Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2012 - 2014 Allwinner Tech
  4 * Pan Nan <pannan@allwinnertech.com>
  5 *
  6 * Copyright (C) 2014 Maxime Ripard
  7 * Maxime Ripard <maxime.ripard@free-electrons.com>
  8 */
  9
 10#include <linux/bitfield.h>
 11#include <linux/clk.h>
 12#include <linux/delay.h>
 13#include <linux/device.h>
 14#include <linux/interrupt.h>
 15#include <linux/io.h>
 16#include <linux/module.h>
 17#include <linux/of.h>
 18#include <linux/platform_device.h>
 19#include <linux/pm_runtime.h>
 20#include <linux/reset.h>
 21#include <linux/dmaengine.h>
 22
 23#include <linux/spi/spi.h>
 24
 25#define SUN6I_AUTOSUSPEND_TIMEOUT	2000
 26
 27#define SUN6I_FIFO_DEPTH		128
 28#define SUN8I_FIFO_DEPTH		64
 29
 30#define SUN6I_GBL_CTL_REG		0x04
 31#define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
 32#define SUN6I_GBL_CTL_MASTER			BIT(1)
 33#define SUN6I_GBL_CTL_TP			BIT(7)
 34#define SUN6I_GBL_CTL_RST			BIT(31)
 35
 36#define SUN6I_TFR_CTL_REG		0x08
 37#define SUN6I_TFR_CTL_CPHA			BIT(0)
 38#define SUN6I_TFR_CTL_CPOL			BIT(1)
 39#define SUN6I_TFR_CTL_SPOL			BIT(2)
 40#define SUN6I_TFR_CTL_CS_MASK			0x30
 41#define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
 42#define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
 43#define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
 44#define SUN6I_TFR_CTL_DHB			BIT(8)
 45#define SUN6I_TFR_CTL_SDC			BIT(11)
 46#define SUN6I_TFR_CTL_FBS			BIT(12)
 47#define SUN6I_TFR_CTL_SDM			BIT(13)
 48#define SUN6I_TFR_CTL_XCH			BIT(31)
 49
 50#define SUN6I_INT_CTL_REG		0x10
 51#define SUN6I_INT_CTL_RF_RDY			BIT(0)
 52#define SUN6I_INT_CTL_TF_ERQ			BIT(4)
 53#define SUN6I_INT_CTL_RF_OVF			BIT(8)
 54#define SUN6I_INT_CTL_TC			BIT(12)
 55
 56#define SUN6I_INT_STA_REG		0x14
 57
 58#define SUN6I_FIFO_CTL_REG		0x18
 59#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
 60#define SUN6I_FIFO_CTL_RF_DRQ_EN		BIT(8)
 61#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
 62#define SUN6I_FIFO_CTL_RF_RST			BIT(15)
 63#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
 64#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
 65#define SUN6I_FIFO_CTL_TF_DRQ_EN		BIT(24)
 66#define SUN6I_FIFO_CTL_TF_RST			BIT(31)
 67
 68#define SUN6I_FIFO_STA_REG		0x1c
 69#define SUN6I_FIFO_STA_RF_CNT_MASK		GENMASK(7, 0)
 70#define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16)
 71
 72#define SUN6I_CLK_CTL_REG		0x24
 73#define SUN6I_CLK_CTL_CDR2_MASK			0xff
 74#define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
 75#define SUN6I_CLK_CTL_CDR1_MASK			0xf
 76#define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
 77#define SUN6I_CLK_CTL_DRS			BIT(12)
 78
 79#define SUN6I_MAX_XFER_SIZE		0xffffff
 80
 81#define SUN6I_BURST_CNT_REG		0x30
 82
 83#define SUN6I_XMIT_CNT_REG		0x34
 84
 85#define SUN6I_BURST_CTL_CNT_REG		0x38
 86#define SUN6I_BURST_CTL_CNT_STC_MASK		GENMASK(23, 0)
 87#define SUN6I_BURST_CTL_CNT_DRM			BIT(28)
 88#define SUN6I_BURST_CTL_CNT_QUAD_EN		BIT(29)
 89
 90#define SUN6I_TXDATA_REG		0x200
 91#define SUN6I_RXDATA_REG		0x300
 92
 93struct sun6i_spi_cfg {
 94	unsigned long		fifo_depth;
 95	bool			has_clk_ctl;
 96	u32			mode_bits;
 97};
 98
 99struct sun6i_spi {
100	struct spi_controller	*host;
101	void __iomem		*base_addr;
102	dma_addr_t		dma_addr_rx;
103	dma_addr_t		dma_addr_tx;
104	struct clk		*hclk;
105	struct clk		*mclk;
106	struct reset_control	*rstc;
107
108	struct completion	done;
109	struct completion	dma_rx_done;
110
111	const u8		*tx_buf;
112	u8			*rx_buf;
113	int			len;
114	const struct sun6i_spi_cfg *cfg;
115};
116
117static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
118{
119	return readl(sspi->base_addr + reg);
120}
121
122static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
123{
124	writel(value, sspi->base_addr + reg);
125}
126
127static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
128{
129	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
130
131	return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
132}
133
134static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
135{
136	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
137
138	return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
139}
140
141static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
142{
143	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
144
145	reg &= ~mask;
146	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
147}
148
149static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
150{
151	u32 len;
152	u8 byte;
153
154	/* See how much data is available */
155	len = sun6i_spi_get_rx_fifo_count(sspi);
156
157	while (len--) {
158		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
159		if (sspi->rx_buf)
160			*sspi->rx_buf++ = byte;
161	}
162}
163
164static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
165{
166	u32 cnt;
167	int len;
168	u8 byte;
169
170	/* See how much data we can fit */
171	cnt = sspi->cfg->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
172
173	len = min((int)cnt, sspi->len);
174
175	while (len--) {
176		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
177		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
178		sspi->len--;
179	}
180}
181
182static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
183{
184	struct sun6i_spi *sspi = spi_controller_get_devdata(spi->controller);
185	u32 reg;
186
187	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
188	reg &= ~SUN6I_TFR_CTL_CS_MASK;
189	reg |= SUN6I_TFR_CTL_CS(spi_get_chipselect(spi, 0));
190
191	if (enable)
192		reg |= SUN6I_TFR_CTL_CS_LEVEL;
193	else
194		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
195
196	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
197}
198
199static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
200{
201	return SUN6I_MAX_XFER_SIZE - 1;
202}
203
204static void sun6i_spi_dma_rx_cb(void *param)
205{
206	struct sun6i_spi *sspi = param;
207
208	complete(&sspi->dma_rx_done);
209}
210
211static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
212				 struct spi_transfer *tfr)
213{
214	struct dma_async_tx_descriptor *rxdesc, *txdesc;
215	struct spi_controller *host = sspi->host;
216
217	rxdesc = NULL;
218	if (tfr->rx_buf) {
219		struct dma_slave_config rxconf = {
220			.direction = DMA_DEV_TO_MEM,
221			.src_addr = sspi->dma_addr_rx,
222			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
223			.src_maxburst = 8,
224		};
225
226		dmaengine_slave_config(host->dma_rx, &rxconf);
227
228		rxdesc = dmaengine_prep_slave_sg(host->dma_rx,
229						 tfr->rx_sg.sgl,
230						 tfr->rx_sg.nents,
231						 DMA_DEV_TO_MEM,
232						 DMA_PREP_INTERRUPT);
233		if (!rxdesc)
234			return -EINVAL;
235		rxdesc->callback_param = sspi;
236		rxdesc->callback = sun6i_spi_dma_rx_cb;
237	}
238
239	txdesc = NULL;
240	if (tfr->tx_buf) {
241		struct dma_slave_config txconf = {
242			.direction = DMA_MEM_TO_DEV,
243			.dst_addr = sspi->dma_addr_tx,
244			.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
245			.dst_maxburst = 8,
246		};
247
248		dmaengine_slave_config(host->dma_tx, &txconf);
249
250		txdesc = dmaengine_prep_slave_sg(host->dma_tx,
251						 tfr->tx_sg.sgl,
252						 tfr->tx_sg.nents,
253						 DMA_MEM_TO_DEV,
254						 DMA_PREP_INTERRUPT);
255		if (!txdesc) {
256			if (rxdesc)
257				dmaengine_terminate_sync(host->dma_rx);
258			return -EINVAL;
259		}
260	}
261
262	if (tfr->rx_buf) {
263		dmaengine_submit(rxdesc);
264		dma_async_issue_pending(host->dma_rx);
265	}
266
267	if (tfr->tx_buf) {
268		dmaengine_submit(txdesc);
269		dma_async_issue_pending(host->dma_tx);
270	}
271
272	return 0;
273}
274
275static int sun6i_spi_transfer_one(struct spi_controller *host,
276				  struct spi_device *spi,
277				  struct spi_transfer *tfr)
278{
279	struct sun6i_spi *sspi = spi_controller_get_devdata(host);
280	unsigned int div, div_cdr1, div_cdr2, timeout;
281	unsigned int start, end, tx_time;
282	unsigned int trig_level;
283	unsigned int tx_len = 0, rx_len = 0, nbits = 0;
284	bool use_dma;
285	int ret = 0;
286	u32 reg;
287
288	if (tfr->len > SUN6I_MAX_XFER_SIZE)
289		return -EINVAL;
290
291	reinit_completion(&sspi->done);
292	reinit_completion(&sspi->dma_rx_done);
293	sspi->tx_buf = tfr->tx_buf;
294	sspi->rx_buf = tfr->rx_buf;
295	sspi->len = tfr->len;
296	use_dma = host->can_dma ? host->can_dma(host, spi, tfr) : false;
297
298	/* Clear pending interrupts */
299	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
300
301	/* Reset FIFO */
302	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
303			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
304
305	reg = 0;
306
307	if (!use_dma) {
308		/*
309		 * Setup FIFO interrupt trigger level
310		 * Here we choose 3/4 of the full fifo depth, as it's
311		 * the hardcoded value used in old generation of Allwinner
312		 * SPI controller. (See spi-sun4i.c)
313		 */
314		trig_level = sspi->cfg->fifo_depth / 4 * 3;
315	} else {
316		/*
317		 * Setup FIFO DMA request trigger level
318		 * We choose 1/2 of the full fifo depth, that value will
319		 * be used as DMA burst length.
320		 */
321		trig_level = sspi->cfg->fifo_depth / 2;
322
323		if (tfr->tx_buf)
324			reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
325		if (tfr->rx_buf)
326			reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
327	}
328
329	reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
330	       (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
331
332	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
333
334	/*
335	 * Setup the transfer control register: Chip Select,
336	 * polarities, etc.
337	 */
338	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
339
340	if (spi->mode & SPI_CPOL)
341		reg |= SUN6I_TFR_CTL_CPOL;
342	else
343		reg &= ~SUN6I_TFR_CTL_CPOL;
344
345	if (spi->mode & SPI_CPHA)
346		reg |= SUN6I_TFR_CTL_CPHA;
347	else
348		reg &= ~SUN6I_TFR_CTL_CPHA;
349
350	if (spi->mode & SPI_LSB_FIRST)
351		reg |= SUN6I_TFR_CTL_FBS;
352	else
353		reg &= ~SUN6I_TFR_CTL_FBS;
354
355	/*
356	 * If it's a TX only transfer, we don't want to fill the RX
357	 * FIFO with bogus data
358	 */
359	if (sspi->rx_buf) {
360		reg &= ~SUN6I_TFR_CTL_DHB;
361		rx_len = tfr->len;
362	} else {
363		reg |= SUN6I_TFR_CTL_DHB;
364	}
365
366	/* We want to control the chip select manually */
367	reg |= SUN6I_TFR_CTL_CS_MANUAL;
368
369	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
370
371	if (sspi->cfg->has_clk_ctl) {
372		unsigned int mclk_rate = clk_get_rate(sspi->mclk);
373
374		/* Ensure that we have a parent clock fast enough */
375		if (mclk_rate < (2 * tfr->speed_hz)) {
376			clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
377			mclk_rate = clk_get_rate(sspi->mclk);
378		}
379
380		/*
381		 * Setup clock divider.
382		 *
383		 * We have two choices there. Either we can use the clock
384		 * divide rate 1, which is calculated thanks to this formula:
385		 * SPI_CLK = MOD_CLK / (2 ^ cdr)
386		 * Or we can use CDR2, which is calculated with the formula:
387		 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
388		 * Wether we use the former or the latter is set through the
389		 * DRS bit.
390		 *
391		 * First try CDR2, and if we can't reach the expected
392		 * frequency, fall back to CDR1.
393		 */
394		div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
395		div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
396		if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
397			reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
398			tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
399		} else {
400			div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
401			reg = SUN6I_CLK_CTL_CDR1(div);
402			tfr->effective_speed_hz = mclk_rate / (1 << div);
403		}
404
405		sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406	} else {
407		clk_set_rate(sspi->mclk, tfr->speed_hz);
408		tfr->effective_speed_hz = clk_get_rate(sspi->mclk);
 
 
409
410		/*
411		 * Configure work mode.
412		 *
413		 * There are three work modes depending on the controller clock
414		 * frequency:
415		 * - normal sample mode           : CLK <= 24MHz SDM=1 SDC=0
416		 * - delay half-cycle sample mode : CLK <= 40MHz SDM=0 SDC=0
417		 * - delay one-cycle sample mode  : CLK >= 80MHz SDM=0 SDC=1
418		 */
419		reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
420		reg &= ~(SUN6I_TFR_CTL_SDM | SUN6I_TFR_CTL_SDC);
421
422		if (tfr->effective_speed_hz <= 24000000)
423			reg |= SUN6I_TFR_CTL_SDM;
424		else if (tfr->effective_speed_hz >= 80000000)
425			reg |= SUN6I_TFR_CTL_SDC;
426
427		sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
428	}
429
430	/* Finally enable the bus - doing so before might raise SCK to HIGH */
431	reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
432	reg |= SUN6I_GBL_CTL_BUS_ENABLE;
433	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
434
435	/* Setup the transfer now... */
436	if (sspi->tx_buf) {
437		tx_len = tfr->len;
438		nbits = tfr->tx_nbits;
439	} else if (tfr->rx_buf) {
440		nbits = tfr->rx_nbits;
441	}
442
443	switch (nbits) {
444	case SPI_NBITS_DUAL:
445		reg = SUN6I_BURST_CTL_CNT_DRM;
446		break;
447	case SPI_NBITS_QUAD:
448		reg = SUN6I_BURST_CTL_CNT_QUAD_EN;
449		break;
450	case SPI_NBITS_SINGLE:
451	default:
452		reg = FIELD_PREP(SUN6I_BURST_CTL_CNT_STC_MASK, tx_len);
453	}
454
455	/* Setup the counters */
456	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, reg);
457	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
458	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
 
459
460	if (!use_dma) {
461		/* Fill the TX FIFO */
462		sun6i_spi_fill_fifo(sspi);
463	} else {
464		ret = sun6i_spi_prepare_dma(sspi, tfr);
465		if (ret) {
466			dev_warn(&host->dev,
467				 "%s: prepare DMA failed, ret=%d",
468				 dev_name(&spi->dev), ret);
469			return ret;
470		}
471	}
472
473	/* Enable the interrupts */
474	reg = SUN6I_INT_CTL_TC;
475
476	if (!use_dma) {
477		if (rx_len > sspi->cfg->fifo_depth)
478			reg |= SUN6I_INT_CTL_RF_RDY;
479		if (tx_len > sspi->cfg->fifo_depth)
480			reg |= SUN6I_INT_CTL_TF_ERQ;
481	}
482
483	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
484
485	/* Start the transfer */
486	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
487	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
488
489	tx_time = spi_controller_xfer_timeout(host, tfr);
490	start = jiffies;
491	timeout = wait_for_completion_timeout(&sspi->done,
492					      msecs_to_jiffies(tx_time));
493
494	if (!use_dma) {
495		sun6i_spi_drain_fifo(sspi);
496	} else {
497		if (timeout && rx_len) {
498			/*
499			 * Even though RX on the peripheral side has finished
500			 * RX DMA might still be in flight
501			 */
502			timeout = wait_for_completion_timeout(&sspi->dma_rx_done,
503							      timeout);
504			if (!timeout)
505				dev_warn(&host->dev, "RX DMA timeout\n");
506		}
507	}
508
509	end = jiffies;
510	if (!timeout) {
511		dev_warn(&host->dev,
512			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
513			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
514			 jiffies_to_msecs(end - start), tx_time);
515		ret = -ETIMEDOUT;
516	}
517
518	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
519
520	if (ret && use_dma) {
521		dmaengine_terminate_sync(host->dma_rx);
522		dmaengine_terminate_sync(host->dma_tx);
523	}
524
525	return ret;
526}
527
528static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
529{
530	struct sun6i_spi *sspi = dev_id;
531	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
532
533	/* Transfer complete */
534	if (status & SUN6I_INT_CTL_TC) {
535		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
 
536		complete(&sspi->done);
537		return IRQ_HANDLED;
538	}
539
540	/* Receive FIFO 3/4 full */
541	if (status & SUN6I_INT_CTL_RF_RDY) {
542		sun6i_spi_drain_fifo(sspi);
543		/* Only clear the interrupt _after_ draining the FIFO */
544		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
545		return IRQ_HANDLED;
546	}
547
548	/* Transmit FIFO 3/4 empty */
549	if (status & SUN6I_INT_CTL_TF_ERQ) {
550		sun6i_spi_fill_fifo(sspi);
551
552		if (!sspi->len)
553			/* nothing left to transmit */
554			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
555
556		/* Only clear the interrupt _after_ re-seeding the FIFO */
557		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
558
559		return IRQ_HANDLED;
560	}
561
562	return IRQ_NONE;
563}
564
565static int sun6i_spi_runtime_resume(struct device *dev)
566{
567	struct spi_controller *host = dev_get_drvdata(dev);
568	struct sun6i_spi *sspi = spi_controller_get_devdata(host);
569	int ret;
570
571	ret = clk_prepare_enable(sspi->hclk);
572	if (ret) {
573		dev_err(dev, "Couldn't enable AHB clock\n");
574		goto out;
575	}
576
577	ret = clk_prepare_enable(sspi->mclk);
578	if (ret) {
579		dev_err(dev, "Couldn't enable module clock\n");
580		goto err;
581	}
582
583	ret = reset_control_deassert(sspi->rstc);
584	if (ret) {
585		dev_err(dev, "Couldn't deassert the device from reset\n");
586		goto err2;
587	}
588
589	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
590			SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
591
592	return 0;
593
594err2:
595	clk_disable_unprepare(sspi->mclk);
596err:
597	clk_disable_unprepare(sspi->hclk);
598out:
599	return ret;
600}
601
602static int sun6i_spi_runtime_suspend(struct device *dev)
603{
604	struct spi_controller *host = dev_get_drvdata(dev);
605	struct sun6i_spi *sspi = spi_controller_get_devdata(host);
606
607	reset_control_assert(sspi->rstc);
608	clk_disable_unprepare(sspi->mclk);
609	clk_disable_unprepare(sspi->hclk);
610
611	return 0;
612}
613
614static bool sun6i_spi_can_dma(struct spi_controller *host,
615			      struct spi_device *spi,
616			      struct spi_transfer *xfer)
617{
618	struct sun6i_spi *sspi = spi_controller_get_devdata(host);
619
620	/*
621	 * If the number of spi words to transfer is less or equal than
622	 * the fifo length we can just fill the fifo and wait for a single
623	 * irq, so don't bother setting up dma
624	 */
625	return xfer->len > sspi->cfg->fifo_depth;
626}
627
628static int sun6i_spi_probe(struct platform_device *pdev)
629{
630	struct spi_controller *host;
631	struct sun6i_spi *sspi;
632	struct resource *mem;
633	int ret = 0, irq;
634
635	host = spi_alloc_host(&pdev->dev, sizeof(struct sun6i_spi));
636	if (!host) {
637		dev_err(&pdev->dev, "Unable to allocate SPI Host\n");
638		return -ENOMEM;
639	}
640
641	platform_set_drvdata(pdev, host);
642	sspi = spi_controller_get_devdata(host);
643
644	sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
645	if (IS_ERR(sspi->base_addr)) {
646		ret = PTR_ERR(sspi->base_addr);
647		goto err_free_host;
648	}
649
650	irq = platform_get_irq(pdev, 0);
651	if (irq < 0) {
652		ret = -ENXIO;
653		goto err_free_host;
654	}
655
656	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
657			       0, "sun6i-spi", sspi);
658	if (ret) {
659		dev_err(&pdev->dev, "Cannot request IRQ\n");
660		goto err_free_host;
661	}
662
663	sspi->host = host;
664	sspi->cfg = of_device_get_match_data(&pdev->dev);
665
666	host->max_speed_hz = 100 * 1000 * 1000;
667	host->min_speed_hz = 3 * 1000;
668	host->use_gpio_descriptors = true;
669	host->set_cs = sun6i_spi_set_cs;
670	host->transfer_one = sun6i_spi_transfer_one;
671	host->num_chipselect = 4;
672	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
673			  sspi->cfg->mode_bits;
674	host->bits_per_word_mask = SPI_BPW_MASK(8);
675	host->dev.of_node = pdev->dev.of_node;
676	host->auto_runtime_pm = true;
677	host->max_transfer_size = sun6i_spi_max_transfer_size;
678
679	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
680	if (IS_ERR(sspi->hclk)) {
681		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
682		ret = PTR_ERR(sspi->hclk);
683		goto err_free_host;
684	}
685
686	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
687	if (IS_ERR(sspi->mclk)) {
688		dev_err(&pdev->dev, "Unable to acquire module clock\n");
689		ret = PTR_ERR(sspi->mclk);
690		goto err_free_host;
691	}
692
693	init_completion(&sspi->done);
694	init_completion(&sspi->dma_rx_done);
695
696	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
697	if (IS_ERR(sspi->rstc)) {
698		dev_err(&pdev->dev, "Couldn't get reset controller\n");
699		ret = PTR_ERR(sspi->rstc);
700		goto err_free_host;
701	}
702
703	host->dma_tx = dma_request_chan(&pdev->dev, "tx");
704	if (IS_ERR(host->dma_tx)) {
705		/* Check tx to see if we need defer probing driver */
706		if (PTR_ERR(host->dma_tx) == -EPROBE_DEFER) {
707			ret = -EPROBE_DEFER;
708			goto err_free_host;
709		}
710		dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
711		host->dma_tx = NULL;
712	}
713
714	host->dma_rx = dma_request_chan(&pdev->dev, "rx");
715	if (IS_ERR(host->dma_rx)) {
716		if (PTR_ERR(host->dma_rx) == -EPROBE_DEFER) {
717			ret = -EPROBE_DEFER;
718			goto err_free_dma_tx;
719		}
720		dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
721		host->dma_rx = NULL;
722	}
723
724	if (host->dma_tx && host->dma_rx) {
725		sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
726		sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
727		host->can_dma = sun6i_spi_can_dma;
728	}
729
730	/*
731	 * This wake-up/shutdown pattern is to be able to have the
732	 * device woken up, even if runtime_pm is disabled
733	 */
734	ret = sun6i_spi_runtime_resume(&pdev->dev);
735	if (ret) {
736		dev_err(&pdev->dev, "Couldn't resume the device\n");
737		goto err_free_dma_rx;
738	}
739
740	pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
741	pm_runtime_use_autosuspend(&pdev->dev);
742	pm_runtime_set_active(&pdev->dev);
743	pm_runtime_enable(&pdev->dev);
 
744
745	ret = devm_spi_register_controller(&pdev->dev, host);
746	if (ret) {
747		dev_err(&pdev->dev, "cannot register SPI host\n");
748		goto err_pm_disable;
749	}
750
751	return 0;
752
753err_pm_disable:
754	pm_runtime_disable(&pdev->dev);
755	sun6i_spi_runtime_suspend(&pdev->dev);
756err_free_dma_rx:
757	if (host->dma_rx)
758		dma_release_channel(host->dma_rx);
759err_free_dma_tx:
760	if (host->dma_tx)
761		dma_release_channel(host->dma_tx);
762err_free_host:
763	spi_controller_put(host);
764	return ret;
765}
766
767static void sun6i_spi_remove(struct platform_device *pdev)
768{
769	struct spi_controller *host = platform_get_drvdata(pdev);
770
771	pm_runtime_force_suspend(&pdev->dev);
772
773	if (host->dma_tx)
774		dma_release_channel(host->dma_tx);
775	if (host->dma_rx)
776		dma_release_channel(host->dma_rx);
777}
778
779static const struct sun6i_spi_cfg sun6i_a31_spi_cfg = {
780	.fifo_depth	= SUN6I_FIFO_DEPTH,
781	.has_clk_ctl	= true,
782};
783
784static const struct sun6i_spi_cfg sun8i_h3_spi_cfg = {
785	.fifo_depth	= SUN8I_FIFO_DEPTH,
786	.has_clk_ctl	= true,
787};
788
789static const struct sun6i_spi_cfg sun50i_r329_spi_cfg = {
790	.fifo_depth	= SUN8I_FIFO_DEPTH,
791	.mode_bits	= SPI_RX_DUAL | SPI_TX_DUAL | SPI_RX_QUAD | SPI_TX_QUAD,
792};
793
794static const struct of_device_id sun6i_spi_match[] = {
795	{ .compatible = "allwinner,sun6i-a31-spi", .data = &sun6i_a31_spi_cfg },
796	{ .compatible = "allwinner,sun8i-h3-spi",  .data = &sun8i_h3_spi_cfg },
797	{
798		.compatible = "allwinner,sun50i-r329-spi",
799		.data = &sun50i_r329_spi_cfg
800	},
801	{}
802};
803MODULE_DEVICE_TABLE(of, sun6i_spi_match);
804
805static const struct dev_pm_ops sun6i_spi_pm_ops = {
806	.runtime_resume		= sun6i_spi_runtime_resume,
807	.runtime_suspend	= sun6i_spi_runtime_suspend,
808};
809
810static struct platform_driver sun6i_spi_driver = {
811	.probe	= sun6i_spi_probe,
812	.remove_new = sun6i_spi_remove,
813	.driver	= {
814		.name		= "sun6i-spi",
815		.of_match_table	= sun6i_spi_match,
816		.pm		= &sun6i_spi_pm_ops,
817	},
818};
819module_platform_driver(sun6i_spi_driver);
820
821MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
822MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
823MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
824MODULE_LICENSE("GPL");
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2012 - 2014 Allwinner Tech
  4 * Pan Nan <pannan@allwinnertech.com>
  5 *
  6 * Copyright (C) 2014 Maxime Ripard
  7 * Maxime Ripard <maxime.ripard@free-electrons.com>
  8 */
  9
 10#include <linux/bitfield.h>
 11#include <linux/clk.h>
 12#include <linux/delay.h>
 13#include <linux/device.h>
 14#include <linux/interrupt.h>
 15#include <linux/io.h>
 16#include <linux/module.h>
 17#include <linux/of_device.h>
 18#include <linux/platform_device.h>
 19#include <linux/pm_runtime.h>
 20#include <linux/reset.h>
 
 21
 22#include <linux/spi/spi.h>
 23
 
 
 24#define SUN6I_FIFO_DEPTH		128
 25#define SUN8I_FIFO_DEPTH		64
 26
 27#define SUN6I_GBL_CTL_REG		0x04
 28#define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
 29#define SUN6I_GBL_CTL_MASTER			BIT(1)
 30#define SUN6I_GBL_CTL_TP			BIT(7)
 31#define SUN6I_GBL_CTL_RST			BIT(31)
 32
 33#define SUN6I_TFR_CTL_REG		0x08
 34#define SUN6I_TFR_CTL_CPHA			BIT(0)
 35#define SUN6I_TFR_CTL_CPOL			BIT(1)
 36#define SUN6I_TFR_CTL_SPOL			BIT(2)
 37#define SUN6I_TFR_CTL_CS_MASK			0x30
 38#define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
 39#define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
 40#define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
 41#define SUN6I_TFR_CTL_DHB			BIT(8)
 
 42#define SUN6I_TFR_CTL_FBS			BIT(12)
 
 43#define SUN6I_TFR_CTL_XCH			BIT(31)
 44
 45#define SUN6I_INT_CTL_REG		0x10
 46#define SUN6I_INT_CTL_RF_RDY			BIT(0)
 47#define SUN6I_INT_CTL_TF_ERQ			BIT(4)
 48#define SUN6I_INT_CTL_RF_OVF			BIT(8)
 49#define SUN6I_INT_CTL_TC			BIT(12)
 50
 51#define SUN6I_INT_STA_REG		0x14
 52
 53#define SUN6I_FIFO_CTL_REG		0x18
 54#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
 
 55#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
 56#define SUN6I_FIFO_CTL_RF_RST			BIT(15)
 57#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
 58#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
 
 59#define SUN6I_FIFO_CTL_TF_RST			BIT(31)
 60
 61#define SUN6I_FIFO_STA_REG		0x1c
 62#define SUN6I_FIFO_STA_RF_CNT_MASK		GENMASK(7, 0)
 63#define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16)
 64
 65#define SUN6I_CLK_CTL_REG		0x24
 66#define SUN6I_CLK_CTL_CDR2_MASK			0xff
 67#define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
 68#define SUN6I_CLK_CTL_CDR1_MASK			0xf
 69#define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
 70#define SUN6I_CLK_CTL_DRS			BIT(12)
 71
 72#define SUN6I_MAX_XFER_SIZE		0xffffff
 73
 74#define SUN6I_BURST_CNT_REG		0x30
 75
 76#define SUN6I_XMIT_CNT_REG		0x34
 77
 78#define SUN6I_BURST_CTL_CNT_REG		0x38
 
 
 
 79
 80#define SUN6I_TXDATA_REG		0x200
 81#define SUN6I_RXDATA_REG		0x300
 82
 
 
 
 
 
 
 83struct sun6i_spi {
 84	struct spi_master	*master;
 85	void __iomem		*base_addr;
 
 
 86	struct clk		*hclk;
 87	struct clk		*mclk;
 88	struct reset_control	*rstc;
 89
 90	struct completion	done;
 
 91
 92	const u8		*tx_buf;
 93	u8			*rx_buf;
 94	int			len;
 95	unsigned long		fifo_depth;
 96};
 97
 98static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
 99{
100	return readl(sspi->base_addr + reg);
101}
102
103static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
104{
105	writel(value, sspi->base_addr + reg);
106}
107
108static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
109{
110	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
111
112	return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
113}
114
115static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
116{
117	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
118
119	return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
120}
121
122static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
123{
124	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
125
126	reg &= ~mask;
127	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
128}
129
130static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
131{
132	u32 len;
133	u8 byte;
134
135	/* See how much data is available */
136	len = sun6i_spi_get_rx_fifo_count(sspi);
137
138	while (len--) {
139		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
140		if (sspi->rx_buf)
141			*sspi->rx_buf++ = byte;
142	}
143}
144
145static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
146{
147	u32 cnt;
148	int len;
149	u8 byte;
150
151	/* See how much data we can fit */
152	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
153
154	len = min((int)cnt, sspi->len);
155
156	while (len--) {
157		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
158		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
159		sspi->len--;
160	}
161}
162
163static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
164{
165	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
166	u32 reg;
167
168	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
169	reg &= ~SUN6I_TFR_CTL_CS_MASK;
170	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
171
172	if (enable)
173		reg |= SUN6I_TFR_CTL_CS_LEVEL;
174	else
175		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
176
177	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
178}
179
180static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
181{
182	return SUN6I_MAX_XFER_SIZE - 1;
183}
184
185static int sun6i_spi_transfer_one(struct spi_master *master,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186				  struct spi_device *spi,
187				  struct spi_transfer *tfr)
188{
189	struct sun6i_spi *sspi = spi_master_get_devdata(master);
190	unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
191	unsigned int start, end, tx_time;
192	unsigned int trig_level;
193	unsigned int tx_len = 0, rx_len = 0;
 
194	int ret = 0;
195	u32 reg;
196
197	if (tfr->len > SUN6I_MAX_XFER_SIZE)
198		return -EINVAL;
199
200	reinit_completion(&sspi->done);
 
201	sspi->tx_buf = tfr->tx_buf;
202	sspi->rx_buf = tfr->rx_buf;
203	sspi->len = tfr->len;
 
204
205	/* Clear pending interrupts */
206	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
207
208	/* Reset FIFO */
209	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
210			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
211
212	/*
213	 * Setup FIFO interrupt trigger level
214	 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
215	 * value used in old generation of Allwinner SPI controller.
216	 * (See spi-sun4i.c)
217	 */
218	trig_level = sspi->fifo_depth / 4 * 3;
219	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
220			(trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
221			(trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222
223	/*
224	 * Setup the transfer control register: Chip Select,
225	 * polarities, etc.
226	 */
227	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
228
229	if (spi->mode & SPI_CPOL)
230		reg |= SUN6I_TFR_CTL_CPOL;
231	else
232		reg &= ~SUN6I_TFR_CTL_CPOL;
233
234	if (spi->mode & SPI_CPHA)
235		reg |= SUN6I_TFR_CTL_CPHA;
236	else
237		reg &= ~SUN6I_TFR_CTL_CPHA;
238
239	if (spi->mode & SPI_LSB_FIRST)
240		reg |= SUN6I_TFR_CTL_FBS;
241	else
242		reg &= ~SUN6I_TFR_CTL_FBS;
243
244	/*
245	 * If it's a TX only transfer, we don't want to fill the RX
246	 * FIFO with bogus data
247	 */
248	if (sspi->rx_buf) {
249		reg &= ~SUN6I_TFR_CTL_DHB;
250		rx_len = tfr->len;
251	} else {
252		reg |= SUN6I_TFR_CTL_DHB;
253	}
254
255	/* We want to control the chip select manually */
256	reg |= SUN6I_TFR_CTL_CS_MANUAL;
257
258	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
259
260	/* Ensure that we have a parent clock fast enough */
261	mclk_rate = clk_get_rate(sspi->mclk);
262	if (mclk_rate < (2 * tfr->speed_hz)) {
263		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
264		mclk_rate = clk_get_rate(sspi->mclk);
265	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266
267	/*
268	 * Setup clock divider.
269	 *
270	 * We have two choices there. Either we can use the clock
271	 * divide rate 1, which is calculated thanks to this formula:
272	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
273	 * Or we can use CDR2, which is calculated with the formula:
274	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
275	 * Wether we use the former or the latter is set through the
276	 * DRS bit.
277	 *
278	 * First try CDR2, and if we can't reach the expected
279	 * frequency, fall back to CDR1.
280	 */
281	div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
282	div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
283	if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
284		reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
285		tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
286	} else {
287		div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
288		reg = SUN6I_CLK_CTL_CDR1(div);
289		tfr->effective_speed_hz = mclk_rate / (1 << div);
290	}
291
292	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293
294	/* Setup the transfer now... */
295	if (sspi->tx_buf)
296		tx_len = tfr->len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297
298	/* Setup the counters */
 
299	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
300	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
301	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
302
303	/* Fill the TX FIFO */
304	sun6i_spi_fill_fifo(sspi);
 
 
 
 
 
 
 
 
 
 
305
306	/* Enable the interrupts */
307	reg = SUN6I_INT_CTL_TC;
308
309	if (rx_len > sspi->fifo_depth)
310		reg |= SUN6I_INT_CTL_RF_RDY;
311	if (tx_len > sspi->fifo_depth)
312		reg |= SUN6I_INT_CTL_TF_ERQ;
 
 
313
314	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
315
316	/* Start the transfer */
317	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
318	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
319
320	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
321	start = jiffies;
322	timeout = wait_for_completion_timeout(&sspi->done,
323					      msecs_to_jiffies(tx_time));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
324	end = jiffies;
325	if (!timeout) {
326		dev_warn(&master->dev,
327			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
328			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
329			 jiffies_to_msecs(end - start), tx_time);
330		ret = -ETIMEDOUT;
331	}
332
333	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
334
 
 
 
 
 
335	return ret;
336}
337
338static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
339{
340	struct sun6i_spi *sspi = dev_id;
341	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
342
343	/* Transfer complete */
344	if (status & SUN6I_INT_CTL_TC) {
345		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
346		sun6i_spi_drain_fifo(sspi);
347		complete(&sspi->done);
348		return IRQ_HANDLED;
349	}
350
351	/* Receive FIFO 3/4 full */
352	if (status & SUN6I_INT_CTL_RF_RDY) {
353		sun6i_spi_drain_fifo(sspi);
354		/* Only clear the interrupt _after_ draining the FIFO */
355		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
356		return IRQ_HANDLED;
357	}
358
359	/* Transmit FIFO 3/4 empty */
360	if (status & SUN6I_INT_CTL_TF_ERQ) {
361		sun6i_spi_fill_fifo(sspi);
362
363		if (!sspi->len)
364			/* nothing left to transmit */
365			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
366
367		/* Only clear the interrupt _after_ re-seeding the FIFO */
368		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
369
370		return IRQ_HANDLED;
371	}
372
373	return IRQ_NONE;
374}
375
376static int sun6i_spi_runtime_resume(struct device *dev)
377{
378	struct spi_master *master = dev_get_drvdata(dev);
379	struct sun6i_spi *sspi = spi_master_get_devdata(master);
380	int ret;
381
382	ret = clk_prepare_enable(sspi->hclk);
383	if (ret) {
384		dev_err(dev, "Couldn't enable AHB clock\n");
385		goto out;
386	}
387
388	ret = clk_prepare_enable(sspi->mclk);
389	if (ret) {
390		dev_err(dev, "Couldn't enable module clock\n");
391		goto err;
392	}
393
394	ret = reset_control_deassert(sspi->rstc);
395	if (ret) {
396		dev_err(dev, "Couldn't deassert the device from reset\n");
397		goto err2;
398	}
399
400	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
401			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
402
403	return 0;
404
405err2:
406	clk_disable_unprepare(sspi->mclk);
407err:
408	clk_disable_unprepare(sspi->hclk);
409out:
410	return ret;
411}
412
413static int sun6i_spi_runtime_suspend(struct device *dev)
414{
415	struct spi_master *master = dev_get_drvdata(dev);
416	struct sun6i_spi *sspi = spi_master_get_devdata(master);
417
418	reset_control_assert(sspi->rstc);
419	clk_disable_unprepare(sspi->mclk);
420	clk_disable_unprepare(sspi->hclk);
421
422	return 0;
423}
424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
425static int sun6i_spi_probe(struct platform_device *pdev)
426{
427	struct spi_master *master;
428	struct sun6i_spi *sspi;
 
429	int ret = 0, irq;
430
431	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
432	if (!master) {
433		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
434		return -ENOMEM;
435	}
436
437	platform_set_drvdata(pdev, master);
438	sspi = spi_master_get_devdata(master);
439
440	sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
441	if (IS_ERR(sspi->base_addr)) {
442		ret = PTR_ERR(sspi->base_addr);
443		goto err_free_master;
444	}
445
446	irq = platform_get_irq(pdev, 0);
447	if (irq < 0) {
448		ret = -ENXIO;
449		goto err_free_master;
450	}
451
452	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
453			       0, "sun6i-spi", sspi);
454	if (ret) {
455		dev_err(&pdev->dev, "Cannot request IRQ\n");
456		goto err_free_master;
457	}
458
459	sspi->master = master;
460	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
461
462	master->max_speed_hz = 100 * 1000 * 1000;
463	master->min_speed_hz = 3 * 1000;
464	master->use_gpio_descriptors = true;
465	master->set_cs = sun6i_spi_set_cs;
466	master->transfer_one = sun6i_spi_transfer_one;
467	master->num_chipselect = 4;
468	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
469	master->bits_per_word_mask = SPI_BPW_MASK(8);
470	master->dev.of_node = pdev->dev.of_node;
471	master->auto_runtime_pm = true;
472	master->max_transfer_size = sun6i_spi_max_transfer_size;
 
473
474	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
475	if (IS_ERR(sspi->hclk)) {
476		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
477		ret = PTR_ERR(sspi->hclk);
478		goto err_free_master;
479	}
480
481	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
482	if (IS_ERR(sspi->mclk)) {
483		dev_err(&pdev->dev, "Unable to acquire module clock\n");
484		ret = PTR_ERR(sspi->mclk);
485		goto err_free_master;
486	}
487
488	init_completion(&sspi->done);
 
489
490	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
491	if (IS_ERR(sspi->rstc)) {
492		dev_err(&pdev->dev, "Couldn't get reset controller\n");
493		ret = PTR_ERR(sspi->rstc);
494		goto err_free_master;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495	}
496
497	/*
498	 * This wake-up/shutdown pattern is to be able to have the
499	 * device woken up, even if runtime_pm is disabled
500	 */
501	ret = sun6i_spi_runtime_resume(&pdev->dev);
502	if (ret) {
503		dev_err(&pdev->dev, "Couldn't resume the device\n");
504		goto err_free_master;
505	}
506
 
 
507	pm_runtime_set_active(&pdev->dev);
508	pm_runtime_enable(&pdev->dev);
509	pm_runtime_idle(&pdev->dev);
510
511	ret = devm_spi_register_master(&pdev->dev, master);
512	if (ret) {
513		dev_err(&pdev->dev, "cannot register SPI master\n");
514		goto err_pm_disable;
515	}
516
517	return 0;
518
519err_pm_disable:
520	pm_runtime_disable(&pdev->dev);
521	sun6i_spi_runtime_suspend(&pdev->dev);
522err_free_master:
523	spi_master_put(master);
 
 
 
 
 
 
524	return ret;
525}
526
527static int sun6i_spi_remove(struct platform_device *pdev)
528{
 
 
529	pm_runtime_force_suspend(&pdev->dev);
530
531	return 0;
 
 
 
532}
533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
534static const struct of_device_id sun6i_spi_match[] = {
535	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
536	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
 
 
 
 
537	{}
538};
539MODULE_DEVICE_TABLE(of, sun6i_spi_match);
540
541static const struct dev_pm_ops sun6i_spi_pm_ops = {
542	.runtime_resume		= sun6i_spi_runtime_resume,
543	.runtime_suspend	= sun6i_spi_runtime_suspend,
544};
545
546static struct platform_driver sun6i_spi_driver = {
547	.probe	= sun6i_spi_probe,
548	.remove	= sun6i_spi_remove,
549	.driver	= {
550		.name		= "sun6i-spi",
551		.of_match_table	= sun6i_spi_match,
552		.pm		= &sun6i_spi_pm_ops,
553	},
554};
555module_platform_driver(sun6i_spi_driver);
556
557MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
558MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
559MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
560MODULE_LICENSE("GPL");