Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2012 - 2014 Allwinner Tech
  4 * Pan Nan <pannan@allwinnertech.com>
  5 *
  6 * Copyright (C) 2014 Maxime Ripard
  7 * Maxime Ripard <maxime.ripard@free-electrons.com>
  8 */
  9
 10#include <linux/bitfield.h>
 11#include <linux/clk.h>
 12#include <linux/delay.h>
 13#include <linux/device.h>
 14#include <linux/interrupt.h>
 15#include <linux/io.h>
 16#include <linux/module.h>
 17#include <linux/of.h>
 18#include <linux/platform_device.h>
 19#include <linux/pm_runtime.h>
 20#include <linux/reset.h>
 21#include <linux/dmaengine.h>
 22
 23#include <linux/spi/spi.h>
 24
 25#define SUN6I_AUTOSUSPEND_TIMEOUT	2000
 26
 27#define SUN6I_FIFO_DEPTH		128
 28#define SUN8I_FIFO_DEPTH		64
 29
 30#define SUN6I_GBL_CTL_REG		0x04
 31#define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
 32#define SUN6I_GBL_CTL_MASTER			BIT(1)
 33#define SUN6I_GBL_CTL_TP			BIT(7)
 34#define SUN6I_GBL_CTL_RST			BIT(31)
 35
 36#define SUN6I_TFR_CTL_REG		0x08
 37#define SUN6I_TFR_CTL_CPHA			BIT(0)
 38#define SUN6I_TFR_CTL_CPOL			BIT(1)
 39#define SUN6I_TFR_CTL_SPOL			BIT(2)
 40#define SUN6I_TFR_CTL_CS_MASK			0x30
 41#define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
 42#define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
 43#define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
 44#define SUN6I_TFR_CTL_DHB			BIT(8)
 45#define SUN6I_TFR_CTL_SDC			BIT(11)
 46#define SUN6I_TFR_CTL_FBS			BIT(12)
 47#define SUN6I_TFR_CTL_SDM			BIT(13)
 48#define SUN6I_TFR_CTL_XCH			BIT(31)
 49
 50#define SUN6I_INT_CTL_REG		0x10
 51#define SUN6I_INT_CTL_RF_RDY			BIT(0)
 52#define SUN6I_INT_CTL_TF_ERQ			BIT(4)
 53#define SUN6I_INT_CTL_RF_OVF			BIT(8)
 54#define SUN6I_INT_CTL_TC			BIT(12)
 55
 56#define SUN6I_INT_STA_REG		0x14
 57
 58#define SUN6I_FIFO_CTL_REG		0x18
 59#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
 60#define SUN6I_FIFO_CTL_RF_DRQ_EN		BIT(8)
 61#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
 62#define SUN6I_FIFO_CTL_RF_RST			BIT(15)
 63#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
 64#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
 65#define SUN6I_FIFO_CTL_TF_DRQ_EN		BIT(24)
 66#define SUN6I_FIFO_CTL_TF_RST			BIT(31)
 67
 68#define SUN6I_FIFO_STA_REG		0x1c
 69#define SUN6I_FIFO_STA_RF_CNT_MASK		GENMASK(7, 0)
 70#define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16)
 
 
 71
 72#define SUN6I_CLK_CTL_REG		0x24
 73#define SUN6I_CLK_CTL_CDR2_MASK			0xff
 74#define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
 75#define SUN6I_CLK_CTL_CDR1_MASK			0xf
 76#define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
 77#define SUN6I_CLK_CTL_DRS			BIT(12)
 78
 79#define SUN6I_MAX_XFER_SIZE		0xffffff
 80
 81#define SUN6I_BURST_CNT_REG		0x30
 
 82
 83#define SUN6I_XMIT_CNT_REG		0x34
 
 84
 85#define SUN6I_BURST_CTL_CNT_REG		0x38
 86#define SUN6I_BURST_CTL_CNT_STC_MASK		GENMASK(23, 0)
 87#define SUN6I_BURST_CTL_CNT_DRM			BIT(28)
 88#define SUN6I_BURST_CTL_CNT_QUAD_EN		BIT(29)
 89
 90#define SUN6I_TXDATA_REG		0x200
 91#define SUN6I_RXDATA_REG		0x300
 92
 93struct sun6i_spi_cfg {
 94	unsigned long		fifo_depth;
 95	bool			has_clk_ctl;
 96	u32			mode_bits;
 97};
 98
 99struct sun6i_spi {
100	struct spi_controller	*host;
101	void __iomem		*base_addr;
102	dma_addr_t		dma_addr_rx;
103	dma_addr_t		dma_addr_tx;
104	struct clk		*hclk;
105	struct clk		*mclk;
106	struct reset_control	*rstc;
107
108	struct completion	done;
109	struct completion	dma_rx_done;
110
111	const u8		*tx_buf;
112	u8			*rx_buf;
113	int			len;
114	const struct sun6i_spi_cfg *cfg;
115};
116
117static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
118{
119	return readl(sspi->base_addr + reg);
120}
121
122static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
123{
124	writel(value, sspi->base_addr + reg);
125}
126
127static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
128{
129	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
130
131	return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
 
 
132}
133
134static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
135{
136	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
137
138	return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
 
139}
140
141static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
142{
143	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
144
145	reg &= ~mask;
146	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
147}
148
149static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
150{
151	u32 len;
152	u8 byte;
153
154	/* See how much data is available */
155	len = sun6i_spi_get_rx_fifo_count(sspi);
 
 
 
 
 
156
157	while (len--) {
158		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
159		if (sspi->rx_buf)
160			*sspi->rx_buf++ = byte;
161	}
162}
163
164static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
165{
166	u32 cnt;
167	int len;
168	u8 byte;
169
170	/* See how much data we can fit */
171	cnt = sspi->cfg->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
172
173	len = min((int)cnt, sspi->len);
174
175	while (len--) {
176		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
177		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
178		sspi->len--;
179	}
180}
181
182static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
183{
184	struct sun6i_spi *sspi = spi_controller_get_devdata(spi->controller);
185	u32 reg;
186
187	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
188	reg &= ~SUN6I_TFR_CTL_CS_MASK;
189	reg |= SUN6I_TFR_CTL_CS(spi_get_chipselect(spi, 0));
190
191	if (enable)
192		reg |= SUN6I_TFR_CTL_CS_LEVEL;
193	else
194		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
195
196	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
197}
198
199static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
200{
201	return SUN6I_MAX_XFER_SIZE - 1;
202}
203
204static void sun6i_spi_dma_rx_cb(void *param)
205{
206	struct sun6i_spi *sspi = param;
207
208	complete(&sspi->dma_rx_done);
209}
210
211static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
212				 struct spi_transfer *tfr)
213{
214	struct dma_async_tx_descriptor *rxdesc, *txdesc;
215	struct spi_controller *host = sspi->host;
216
217	rxdesc = NULL;
218	if (tfr->rx_buf) {
219		struct dma_slave_config rxconf = {
220			.direction = DMA_DEV_TO_MEM,
221			.src_addr = sspi->dma_addr_rx,
222			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
223			.src_maxburst = 8,
224		};
225
226		dmaengine_slave_config(host->dma_rx, &rxconf);
227
228		rxdesc = dmaengine_prep_slave_sg(host->dma_rx,
229						 tfr->rx_sg.sgl,
230						 tfr->rx_sg.nents,
231						 DMA_DEV_TO_MEM,
232						 DMA_PREP_INTERRUPT);
233		if (!rxdesc)
234			return -EINVAL;
235		rxdesc->callback_param = sspi;
236		rxdesc->callback = sun6i_spi_dma_rx_cb;
237	}
238
239	txdesc = NULL;
240	if (tfr->tx_buf) {
241		struct dma_slave_config txconf = {
242			.direction = DMA_MEM_TO_DEV,
243			.dst_addr = sspi->dma_addr_tx,
244			.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
245			.dst_maxburst = 8,
246		};
247
248		dmaengine_slave_config(host->dma_tx, &txconf);
249
250		txdesc = dmaengine_prep_slave_sg(host->dma_tx,
251						 tfr->tx_sg.sgl,
252						 tfr->tx_sg.nents,
253						 DMA_MEM_TO_DEV,
254						 DMA_PREP_INTERRUPT);
255		if (!txdesc) {
256			if (rxdesc)
257				dmaengine_terminate_sync(host->dma_rx);
258			return -EINVAL;
259		}
260	}
261
262	if (tfr->rx_buf) {
263		dmaengine_submit(rxdesc);
264		dma_async_issue_pending(host->dma_rx);
265	}
266
267	if (tfr->tx_buf) {
268		dmaengine_submit(txdesc);
269		dma_async_issue_pending(host->dma_tx);
270	}
271
272	return 0;
273}
274
275static int sun6i_spi_transfer_one(struct spi_controller *host,
276				  struct spi_device *spi,
277				  struct spi_transfer *tfr)
278{
279	struct sun6i_spi *sspi = spi_controller_get_devdata(host);
280	unsigned int div, div_cdr1, div_cdr2, timeout;
281	unsigned int start, end, tx_time;
282	unsigned int trig_level;
283	unsigned int tx_len = 0, rx_len = 0, nbits = 0;
284	bool use_dma;
285	int ret = 0;
286	u32 reg;
287
288	if (tfr->len > SUN6I_MAX_XFER_SIZE)
289		return -EINVAL;
290
291	reinit_completion(&sspi->done);
292	reinit_completion(&sspi->dma_rx_done);
293	sspi->tx_buf = tfr->tx_buf;
294	sspi->rx_buf = tfr->rx_buf;
295	sspi->len = tfr->len;
296	use_dma = host->can_dma ? host->can_dma(host, spi, tfr) : false;
297
298	/* Clear pending interrupts */
299	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
300
301	/* Reset FIFO */
302	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
303			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
304
305	reg = 0;
306
307	if (!use_dma) {
308		/*
309		 * Setup FIFO interrupt trigger level
310		 * Here we choose 3/4 of the full fifo depth, as it's
311		 * the hardcoded value used in old generation of Allwinner
312		 * SPI controller. (See spi-sun4i.c)
313		 */
314		trig_level = sspi->cfg->fifo_depth / 4 * 3;
315	} else {
316		/*
317		 * Setup FIFO DMA request trigger level
318		 * We choose 1/2 of the full fifo depth, that value will
319		 * be used as DMA burst length.
320		 */
321		trig_level = sspi->cfg->fifo_depth / 2;
322
323		if (tfr->tx_buf)
324			reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
325		if (tfr->rx_buf)
326			reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
327	}
328
329	reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
330	       (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
331
332	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
333
334	/*
335	 * Setup the transfer control register: Chip Select,
336	 * polarities, etc.
337	 */
338	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
339
340	if (spi->mode & SPI_CPOL)
341		reg |= SUN6I_TFR_CTL_CPOL;
342	else
343		reg &= ~SUN6I_TFR_CTL_CPOL;
344
345	if (spi->mode & SPI_CPHA)
346		reg |= SUN6I_TFR_CTL_CPHA;
347	else
348		reg &= ~SUN6I_TFR_CTL_CPHA;
349
350	if (spi->mode & SPI_LSB_FIRST)
351		reg |= SUN6I_TFR_CTL_FBS;
352	else
353		reg &= ~SUN6I_TFR_CTL_FBS;
354
355	/*
356	 * If it's a TX only transfer, we don't want to fill the RX
357	 * FIFO with bogus data
358	 */
359	if (sspi->rx_buf) {
360		reg &= ~SUN6I_TFR_CTL_DHB;
361		rx_len = tfr->len;
362	} else {
363		reg |= SUN6I_TFR_CTL_DHB;
364	}
365
366	/* We want to control the chip select manually */
367	reg |= SUN6I_TFR_CTL_CS_MANUAL;
368
369	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
370
371	if (sspi->cfg->has_clk_ctl) {
372		unsigned int mclk_rate = clk_get_rate(sspi->mclk);
 
 
 
 
373
374		/* Ensure that we have a parent clock fast enough */
375		if (mclk_rate < (2 * tfr->speed_hz)) {
376			clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
377			mclk_rate = clk_get_rate(sspi->mclk);
378		}
379
380		/*
381		 * Setup clock divider.
382		 *
383		 * We have two choices there. Either we can use the clock
384		 * divide rate 1, which is calculated thanks to this formula:
385		 * SPI_CLK = MOD_CLK / (2 ^ cdr)
386		 * Or we can use CDR2, which is calculated with the formula:
387		 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
388		 * Wether we use the former or the latter is set through the
389		 * DRS bit.
390		 *
391		 * First try CDR2, and if we can't reach the expected
392		 * frequency, fall back to CDR1.
393		 */
394		div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
395		div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
396		if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
397			reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
398			tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
399		} else {
400			div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
401			reg = SUN6I_CLK_CTL_CDR1(div);
402			tfr->effective_speed_hz = mclk_rate / (1 << div);
403		}
404
405		sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
406	} else {
407		clk_set_rate(sspi->mclk, tfr->speed_hz);
408		tfr->effective_speed_hz = clk_get_rate(sspi->mclk);
 
409
410		/*
411		 * Configure work mode.
412		 *
413		 * There are three work modes depending on the controller clock
414		 * frequency:
415		 * - normal sample mode           : CLK <= 24MHz SDM=1 SDC=0
416		 * - delay half-cycle sample mode : CLK <= 40MHz SDM=0 SDC=0
417		 * - delay one-cycle sample mode  : CLK >= 80MHz SDM=0 SDC=1
418		 */
419		reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
420		reg &= ~(SUN6I_TFR_CTL_SDM | SUN6I_TFR_CTL_SDC);
421
422		if (tfr->effective_speed_hz <= 24000000)
423			reg |= SUN6I_TFR_CTL_SDM;
424		else if (tfr->effective_speed_hz >= 80000000)
425			reg |= SUN6I_TFR_CTL_SDC;
426
427		sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
428	}
429
430	/* Finally enable the bus - doing so before might raise SCK to HIGH */
431	reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
432	reg |= SUN6I_GBL_CTL_BUS_ENABLE;
433	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
434
435	/* Setup the transfer now... */
436	if (sspi->tx_buf) {
437		tx_len = tfr->len;
438		nbits = tfr->tx_nbits;
439	} else if (tfr->rx_buf) {
440		nbits = tfr->rx_nbits;
441	}
442
443	switch (nbits) {
444	case SPI_NBITS_DUAL:
445		reg = SUN6I_BURST_CTL_CNT_DRM;
446		break;
447	case SPI_NBITS_QUAD:
448		reg = SUN6I_BURST_CTL_CNT_QUAD_EN;
449		break;
450	case SPI_NBITS_SINGLE:
451	default:
452		reg = FIELD_PREP(SUN6I_BURST_CTL_CNT_STC_MASK, tx_len);
453	}
454
455	/* Setup the counters */
456	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, reg);
457	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
458	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
459
460	if (!use_dma) {
461		/* Fill the TX FIFO */
462		sun6i_spi_fill_fifo(sspi);
463	} else {
464		ret = sun6i_spi_prepare_dma(sspi, tfr);
465		if (ret) {
466			dev_warn(&host->dev,
467				 "%s: prepare DMA failed, ret=%d",
468				 dev_name(&spi->dev), ret);
469			return ret;
470		}
471	}
472
473	/* Enable the interrupts */
474	reg = SUN6I_INT_CTL_TC;
475
476	if (!use_dma) {
477		if (rx_len > sspi->cfg->fifo_depth)
478			reg |= SUN6I_INT_CTL_RF_RDY;
479		if (tx_len > sspi->cfg->fifo_depth)
480			reg |= SUN6I_INT_CTL_TF_ERQ;
481	}
482
483	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
 
 
 
 
 
484
485	/* Start the transfer */
486	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
487	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
488
489	tx_time = spi_controller_xfer_timeout(host, tfr);
490	start = jiffies;
491	timeout = wait_for_completion_timeout(&sspi->done,
492					      msecs_to_jiffies(tx_time));
493
494	if (!use_dma) {
495		sun6i_spi_drain_fifo(sspi);
496	} else {
497		if (timeout && rx_len) {
498			/*
499			 * Even though RX on the peripheral side has finished
500			 * RX DMA might still be in flight
501			 */
502			timeout = wait_for_completion_timeout(&sspi->dma_rx_done,
503							      timeout);
504			if (!timeout)
505				dev_warn(&host->dev, "RX DMA timeout\n");
506		}
507	}
508
509	end = jiffies;
510	if (!timeout) {
511		dev_warn(&host->dev,
512			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
513			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
514			 jiffies_to_msecs(end - start), tx_time);
515		ret = -ETIMEDOUT;
 
516	}
517
 
518	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
519
520	if (ret && use_dma) {
521		dmaengine_terminate_sync(host->dma_rx);
522		dmaengine_terminate_sync(host->dma_tx);
523	}
524
525	return ret;
526}
527
528static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
529{
530	struct sun6i_spi *sspi = dev_id;
531	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
532
533	/* Transfer complete */
534	if (status & SUN6I_INT_CTL_TC) {
535		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
 
536		complete(&sspi->done);
537		return IRQ_HANDLED;
538	}
539
540	/* Receive FIFO 3/4 full */
541	if (status & SUN6I_INT_CTL_RF_RDY) {
542		sun6i_spi_drain_fifo(sspi);
543		/* Only clear the interrupt _after_ draining the FIFO */
544		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
545		return IRQ_HANDLED;
546	}
547
548	/* Transmit FIFO 3/4 empty */
549	if (status & SUN6I_INT_CTL_TF_ERQ) {
550		sun6i_spi_fill_fifo(sspi);
551
552		if (!sspi->len)
553			/* nothing left to transmit */
554			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
555
556		/* Only clear the interrupt _after_ re-seeding the FIFO */
557		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
558
559		return IRQ_HANDLED;
560	}
561
562	return IRQ_NONE;
563}
564
565static int sun6i_spi_runtime_resume(struct device *dev)
566{
567	struct spi_controller *host = dev_get_drvdata(dev);
568	struct sun6i_spi *sspi = spi_controller_get_devdata(host);
569	int ret;
570
571	ret = clk_prepare_enable(sspi->hclk);
572	if (ret) {
573		dev_err(dev, "Couldn't enable AHB clock\n");
574		goto out;
575	}
576
577	ret = clk_prepare_enable(sspi->mclk);
578	if (ret) {
579		dev_err(dev, "Couldn't enable module clock\n");
580		goto err;
581	}
582
583	ret = reset_control_deassert(sspi->rstc);
584	if (ret) {
585		dev_err(dev, "Couldn't deassert the device from reset\n");
586		goto err2;
587	}
588
589	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
590			SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
591
592	return 0;
593
594err2:
595	clk_disable_unprepare(sspi->mclk);
596err:
597	clk_disable_unprepare(sspi->hclk);
598out:
599	return ret;
600}
601
602static int sun6i_spi_runtime_suspend(struct device *dev)
603{
604	struct spi_controller *host = dev_get_drvdata(dev);
605	struct sun6i_spi *sspi = spi_controller_get_devdata(host);
606
607	reset_control_assert(sspi->rstc);
608	clk_disable_unprepare(sspi->mclk);
609	clk_disable_unprepare(sspi->hclk);
610
611	return 0;
612}
613
614static bool sun6i_spi_can_dma(struct spi_controller *host,
615			      struct spi_device *spi,
616			      struct spi_transfer *xfer)
617{
618	struct sun6i_spi *sspi = spi_controller_get_devdata(host);
619
620	/*
621	 * If the number of spi words to transfer is less or equal than
622	 * the fifo length we can just fill the fifo and wait for a single
623	 * irq, so don't bother setting up dma
624	 */
625	return xfer->len > sspi->cfg->fifo_depth;
626}
627
628static int sun6i_spi_probe(struct platform_device *pdev)
629{
630	struct spi_controller *host;
631	struct sun6i_spi *sspi;
632	struct resource *mem;
633	int ret = 0, irq;
634
635	host = spi_alloc_host(&pdev->dev, sizeof(struct sun6i_spi));
636	if (!host) {
637		dev_err(&pdev->dev, "Unable to allocate SPI Host\n");
638		return -ENOMEM;
639	}
640
641	platform_set_drvdata(pdev, host);
642	sspi = spi_controller_get_devdata(host);
643
644	sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
645	if (IS_ERR(sspi->base_addr)) {
646		ret = PTR_ERR(sspi->base_addr);
647		goto err_free_host;
648	}
649
650	irq = platform_get_irq(pdev, 0);
651	if (irq < 0) {
652		ret = -ENXIO;
653		goto err_free_host;
654	}
655
656	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
657			       0, "sun6i-spi", sspi);
658	if (ret) {
659		dev_err(&pdev->dev, "Cannot request IRQ\n");
660		goto err_free_host;
661	}
662
663	sspi->host = host;
664	sspi->cfg = of_device_get_match_data(&pdev->dev);
665
666	host->max_speed_hz = 100 * 1000 * 1000;
667	host->min_speed_hz = 3 * 1000;
668	host->use_gpio_descriptors = true;
669	host->set_cs = sun6i_spi_set_cs;
670	host->transfer_one = sun6i_spi_transfer_one;
671	host->num_chipselect = 4;
672	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
673			  sspi->cfg->mode_bits;
674	host->bits_per_word_mask = SPI_BPW_MASK(8);
675	host->dev.of_node = pdev->dev.of_node;
676	host->auto_runtime_pm = true;
677	host->max_transfer_size = sun6i_spi_max_transfer_size;
678
679	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
680	if (IS_ERR(sspi->hclk)) {
681		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
682		ret = PTR_ERR(sspi->hclk);
683		goto err_free_host;
684	}
685
686	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
687	if (IS_ERR(sspi->mclk)) {
688		dev_err(&pdev->dev, "Unable to acquire module clock\n");
689		ret = PTR_ERR(sspi->mclk);
690		goto err_free_host;
691	}
692
693	init_completion(&sspi->done);
694	init_completion(&sspi->dma_rx_done);
695
696	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
697	if (IS_ERR(sspi->rstc)) {
698		dev_err(&pdev->dev, "Couldn't get reset controller\n");
699		ret = PTR_ERR(sspi->rstc);
700		goto err_free_host;
701	}
702
703	host->dma_tx = dma_request_chan(&pdev->dev, "tx");
704	if (IS_ERR(host->dma_tx)) {
705		/* Check tx to see if we need defer probing driver */
706		if (PTR_ERR(host->dma_tx) == -EPROBE_DEFER) {
707			ret = -EPROBE_DEFER;
708			goto err_free_host;
709		}
710		dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
711		host->dma_tx = NULL;
712	}
713
714	host->dma_rx = dma_request_chan(&pdev->dev, "rx");
715	if (IS_ERR(host->dma_rx)) {
716		if (PTR_ERR(host->dma_rx) == -EPROBE_DEFER) {
717			ret = -EPROBE_DEFER;
718			goto err_free_dma_tx;
719		}
720		dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
721		host->dma_rx = NULL;
722	}
723
724	if (host->dma_tx && host->dma_rx) {
725		sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
726		sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
727		host->can_dma = sun6i_spi_can_dma;
728	}
729
730	/*
731	 * This wake-up/shutdown pattern is to be able to have the
732	 * device woken up, even if runtime_pm is disabled
733	 */
734	ret = sun6i_spi_runtime_resume(&pdev->dev);
735	if (ret) {
736		dev_err(&pdev->dev, "Couldn't resume the device\n");
737		goto err_free_dma_rx;
738	}
739
740	pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
741	pm_runtime_use_autosuspend(&pdev->dev);
742	pm_runtime_set_active(&pdev->dev);
743	pm_runtime_enable(&pdev->dev);
 
744
745	ret = devm_spi_register_controller(&pdev->dev, host);
746	if (ret) {
747		dev_err(&pdev->dev, "cannot register SPI host\n");
748		goto err_pm_disable;
749	}
750
751	return 0;
752
753err_pm_disable:
754	pm_runtime_disable(&pdev->dev);
755	sun6i_spi_runtime_suspend(&pdev->dev);
756err_free_dma_rx:
757	if (host->dma_rx)
758		dma_release_channel(host->dma_rx);
759err_free_dma_tx:
760	if (host->dma_tx)
761		dma_release_channel(host->dma_tx);
762err_free_host:
763	spi_controller_put(host);
764	return ret;
765}
766
767static void sun6i_spi_remove(struct platform_device *pdev)
768{
769	struct spi_controller *host = platform_get_drvdata(pdev);
770
771	pm_runtime_force_suspend(&pdev->dev);
772
773	if (host->dma_tx)
774		dma_release_channel(host->dma_tx);
775	if (host->dma_rx)
776		dma_release_channel(host->dma_rx);
777}
778
779static const struct sun6i_spi_cfg sun6i_a31_spi_cfg = {
780	.fifo_depth	= SUN6I_FIFO_DEPTH,
781	.has_clk_ctl	= true,
782};
783
784static const struct sun6i_spi_cfg sun8i_h3_spi_cfg = {
785	.fifo_depth	= SUN8I_FIFO_DEPTH,
786	.has_clk_ctl	= true,
787};
788
789static const struct sun6i_spi_cfg sun50i_r329_spi_cfg = {
790	.fifo_depth	= SUN8I_FIFO_DEPTH,
791	.mode_bits	= SPI_RX_DUAL | SPI_TX_DUAL | SPI_RX_QUAD | SPI_TX_QUAD,
792};
793
794static const struct of_device_id sun6i_spi_match[] = {
795	{ .compatible = "allwinner,sun6i-a31-spi", .data = &sun6i_a31_spi_cfg },
796	{ .compatible = "allwinner,sun8i-h3-spi",  .data = &sun8i_h3_spi_cfg },
797	{
798		.compatible = "allwinner,sun50i-r329-spi",
799		.data = &sun50i_r329_spi_cfg
800	},
801	{}
802};
803MODULE_DEVICE_TABLE(of, sun6i_spi_match);
804
805static const struct dev_pm_ops sun6i_spi_pm_ops = {
806	.runtime_resume		= sun6i_spi_runtime_resume,
807	.runtime_suspend	= sun6i_spi_runtime_suspend,
808};
809
810static struct platform_driver sun6i_spi_driver = {
811	.probe	= sun6i_spi_probe,
812	.remove_new = sun6i_spi_remove,
813	.driver	= {
814		.name		= "sun6i-spi",
815		.of_match_table	= sun6i_spi_match,
816		.pm		= &sun6i_spi_pm_ops,
817	},
818};
819module_platform_driver(sun6i_spi_driver);
820
821MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
822MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
823MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
824MODULE_LICENSE("GPL");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2012 - 2014 Allwinner Tech
  4 * Pan Nan <pannan@allwinnertech.com>
  5 *
  6 * Copyright (C) 2014 Maxime Ripard
  7 * Maxime Ripard <maxime.ripard@free-electrons.com>
  8 */
  9
 
 10#include <linux/clk.h>
 11#include <linux/delay.h>
 12#include <linux/device.h>
 13#include <linux/interrupt.h>
 14#include <linux/io.h>
 15#include <linux/module.h>
 16#include <linux/of_device.h>
 17#include <linux/platform_device.h>
 18#include <linux/pm_runtime.h>
 19#include <linux/reset.h>
 
 20
 21#include <linux/spi/spi.h>
 22
 
 
 23#define SUN6I_FIFO_DEPTH		128
 24#define SUN8I_FIFO_DEPTH		64
 25
 26#define SUN6I_GBL_CTL_REG		0x04
 27#define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
 28#define SUN6I_GBL_CTL_MASTER			BIT(1)
 29#define SUN6I_GBL_CTL_TP			BIT(7)
 30#define SUN6I_GBL_CTL_RST			BIT(31)
 31
 32#define SUN6I_TFR_CTL_REG		0x08
 33#define SUN6I_TFR_CTL_CPHA			BIT(0)
 34#define SUN6I_TFR_CTL_CPOL			BIT(1)
 35#define SUN6I_TFR_CTL_SPOL			BIT(2)
 36#define SUN6I_TFR_CTL_CS_MASK			0x30
 37#define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
 38#define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
 39#define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
 40#define SUN6I_TFR_CTL_DHB			BIT(8)
 
 41#define SUN6I_TFR_CTL_FBS			BIT(12)
 
 42#define SUN6I_TFR_CTL_XCH			BIT(31)
 43
 44#define SUN6I_INT_CTL_REG		0x10
 45#define SUN6I_INT_CTL_RF_RDY			BIT(0)
 46#define SUN6I_INT_CTL_TF_ERQ			BIT(4)
 47#define SUN6I_INT_CTL_RF_OVF			BIT(8)
 48#define SUN6I_INT_CTL_TC			BIT(12)
 49
 50#define SUN6I_INT_STA_REG		0x14
 51
 52#define SUN6I_FIFO_CTL_REG		0x18
 53#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
 
 54#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
 55#define SUN6I_FIFO_CTL_RF_RST			BIT(15)
 56#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
 57#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
 
 58#define SUN6I_FIFO_CTL_TF_RST			BIT(31)
 59
 60#define SUN6I_FIFO_STA_REG		0x1c
 61#define SUN6I_FIFO_STA_RF_CNT_MASK		0x7f
 62#define SUN6I_FIFO_STA_RF_CNT_BITS		0
 63#define SUN6I_FIFO_STA_TF_CNT_MASK		0x7f
 64#define SUN6I_FIFO_STA_TF_CNT_BITS		16
 65
 66#define SUN6I_CLK_CTL_REG		0x24
 67#define SUN6I_CLK_CTL_CDR2_MASK			0xff
 68#define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
 69#define SUN6I_CLK_CTL_CDR1_MASK			0xf
 70#define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
 71#define SUN6I_CLK_CTL_DRS			BIT(12)
 72
 73#define SUN6I_MAX_XFER_SIZE		0xffffff
 74
 75#define SUN6I_BURST_CNT_REG		0x30
 76#define SUN6I_BURST_CNT(cnt)			((cnt) & SUN6I_MAX_XFER_SIZE)
 77
 78#define SUN6I_XMIT_CNT_REG		0x34
 79#define SUN6I_XMIT_CNT(cnt)			((cnt) & SUN6I_MAX_XFER_SIZE)
 80
 81#define SUN6I_BURST_CTL_CNT_REG		0x38
 82#define SUN6I_BURST_CTL_CNT_STC(cnt)		((cnt) & SUN6I_MAX_XFER_SIZE)
 
 
 83
 84#define SUN6I_TXDATA_REG		0x200
 85#define SUN6I_RXDATA_REG		0x300
 86
 
 
 
 
 
 
 87struct sun6i_spi {
 88	struct spi_master	*master;
 89	void __iomem		*base_addr;
 
 
 90	struct clk		*hclk;
 91	struct clk		*mclk;
 92	struct reset_control	*rstc;
 93
 94	struct completion	done;
 
 95
 96	const u8		*tx_buf;
 97	u8			*rx_buf;
 98	int			len;
 99	unsigned long		fifo_depth;
100};
101
102static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
103{
104	return readl(sspi->base_addr + reg);
105}
106
107static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
108{
109	writel(value, sspi->base_addr + reg);
110}
111
112static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
113{
114	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
115
116	reg >>= SUN6I_FIFO_STA_TF_CNT_BITS;
117
118	return reg & SUN6I_FIFO_STA_TF_CNT_MASK;
119}
120
121static inline void sun6i_spi_enable_interrupt(struct sun6i_spi *sspi, u32 mask)
122{
123	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
124
125	reg |= mask;
126	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
127}
128
129static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
130{
131	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
132
133	reg &= ~mask;
134	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
135}
136
137static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
138{
139	u32 reg, cnt;
140	u8 byte;
141
142	/* See how much data is available */
143	reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
144	reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
145	cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
146
147	if (len > cnt)
148		len = cnt;
149
150	while (len--) {
151		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
152		if (sspi->rx_buf)
153			*sspi->rx_buf++ = byte;
154	}
155}
156
157static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
158{
159	u32 cnt;
 
160	u8 byte;
161
162	/* See how much data we can fit */
163	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
164
165	len = min3(len, (int)cnt, sspi->len);
166
167	while (len--) {
168		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
169		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
170		sspi->len--;
171	}
172}
173
174static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
175{
176	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
177	u32 reg;
178
179	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
180	reg &= ~SUN6I_TFR_CTL_CS_MASK;
181	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
182
183	if (enable)
184		reg |= SUN6I_TFR_CTL_CS_LEVEL;
185	else
186		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
187
188	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
189}
190
191static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
192{
193	return SUN6I_MAX_XFER_SIZE - 1;
194}
195
196static int sun6i_spi_transfer_one(struct spi_master *master,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197				  struct spi_device *spi,
198				  struct spi_transfer *tfr)
199{
200	struct sun6i_spi *sspi = spi_master_get_devdata(master);
201	unsigned int mclk_rate, div, timeout;
202	unsigned int start, end, tx_time;
203	unsigned int trig_level;
204	unsigned int tx_len = 0;
 
205	int ret = 0;
206	u32 reg;
207
208	if (tfr->len > SUN6I_MAX_XFER_SIZE)
209		return -EINVAL;
210
211	reinit_completion(&sspi->done);
 
212	sspi->tx_buf = tfr->tx_buf;
213	sspi->rx_buf = tfr->rx_buf;
214	sspi->len = tfr->len;
 
215
216	/* Clear pending interrupts */
217	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
218
219	/* Reset FIFO */
220	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
221			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
222
223	/*
224	 * Setup FIFO interrupt trigger level
225	 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
226	 * value used in old generation of Allwinner SPI controller.
227	 * (See spi-sun4i.c)
228	 */
229	trig_level = sspi->fifo_depth / 4 * 3;
230	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
231			(trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
232			(trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233
234	/*
235	 * Setup the transfer control register: Chip Select,
236	 * polarities, etc.
237	 */
238	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
239
240	if (spi->mode & SPI_CPOL)
241		reg |= SUN6I_TFR_CTL_CPOL;
242	else
243		reg &= ~SUN6I_TFR_CTL_CPOL;
244
245	if (spi->mode & SPI_CPHA)
246		reg |= SUN6I_TFR_CTL_CPHA;
247	else
248		reg &= ~SUN6I_TFR_CTL_CPHA;
249
250	if (spi->mode & SPI_LSB_FIRST)
251		reg |= SUN6I_TFR_CTL_FBS;
252	else
253		reg &= ~SUN6I_TFR_CTL_FBS;
254
255	/*
256	 * If it's a TX only transfer, we don't want to fill the RX
257	 * FIFO with bogus data
258	 */
259	if (sspi->rx_buf)
260		reg &= ~SUN6I_TFR_CTL_DHB;
261	else
 
262		reg |= SUN6I_TFR_CTL_DHB;
 
263
264	/* We want to control the chip select manually */
265	reg |= SUN6I_TFR_CTL_CS_MANUAL;
266
267	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
268
269	/* Ensure that we have a parent clock fast enough */
270	mclk_rate = clk_get_rate(sspi->mclk);
271	if (mclk_rate < (2 * tfr->speed_hz)) {
272		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
273		mclk_rate = clk_get_rate(sspi->mclk);
274	}
275
276	/*
277	 * Setup clock divider.
278	 *
279	 * We have two choices there. Either we can use the clock
280	 * divide rate 1, which is calculated thanks to this formula:
281	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
282	 * Or we can use CDR2, which is calculated with the formula:
283	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
284	 * Wether we use the former or the latter is set through the
285	 * DRS bit.
286	 *
287	 * First try CDR2, and if we can't reach the expected
288	 * frequency, fall back to CDR1.
289	 */
290	div = mclk_rate / (2 * tfr->speed_hz);
291	if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
292		if (div > 0)
293			div--;
 
 
 
 
 
 
 
 
 
 
 
 
294
295		reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
296	} else {
297		div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
298		reg = SUN6I_CLK_CTL_CDR1(div);
299	}
300
301	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302
303	/* Setup the transfer now... */
304	if (sspi->tx_buf)
305		tx_len = tfr->len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306
307	/* Setup the counters */
308	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
309	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
310	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
311			SUN6I_BURST_CTL_CNT_STC(tx_len));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312
313	/* Fill the TX FIFO */
314	sun6i_spi_fill_fifo(sspi, sspi->fifo_depth);
 
 
 
 
315
316	/* Enable the interrupts */
317	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
318	sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TC |
319					 SUN6I_INT_CTL_RF_RDY);
320	if (tx_len > sspi->fifo_depth)
321		sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
322
323	/* Start the transfer */
324	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
325	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
326
327	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
328	start = jiffies;
329	timeout = wait_for_completion_timeout(&sspi->done,
330					      msecs_to_jiffies(tx_time));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331	end = jiffies;
332	if (!timeout) {
333		dev_warn(&master->dev,
334			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
335			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
336			 jiffies_to_msecs(end - start), tx_time);
337		ret = -ETIMEDOUT;
338		goto out;
339	}
340
341out:
342	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
343
 
 
 
 
 
344	return ret;
345}
346
347static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
348{
349	struct sun6i_spi *sspi = dev_id;
350	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
351
352	/* Transfer complete */
353	if (status & SUN6I_INT_CTL_TC) {
354		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
355		sun6i_spi_drain_fifo(sspi, sspi->fifo_depth);
356		complete(&sspi->done);
357		return IRQ_HANDLED;
358	}
359
360	/* Receive FIFO 3/4 full */
361	if (status & SUN6I_INT_CTL_RF_RDY) {
362		sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
363		/* Only clear the interrupt _after_ draining the FIFO */
364		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
365		return IRQ_HANDLED;
366	}
367
368	/* Transmit FIFO 3/4 empty */
369	if (status & SUN6I_INT_CTL_TF_ERQ) {
370		sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
371
372		if (!sspi->len)
373			/* nothing left to transmit */
374			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
375
376		/* Only clear the interrupt _after_ re-seeding the FIFO */
377		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
378
379		return IRQ_HANDLED;
380	}
381
382	return IRQ_NONE;
383}
384
385static int sun6i_spi_runtime_resume(struct device *dev)
386{
387	struct spi_master *master = dev_get_drvdata(dev);
388	struct sun6i_spi *sspi = spi_master_get_devdata(master);
389	int ret;
390
391	ret = clk_prepare_enable(sspi->hclk);
392	if (ret) {
393		dev_err(dev, "Couldn't enable AHB clock\n");
394		goto out;
395	}
396
397	ret = clk_prepare_enable(sspi->mclk);
398	if (ret) {
399		dev_err(dev, "Couldn't enable module clock\n");
400		goto err;
401	}
402
403	ret = reset_control_deassert(sspi->rstc);
404	if (ret) {
405		dev_err(dev, "Couldn't deassert the device from reset\n");
406		goto err2;
407	}
408
409	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
410			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
411
412	return 0;
413
414err2:
415	clk_disable_unprepare(sspi->mclk);
416err:
417	clk_disable_unprepare(sspi->hclk);
418out:
419	return ret;
420}
421
422static int sun6i_spi_runtime_suspend(struct device *dev)
423{
424	struct spi_master *master = dev_get_drvdata(dev);
425	struct sun6i_spi *sspi = spi_master_get_devdata(master);
426
427	reset_control_assert(sspi->rstc);
428	clk_disable_unprepare(sspi->mclk);
429	clk_disable_unprepare(sspi->hclk);
430
431	return 0;
432}
433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434static int sun6i_spi_probe(struct platform_device *pdev)
435{
436	struct spi_master *master;
437	struct sun6i_spi *sspi;
 
438	int ret = 0, irq;
439
440	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
441	if (!master) {
442		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
443		return -ENOMEM;
444	}
445
446	platform_set_drvdata(pdev, master);
447	sspi = spi_master_get_devdata(master);
448
449	sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
450	if (IS_ERR(sspi->base_addr)) {
451		ret = PTR_ERR(sspi->base_addr);
452		goto err_free_master;
453	}
454
455	irq = platform_get_irq(pdev, 0);
456	if (irq < 0) {
457		ret = -ENXIO;
458		goto err_free_master;
459	}
460
461	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
462			       0, "sun6i-spi", sspi);
463	if (ret) {
464		dev_err(&pdev->dev, "Cannot request IRQ\n");
465		goto err_free_master;
466	}
467
468	sspi->master = master;
469	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
470
471	master->max_speed_hz = 100 * 1000 * 1000;
472	master->min_speed_hz = 3 * 1000;
473	master->set_cs = sun6i_spi_set_cs;
474	master->transfer_one = sun6i_spi_transfer_one;
475	master->num_chipselect = 4;
476	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
477	master->bits_per_word_mask = SPI_BPW_MASK(8);
478	master->dev.of_node = pdev->dev.of_node;
479	master->auto_runtime_pm = true;
480	master->max_transfer_size = sun6i_spi_max_transfer_size;
 
 
481
482	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
483	if (IS_ERR(sspi->hclk)) {
484		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
485		ret = PTR_ERR(sspi->hclk);
486		goto err_free_master;
487	}
488
489	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
490	if (IS_ERR(sspi->mclk)) {
491		dev_err(&pdev->dev, "Unable to acquire module clock\n");
492		ret = PTR_ERR(sspi->mclk);
493		goto err_free_master;
494	}
495
496	init_completion(&sspi->done);
 
497
498	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
499	if (IS_ERR(sspi->rstc)) {
500		dev_err(&pdev->dev, "Couldn't get reset controller\n");
501		ret = PTR_ERR(sspi->rstc);
502		goto err_free_master;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
503	}
504
505	/*
506	 * This wake-up/shutdown pattern is to be able to have the
507	 * device woken up, even if runtime_pm is disabled
508	 */
509	ret = sun6i_spi_runtime_resume(&pdev->dev);
510	if (ret) {
511		dev_err(&pdev->dev, "Couldn't resume the device\n");
512		goto err_free_master;
513	}
514
 
 
515	pm_runtime_set_active(&pdev->dev);
516	pm_runtime_enable(&pdev->dev);
517	pm_runtime_idle(&pdev->dev);
518
519	ret = devm_spi_register_master(&pdev->dev, master);
520	if (ret) {
521		dev_err(&pdev->dev, "cannot register SPI master\n");
522		goto err_pm_disable;
523	}
524
525	return 0;
526
527err_pm_disable:
528	pm_runtime_disable(&pdev->dev);
529	sun6i_spi_runtime_suspend(&pdev->dev);
530err_free_master:
531	spi_master_put(master);
 
 
 
 
 
 
532	return ret;
533}
534
535static int sun6i_spi_remove(struct platform_device *pdev)
536{
 
 
537	pm_runtime_force_suspend(&pdev->dev);
538
539	return 0;
 
 
 
540}
541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542static const struct of_device_id sun6i_spi_match[] = {
543	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
544	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
 
 
 
 
545	{}
546};
547MODULE_DEVICE_TABLE(of, sun6i_spi_match);
548
549static const struct dev_pm_ops sun6i_spi_pm_ops = {
550	.runtime_resume		= sun6i_spi_runtime_resume,
551	.runtime_suspend	= sun6i_spi_runtime_suspend,
552};
553
554static struct platform_driver sun6i_spi_driver = {
555	.probe	= sun6i_spi_probe,
556	.remove	= sun6i_spi_remove,
557	.driver	= {
558		.name		= "sun6i-spi",
559		.of_match_table	= sun6i_spi_match,
560		.pm		= &sun6i_spi_pm_ops,
561	},
562};
563module_platform_driver(sun6i_spi_driver);
564
565MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
566MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
567MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
568MODULE_LICENSE("GPL");