2059			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2060				minor_revision = tmp_minor_revision;
2061
2062			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2063				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2064				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2065				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2066				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2067				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2068				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2069		}
2070	}
2071
2072	rhub->maj_rev = major_revision;
2073
2074	if (rhub->min_rev < minor_revision)
2075		rhub->min_rev = minor_revision;
2076
2077	port_cap->maj_rev = major_revision;
2078	port_cap->min_rev = minor_revision;
2079	port_cap->protocol_caps = temp;
 
 
 
2080
2081	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2082		 (temp & XHCI_HLC)) {
2083		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2084			       "xHCI 1.0: support USB2 hardware lpm");
2085		xhci->hw_lpm_support = 1;
2086	}
2087
2088	port_offset--;
2089	for (i = port_offset; i < (port_offset + port_count); i++) {
2090		struct xhci_port *hw_port = &xhci->hw_ports[i];
2091		/* Duplicate entry.  Ignore the port if the revisions differ. */
2092		if (hw_port->rhub) {
2093			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2094			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2095					hw_port->rhub->maj_rev, major_revision);
2096			/* Only adjust the roothub port counts if we haven't
2097			 * found a similar duplicate.
2098			 */
2099			if (hw_port->rhub != rhub &&
2100				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2101				hw_port->rhub->num_ports--;
2102				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2103			}
2104			continue;
2105		}
2106		hw_port->rhub = rhub;
2107		hw_port->port_cap = port_cap;
2108		rhub->num_ports++;
2109	}
2110	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2111}
2112
2113static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2114					struct xhci_hub *rhub, gfp_t flags)
2115{
2116	int port_index = 0;
2117	int i;
2118	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2119
2120	if (!rhub->num_ports)
2121		return;
2122	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2123			flags, dev_to_node(dev));
2124	if (!rhub->ports)
2125		return;
2126
2127	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2128		if (xhci->hw_ports[i].rhub != rhub ||
2129		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2130			continue;
2131		xhci->hw_ports[i].hcd_portnum = port_index;
2132		rhub->ports[port_index] = &xhci->hw_ports[i];
2133		port_index++;
2134		if (port_index == rhub->num_ports)
2135			break;
2136	}
2137}
2138
2139/*
2140 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2141 * specify what speeds each port is supposed to be.  We can't count on the port
2142 * speed bits in the PORTSC register being correct until a device is connected,
2143 * but we need to set up the two fake roothubs with the correct number of USB
2144 * 3.0 and USB 2.0 ports at host controller initialization time.
2145 */
2146static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2147{
2148	void __iomem *base;
2149	u32 offset;
2150	unsigned int num_ports;
2151	int i, j;
2152	int cap_count = 0;
2153	u32 cap_start;
2154	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2155
2156	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2157	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2158				flags, dev_to_node(dev));
2159	if (!xhci->hw_ports)
2160		return -ENOMEM;
2161
2162	for (i = 0; i < num_ports; i++) {
2163		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2164			NUM_PORT_REGS * i;
2165		xhci->hw_ports[i].hw_portnum = i;
2166
2167		init_completion(&xhci->hw_ports[i].rexit_done);
2168		init_completion(&xhci->hw_ports[i].u3exit_done);
2169	}
2170
2171	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2172				   dev_to_node(dev));
2173	if (!xhci->rh_bw)
2174		return -ENOMEM;
2175	for (i = 0; i < num_ports; i++) {
2176		struct xhci_interval_bw_table *bw_table;
2177
2178		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2179		bw_table = &xhci->rh_bw[i].bw_table;
2180		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2181			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2182	}
2183	base = &xhci->cap_regs->hc_capbase;
2184
2185	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2186	if (!cap_start) {
2187		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2188		return -ENODEV;
2189	}
2190
2191	offset = cap_start;
2192	/* count extended protocol capability entries for later caching */
2193	while (offset) {
2194		cap_count++;
2195		offset = xhci_find_next_ext_cap(base, offset,
2196						      XHCI_EXT_CAPS_PROTOCOL);
2197	}
2198
 
 
 
 
 
2199	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2200				flags, dev_to_node(dev));
2201	if (!xhci->port_caps)
2202		return -ENOMEM;
2203
2204	offset = cap_start;
2205
2206	while (offset) {
2207		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2208		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2209		    num_ports)
2210			break;
2211		offset = xhci_find_next_ext_cap(base, offset,
2212						XHCI_EXT_CAPS_PROTOCOL);
2213	}
2214	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2215		xhci_warn(xhci, "No ports on the roothubs?\n");
2216		return -ENODEV;
2217	}
2218	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2219		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2220		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2221
2222	/* Place limits on the number of roothub ports so that the hub
2223	 * descriptors aren't longer than the USB core will allocate.
2224	 */
2225	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2226		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2227				"Limiting USB 3.0 roothub ports to %u.",
2228				USB_SS_MAXPORTS);
2229		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2230	}
2231	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2232		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2233				"Limiting USB 2.0 roothub ports to %u.",
2234				USB_MAXCHILDREN);
2235		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2236	}
2237
2238	if (!xhci->usb2_rhub.num_ports)
2239		xhci_info(xhci, "USB2 root hub has no ports\n");
2240
2241	if (!xhci->usb3_rhub.num_ports)
2242		xhci_info(xhci, "USB3 root hub has no ports\n");
2243
2244	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2245	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2246
2247	return 0;
2248}
2249
2250static struct xhci_interrupter *
2251xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags)
2252{
2253	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2254	struct xhci_interrupter *ir;
2255	unsigned int max_segs;
2256	int ret;
2257
2258	if (!segs)
2259		segs = ERST_DEFAULT_SEGS;
2260
2261	max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2));
2262	segs = min(segs, max_segs);
2263
2264	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2265	if (!ir)
2266		return NULL;
2267
2268	ir->event_ring = xhci_ring_alloc(xhci, segs, TYPE_EVENT, 0, flags);
 
 
 
 
 
 
2269	if (!ir->event_ring) {
2270		xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2271		kfree(ir);
2272		return NULL;
2273	}
2274
2275	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2276	if (ret) {
2277		xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2278		xhci_ring_free(xhci, ir->event_ring);
2279		kfree(ir);
2280		return NULL;
2281	}
2282
2283	return ir;
2284}
2285
2286static int
2287xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2288		     unsigned int intr_num)
2289{
2290	u64 erst_base;
2291	u32 erst_size;
2292
2293	if (intr_num >= xhci->max_interrupters) {
2294		xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2295			  intr_num, xhci->max_interrupters);
2296		return -EINVAL;
2297	}
2298
2299	if (xhci->interrupters[intr_num]) {
2300		xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2301		return -EINVAL;
2302	}
2303
2304	xhci->interrupters[intr_num] = ir;
2305	ir->intr_num = intr_num;
2306	ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2307
2308	/* set ERST count with the number of entries in the segment table */
2309	erst_size = readl(&ir->ir_set->erst_size);
2310	erst_size &= ERST_SIZE_MASK;
2311	erst_size |= ir->event_ring->num_segs;
2312	writel(erst_size, &ir->ir_set->erst_size);
2313
2314	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2315	erst_base &= ERST_BASE_RSVDP;
2316	erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2317	if (xhci->quirks & XHCI_WRITE_64_HI_LO)
2318		hi_lo_writeq(erst_base, &ir->ir_set->erst_base);
2319	else
2320		xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2321
2322	/* Set the event ring dequeue address of this interrupter */
2323	xhci_set_hc_event_deq(xhci, ir);
2324
2325	return 0;
2326}
2327
2328struct xhci_interrupter *
2329xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs,
2330				  u32 imod_interval)
2331{
2332	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2333	struct xhci_interrupter *ir;
2334	unsigned int i;
2335	int err = -ENOSPC;
2336
2337	if (!xhci->interrupters || xhci->max_interrupters <= 1)
2338		return NULL;
2339
2340	ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL);
2341	if (!ir)
2342		return NULL;
2343
2344	spin_lock_irq(&xhci->lock);
2345
2346	/* Find available secondary interrupter, interrupter 0 is reserved for primary */
2347	for (i = 1; i < xhci->max_interrupters; i++) {
2348		if (xhci->interrupters[i] == NULL) {
2349			err = xhci_add_interrupter(xhci, ir, i);
2350			break;
2351		}
2352	}
2353
2354	spin_unlock_irq(&xhci->lock);
2355
2356	if (err) {
2357		xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2358			  xhci->max_interrupters);
2359		xhci_free_interrupter(xhci, ir);
2360		return NULL;
2361	}
2362
2363	err = xhci_set_interrupter_moderation(ir, imod_interval);
2364	if (err)
2365		xhci_warn(xhci, "Failed to set interrupter %d moderation to %uns\n",
2366			  i, imod_interval);
2367
2368	xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2369		 i, xhci->max_interrupters);
2370
2371	return ir;
2372}
2373EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2374
2375int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2376{
2377	struct xhci_interrupter *ir;
2378	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2379	dma_addr_t	dma;
2380	unsigned int	val, val2;
2381	u64		val_64;
2382	u32		page_size, temp;
2383	int		i;
2384
2385	INIT_LIST_HEAD(&xhci->cmd_list);
2386
2387	/* init command timeout work */
2388	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2389	init_completion(&xhci->cmd_ring_stop_completion);
2390
2391	page_size = readl(&xhci->op_regs->page_size);
2392	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2393			"Supported page size register = 0x%x", page_size);
2394	i = ffs(page_size);
2395	if (i < 16)
2396		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397			"Supported page size of %iK", (1 << (i+12)) / 1024);
2398	else
2399		xhci_warn(xhci, "WARN: no supported page size\n");
2400	/* Use 4K pages, since that's common and the minimum the HC supports */
2401	xhci->page_shift = 12;
2402	xhci->page_size = 1 << xhci->page_shift;
2403	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2404			"HCD page size set to %iK", xhci->page_size / 1024);
2405
2406	/*
2407	 * Program the Number of Device Slots Enabled field in the CONFIG
2408	 * register with the max value of slots the HC can handle.
2409	 */
2410	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2411	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412			"// xHC can handle at most %d device slots.", val);
2413	val2 = readl(&xhci->op_regs->config_reg);
2414	val |= (val2 & ~HCS_SLOTS_MASK);
2415	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416			"// Setting Max device slots reg = 0x%x.", val);
2417	writel(val, &xhci->op_regs->config_reg);
2418
2419	/*
2420	 * xHCI section 5.4.6 - Device Context array must be
2421	 * "physically contiguous and 64-byte (cache line) aligned".
2422	 */
2423	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2424			flags);
2425	if (!xhci->dcbaa)
2426		goto fail;
2427	xhci->dcbaa->dma = dma;
2428	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2429			"// Device context base array address = 0x%pad (DMA), %p (virt)",
2430			&xhci->dcbaa->dma, xhci->dcbaa);
2431	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2432
2433	/*
2434	 * Initialize the ring segment pool.  The ring must be a contiguous
2435	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2436	 * however, the command ring segment needs 64-byte aligned segments
2437	 * and our use of dma addresses in the trb_address_map radix tree needs
2438	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2439	 */
2440	if (xhci->quirks & XHCI_TRB_OVERFETCH)
2441		/* Buggy HC prefetches beyond segment bounds - allocate dummy space at the end */
2442		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2443				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2444	else
2445		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2446				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2447
2448	/* See Table 46 and Note on Figure 55 */
2449	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2450			2112, 64, xhci->page_size);
2451	if (!xhci->segment_pool || !xhci->device_pool)
2452		goto fail;
2453
2454	/* Linear stream context arrays don't have any boundary restrictions,
2455	 * and only need to be 16-byte aligned.
2456	 */
2457	xhci->small_streams_pool =
2458		dma_pool_create("xHCI 256 byte stream ctx arrays",
2459			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2460	xhci->medium_streams_pool =
2461		dma_pool_create("xHCI 1KB stream ctx arrays",
2462			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2463	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2464	 * will be allocated with dma_alloc_coherent()
2465	 */
2466
2467	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2468		goto fail;
2469
2470	/* Set up the command ring to have one segments for now. */
2471	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, TYPE_COMMAND, 0, flags);
2472	if (!xhci->cmd_ring)
2473		goto fail;
2474	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2475			"Allocated command ring at %p", xhci->cmd_ring);
2476	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2477			&xhci->cmd_ring->first_seg->dma);
2478
2479	/* Set the address in the Command Ring Control register */
2480	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2481	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2482		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2483		xhci->cmd_ring->cycle_state;
2484	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2485			"// Setting command ring address to 0x%016llx", val_64);
2486	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2487
2488	/* Reserve one command ring TRB for disabling LPM.
2489	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2490	 * disabling LPM, we only need to reserve one TRB for all devices.
2491	 */
2492	xhci->cmd_ring_reserved_trbs++;
2493
2494	val = readl(&xhci->cap_regs->db_off);
2495	val &= DBOFF_MASK;
2496	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2497		       "// Doorbell array is located at offset 0x%x from cap regs base addr",
2498		       val);
2499	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2500
2501	/* Allocate and set up primary interrupter 0 with an event ring. */
2502	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2503		       "Allocating primary event ring");
2504	xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2505					  flags, dev_to_node(dev));
2506
2507	ir = xhci_alloc_interrupter(xhci, 0, flags);
2508	if (!ir)
2509		goto fail;
2510
2511	if (xhci_add_interrupter(xhci, ir, 0))
2512		goto fail;
2513
2514	ir->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2515
 
 
 
 
 
2516	for (i = 0; i < MAX_HC_SLOTS; i++)
2517		xhci->devs[i] = NULL;
2518
2519	if (scratchpad_alloc(xhci, flags))
2520		goto fail;
2521	if (xhci_setup_port_arrays(xhci, flags))
2522		goto fail;
2523
2524	/* Enable USB 3.0 device notifications for function remote wake, which
2525	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2526	 * U3 (device suspend).
2527	 */
2528	temp = readl(&xhci->op_regs->dev_notification);
2529	temp &= ~DEV_NOTE_MASK;
2530	temp |= DEV_NOTE_FWAKE;
2531	writel(temp, &xhci->op_regs->dev_notification);
2532
2533	return 0;
2534
2535fail:
2536	xhci_halt(xhci);
2537	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2538	xhci_mem_cleanup(xhci);
2539	return -ENOMEM;
2540}