Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Written for linux by Johan Myreen as a translation from
   4 * the assembly version by Linus (with diacriticals added)
   5 *
   6 * Some additional features added by Christoph Niemann (ChN), March 1993
   7 *
   8 * Loadable keymaps by Risto Kankkunen, May 1993
   9 *
  10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  11 * Added decr/incr_console, dynamic keymaps, Unicode support,
  12 * dynamic function/string keys, led setting,  Sept 1994
  13 * `Sticky' modifier keys, 951006.
  14 *
  15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  16 *
  17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  18 * Merge with the m68k keyboard driver and split-off of the PC low-level
  19 * parts by Geert Uytterhoeven, May 1997
  20 *
  21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/consolemap.h>
  29#include <linux/init.h>
  30#include <linux/input.h>
  31#include <linux/jiffies.h>
  32#include <linux/kbd_diacr.h>
  33#include <linux/kbd_kern.h>
  34#include <linux/leds.h>
  35#include <linux/mm.h>
  36#include <linux/module.h>
  37#include <linux/nospec.h>
  38#include <linux/notifier.h>
  39#include <linux/reboot.h>
  40#include <linux/sched/debug.h>
  41#include <linux/sched/signal.h>
  42#include <linux/slab.h>
  43#include <linux/spinlock.h>
  44#include <linux/string.h>
  45#include <linux/tty_flip.h>
  46#include <linux/tty.h>
  47#include <linux/uaccess.h>
 
 
 
 
 
 
 
 
 
  48#include <linux/vt_kern.h>
 
 
 
 
 
  49
  50#include <asm/irq_regs.h>
  51
 
 
  52/*
  53 * Exported functions/variables
  54 */
  55
  56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
  57
  58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
  59#include <asm/kbdleds.h>
  60#else
  61static inline int kbd_defleds(void)
  62{
  63	return 0;
  64}
  65#endif
  66
  67#define KBD_DEFLOCK 0
  68
  69/*
  70 * Handler Tables.
  71 */
  72
  73#define K_HANDLERS\
  74	k_self,		k_fn,		k_spec,		k_pad,\
  75	k_dead,		k_cons,		k_cur,		k_shift,\
  76	k_meta,		k_ascii,	k_lock,		k_lowercase,\
  77	k_slock,	k_dead2,	k_brl,		k_ignore
  78
  79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  80			    char up_flag);
  81static k_handler_fn K_HANDLERS;
  82static k_handler_fn *k_handler[16] = { K_HANDLERS };
  83
  84#define FN_HANDLERS\
  85	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
  86	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
  87	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
  88	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
  89	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
  90
  91typedef void (fn_handler_fn)(struct vc_data *vc);
  92static fn_handler_fn FN_HANDLERS;
  93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  94
  95/*
  96 * Variables exported for vt_ioctl.c
  97 */
  98
  99struct vt_spawn_console vt_spawn_con = {
 100	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 101	.pid  = NULL,
 102	.sig  = 0,
 103};
 104
 105
 106/*
 107 * Internal Data.
 108 */
 109
 110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 111static struct kbd_struct *kbd = kbd_table;
 112
 113/* maximum values each key_handler can handle */
 114static const unsigned char max_vals[] = {
 115	[ KT_LATIN	] = 255,
 116	[ KT_FN		] = ARRAY_SIZE(func_table) - 1,
 117	[ KT_SPEC	] = ARRAY_SIZE(fn_handler) - 1,
 118	[ KT_PAD	] = NR_PAD - 1,
 119	[ KT_DEAD	] = NR_DEAD - 1,
 120	[ KT_CONS	] = 255,
 121	[ KT_CUR	] = 3,
 122	[ KT_SHIFT	] = NR_SHIFT - 1,
 123	[ KT_META	] = 255,
 124	[ KT_ASCII	] = NR_ASCII - 1,
 125	[ KT_LOCK	] = NR_LOCK - 1,
 126	[ KT_LETTER	] = 255,
 127	[ KT_SLOCK	] = NR_LOCK - 1,
 128	[ KT_DEAD2	] = 255,
 129	[ KT_BRL	] = NR_BRL - 1,
 130};
 131
 132static const int NR_TYPES = ARRAY_SIZE(max_vals);
 133
 134static void kbd_bh(struct tasklet_struct *unused);
 135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
 136
 137static struct input_handler kbd_handler;
 138static DEFINE_SPINLOCK(kbd_event_lock);
 139static DEFINE_SPINLOCK(led_lock);
 140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf'  and friends */
 141static DECLARE_BITMAP(key_down, KEY_CNT);	/* keyboard key bitmap */
 142static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
 143static bool dead_key_next;
 144
 145/* Handles a number being assembled on the number pad */
 146static bool npadch_active;
 147static unsigned int npadch_value;
 148
 149static unsigned int diacr;
 150static bool rep;			/* flag telling character repeat */
 151
 152static int shift_state = 0;
 153
 154static unsigned int ledstate = -1U;			/* undefined */
 155static unsigned char ledioctl;
 156static bool vt_switch;
 157
 158/*
 159 * Notifier list for console keyboard events
 160 */
 161static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 162
 163int register_keyboard_notifier(struct notifier_block *nb)
 164{
 165	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 166}
 167EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 168
 169int unregister_keyboard_notifier(struct notifier_block *nb)
 170{
 171	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 172}
 173EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 174
 175/*
 176 * Translation of scancodes to keycodes. We set them on only the first
 177 * keyboard in the list that accepts the scancode and keycode.
 178 * Explanation for not choosing the first attached keyboard anymore:
 179 *  USB keyboards for example have two event devices: one for all "normal"
 180 *  keys and one for extra function keys (like "volume up", "make coffee",
 181 *  etc.). So this means that scancodes for the extra function keys won't
 182 *  be valid for the first event device, but will be for the second.
 183 */
 184
 185struct getset_keycode_data {
 186	struct input_keymap_entry ke;
 187	int error;
 188};
 189
 190static int getkeycode_helper(struct input_handle *handle, void *data)
 191{
 192	struct getset_keycode_data *d = data;
 193
 194	d->error = input_get_keycode(handle->dev, &d->ke);
 195
 196	return d->error == 0; /* stop as soon as we successfully get one */
 197}
 198
 199static int getkeycode(unsigned int scancode)
 200{
 201	struct getset_keycode_data d = {
 202		.ke	= {
 203			.flags		= 0,
 204			.len		= sizeof(scancode),
 205			.keycode	= 0,
 206		},
 207		.error	= -ENODEV,
 208	};
 209
 210	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 211
 212	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 213
 214	return d.error ?: d.ke.keycode;
 215}
 216
 217static int setkeycode_helper(struct input_handle *handle, void *data)
 218{
 219	struct getset_keycode_data *d = data;
 220
 221	d->error = input_set_keycode(handle->dev, &d->ke);
 222
 223	return d->error == 0; /* stop as soon as we successfully set one */
 224}
 225
 226static int setkeycode(unsigned int scancode, unsigned int keycode)
 227{
 228	struct getset_keycode_data d = {
 229		.ke	= {
 230			.flags		= 0,
 231			.len		= sizeof(scancode),
 232			.keycode	= keycode,
 233		},
 234		.error	= -ENODEV,
 235	};
 236
 237	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 238
 239	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 240
 241	return d.error;
 242}
 243
 244/*
 245 * Making beeps and bells. Note that we prefer beeps to bells, but when
 246 * shutting the sound off we do both.
 247 */
 248
 249static int kd_sound_helper(struct input_handle *handle, void *data)
 250{
 251	unsigned int *hz = data;
 252	struct input_dev *dev = handle->dev;
 253
 254	if (test_bit(EV_SND, dev->evbit)) {
 255		if (test_bit(SND_TONE, dev->sndbit)) {
 256			input_inject_event(handle, EV_SND, SND_TONE, *hz);
 257			if (*hz)
 258				return 0;
 259		}
 260		if (test_bit(SND_BELL, dev->sndbit))
 261			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 262	}
 263
 264	return 0;
 265}
 266
 267static void kd_nosound(struct timer_list *unused)
 268{
 269	static unsigned int zero;
 270
 271	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 272}
 273
 274static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
 275
 276void kd_mksound(unsigned int hz, unsigned int ticks)
 277{
 278	del_timer_sync(&kd_mksound_timer);
 279
 280	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 281
 282	if (hz && ticks)
 283		mod_timer(&kd_mksound_timer, jiffies + ticks);
 284}
 285EXPORT_SYMBOL(kd_mksound);
 286
 287/*
 288 * Setting the keyboard rate.
 289 */
 290
 291static int kbd_rate_helper(struct input_handle *handle, void *data)
 292{
 293	struct input_dev *dev = handle->dev;
 294	struct kbd_repeat *rpt = data;
 295
 296	if (test_bit(EV_REP, dev->evbit)) {
 297
 298		if (rpt[0].delay > 0)
 299			input_inject_event(handle,
 300					   EV_REP, REP_DELAY, rpt[0].delay);
 301		if (rpt[0].period > 0)
 302			input_inject_event(handle,
 303					   EV_REP, REP_PERIOD, rpt[0].period);
 304
 305		rpt[1].delay = dev->rep[REP_DELAY];
 306		rpt[1].period = dev->rep[REP_PERIOD];
 307	}
 308
 309	return 0;
 310}
 311
 312int kbd_rate(struct kbd_repeat *rpt)
 313{
 314	struct kbd_repeat data[2] = { *rpt };
 315
 316	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 317	*rpt = data[1];	/* Copy currently used settings */
 318
 319	return 0;
 320}
 321
 322/*
 323 * Helper Functions.
 324 */
 325static void put_queue(struct vc_data *vc, int ch)
 326{
 327	tty_insert_flip_char(&vc->port, ch, 0);
 328	tty_flip_buffer_push(&vc->port);
 329}
 330
 331static void puts_queue(struct vc_data *vc, const char *cp)
 332{
 333	tty_insert_flip_string(&vc->port, cp, strlen(cp));
 334	tty_flip_buffer_push(&vc->port);
 
 
 
 335}
 336
 337static void applkey(struct vc_data *vc, int key, char mode)
 338{
 339	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 340
 341	buf[1] = (mode ? 'O' : '[');
 342	buf[2] = key;
 343	puts_queue(vc, buf);
 344}
 345
 346/*
 347 * Many other routines do put_queue, but I think either
 348 * they produce ASCII, or they produce some user-assigned
 349 * string, and in both cases we might assume that it is
 350 * in utf-8 already.
 351 */
 352static void to_utf8(struct vc_data *vc, uint c)
 353{
 354	if (c < 0x80)
 355		/*  0******* */
 356		put_queue(vc, c);
 357	else if (c < 0x800) {
 358		/* 110***** 10****** */
 359		put_queue(vc, 0xc0 | (c >> 6));
 360		put_queue(vc, 0x80 | (c & 0x3f));
 361	} else if (c < 0x10000) {
 362		if (c >= 0xD800 && c < 0xE000)
 363			return;
 364		if (c == 0xFFFF)
 365			return;
 366		/* 1110**** 10****** 10****** */
 367		put_queue(vc, 0xe0 | (c >> 12));
 368		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 369		put_queue(vc, 0x80 | (c & 0x3f));
 370	} else if (c < 0x110000) {
 371		/* 11110*** 10****** 10****** 10****** */
 372		put_queue(vc, 0xf0 | (c >> 18));
 373		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 374		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 375		put_queue(vc, 0x80 | (c & 0x3f));
 376	}
 377}
 378
 379/* FIXME: review locking for vt.c callers */
 380static void set_leds(void)
 381{
 382	tasklet_schedule(&keyboard_tasklet);
 383}
 384
 385/*
 386 * Called after returning from RAW mode or when changing consoles - recompute
 387 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 388 * undefined, so that shiftkey release is seen. The caller must hold the
 389 * kbd_event_lock.
 390 */
 391
 392static void do_compute_shiftstate(void)
 393{
 394	unsigned int k, sym, val;
 395
 396	shift_state = 0;
 397	memset(shift_down, 0, sizeof(shift_down));
 398
 399	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
 400		sym = U(key_maps[0][k]);
 401		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 402			continue;
 403
 404		val = KVAL(sym);
 405		if (val == KVAL(K_CAPSSHIFT))
 406			val = KVAL(K_SHIFT);
 407
 408		shift_down[val]++;
 409		shift_state |= BIT(val);
 410	}
 411}
 412
 413/* We still have to export this method to vt.c */
 414void vt_set_leds_compute_shiftstate(void)
 415{
 416	unsigned long flags;
 417
 418	/*
 419	 * When VT is switched, the keyboard led needs to be set once.
 420	 * Ensure that after the switch is completed, the state of the
 421	 * keyboard LED is consistent with the state of the keyboard lock.
 422	 */
 423	vt_switch = true;
 424	set_leds();
 425
 426	spin_lock_irqsave(&kbd_event_lock, flags);
 427	do_compute_shiftstate();
 428	spin_unlock_irqrestore(&kbd_event_lock, flags);
 429}
 430
 431/*
 432 * We have a combining character DIACR here, followed by the character CH.
 433 * If the combination occurs in the table, return the corresponding value.
 434 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 435 * Otherwise, conclude that DIACR was not combining after all,
 436 * queue it and return CH.
 437 */
 438static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 439{
 440	unsigned int d = diacr;
 441	unsigned int i;
 442
 443	diacr = 0;
 444
 445	if ((d & ~0xff) == BRL_UC_ROW) {
 446		if ((ch & ~0xff) == BRL_UC_ROW)
 447			return d | ch;
 448	} else {
 449		for (i = 0; i < accent_table_size; i++)
 450			if (accent_table[i].diacr == d && accent_table[i].base == ch)
 451				return accent_table[i].result;
 452	}
 453
 454	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 455		return d;
 456
 457	if (kbd->kbdmode == VC_UNICODE)
 458		to_utf8(vc, d);
 459	else {
 460		int c = conv_uni_to_8bit(d);
 461		if (c != -1)
 462			put_queue(vc, c);
 463	}
 464
 465	return ch;
 466}
 467
 468/*
 469 * Special function handlers
 470 */
 471static void fn_enter(struct vc_data *vc)
 472{
 473	if (diacr) {
 474		if (kbd->kbdmode == VC_UNICODE)
 475			to_utf8(vc, diacr);
 476		else {
 477			int c = conv_uni_to_8bit(diacr);
 478			if (c != -1)
 479				put_queue(vc, c);
 480		}
 481		diacr = 0;
 482	}
 483
 484	put_queue(vc, '\r');
 485	if (vc_kbd_mode(kbd, VC_CRLF))
 486		put_queue(vc, '\n');
 487}
 488
 489static void fn_caps_toggle(struct vc_data *vc)
 490{
 491	if (rep)
 492		return;
 493
 494	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 495}
 496
 497static void fn_caps_on(struct vc_data *vc)
 498{
 499	if (rep)
 500		return;
 501
 502	set_vc_kbd_led(kbd, VC_CAPSLOCK);
 503}
 504
 505static void fn_show_ptregs(struct vc_data *vc)
 506{
 507	struct pt_regs *regs = get_irq_regs();
 508
 509	if (regs)
 510		show_regs(regs);
 511}
 512
 513static void fn_hold(struct vc_data *vc)
 514{
 515	struct tty_struct *tty = vc->port.tty;
 516
 517	if (rep || !tty)
 518		return;
 519
 520	/*
 521	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 522	 * these routines are also activated by ^S/^Q.
 523	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 524	 */
 525	if (tty->flow.stopped)
 526		start_tty(tty);
 527	else
 528		stop_tty(tty);
 529}
 530
 531static void fn_num(struct vc_data *vc)
 532{
 533	if (vc_kbd_mode(kbd, VC_APPLIC))
 534		applkey(vc, 'P', 1);
 535	else
 536		fn_bare_num(vc);
 537}
 538
 539/*
 540 * Bind this to Shift-NumLock if you work in application keypad mode
 541 * but want to be able to change the NumLock flag.
 542 * Bind this to NumLock if you prefer that the NumLock key always
 543 * changes the NumLock flag.
 544 */
 545static void fn_bare_num(struct vc_data *vc)
 546{
 547	if (!rep)
 548		chg_vc_kbd_led(kbd, VC_NUMLOCK);
 549}
 550
 551static void fn_lastcons(struct vc_data *vc)
 552{
 553	/* switch to the last used console, ChN */
 554	set_console(last_console);
 555}
 556
 557static void fn_dec_console(struct vc_data *vc)
 558{
 559	int i, cur = fg_console;
 560
 561	/* Currently switching?  Queue this next switch relative to that. */
 562	if (want_console != -1)
 563		cur = want_console;
 564
 565	for (i = cur - 1; i != cur; i--) {
 566		if (i == -1)
 567			i = MAX_NR_CONSOLES - 1;
 568		if (vc_cons_allocated(i))
 569			break;
 570	}
 571	set_console(i);
 572}
 573
 574static void fn_inc_console(struct vc_data *vc)
 575{
 576	int i, cur = fg_console;
 577
 578	/* Currently switching?  Queue this next switch relative to that. */
 579	if (want_console != -1)
 580		cur = want_console;
 581
 582	for (i = cur+1; i != cur; i++) {
 583		if (i == MAX_NR_CONSOLES)
 584			i = 0;
 585		if (vc_cons_allocated(i))
 586			break;
 587	}
 588	set_console(i);
 589}
 590
 591static void fn_send_intr(struct vc_data *vc)
 592{
 593	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
 594	tty_flip_buffer_push(&vc->port);
 595}
 596
 597static void fn_scroll_forw(struct vc_data *vc)
 598{
 599	scrollfront(vc, 0);
 600}
 601
 602static void fn_scroll_back(struct vc_data *vc)
 603{
 604	scrollback(vc);
 605}
 606
 607static void fn_show_mem(struct vc_data *vc)
 608{
 609	show_mem();
 610}
 611
 612static void fn_show_state(struct vc_data *vc)
 613{
 614	show_state();
 615}
 616
 617static void fn_boot_it(struct vc_data *vc)
 618{
 619	ctrl_alt_del();
 620}
 621
 622static void fn_compose(struct vc_data *vc)
 623{
 624	dead_key_next = true;
 625}
 626
 627static void fn_spawn_con(struct vc_data *vc)
 628{
 629	spin_lock(&vt_spawn_con.lock);
 630	if (vt_spawn_con.pid)
 631		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 632			put_pid(vt_spawn_con.pid);
 633			vt_spawn_con.pid = NULL;
 634		}
 635	spin_unlock(&vt_spawn_con.lock);
 636}
 637
 638static void fn_SAK(struct vc_data *vc)
 639{
 640	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 641	schedule_work(SAK_work);
 642}
 643
 644static void fn_null(struct vc_data *vc)
 645{
 646	do_compute_shiftstate();
 647}
 648
 649/*
 650 * Special key handlers
 651 */
 652static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 653{
 654}
 655
 656static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 657{
 658	if (up_flag)
 659		return;
 660	if (value >= ARRAY_SIZE(fn_handler))
 661		return;
 662	if ((kbd->kbdmode == VC_RAW ||
 663	     kbd->kbdmode == VC_MEDIUMRAW ||
 664	     kbd->kbdmode == VC_OFF) &&
 665	     value != KVAL(K_SAK))
 666		return;		/* SAK is allowed even in raw mode */
 667	fn_handler[value](vc);
 668}
 669
 670static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 671{
 672	pr_err("k_lowercase was called - impossible\n");
 673}
 674
 675static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 676{
 677	if (up_flag)
 678		return;		/* no action, if this is a key release */
 679
 680	if (diacr)
 681		value = handle_diacr(vc, value);
 682
 683	if (dead_key_next) {
 684		dead_key_next = false;
 685		diacr = value;
 686		return;
 687	}
 688	if (kbd->kbdmode == VC_UNICODE)
 689		to_utf8(vc, value);
 690	else {
 691		int c = conv_uni_to_8bit(value);
 692		if (c != -1)
 693			put_queue(vc, c);
 694	}
 695}
 696
 697/*
 698 * Handle dead key. Note that we now may have several
 699 * dead keys modifying the same character. Very useful
 700 * for Vietnamese.
 701 */
 702static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 703{
 704	if (up_flag)
 705		return;
 706
 707	diacr = (diacr ? handle_diacr(vc, value) : value);
 708}
 709
 710static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 711{
 712	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 713}
 714
 715static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 716{
 717	k_deadunicode(vc, value, up_flag);
 718}
 719
 720/*
 721 * Obsolete - for backwards compatibility only
 722 */
 723static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 724{
 725	static const unsigned char ret_diacr[NR_DEAD] = {
 726		'`',	/* dead_grave */
 727		'\'',	/* dead_acute */
 728		'^',	/* dead_circumflex */
 729		'~',	/* dead_tilda */
 730		'"',	/* dead_diaeresis */
 731		',',	/* dead_cedilla */
 732		'_',	/* dead_macron */
 733		'U',	/* dead_breve */
 734		'.',	/* dead_abovedot */
 735		'*',	/* dead_abovering */
 736		'=',	/* dead_doubleacute */
 737		'c',	/* dead_caron */
 738		'k',	/* dead_ogonek */
 739		'i',	/* dead_iota */
 740		'#',	/* dead_voiced_sound */
 741		'o',	/* dead_semivoiced_sound */
 742		'!',	/* dead_belowdot */
 743		'?',	/* dead_hook */
 744		'+',	/* dead_horn */
 745		'-',	/* dead_stroke */
 746		')',	/* dead_abovecomma */
 747		'(',	/* dead_abovereversedcomma */
 748		':',	/* dead_doublegrave */
 749		'n',	/* dead_invertedbreve */
 750		';',	/* dead_belowcomma */
 751		'$',	/* dead_currency */
 752		'@',	/* dead_greek */
 753	};
 754
 755	k_deadunicode(vc, ret_diacr[value], up_flag);
 756}
 757
 758static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 759{
 760	if (up_flag)
 761		return;
 762
 763	set_console(value);
 764}
 765
 766static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 767{
 768	if (up_flag)
 769		return;
 770
 771	if ((unsigned)value < ARRAY_SIZE(func_table)) {
 772		unsigned long flags;
 773
 774		spin_lock_irqsave(&func_buf_lock, flags);
 775		if (func_table[value])
 776			puts_queue(vc, func_table[value]);
 777		spin_unlock_irqrestore(&func_buf_lock, flags);
 778
 779	} else
 780		pr_err("k_fn called with value=%d\n", value);
 781}
 782
 783static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 784{
 785	static const char cur_chars[] = "BDCA";
 786
 787	if (up_flag)
 788		return;
 789
 790	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 791}
 792
 793static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 794{
 795	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 796	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 797
 798	if (up_flag)
 799		return;		/* no action, if this is a key release */
 800
 801	/* kludge... shift forces cursor/number keys */
 802	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 803		applkey(vc, app_map[value], 1);
 804		return;
 805	}
 806
 807	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 808
 809		switch (value) {
 810		case KVAL(K_PCOMMA):
 811		case KVAL(K_PDOT):
 812			k_fn(vc, KVAL(K_REMOVE), 0);
 813			return;
 814		case KVAL(K_P0):
 815			k_fn(vc, KVAL(K_INSERT), 0);
 816			return;
 817		case KVAL(K_P1):
 818			k_fn(vc, KVAL(K_SELECT), 0);
 819			return;
 820		case KVAL(K_P2):
 821			k_cur(vc, KVAL(K_DOWN), 0);
 822			return;
 823		case KVAL(K_P3):
 824			k_fn(vc, KVAL(K_PGDN), 0);
 825			return;
 826		case KVAL(K_P4):
 827			k_cur(vc, KVAL(K_LEFT), 0);
 828			return;
 829		case KVAL(K_P6):
 830			k_cur(vc, KVAL(K_RIGHT), 0);
 831			return;
 832		case KVAL(K_P7):
 833			k_fn(vc, KVAL(K_FIND), 0);
 834			return;
 835		case KVAL(K_P8):
 836			k_cur(vc, KVAL(K_UP), 0);
 837			return;
 838		case KVAL(K_P9):
 839			k_fn(vc, KVAL(K_PGUP), 0);
 840			return;
 841		case KVAL(K_P5):
 842			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 843			return;
 844		}
 845	}
 846
 847	put_queue(vc, pad_chars[value]);
 848	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 849		put_queue(vc, '\n');
 850}
 851
 852static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 853{
 854	int old_state = shift_state;
 855
 856	if (rep)
 857		return;
 858	/*
 859	 * Mimic typewriter:
 860	 * a CapsShift key acts like Shift but undoes CapsLock
 861	 */
 862	if (value == KVAL(K_CAPSSHIFT)) {
 863		value = KVAL(K_SHIFT);
 864		if (!up_flag)
 865			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 866	}
 867
 868	if (up_flag) {
 869		/*
 870		 * handle the case that two shift or control
 871		 * keys are depressed simultaneously
 872		 */
 873		if (shift_down[value])
 874			shift_down[value]--;
 875	} else
 876		shift_down[value]++;
 877
 878	if (shift_down[value])
 879		shift_state |= BIT(value);
 880	else
 881		shift_state &= ~BIT(value);
 882
 883	/* kludge */
 884	if (up_flag && shift_state != old_state && npadch_active) {
 885		if (kbd->kbdmode == VC_UNICODE)
 886			to_utf8(vc, npadch_value);
 887		else
 888			put_queue(vc, npadch_value & 0xff);
 889		npadch_active = false;
 890	}
 891}
 892
 893static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 894{
 895	if (up_flag)
 896		return;
 897
 898	if (vc_kbd_mode(kbd, VC_META)) {
 899		put_queue(vc, '\033');
 900		put_queue(vc, value);
 901	} else
 902		put_queue(vc, value | BIT(7));
 903}
 904
 905static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 906{
 907	unsigned int base;
 908
 909	if (up_flag)
 910		return;
 911
 912	if (value < 10) {
 913		/* decimal input of code, while Alt depressed */
 914		base = 10;
 915	} else {
 916		/* hexadecimal input of code, while AltGr depressed */
 917		value -= 10;
 918		base = 16;
 919	}
 920
 921	if (!npadch_active) {
 922		npadch_value = 0;
 923		npadch_active = true;
 924	}
 925
 926	npadch_value = npadch_value * base + value;
 927}
 928
 929static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 930{
 931	if (up_flag || rep)
 932		return;
 933
 934	chg_vc_kbd_lock(kbd, value);
 935}
 936
 937static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 938{
 939	k_shift(vc, value, up_flag);
 940	if (up_flag || rep)
 941		return;
 942
 943	chg_vc_kbd_slock(kbd, value);
 944	/* try to make Alt, oops, AltGr and such work */
 945	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 946		kbd->slockstate = 0;
 947		chg_vc_kbd_slock(kbd, value);
 948	}
 949}
 950
 951/* by default, 300ms interval for combination release */
 952static unsigned brl_timeout = 300;
 953MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 954module_param(brl_timeout, uint, 0644);
 955
 956static unsigned brl_nbchords = 1;
 957MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 958module_param(brl_nbchords, uint, 0644);
 959
 960static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 961{
 962	static unsigned long chords;
 963	static unsigned committed;
 964
 965	if (!brl_nbchords)
 966		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 967	else {
 968		committed |= pattern;
 969		chords++;
 970		if (chords == brl_nbchords) {
 971			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 972			chords = 0;
 973			committed = 0;
 974		}
 975	}
 976}
 977
 978static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 979{
 980	static unsigned pressed, committing;
 981	static unsigned long releasestart;
 982
 983	if (kbd->kbdmode != VC_UNICODE) {
 984		if (!up_flag)
 985			pr_warn("keyboard mode must be unicode for braille patterns\n");
 986		return;
 987	}
 988
 989	if (!value) {
 990		k_unicode(vc, BRL_UC_ROW, up_flag);
 991		return;
 992	}
 993
 994	if (value > 8)
 995		return;
 996
 997	if (!up_flag) {
 998		pressed |= BIT(value - 1);
 999		if (!brl_timeout)
1000			committing = pressed;
1001	} else if (brl_timeout) {
1002		if (!committing ||
1003		    time_after(jiffies,
1004			       releasestart + msecs_to_jiffies(brl_timeout))) {
1005			committing = pressed;
1006			releasestart = jiffies;
1007		}
1008		pressed &= ~BIT(value - 1);
1009		if (!pressed && committing) {
1010			k_brlcommit(vc, committing, 0);
1011			committing = 0;
1012		}
1013	} else {
1014		if (committing) {
1015			k_brlcommit(vc, committing, 0);
1016			committing = 0;
1017		}
1018		pressed &= ~BIT(value - 1);
1019	}
1020}
1021
1022#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1023
1024struct kbd_led_trigger {
1025	struct led_trigger trigger;
1026	unsigned int mask;
1027};
1028
1029static int kbd_led_trigger_activate(struct led_classdev *cdev)
1030{
1031	struct kbd_led_trigger *trigger =
1032		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1033
1034	tasklet_disable(&keyboard_tasklet);
1035	if (ledstate != -1U)
1036		led_trigger_event(&trigger->trigger,
1037				  ledstate & trigger->mask ?
1038					LED_FULL : LED_OFF);
1039	tasklet_enable(&keyboard_tasklet);
1040
1041	return 0;
1042}
1043
1044#define KBD_LED_TRIGGER(_led_bit, _name) {			\
1045		.trigger = {					\
1046			.name = _name,				\
1047			.activate = kbd_led_trigger_activate,	\
1048		},						\
1049		.mask	= BIT(_led_bit),			\
1050	}
1051
1052#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
1053	KBD_LED_TRIGGER((_led_bit) + 8, _name)
1054
1055static struct kbd_led_trigger kbd_led_triggers[] = {
1056	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1057	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
1058	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
1059	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
1060
1061	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
1062	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
1063	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
1064	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
1065	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1066	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1067	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
1068	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
1069};
1070
1071static void kbd_propagate_led_state(unsigned int old_state,
1072				    unsigned int new_state)
1073{
1074	struct kbd_led_trigger *trigger;
1075	unsigned int changed = old_state ^ new_state;
1076	int i;
1077
1078	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1079		trigger = &kbd_led_triggers[i];
1080
1081		if (changed & trigger->mask)
1082			led_trigger_event(&trigger->trigger,
1083					  new_state & trigger->mask ?
1084						LED_FULL : LED_OFF);
1085	}
1086}
1087
1088static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1089{
1090	unsigned int led_state = *(unsigned int *)data;
1091
1092	if (test_bit(EV_LED, handle->dev->evbit))
1093		kbd_propagate_led_state(~led_state, led_state);
1094
1095	return 0;
1096}
1097
1098static void kbd_init_leds(void)
1099{
1100	int error;
1101	int i;
1102
1103	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1104		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1105		if (error)
1106			pr_err("error %d while registering trigger %s\n",
1107			       error, kbd_led_triggers[i].trigger.name);
1108	}
1109}
1110
1111#else
1112
1113static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1114{
1115	unsigned int leds = *(unsigned int *)data;
1116
1117	if (test_bit(EV_LED, handle->dev->evbit)) {
1118		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1119		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & BIT(1)));
1120		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & BIT(2)));
1121		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1122	}
1123
1124	return 0;
1125}
1126
1127static void kbd_propagate_led_state(unsigned int old_state,
1128				    unsigned int new_state)
1129{
1130	input_handler_for_each_handle(&kbd_handler, &new_state,
1131				      kbd_update_leds_helper);
1132}
1133
1134static void kbd_init_leds(void)
1135{
1136}
1137
1138#endif
1139
1140/*
1141 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1142 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1143 * or (iii) specified bits of specified words in kernel memory.
1144 */
1145static unsigned char getledstate(void)
1146{
1147	return ledstate & 0xff;
1148}
1149
1150void setledstate(struct kbd_struct *kb, unsigned int led)
1151{
1152        unsigned long flags;
1153        spin_lock_irqsave(&led_lock, flags);
1154	if (!(led & ~7)) {
1155		ledioctl = led;
1156		kb->ledmode = LED_SHOW_IOCTL;
1157	} else
1158		kb->ledmode = LED_SHOW_FLAGS;
1159
1160	set_leds();
1161	spin_unlock_irqrestore(&led_lock, flags);
1162}
1163
1164static inline unsigned char getleds(void)
1165{
1166	struct kbd_struct *kb = kbd_table + fg_console;
1167
1168	if (kb->ledmode == LED_SHOW_IOCTL)
1169		return ledioctl;
1170
1171	return kb->ledflagstate;
1172}
1173
1174/**
1175 *	vt_get_leds	-	helper for braille console
1176 *	@console: console to read
1177 *	@flag: flag we want to check
1178 *
1179 *	Check the status of a keyboard led flag and report it back
1180 */
1181int vt_get_leds(unsigned int console, int flag)
1182{
1183	struct kbd_struct *kb = &kbd_table[console];
1184	int ret;
1185	unsigned long flags;
1186
1187	spin_lock_irqsave(&led_lock, flags);
1188	ret = vc_kbd_led(kb, flag);
1189	spin_unlock_irqrestore(&led_lock, flags);
1190
1191	return ret;
1192}
1193EXPORT_SYMBOL_GPL(vt_get_leds);
1194
1195/**
1196 *	vt_set_led_state	-	set LED state of a console
1197 *	@console: console to set
1198 *	@leds: LED bits
1199 *
1200 *	Set the LEDs on a console. This is a wrapper for the VT layer
1201 *	so that we can keep kbd knowledge internal
1202 */
1203void vt_set_led_state(unsigned int console, int leds)
1204{
1205	struct kbd_struct *kb = &kbd_table[console];
1206	setledstate(kb, leds);
1207}
1208
1209/**
1210 *	vt_kbd_con_start	-	Keyboard side of console start
1211 *	@console: console
1212 *
1213 *	Handle console start. This is a wrapper for the VT layer
1214 *	so that we can keep kbd knowledge internal
1215 *
1216 *	FIXME: We eventually need to hold the kbd lock here to protect
1217 *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1218 *	and start_tty under the kbd_event_lock, while normal tty paths
1219 *	don't hold the lock. We probably need to split out an LED lock
1220 *	but not during an -rc release!
1221 */
1222void vt_kbd_con_start(unsigned int console)
1223{
1224	struct kbd_struct *kb = &kbd_table[console];
1225	unsigned long flags;
1226	spin_lock_irqsave(&led_lock, flags);
1227	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1228	set_leds();
1229	spin_unlock_irqrestore(&led_lock, flags);
1230}
1231
1232/**
1233 *	vt_kbd_con_stop		-	Keyboard side of console stop
1234 *	@console: console
1235 *
1236 *	Handle console stop. This is a wrapper for the VT layer
1237 *	so that we can keep kbd knowledge internal
1238 */
1239void vt_kbd_con_stop(unsigned int console)
1240{
1241	struct kbd_struct *kb = &kbd_table[console];
1242	unsigned long flags;
1243	spin_lock_irqsave(&led_lock, flags);
1244	set_vc_kbd_led(kb, VC_SCROLLOCK);
1245	set_leds();
1246	spin_unlock_irqrestore(&led_lock, flags);
1247}
1248
1249/*
1250 * This is the tasklet that updates LED state of LEDs using standard
1251 * keyboard triggers. The reason we use tasklet is that we need to
1252 * handle the scenario when keyboard handler is not registered yet
1253 * but we already getting updates from the VT to update led state.
1254 */
1255static void kbd_bh(struct tasklet_struct *unused)
1256{
1257	unsigned int leds;
1258	unsigned long flags;
1259
1260	spin_lock_irqsave(&led_lock, flags);
1261	leds = getleds();
1262	leds |= (unsigned int)kbd->lockstate << 8;
1263	spin_unlock_irqrestore(&led_lock, flags);
1264
1265	if (vt_switch) {
1266		ledstate = ~leds;
1267		vt_switch = false;
1268	}
1269
1270	if (leds != ledstate) {
1271		kbd_propagate_led_state(ledstate, leds);
1272		ledstate = leds;
1273	}
1274}
1275
1276#if defined(CONFIG_X86) || defined(CONFIG_ALPHA) ||\
 
 
1277    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1278    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1279    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1280
1281static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1282{
1283	if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1284		return false;
1285
1286	return dev->id.bustype == BUS_I8042 &&
1287		dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1288}
1289
1290static const unsigned short x86_keycodes[256] =
1291	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1292	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1293	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1294	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1295	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1296	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1297	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1298	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1299	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1300	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1301	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1302	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1303	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1304	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1305	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1306
1307#ifdef CONFIG_SPARC
1308static int sparc_l1_a_state;
1309extern void sun_do_break(void);
1310#endif
1311
1312static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1313		       unsigned char up_flag)
1314{
1315	int code;
1316
1317	switch (keycode) {
1318
1319	case KEY_PAUSE:
1320		put_queue(vc, 0xe1);
1321		put_queue(vc, 0x1d | up_flag);
1322		put_queue(vc, 0x45 | up_flag);
1323		break;
1324
1325	case KEY_HANGEUL:
1326		if (!up_flag)
1327			put_queue(vc, 0xf2);
1328		break;
1329
1330	case KEY_HANJA:
1331		if (!up_flag)
1332			put_queue(vc, 0xf1);
1333		break;
1334
1335	case KEY_SYSRQ:
1336		/*
1337		 * Real AT keyboards (that's what we're trying
1338		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1339		 * pressing PrtSc/SysRq alone, but simply 0x54
1340		 * when pressing Alt+PrtSc/SysRq.
1341		 */
1342		if (test_bit(KEY_LEFTALT, key_down) ||
1343		    test_bit(KEY_RIGHTALT, key_down)) {
1344			put_queue(vc, 0x54 | up_flag);
1345		} else {
1346			put_queue(vc, 0xe0);
1347			put_queue(vc, 0x2a | up_flag);
1348			put_queue(vc, 0xe0);
1349			put_queue(vc, 0x37 | up_flag);
1350		}
1351		break;
1352
1353	default:
1354		if (keycode > 255)
1355			return -1;
1356
1357		code = x86_keycodes[keycode];
1358		if (!code)
1359			return -1;
1360
1361		if (code & 0x100)
1362			put_queue(vc, 0xe0);
1363		put_queue(vc, (code & 0x7f) | up_flag);
1364
1365		break;
1366	}
1367
1368	return 0;
1369}
1370
1371#else
1372
1373static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1374{
1375	return false;
1376}
1377
1378static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1379{
1380	if (keycode > 127)
1381		return -1;
1382
1383	put_queue(vc, keycode | up_flag);
1384	return 0;
1385}
1386#endif
1387
1388static void kbd_rawcode(unsigned char data)
1389{
1390	struct vc_data *vc = vc_cons[fg_console].d;
1391
1392	kbd = &kbd_table[vc->vc_num];
1393	if (kbd->kbdmode == VC_RAW)
1394		put_queue(vc, data);
1395}
1396
1397static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1398{
1399	struct vc_data *vc = vc_cons[fg_console].d;
1400	unsigned short keysym, *key_map;
1401	unsigned char type;
1402	bool raw_mode;
1403	struct tty_struct *tty;
1404	int shift_final;
1405	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1406	int rc;
1407
1408	tty = vc->port.tty;
1409
1410	if (tty && (!tty->driver_data)) {
1411		/* No driver data? Strange. Okay we fix it then. */
1412		tty->driver_data = vc;
1413	}
1414
1415	kbd = &kbd_table[vc->vc_num];
1416
1417#ifdef CONFIG_SPARC
1418	if (keycode == KEY_STOP)
1419		sparc_l1_a_state = down;
1420#endif
1421
1422	rep = (down == 2);
1423
1424	raw_mode = (kbd->kbdmode == VC_RAW);
1425	if (raw_mode && !hw_raw)
1426		if (emulate_raw(vc, keycode, !down << 7))
1427			if (keycode < BTN_MISC && printk_ratelimit())
1428				pr_warn("can't emulate rawmode for keycode %d\n",
1429					keycode);
1430
1431#ifdef CONFIG_SPARC
1432	if (keycode == KEY_A && sparc_l1_a_state) {
1433		sparc_l1_a_state = false;
1434		sun_do_break();
1435	}
1436#endif
1437
1438	if (kbd->kbdmode == VC_MEDIUMRAW) {
1439		/*
1440		 * This is extended medium raw mode, with keys above 127
1441		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1442		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1443		 * interfere with anything else. The two bytes after 0 will
1444		 * always have the up flag set not to interfere with older
1445		 * applications. This allows for 16384 different keycodes,
1446		 * which should be enough.
1447		 */
1448		if (keycode < 128) {
1449			put_queue(vc, keycode | (!down << 7));
1450		} else {
1451			put_queue(vc, !down << 7);
1452			put_queue(vc, (keycode >> 7) | BIT(7));
1453			put_queue(vc, keycode | BIT(7));
1454		}
1455		raw_mode = true;
1456	}
1457
1458	assign_bit(keycode, key_down, down);
 
 
 
1459
1460	if (rep &&
1461	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1462	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1463		/*
1464		 * Don't repeat a key if the input buffers are not empty and the
1465		 * characters get aren't echoed locally. This makes key repeat
1466		 * usable with slow applications and under heavy loads.
1467		 */
1468		return;
1469	}
1470
1471	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1472	param.ledstate = kbd->ledflagstate;
1473	key_map = key_maps[shift_final];
1474
1475	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1476					KBD_KEYCODE, &param);
1477	if (rc == NOTIFY_STOP || !key_map) {
1478		atomic_notifier_call_chain(&keyboard_notifier_list,
1479					   KBD_UNBOUND_KEYCODE, &param);
1480		do_compute_shiftstate();
1481		kbd->slockstate = 0;
1482		return;
1483	}
1484
1485	if (keycode < NR_KEYS)
1486		keysym = key_map[keycode];
1487	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1488		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1489	else
1490		return;
1491
1492	type = KTYP(keysym);
1493
1494	if (type < 0xf0) {
1495		param.value = keysym;
1496		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1497						KBD_UNICODE, &param);
1498		if (rc != NOTIFY_STOP)
1499			if (down && !raw_mode)
1500				k_unicode(vc, keysym, !down);
1501		return;
1502	}
1503
1504	type -= 0xf0;
1505
1506	if (type == KT_LETTER) {
1507		type = KT_LATIN;
1508		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1509			key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1510			if (key_map)
1511				keysym = key_map[keycode];
1512		}
1513	}
1514
1515	param.value = keysym;
1516	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1517					KBD_KEYSYM, &param);
1518	if (rc == NOTIFY_STOP)
1519		return;
1520
1521	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1522		return;
1523
1524	(*k_handler[type])(vc, keysym & 0xff, !down);
1525
1526	param.ledstate = kbd->ledflagstate;
1527	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1528
1529	if (type != KT_SLOCK)
1530		kbd->slockstate = 0;
1531}
1532
1533static void kbd_event(struct input_handle *handle, unsigned int event_type,
1534		      unsigned int event_code, int value)
1535{
1536	/* We are called with interrupts disabled, just take the lock */
1537	spin_lock(&kbd_event_lock);
1538
1539	if (event_type == EV_MSC && event_code == MSC_RAW &&
1540			kbd_is_hw_raw(handle->dev))
1541		kbd_rawcode(value);
1542	if (event_type == EV_KEY && event_code <= KEY_MAX)
1543		kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1544
1545	spin_unlock(&kbd_event_lock);
1546
1547	tasklet_schedule(&keyboard_tasklet);
1548	do_poke_blanked_console = 1;
1549	schedule_console_callback();
1550}
1551
1552static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1553{
 
 
1554	if (test_bit(EV_SND, dev->evbit))
1555		return true;
1556
1557	if (test_bit(EV_KEY, dev->evbit)) {
1558		if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1559				BTN_MISC)
1560			return true;
1561		if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1562					KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1563			return true;
1564	}
1565
1566	return false;
1567}
1568
1569/*
1570 * When a keyboard (or other input device) is found, the kbd_connect
1571 * function is called. The function then looks at the device, and if it
1572 * likes it, it can open it and get events from it. In this (kbd_connect)
1573 * function, we should decide which VT to bind that keyboard to initially.
1574 */
1575static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1576			const struct input_device_id *id)
1577{
1578	struct input_handle *handle;
1579	int error;
1580
1581	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1582	if (!handle)
1583		return -ENOMEM;
1584
1585	handle->dev = dev;
1586	handle->handler = handler;
1587	handle->name = "kbd";
1588
1589	error = input_register_handle(handle);
1590	if (error)
1591		goto err_free_handle;
1592
1593	error = input_open_device(handle);
1594	if (error)
1595		goto err_unregister_handle;
1596
1597	return 0;
1598
1599 err_unregister_handle:
1600	input_unregister_handle(handle);
1601 err_free_handle:
1602	kfree(handle);
1603	return error;
1604}
1605
1606static void kbd_disconnect(struct input_handle *handle)
1607{
1608	input_close_device(handle);
1609	input_unregister_handle(handle);
1610	kfree(handle);
1611}
1612
1613/*
1614 * Start keyboard handler on the new keyboard by refreshing LED state to
1615 * match the rest of the system.
1616 */
1617static void kbd_start(struct input_handle *handle)
1618{
1619	tasklet_disable(&keyboard_tasklet);
1620
1621	if (ledstate != -1U)
1622		kbd_update_leds_helper(handle, &ledstate);
1623
1624	tasklet_enable(&keyboard_tasklet);
1625}
1626
1627static const struct input_device_id kbd_ids[] = {
1628	{
1629		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1630		.evbit = { BIT_MASK(EV_KEY) },
1631	},
1632
1633	{
1634		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1635		.evbit = { BIT_MASK(EV_SND) },
1636	},
1637
1638	{ },    /* Terminating entry */
1639};
1640
1641MODULE_DEVICE_TABLE(input, kbd_ids);
1642
1643static struct input_handler kbd_handler = {
1644	.event		= kbd_event,
1645	.match		= kbd_match,
1646	.connect	= kbd_connect,
1647	.disconnect	= kbd_disconnect,
1648	.start		= kbd_start,
1649	.name		= "kbd",
1650	.id_table	= kbd_ids,
1651};
1652
1653int __init kbd_init(void)
1654{
1655	int i;
1656	int error;
1657
1658	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1659		kbd_table[i].ledflagstate = kbd_defleds();
1660		kbd_table[i].default_ledflagstate = kbd_defleds();
1661		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1662		kbd_table[i].lockstate = KBD_DEFLOCK;
1663		kbd_table[i].slockstate = 0;
1664		kbd_table[i].modeflags = KBD_DEFMODE;
1665		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1666	}
1667
1668	kbd_init_leds();
1669
1670	error = input_register_handler(&kbd_handler);
1671	if (error)
1672		return error;
1673
1674	tasklet_enable(&keyboard_tasklet);
1675	tasklet_schedule(&keyboard_tasklet);
1676
1677	return 0;
1678}
1679
1680/* Ioctl support code */
1681
1682/**
1683 *	vt_do_diacrit		-	diacritical table updates
1684 *	@cmd: ioctl request
1685 *	@udp: pointer to user data for ioctl
1686 *	@perm: permissions check computed by caller
1687 *
1688 *	Update the diacritical tables atomically and safely. Lock them
1689 *	against simultaneous keypresses
1690 */
1691int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1692{
1693	unsigned long flags;
1694	int asize;
1695	int ret = 0;
1696
1697	switch (cmd) {
1698	case KDGKBDIACR:
1699	{
1700		struct kbdiacrs __user *a = udp;
1701		struct kbdiacr *dia;
1702		int i;
1703
1704		dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1705								GFP_KERNEL);
1706		if (!dia)
1707			return -ENOMEM;
1708
1709		/* Lock the diacriticals table, make a copy and then
1710		   copy it after we unlock */
1711		spin_lock_irqsave(&kbd_event_lock, flags);
1712
1713		asize = accent_table_size;
1714		for (i = 0; i < asize; i++) {
1715			dia[i].diacr = conv_uni_to_8bit(
1716						accent_table[i].diacr);
1717			dia[i].base = conv_uni_to_8bit(
1718						accent_table[i].base);
1719			dia[i].result = conv_uni_to_8bit(
1720						accent_table[i].result);
1721		}
1722		spin_unlock_irqrestore(&kbd_event_lock, flags);
1723
1724		if (put_user(asize, &a->kb_cnt))
1725			ret = -EFAULT;
1726		else  if (copy_to_user(a->kbdiacr, dia,
1727				asize * sizeof(struct kbdiacr)))
1728			ret = -EFAULT;
1729		kfree(dia);
1730		return ret;
1731	}
1732	case KDGKBDIACRUC:
1733	{
1734		struct kbdiacrsuc __user *a = udp;
1735		void *buf;
1736
1737		buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1738								GFP_KERNEL);
1739		if (buf == NULL)
1740			return -ENOMEM;
1741
1742		/* Lock the diacriticals table, make a copy and then
1743		   copy it after we unlock */
1744		spin_lock_irqsave(&kbd_event_lock, flags);
1745
1746		asize = accent_table_size;
1747		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1748
1749		spin_unlock_irqrestore(&kbd_event_lock, flags);
1750
1751		if (put_user(asize, &a->kb_cnt))
1752			ret = -EFAULT;
1753		else if (copy_to_user(a->kbdiacruc, buf,
1754				asize*sizeof(struct kbdiacruc)))
1755			ret = -EFAULT;
1756		kfree(buf);
1757		return ret;
1758	}
1759
1760	case KDSKBDIACR:
1761	{
1762		struct kbdiacrs __user *a = udp;
1763		struct kbdiacr *dia = NULL;
1764		unsigned int ct;
1765		int i;
1766
1767		if (!perm)
1768			return -EPERM;
1769		if (get_user(ct, &a->kb_cnt))
1770			return -EFAULT;
1771		if (ct >= MAX_DIACR)
1772			return -EINVAL;
1773
1774		if (ct) {
1775			dia = memdup_array_user(a->kbdiacr,
1776						ct, sizeof(struct kbdiacr));
 
1777			if (IS_ERR(dia))
1778				return PTR_ERR(dia);
 
1779		}
1780
1781		spin_lock_irqsave(&kbd_event_lock, flags);
1782		accent_table_size = ct;
1783		for (i = 0; i < ct; i++) {
1784			accent_table[i].diacr =
1785					conv_8bit_to_uni(dia[i].diacr);
1786			accent_table[i].base =
1787					conv_8bit_to_uni(dia[i].base);
1788			accent_table[i].result =
1789					conv_8bit_to_uni(dia[i].result);
1790		}
1791		spin_unlock_irqrestore(&kbd_event_lock, flags);
1792		kfree(dia);
1793		return 0;
1794	}
1795
1796	case KDSKBDIACRUC:
1797	{
1798		struct kbdiacrsuc __user *a = udp;
1799		unsigned int ct;
1800		void *buf = NULL;
1801
1802		if (!perm)
1803			return -EPERM;
1804
1805		if (get_user(ct, &a->kb_cnt))
1806			return -EFAULT;
1807
1808		if (ct >= MAX_DIACR)
1809			return -EINVAL;
1810
1811		if (ct) {
1812			buf = memdup_array_user(a->kbdiacruc,
1813						ct, sizeof(struct kbdiacruc));
1814			if (IS_ERR(buf))
1815				return PTR_ERR(buf);
1816		} 
1817		spin_lock_irqsave(&kbd_event_lock, flags);
1818		if (ct)
1819			memcpy(accent_table, buf,
1820					ct * sizeof(struct kbdiacruc));
1821		accent_table_size = ct;
1822		spin_unlock_irqrestore(&kbd_event_lock, flags);
1823		kfree(buf);
1824		return 0;
1825	}
1826	}
1827	return ret;
1828}
1829
1830/**
1831 *	vt_do_kdskbmode		-	set keyboard mode ioctl
1832 *	@console: the console to use
1833 *	@arg: the requested mode
1834 *
1835 *	Update the keyboard mode bits while holding the correct locks.
1836 *	Return 0 for success or an error code.
1837 */
1838int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1839{
1840	struct kbd_struct *kb = &kbd_table[console];
1841	int ret = 0;
1842	unsigned long flags;
1843
1844	spin_lock_irqsave(&kbd_event_lock, flags);
1845	switch(arg) {
1846	case K_RAW:
1847		kb->kbdmode = VC_RAW;
1848		break;
1849	case K_MEDIUMRAW:
1850		kb->kbdmode = VC_MEDIUMRAW;
1851		break;
1852	case K_XLATE:
1853		kb->kbdmode = VC_XLATE;
1854		do_compute_shiftstate();
1855		break;
1856	case K_UNICODE:
1857		kb->kbdmode = VC_UNICODE;
1858		do_compute_shiftstate();
1859		break;
1860	case K_OFF:
1861		kb->kbdmode = VC_OFF;
1862		break;
1863	default:
1864		ret = -EINVAL;
1865	}
1866	spin_unlock_irqrestore(&kbd_event_lock, flags);
1867	return ret;
1868}
1869
1870/**
1871 *	vt_do_kdskbmeta		-	set keyboard meta state
1872 *	@console: the console to use
1873 *	@arg: the requested meta state
1874 *
1875 *	Update the keyboard meta bits while holding the correct locks.
1876 *	Return 0 for success or an error code.
1877 */
1878int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1879{
1880	struct kbd_struct *kb = &kbd_table[console];
1881	int ret = 0;
1882	unsigned long flags;
1883
1884	spin_lock_irqsave(&kbd_event_lock, flags);
1885	switch(arg) {
1886	case K_METABIT:
1887		clr_vc_kbd_mode(kb, VC_META);
1888		break;
1889	case K_ESCPREFIX:
1890		set_vc_kbd_mode(kb, VC_META);
1891		break;
1892	default:
1893		ret = -EINVAL;
1894	}
1895	spin_unlock_irqrestore(&kbd_event_lock, flags);
1896	return ret;
1897}
1898
1899int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1900								int perm)
1901{
1902	struct kbkeycode tmp;
1903	int kc = 0;
1904
1905	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1906		return -EFAULT;
1907	switch (cmd) {
1908	case KDGETKEYCODE:
1909		kc = getkeycode(tmp.scancode);
1910		if (kc >= 0)
1911			kc = put_user(kc, &user_kbkc->keycode);
1912		break;
1913	case KDSETKEYCODE:
1914		if (!perm)
1915			return -EPERM;
1916		kc = setkeycode(tmp.scancode, tmp.keycode);
1917		break;
1918	}
1919	return kc;
1920}
1921
1922static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1923		unsigned char map)
 
 
 
 
1924{
1925	unsigned short *key_map, val;
 
 
1926	unsigned long flags;
1927
1928	/* Ensure another thread doesn't free it under us */
1929	spin_lock_irqsave(&kbd_event_lock, flags);
1930	key_map = key_maps[map];
1931	if (key_map) {
1932		val = U(key_map[idx]);
1933		if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1934			val = K_HOLE;
1935	} else
1936		val = idx ? K_HOLE : K_NOSUCHMAP;
1937	spin_unlock_irqrestore(&kbd_event_lock, flags);
1938
1939	return val;
1940}
1941
1942static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1943		unsigned char map, unsigned short val)
1944{
1945	unsigned long flags;
1946	unsigned short *key_map, *new_map, oldval;
1947
1948	if (!idx && val == K_NOSUCHMAP) {
 
 
1949		spin_lock_irqsave(&kbd_event_lock, flags);
1950		/* deallocate map */
1951		key_map = key_maps[map];
1952		if (map && key_map) {
1953			key_maps[map] = NULL;
1954			if (key_map[0] == U(K_ALLOCATED)) {
1955				kfree(key_map);
1956				keymap_count--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1957			}
 
 
1958		}
1959		spin_unlock_irqrestore(&kbd_event_lock, flags);
1960
1961		return 0;
1962	}
1963
1964	if (KTYP(val) < NR_TYPES) {
1965		if (KVAL(val) > max_vals[KTYP(val)])
1966			return -EINVAL;
1967	} else if (kbdmode != VC_UNICODE)
1968		return -EINVAL;
1969
1970	/* ++Geert: non-PC keyboards may generate keycode zero */
1971#if !defined(__mc68000__) && !defined(__powerpc__)
1972	/* assignment to entry 0 only tests validity of args */
1973	if (!idx)
1974		return 0;
1975#endif
1976
1977	new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1978	if (!new_map)
1979		return -ENOMEM;
1980
1981	spin_lock_irqsave(&kbd_event_lock, flags);
1982	key_map = key_maps[map];
1983	if (key_map == NULL) {
1984		int j;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1985
1986		if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1987		    !capable(CAP_SYS_RESOURCE)) {
 
 
 
 
 
1988			spin_unlock_irqrestore(&kbd_event_lock, flags);
1989			kfree(new_map);
1990			return -EPERM;
1991		}
1992		key_maps[map] = new_map;
1993		key_map = new_map;
1994		key_map[0] = U(K_ALLOCATED);
1995		for (j = 1; j < NR_KEYS; j++)
1996			key_map[j] = U(K_HOLE);
1997		keymap_count++;
1998	} else
1999		kfree(new_map);
2000
2001	oldval = U(key_map[idx]);
2002	if (val == oldval)
2003		goto out;
2004
2005	/* Attention Key */
2006	if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
2007		spin_unlock_irqrestore(&kbd_event_lock, flags);
2008		return -EPERM;
2009	}
2010
2011	key_map[idx] = U(val);
2012	if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2013		do_compute_shiftstate();
2014out:
2015	spin_unlock_irqrestore(&kbd_event_lock, flags);
2016
2017	return 0;
2018}
2019
2020int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2021						unsigned int console)
2022{
2023	struct kbd_struct *kb = &kbd_table[console];
2024	struct kbentry kbe;
2025
2026	if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2027		return -EFAULT;
2028
2029	switch (cmd) {
2030	case KDGKBENT:
2031		return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2032					kbe.kb_table),
2033				&user_kbe->kb_value);
2034	case KDSKBENT:
2035		if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2036			return -EPERM;
2037		return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2038				kbe.kb_value);
2039	}
2040	return 0;
2041}
 
 
 
2042
2043static char *vt_kdskbsent(char *kbs, unsigned char cur)
2044{
2045	static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2046	char *cur_f = func_table[cur];
2047
2048	if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2049		strcpy(cur_f, kbs);
2050		return kbs;
2051	}
2052
2053	func_table[cur] = kbs;
2054
2055	return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2056}
2057
2058int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2059{
2060	unsigned char kb_func;
2061	unsigned long flags;
2062	char *kbs;
 
 
 
 
 
2063	int ret;
 
2064
2065	if (get_user(kb_func, &user_kdgkb->kb_func))
2066		return -EFAULT;
2067
2068	kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
 
 
 
 
 
 
 
 
 
 
 
 
2069
2070	switch (cmd) {
2071	case KDGKBSENT: {
2072		/* size should have been a struct member */
2073		ssize_t len = sizeof(user_kdgkb->kb_string);
2074
2075		kbs = kmalloc(len, GFP_KERNEL);
2076		if (!kbs)
2077			return -ENOMEM;
2078
2079		spin_lock_irqsave(&func_buf_lock, flags);
2080		len = strscpy(kbs, func_table[kb_func] ? : "", len);
2081		spin_unlock_irqrestore(&func_buf_lock, flags);
2082
2083		if (len < 0) {
2084			ret = -ENOSPC;
2085			break;
2086		}
2087		ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2088			-EFAULT : 0;
2089		break;
2090	}
2091	case KDSKBSENT:
2092		if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2093			return -EPERM;
2094
2095		kbs = strndup_user(user_kdgkb->kb_string,
2096				sizeof(user_kdgkb->kb_string));
2097		if (IS_ERR(kbs))
2098			return PTR_ERR(kbs);
2099
 
 
 
 
2100		spin_lock_irqsave(&func_buf_lock, flags);
2101		kbs = vt_kdskbsent(kbs, kb_func);
2102		spin_unlock_irqrestore(&func_buf_lock, flags);
2103
2104		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2105		break;
2106	}
2107
 
2108	kfree(kbs);
2109
2110	return ret;
2111}
2112
2113int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2114{
2115	struct kbd_struct *kb = &kbd_table[console];
2116        unsigned long flags;
2117	unsigned char ucval;
2118
2119        switch(cmd) {
2120	/* the ioctls below read/set the flags usually shown in the leds */
2121	/* don't use them - they will go away without warning */
2122	case KDGKBLED:
2123                spin_lock_irqsave(&kbd_event_lock, flags);
2124		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2125                spin_unlock_irqrestore(&kbd_event_lock, flags);
2126		return put_user(ucval, (char __user *)arg);
2127
2128	case KDSKBLED:
2129		if (!perm)
2130			return -EPERM;
2131		if (arg & ~0x77)
2132			return -EINVAL;
2133                spin_lock_irqsave(&led_lock, flags);
2134		kb->ledflagstate = (arg & 7);
2135		kb->default_ledflagstate = ((arg >> 4) & 7);
2136		set_leds();
2137                spin_unlock_irqrestore(&led_lock, flags);
2138		return 0;
2139
2140	/* the ioctls below only set the lights, not the functions */
2141	/* for those, see KDGKBLED and KDSKBLED above */
2142	case KDGETLED:
2143		ucval = getledstate();
2144		return put_user(ucval, (char __user *)arg);
2145
2146	case KDSETLED:
2147		if (!perm)
2148			return -EPERM;
2149		setledstate(kb, arg);
2150		return 0;
2151        }
2152        return -ENOIOCTLCMD;
2153}
2154
2155int vt_do_kdgkbmode(unsigned int console)
2156{
2157	struct kbd_struct *kb = &kbd_table[console];
2158	/* This is a spot read so needs no locking */
2159	switch (kb->kbdmode) {
2160	case VC_RAW:
2161		return K_RAW;
2162	case VC_MEDIUMRAW:
2163		return K_MEDIUMRAW;
2164	case VC_UNICODE:
2165		return K_UNICODE;
2166	case VC_OFF:
2167		return K_OFF;
2168	default:
2169		return K_XLATE;
2170	}
2171}
2172
2173/**
2174 *	vt_do_kdgkbmeta		-	report meta status
2175 *	@console: console to report
2176 *
2177 *	Report the meta flag status of this console
2178 */
2179int vt_do_kdgkbmeta(unsigned int console)
2180{
2181	struct kbd_struct *kb = &kbd_table[console];
2182        /* Again a spot read so no locking */
2183	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2184}
2185
2186/**
2187 *	vt_reset_unicode	-	reset the unicode status
2188 *	@console: console being reset
2189 *
2190 *	Restore the unicode console state to its default
2191 */
2192void vt_reset_unicode(unsigned int console)
2193{
2194	unsigned long flags;
2195
2196	spin_lock_irqsave(&kbd_event_lock, flags);
2197	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2198	spin_unlock_irqrestore(&kbd_event_lock, flags);
2199}
2200
2201/**
2202 *	vt_get_shift_state	-	shift bit state
2203 *
2204 *	Report the shift bits from the keyboard state. We have to export
2205 *	this to support some oddities in the vt layer.
2206 */
2207int vt_get_shift_state(void)
2208{
2209        /* Don't lock as this is a transient report */
2210        return shift_state;
2211}
2212
2213/**
2214 *	vt_reset_keyboard	-	reset keyboard state
2215 *	@console: console to reset
2216 *
2217 *	Reset the keyboard bits for a console as part of a general console
2218 *	reset event
2219 */
2220void vt_reset_keyboard(unsigned int console)
2221{
2222	struct kbd_struct *kb = &kbd_table[console];
2223	unsigned long flags;
2224
2225	spin_lock_irqsave(&kbd_event_lock, flags);
2226	set_vc_kbd_mode(kb, VC_REPEAT);
2227	clr_vc_kbd_mode(kb, VC_CKMODE);
2228	clr_vc_kbd_mode(kb, VC_APPLIC);
2229	clr_vc_kbd_mode(kb, VC_CRLF);
2230	kb->lockstate = 0;
2231	kb->slockstate = 0;
2232	spin_lock(&led_lock);
2233	kb->ledmode = LED_SHOW_FLAGS;
2234	kb->ledflagstate = kb->default_ledflagstate;
2235	spin_unlock(&led_lock);
2236	/* do not do set_leds here because this causes an endless tasklet loop
2237	   when the keyboard hasn't been initialized yet */
2238	spin_unlock_irqrestore(&kbd_event_lock, flags);
2239}
2240
2241/**
2242 *	vt_get_kbd_mode_bit	-	read keyboard status bits
2243 *	@console: console to read from
2244 *	@bit: mode bit to read
2245 *
2246 *	Report back a vt mode bit. We do this without locking so the
2247 *	caller must be sure that there are no synchronization needs
2248 */
2249
2250int vt_get_kbd_mode_bit(unsigned int console, int bit)
2251{
2252	struct kbd_struct *kb = &kbd_table[console];
2253	return vc_kbd_mode(kb, bit);
2254}
2255
2256/**
2257 *	vt_set_kbd_mode_bit	-	read keyboard status bits
2258 *	@console: console to read from
2259 *	@bit: mode bit to read
2260 *
2261 *	Set a vt mode bit. We do this without locking so the
2262 *	caller must be sure that there are no synchronization needs
2263 */
2264
2265void vt_set_kbd_mode_bit(unsigned int console, int bit)
2266{
2267	struct kbd_struct *kb = &kbd_table[console];
2268	unsigned long flags;
2269
2270	spin_lock_irqsave(&kbd_event_lock, flags);
2271	set_vc_kbd_mode(kb, bit);
2272	spin_unlock_irqrestore(&kbd_event_lock, flags);
2273}
2274
2275/**
2276 *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2277 *	@console: console to read from
2278 *	@bit: mode bit to read
2279 *
2280 *	Report back a vt mode bit. We do this without locking so the
2281 *	caller must be sure that there are no synchronization needs
2282 */
2283
2284void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2285{
2286	struct kbd_struct *kb = &kbd_table[console];
2287	unsigned long flags;
2288
2289	spin_lock_irqsave(&kbd_event_lock, flags);
2290	clr_vc_kbd_mode(kb, bit);
2291	spin_unlock_irqrestore(&kbd_event_lock, flags);
2292}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Written for linux by Johan Myreen as a translation from
   4 * the assembly version by Linus (with diacriticals added)
   5 *
   6 * Some additional features added by Christoph Niemann (ChN), March 1993
   7 *
   8 * Loadable keymaps by Risto Kankkunen, May 1993
   9 *
  10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  11 * Added decr/incr_console, dynamic keymaps, Unicode support,
  12 * dynamic function/string keys, led setting,  Sept 1994
  13 * `Sticky' modifier keys, 951006.
  14 *
  15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  16 *
  17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
  18 * Merge with the m68k keyboard driver and split-off of the PC low-level
  19 * parts by Geert Uytterhoeven, May 1997
  20 *
  21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
  23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/consolemap.h>
 
 
 
 
 
 
 
  29#include <linux/module.h>
 
 
 
 
  30#include <linux/sched/signal.h>
  31#include <linux/sched/debug.h>
 
 
 
  32#include <linux/tty.h>
  33#include <linux/tty_flip.h>
  34#include <linux/mm.h>
  35#include <linux/nospec.h>
  36#include <linux/string.h>
  37#include <linux/init.h>
  38#include <linux/slab.h>
  39#include <linux/leds.h>
  40
  41#include <linux/kbd_kern.h>
  42#include <linux/kbd_diacr.h>
  43#include <linux/vt_kern.h>
  44#include <linux/input.h>
  45#include <linux/reboot.h>
  46#include <linux/notifier.h>
  47#include <linux/jiffies.h>
  48#include <linux/uaccess.h>
  49
  50#include <asm/irq_regs.h>
  51
  52extern void ctrl_alt_del(void);
  53
  54/*
  55 * Exported functions/variables
  56 */
  57
  58#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  59
  60#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
  61#include <asm/kbdleds.h>
  62#else
  63static inline int kbd_defleds(void)
  64{
  65	return 0;
  66}
  67#endif
  68
  69#define KBD_DEFLOCK 0
  70
  71/*
  72 * Handler Tables.
  73 */
  74
  75#define K_HANDLERS\
  76	k_self,		k_fn,		k_spec,		k_pad,\
  77	k_dead,		k_cons,		k_cur,		k_shift,\
  78	k_meta,		k_ascii,	k_lock,		k_lowercase,\
  79	k_slock,	k_dead2,	k_brl,		k_ignore
  80
  81typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  82			    char up_flag);
  83static k_handler_fn K_HANDLERS;
  84static k_handler_fn *k_handler[16] = { K_HANDLERS };
  85
  86#define FN_HANDLERS\
  87	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
  88	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
  89	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
  90	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
  91	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
  92
  93typedef void (fn_handler_fn)(struct vc_data *vc);
  94static fn_handler_fn FN_HANDLERS;
  95static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  96
  97/*
  98 * Variables exported for vt_ioctl.c
  99 */
 100
 101struct vt_spawn_console vt_spawn_con = {
 102	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
 103	.pid  = NULL,
 104	.sig  = 0,
 105};
 106
 107
 108/*
 109 * Internal Data.
 110 */
 111
 112static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
 113static struct kbd_struct *kbd = kbd_table;
 114
 115/* maximum values each key_handler can handle */
 116static const int max_vals[] = {
 117	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
 118	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
 119	255, NR_LOCK - 1, 255, NR_BRL - 1
 
 
 
 
 
 
 
 
 
 
 
 
 120};
 121
 122static const int NR_TYPES = ARRAY_SIZE(max_vals);
 123
 
 
 
 124static struct input_handler kbd_handler;
 125static DEFINE_SPINLOCK(kbd_event_lock);
 126static DEFINE_SPINLOCK(led_lock);
 127static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf'  and friends */
 128static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
 129static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
 130static bool dead_key_next;
 131
 132/* Handles a number being assembled on the number pad */
 133static bool npadch_active;
 134static unsigned int npadch_value;
 135
 136static unsigned int diacr;
 137static char rep;					/* flag telling character repeat */
 138
 139static int shift_state = 0;
 140
 141static unsigned int ledstate = -1U;			/* undefined */
 142static unsigned char ledioctl;
 
 143
 144/*
 145 * Notifier list for console keyboard events
 146 */
 147static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
 148
 149int register_keyboard_notifier(struct notifier_block *nb)
 150{
 151	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
 152}
 153EXPORT_SYMBOL_GPL(register_keyboard_notifier);
 154
 155int unregister_keyboard_notifier(struct notifier_block *nb)
 156{
 157	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
 158}
 159EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
 160
 161/*
 162 * Translation of scancodes to keycodes. We set them on only the first
 163 * keyboard in the list that accepts the scancode and keycode.
 164 * Explanation for not choosing the first attached keyboard anymore:
 165 *  USB keyboards for example have two event devices: one for all "normal"
 166 *  keys and one for extra function keys (like "volume up", "make coffee",
 167 *  etc.). So this means that scancodes for the extra function keys won't
 168 *  be valid for the first event device, but will be for the second.
 169 */
 170
 171struct getset_keycode_data {
 172	struct input_keymap_entry ke;
 173	int error;
 174};
 175
 176static int getkeycode_helper(struct input_handle *handle, void *data)
 177{
 178	struct getset_keycode_data *d = data;
 179
 180	d->error = input_get_keycode(handle->dev, &d->ke);
 181
 182	return d->error == 0; /* stop as soon as we successfully get one */
 183}
 184
 185static int getkeycode(unsigned int scancode)
 186{
 187	struct getset_keycode_data d = {
 188		.ke	= {
 189			.flags		= 0,
 190			.len		= sizeof(scancode),
 191			.keycode	= 0,
 192		},
 193		.error	= -ENODEV,
 194	};
 195
 196	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 197
 198	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
 199
 200	return d.error ?: d.ke.keycode;
 201}
 202
 203static int setkeycode_helper(struct input_handle *handle, void *data)
 204{
 205	struct getset_keycode_data *d = data;
 206
 207	d->error = input_set_keycode(handle->dev, &d->ke);
 208
 209	return d->error == 0; /* stop as soon as we successfully set one */
 210}
 211
 212static int setkeycode(unsigned int scancode, unsigned int keycode)
 213{
 214	struct getset_keycode_data d = {
 215		.ke	= {
 216			.flags		= 0,
 217			.len		= sizeof(scancode),
 218			.keycode	= keycode,
 219		},
 220		.error	= -ENODEV,
 221	};
 222
 223	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
 224
 225	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
 226
 227	return d.error;
 228}
 229
 230/*
 231 * Making beeps and bells. Note that we prefer beeps to bells, but when
 232 * shutting the sound off we do both.
 233 */
 234
 235static int kd_sound_helper(struct input_handle *handle, void *data)
 236{
 237	unsigned int *hz = data;
 238	struct input_dev *dev = handle->dev;
 239
 240	if (test_bit(EV_SND, dev->evbit)) {
 241		if (test_bit(SND_TONE, dev->sndbit)) {
 242			input_inject_event(handle, EV_SND, SND_TONE, *hz);
 243			if (*hz)
 244				return 0;
 245		}
 246		if (test_bit(SND_BELL, dev->sndbit))
 247			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
 248	}
 249
 250	return 0;
 251}
 252
 253static void kd_nosound(struct timer_list *unused)
 254{
 255	static unsigned int zero;
 256
 257	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
 258}
 259
 260static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
 261
 262void kd_mksound(unsigned int hz, unsigned int ticks)
 263{
 264	del_timer_sync(&kd_mksound_timer);
 265
 266	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
 267
 268	if (hz && ticks)
 269		mod_timer(&kd_mksound_timer, jiffies + ticks);
 270}
 271EXPORT_SYMBOL(kd_mksound);
 272
 273/*
 274 * Setting the keyboard rate.
 275 */
 276
 277static int kbd_rate_helper(struct input_handle *handle, void *data)
 278{
 279	struct input_dev *dev = handle->dev;
 280	struct kbd_repeat *rpt = data;
 281
 282	if (test_bit(EV_REP, dev->evbit)) {
 283
 284		if (rpt[0].delay > 0)
 285			input_inject_event(handle,
 286					   EV_REP, REP_DELAY, rpt[0].delay);
 287		if (rpt[0].period > 0)
 288			input_inject_event(handle,
 289					   EV_REP, REP_PERIOD, rpt[0].period);
 290
 291		rpt[1].delay = dev->rep[REP_DELAY];
 292		rpt[1].period = dev->rep[REP_PERIOD];
 293	}
 294
 295	return 0;
 296}
 297
 298int kbd_rate(struct kbd_repeat *rpt)
 299{
 300	struct kbd_repeat data[2] = { *rpt };
 301
 302	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
 303	*rpt = data[1];	/* Copy currently used settings */
 304
 305	return 0;
 306}
 307
 308/*
 309 * Helper Functions.
 310 */
 311static void put_queue(struct vc_data *vc, int ch)
 312{
 313	tty_insert_flip_char(&vc->port, ch, 0);
 314	tty_schedule_flip(&vc->port);
 315}
 316
 317static void puts_queue(struct vc_data *vc, char *cp)
 318{
 319	while (*cp) {
 320		tty_insert_flip_char(&vc->port, *cp, 0);
 321		cp++;
 322	}
 323	tty_schedule_flip(&vc->port);
 324}
 325
 326static void applkey(struct vc_data *vc, int key, char mode)
 327{
 328	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
 329
 330	buf[1] = (mode ? 'O' : '[');
 331	buf[2] = key;
 332	puts_queue(vc, buf);
 333}
 334
 335/*
 336 * Many other routines do put_queue, but I think either
 337 * they produce ASCII, or they produce some user-assigned
 338 * string, and in both cases we might assume that it is
 339 * in utf-8 already.
 340 */
 341static void to_utf8(struct vc_data *vc, uint c)
 342{
 343	if (c < 0x80)
 344		/*  0******* */
 345		put_queue(vc, c);
 346	else if (c < 0x800) {
 347		/* 110***** 10****** */
 348		put_queue(vc, 0xc0 | (c >> 6));
 349		put_queue(vc, 0x80 | (c & 0x3f));
 350	} else if (c < 0x10000) {
 351		if (c >= 0xD800 && c < 0xE000)
 352			return;
 353		if (c == 0xFFFF)
 354			return;
 355		/* 1110**** 10****** 10****** */
 356		put_queue(vc, 0xe0 | (c >> 12));
 357		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 358		put_queue(vc, 0x80 | (c & 0x3f));
 359	} else if (c < 0x110000) {
 360		/* 11110*** 10****** 10****** 10****** */
 361		put_queue(vc, 0xf0 | (c >> 18));
 362		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
 363		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
 364		put_queue(vc, 0x80 | (c & 0x3f));
 365	}
 366}
 367
 
 
 
 
 
 
 368/*
 369 * Called after returning from RAW mode or when changing consoles - recompute
 370 * shift_down[] and shift_state from key_down[] maybe called when keymap is
 371 * undefined, so that shiftkey release is seen. The caller must hold the
 372 * kbd_event_lock.
 373 */
 374
 375static void do_compute_shiftstate(void)
 376{
 377	unsigned int k, sym, val;
 378
 379	shift_state = 0;
 380	memset(shift_down, 0, sizeof(shift_down));
 381
 382	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
 383		sym = U(key_maps[0][k]);
 384		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
 385			continue;
 386
 387		val = KVAL(sym);
 388		if (val == KVAL(K_CAPSSHIFT))
 389			val = KVAL(K_SHIFT);
 390
 391		shift_down[val]++;
 392		shift_state |= BIT(val);
 393	}
 394}
 395
 396/* We still have to export this method to vt.c */
 397void compute_shiftstate(void)
 398{
 399	unsigned long flags;
 
 
 
 
 
 
 
 
 
 400	spin_lock_irqsave(&kbd_event_lock, flags);
 401	do_compute_shiftstate();
 402	spin_unlock_irqrestore(&kbd_event_lock, flags);
 403}
 404
 405/*
 406 * We have a combining character DIACR here, followed by the character CH.
 407 * If the combination occurs in the table, return the corresponding value.
 408 * Otherwise, if CH is a space or equals DIACR, return DIACR.
 409 * Otherwise, conclude that DIACR was not combining after all,
 410 * queue it and return CH.
 411 */
 412static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
 413{
 414	unsigned int d = diacr;
 415	unsigned int i;
 416
 417	diacr = 0;
 418
 419	if ((d & ~0xff) == BRL_UC_ROW) {
 420		if ((ch & ~0xff) == BRL_UC_ROW)
 421			return d | ch;
 422	} else {
 423		for (i = 0; i < accent_table_size; i++)
 424			if (accent_table[i].diacr == d && accent_table[i].base == ch)
 425				return accent_table[i].result;
 426	}
 427
 428	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
 429		return d;
 430
 431	if (kbd->kbdmode == VC_UNICODE)
 432		to_utf8(vc, d);
 433	else {
 434		int c = conv_uni_to_8bit(d);
 435		if (c != -1)
 436			put_queue(vc, c);
 437	}
 438
 439	return ch;
 440}
 441
 442/*
 443 * Special function handlers
 444 */
 445static void fn_enter(struct vc_data *vc)
 446{
 447	if (diacr) {
 448		if (kbd->kbdmode == VC_UNICODE)
 449			to_utf8(vc, diacr);
 450		else {
 451			int c = conv_uni_to_8bit(diacr);
 452			if (c != -1)
 453				put_queue(vc, c);
 454		}
 455		diacr = 0;
 456	}
 457
 458	put_queue(vc, 13);
 459	if (vc_kbd_mode(kbd, VC_CRLF))
 460		put_queue(vc, 10);
 461}
 462
 463static void fn_caps_toggle(struct vc_data *vc)
 464{
 465	if (rep)
 466		return;
 467
 468	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
 469}
 470
 471static void fn_caps_on(struct vc_data *vc)
 472{
 473	if (rep)
 474		return;
 475
 476	set_vc_kbd_led(kbd, VC_CAPSLOCK);
 477}
 478
 479static void fn_show_ptregs(struct vc_data *vc)
 480{
 481	struct pt_regs *regs = get_irq_regs();
 482
 483	if (regs)
 484		show_regs(regs);
 485}
 486
 487static void fn_hold(struct vc_data *vc)
 488{
 489	struct tty_struct *tty = vc->port.tty;
 490
 491	if (rep || !tty)
 492		return;
 493
 494	/*
 495	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
 496	 * these routines are also activated by ^S/^Q.
 497	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
 498	 */
 499	if (tty->stopped)
 500		start_tty(tty);
 501	else
 502		stop_tty(tty);
 503}
 504
 505static void fn_num(struct vc_data *vc)
 506{
 507	if (vc_kbd_mode(kbd, VC_APPLIC))
 508		applkey(vc, 'P', 1);
 509	else
 510		fn_bare_num(vc);
 511}
 512
 513/*
 514 * Bind this to Shift-NumLock if you work in application keypad mode
 515 * but want to be able to change the NumLock flag.
 516 * Bind this to NumLock if you prefer that the NumLock key always
 517 * changes the NumLock flag.
 518 */
 519static void fn_bare_num(struct vc_data *vc)
 520{
 521	if (!rep)
 522		chg_vc_kbd_led(kbd, VC_NUMLOCK);
 523}
 524
 525static void fn_lastcons(struct vc_data *vc)
 526{
 527	/* switch to the last used console, ChN */
 528	set_console(last_console);
 529}
 530
 531static void fn_dec_console(struct vc_data *vc)
 532{
 533	int i, cur = fg_console;
 534
 535	/* Currently switching?  Queue this next switch relative to that. */
 536	if (want_console != -1)
 537		cur = want_console;
 538
 539	for (i = cur - 1; i != cur; i--) {
 540		if (i == -1)
 541			i = MAX_NR_CONSOLES - 1;
 542		if (vc_cons_allocated(i))
 543			break;
 544	}
 545	set_console(i);
 546}
 547
 548static void fn_inc_console(struct vc_data *vc)
 549{
 550	int i, cur = fg_console;
 551
 552	/* Currently switching?  Queue this next switch relative to that. */
 553	if (want_console != -1)
 554		cur = want_console;
 555
 556	for (i = cur+1; i != cur; i++) {
 557		if (i == MAX_NR_CONSOLES)
 558			i = 0;
 559		if (vc_cons_allocated(i))
 560			break;
 561	}
 562	set_console(i);
 563}
 564
 565static void fn_send_intr(struct vc_data *vc)
 566{
 567	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
 568	tty_schedule_flip(&vc->port);
 569}
 570
 571static void fn_scroll_forw(struct vc_data *vc)
 572{
 573	scrollfront(vc, 0);
 574}
 575
 576static void fn_scroll_back(struct vc_data *vc)
 577{
 578	scrollback(vc);
 579}
 580
 581static void fn_show_mem(struct vc_data *vc)
 582{
 583	show_mem(0, NULL);
 584}
 585
 586static void fn_show_state(struct vc_data *vc)
 587{
 588	show_state();
 589}
 590
 591static void fn_boot_it(struct vc_data *vc)
 592{
 593	ctrl_alt_del();
 594}
 595
 596static void fn_compose(struct vc_data *vc)
 597{
 598	dead_key_next = true;
 599}
 600
 601static void fn_spawn_con(struct vc_data *vc)
 602{
 603	spin_lock(&vt_spawn_con.lock);
 604	if (vt_spawn_con.pid)
 605		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
 606			put_pid(vt_spawn_con.pid);
 607			vt_spawn_con.pid = NULL;
 608		}
 609	spin_unlock(&vt_spawn_con.lock);
 610}
 611
 612static void fn_SAK(struct vc_data *vc)
 613{
 614	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
 615	schedule_work(SAK_work);
 616}
 617
 618static void fn_null(struct vc_data *vc)
 619{
 620	do_compute_shiftstate();
 621}
 622
 623/*
 624 * Special key handlers
 625 */
 626static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
 627{
 628}
 629
 630static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
 631{
 632	if (up_flag)
 633		return;
 634	if (value >= ARRAY_SIZE(fn_handler))
 635		return;
 636	if ((kbd->kbdmode == VC_RAW ||
 637	     kbd->kbdmode == VC_MEDIUMRAW ||
 638	     kbd->kbdmode == VC_OFF) &&
 639	     value != KVAL(K_SAK))
 640		return;		/* SAK is allowed even in raw mode */
 641	fn_handler[value](vc);
 642}
 643
 644static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
 645{
 646	pr_err("k_lowercase was called - impossible\n");
 647}
 648
 649static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
 650{
 651	if (up_flag)
 652		return;		/* no action, if this is a key release */
 653
 654	if (diacr)
 655		value = handle_diacr(vc, value);
 656
 657	if (dead_key_next) {
 658		dead_key_next = false;
 659		diacr = value;
 660		return;
 661	}
 662	if (kbd->kbdmode == VC_UNICODE)
 663		to_utf8(vc, value);
 664	else {
 665		int c = conv_uni_to_8bit(value);
 666		if (c != -1)
 667			put_queue(vc, c);
 668	}
 669}
 670
 671/*
 672 * Handle dead key. Note that we now may have several
 673 * dead keys modifying the same character. Very useful
 674 * for Vietnamese.
 675 */
 676static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
 677{
 678	if (up_flag)
 679		return;
 680
 681	diacr = (diacr ? handle_diacr(vc, value) : value);
 682}
 683
 684static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
 685{
 686	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
 687}
 688
 689static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
 690{
 691	k_deadunicode(vc, value, up_flag);
 692}
 693
 694/*
 695 * Obsolete - for backwards compatibility only
 696 */
 697static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
 698{
 699	static const unsigned char ret_diacr[NR_DEAD] = {
 700		'`',	/* dead_grave */
 701		'\'',	/* dead_acute */
 702		'^',	/* dead_circumflex */
 703		'~',	/* dead_tilda */
 704		'"',	/* dead_diaeresis */
 705		',',	/* dead_cedilla */
 706		'_',	/* dead_macron */
 707		'U',	/* dead_breve */
 708		'.',	/* dead_abovedot */
 709		'*',	/* dead_abovering */
 710		'=',	/* dead_doubleacute */
 711		'c',	/* dead_caron */
 712		'k',	/* dead_ogonek */
 713		'i',	/* dead_iota */
 714		'#',	/* dead_voiced_sound */
 715		'o',	/* dead_semivoiced_sound */
 716		'!',	/* dead_belowdot */
 717		'?',	/* dead_hook */
 718		'+',	/* dead_horn */
 719		'-',	/* dead_stroke */
 720		')',	/* dead_abovecomma */
 721		'(',	/* dead_abovereversedcomma */
 722		':',	/* dead_doublegrave */
 723		'n',	/* dead_invertedbreve */
 724		';',	/* dead_belowcomma */
 725		'$',	/* dead_currency */
 726		'@',	/* dead_greek */
 727	};
 728
 729	k_deadunicode(vc, ret_diacr[value], up_flag);
 730}
 731
 732static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
 733{
 734	if (up_flag)
 735		return;
 736
 737	set_console(value);
 738}
 739
 740static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
 741{
 742	if (up_flag)
 743		return;
 744
 745	if ((unsigned)value < ARRAY_SIZE(func_table)) {
 
 
 
 746		if (func_table[value])
 747			puts_queue(vc, func_table[value]);
 
 
 748	} else
 749		pr_err("k_fn called with value=%d\n", value);
 750}
 751
 752static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
 753{
 754	static const char cur_chars[] = "BDCA";
 755
 756	if (up_flag)
 757		return;
 758
 759	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
 760}
 761
 762static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
 763{
 764	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
 765	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
 766
 767	if (up_flag)
 768		return;		/* no action, if this is a key release */
 769
 770	/* kludge... shift forces cursor/number keys */
 771	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
 772		applkey(vc, app_map[value], 1);
 773		return;
 774	}
 775
 776	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
 777
 778		switch (value) {
 779		case KVAL(K_PCOMMA):
 780		case KVAL(K_PDOT):
 781			k_fn(vc, KVAL(K_REMOVE), 0);
 782			return;
 783		case KVAL(K_P0):
 784			k_fn(vc, KVAL(K_INSERT), 0);
 785			return;
 786		case KVAL(K_P1):
 787			k_fn(vc, KVAL(K_SELECT), 0);
 788			return;
 789		case KVAL(K_P2):
 790			k_cur(vc, KVAL(K_DOWN), 0);
 791			return;
 792		case KVAL(K_P3):
 793			k_fn(vc, KVAL(K_PGDN), 0);
 794			return;
 795		case KVAL(K_P4):
 796			k_cur(vc, KVAL(K_LEFT), 0);
 797			return;
 798		case KVAL(K_P6):
 799			k_cur(vc, KVAL(K_RIGHT), 0);
 800			return;
 801		case KVAL(K_P7):
 802			k_fn(vc, KVAL(K_FIND), 0);
 803			return;
 804		case KVAL(K_P8):
 805			k_cur(vc, KVAL(K_UP), 0);
 806			return;
 807		case KVAL(K_P9):
 808			k_fn(vc, KVAL(K_PGUP), 0);
 809			return;
 810		case KVAL(K_P5):
 811			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
 812			return;
 813		}
 814	}
 815
 816	put_queue(vc, pad_chars[value]);
 817	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
 818		put_queue(vc, 10);
 819}
 820
 821static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
 822{
 823	int old_state = shift_state;
 824
 825	if (rep)
 826		return;
 827	/*
 828	 * Mimic typewriter:
 829	 * a CapsShift key acts like Shift but undoes CapsLock
 830	 */
 831	if (value == KVAL(K_CAPSSHIFT)) {
 832		value = KVAL(K_SHIFT);
 833		if (!up_flag)
 834			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
 835	}
 836
 837	if (up_flag) {
 838		/*
 839		 * handle the case that two shift or control
 840		 * keys are depressed simultaneously
 841		 */
 842		if (shift_down[value])
 843			shift_down[value]--;
 844	} else
 845		shift_down[value]++;
 846
 847	if (shift_down[value])
 848		shift_state |= (1 << value);
 849	else
 850		shift_state &= ~(1 << value);
 851
 852	/* kludge */
 853	if (up_flag && shift_state != old_state && npadch_active) {
 854		if (kbd->kbdmode == VC_UNICODE)
 855			to_utf8(vc, npadch_value);
 856		else
 857			put_queue(vc, npadch_value & 0xff);
 858		npadch_active = false;
 859	}
 860}
 861
 862static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
 863{
 864	if (up_flag)
 865		return;
 866
 867	if (vc_kbd_mode(kbd, VC_META)) {
 868		put_queue(vc, '\033');
 869		put_queue(vc, value);
 870	} else
 871		put_queue(vc, value | 0x80);
 872}
 873
 874static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
 875{
 876	unsigned int base;
 877
 878	if (up_flag)
 879		return;
 880
 881	if (value < 10) {
 882		/* decimal input of code, while Alt depressed */
 883		base = 10;
 884	} else {
 885		/* hexadecimal input of code, while AltGr depressed */
 886		value -= 10;
 887		base = 16;
 888	}
 889
 890	if (!npadch_active) {
 891		npadch_value = 0;
 892		npadch_active = true;
 893	}
 894
 895	npadch_value = npadch_value * base + value;
 896}
 897
 898static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
 899{
 900	if (up_flag || rep)
 901		return;
 902
 903	chg_vc_kbd_lock(kbd, value);
 904}
 905
 906static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
 907{
 908	k_shift(vc, value, up_flag);
 909	if (up_flag || rep)
 910		return;
 911
 912	chg_vc_kbd_slock(kbd, value);
 913	/* try to make Alt, oops, AltGr and such work */
 914	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
 915		kbd->slockstate = 0;
 916		chg_vc_kbd_slock(kbd, value);
 917	}
 918}
 919
 920/* by default, 300ms interval for combination release */
 921static unsigned brl_timeout = 300;
 922MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
 923module_param(brl_timeout, uint, 0644);
 924
 925static unsigned brl_nbchords = 1;
 926MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
 927module_param(brl_nbchords, uint, 0644);
 928
 929static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
 930{
 931	static unsigned long chords;
 932	static unsigned committed;
 933
 934	if (!brl_nbchords)
 935		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
 936	else {
 937		committed |= pattern;
 938		chords++;
 939		if (chords == brl_nbchords) {
 940			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
 941			chords = 0;
 942			committed = 0;
 943		}
 944	}
 945}
 946
 947static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
 948{
 949	static unsigned pressed, committing;
 950	static unsigned long releasestart;
 951
 952	if (kbd->kbdmode != VC_UNICODE) {
 953		if (!up_flag)
 954			pr_warn("keyboard mode must be unicode for braille patterns\n");
 955		return;
 956	}
 957
 958	if (!value) {
 959		k_unicode(vc, BRL_UC_ROW, up_flag);
 960		return;
 961	}
 962
 963	if (value > 8)
 964		return;
 965
 966	if (!up_flag) {
 967		pressed |= 1 << (value - 1);
 968		if (!brl_timeout)
 969			committing = pressed;
 970	} else if (brl_timeout) {
 971		if (!committing ||
 972		    time_after(jiffies,
 973			       releasestart + msecs_to_jiffies(brl_timeout))) {
 974			committing = pressed;
 975			releasestart = jiffies;
 976		}
 977		pressed &= ~(1 << (value - 1));
 978		if (!pressed && committing) {
 979			k_brlcommit(vc, committing, 0);
 980			committing = 0;
 981		}
 982	} else {
 983		if (committing) {
 984			k_brlcommit(vc, committing, 0);
 985			committing = 0;
 986		}
 987		pressed &= ~(1 << (value - 1));
 988	}
 989}
 990
 991#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
 992
 993struct kbd_led_trigger {
 994	struct led_trigger trigger;
 995	unsigned int mask;
 996};
 997
 998static int kbd_led_trigger_activate(struct led_classdev *cdev)
 999{
1000	struct kbd_led_trigger *trigger =
1001		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1002
1003	tasklet_disable(&keyboard_tasklet);
1004	if (ledstate != -1U)
1005		led_trigger_event(&trigger->trigger,
1006				  ledstate & trigger->mask ?
1007					LED_FULL : LED_OFF);
1008	tasklet_enable(&keyboard_tasklet);
1009
1010	return 0;
1011}
1012
1013#define KBD_LED_TRIGGER(_led_bit, _name) {			\
1014		.trigger = {					\
1015			.name = _name,				\
1016			.activate = kbd_led_trigger_activate,	\
1017		},						\
1018		.mask	= BIT(_led_bit),			\
1019	}
1020
1021#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
1022	KBD_LED_TRIGGER((_led_bit) + 8, _name)
1023
1024static struct kbd_led_trigger kbd_led_triggers[] = {
1025	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1026	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
1027	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
1028	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
1029
1030	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
1031	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
1032	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
1033	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
1034	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1035	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1036	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
1037	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
1038};
1039
1040static void kbd_propagate_led_state(unsigned int old_state,
1041				    unsigned int new_state)
1042{
1043	struct kbd_led_trigger *trigger;
1044	unsigned int changed = old_state ^ new_state;
1045	int i;
1046
1047	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1048		trigger = &kbd_led_triggers[i];
1049
1050		if (changed & trigger->mask)
1051			led_trigger_event(&trigger->trigger,
1052					  new_state & trigger->mask ?
1053						LED_FULL : LED_OFF);
1054	}
1055}
1056
1057static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1058{
1059	unsigned int led_state = *(unsigned int *)data;
1060
1061	if (test_bit(EV_LED, handle->dev->evbit))
1062		kbd_propagate_led_state(~led_state, led_state);
1063
1064	return 0;
1065}
1066
1067static void kbd_init_leds(void)
1068{
1069	int error;
1070	int i;
1071
1072	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1073		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1074		if (error)
1075			pr_err("error %d while registering trigger %s\n",
1076			       error, kbd_led_triggers[i].trigger.name);
1077	}
1078}
1079
1080#else
1081
1082static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1083{
1084	unsigned int leds = *(unsigned int *)data;
1085
1086	if (test_bit(EV_LED, handle->dev->evbit)) {
1087		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1088		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1089		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1090		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1091	}
1092
1093	return 0;
1094}
1095
1096static void kbd_propagate_led_state(unsigned int old_state,
1097				    unsigned int new_state)
1098{
1099	input_handler_for_each_handle(&kbd_handler, &new_state,
1100				      kbd_update_leds_helper);
1101}
1102
1103static void kbd_init_leds(void)
1104{
1105}
1106
1107#endif
1108
1109/*
1110 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1111 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1112 * or (iii) specified bits of specified words in kernel memory.
1113 */
1114static unsigned char getledstate(void)
1115{
1116	return ledstate & 0xff;
1117}
1118
1119void setledstate(struct kbd_struct *kb, unsigned int led)
1120{
1121        unsigned long flags;
1122        spin_lock_irqsave(&led_lock, flags);
1123	if (!(led & ~7)) {
1124		ledioctl = led;
1125		kb->ledmode = LED_SHOW_IOCTL;
1126	} else
1127		kb->ledmode = LED_SHOW_FLAGS;
1128
1129	set_leds();
1130	spin_unlock_irqrestore(&led_lock, flags);
1131}
1132
1133static inline unsigned char getleds(void)
1134{
1135	struct kbd_struct *kb = kbd_table + fg_console;
1136
1137	if (kb->ledmode == LED_SHOW_IOCTL)
1138		return ledioctl;
1139
1140	return kb->ledflagstate;
1141}
1142
1143/**
1144 *	vt_get_leds	-	helper for braille console
1145 *	@console: console to read
1146 *	@flag: flag we want to check
1147 *
1148 *	Check the status of a keyboard led flag and report it back
1149 */
1150int vt_get_leds(int console, int flag)
1151{
1152	struct kbd_struct *kb = kbd_table + console;
1153	int ret;
1154	unsigned long flags;
1155
1156	spin_lock_irqsave(&led_lock, flags);
1157	ret = vc_kbd_led(kb, flag);
1158	spin_unlock_irqrestore(&led_lock, flags);
1159
1160	return ret;
1161}
1162EXPORT_SYMBOL_GPL(vt_get_leds);
1163
1164/**
1165 *	vt_set_led_state	-	set LED state of a console
1166 *	@console: console to set
1167 *	@leds: LED bits
1168 *
1169 *	Set the LEDs on a console. This is a wrapper for the VT layer
1170 *	so that we can keep kbd knowledge internal
1171 */
1172void vt_set_led_state(int console, int leds)
1173{
1174	struct kbd_struct *kb = kbd_table + console;
1175	setledstate(kb, leds);
1176}
1177
1178/**
1179 *	vt_kbd_con_start	-	Keyboard side of console start
1180 *	@console: console
1181 *
1182 *	Handle console start. This is a wrapper for the VT layer
1183 *	so that we can keep kbd knowledge internal
1184 *
1185 *	FIXME: We eventually need to hold the kbd lock here to protect
1186 *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1187 *	and start_tty under the kbd_event_lock, while normal tty paths
1188 *	don't hold the lock. We probably need to split out an LED lock
1189 *	but not during an -rc release!
1190 */
1191void vt_kbd_con_start(int console)
1192{
1193	struct kbd_struct *kb = kbd_table + console;
1194	unsigned long flags;
1195	spin_lock_irqsave(&led_lock, flags);
1196	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1197	set_leds();
1198	spin_unlock_irqrestore(&led_lock, flags);
1199}
1200
1201/**
1202 *	vt_kbd_con_stop		-	Keyboard side of console stop
1203 *	@console: console
1204 *
1205 *	Handle console stop. This is a wrapper for the VT layer
1206 *	so that we can keep kbd knowledge internal
1207 */
1208void vt_kbd_con_stop(int console)
1209{
1210	struct kbd_struct *kb = kbd_table + console;
1211	unsigned long flags;
1212	spin_lock_irqsave(&led_lock, flags);
1213	set_vc_kbd_led(kb, VC_SCROLLOCK);
1214	set_leds();
1215	spin_unlock_irqrestore(&led_lock, flags);
1216}
1217
1218/*
1219 * This is the tasklet that updates LED state of LEDs using standard
1220 * keyboard triggers. The reason we use tasklet is that we need to
1221 * handle the scenario when keyboard handler is not registered yet
1222 * but we already getting updates from the VT to update led state.
1223 */
1224static void kbd_bh(unsigned long dummy)
1225{
1226	unsigned int leds;
1227	unsigned long flags;
1228
1229	spin_lock_irqsave(&led_lock, flags);
1230	leds = getleds();
1231	leds |= (unsigned int)kbd->lockstate << 8;
1232	spin_unlock_irqrestore(&led_lock, flags);
1233
 
 
 
 
 
1234	if (leds != ledstate) {
1235		kbd_propagate_led_state(ledstate, leds);
1236		ledstate = leds;
1237	}
1238}
1239
1240DECLARE_TASKLET_DISABLED_OLD(keyboard_tasklet, kbd_bh);
1241
1242#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1243    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1244    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1245    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1246
1247#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1248			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
 
 
 
 
 
 
1249
1250static const unsigned short x86_keycodes[256] =
1251	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1252	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1253	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1254	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1255	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1256	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1257	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1258	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1259	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1260	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1261	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1262	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1263	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1264	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1265	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1266
1267#ifdef CONFIG_SPARC
1268static int sparc_l1_a_state;
1269extern void sun_do_break(void);
1270#endif
1271
1272static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1273		       unsigned char up_flag)
1274{
1275	int code;
1276
1277	switch (keycode) {
1278
1279	case KEY_PAUSE:
1280		put_queue(vc, 0xe1);
1281		put_queue(vc, 0x1d | up_flag);
1282		put_queue(vc, 0x45 | up_flag);
1283		break;
1284
1285	case KEY_HANGEUL:
1286		if (!up_flag)
1287			put_queue(vc, 0xf2);
1288		break;
1289
1290	case KEY_HANJA:
1291		if (!up_flag)
1292			put_queue(vc, 0xf1);
1293		break;
1294
1295	case KEY_SYSRQ:
1296		/*
1297		 * Real AT keyboards (that's what we're trying
1298		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1299		 * pressing PrtSc/SysRq alone, but simply 0x54
1300		 * when pressing Alt+PrtSc/SysRq.
1301		 */
1302		if (test_bit(KEY_LEFTALT, key_down) ||
1303		    test_bit(KEY_RIGHTALT, key_down)) {
1304			put_queue(vc, 0x54 | up_flag);
1305		} else {
1306			put_queue(vc, 0xe0);
1307			put_queue(vc, 0x2a | up_flag);
1308			put_queue(vc, 0xe0);
1309			put_queue(vc, 0x37 | up_flag);
1310		}
1311		break;
1312
1313	default:
1314		if (keycode > 255)
1315			return -1;
1316
1317		code = x86_keycodes[keycode];
1318		if (!code)
1319			return -1;
1320
1321		if (code & 0x100)
1322			put_queue(vc, 0xe0);
1323		put_queue(vc, (code & 0x7f) | up_flag);
1324
1325		break;
1326	}
1327
1328	return 0;
1329}
1330
1331#else
1332
1333#define HW_RAW(dev)	0
 
 
 
1334
1335static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1336{
1337	if (keycode > 127)
1338		return -1;
1339
1340	put_queue(vc, keycode | up_flag);
1341	return 0;
1342}
1343#endif
1344
1345static void kbd_rawcode(unsigned char data)
1346{
1347	struct vc_data *vc = vc_cons[fg_console].d;
1348
1349	kbd = kbd_table + vc->vc_num;
1350	if (kbd->kbdmode == VC_RAW)
1351		put_queue(vc, data);
1352}
1353
1354static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1355{
1356	struct vc_data *vc = vc_cons[fg_console].d;
1357	unsigned short keysym, *key_map;
1358	unsigned char type;
1359	bool raw_mode;
1360	struct tty_struct *tty;
1361	int shift_final;
1362	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1363	int rc;
1364
1365	tty = vc->port.tty;
1366
1367	if (tty && (!tty->driver_data)) {
1368		/* No driver data? Strange. Okay we fix it then. */
1369		tty->driver_data = vc;
1370	}
1371
1372	kbd = kbd_table + vc->vc_num;
1373
1374#ifdef CONFIG_SPARC
1375	if (keycode == KEY_STOP)
1376		sparc_l1_a_state = down;
1377#endif
1378
1379	rep = (down == 2);
1380
1381	raw_mode = (kbd->kbdmode == VC_RAW);
1382	if (raw_mode && !hw_raw)
1383		if (emulate_raw(vc, keycode, !down << 7))
1384			if (keycode < BTN_MISC && printk_ratelimit())
1385				pr_warn("can't emulate rawmode for keycode %d\n",
1386					keycode);
1387
1388#ifdef CONFIG_SPARC
1389	if (keycode == KEY_A && sparc_l1_a_state) {
1390		sparc_l1_a_state = false;
1391		sun_do_break();
1392	}
1393#endif
1394
1395	if (kbd->kbdmode == VC_MEDIUMRAW) {
1396		/*
1397		 * This is extended medium raw mode, with keys above 127
1398		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1399		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1400		 * interfere with anything else. The two bytes after 0 will
1401		 * always have the up flag set not to interfere with older
1402		 * applications. This allows for 16384 different keycodes,
1403		 * which should be enough.
1404		 */
1405		if (keycode < 128) {
1406			put_queue(vc, keycode | (!down << 7));
1407		} else {
1408			put_queue(vc, !down << 7);
1409			put_queue(vc, (keycode >> 7) | 0x80);
1410			put_queue(vc, keycode | 0x80);
1411		}
1412		raw_mode = true;
1413	}
1414
1415	if (down)
1416		set_bit(keycode, key_down);
1417	else
1418		clear_bit(keycode, key_down);
1419
1420	if (rep &&
1421	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1422	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1423		/*
1424		 * Don't repeat a key if the input buffers are not empty and the
1425		 * characters get aren't echoed locally. This makes key repeat
1426		 * usable with slow applications and under heavy loads.
1427		 */
1428		return;
1429	}
1430
1431	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1432	param.ledstate = kbd->ledflagstate;
1433	key_map = key_maps[shift_final];
1434
1435	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1436					KBD_KEYCODE, &param);
1437	if (rc == NOTIFY_STOP || !key_map) {
1438		atomic_notifier_call_chain(&keyboard_notifier_list,
1439					   KBD_UNBOUND_KEYCODE, &param);
1440		do_compute_shiftstate();
1441		kbd->slockstate = 0;
1442		return;
1443	}
1444
1445	if (keycode < NR_KEYS)
1446		keysym = key_map[keycode];
1447	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1448		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1449	else
1450		return;
1451
1452	type = KTYP(keysym);
1453
1454	if (type < 0xf0) {
1455		param.value = keysym;
1456		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1457						KBD_UNICODE, &param);
1458		if (rc != NOTIFY_STOP)
1459			if (down && !raw_mode)
1460				k_unicode(vc, keysym, !down);
1461		return;
1462	}
1463
1464	type -= 0xf0;
1465
1466	if (type == KT_LETTER) {
1467		type = KT_LATIN;
1468		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1469			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1470			if (key_map)
1471				keysym = key_map[keycode];
1472		}
1473	}
1474
1475	param.value = keysym;
1476	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1477					KBD_KEYSYM, &param);
1478	if (rc == NOTIFY_STOP)
1479		return;
1480
1481	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1482		return;
1483
1484	(*k_handler[type])(vc, keysym & 0xff, !down);
1485
1486	param.ledstate = kbd->ledflagstate;
1487	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1488
1489	if (type != KT_SLOCK)
1490		kbd->slockstate = 0;
1491}
1492
1493static void kbd_event(struct input_handle *handle, unsigned int event_type,
1494		      unsigned int event_code, int value)
1495{
1496	/* We are called with interrupts disabled, just take the lock */
1497	spin_lock(&kbd_event_lock);
1498
1499	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
 
1500		kbd_rawcode(value);
1501	if (event_type == EV_KEY && event_code <= KEY_MAX)
1502		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1503
1504	spin_unlock(&kbd_event_lock);
1505
1506	tasklet_schedule(&keyboard_tasklet);
1507	do_poke_blanked_console = 1;
1508	schedule_console_callback();
1509}
1510
1511static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1512{
1513	int i;
1514
1515	if (test_bit(EV_SND, dev->evbit))
1516		return true;
1517
1518	if (test_bit(EV_KEY, dev->evbit)) {
1519		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1520			if (test_bit(i, dev->keybit))
1521				return true;
1522		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1523			if (test_bit(i, dev->keybit))
1524				return true;
1525	}
1526
1527	return false;
1528}
1529
1530/*
1531 * When a keyboard (or other input device) is found, the kbd_connect
1532 * function is called. The function then looks at the device, and if it
1533 * likes it, it can open it and get events from it. In this (kbd_connect)
1534 * function, we should decide which VT to bind that keyboard to initially.
1535 */
1536static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1537			const struct input_device_id *id)
1538{
1539	struct input_handle *handle;
1540	int error;
1541
1542	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1543	if (!handle)
1544		return -ENOMEM;
1545
1546	handle->dev = dev;
1547	handle->handler = handler;
1548	handle->name = "kbd";
1549
1550	error = input_register_handle(handle);
1551	if (error)
1552		goto err_free_handle;
1553
1554	error = input_open_device(handle);
1555	if (error)
1556		goto err_unregister_handle;
1557
1558	return 0;
1559
1560 err_unregister_handle:
1561	input_unregister_handle(handle);
1562 err_free_handle:
1563	kfree(handle);
1564	return error;
1565}
1566
1567static void kbd_disconnect(struct input_handle *handle)
1568{
1569	input_close_device(handle);
1570	input_unregister_handle(handle);
1571	kfree(handle);
1572}
1573
1574/*
1575 * Start keyboard handler on the new keyboard by refreshing LED state to
1576 * match the rest of the system.
1577 */
1578static void kbd_start(struct input_handle *handle)
1579{
1580	tasklet_disable(&keyboard_tasklet);
1581
1582	if (ledstate != -1U)
1583		kbd_update_leds_helper(handle, &ledstate);
1584
1585	tasklet_enable(&keyboard_tasklet);
1586}
1587
1588static const struct input_device_id kbd_ids[] = {
1589	{
1590		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1591		.evbit = { BIT_MASK(EV_KEY) },
1592	},
1593
1594	{
1595		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1596		.evbit = { BIT_MASK(EV_SND) },
1597	},
1598
1599	{ },    /* Terminating entry */
1600};
1601
1602MODULE_DEVICE_TABLE(input, kbd_ids);
1603
1604static struct input_handler kbd_handler = {
1605	.event		= kbd_event,
1606	.match		= kbd_match,
1607	.connect	= kbd_connect,
1608	.disconnect	= kbd_disconnect,
1609	.start		= kbd_start,
1610	.name		= "kbd",
1611	.id_table	= kbd_ids,
1612};
1613
1614int __init kbd_init(void)
1615{
1616	int i;
1617	int error;
1618
1619	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1620		kbd_table[i].ledflagstate = kbd_defleds();
1621		kbd_table[i].default_ledflagstate = kbd_defleds();
1622		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1623		kbd_table[i].lockstate = KBD_DEFLOCK;
1624		kbd_table[i].slockstate = 0;
1625		kbd_table[i].modeflags = KBD_DEFMODE;
1626		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1627	}
1628
1629	kbd_init_leds();
1630
1631	error = input_register_handler(&kbd_handler);
1632	if (error)
1633		return error;
1634
1635	tasklet_enable(&keyboard_tasklet);
1636	tasklet_schedule(&keyboard_tasklet);
1637
1638	return 0;
1639}
1640
1641/* Ioctl support code */
1642
1643/**
1644 *	vt_do_diacrit		-	diacritical table updates
1645 *	@cmd: ioctl request
1646 *	@udp: pointer to user data for ioctl
1647 *	@perm: permissions check computed by caller
1648 *
1649 *	Update the diacritical tables atomically and safely. Lock them
1650 *	against simultaneous keypresses
1651 */
1652int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1653{
1654	unsigned long flags;
1655	int asize;
1656	int ret = 0;
1657
1658	switch (cmd) {
1659	case KDGKBDIACR:
1660	{
1661		struct kbdiacrs __user *a = udp;
1662		struct kbdiacr *dia;
1663		int i;
1664
1665		dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1666								GFP_KERNEL);
1667		if (!dia)
1668			return -ENOMEM;
1669
1670		/* Lock the diacriticals table, make a copy and then
1671		   copy it after we unlock */
1672		spin_lock_irqsave(&kbd_event_lock, flags);
1673
1674		asize = accent_table_size;
1675		for (i = 0; i < asize; i++) {
1676			dia[i].diacr = conv_uni_to_8bit(
1677						accent_table[i].diacr);
1678			dia[i].base = conv_uni_to_8bit(
1679						accent_table[i].base);
1680			dia[i].result = conv_uni_to_8bit(
1681						accent_table[i].result);
1682		}
1683		spin_unlock_irqrestore(&kbd_event_lock, flags);
1684
1685		if (put_user(asize, &a->kb_cnt))
1686			ret = -EFAULT;
1687		else  if (copy_to_user(a->kbdiacr, dia,
1688				asize * sizeof(struct kbdiacr)))
1689			ret = -EFAULT;
1690		kfree(dia);
1691		return ret;
1692	}
1693	case KDGKBDIACRUC:
1694	{
1695		struct kbdiacrsuc __user *a = udp;
1696		void *buf;
1697
1698		buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1699								GFP_KERNEL);
1700		if (buf == NULL)
1701			return -ENOMEM;
1702
1703		/* Lock the diacriticals table, make a copy and then
1704		   copy it after we unlock */
1705		spin_lock_irqsave(&kbd_event_lock, flags);
1706
1707		asize = accent_table_size;
1708		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1709
1710		spin_unlock_irqrestore(&kbd_event_lock, flags);
1711
1712		if (put_user(asize, &a->kb_cnt))
1713			ret = -EFAULT;
1714		else if (copy_to_user(a->kbdiacruc, buf,
1715				asize*sizeof(struct kbdiacruc)))
1716			ret = -EFAULT;
1717		kfree(buf);
1718		return ret;
1719	}
1720
1721	case KDSKBDIACR:
1722	{
1723		struct kbdiacrs __user *a = udp;
1724		struct kbdiacr *dia = NULL;
1725		unsigned int ct;
1726		int i;
1727
1728		if (!perm)
1729			return -EPERM;
1730		if (get_user(ct, &a->kb_cnt))
1731			return -EFAULT;
1732		if (ct >= MAX_DIACR)
1733			return -EINVAL;
1734
1735		if (ct) {
1736
1737			dia = memdup_user(a->kbdiacr,
1738					sizeof(struct kbdiacr) * ct);
1739			if (IS_ERR(dia))
1740				return PTR_ERR(dia);
1741
1742		}
1743
1744		spin_lock_irqsave(&kbd_event_lock, flags);
1745		accent_table_size = ct;
1746		for (i = 0; i < ct; i++) {
1747			accent_table[i].diacr =
1748					conv_8bit_to_uni(dia[i].diacr);
1749			accent_table[i].base =
1750					conv_8bit_to_uni(dia[i].base);
1751			accent_table[i].result =
1752					conv_8bit_to_uni(dia[i].result);
1753		}
1754		spin_unlock_irqrestore(&kbd_event_lock, flags);
1755		kfree(dia);
1756		return 0;
1757	}
1758
1759	case KDSKBDIACRUC:
1760	{
1761		struct kbdiacrsuc __user *a = udp;
1762		unsigned int ct;
1763		void *buf = NULL;
1764
1765		if (!perm)
1766			return -EPERM;
1767
1768		if (get_user(ct, &a->kb_cnt))
1769			return -EFAULT;
1770
1771		if (ct >= MAX_DIACR)
1772			return -EINVAL;
1773
1774		if (ct) {
1775			buf = memdup_user(a->kbdiacruc,
1776					  ct * sizeof(struct kbdiacruc));
1777			if (IS_ERR(buf))
1778				return PTR_ERR(buf);
1779		} 
1780		spin_lock_irqsave(&kbd_event_lock, flags);
1781		if (ct)
1782			memcpy(accent_table, buf,
1783					ct * sizeof(struct kbdiacruc));
1784		accent_table_size = ct;
1785		spin_unlock_irqrestore(&kbd_event_lock, flags);
1786		kfree(buf);
1787		return 0;
1788	}
1789	}
1790	return ret;
1791}
1792
1793/**
1794 *	vt_do_kdskbmode		-	set keyboard mode ioctl
1795 *	@console: the console to use
1796 *	@arg: the requested mode
1797 *
1798 *	Update the keyboard mode bits while holding the correct locks.
1799 *	Return 0 for success or an error code.
1800 */
1801int vt_do_kdskbmode(int console, unsigned int arg)
1802{
1803	struct kbd_struct *kb = kbd_table + console;
1804	int ret = 0;
1805	unsigned long flags;
1806
1807	spin_lock_irqsave(&kbd_event_lock, flags);
1808	switch(arg) {
1809	case K_RAW:
1810		kb->kbdmode = VC_RAW;
1811		break;
1812	case K_MEDIUMRAW:
1813		kb->kbdmode = VC_MEDIUMRAW;
1814		break;
1815	case K_XLATE:
1816		kb->kbdmode = VC_XLATE;
1817		do_compute_shiftstate();
1818		break;
1819	case K_UNICODE:
1820		kb->kbdmode = VC_UNICODE;
1821		do_compute_shiftstate();
1822		break;
1823	case K_OFF:
1824		kb->kbdmode = VC_OFF;
1825		break;
1826	default:
1827		ret = -EINVAL;
1828	}
1829	spin_unlock_irqrestore(&kbd_event_lock, flags);
1830	return ret;
1831}
1832
1833/**
1834 *	vt_do_kdskbmeta		-	set keyboard meta state
1835 *	@console: the console to use
1836 *	@arg: the requested meta state
1837 *
1838 *	Update the keyboard meta bits while holding the correct locks.
1839 *	Return 0 for success or an error code.
1840 */
1841int vt_do_kdskbmeta(int console, unsigned int arg)
1842{
1843	struct kbd_struct *kb = kbd_table + console;
1844	int ret = 0;
1845	unsigned long flags;
1846
1847	spin_lock_irqsave(&kbd_event_lock, flags);
1848	switch(arg) {
1849	case K_METABIT:
1850		clr_vc_kbd_mode(kb, VC_META);
1851		break;
1852	case K_ESCPREFIX:
1853		set_vc_kbd_mode(kb, VC_META);
1854		break;
1855	default:
1856		ret = -EINVAL;
1857	}
1858	spin_unlock_irqrestore(&kbd_event_lock, flags);
1859	return ret;
1860}
1861
1862int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1863								int perm)
1864{
1865	struct kbkeycode tmp;
1866	int kc = 0;
1867
1868	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1869		return -EFAULT;
1870	switch (cmd) {
1871	case KDGETKEYCODE:
1872		kc = getkeycode(tmp.scancode);
1873		if (kc >= 0)
1874			kc = put_user(kc, &user_kbkc->keycode);
1875		break;
1876	case KDSETKEYCODE:
1877		if (!perm)
1878			return -EPERM;
1879		kc = setkeycode(tmp.scancode, tmp.keycode);
1880		break;
1881	}
1882	return kc;
1883}
1884
1885#define i (tmp.kb_index)
1886#define s (tmp.kb_table)
1887#define v (tmp.kb_value)
1888
1889int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1890						int console)
1891{
1892	struct kbd_struct *kb = kbd_table + console;
1893	struct kbentry tmp;
1894	ushort *key_map, *new_map, val, ov;
1895	unsigned long flags;
1896
1897	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1898		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
1899
1900	if (!capable(CAP_SYS_TTY_CONFIG))
1901		perm = 0;
 
 
 
1902
1903	switch (cmd) {
1904	case KDGKBENT:
1905		/* Ensure another thread doesn't free it under us */
1906		spin_lock_irqsave(&kbd_event_lock, flags);
1907		key_map = key_maps[s];
1908		if (key_map) {
1909		    val = U(key_map[i]);
1910		    if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1911			val = K_HOLE;
1912		} else
1913		    val = (i ? K_HOLE : K_NOSUCHMAP);
1914		spin_unlock_irqrestore(&kbd_event_lock, flags);
1915		return put_user(val, &user_kbe->kb_value);
1916	case KDSKBENT:
1917		if (!perm)
1918			return -EPERM;
1919		if (!i && v == K_NOSUCHMAP) {
1920			spin_lock_irqsave(&kbd_event_lock, flags);
1921			/* deallocate map */
1922			key_map = key_maps[s];
1923			if (s && key_map) {
1924			    key_maps[s] = NULL;
1925			    if (key_map[0] == U(K_ALLOCATED)) {
1926					kfree(key_map);
1927					keymap_count--;
1928			    }
1929			}
1930			spin_unlock_irqrestore(&kbd_event_lock, flags);
1931			break;
1932		}
 
1933
1934		if (KTYP(v) < NR_TYPES) {
1935		    if (KVAL(v) > max_vals[KTYP(v)])
1936				return -EINVAL;
1937		} else
1938		    if (kb->kbdmode != VC_UNICODE)
1939				return -EINVAL;
 
 
1940
1941		/* ++Geert: non-PC keyboards may generate keycode zero */
1942#if !defined(__mc68000__) && !defined(__powerpc__)
1943		/* assignment to entry 0 only tests validity of args */
1944		if (!i)
1945			break;
1946#endif
1947
1948		new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1949		if (!new_map)
1950			return -ENOMEM;
1951		spin_lock_irqsave(&kbd_event_lock, flags);
1952		key_map = key_maps[s];
1953		if (key_map == NULL) {
1954			int j;
1955
1956			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1957			    !capable(CAP_SYS_RESOURCE)) {
1958				spin_unlock_irqrestore(&kbd_event_lock, flags);
1959				kfree(new_map);
1960				return -EPERM;
1961			}
1962			key_maps[s] = new_map;
1963			key_map = new_map;
1964			key_map[0] = U(K_ALLOCATED);
1965			for (j = 1; j < NR_KEYS; j++)
1966				key_map[j] = U(K_HOLE);
1967			keymap_count++;
1968		} else
1969			kfree(new_map);
1970
1971		ov = U(key_map[i]);
1972		if (v == ov)
1973			goto out;
1974		/*
1975		 * Attention Key.
1976		 */
1977		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1978			spin_unlock_irqrestore(&kbd_event_lock, flags);
 
1979			return -EPERM;
1980		}
1981		key_map[i] = U(v);
1982		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1983			do_compute_shiftstate();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1984out:
1985		spin_unlock_irqrestore(&kbd_event_lock, flags);
1986		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987	}
1988	return 0;
1989}
1990#undef i
1991#undef s
1992#undef v
1993
1994/* FIXME: This one needs untangling and locking */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1995int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1996{
1997	struct kbsentry *kbs;
1998	char *p;
1999	u_char *q;
2000	u_char __user *up;
2001	int sz, fnw_sz;
2002	int delta;
2003	char *first_free, *fj, *fnw;
2004	int i, j, k;
2005	int ret;
2006	unsigned long flags;
2007
2008	if (!capable(CAP_SYS_TTY_CONFIG))
2009		perm = 0;
2010
2011	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
2012	if (!kbs) {
2013		ret = -ENOMEM;
2014		goto reterr;
2015	}
2016
2017	/* we mostly copy too much here (512bytes), but who cares ;) */
2018	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
2019		ret = -EFAULT;
2020		goto reterr;
2021	}
2022	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
2023	i = array_index_nospec(kbs->kb_func, MAX_NR_FUNC);
2024
2025	switch (cmd) {
2026	case KDGKBSENT:
2027		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
2028						  a struct member */
2029		up = user_kdgkb->kb_string;
2030		p = func_table[i];
2031		if(p)
2032			for ( ; *p && sz; p++, sz--)
2033				if (put_user(*p, up++)) {
2034					ret = -EFAULT;
2035					goto reterr;
2036				}
2037		if (put_user('\0', up)) {
2038			ret = -EFAULT;
2039			goto reterr;
 
2040		}
2041		kfree(kbs);
2042		return ((p && *p) ? -EOVERFLOW : 0);
 
 
2043	case KDSKBSENT:
2044		if (!perm) {
2045			ret = -EPERM;
2046			goto reterr;
2047		}
 
 
 
2048
2049		fnw = NULL;
2050		fnw_sz = 0;
2051		/* race aginst other writers */
2052		again:
2053		spin_lock_irqsave(&func_buf_lock, flags);
2054		q = func_table[i];
 
2055
2056		/* fj pointer to next entry after 'q' */
2057		first_free = funcbufptr + (funcbufsize - funcbufleft);
2058		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2059			;
2060		if (j < MAX_NR_FUNC)
2061			fj = func_table[j];
2062		else
2063			fj = first_free;
2064		/* buffer usage increase by new entry */
2065		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2066
2067		if (delta <= funcbufleft) { 	/* it fits in current buf */
2068		    if (j < MAX_NR_FUNC) {
2069			/* make enough space for new entry at 'fj' */
2070			memmove(fj + delta, fj, first_free - fj);
2071			for (k = j; k < MAX_NR_FUNC; k++)
2072			    if (func_table[k])
2073				func_table[k] += delta;
2074		    }
2075		    if (!q)
2076		      func_table[i] = fj;
2077		    funcbufleft -= delta;
2078		} else {			/* allocate a larger buffer */
2079		    sz = 256;
2080		    while (sz < funcbufsize - funcbufleft + delta)
2081		      sz <<= 1;
2082		    if (fnw_sz != sz) {
2083		      spin_unlock_irqrestore(&func_buf_lock, flags);
2084		      kfree(fnw);
2085		      fnw = kmalloc(sz, GFP_KERNEL);
2086		      fnw_sz = sz;
2087		      if (!fnw) {
2088			ret = -ENOMEM;
2089			goto reterr;
2090		      }
2091		      goto again;
2092		    }
2093
2094		    if (!q)
2095		      func_table[i] = fj;
2096		    /* copy data before insertion point to new location */
2097		    if (fj > funcbufptr)
2098			memmove(fnw, funcbufptr, fj - funcbufptr);
2099		    for (k = 0; k < j; k++)
2100		      if (func_table[k])
2101			func_table[k] = fnw + (func_table[k] - funcbufptr);
2102
2103		    /* copy data after insertion point to new location */
2104		    if (first_free > fj) {
2105			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2106			for (k = j; k < MAX_NR_FUNC; k++)
2107			  if (func_table[k])
2108			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2109		    }
2110		    if (funcbufptr != func_buf)
2111		      kfree(funcbufptr);
2112		    funcbufptr = fnw;
2113		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
2114		    funcbufsize = sz;
2115		}
2116		/* finally insert item itself */
2117		strcpy(func_table[i], kbs->kb_string);
2118		spin_unlock_irqrestore(&func_buf_lock, flags);
2119		break;
2120	}
2121	ret = 0;
2122reterr:
2123	kfree(kbs);
 
2124	return ret;
2125}
2126
2127int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2128{
2129	struct kbd_struct *kb = kbd_table + console;
2130        unsigned long flags;
2131	unsigned char ucval;
2132
2133        switch(cmd) {
2134	/* the ioctls below read/set the flags usually shown in the leds */
2135	/* don't use them - they will go away without warning */
2136	case KDGKBLED:
2137                spin_lock_irqsave(&kbd_event_lock, flags);
2138		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2139                spin_unlock_irqrestore(&kbd_event_lock, flags);
2140		return put_user(ucval, (char __user *)arg);
2141
2142	case KDSKBLED:
2143		if (!perm)
2144			return -EPERM;
2145		if (arg & ~0x77)
2146			return -EINVAL;
2147                spin_lock_irqsave(&led_lock, flags);
2148		kb->ledflagstate = (arg & 7);
2149		kb->default_ledflagstate = ((arg >> 4) & 7);
2150		set_leds();
2151                spin_unlock_irqrestore(&led_lock, flags);
2152		return 0;
2153
2154	/* the ioctls below only set the lights, not the functions */
2155	/* for those, see KDGKBLED and KDSKBLED above */
2156	case KDGETLED:
2157		ucval = getledstate();
2158		return put_user(ucval, (char __user *)arg);
2159
2160	case KDSETLED:
2161		if (!perm)
2162			return -EPERM;
2163		setledstate(kb, arg);
2164		return 0;
2165        }
2166        return -ENOIOCTLCMD;
2167}
2168
2169int vt_do_kdgkbmode(int console)
2170{
2171	struct kbd_struct *kb = kbd_table + console;
2172	/* This is a spot read so needs no locking */
2173	switch (kb->kbdmode) {
2174	case VC_RAW:
2175		return K_RAW;
2176	case VC_MEDIUMRAW:
2177		return K_MEDIUMRAW;
2178	case VC_UNICODE:
2179		return K_UNICODE;
2180	case VC_OFF:
2181		return K_OFF;
2182	default:
2183		return K_XLATE;
2184	}
2185}
2186
2187/**
2188 *	vt_do_kdgkbmeta		-	report meta status
2189 *	@console: console to report
2190 *
2191 *	Report the meta flag status of this console
2192 */
2193int vt_do_kdgkbmeta(int console)
2194{
2195	struct kbd_struct *kb = kbd_table + console;
2196        /* Again a spot read so no locking */
2197	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2198}
2199
2200/**
2201 *	vt_reset_unicode	-	reset the unicode status
2202 *	@console: console being reset
2203 *
2204 *	Restore the unicode console state to its default
2205 */
2206void vt_reset_unicode(int console)
2207{
2208	unsigned long flags;
2209
2210	spin_lock_irqsave(&kbd_event_lock, flags);
2211	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2212	spin_unlock_irqrestore(&kbd_event_lock, flags);
2213}
2214
2215/**
2216 *	vt_get_shiftstate	-	shift bit state
2217 *
2218 *	Report the shift bits from the keyboard state. We have to export
2219 *	this to support some oddities in the vt layer.
2220 */
2221int vt_get_shift_state(void)
2222{
2223        /* Don't lock as this is a transient report */
2224        return shift_state;
2225}
2226
2227/**
2228 *	vt_reset_keyboard	-	reset keyboard state
2229 *	@console: console to reset
2230 *
2231 *	Reset the keyboard bits for a console as part of a general console
2232 *	reset event
2233 */
2234void vt_reset_keyboard(int console)
2235{
2236	struct kbd_struct *kb = kbd_table + console;
2237	unsigned long flags;
2238
2239	spin_lock_irqsave(&kbd_event_lock, flags);
2240	set_vc_kbd_mode(kb, VC_REPEAT);
2241	clr_vc_kbd_mode(kb, VC_CKMODE);
2242	clr_vc_kbd_mode(kb, VC_APPLIC);
2243	clr_vc_kbd_mode(kb, VC_CRLF);
2244	kb->lockstate = 0;
2245	kb->slockstate = 0;
2246	spin_lock(&led_lock);
2247	kb->ledmode = LED_SHOW_FLAGS;
2248	kb->ledflagstate = kb->default_ledflagstate;
2249	spin_unlock(&led_lock);
2250	/* do not do set_leds here because this causes an endless tasklet loop
2251	   when the keyboard hasn't been initialized yet */
2252	spin_unlock_irqrestore(&kbd_event_lock, flags);
2253}
2254
2255/**
2256 *	vt_get_kbd_mode_bit	-	read keyboard status bits
2257 *	@console: console to read from
2258 *	@bit: mode bit to read
2259 *
2260 *	Report back a vt mode bit. We do this without locking so the
2261 *	caller must be sure that there are no synchronization needs
2262 */
2263
2264int vt_get_kbd_mode_bit(int console, int bit)
2265{
2266	struct kbd_struct *kb = kbd_table + console;
2267	return vc_kbd_mode(kb, bit);
2268}
2269
2270/**
2271 *	vt_set_kbd_mode_bit	-	read keyboard status bits
2272 *	@console: console to read from
2273 *	@bit: mode bit to read
2274 *
2275 *	Set a vt mode bit. We do this without locking so the
2276 *	caller must be sure that there are no synchronization needs
2277 */
2278
2279void vt_set_kbd_mode_bit(int console, int bit)
2280{
2281	struct kbd_struct *kb = kbd_table + console;
2282	unsigned long flags;
2283
2284	spin_lock_irqsave(&kbd_event_lock, flags);
2285	set_vc_kbd_mode(kb, bit);
2286	spin_unlock_irqrestore(&kbd_event_lock, flags);
2287}
2288
2289/**
2290 *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2291 *	@console: console to read from
2292 *	@bit: mode bit to read
2293 *
2294 *	Report back a vt mode bit. We do this without locking so the
2295 *	caller must be sure that there are no synchronization needs
2296 */
2297
2298void vt_clr_kbd_mode_bit(int console, int bit)
2299{
2300	struct kbd_struct *kb = kbd_table + console;
2301	unsigned long flags;
2302
2303	spin_lock_irqsave(&kbd_event_lock, flags);
2304	clr_vc_kbd_mode(kb, bit);
2305	spin_unlock_irqrestore(&kbd_event_lock, flags);
2306}