Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/init.h>
30#include <linux/input.h>
31#include <linux/jiffies.h>
32#include <linux/kbd_diacr.h>
33#include <linux/kbd_kern.h>
34#include <linux/leds.h>
35#include <linux/mm.h>
36#include <linux/module.h>
37#include <linux/nospec.h>
38#include <linux/notifier.h>
39#include <linux/reboot.h>
40#include <linux/sched/debug.h>
41#include <linux/sched/signal.h>
42#include <linux/slab.h>
43#include <linux/spinlock.h>
44#include <linux/string.h>
45#include <linux/tty_flip.h>
46#include <linux/tty.h>
47#include <linux/uaccess.h>
48#include <linux/vt_kern.h>
49
50#include <asm/irq_regs.h>
51
52/*
53 * Exported functions/variables
54 */
55
56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
57
58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59#include <asm/kbdleds.h>
60#else
61static inline int kbd_defleds(void)
62{
63 return 0;
64}
65#endif
66
67#define KBD_DEFLOCK 0
68
69/*
70 * Handler Tables.
71 */
72
73#define K_HANDLERS\
74 k_self, k_fn, k_spec, k_pad,\
75 k_dead, k_cons, k_cur, k_shift,\
76 k_meta, k_ascii, k_lock, k_lowercase,\
77 k_slock, k_dead2, k_brl, k_ignore
78
79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 char up_flag);
81static k_handler_fn K_HANDLERS;
82static k_handler_fn *k_handler[16] = { K_HANDLERS };
83
84#define FN_HANDLERS\
85 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
86 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
87 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
88 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
89 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
90
91typedef void (fn_handler_fn)(struct vc_data *vc);
92static fn_handler_fn FN_HANDLERS;
93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
94
95/*
96 * Variables exported for vt_ioctl.c
97 */
98
99struct vt_spawn_console vt_spawn_con = {
100 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
101 .pid = NULL,
102 .sig = 0,
103};
104
105
106/*
107 * Internal Data.
108 */
109
110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111static struct kbd_struct *kbd = kbd_table;
112
113/* maximum values each key_handler can handle */
114static const unsigned char max_vals[] = {
115 [ KT_LATIN ] = 255,
116 [ KT_FN ] = ARRAY_SIZE(func_table) - 1,
117 [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1,
118 [ KT_PAD ] = NR_PAD - 1,
119 [ KT_DEAD ] = NR_DEAD - 1,
120 [ KT_CONS ] = 255,
121 [ KT_CUR ] = 3,
122 [ KT_SHIFT ] = NR_SHIFT - 1,
123 [ KT_META ] = 255,
124 [ KT_ASCII ] = NR_ASCII - 1,
125 [ KT_LOCK ] = NR_LOCK - 1,
126 [ KT_LETTER ] = 255,
127 [ KT_SLOCK ] = NR_LOCK - 1,
128 [ KT_DEAD2 ] = 255,
129 [ KT_BRL ] = NR_BRL - 1,
130};
131
132static const int NR_TYPES = ARRAY_SIZE(max_vals);
133
134static void kbd_bh(struct tasklet_struct *unused);
135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
136
137static struct input_handler kbd_handler;
138static DEFINE_SPINLOCK(kbd_event_lock);
139static DEFINE_SPINLOCK(led_lock);
140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
141static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */
142static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
143static bool dead_key_next;
144
145/* Handles a number being assembled on the number pad */
146static bool npadch_active;
147static unsigned int npadch_value;
148
149static unsigned int diacr;
150static bool rep; /* flag telling character repeat */
151
152static int shift_state = 0;
153
154static unsigned int ledstate = -1U; /* undefined */
155static unsigned char ledioctl;
156static bool vt_switch;
157
158/*
159 * Notifier list for console keyboard events
160 */
161static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
162
163int register_keyboard_notifier(struct notifier_block *nb)
164{
165 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
166}
167EXPORT_SYMBOL_GPL(register_keyboard_notifier);
168
169int unregister_keyboard_notifier(struct notifier_block *nb)
170{
171 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
172}
173EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
174
175/*
176 * Translation of scancodes to keycodes. We set them on only the first
177 * keyboard in the list that accepts the scancode and keycode.
178 * Explanation for not choosing the first attached keyboard anymore:
179 * USB keyboards for example have two event devices: one for all "normal"
180 * keys and one for extra function keys (like "volume up", "make coffee",
181 * etc.). So this means that scancodes for the extra function keys won't
182 * be valid for the first event device, but will be for the second.
183 */
184
185struct getset_keycode_data {
186 struct input_keymap_entry ke;
187 int error;
188};
189
190static int getkeycode_helper(struct input_handle *handle, void *data)
191{
192 struct getset_keycode_data *d = data;
193
194 d->error = input_get_keycode(handle->dev, &d->ke);
195
196 return d->error == 0; /* stop as soon as we successfully get one */
197}
198
199static int getkeycode(unsigned int scancode)
200{
201 struct getset_keycode_data d = {
202 .ke = {
203 .flags = 0,
204 .len = sizeof(scancode),
205 .keycode = 0,
206 },
207 .error = -ENODEV,
208 };
209
210 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
211
212 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
213
214 return d.error ?: d.ke.keycode;
215}
216
217static int setkeycode_helper(struct input_handle *handle, void *data)
218{
219 struct getset_keycode_data *d = data;
220
221 d->error = input_set_keycode(handle->dev, &d->ke);
222
223 return d->error == 0; /* stop as soon as we successfully set one */
224}
225
226static int setkeycode(unsigned int scancode, unsigned int keycode)
227{
228 struct getset_keycode_data d = {
229 .ke = {
230 .flags = 0,
231 .len = sizeof(scancode),
232 .keycode = keycode,
233 },
234 .error = -ENODEV,
235 };
236
237 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
238
239 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
240
241 return d.error;
242}
243
244/*
245 * Making beeps and bells. Note that we prefer beeps to bells, but when
246 * shutting the sound off we do both.
247 */
248
249static int kd_sound_helper(struct input_handle *handle, void *data)
250{
251 unsigned int *hz = data;
252 struct input_dev *dev = handle->dev;
253
254 if (test_bit(EV_SND, dev->evbit)) {
255 if (test_bit(SND_TONE, dev->sndbit)) {
256 input_inject_event(handle, EV_SND, SND_TONE, *hz);
257 if (*hz)
258 return 0;
259 }
260 if (test_bit(SND_BELL, dev->sndbit))
261 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
262 }
263
264 return 0;
265}
266
267static void kd_nosound(struct timer_list *unused)
268{
269 static unsigned int zero;
270
271 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
272}
273
274static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
275
276void kd_mksound(unsigned int hz, unsigned int ticks)
277{
278 del_timer_sync(&kd_mksound_timer);
279
280 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
281
282 if (hz && ticks)
283 mod_timer(&kd_mksound_timer, jiffies + ticks);
284}
285EXPORT_SYMBOL(kd_mksound);
286
287/*
288 * Setting the keyboard rate.
289 */
290
291static int kbd_rate_helper(struct input_handle *handle, void *data)
292{
293 struct input_dev *dev = handle->dev;
294 struct kbd_repeat *rpt = data;
295
296 if (test_bit(EV_REP, dev->evbit)) {
297
298 if (rpt[0].delay > 0)
299 input_inject_event(handle,
300 EV_REP, REP_DELAY, rpt[0].delay);
301 if (rpt[0].period > 0)
302 input_inject_event(handle,
303 EV_REP, REP_PERIOD, rpt[0].period);
304
305 rpt[1].delay = dev->rep[REP_DELAY];
306 rpt[1].period = dev->rep[REP_PERIOD];
307 }
308
309 return 0;
310}
311
312int kbd_rate(struct kbd_repeat *rpt)
313{
314 struct kbd_repeat data[2] = { *rpt };
315
316 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
317 *rpt = data[1]; /* Copy currently used settings */
318
319 return 0;
320}
321
322/*
323 * Helper Functions.
324 */
325static void put_queue(struct vc_data *vc, int ch)
326{
327 tty_insert_flip_char(&vc->port, ch, 0);
328 tty_flip_buffer_push(&vc->port);
329}
330
331static void puts_queue(struct vc_data *vc, const char *cp)
332{
333 tty_insert_flip_string(&vc->port, cp, strlen(cp));
334 tty_flip_buffer_push(&vc->port);
335}
336
337static void applkey(struct vc_data *vc, int key, char mode)
338{
339 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
340
341 buf[1] = (mode ? 'O' : '[');
342 buf[2] = key;
343 puts_queue(vc, buf);
344}
345
346/*
347 * Many other routines do put_queue, but I think either
348 * they produce ASCII, or they produce some user-assigned
349 * string, and in both cases we might assume that it is
350 * in utf-8 already.
351 */
352static void to_utf8(struct vc_data *vc, uint c)
353{
354 if (c < 0x80)
355 /* 0******* */
356 put_queue(vc, c);
357 else if (c < 0x800) {
358 /* 110***** 10****** */
359 put_queue(vc, 0xc0 | (c >> 6));
360 put_queue(vc, 0x80 | (c & 0x3f));
361 } else if (c < 0x10000) {
362 if (c >= 0xD800 && c < 0xE000)
363 return;
364 if (c == 0xFFFF)
365 return;
366 /* 1110**** 10****** 10****** */
367 put_queue(vc, 0xe0 | (c >> 12));
368 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
369 put_queue(vc, 0x80 | (c & 0x3f));
370 } else if (c < 0x110000) {
371 /* 11110*** 10****** 10****** 10****** */
372 put_queue(vc, 0xf0 | (c >> 18));
373 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
374 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
375 put_queue(vc, 0x80 | (c & 0x3f));
376 }
377}
378
379/* FIXME: review locking for vt.c callers */
380static void set_leds(void)
381{
382 tasklet_schedule(&keyboard_tasklet);
383}
384
385/*
386 * Called after returning from RAW mode or when changing consoles - recompute
387 * shift_down[] and shift_state from key_down[] maybe called when keymap is
388 * undefined, so that shiftkey release is seen. The caller must hold the
389 * kbd_event_lock.
390 */
391
392static void do_compute_shiftstate(void)
393{
394 unsigned int k, sym, val;
395
396 shift_state = 0;
397 memset(shift_down, 0, sizeof(shift_down));
398
399 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
400 sym = U(key_maps[0][k]);
401 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
402 continue;
403
404 val = KVAL(sym);
405 if (val == KVAL(K_CAPSSHIFT))
406 val = KVAL(K_SHIFT);
407
408 shift_down[val]++;
409 shift_state |= BIT(val);
410 }
411}
412
413/* We still have to export this method to vt.c */
414void vt_set_leds_compute_shiftstate(void)
415{
416 unsigned long flags;
417
418 /*
419 * When VT is switched, the keyboard led needs to be set once.
420 * Ensure that after the switch is completed, the state of the
421 * keyboard LED is consistent with the state of the keyboard lock.
422 */
423 vt_switch = true;
424 set_leds();
425
426 spin_lock_irqsave(&kbd_event_lock, flags);
427 do_compute_shiftstate();
428 spin_unlock_irqrestore(&kbd_event_lock, flags);
429}
430
431/*
432 * We have a combining character DIACR here, followed by the character CH.
433 * If the combination occurs in the table, return the corresponding value.
434 * Otherwise, if CH is a space or equals DIACR, return DIACR.
435 * Otherwise, conclude that DIACR was not combining after all,
436 * queue it and return CH.
437 */
438static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
439{
440 unsigned int d = diacr;
441 unsigned int i;
442
443 diacr = 0;
444
445 if ((d & ~0xff) == BRL_UC_ROW) {
446 if ((ch & ~0xff) == BRL_UC_ROW)
447 return d | ch;
448 } else {
449 for (i = 0; i < accent_table_size; i++)
450 if (accent_table[i].diacr == d && accent_table[i].base == ch)
451 return accent_table[i].result;
452 }
453
454 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
455 return d;
456
457 if (kbd->kbdmode == VC_UNICODE)
458 to_utf8(vc, d);
459 else {
460 int c = conv_uni_to_8bit(d);
461 if (c != -1)
462 put_queue(vc, c);
463 }
464
465 return ch;
466}
467
468/*
469 * Special function handlers
470 */
471static void fn_enter(struct vc_data *vc)
472{
473 if (diacr) {
474 if (kbd->kbdmode == VC_UNICODE)
475 to_utf8(vc, diacr);
476 else {
477 int c = conv_uni_to_8bit(diacr);
478 if (c != -1)
479 put_queue(vc, c);
480 }
481 diacr = 0;
482 }
483
484 put_queue(vc, '\r');
485 if (vc_kbd_mode(kbd, VC_CRLF))
486 put_queue(vc, '\n');
487}
488
489static void fn_caps_toggle(struct vc_data *vc)
490{
491 if (rep)
492 return;
493
494 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
495}
496
497static void fn_caps_on(struct vc_data *vc)
498{
499 if (rep)
500 return;
501
502 set_vc_kbd_led(kbd, VC_CAPSLOCK);
503}
504
505static void fn_show_ptregs(struct vc_data *vc)
506{
507 struct pt_regs *regs = get_irq_regs();
508
509 if (regs)
510 show_regs(regs);
511}
512
513static void fn_hold(struct vc_data *vc)
514{
515 struct tty_struct *tty = vc->port.tty;
516
517 if (rep || !tty)
518 return;
519
520 /*
521 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
522 * these routines are also activated by ^S/^Q.
523 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
524 */
525 if (tty->flow.stopped)
526 start_tty(tty);
527 else
528 stop_tty(tty);
529}
530
531static void fn_num(struct vc_data *vc)
532{
533 if (vc_kbd_mode(kbd, VC_APPLIC))
534 applkey(vc, 'P', 1);
535 else
536 fn_bare_num(vc);
537}
538
539/*
540 * Bind this to Shift-NumLock if you work in application keypad mode
541 * but want to be able to change the NumLock flag.
542 * Bind this to NumLock if you prefer that the NumLock key always
543 * changes the NumLock flag.
544 */
545static void fn_bare_num(struct vc_data *vc)
546{
547 if (!rep)
548 chg_vc_kbd_led(kbd, VC_NUMLOCK);
549}
550
551static void fn_lastcons(struct vc_data *vc)
552{
553 /* switch to the last used console, ChN */
554 set_console(last_console);
555}
556
557static void fn_dec_console(struct vc_data *vc)
558{
559 int i, cur = fg_console;
560
561 /* Currently switching? Queue this next switch relative to that. */
562 if (want_console != -1)
563 cur = want_console;
564
565 for (i = cur - 1; i != cur; i--) {
566 if (i == -1)
567 i = MAX_NR_CONSOLES - 1;
568 if (vc_cons_allocated(i))
569 break;
570 }
571 set_console(i);
572}
573
574static void fn_inc_console(struct vc_data *vc)
575{
576 int i, cur = fg_console;
577
578 /* Currently switching? Queue this next switch relative to that. */
579 if (want_console != -1)
580 cur = want_console;
581
582 for (i = cur+1; i != cur; i++) {
583 if (i == MAX_NR_CONSOLES)
584 i = 0;
585 if (vc_cons_allocated(i))
586 break;
587 }
588 set_console(i);
589}
590
591static void fn_send_intr(struct vc_data *vc)
592{
593 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
594 tty_flip_buffer_push(&vc->port);
595}
596
597static void fn_scroll_forw(struct vc_data *vc)
598{
599 scrollfront(vc, 0);
600}
601
602static void fn_scroll_back(struct vc_data *vc)
603{
604 scrollback(vc);
605}
606
607static void fn_show_mem(struct vc_data *vc)
608{
609 show_mem();
610}
611
612static void fn_show_state(struct vc_data *vc)
613{
614 show_state();
615}
616
617static void fn_boot_it(struct vc_data *vc)
618{
619 ctrl_alt_del();
620}
621
622static void fn_compose(struct vc_data *vc)
623{
624 dead_key_next = true;
625}
626
627static void fn_spawn_con(struct vc_data *vc)
628{
629 spin_lock(&vt_spawn_con.lock);
630 if (vt_spawn_con.pid)
631 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
632 put_pid(vt_spawn_con.pid);
633 vt_spawn_con.pid = NULL;
634 }
635 spin_unlock(&vt_spawn_con.lock);
636}
637
638static void fn_SAK(struct vc_data *vc)
639{
640 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
641 schedule_work(SAK_work);
642}
643
644static void fn_null(struct vc_data *vc)
645{
646 do_compute_shiftstate();
647}
648
649/*
650 * Special key handlers
651 */
652static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
653{
654}
655
656static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
657{
658 if (up_flag)
659 return;
660 if (value >= ARRAY_SIZE(fn_handler))
661 return;
662 if ((kbd->kbdmode == VC_RAW ||
663 kbd->kbdmode == VC_MEDIUMRAW ||
664 kbd->kbdmode == VC_OFF) &&
665 value != KVAL(K_SAK))
666 return; /* SAK is allowed even in raw mode */
667 fn_handler[value](vc);
668}
669
670static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
671{
672 pr_err("k_lowercase was called - impossible\n");
673}
674
675static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
676{
677 if (up_flag)
678 return; /* no action, if this is a key release */
679
680 if (diacr)
681 value = handle_diacr(vc, value);
682
683 if (dead_key_next) {
684 dead_key_next = false;
685 diacr = value;
686 return;
687 }
688 if (kbd->kbdmode == VC_UNICODE)
689 to_utf8(vc, value);
690 else {
691 int c = conv_uni_to_8bit(value);
692 if (c != -1)
693 put_queue(vc, c);
694 }
695}
696
697/*
698 * Handle dead key. Note that we now may have several
699 * dead keys modifying the same character. Very useful
700 * for Vietnamese.
701 */
702static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
703{
704 if (up_flag)
705 return;
706
707 diacr = (diacr ? handle_diacr(vc, value) : value);
708}
709
710static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
711{
712 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
713}
714
715static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
716{
717 k_deadunicode(vc, value, up_flag);
718}
719
720/*
721 * Obsolete - for backwards compatibility only
722 */
723static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
724{
725 static const unsigned char ret_diacr[NR_DEAD] = {
726 '`', /* dead_grave */
727 '\'', /* dead_acute */
728 '^', /* dead_circumflex */
729 '~', /* dead_tilda */
730 '"', /* dead_diaeresis */
731 ',', /* dead_cedilla */
732 '_', /* dead_macron */
733 'U', /* dead_breve */
734 '.', /* dead_abovedot */
735 '*', /* dead_abovering */
736 '=', /* dead_doubleacute */
737 'c', /* dead_caron */
738 'k', /* dead_ogonek */
739 'i', /* dead_iota */
740 '#', /* dead_voiced_sound */
741 'o', /* dead_semivoiced_sound */
742 '!', /* dead_belowdot */
743 '?', /* dead_hook */
744 '+', /* dead_horn */
745 '-', /* dead_stroke */
746 ')', /* dead_abovecomma */
747 '(', /* dead_abovereversedcomma */
748 ':', /* dead_doublegrave */
749 'n', /* dead_invertedbreve */
750 ';', /* dead_belowcomma */
751 '$', /* dead_currency */
752 '@', /* dead_greek */
753 };
754
755 k_deadunicode(vc, ret_diacr[value], up_flag);
756}
757
758static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
759{
760 if (up_flag)
761 return;
762
763 set_console(value);
764}
765
766static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
767{
768 if (up_flag)
769 return;
770
771 if ((unsigned)value < ARRAY_SIZE(func_table)) {
772 unsigned long flags;
773
774 spin_lock_irqsave(&func_buf_lock, flags);
775 if (func_table[value])
776 puts_queue(vc, func_table[value]);
777 spin_unlock_irqrestore(&func_buf_lock, flags);
778
779 } else
780 pr_err("k_fn called with value=%d\n", value);
781}
782
783static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
784{
785 static const char cur_chars[] = "BDCA";
786
787 if (up_flag)
788 return;
789
790 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
791}
792
793static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
794{
795 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
796 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
797
798 if (up_flag)
799 return; /* no action, if this is a key release */
800
801 /* kludge... shift forces cursor/number keys */
802 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
803 applkey(vc, app_map[value], 1);
804 return;
805 }
806
807 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
808
809 switch (value) {
810 case KVAL(K_PCOMMA):
811 case KVAL(K_PDOT):
812 k_fn(vc, KVAL(K_REMOVE), 0);
813 return;
814 case KVAL(K_P0):
815 k_fn(vc, KVAL(K_INSERT), 0);
816 return;
817 case KVAL(K_P1):
818 k_fn(vc, KVAL(K_SELECT), 0);
819 return;
820 case KVAL(K_P2):
821 k_cur(vc, KVAL(K_DOWN), 0);
822 return;
823 case KVAL(K_P3):
824 k_fn(vc, KVAL(K_PGDN), 0);
825 return;
826 case KVAL(K_P4):
827 k_cur(vc, KVAL(K_LEFT), 0);
828 return;
829 case KVAL(K_P6):
830 k_cur(vc, KVAL(K_RIGHT), 0);
831 return;
832 case KVAL(K_P7):
833 k_fn(vc, KVAL(K_FIND), 0);
834 return;
835 case KVAL(K_P8):
836 k_cur(vc, KVAL(K_UP), 0);
837 return;
838 case KVAL(K_P9):
839 k_fn(vc, KVAL(K_PGUP), 0);
840 return;
841 case KVAL(K_P5):
842 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
843 return;
844 }
845 }
846
847 put_queue(vc, pad_chars[value]);
848 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
849 put_queue(vc, '\n');
850}
851
852static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
853{
854 int old_state = shift_state;
855
856 if (rep)
857 return;
858 /*
859 * Mimic typewriter:
860 * a CapsShift key acts like Shift but undoes CapsLock
861 */
862 if (value == KVAL(K_CAPSSHIFT)) {
863 value = KVAL(K_SHIFT);
864 if (!up_flag)
865 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
866 }
867
868 if (up_flag) {
869 /*
870 * handle the case that two shift or control
871 * keys are depressed simultaneously
872 */
873 if (shift_down[value])
874 shift_down[value]--;
875 } else
876 shift_down[value]++;
877
878 if (shift_down[value])
879 shift_state |= BIT(value);
880 else
881 shift_state &= ~BIT(value);
882
883 /* kludge */
884 if (up_flag && shift_state != old_state && npadch_active) {
885 if (kbd->kbdmode == VC_UNICODE)
886 to_utf8(vc, npadch_value);
887 else
888 put_queue(vc, npadch_value & 0xff);
889 npadch_active = false;
890 }
891}
892
893static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
894{
895 if (up_flag)
896 return;
897
898 if (vc_kbd_mode(kbd, VC_META)) {
899 put_queue(vc, '\033');
900 put_queue(vc, value);
901 } else
902 put_queue(vc, value | BIT(7));
903}
904
905static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
906{
907 unsigned int base;
908
909 if (up_flag)
910 return;
911
912 if (value < 10) {
913 /* decimal input of code, while Alt depressed */
914 base = 10;
915 } else {
916 /* hexadecimal input of code, while AltGr depressed */
917 value -= 10;
918 base = 16;
919 }
920
921 if (!npadch_active) {
922 npadch_value = 0;
923 npadch_active = true;
924 }
925
926 npadch_value = npadch_value * base + value;
927}
928
929static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
930{
931 if (up_flag || rep)
932 return;
933
934 chg_vc_kbd_lock(kbd, value);
935}
936
937static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
938{
939 k_shift(vc, value, up_flag);
940 if (up_flag || rep)
941 return;
942
943 chg_vc_kbd_slock(kbd, value);
944 /* try to make Alt, oops, AltGr and such work */
945 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
946 kbd->slockstate = 0;
947 chg_vc_kbd_slock(kbd, value);
948 }
949}
950
951/* by default, 300ms interval for combination release */
952static unsigned brl_timeout = 300;
953MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
954module_param(brl_timeout, uint, 0644);
955
956static unsigned brl_nbchords = 1;
957MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
958module_param(brl_nbchords, uint, 0644);
959
960static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
961{
962 static unsigned long chords;
963 static unsigned committed;
964
965 if (!brl_nbchords)
966 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
967 else {
968 committed |= pattern;
969 chords++;
970 if (chords == brl_nbchords) {
971 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
972 chords = 0;
973 committed = 0;
974 }
975 }
976}
977
978static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
979{
980 static unsigned pressed, committing;
981 static unsigned long releasestart;
982
983 if (kbd->kbdmode != VC_UNICODE) {
984 if (!up_flag)
985 pr_warn("keyboard mode must be unicode for braille patterns\n");
986 return;
987 }
988
989 if (!value) {
990 k_unicode(vc, BRL_UC_ROW, up_flag);
991 return;
992 }
993
994 if (value > 8)
995 return;
996
997 if (!up_flag) {
998 pressed |= BIT(value - 1);
999 if (!brl_timeout)
1000 committing = pressed;
1001 } else if (brl_timeout) {
1002 if (!committing ||
1003 time_after(jiffies,
1004 releasestart + msecs_to_jiffies(brl_timeout))) {
1005 committing = pressed;
1006 releasestart = jiffies;
1007 }
1008 pressed &= ~BIT(value - 1);
1009 if (!pressed && committing) {
1010 k_brlcommit(vc, committing, 0);
1011 committing = 0;
1012 }
1013 } else {
1014 if (committing) {
1015 k_brlcommit(vc, committing, 0);
1016 committing = 0;
1017 }
1018 pressed &= ~BIT(value - 1);
1019 }
1020}
1021
1022#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1023
1024struct kbd_led_trigger {
1025 struct led_trigger trigger;
1026 unsigned int mask;
1027};
1028
1029static int kbd_led_trigger_activate(struct led_classdev *cdev)
1030{
1031 struct kbd_led_trigger *trigger =
1032 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1033
1034 tasklet_disable(&keyboard_tasklet);
1035 if (ledstate != -1U)
1036 led_trigger_event(&trigger->trigger,
1037 ledstate & trigger->mask ?
1038 LED_FULL : LED_OFF);
1039 tasklet_enable(&keyboard_tasklet);
1040
1041 return 0;
1042}
1043
1044#define KBD_LED_TRIGGER(_led_bit, _name) { \
1045 .trigger = { \
1046 .name = _name, \
1047 .activate = kbd_led_trigger_activate, \
1048 }, \
1049 .mask = BIT(_led_bit), \
1050 }
1051
1052#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1053 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1054
1055static struct kbd_led_trigger kbd_led_triggers[] = {
1056 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1057 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1058 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1059 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1060
1061 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1062 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1063 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1064 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1065 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1066 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1067 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1068 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1069};
1070
1071static void kbd_propagate_led_state(unsigned int old_state,
1072 unsigned int new_state)
1073{
1074 struct kbd_led_trigger *trigger;
1075 unsigned int changed = old_state ^ new_state;
1076 int i;
1077
1078 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1079 trigger = &kbd_led_triggers[i];
1080
1081 if (changed & trigger->mask)
1082 led_trigger_event(&trigger->trigger,
1083 new_state & trigger->mask ?
1084 LED_FULL : LED_OFF);
1085 }
1086}
1087
1088static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1089{
1090 unsigned int led_state = *(unsigned int *)data;
1091
1092 if (test_bit(EV_LED, handle->dev->evbit))
1093 kbd_propagate_led_state(~led_state, led_state);
1094
1095 return 0;
1096}
1097
1098static void kbd_init_leds(void)
1099{
1100 int error;
1101 int i;
1102
1103 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1104 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1105 if (error)
1106 pr_err("error %d while registering trigger %s\n",
1107 error, kbd_led_triggers[i].trigger.name);
1108 }
1109}
1110
1111#else
1112
1113static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1114{
1115 unsigned int leds = *(unsigned int *)data;
1116
1117 if (test_bit(EV_LED, handle->dev->evbit)) {
1118 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1119 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1)));
1120 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2)));
1121 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1122 }
1123
1124 return 0;
1125}
1126
1127static void kbd_propagate_led_state(unsigned int old_state,
1128 unsigned int new_state)
1129{
1130 input_handler_for_each_handle(&kbd_handler, &new_state,
1131 kbd_update_leds_helper);
1132}
1133
1134static void kbd_init_leds(void)
1135{
1136}
1137
1138#endif
1139
1140/*
1141 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1142 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1143 * or (iii) specified bits of specified words in kernel memory.
1144 */
1145static unsigned char getledstate(void)
1146{
1147 return ledstate & 0xff;
1148}
1149
1150void setledstate(struct kbd_struct *kb, unsigned int led)
1151{
1152 unsigned long flags;
1153 spin_lock_irqsave(&led_lock, flags);
1154 if (!(led & ~7)) {
1155 ledioctl = led;
1156 kb->ledmode = LED_SHOW_IOCTL;
1157 } else
1158 kb->ledmode = LED_SHOW_FLAGS;
1159
1160 set_leds();
1161 spin_unlock_irqrestore(&led_lock, flags);
1162}
1163
1164static inline unsigned char getleds(void)
1165{
1166 struct kbd_struct *kb = kbd_table + fg_console;
1167
1168 if (kb->ledmode == LED_SHOW_IOCTL)
1169 return ledioctl;
1170
1171 return kb->ledflagstate;
1172}
1173
1174/**
1175 * vt_get_leds - helper for braille console
1176 * @console: console to read
1177 * @flag: flag we want to check
1178 *
1179 * Check the status of a keyboard led flag and report it back
1180 */
1181int vt_get_leds(unsigned int console, int flag)
1182{
1183 struct kbd_struct *kb = &kbd_table[console];
1184 int ret;
1185 unsigned long flags;
1186
1187 spin_lock_irqsave(&led_lock, flags);
1188 ret = vc_kbd_led(kb, flag);
1189 spin_unlock_irqrestore(&led_lock, flags);
1190
1191 return ret;
1192}
1193EXPORT_SYMBOL_GPL(vt_get_leds);
1194
1195/**
1196 * vt_set_led_state - set LED state of a console
1197 * @console: console to set
1198 * @leds: LED bits
1199 *
1200 * Set the LEDs on a console. This is a wrapper for the VT layer
1201 * so that we can keep kbd knowledge internal
1202 */
1203void vt_set_led_state(unsigned int console, int leds)
1204{
1205 struct kbd_struct *kb = &kbd_table[console];
1206 setledstate(kb, leds);
1207}
1208
1209/**
1210 * vt_kbd_con_start - Keyboard side of console start
1211 * @console: console
1212 *
1213 * Handle console start. This is a wrapper for the VT layer
1214 * so that we can keep kbd knowledge internal
1215 *
1216 * FIXME: We eventually need to hold the kbd lock here to protect
1217 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1218 * and start_tty under the kbd_event_lock, while normal tty paths
1219 * don't hold the lock. We probably need to split out an LED lock
1220 * but not during an -rc release!
1221 */
1222void vt_kbd_con_start(unsigned int console)
1223{
1224 struct kbd_struct *kb = &kbd_table[console];
1225 unsigned long flags;
1226 spin_lock_irqsave(&led_lock, flags);
1227 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1228 set_leds();
1229 spin_unlock_irqrestore(&led_lock, flags);
1230}
1231
1232/**
1233 * vt_kbd_con_stop - Keyboard side of console stop
1234 * @console: console
1235 *
1236 * Handle console stop. This is a wrapper for the VT layer
1237 * so that we can keep kbd knowledge internal
1238 */
1239void vt_kbd_con_stop(unsigned int console)
1240{
1241 struct kbd_struct *kb = &kbd_table[console];
1242 unsigned long flags;
1243 spin_lock_irqsave(&led_lock, flags);
1244 set_vc_kbd_led(kb, VC_SCROLLOCK);
1245 set_leds();
1246 spin_unlock_irqrestore(&led_lock, flags);
1247}
1248
1249/*
1250 * This is the tasklet that updates LED state of LEDs using standard
1251 * keyboard triggers. The reason we use tasklet is that we need to
1252 * handle the scenario when keyboard handler is not registered yet
1253 * but we already getting updates from the VT to update led state.
1254 */
1255static void kbd_bh(struct tasklet_struct *unused)
1256{
1257 unsigned int leds;
1258 unsigned long flags;
1259
1260 spin_lock_irqsave(&led_lock, flags);
1261 leds = getleds();
1262 leds |= (unsigned int)kbd->lockstate << 8;
1263 spin_unlock_irqrestore(&led_lock, flags);
1264
1265 if (vt_switch) {
1266 ledstate = ~leds;
1267 vt_switch = false;
1268 }
1269
1270 if (leds != ledstate) {
1271 kbd_propagate_led_state(ledstate, leds);
1272 ledstate = leds;
1273 }
1274}
1275
1276#if defined(CONFIG_X86) || defined(CONFIG_ALPHA) ||\
1277 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1278 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1279 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1280
1281static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1282{
1283 if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1284 return false;
1285
1286 return dev->id.bustype == BUS_I8042 &&
1287 dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1288}
1289
1290static const unsigned short x86_keycodes[256] =
1291 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1292 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1293 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1294 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1295 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1296 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1297 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1298 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1299 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1300 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1301 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1302 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1303 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1304 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1305 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1306
1307#ifdef CONFIG_SPARC
1308static int sparc_l1_a_state;
1309extern void sun_do_break(void);
1310#endif
1311
1312static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1313 unsigned char up_flag)
1314{
1315 int code;
1316
1317 switch (keycode) {
1318
1319 case KEY_PAUSE:
1320 put_queue(vc, 0xe1);
1321 put_queue(vc, 0x1d | up_flag);
1322 put_queue(vc, 0x45 | up_flag);
1323 break;
1324
1325 case KEY_HANGEUL:
1326 if (!up_flag)
1327 put_queue(vc, 0xf2);
1328 break;
1329
1330 case KEY_HANJA:
1331 if (!up_flag)
1332 put_queue(vc, 0xf1);
1333 break;
1334
1335 case KEY_SYSRQ:
1336 /*
1337 * Real AT keyboards (that's what we're trying
1338 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1339 * pressing PrtSc/SysRq alone, but simply 0x54
1340 * when pressing Alt+PrtSc/SysRq.
1341 */
1342 if (test_bit(KEY_LEFTALT, key_down) ||
1343 test_bit(KEY_RIGHTALT, key_down)) {
1344 put_queue(vc, 0x54 | up_flag);
1345 } else {
1346 put_queue(vc, 0xe0);
1347 put_queue(vc, 0x2a | up_flag);
1348 put_queue(vc, 0xe0);
1349 put_queue(vc, 0x37 | up_flag);
1350 }
1351 break;
1352
1353 default:
1354 if (keycode > 255)
1355 return -1;
1356
1357 code = x86_keycodes[keycode];
1358 if (!code)
1359 return -1;
1360
1361 if (code & 0x100)
1362 put_queue(vc, 0xe0);
1363 put_queue(vc, (code & 0x7f) | up_flag);
1364
1365 break;
1366 }
1367
1368 return 0;
1369}
1370
1371#else
1372
1373static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1374{
1375 return false;
1376}
1377
1378static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1379{
1380 if (keycode > 127)
1381 return -1;
1382
1383 put_queue(vc, keycode | up_flag);
1384 return 0;
1385}
1386#endif
1387
1388static void kbd_rawcode(unsigned char data)
1389{
1390 struct vc_data *vc = vc_cons[fg_console].d;
1391
1392 kbd = &kbd_table[vc->vc_num];
1393 if (kbd->kbdmode == VC_RAW)
1394 put_queue(vc, data);
1395}
1396
1397static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1398{
1399 struct vc_data *vc = vc_cons[fg_console].d;
1400 unsigned short keysym, *key_map;
1401 unsigned char type;
1402 bool raw_mode;
1403 struct tty_struct *tty;
1404 int shift_final;
1405 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1406 int rc;
1407
1408 tty = vc->port.tty;
1409
1410 if (tty && (!tty->driver_data)) {
1411 /* No driver data? Strange. Okay we fix it then. */
1412 tty->driver_data = vc;
1413 }
1414
1415 kbd = &kbd_table[vc->vc_num];
1416
1417#ifdef CONFIG_SPARC
1418 if (keycode == KEY_STOP)
1419 sparc_l1_a_state = down;
1420#endif
1421
1422 rep = (down == 2);
1423
1424 raw_mode = (kbd->kbdmode == VC_RAW);
1425 if (raw_mode && !hw_raw)
1426 if (emulate_raw(vc, keycode, !down << 7))
1427 if (keycode < BTN_MISC && printk_ratelimit())
1428 pr_warn("can't emulate rawmode for keycode %d\n",
1429 keycode);
1430
1431#ifdef CONFIG_SPARC
1432 if (keycode == KEY_A && sparc_l1_a_state) {
1433 sparc_l1_a_state = false;
1434 sun_do_break();
1435 }
1436#endif
1437
1438 if (kbd->kbdmode == VC_MEDIUMRAW) {
1439 /*
1440 * This is extended medium raw mode, with keys above 127
1441 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1442 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1443 * interfere with anything else. The two bytes after 0 will
1444 * always have the up flag set not to interfere with older
1445 * applications. This allows for 16384 different keycodes,
1446 * which should be enough.
1447 */
1448 if (keycode < 128) {
1449 put_queue(vc, keycode | (!down << 7));
1450 } else {
1451 put_queue(vc, !down << 7);
1452 put_queue(vc, (keycode >> 7) | BIT(7));
1453 put_queue(vc, keycode | BIT(7));
1454 }
1455 raw_mode = true;
1456 }
1457
1458 assign_bit(keycode, key_down, down);
1459
1460 if (rep &&
1461 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1462 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1463 /*
1464 * Don't repeat a key if the input buffers are not empty and the
1465 * characters get aren't echoed locally. This makes key repeat
1466 * usable with slow applications and under heavy loads.
1467 */
1468 return;
1469 }
1470
1471 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1472 param.ledstate = kbd->ledflagstate;
1473 key_map = key_maps[shift_final];
1474
1475 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1476 KBD_KEYCODE, ¶m);
1477 if (rc == NOTIFY_STOP || !key_map) {
1478 atomic_notifier_call_chain(&keyboard_notifier_list,
1479 KBD_UNBOUND_KEYCODE, ¶m);
1480 do_compute_shiftstate();
1481 kbd->slockstate = 0;
1482 return;
1483 }
1484
1485 if (keycode < NR_KEYS)
1486 keysym = key_map[keycode];
1487 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1488 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1489 else
1490 return;
1491
1492 type = KTYP(keysym);
1493
1494 if (type < 0xf0) {
1495 param.value = keysym;
1496 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1497 KBD_UNICODE, ¶m);
1498 if (rc != NOTIFY_STOP)
1499 if (down && !raw_mode)
1500 k_unicode(vc, keysym, !down);
1501 return;
1502 }
1503
1504 type -= 0xf0;
1505
1506 if (type == KT_LETTER) {
1507 type = KT_LATIN;
1508 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1509 key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1510 if (key_map)
1511 keysym = key_map[keycode];
1512 }
1513 }
1514
1515 param.value = keysym;
1516 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1517 KBD_KEYSYM, ¶m);
1518 if (rc == NOTIFY_STOP)
1519 return;
1520
1521 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1522 return;
1523
1524 (*k_handler[type])(vc, keysym & 0xff, !down);
1525
1526 param.ledstate = kbd->ledflagstate;
1527 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1528
1529 if (type != KT_SLOCK)
1530 kbd->slockstate = 0;
1531}
1532
1533static void kbd_event(struct input_handle *handle, unsigned int event_type,
1534 unsigned int event_code, int value)
1535{
1536 /* We are called with interrupts disabled, just take the lock */
1537 spin_lock(&kbd_event_lock);
1538
1539 if (event_type == EV_MSC && event_code == MSC_RAW &&
1540 kbd_is_hw_raw(handle->dev))
1541 kbd_rawcode(value);
1542 if (event_type == EV_KEY && event_code <= KEY_MAX)
1543 kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1544
1545 spin_unlock(&kbd_event_lock);
1546
1547 tasklet_schedule(&keyboard_tasklet);
1548 do_poke_blanked_console = 1;
1549 schedule_console_callback();
1550}
1551
1552static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1553{
1554 if (test_bit(EV_SND, dev->evbit))
1555 return true;
1556
1557 if (test_bit(EV_KEY, dev->evbit)) {
1558 if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1559 BTN_MISC)
1560 return true;
1561 if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1562 KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1563 return true;
1564 }
1565
1566 return false;
1567}
1568
1569/*
1570 * When a keyboard (or other input device) is found, the kbd_connect
1571 * function is called. The function then looks at the device, and if it
1572 * likes it, it can open it and get events from it. In this (kbd_connect)
1573 * function, we should decide which VT to bind that keyboard to initially.
1574 */
1575static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1576 const struct input_device_id *id)
1577{
1578 struct input_handle *handle;
1579 int error;
1580
1581 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1582 if (!handle)
1583 return -ENOMEM;
1584
1585 handle->dev = dev;
1586 handle->handler = handler;
1587 handle->name = "kbd";
1588
1589 error = input_register_handle(handle);
1590 if (error)
1591 goto err_free_handle;
1592
1593 error = input_open_device(handle);
1594 if (error)
1595 goto err_unregister_handle;
1596
1597 return 0;
1598
1599 err_unregister_handle:
1600 input_unregister_handle(handle);
1601 err_free_handle:
1602 kfree(handle);
1603 return error;
1604}
1605
1606static void kbd_disconnect(struct input_handle *handle)
1607{
1608 input_close_device(handle);
1609 input_unregister_handle(handle);
1610 kfree(handle);
1611}
1612
1613/*
1614 * Start keyboard handler on the new keyboard by refreshing LED state to
1615 * match the rest of the system.
1616 */
1617static void kbd_start(struct input_handle *handle)
1618{
1619 tasklet_disable(&keyboard_tasklet);
1620
1621 if (ledstate != -1U)
1622 kbd_update_leds_helper(handle, &ledstate);
1623
1624 tasklet_enable(&keyboard_tasklet);
1625}
1626
1627static const struct input_device_id kbd_ids[] = {
1628 {
1629 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1630 .evbit = { BIT_MASK(EV_KEY) },
1631 },
1632
1633 {
1634 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1635 .evbit = { BIT_MASK(EV_SND) },
1636 },
1637
1638 { }, /* Terminating entry */
1639};
1640
1641MODULE_DEVICE_TABLE(input, kbd_ids);
1642
1643static struct input_handler kbd_handler = {
1644 .event = kbd_event,
1645 .match = kbd_match,
1646 .connect = kbd_connect,
1647 .disconnect = kbd_disconnect,
1648 .start = kbd_start,
1649 .name = "kbd",
1650 .id_table = kbd_ids,
1651};
1652
1653int __init kbd_init(void)
1654{
1655 int i;
1656 int error;
1657
1658 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1659 kbd_table[i].ledflagstate = kbd_defleds();
1660 kbd_table[i].default_ledflagstate = kbd_defleds();
1661 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1662 kbd_table[i].lockstate = KBD_DEFLOCK;
1663 kbd_table[i].slockstate = 0;
1664 kbd_table[i].modeflags = KBD_DEFMODE;
1665 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1666 }
1667
1668 kbd_init_leds();
1669
1670 error = input_register_handler(&kbd_handler);
1671 if (error)
1672 return error;
1673
1674 tasklet_enable(&keyboard_tasklet);
1675 tasklet_schedule(&keyboard_tasklet);
1676
1677 return 0;
1678}
1679
1680/* Ioctl support code */
1681
1682/**
1683 * vt_do_diacrit - diacritical table updates
1684 * @cmd: ioctl request
1685 * @udp: pointer to user data for ioctl
1686 * @perm: permissions check computed by caller
1687 *
1688 * Update the diacritical tables atomically and safely. Lock them
1689 * against simultaneous keypresses
1690 */
1691int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1692{
1693 unsigned long flags;
1694 int asize;
1695 int ret = 0;
1696
1697 switch (cmd) {
1698 case KDGKBDIACR:
1699 {
1700 struct kbdiacrs __user *a = udp;
1701 struct kbdiacr *dia;
1702 int i;
1703
1704 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1705 GFP_KERNEL);
1706 if (!dia)
1707 return -ENOMEM;
1708
1709 /* Lock the diacriticals table, make a copy and then
1710 copy it after we unlock */
1711 spin_lock_irqsave(&kbd_event_lock, flags);
1712
1713 asize = accent_table_size;
1714 for (i = 0; i < asize; i++) {
1715 dia[i].diacr = conv_uni_to_8bit(
1716 accent_table[i].diacr);
1717 dia[i].base = conv_uni_to_8bit(
1718 accent_table[i].base);
1719 dia[i].result = conv_uni_to_8bit(
1720 accent_table[i].result);
1721 }
1722 spin_unlock_irqrestore(&kbd_event_lock, flags);
1723
1724 if (put_user(asize, &a->kb_cnt))
1725 ret = -EFAULT;
1726 else if (copy_to_user(a->kbdiacr, dia,
1727 asize * sizeof(struct kbdiacr)))
1728 ret = -EFAULT;
1729 kfree(dia);
1730 return ret;
1731 }
1732 case KDGKBDIACRUC:
1733 {
1734 struct kbdiacrsuc __user *a = udp;
1735 void *buf;
1736
1737 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1738 GFP_KERNEL);
1739 if (buf == NULL)
1740 return -ENOMEM;
1741
1742 /* Lock the diacriticals table, make a copy and then
1743 copy it after we unlock */
1744 spin_lock_irqsave(&kbd_event_lock, flags);
1745
1746 asize = accent_table_size;
1747 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1748
1749 spin_unlock_irqrestore(&kbd_event_lock, flags);
1750
1751 if (put_user(asize, &a->kb_cnt))
1752 ret = -EFAULT;
1753 else if (copy_to_user(a->kbdiacruc, buf,
1754 asize*sizeof(struct kbdiacruc)))
1755 ret = -EFAULT;
1756 kfree(buf);
1757 return ret;
1758 }
1759
1760 case KDSKBDIACR:
1761 {
1762 struct kbdiacrs __user *a = udp;
1763 struct kbdiacr *dia = NULL;
1764 unsigned int ct;
1765 int i;
1766
1767 if (!perm)
1768 return -EPERM;
1769 if (get_user(ct, &a->kb_cnt))
1770 return -EFAULT;
1771 if (ct >= MAX_DIACR)
1772 return -EINVAL;
1773
1774 if (ct) {
1775 dia = memdup_array_user(a->kbdiacr,
1776 ct, sizeof(struct kbdiacr));
1777 if (IS_ERR(dia))
1778 return PTR_ERR(dia);
1779 }
1780
1781 spin_lock_irqsave(&kbd_event_lock, flags);
1782 accent_table_size = ct;
1783 for (i = 0; i < ct; i++) {
1784 accent_table[i].diacr =
1785 conv_8bit_to_uni(dia[i].diacr);
1786 accent_table[i].base =
1787 conv_8bit_to_uni(dia[i].base);
1788 accent_table[i].result =
1789 conv_8bit_to_uni(dia[i].result);
1790 }
1791 spin_unlock_irqrestore(&kbd_event_lock, flags);
1792 kfree(dia);
1793 return 0;
1794 }
1795
1796 case KDSKBDIACRUC:
1797 {
1798 struct kbdiacrsuc __user *a = udp;
1799 unsigned int ct;
1800 void *buf = NULL;
1801
1802 if (!perm)
1803 return -EPERM;
1804
1805 if (get_user(ct, &a->kb_cnt))
1806 return -EFAULT;
1807
1808 if (ct >= MAX_DIACR)
1809 return -EINVAL;
1810
1811 if (ct) {
1812 buf = memdup_array_user(a->kbdiacruc,
1813 ct, sizeof(struct kbdiacruc));
1814 if (IS_ERR(buf))
1815 return PTR_ERR(buf);
1816 }
1817 spin_lock_irqsave(&kbd_event_lock, flags);
1818 if (ct)
1819 memcpy(accent_table, buf,
1820 ct * sizeof(struct kbdiacruc));
1821 accent_table_size = ct;
1822 spin_unlock_irqrestore(&kbd_event_lock, flags);
1823 kfree(buf);
1824 return 0;
1825 }
1826 }
1827 return ret;
1828}
1829
1830/**
1831 * vt_do_kdskbmode - set keyboard mode ioctl
1832 * @console: the console to use
1833 * @arg: the requested mode
1834 *
1835 * Update the keyboard mode bits while holding the correct locks.
1836 * Return 0 for success or an error code.
1837 */
1838int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1839{
1840 struct kbd_struct *kb = &kbd_table[console];
1841 int ret = 0;
1842 unsigned long flags;
1843
1844 spin_lock_irqsave(&kbd_event_lock, flags);
1845 switch(arg) {
1846 case K_RAW:
1847 kb->kbdmode = VC_RAW;
1848 break;
1849 case K_MEDIUMRAW:
1850 kb->kbdmode = VC_MEDIUMRAW;
1851 break;
1852 case K_XLATE:
1853 kb->kbdmode = VC_XLATE;
1854 do_compute_shiftstate();
1855 break;
1856 case K_UNICODE:
1857 kb->kbdmode = VC_UNICODE;
1858 do_compute_shiftstate();
1859 break;
1860 case K_OFF:
1861 kb->kbdmode = VC_OFF;
1862 break;
1863 default:
1864 ret = -EINVAL;
1865 }
1866 spin_unlock_irqrestore(&kbd_event_lock, flags);
1867 return ret;
1868}
1869
1870/**
1871 * vt_do_kdskbmeta - set keyboard meta state
1872 * @console: the console to use
1873 * @arg: the requested meta state
1874 *
1875 * Update the keyboard meta bits while holding the correct locks.
1876 * Return 0 for success or an error code.
1877 */
1878int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1879{
1880 struct kbd_struct *kb = &kbd_table[console];
1881 int ret = 0;
1882 unsigned long flags;
1883
1884 spin_lock_irqsave(&kbd_event_lock, flags);
1885 switch(arg) {
1886 case K_METABIT:
1887 clr_vc_kbd_mode(kb, VC_META);
1888 break;
1889 case K_ESCPREFIX:
1890 set_vc_kbd_mode(kb, VC_META);
1891 break;
1892 default:
1893 ret = -EINVAL;
1894 }
1895 spin_unlock_irqrestore(&kbd_event_lock, flags);
1896 return ret;
1897}
1898
1899int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1900 int perm)
1901{
1902 struct kbkeycode tmp;
1903 int kc = 0;
1904
1905 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1906 return -EFAULT;
1907 switch (cmd) {
1908 case KDGETKEYCODE:
1909 kc = getkeycode(tmp.scancode);
1910 if (kc >= 0)
1911 kc = put_user(kc, &user_kbkc->keycode);
1912 break;
1913 case KDSETKEYCODE:
1914 if (!perm)
1915 return -EPERM;
1916 kc = setkeycode(tmp.scancode, tmp.keycode);
1917 break;
1918 }
1919 return kc;
1920}
1921
1922static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1923 unsigned char map)
1924{
1925 unsigned short *key_map, val;
1926 unsigned long flags;
1927
1928 /* Ensure another thread doesn't free it under us */
1929 spin_lock_irqsave(&kbd_event_lock, flags);
1930 key_map = key_maps[map];
1931 if (key_map) {
1932 val = U(key_map[idx]);
1933 if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1934 val = K_HOLE;
1935 } else
1936 val = idx ? K_HOLE : K_NOSUCHMAP;
1937 spin_unlock_irqrestore(&kbd_event_lock, flags);
1938
1939 return val;
1940}
1941
1942static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1943 unsigned char map, unsigned short val)
1944{
1945 unsigned long flags;
1946 unsigned short *key_map, *new_map, oldval;
1947
1948 if (!idx && val == K_NOSUCHMAP) {
1949 spin_lock_irqsave(&kbd_event_lock, flags);
1950 /* deallocate map */
1951 key_map = key_maps[map];
1952 if (map && key_map) {
1953 key_maps[map] = NULL;
1954 if (key_map[0] == U(K_ALLOCATED)) {
1955 kfree(key_map);
1956 keymap_count--;
1957 }
1958 }
1959 spin_unlock_irqrestore(&kbd_event_lock, flags);
1960
1961 return 0;
1962 }
1963
1964 if (KTYP(val) < NR_TYPES) {
1965 if (KVAL(val) > max_vals[KTYP(val)])
1966 return -EINVAL;
1967 } else if (kbdmode != VC_UNICODE)
1968 return -EINVAL;
1969
1970 /* ++Geert: non-PC keyboards may generate keycode zero */
1971#if !defined(__mc68000__) && !defined(__powerpc__)
1972 /* assignment to entry 0 only tests validity of args */
1973 if (!idx)
1974 return 0;
1975#endif
1976
1977 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1978 if (!new_map)
1979 return -ENOMEM;
1980
1981 spin_lock_irqsave(&kbd_event_lock, flags);
1982 key_map = key_maps[map];
1983 if (key_map == NULL) {
1984 int j;
1985
1986 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1987 !capable(CAP_SYS_RESOURCE)) {
1988 spin_unlock_irqrestore(&kbd_event_lock, flags);
1989 kfree(new_map);
1990 return -EPERM;
1991 }
1992 key_maps[map] = new_map;
1993 key_map = new_map;
1994 key_map[0] = U(K_ALLOCATED);
1995 for (j = 1; j < NR_KEYS; j++)
1996 key_map[j] = U(K_HOLE);
1997 keymap_count++;
1998 } else
1999 kfree(new_map);
2000
2001 oldval = U(key_map[idx]);
2002 if (val == oldval)
2003 goto out;
2004
2005 /* Attention Key */
2006 if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
2007 spin_unlock_irqrestore(&kbd_event_lock, flags);
2008 return -EPERM;
2009 }
2010
2011 key_map[idx] = U(val);
2012 if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2013 do_compute_shiftstate();
2014out:
2015 spin_unlock_irqrestore(&kbd_event_lock, flags);
2016
2017 return 0;
2018}
2019
2020int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2021 unsigned int console)
2022{
2023 struct kbd_struct *kb = &kbd_table[console];
2024 struct kbentry kbe;
2025
2026 if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2027 return -EFAULT;
2028
2029 switch (cmd) {
2030 case KDGKBENT:
2031 return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2032 kbe.kb_table),
2033 &user_kbe->kb_value);
2034 case KDSKBENT:
2035 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2036 return -EPERM;
2037 return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2038 kbe.kb_value);
2039 }
2040 return 0;
2041}
2042
2043static char *vt_kdskbsent(char *kbs, unsigned char cur)
2044{
2045 static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2046 char *cur_f = func_table[cur];
2047
2048 if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2049 strcpy(cur_f, kbs);
2050 return kbs;
2051 }
2052
2053 func_table[cur] = kbs;
2054
2055 return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2056}
2057
2058int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2059{
2060 unsigned char kb_func;
2061 unsigned long flags;
2062 char *kbs;
2063 int ret;
2064
2065 if (get_user(kb_func, &user_kdgkb->kb_func))
2066 return -EFAULT;
2067
2068 kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2069
2070 switch (cmd) {
2071 case KDGKBSENT: {
2072 /* size should have been a struct member */
2073 ssize_t len = sizeof(user_kdgkb->kb_string);
2074
2075 kbs = kmalloc(len, GFP_KERNEL);
2076 if (!kbs)
2077 return -ENOMEM;
2078
2079 spin_lock_irqsave(&func_buf_lock, flags);
2080 len = strscpy(kbs, func_table[kb_func] ? : "", len);
2081 spin_unlock_irqrestore(&func_buf_lock, flags);
2082
2083 if (len < 0) {
2084 ret = -ENOSPC;
2085 break;
2086 }
2087 ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2088 -EFAULT : 0;
2089 break;
2090 }
2091 case KDSKBSENT:
2092 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2093 return -EPERM;
2094
2095 kbs = strndup_user(user_kdgkb->kb_string,
2096 sizeof(user_kdgkb->kb_string));
2097 if (IS_ERR(kbs))
2098 return PTR_ERR(kbs);
2099
2100 spin_lock_irqsave(&func_buf_lock, flags);
2101 kbs = vt_kdskbsent(kbs, kb_func);
2102 spin_unlock_irqrestore(&func_buf_lock, flags);
2103
2104 ret = 0;
2105 break;
2106 }
2107
2108 kfree(kbs);
2109
2110 return ret;
2111}
2112
2113int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2114{
2115 struct kbd_struct *kb = &kbd_table[console];
2116 unsigned long flags;
2117 unsigned char ucval;
2118
2119 switch(cmd) {
2120 /* the ioctls below read/set the flags usually shown in the leds */
2121 /* don't use them - they will go away without warning */
2122 case KDGKBLED:
2123 spin_lock_irqsave(&kbd_event_lock, flags);
2124 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2125 spin_unlock_irqrestore(&kbd_event_lock, flags);
2126 return put_user(ucval, (char __user *)arg);
2127
2128 case KDSKBLED:
2129 if (!perm)
2130 return -EPERM;
2131 if (arg & ~0x77)
2132 return -EINVAL;
2133 spin_lock_irqsave(&led_lock, flags);
2134 kb->ledflagstate = (arg & 7);
2135 kb->default_ledflagstate = ((arg >> 4) & 7);
2136 set_leds();
2137 spin_unlock_irqrestore(&led_lock, flags);
2138 return 0;
2139
2140 /* the ioctls below only set the lights, not the functions */
2141 /* for those, see KDGKBLED and KDSKBLED above */
2142 case KDGETLED:
2143 ucval = getledstate();
2144 return put_user(ucval, (char __user *)arg);
2145
2146 case KDSETLED:
2147 if (!perm)
2148 return -EPERM;
2149 setledstate(kb, arg);
2150 return 0;
2151 }
2152 return -ENOIOCTLCMD;
2153}
2154
2155int vt_do_kdgkbmode(unsigned int console)
2156{
2157 struct kbd_struct *kb = &kbd_table[console];
2158 /* This is a spot read so needs no locking */
2159 switch (kb->kbdmode) {
2160 case VC_RAW:
2161 return K_RAW;
2162 case VC_MEDIUMRAW:
2163 return K_MEDIUMRAW;
2164 case VC_UNICODE:
2165 return K_UNICODE;
2166 case VC_OFF:
2167 return K_OFF;
2168 default:
2169 return K_XLATE;
2170 }
2171}
2172
2173/**
2174 * vt_do_kdgkbmeta - report meta status
2175 * @console: console to report
2176 *
2177 * Report the meta flag status of this console
2178 */
2179int vt_do_kdgkbmeta(unsigned int console)
2180{
2181 struct kbd_struct *kb = &kbd_table[console];
2182 /* Again a spot read so no locking */
2183 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2184}
2185
2186/**
2187 * vt_reset_unicode - reset the unicode status
2188 * @console: console being reset
2189 *
2190 * Restore the unicode console state to its default
2191 */
2192void vt_reset_unicode(unsigned int console)
2193{
2194 unsigned long flags;
2195
2196 spin_lock_irqsave(&kbd_event_lock, flags);
2197 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2198 spin_unlock_irqrestore(&kbd_event_lock, flags);
2199}
2200
2201/**
2202 * vt_get_shift_state - shift bit state
2203 *
2204 * Report the shift bits from the keyboard state. We have to export
2205 * this to support some oddities in the vt layer.
2206 */
2207int vt_get_shift_state(void)
2208{
2209 /* Don't lock as this is a transient report */
2210 return shift_state;
2211}
2212
2213/**
2214 * vt_reset_keyboard - reset keyboard state
2215 * @console: console to reset
2216 *
2217 * Reset the keyboard bits for a console as part of a general console
2218 * reset event
2219 */
2220void vt_reset_keyboard(unsigned int console)
2221{
2222 struct kbd_struct *kb = &kbd_table[console];
2223 unsigned long flags;
2224
2225 spin_lock_irqsave(&kbd_event_lock, flags);
2226 set_vc_kbd_mode(kb, VC_REPEAT);
2227 clr_vc_kbd_mode(kb, VC_CKMODE);
2228 clr_vc_kbd_mode(kb, VC_APPLIC);
2229 clr_vc_kbd_mode(kb, VC_CRLF);
2230 kb->lockstate = 0;
2231 kb->slockstate = 0;
2232 spin_lock(&led_lock);
2233 kb->ledmode = LED_SHOW_FLAGS;
2234 kb->ledflagstate = kb->default_ledflagstate;
2235 spin_unlock(&led_lock);
2236 /* do not do set_leds here because this causes an endless tasklet loop
2237 when the keyboard hasn't been initialized yet */
2238 spin_unlock_irqrestore(&kbd_event_lock, flags);
2239}
2240
2241/**
2242 * vt_get_kbd_mode_bit - read keyboard status bits
2243 * @console: console to read from
2244 * @bit: mode bit to read
2245 *
2246 * Report back a vt mode bit. We do this without locking so the
2247 * caller must be sure that there are no synchronization needs
2248 */
2249
2250int vt_get_kbd_mode_bit(unsigned int console, int bit)
2251{
2252 struct kbd_struct *kb = &kbd_table[console];
2253 return vc_kbd_mode(kb, bit);
2254}
2255
2256/**
2257 * vt_set_kbd_mode_bit - read keyboard status bits
2258 * @console: console to read from
2259 * @bit: mode bit to read
2260 *
2261 * Set a vt mode bit. We do this without locking so the
2262 * caller must be sure that there are no synchronization needs
2263 */
2264
2265void vt_set_kbd_mode_bit(unsigned int console, int bit)
2266{
2267 struct kbd_struct *kb = &kbd_table[console];
2268 unsigned long flags;
2269
2270 spin_lock_irqsave(&kbd_event_lock, flags);
2271 set_vc_kbd_mode(kb, bit);
2272 spin_unlock_irqrestore(&kbd_event_lock, flags);
2273}
2274
2275/**
2276 * vt_clr_kbd_mode_bit - read keyboard status bits
2277 * @console: console to read from
2278 * @bit: mode bit to read
2279 *
2280 * Report back a vt mode bit. We do this without locking so the
2281 * caller must be sure that there are no synchronization needs
2282 */
2283
2284void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2285{
2286 struct kbd_struct *kb = &kbd_table[console];
2287 unsigned long flags;
2288
2289 spin_lock_irqsave(&kbd_event_lock, flags);
2290 clr_vc_kbd_mode(kb, bit);
2291 spin_unlock_irqrestore(&kbd_event_lock, flags);
2292}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/module.h>
30#include <linux/sched/signal.h>
31#include <linux/sched/debug.h>
32#include <linux/tty.h>
33#include <linux/tty_flip.h>
34#include <linux/mm.h>
35#include <linux/nospec.h>
36#include <linux/string.h>
37#include <linux/init.h>
38#include <linux/slab.h>
39#include <linux/leds.h>
40
41#include <linux/kbd_kern.h>
42#include <linux/kbd_diacr.h>
43#include <linux/vt_kern.h>
44#include <linux/input.h>
45#include <linux/reboot.h>
46#include <linux/notifier.h>
47#include <linux/jiffies.h>
48#include <linux/uaccess.h>
49
50#include <asm/irq_regs.h>
51
52extern void ctrl_alt_del(void);
53
54/*
55 * Exported functions/variables
56 */
57
58#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
59
60#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
61#include <asm/kbdleds.h>
62#else
63static inline int kbd_defleds(void)
64{
65 return 0;
66}
67#endif
68
69#define KBD_DEFLOCK 0
70
71/*
72 * Handler Tables.
73 */
74
75#define K_HANDLERS\
76 k_self, k_fn, k_spec, k_pad,\
77 k_dead, k_cons, k_cur, k_shift,\
78 k_meta, k_ascii, k_lock, k_lowercase,\
79 k_slock, k_dead2, k_brl, k_ignore
80
81typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
82 char up_flag);
83static k_handler_fn K_HANDLERS;
84static k_handler_fn *k_handler[16] = { K_HANDLERS };
85
86#define FN_HANDLERS\
87 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
88 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
89 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
90 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
91 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
92
93typedef void (fn_handler_fn)(struct vc_data *vc);
94static fn_handler_fn FN_HANDLERS;
95static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
96
97/*
98 * Variables exported for vt_ioctl.c
99 */
100
101struct vt_spawn_console vt_spawn_con = {
102 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
103 .pid = NULL,
104 .sig = 0,
105};
106
107
108/*
109 * Internal Data.
110 */
111
112static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
113static struct kbd_struct *kbd = kbd_table;
114
115/* maximum values each key_handler can handle */
116static const int max_vals[] = {
117 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
118 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
119 255, NR_LOCK - 1, 255, NR_BRL - 1
120};
121
122static const int NR_TYPES = ARRAY_SIZE(max_vals);
123
124static struct input_handler kbd_handler;
125static DEFINE_SPINLOCK(kbd_event_lock);
126static DEFINE_SPINLOCK(led_lock);
127static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
128static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
129static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
130static bool dead_key_next;
131
132/* Handles a number being assembled on the number pad */
133static bool npadch_active;
134static unsigned int npadch_value;
135
136static unsigned int diacr;
137static char rep; /* flag telling character repeat */
138
139static int shift_state = 0;
140
141static unsigned int ledstate = -1U; /* undefined */
142static unsigned char ledioctl;
143
144/*
145 * Notifier list for console keyboard events
146 */
147static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
148
149int register_keyboard_notifier(struct notifier_block *nb)
150{
151 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
152}
153EXPORT_SYMBOL_GPL(register_keyboard_notifier);
154
155int unregister_keyboard_notifier(struct notifier_block *nb)
156{
157 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
158}
159EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
160
161/*
162 * Translation of scancodes to keycodes. We set them on only the first
163 * keyboard in the list that accepts the scancode and keycode.
164 * Explanation for not choosing the first attached keyboard anymore:
165 * USB keyboards for example have two event devices: one for all "normal"
166 * keys and one for extra function keys (like "volume up", "make coffee",
167 * etc.). So this means that scancodes for the extra function keys won't
168 * be valid for the first event device, but will be for the second.
169 */
170
171struct getset_keycode_data {
172 struct input_keymap_entry ke;
173 int error;
174};
175
176static int getkeycode_helper(struct input_handle *handle, void *data)
177{
178 struct getset_keycode_data *d = data;
179
180 d->error = input_get_keycode(handle->dev, &d->ke);
181
182 return d->error == 0; /* stop as soon as we successfully get one */
183}
184
185static int getkeycode(unsigned int scancode)
186{
187 struct getset_keycode_data d = {
188 .ke = {
189 .flags = 0,
190 .len = sizeof(scancode),
191 .keycode = 0,
192 },
193 .error = -ENODEV,
194 };
195
196 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
197
198 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
199
200 return d.error ?: d.ke.keycode;
201}
202
203static int setkeycode_helper(struct input_handle *handle, void *data)
204{
205 struct getset_keycode_data *d = data;
206
207 d->error = input_set_keycode(handle->dev, &d->ke);
208
209 return d->error == 0; /* stop as soon as we successfully set one */
210}
211
212static int setkeycode(unsigned int scancode, unsigned int keycode)
213{
214 struct getset_keycode_data d = {
215 .ke = {
216 .flags = 0,
217 .len = sizeof(scancode),
218 .keycode = keycode,
219 },
220 .error = -ENODEV,
221 };
222
223 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
224
225 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
226
227 return d.error;
228}
229
230/*
231 * Making beeps and bells. Note that we prefer beeps to bells, but when
232 * shutting the sound off we do both.
233 */
234
235static int kd_sound_helper(struct input_handle *handle, void *data)
236{
237 unsigned int *hz = data;
238 struct input_dev *dev = handle->dev;
239
240 if (test_bit(EV_SND, dev->evbit)) {
241 if (test_bit(SND_TONE, dev->sndbit)) {
242 input_inject_event(handle, EV_SND, SND_TONE, *hz);
243 if (*hz)
244 return 0;
245 }
246 if (test_bit(SND_BELL, dev->sndbit))
247 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
248 }
249
250 return 0;
251}
252
253static void kd_nosound(struct timer_list *unused)
254{
255 static unsigned int zero;
256
257 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
258}
259
260static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
261
262void kd_mksound(unsigned int hz, unsigned int ticks)
263{
264 del_timer_sync(&kd_mksound_timer);
265
266 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
267
268 if (hz && ticks)
269 mod_timer(&kd_mksound_timer, jiffies + ticks);
270}
271EXPORT_SYMBOL(kd_mksound);
272
273/*
274 * Setting the keyboard rate.
275 */
276
277static int kbd_rate_helper(struct input_handle *handle, void *data)
278{
279 struct input_dev *dev = handle->dev;
280 struct kbd_repeat *rpt = data;
281
282 if (test_bit(EV_REP, dev->evbit)) {
283
284 if (rpt[0].delay > 0)
285 input_inject_event(handle,
286 EV_REP, REP_DELAY, rpt[0].delay);
287 if (rpt[0].period > 0)
288 input_inject_event(handle,
289 EV_REP, REP_PERIOD, rpt[0].period);
290
291 rpt[1].delay = dev->rep[REP_DELAY];
292 rpt[1].period = dev->rep[REP_PERIOD];
293 }
294
295 return 0;
296}
297
298int kbd_rate(struct kbd_repeat *rpt)
299{
300 struct kbd_repeat data[2] = { *rpt };
301
302 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
303 *rpt = data[1]; /* Copy currently used settings */
304
305 return 0;
306}
307
308/*
309 * Helper Functions.
310 */
311static void put_queue(struct vc_data *vc, int ch)
312{
313 tty_insert_flip_char(&vc->port, ch, 0);
314 tty_schedule_flip(&vc->port);
315}
316
317static void puts_queue(struct vc_data *vc, char *cp)
318{
319 while (*cp) {
320 tty_insert_flip_char(&vc->port, *cp, 0);
321 cp++;
322 }
323 tty_schedule_flip(&vc->port);
324}
325
326static void applkey(struct vc_data *vc, int key, char mode)
327{
328 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
329
330 buf[1] = (mode ? 'O' : '[');
331 buf[2] = key;
332 puts_queue(vc, buf);
333}
334
335/*
336 * Many other routines do put_queue, but I think either
337 * they produce ASCII, or they produce some user-assigned
338 * string, and in both cases we might assume that it is
339 * in utf-8 already.
340 */
341static void to_utf8(struct vc_data *vc, uint c)
342{
343 if (c < 0x80)
344 /* 0******* */
345 put_queue(vc, c);
346 else if (c < 0x800) {
347 /* 110***** 10****** */
348 put_queue(vc, 0xc0 | (c >> 6));
349 put_queue(vc, 0x80 | (c & 0x3f));
350 } else if (c < 0x10000) {
351 if (c >= 0xD800 && c < 0xE000)
352 return;
353 if (c == 0xFFFF)
354 return;
355 /* 1110**** 10****** 10****** */
356 put_queue(vc, 0xe0 | (c >> 12));
357 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
358 put_queue(vc, 0x80 | (c & 0x3f));
359 } else if (c < 0x110000) {
360 /* 11110*** 10****** 10****** 10****** */
361 put_queue(vc, 0xf0 | (c >> 18));
362 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
363 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
364 put_queue(vc, 0x80 | (c & 0x3f));
365 }
366}
367
368/*
369 * Called after returning from RAW mode or when changing consoles - recompute
370 * shift_down[] and shift_state from key_down[] maybe called when keymap is
371 * undefined, so that shiftkey release is seen. The caller must hold the
372 * kbd_event_lock.
373 */
374
375static void do_compute_shiftstate(void)
376{
377 unsigned int k, sym, val;
378
379 shift_state = 0;
380 memset(shift_down, 0, sizeof(shift_down));
381
382 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
383 sym = U(key_maps[0][k]);
384 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
385 continue;
386
387 val = KVAL(sym);
388 if (val == KVAL(K_CAPSSHIFT))
389 val = KVAL(K_SHIFT);
390
391 shift_down[val]++;
392 shift_state |= BIT(val);
393 }
394}
395
396/* We still have to export this method to vt.c */
397void compute_shiftstate(void)
398{
399 unsigned long flags;
400 spin_lock_irqsave(&kbd_event_lock, flags);
401 do_compute_shiftstate();
402 spin_unlock_irqrestore(&kbd_event_lock, flags);
403}
404
405/*
406 * We have a combining character DIACR here, followed by the character CH.
407 * If the combination occurs in the table, return the corresponding value.
408 * Otherwise, if CH is a space or equals DIACR, return DIACR.
409 * Otherwise, conclude that DIACR was not combining after all,
410 * queue it and return CH.
411 */
412static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
413{
414 unsigned int d = diacr;
415 unsigned int i;
416
417 diacr = 0;
418
419 if ((d & ~0xff) == BRL_UC_ROW) {
420 if ((ch & ~0xff) == BRL_UC_ROW)
421 return d | ch;
422 } else {
423 for (i = 0; i < accent_table_size; i++)
424 if (accent_table[i].diacr == d && accent_table[i].base == ch)
425 return accent_table[i].result;
426 }
427
428 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
429 return d;
430
431 if (kbd->kbdmode == VC_UNICODE)
432 to_utf8(vc, d);
433 else {
434 int c = conv_uni_to_8bit(d);
435 if (c != -1)
436 put_queue(vc, c);
437 }
438
439 return ch;
440}
441
442/*
443 * Special function handlers
444 */
445static void fn_enter(struct vc_data *vc)
446{
447 if (diacr) {
448 if (kbd->kbdmode == VC_UNICODE)
449 to_utf8(vc, diacr);
450 else {
451 int c = conv_uni_to_8bit(diacr);
452 if (c != -1)
453 put_queue(vc, c);
454 }
455 diacr = 0;
456 }
457
458 put_queue(vc, 13);
459 if (vc_kbd_mode(kbd, VC_CRLF))
460 put_queue(vc, 10);
461}
462
463static void fn_caps_toggle(struct vc_data *vc)
464{
465 if (rep)
466 return;
467
468 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
469}
470
471static void fn_caps_on(struct vc_data *vc)
472{
473 if (rep)
474 return;
475
476 set_vc_kbd_led(kbd, VC_CAPSLOCK);
477}
478
479static void fn_show_ptregs(struct vc_data *vc)
480{
481 struct pt_regs *regs = get_irq_regs();
482
483 if (regs)
484 show_regs(regs);
485}
486
487static void fn_hold(struct vc_data *vc)
488{
489 struct tty_struct *tty = vc->port.tty;
490
491 if (rep || !tty)
492 return;
493
494 /*
495 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
496 * these routines are also activated by ^S/^Q.
497 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
498 */
499 if (tty->stopped)
500 start_tty(tty);
501 else
502 stop_tty(tty);
503}
504
505static void fn_num(struct vc_data *vc)
506{
507 if (vc_kbd_mode(kbd, VC_APPLIC))
508 applkey(vc, 'P', 1);
509 else
510 fn_bare_num(vc);
511}
512
513/*
514 * Bind this to Shift-NumLock if you work in application keypad mode
515 * but want to be able to change the NumLock flag.
516 * Bind this to NumLock if you prefer that the NumLock key always
517 * changes the NumLock flag.
518 */
519static void fn_bare_num(struct vc_data *vc)
520{
521 if (!rep)
522 chg_vc_kbd_led(kbd, VC_NUMLOCK);
523}
524
525static void fn_lastcons(struct vc_data *vc)
526{
527 /* switch to the last used console, ChN */
528 set_console(last_console);
529}
530
531static void fn_dec_console(struct vc_data *vc)
532{
533 int i, cur = fg_console;
534
535 /* Currently switching? Queue this next switch relative to that. */
536 if (want_console != -1)
537 cur = want_console;
538
539 for (i = cur - 1; i != cur; i--) {
540 if (i == -1)
541 i = MAX_NR_CONSOLES - 1;
542 if (vc_cons_allocated(i))
543 break;
544 }
545 set_console(i);
546}
547
548static void fn_inc_console(struct vc_data *vc)
549{
550 int i, cur = fg_console;
551
552 /* Currently switching? Queue this next switch relative to that. */
553 if (want_console != -1)
554 cur = want_console;
555
556 for (i = cur+1; i != cur; i++) {
557 if (i == MAX_NR_CONSOLES)
558 i = 0;
559 if (vc_cons_allocated(i))
560 break;
561 }
562 set_console(i);
563}
564
565static void fn_send_intr(struct vc_data *vc)
566{
567 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
568 tty_schedule_flip(&vc->port);
569}
570
571static void fn_scroll_forw(struct vc_data *vc)
572{
573 scrollfront(vc, 0);
574}
575
576static void fn_scroll_back(struct vc_data *vc)
577{
578 scrollback(vc);
579}
580
581static void fn_show_mem(struct vc_data *vc)
582{
583 show_mem(0, NULL);
584}
585
586static void fn_show_state(struct vc_data *vc)
587{
588 show_state();
589}
590
591static void fn_boot_it(struct vc_data *vc)
592{
593 ctrl_alt_del();
594}
595
596static void fn_compose(struct vc_data *vc)
597{
598 dead_key_next = true;
599}
600
601static void fn_spawn_con(struct vc_data *vc)
602{
603 spin_lock(&vt_spawn_con.lock);
604 if (vt_spawn_con.pid)
605 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
606 put_pid(vt_spawn_con.pid);
607 vt_spawn_con.pid = NULL;
608 }
609 spin_unlock(&vt_spawn_con.lock);
610}
611
612static void fn_SAK(struct vc_data *vc)
613{
614 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
615 schedule_work(SAK_work);
616}
617
618static void fn_null(struct vc_data *vc)
619{
620 do_compute_shiftstate();
621}
622
623/*
624 * Special key handlers
625 */
626static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
627{
628}
629
630static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
631{
632 if (up_flag)
633 return;
634 if (value >= ARRAY_SIZE(fn_handler))
635 return;
636 if ((kbd->kbdmode == VC_RAW ||
637 kbd->kbdmode == VC_MEDIUMRAW ||
638 kbd->kbdmode == VC_OFF) &&
639 value != KVAL(K_SAK))
640 return; /* SAK is allowed even in raw mode */
641 fn_handler[value](vc);
642}
643
644static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
645{
646 pr_err("k_lowercase was called - impossible\n");
647}
648
649static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
650{
651 if (up_flag)
652 return; /* no action, if this is a key release */
653
654 if (diacr)
655 value = handle_diacr(vc, value);
656
657 if (dead_key_next) {
658 dead_key_next = false;
659 diacr = value;
660 return;
661 }
662 if (kbd->kbdmode == VC_UNICODE)
663 to_utf8(vc, value);
664 else {
665 int c = conv_uni_to_8bit(value);
666 if (c != -1)
667 put_queue(vc, c);
668 }
669}
670
671/*
672 * Handle dead key. Note that we now may have several
673 * dead keys modifying the same character. Very useful
674 * for Vietnamese.
675 */
676static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
677{
678 if (up_flag)
679 return;
680
681 diacr = (diacr ? handle_diacr(vc, value) : value);
682}
683
684static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
685{
686 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
687}
688
689static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
690{
691 k_deadunicode(vc, value, up_flag);
692}
693
694/*
695 * Obsolete - for backwards compatibility only
696 */
697static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
698{
699 static const unsigned char ret_diacr[NR_DEAD] = {
700 '`', /* dead_grave */
701 '\'', /* dead_acute */
702 '^', /* dead_circumflex */
703 '~', /* dead_tilda */
704 '"', /* dead_diaeresis */
705 ',', /* dead_cedilla */
706 '_', /* dead_macron */
707 'U', /* dead_breve */
708 '.', /* dead_abovedot */
709 '*', /* dead_abovering */
710 '=', /* dead_doubleacute */
711 'c', /* dead_caron */
712 'k', /* dead_ogonek */
713 'i', /* dead_iota */
714 '#', /* dead_voiced_sound */
715 'o', /* dead_semivoiced_sound */
716 '!', /* dead_belowdot */
717 '?', /* dead_hook */
718 '+', /* dead_horn */
719 '-', /* dead_stroke */
720 ')', /* dead_abovecomma */
721 '(', /* dead_abovereversedcomma */
722 ':', /* dead_doublegrave */
723 'n', /* dead_invertedbreve */
724 ';', /* dead_belowcomma */
725 '$', /* dead_currency */
726 '@', /* dead_greek */
727 };
728
729 k_deadunicode(vc, ret_diacr[value], up_flag);
730}
731
732static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
733{
734 if (up_flag)
735 return;
736
737 set_console(value);
738}
739
740static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
741{
742 if (up_flag)
743 return;
744
745 if ((unsigned)value < ARRAY_SIZE(func_table)) {
746 if (func_table[value])
747 puts_queue(vc, func_table[value]);
748 } else
749 pr_err("k_fn called with value=%d\n", value);
750}
751
752static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
753{
754 static const char cur_chars[] = "BDCA";
755
756 if (up_flag)
757 return;
758
759 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
760}
761
762static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
763{
764 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
765 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
766
767 if (up_flag)
768 return; /* no action, if this is a key release */
769
770 /* kludge... shift forces cursor/number keys */
771 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
772 applkey(vc, app_map[value], 1);
773 return;
774 }
775
776 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
777
778 switch (value) {
779 case KVAL(K_PCOMMA):
780 case KVAL(K_PDOT):
781 k_fn(vc, KVAL(K_REMOVE), 0);
782 return;
783 case KVAL(K_P0):
784 k_fn(vc, KVAL(K_INSERT), 0);
785 return;
786 case KVAL(K_P1):
787 k_fn(vc, KVAL(K_SELECT), 0);
788 return;
789 case KVAL(K_P2):
790 k_cur(vc, KVAL(K_DOWN), 0);
791 return;
792 case KVAL(K_P3):
793 k_fn(vc, KVAL(K_PGDN), 0);
794 return;
795 case KVAL(K_P4):
796 k_cur(vc, KVAL(K_LEFT), 0);
797 return;
798 case KVAL(K_P6):
799 k_cur(vc, KVAL(K_RIGHT), 0);
800 return;
801 case KVAL(K_P7):
802 k_fn(vc, KVAL(K_FIND), 0);
803 return;
804 case KVAL(K_P8):
805 k_cur(vc, KVAL(K_UP), 0);
806 return;
807 case KVAL(K_P9):
808 k_fn(vc, KVAL(K_PGUP), 0);
809 return;
810 case KVAL(K_P5):
811 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
812 return;
813 }
814 }
815
816 put_queue(vc, pad_chars[value]);
817 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
818 put_queue(vc, 10);
819}
820
821static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
822{
823 int old_state = shift_state;
824
825 if (rep)
826 return;
827 /*
828 * Mimic typewriter:
829 * a CapsShift key acts like Shift but undoes CapsLock
830 */
831 if (value == KVAL(K_CAPSSHIFT)) {
832 value = KVAL(K_SHIFT);
833 if (!up_flag)
834 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
835 }
836
837 if (up_flag) {
838 /*
839 * handle the case that two shift or control
840 * keys are depressed simultaneously
841 */
842 if (shift_down[value])
843 shift_down[value]--;
844 } else
845 shift_down[value]++;
846
847 if (shift_down[value])
848 shift_state |= (1 << value);
849 else
850 shift_state &= ~(1 << value);
851
852 /* kludge */
853 if (up_flag && shift_state != old_state && npadch_active) {
854 if (kbd->kbdmode == VC_UNICODE)
855 to_utf8(vc, npadch_value);
856 else
857 put_queue(vc, npadch_value & 0xff);
858 npadch_active = false;
859 }
860}
861
862static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
863{
864 if (up_flag)
865 return;
866
867 if (vc_kbd_mode(kbd, VC_META)) {
868 put_queue(vc, '\033');
869 put_queue(vc, value);
870 } else
871 put_queue(vc, value | 0x80);
872}
873
874static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
875{
876 unsigned int base;
877
878 if (up_flag)
879 return;
880
881 if (value < 10) {
882 /* decimal input of code, while Alt depressed */
883 base = 10;
884 } else {
885 /* hexadecimal input of code, while AltGr depressed */
886 value -= 10;
887 base = 16;
888 }
889
890 if (!npadch_active) {
891 npadch_value = 0;
892 npadch_active = true;
893 }
894
895 npadch_value = npadch_value * base + value;
896}
897
898static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
899{
900 if (up_flag || rep)
901 return;
902
903 chg_vc_kbd_lock(kbd, value);
904}
905
906static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
907{
908 k_shift(vc, value, up_flag);
909 if (up_flag || rep)
910 return;
911
912 chg_vc_kbd_slock(kbd, value);
913 /* try to make Alt, oops, AltGr and such work */
914 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
915 kbd->slockstate = 0;
916 chg_vc_kbd_slock(kbd, value);
917 }
918}
919
920/* by default, 300ms interval for combination release */
921static unsigned brl_timeout = 300;
922MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
923module_param(brl_timeout, uint, 0644);
924
925static unsigned brl_nbchords = 1;
926MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
927module_param(brl_nbchords, uint, 0644);
928
929static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
930{
931 static unsigned long chords;
932 static unsigned committed;
933
934 if (!brl_nbchords)
935 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
936 else {
937 committed |= pattern;
938 chords++;
939 if (chords == brl_nbchords) {
940 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
941 chords = 0;
942 committed = 0;
943 }
944 }
945}
946
947static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
948{
949 static unsigned pressed, committing;
950 static unsigned long releasestart;
951
952 if (kbd->kbdmode != VC_UNICODE) {
953 if (!up_flag)
954 pr_warn("keyboard mode must be unicode for braille patterns\n");
955 return;
956 }
957
958 if (!value) {
959 k_unicode(vc, BRL_UC_ROW, up_flag);
960 return;
961 }
962
963 if (value > 8)
964 return;
965
966 if (!up_flag) {
967 pressed |= 1 << (value - 1);
968 if (!brl_timeout)
969 committing = pressed;
970 } else if (brl_timeout) {
971 if (!committing ||
972 time_after(jiffies,
973 releasestart + msecs_to_jiffies(brl_timeout))) {
974 committing = pressed;
975 releasestart = jiffies;
976 }
977 pressed &= ~(1 << (value - 1));
978 if (!pressed && committing) {
979 k_brlcommit(vc, committing, 0);
980 committing = 0;
981 }
982 } else {
983 if (committing) {
984 k_brlcommit(vc, committing, 0);
985 committing = 0;
986 }
987 pressed &= ~(1 << (value - 1));
988 }
989}
990
991#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
992
993struct kbd_led_trigger {
994 struct led_trigger trigger;
995 unsigned int mask;
996};
997
998static int kbd_led_trigger_activate(struct led_classdev *cdev)
999{
1000 struct kbd_led_trigger *trigger =
1001 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1002
1003 tasklet_disable(&keyboard_tasklet);
1004 if (ledstate != -1U)
1005 led_trigger_event(&trigger->trigger,
1006 ledstate & trigger->mask ?
1007 LED_FULL : LED_OFF);
1008 tasklet_enable(&keyboard_tasklet);
1009
1010 return 0;
1011}
1012
1013#define KBD_LED_TRIGGER(_led_bit, _name) { \
1014 .trigger = { \
1015 .name = _name, \
1016 .activate = kbd_led_trigger_activate, \
1017 }, \
1018 .mask = BIT(_led_bit), \
1019 }
1020
1021#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1022 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1023
1024static struct kbd_led_trigger kbd_led_triggers[] = {
1025 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1026 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1027 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1028 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1029
1030 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1031 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1032 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1033 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1034 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1035 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1036 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1037 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1038};
1039
1040static void kbd_propagate_led_state(unsigned int old_state,
1041 unsigned int new_state)
1042{
1043 struct kbd_led_trigger *trigger;
1044 unsigned int changed = old_state ^ new_state;
1045 int i;
1046
1047 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1048 trigger = &kbd_led_triggers[i];
1049
1050 if (changed & trigger->mask)
1051 led_trigger_event(&trigger->trigger,
1052 new_state & trigger->mask ?
1053 LED_FULL : LED_OFF);
1054 }
1055}
1056
1057static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1058{
1059 unsigned int led_state = *(unsigned int *)data;
1060
1061 if (test_bit(EV_LED, handle->dev->evbit))
1062 kbd_propagate_led_state(~led_state, led_state);
1063
1064 return 0;
1065}
1066
1067static void kbd_init_leds(void)
1068{
1069 int error;
1070 int i;
1071
1072 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1073 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1074 if (error)
1075 pr_err("error %d while registering trigger %s\n",
1076 error, kbd_led_triggers[i].trigger.name);
1077 }
1078}
1079
1080#else
1081
1082static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1083{
1084 unsigned int leds = *(unsigned int *)data;
1085
1086 if (test_bit(EV_LED, handle->dev->evbit)) {
1087 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1088 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1089 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1090 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1091 }
1092
1093 return 0;
1094}
1095
1096static void kbd_propagate_led_state(unsigned int old_state,
1097 unsigned int new_state)
1098{
1099 input_handler_for_each_handle(&kbd_handler, &new_state,
1100 kbd_update_leds_helper);
1101}
1102
1103static void kbd_init_leds(void)
1104{
1105}
1106
1107#endif
1108
1109/*
1110 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1111 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1112 * or (iii) specified bits of specified words in kernel memory.
1113 */
1114static unsigned char getledstate(void)
1115{
1116 return ledstate & 0xff;
1117}
1118
1119void setledstate(struct kbd_struct *kb, unsigned int led)
1120{
1121 unsigned long flags;
1122 spin_lock_irqsave(&led_lock, flags);
1123 if (!(led & ~7)) {
1124 ledioctl = led;
1125 kb->ledmode = LED_SHOW_IOCTL;
1126 } else
1127 kb->ledmode = LED_SHOW_FLAGS;
1128
1129 set_leds();
1130 spin_unlock_irqrestore(&led_lock, flags);
1131}
1132
1133static inline unsigned char getleds(void)
1134{
1135 struct kbd_struct *kb = kbd_table + fg_console;
1136
1137 if (kb->ledmode == LED_SHOW_IOCTL)
1138 return ledioctl;
1139
1140 return kb->ledflagstate;
1141}
1142
1143/**
1144 * vt_get_leds - helper for braille console
1145 * @console: console to read
1146 * @flag: flag we want to check
1147 *
1148 * Check the status of a keyboard led flag and report it back
1149 */
1150int vt_get_leds(int console, int flag)
1151{
1152 struct kbd_struct *kb = kbd_table + console;
1153 int ret;
1154 unsigned long flags;
1155
1156 spin_lock_irqsave(&led_lock, flags);
1157 ret = vc_kbd_led(kb, flag);
1158 spin_unlock_irqrestore(&led_lock, flags);
1159
1160 return ret;
1161}
1162EXPORT_SYMBOL_GPL(vt_get_leds);
1163
1164/**
1165 * vt_set_led_state - set LED state of a console
1166 * @console: console to set
1167 * @leds: LED bits
1168 *
1169 * Set the LEDs on a console. This is a wrapper for the VT layer
1170 * so that we can keep kbd knowledge internal
1171 */
1172void vt_set_led_state(int console, int leds)
1173{
1174 struct kbd_struct *kb = kbd_table + console;
1175 setledstate(kb, leds);
1176}
1177
1178/**
1179 * vt_kbd_con_start - Keyboard side of console start
1180 * @console: console
1181 *
1182 * Handle console start. This is a wrapper for the VT layer
1183 * so that we can keep kbd knowledge internal
1184 *
1185 * FIXME: We eventually need to hold the kbd lock here to protect
1186 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1187 * and start_tty under the kbd_event_lock, while normal tty paths
1188 * don't hold the lock. We probably need to split out an LED lock
1189 * but not during an -rc release!
1190 */
1191void vt_kbd_con_start(int console)
1192{
1193 struct kbd_struct *kb = kbd_table + console;
1194 unsigned long flags;
1195 spin_lock_irqsave(&led_lock, flags);
1196 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1197 set_leds();
1198 spin_unlock_irqrestore(&led_lock, flags);
1199}
1200
1201/**
1202 * vt_kbd_con_stop - Keyboard side of console stop
1203 * @console: console
1204 *
1205 * Handle console stop. This is a wrapper for the VT layer
1206 * so that we can keep kbd knowledge internal
1207 */
1208void vt_kbd_con_stop(int console)
1209{
1210 struct kbd_struct *kb = kbd_table + console;
1211 unsigned long flags;
1212 spin_lock_irqsave(&led_lock, flags);
1213 set_vc_kbd_led(kb, VC_SCROLLOCK);
1214 set_leds();
1215 spin_unlock_irqrestore(&led_lock, flags);
1216}
1217
1218/*
1219 * This is the tasklet that updates LED state of LEDs using standard
1220 * keyboard triggers. The reason we use tasklet is that we need to
1221 * handle the scenario when keyboard handler is not registered yet
1222 * but we already getting updates from the VT to update led state.
1223 */
1224static void kbd_bh(unsigned long dummy)
1225{
1226 unsigned int leds;
1227 unsigned long flags;
1228
1229 spin_lock_irqsave(&led_lock, flags);
1230 leds = getleds();
1231 leds |= (unsigned int)kbd->lockstate << 8;
1232 spin_unlock_irqrestore(&led_lock, flags);
1233
1234 if (leds != ledstate) {
1235 kbd_propagate_led_state(ledstate, leds);
1236 ledstate = leds;
1237 }
1238}
1239
1240DECLARE_TASKLET_DISABLED_OLD(keyboard_tasklet, kbd_bh);
1241
1242#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1243 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1244 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1245 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1246
1247#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1248 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1249
1250static const unsigned short x86_keycodes[256] =
1251 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1252 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1253 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1254 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1255 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1256 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1257 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1258 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1259 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1260 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1261 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1262 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1263 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1264 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1265 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1266
1267#ifdef CONFIG_SPARC
1268static int sparc_l1_a_state;
1269extern void sun_do_break(void);
1270#endif
1271
1272static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1273 unsigned char up_flag)
1274{
1275 int code;
1276
1277 switch (keycode) {
1278
1279 case KEY_PAUSE:
1280 put_queue(vc, 0xe1);
1281 put_queue(vc, 0x1d | up_flag);
1282 put_queue(vc, 0x45 | up_flag);
1283 break;
1284
1285 case KEY_HANGEUL:
1286 if (!up_flag)
1287 put_queue(vc, 0xf2);
1288 break;
1289
1290 case KEY_HANJA:
1291 if (!up_flag)
1292 put_queue(vc, 0xf1);
1293 break;
1294
1295 case KEY_SYSRQ:
1296 /*
1297 * Real AT keyboards (that's what we're trying
1298 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1299 * pressing PrtSc/SysRq alone, but simply 0x54
1300 * when pressing Alt+PrtSc/SysRq.
1301 */
1302 if (test_bit(KEY_LEFTALT, key_down) ||
1303 test_bit(KEY_RIGHTALT, key_down)) {
1304 put_queue(vc, 0x54 | up_flag);
1305 } else {
1306 put_queue(vc, 0xe0);
1307 put_queue(vc, 0x2a | up_flag);
1308 put_queue(vc, 0xe0);
1309 put_queue(vc, 0x37 | up_flag);
1310 }
1311 break;
1312
1313 default:
1314 if (keycode > 255)
1315 return -1;
1316
1317 code = x86_keycodes[keycode];
1318 if (!code)
1319 return -1;
1320
1321 if (code & 0x100)
1322 put_queue(vc, 0xe0);
1323 put_queue(vc, (code & 0x7f) | up_flag);
1324
1325 break;
1326 }
1327
1328 return 0;
1329}
1330
1331#else
1332
1333#define HW_RAW(dev) 0
1334
1335static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1336{
1337 if (keycode > 127)
1338 return -1;
1339
1340 put_queue(vc, keycode | up_flag);
1341 return 0;
1342}
1343#endif
1344
1345static void kbd_rawcode(unsigned char data)
1346{
1347 struct vc_data *vc = vc_cons[fg_console].d;
1348
1349 kbd = kbd_table + vc->vc_num;
1350 if (kbd->kbdmode == VC_RAW)
1351 put_queue(vc, data);
1352}
1353
1354static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1355{
1356 struct vc_data *vc = vc_cons[fg_console].d;
1357 unsigned short keysym, *key_map;
1358 unsigned char type;
1359 bool raw_mode;
1360 struct tty_struct *tty;
1361 int shift_final;
1362 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1363 int rc;
1364
1365 tty = vc->port.tty;
1366
1367 if (tty && (!tty->driver_data)) {
1368 /* No driver data? Strange. Okay we fix it then. */
1369 tty->driver_data = vc;
1370 }
1371
1372 kbd = kbd_table + vc->vc_num;
1373
1374#ifdef CONFIG_SPARC
1375 if (keycode == KEY_STOP)
1376 sparc_l1_a_state = down;
1377#endif
1378
1379 rep = (down == 2);
1380
1381 raw_mode = (kbd->kbdmode == VC_RAW);
1382 if (raw_mode && !hw_raw)
1383 if (emulate_raw(vc, keycode, !down << 7))
1384 if (keycode < BTN_MISC && printk_ratelimit())
1385 pr_warn("can't emulate rawmode for keycode %d\n",
1386 keycode);
1387
1388#ifdef CONFIG_SPARC
1389 if (keycode == KEY_A && sparc_l1_a_state) {
1390 sparc_l1_a_state = false;
1391 sun_do_break();
1392 }
1393#endif
1394
1395 if (kbd->kbdmode == VC_MEDIUMRAW) {
1396 /*
1397 * This is extended medium raw mode, with keys above 127
1398 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1399 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1400 * interfere with anything else. The two bytes after 0 will
1401 * always have the up flag set not to interfere with older
1402 * applications. This allows for 16384 different keycodes,
1403 * which should be enough.
1404 */
1405 if (keycode < 128) {
1406 put_queue(vc, keycode | (!down << 7));
1407 } else {
1408 put_queue(vc, !down << 7);
1409 put_queue(vc, (keycode >> 7) | 0x80);
1410 put_queue(vc, keycode | 0x80);
1411 }
1412 raw_mode = true;
1413 }
1414
1415 if (down)
1416 set_bit(keycode, key_down);
1417 else
1418 clear_bit(keycode, key_down);
1419
1420 if (rep &&
1421 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1422 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1423 /*
1424 * Don't repeat a key if the input buffers are not empty and the
1425 * characters get aren't echoed locally. This makes key repeat
1426 * usable with slow applications and under heavy loads.
1427 */
1428 return;
1429 }
1430
1431 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1432 param.ledstate = kbd->ledflagstate;
1433 key_map = key_maps[shift_final];
1434
1435 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1436 KBD_KEYCODE, ¶m);
1437 if (rc == NOTIFY_STOP || !key_map) {
1438 atomic_notifier_call_chain(&keyboard_notifier_list,
1439 KBD_UNBOUND_KEYCODE, ¶m);
1440 do_compute_shiftstate();
1441 kbd->slockstate = 0;
1442 return;
1443 }
1444
1445 if (keycode < NR_KEYS)
1446 keysym = key_map[keycode];
1447 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1448 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1449 else
1450 return;
1451
1452 type = KTYP(keysym);
1453
1454 if (type < 0xf0) {
1455 param.value = keysym;
1456 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1457 KBD_UNICODE, ¶m);
1458 if (rc != NOTIFY_STOP)
1459 if (down && !raw_mode)
1460 k_unicode(vc, keysym, !down);
1461 return;
1462 }
1463
1464 type -= 0xf0;
1465
1466 if (type == KT_LETTER) {
1467 type = KT_LATIN;
1468 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1469 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1470 if (key_map)
1471 keysym = key_map[keycode];
1472 }
1473 }
1474
1475 param.value = keysym;
1476 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1477 KBD_KEYSYM, ¶m);
1478 if (rc == NOTIFY_STOP)
1479 return;
1480
1481 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1482 return;
1483
1484 (*k_handler[type])(vc, keysym & 0xff, !down);
1485
1486 param.ledstate = kbd->ledflagstate;
1487 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1488
1489 if (type != KT_SLOCK)
1490 kbd->slockstate = 0;
1491}
1492
1493static void kbd_event(struct input_handle *handle, unsigned int event_type,
1494 unsigned int event_code, int value)
1495{
1496 /* We are called with interrupts disabled, just take the lock */
1497 spin_lock(&kbd_event_lock);
1498
1499 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1500 kbd_rawcode(value);
1501 if (event_type == EV_KEY && event_code <= KEY_MAX)
1502 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1503
1504 spin_unlock(&kbd_event_lock);
1505
1506 tasklet_schedule(&keyboard_tasklet);
1507 do_poke_blanked_console = 1;
1508 schedule_console_callback();
1509}
1510
1511static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1512{
1513 int i;
1514
1515 if (test_bit(EV_SND, dev->evbit))
1516 return true;
1517
1518 if (test_bit(EV_KEY, dev->evbit)) {
1519 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1520 if (test_bit(i, dev->keybit))
1521 return true;
1522 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1523 if (test_bit(i, dev->keybit))
1524 return true;
1525 }
1526
1527 return false;
1528}
1529
1530/*
1531 * When a keyboard (or other input device) is found, the kbd_connect
1532 * function is called. The function then looks at the device, and if it
1533 * likes it, it can open it and get events from it. In this (kbd_connect)
1534 * function, we should decide which VT to bind that keyboard to initially.
1535 */
1536static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1537 const struct input_device_id *id)
1538{
1539 struct input_handle *handle;
1540 int error;
1541
1542 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1543 if (!handle)
1544 return -ENOMEM;
1545
1546 handle->dev = dev;
1547 handle->handler = handler;
1548 handle->name = "kbd";
1549
1550 error = input_register_handle(handle);
1551 if (error)
1552 goto err_free_handle;
1553
1554 error = input_open_device(handle);
1555 if (error)
1556 goto err_unregister_handle;
1557
1558 return 0;
1559
1560 err_unregister_handle:
1561 input_unregister_handle(handle);
1562 err_free_handle:
1563 kfree(handle);
1564 return error;
1565}
1566
1567static void kbd_disconnect(struct input_handle *handle)
1568{
1569 input_close_device(handle);
1570 input_unregister_handle(handle);
1571 kfree(handle);
1572}
1573
1574/*
1575 * Start keyboard handler on the new keyboard by refreshing LED state to
1576 * match the rest of the system.
1577 */
1578static void kbd_start(struct input_handle *handle)
1579{
1580 tasklet_disable(&keyboard_tasklet);
1581
1582 if (ledstate != -1U)
1583 kbd_update_leds_helper(handle, &ledstate);
1584
1585 tasklet_enable(&keyboard_tasklet);
1586}
1587
1588static const struct input_device_id kbd_ids[] = {
1589 {
1590 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1591 .evbit = { BIT_MASK(EV_KEY) },
1592 },
1593
1594 {
1595 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1596 .evbit = { BIT_MASK(EV_SND) },
1597 },
1598
1599 { }, /* Terminating entry */
1600};
1601
1602MODULE_DEVICE_TABLE(input, kbd_ids);
1603
1604static struct input_handler kbd_handler = {
1605 .event = kbd_event,
1606 .match = kbd_match,
1607 .connect = kbd_connect,
1608 .disconnect = kbd_disconnect,
1609 .start = kbd_start,
1610 .name = "kbd",
1611 .id_table = kbd_ids,
1612};
1613
1614int __init kbd_init(void)
1615{
1616 int i;
1617 int error;
1618
1619 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1620 kbd_table[i].ledflagstate = kbd_defleds();
1621 kbd_table[i].default_ledflagstate = kbd_defleds();
1622 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1623 kbd_table[i].lockstate = KBD_DEFLOCK;
1624 kbd_table[i].slockstate = 0;
1625 kbd_table[i].modeflags = KBD_DEFMODE;
1626 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1627 }
1628
1629 kbd_init_leds();
1630
1631 error = input_register_handler(&kbd_handler);
1632 if (error)
1633 return error;
1634
1635 tasklet_enable(&keyboard_tasklet);
1636 tasklet_schedule(&keyboard_tasklet);
1637
1638 return 0;
1639}
1640
1641/* Ioctl support code */
1642
1643/**
1644 * vt_do_diacrit - diacritical table updates
1645 * @cmd: ioctl request
1646 * @udp: pointer to user data for ioctl
1647 * @perm: permissions check computed by caller
1648 *
1649 * Update the diacritical tables atomically and safely. Lock them
1650 * against simultaneous keypresses
1651 */
1652int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1653{
1654 unsigned long flags;
1655 int asize;
1656 int ret = 0;
1657
1658 switch (cmd) {
1659 case KDGKBDIACR:
1660 {
1661 struct kbdiacrs __user *a = udp;
1662 struct kbdiacr *dia;
1663 int i;
1664
1665 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1666 GFP_KERNEL);
1667 if (!dia)
1668 return -ENOMEM;
1669
1670 /* Lock the diacriticals table, make a copy and then
1671 copy it after we unlock */
1672 spin_lock_irqsave(&kbd_event_lock, flags);
1673
1674 asize = accent_table_size;
1675 for (i = 0; i < asize; i++) {
1676 dia[i].diacr = conv_uni_to_8bit(
1677 accent_table[i].diacr);
1678 dia[i].base = conv_uni_to_8bit(
1679 accent_table[i].base);
1680 dia[i].result = conv_uni_to_8bit(
1681 accent_table[i].result);
1682 }
1683 spin_unlock_irqrestore(&kbd_event_lock, flags);
1684
1685 if (put_user(asize, &a->kb_cnt))
1686 ret = -EFAULT;
1687 else if (copy_to_user(a->kbdiacr, dia,
1688 asize * sizeof(struct kbdiacr)))
1689 ret = -EFAULT;
1690 kfree(dia);
1691 return ret;
1692 }
1693 case KDGKBDIACRUC:
1694 {
1695 struct kbdiacrsuc __user *a = udp;
1696 void *buf;
1697
1698 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1699 GFP_KERNEL);
1700 if (buf == NULL)
1701 return -ENOMEM;
1702
1703 /* Lock the diacriticals table, make a copy and then
1704 copy it after we unlock */
1705 spin_lock_irqsave(&kbd_event_lock, flags);
1706
1707 asize = accent_table_size;
1708 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1709
1710 spin_unlock_irqrestore(&kbd_event_lock, flags);
1711
1712 if (put_user(asize, &a->kb_cnt))
1713 ret = -EFAULT;
1714 else if (copy_to_user(a->kbdiacruc, buf,
1715 asize*sizeof(struct kbdiacruc)))
1716 ret = -EFAULT;
1717 kfree(buf);
1718 return ret;
1719 }
1720
1721 case KDSKBDIACR:
1722 {
1723 struct kbdiacrs __user *a = udp;
1724 struct kbdiacr *dia = NULL;
1725 unsigned int ct;
1726 int i;
1727
1728 if (!perm)
1729 return -EPERM;
1730 if (get_user(ct, &a->kb_cnt))
1731 return -EFAULT;
1732 if (ct >= MAX_DIACR)
1733 return -EINVAL;
1734
1735 if (ct) {
1736
1737 dia = memdup_user(a->kbdiacr,
1738 sizeof(struct kbdiacr) * ct);
1739 if (IS_ERR(dia))
1740 return PTR_ERR(dia);
1741
1742 }
1743
1744 spin_lock_irqsave(&kbd_event_lock, flags);
1745 accent_table_size = ct;
1746 for (i = 0; i < ct; i++) {
1747 accent_table[i].diacr =
1748 conv_8bit_to_uni(dia[i].diacr);
1749 accent_table[i].base =
1750 conv_8bit_to_uni(dia[i].base);
1751 accent_table[i].result =
1752 conv_8bit_to_uni(dia[i].result);
1753 }
1754 spin_unlock_irqrestore(&kbd_event_lock, flags);
1755 kfree(dia);
1756 return 0;
1757 }
1758
1759 case KDSKBDIACRUC:
1760 {
1761 struct kbdiacrsuc __user *a = udp;
1762 unsigned int ct;
1763 void *buf = NULL;
1764
1765 if (!perm)
1766 return -EPERM;
1767
1768 if (get_user(ct, &a->kb_cnt))
1769 return -EFAULT;
1770
1771 if (ct >= MAX_DIACR)
1772 return -EINVAL;
1773
1774 if (ct) {
1775 buf = memdup_user(a->kbdiacruc,
1776 ct * sizeof(struct kbdiacruc));
1777 if (IS_ERR(buf))
1778 return PTR_ERR(buf);
1779 }
1780 spin_lock_irqsave(&kbd_event_lock, flags);
1781 if (ct)
1782 memcpy(accent_table, buf,
1783 ct * sizeof(struct kbdiacruc));
1784 accent_table_size = ct;
1785 spin_unlock_irqrestore(&kbd_event_lock, flags);
1786 kfree(buf);
1787 return 0;
1788 }
1789 }
1790 return ret;
1791}
1792
1793/**
1794 * vt_do_kdskbmode - set keyboard mode ioctl
1795 * @console: the console to use
1796 * @arg: the requested mode
1797 *
1798 * Update the keyboard mode bits while holding the correct locks.
1799 * Return 0 for success or an error code.
1800 */
1801int vt_do_kdskbmode(int console, unsigned int arg)
1802{
1803 struct kbd_struct *kb = kbd_table + console;
1804 int ret = 0;
1805 unsigned long flags;
1806
1807 spin_lock_irqsave(&kbd_event_lock, flags);
1808 switch(arg) {
1809 case K_RAW:
1810 kb->kbdmode = VC_RAW;
1811 break;
1812 case K_MEDIUMRAW:
1813 kb->kbdmode = VC_MEDIUMRAW;
1814 break;
1815 case K_XLATE:
1816 kb->kbdmode = VC_XLATE;
1817 do_compute_shiftstate();
1818 break;
1819 case K_UNICODE:
1820 kb->kbdmode = VC_UNICODE;
1821 do_compute_shiftstate();
1822 break;
1823 case K_OFF:
1824 kb->kbdmode = VC_OFF;
1825 break;
1826 default:
1827 ret = -EINVAL;
1828 }
1829 spin_unlock_irqrestore(&kbd_event_lock, flags);
1830 return ret;
1831}
1832
1833/**
1834 * vt_do_kdskbmeta - set keyboard meta state
1835 * @console: the console to use
1836 * @arg: the requested meta state
1837 *
1838 * Update the keyboard meta bits while holding the correct locks.
1839 * Return 0 for success or an error code.
1840 */
1841int vt_do_kdskbmeta(int console, unsigned int arg)
1842{
1843 struct kbd_struct *kb = kbd_table + console;
1844 int ret = 0;
1845 unsigned long flags;
1846
1847 spin_lock_irqsave(&kbd_event_lock, flags);
1848 switch(arg) {
1849 case K_METABIT:
1850 clr_vc_kbd_mode(kb, VC_META);
1851 break;
1852 case K_ESCPREFIX:
1853 set_vc_kbd_mode(kb, VC_META);
1854 break;
1855 default:
1856 ret = -EINVAL;
1857 }
1858 spin_unlock_irqrestore(&kbd_event_lock, flags);
1859 return ret;
1860}
1861
1862int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1863 int perm)
1864{
1865 struct kbkeycode tmp;
1866 int kc = 0;
1867
1868 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1869 return -EFAULT;
1870 switch (cmd) {
1871 case KDGETKEYCODE:
1872 kc = getkeycode(tmp.scancode);
1873 if (kc >= 0)
1874 kc = put_user(kc, &user_kbkc->keycode);
1875 break;
1876 case KDSETKEYCODE:
1877 if (!perm)
1878 return -EPERM;
1879 kc = setkeycode(tmp.scancode, tmp.keycode);
1880 break;
1881 }
1882 return kc;
1883}
1884
1885#define i (tmp.kb_index)
1886#define s (tmp.kb_table)
1887#define v (tmp.kb_value)
1888
1889int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1890 int console)
1891{
1892 struct kbd_struct *kb = kbd_table + console;
1893 struct kbentry tmp;
1894 ushort *key_map, *new_map, val, ov;
1895 unsigned long flags;
1896
1897 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1898 return -EFAULT;
1899
1900 if (!capable(CAP_SYS_TTY_CONFIG))
1901 perm = 0;
1902
1903 switch (cmd) {
1904 case KDGKBENT:
1905 /* Ensure another thread doesn't free it under us */
1906 spin_lock_irqsave(&kbd_event_lock, flags);
1907 key_map = key_maps[s];
1908 if (key_map) {
1909 val = U(key_map[i]);
1910 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1911 val = K_HOLE;
1912 } else
1913 val = (i ? K_HOLE : K_NOSUCHMAP);
1914 spin_unlock_irqrestore(&kbd_event_lock, flags);
1915 return put_user(val, &user_kbe->kb_value);
1916 case KDSKBENT:
1917 if (!perm)
1918 return -EPERM;
1919 if (!i && v == K_NOSUCHMAP) {
1920 spin_lock_irqsave(&kbd_event_lock, flags);
1921 /* deallocate map */
1922 key_map = key_maps[s];
1923 if (s && key_map) {
1924 key_maps[s] = NULL;
1925 if (key_map[0] == U(K_ALLOCATED)) {
1926 kfree(key_map);
1927 keymap_count--;
1928 }
1929 }
1930 spin_unlock_irqrestore(&kbd_event_lock, flags);
1931 break;
1932 }
1933
1934 if (KTYP(v) < NR_TYPES) {
1935 if (KVAL(v) > max_vals[KTYP(v)])
1936 return -EINVAL;
1937 } else
1938 if (kb->kbdmode != VC_UNICODE)
1939 return -EINVAL;
1940
1941 /* ++Geert: non-PC keyboards may generate keycode zero */
1942#if !defined(__mc68000__) && !defined(__powerpc__)
1943 /* assignment to entry 0 only tests validity of args */
1944 if (!i)
1945 break;
1946#endif
1947
1948 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1949 if (!new_map)
1950 return -ENOMEM;
1951 spin_lock_irqsave(&kbd_event_lock, flags);
1952 key_map = key_maps[s];
1953 if (key_map == NULL) {
1954 int j;
1955
1956 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1957 !capable(CAP_SYS_RESOURCE)) {
1958 spin_unlock_irqrestore(&kbd_event_lock, flags);
1959 kfree(new_map);
1960 return -EPERM;
1961 }
1962 key_maps[s] = new_map;
1963 key_map = new_map;
1964 key_map[0] = U(K_ALLOCATED);
1965 for (j = 1; j < NR_KEYS; j++)
1966 key_map[j] = U(K_HOLE);
1967 keymap_count++;
1968 } else
1969 kfree(new_map);
1970
1971 ov = U(key_map[i]);
1972 if (v == ov)
1973 goto out;
1974 /*
1975 * Attention Key.
1976 */
1977 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1978 spin_unlock_irqrestore(&kbd_event_lock, flags);
1979 return -EPERM;
1980 }
1981 key_map[i] = U(v);
1982 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1983 do_compute_shiftstate();
1984out:
1985 spin_unlock_irqrestore(&kbd_event_lock, flags);
1986 break;
1987 }
1988 return 0;
1989}
1990#undef i
1991#undef s
1992#undef v
1993
1994/* FIXME: This one needs untangling and locking */
1995int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1996{
1997 struct kbsentry *kbs;
1998 char *p;
1999 u_char *q;
2000 u_char __user *up;
2001 int sz, fnw_sz;
2002 int delta;
2003 char *first_free, *fj, *fnw;
2004 int i, j, k;
2005 int ret;
2006 unsigned long flags;
2007
2008 if (!capable(CAP_SYS_TTY_CONFIG))
2009 perm = 0;
2010
2011 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
2012 if (!kbs) {
2013 ret = -ENOMEM;
2014 goto reterr;
2015 }
2016
2017 /* we mostly copy too much here (512bytes), but who cares ;) */
2018 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
2019 ret = -EFAULT;
2020 goto reterr;
2021 }
2022 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
2023 i = array_index_nospec(kbs->kb_func, MAX_NR_FUNC);
2024
2025 switch (cmd) {
2026 case KDGKBSENT:
2027 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
2028 a struct member */
2029 up = user_kdgkb->kb_string;
2030 p = func_table[i];
2031 if(p)
2032 for ( ; *p && sz; p++, sz--)
2033 if (put_user(*p, up++)) {
2034 ret = -EFAULT;
2035 goto reterr;
2036 }
2037 if (put_user('\0', up)) {
2038 ret = -EFAULT;
2039 goto reterr;
2040 }
2041 kfree(kbs);
2042 return ((p && *p) ? -EOVERFLOW : 0);
2043 case KDSKBSENT:
2044 if (!perm) {
2045 ret = -EPERM;
2046 goto reterr;
2047 }
2048
2049 fnw = NULL;
2050 fnw_sz = 0;
2051 /* race aginst other writers */
2052 again:
2053 spin_lock_irqsave(&func_buf_lock, flags);
2054 q = func_table[i];
2055
2056 /* fj pointer to next entry after 'q' */
2057 first_free = funcbufptr + (funcbufsize - funcbufleft);
2058 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2059 ;
2060 if (j < MAX_NR_FUNC)
2061 fj = func_table[j];
2062 else
2063 fj = first_free;
2064 /* buffer usage increase by new entry */
2065 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2066
2067 if (delta <= funcbufleft) { /* it fits in current buf */
2068 if (j < MAX_NR_FUNC) {
2069 /* make enough space for new entry at 'fj' */
2070 memmove(fj + delta, fj, first_free - fj);
2071 for (k = j; k < MAX_NR_FUNC; k++)
2072 if (func_table[k])
2073 func_table[k] += delta;
2074 }
2075 if (!q)
2076 func_table[i] = fj;
2077 funcbufleft -= delta;
2078 } else { /* allocate a larger buffer */
2079 sz = 256;
2080 while (sz < funcbufsize - funcbufleft + delta)
2081 sz <<= 1;
2082 if (fnw_sz != sz) {
2083 spin_unlock_irqrestore(&func_buf_lock, flags);
2084 kfree(fnw);
2085 fnw = kmalloc(sz, GFP_KERNEL);
2086 fnw_sz = sz;
2087 if (!fnw) {
2088 ret = -ENOMEM;
2089 goto reterr;
2090 }
2091 goto again;
2092 }
2093
2094 if (!q)
2095 func_table[i] = fj;
2096 /* copy data before insertion point to new location */
2097 if (fj > funcbufptr)
2098 memmove(fnw, funcbufptr, fj - funcbufptr);
2099 for (k = 0; k < j; k++)
2100 if (func_table[k])
2101 func_table[k] = fnw + (func_table[k] - funcbufptr);
2102
2103 /* copy data after insertion point to new location */
2104 if (first_free > fj) {
2105 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2106 for (k = j; k < MAX_NR_FUNC; k++)
2107 if (func_table[k])
2108 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2109 }
2110 if (funcbufptr != func_buf)
2111 kfree(funcbufptr);
2112 funcbufptr = fnw;
2113 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2114 funcbufsize = sz;
2115 }
2116 /* finally insert item itself */
2117 strcpy(func_table[i], kbs->kb_string);
2118 spin_unlock_irqrestore(&func_buf_lock, flags);
2119 break;
2120 }
2121 ret = 0;
2122reterr:
2123 kfree(kbs);
2124 return ret;
2125}
2126
2127int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2128{
2129 struct kbd_struct *kb = kbd_table + console;
2130 unsigned long flags;
2131 unsigned char ucval;
2132
2133 switch(cmd) {
2134 /* the ioctls below read/set the flags usually shown in the leds */
2135 /* don't use them - they will go away without warning */
2136 case KDGKBLED:
2137 spin_lock_irqsave(&kbd_event_lock, flags);
2138 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2139 spin_unlock_irqrestore(&kbd_event_lock, flags);
2140 return put_user(ucval, (char __user *)arg);
2141
2142 case KDSKBLED:
2143 if (!perm)
2144 return -EPERM;
2145 if (arg & ~0x77)
2146 return -EINVAL;
2147 spin_lock_irqsave(&led_lock, flags);
2148 kb->ledflagstate = (arg & 7);
2149 kb->default_ledflagstate = ((arg >> 4) & 7);
2150 set_leds();
2151 spin_unlock_irqrestore(&led_lock, flags);
2152 return 0;
2153
2154 /* the ioctls below only set the lights, not the functions */
2155 /* for those, see KDGKBLED and KDSKBLED above */
2156 case KDGETLED:
2157 ucval = getledstate();
2158 return put_user(ucval, (char __user *)arg);
2159
2160 case KDSETLED:
2161 if (!perm)
2162 return -EPERM;
2163 setledstate(kb, arg);
2164 return 0;
2165 }
2166 return -ENOIOCTLCMD;
2167}
2168
2169int vt_do_kdgkbmode(int console)
2170{
2171 struct kbd_struct *kb = kbd_table + console;
2172 /* This is a spot read so needs no locking */
2173 switch (kb->kbdmode) {
2174 case VC_RAW:
2175 return K_RAW;
2176 case VC_MEDIUMRAW:
2177 return K_MEDIUMRAW;
2178 case VC_UNICODE:
2179 return K_UNICODE;
2180 case VC_OFF:
2181 return K_OFF;
2182 default:
2183 return K_XLATE;
2184 }
2185}
2186
2187/**
2188 * vt_do_kdgkbmeta - report meta status
2189 * @console: console to report
2190 *
2191 * Report the meta flag status of this console
2192 */
2193int vt_do_kdgkbmeta(int console)
2194{
2195 struct kbd_struct *kb = kbd_table + console;
2196 /* Again a spot read so no locking */
2197 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2198}
2199
2200/**
2201 * vt_reset_unicode - reset the unicode status
2202 * @console: console being reset
2203 *
2204 * Restore the unicode console state to its default
2205 */
2206void vt_reset_unicode(int console)
2207{
2208 unsigned long flags;
2209
2210 spin_lock_irqsave(&kbd_event_lock, flags);
2211 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2212 spin_unlock_irqrestore(&kbd_event_lock, flags);
2213}
2214
2215/**
2216 * vt_get_shiftstate - shift bit state
2217 *
2218 * Report the shift bits from the keyboard state. We have to export
2219 * this to support some oddities in the vt layer.
2220 */
2221int vt_get_shift_state(void)
2222{
2223 /* Don't lock as this is a transient report */
2224 return shift_state;
2225}
2226
2227/**
2228 * vt_reset_keyboard - reset keyboard state
2229 * @console: console to reset
2230 *
2231 * Reset the keyboard bits for a console as part of a general console
2232 * reset event
2233 */
2234void vt_reset_keyboard(int console)
2235{
2236 struct kbd_struct *kb = kbd_table + console;
2237 unsigned long flags;
2238
2239 spin_lock_irqsave(&kbd_event_lock, flags);
2240 set_vc_kbd_mode(kb, VC_REPEAT);
2241 clr_vc_kbd_mode(kb, VC_CKMODE);
2242 clr_vc_kbd_mode(kb, VC_APPLIC);
2243 clr_vc_kbd_mode(kb, VC_CRLF);
2244 kb->lockstate = 0;
2245 kb->slockstate = 0;
2246 spin_lock(&led_lock);
2247 kb->ledmode = LED_SHOW_FLAGS;
2248 kb->ledflagstate = kb->default_ledflagstate;
2249 spin_unlock(&led_lock);
2250 /* do not do set_leds here because this causes an endless tasklet loop
2251 when the keyboard hasn't been initialized yet */
2252 spin_unlock_irqrestore(&kbd_event_lock, flags);
2253}
2254
2255/**
2256 * vt_get_kbd_mode_bit - read keyboard status bits
2257 * @console: console to read from
2258 * @bit: mode bit to read
2259 *
2260 * Report back a vt mode bit. We do this without locking so the
2261 * caller must be sure that there are no synchronization needs
2262 */
2263
2264int vt_get_kbd_mode_bit(int console, int bit)
2265{
2266 struct kbd_struct *kb = kbd_table + console;
2267 return vc_kbd_mode(kb, bit);
2268}
2269
2270/**
2271 * vt_set_kbd_mode_bit - read keyboard status bits
2272 * @console: console to read from
2273 * @bit: mode bit to read
2274 *
2275 * Set a vt mode bit. We do this without locking so the
2276 * caller must be sure that there are no synchronization needs
2277 */
2278
2279void vt_set_kbd_mode_bit(int console, int bit)
2280{
2281 struct kbd_struct *kb = kbd_table + console;
2282 unsigned long flags;
2283
2284 spin_lock_irqsave(&kbd_event_lock, flags);
2285 set_vc_kbd_mode(kb, bit);
2286 spin_unlock_irqrestore(&kbd_event_lock, flags);
2287}
2288
2289/**
2290 * vt_clr_kbd_mode_bit - read keyboard status bits
2291 * @console: console to read from
2292 * @bit: mode bit to read
2293 *
2294 * Report back a vt mode bit. We do this without locking so the
2295 * caller must be sure that there are no synchronization needs
2296 */
2297
2298void vt_clr_kbd_mode_bit(int console, int bit)
2299{
2300 struct kbd_struct *kb = kbd_table + console;
2301 unsigned long flags;
2302
2303 spin_lock_irqsave(&kbd_event_lock, flags);
2304 clr_vc_kbd_mode(kb, bit);
2305 spin_unlock_irqrestore(&kbd_event_lock, flags);
2306}