Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Freescale QUICC Engine HDLC Device Driver
   3 *
   4 * Copyright 2016 Freescale Semiconductor Inc.
   5 */
   6
   7#include <linux/delay.h>
   8#include <linux/dma-mapping.h>
   9#include <linux/hdlc.h>
  10#include <linux/init.h>
  11#include <linux/interrupt.h>
  12#include <linux/io.h>
  13#include <linux/irq.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/netdevice.h>
  17#include <linux/of_address.h>
  18#include <linux/of_irq.h>
  19#include <linux/of_platform.h>
  20#include <linux/platform_device.h>
  21#include <linux/sched.h>
  22#include <linux/skbuff.h>
  23#include <linux/slab.h>
  24#include <linux/spinlock.h>
  25#include <linux/stddef.h>
  26#include <soc/fsl/qe/qe_tdm.h>
  27#include <uapi/linux/if_arp.h>
  28
  29#include "fsl_ucc_hdlc.h"
  30
  31#define DRV_DESC "Freescale QE UCC HDLC Driver"
  32#define DRV_NAME "ucc_hdlc"
  33
  34#define TDM_PPPOHT_SLIC_MAXIN
  35#define RX_BD_ERRORS (R_CD_S | R_OV_S | R_CR_S | R_AB_S | R_NO_S | R_LG_S)
  36
  37static int uhdlc_close(struct net_device *dev);
  38
  39static struct ucc_tdm_info utdm_primary_info = {
  40	.uf_info = {
  41		.tsa = 0,
  42		.cdp = 0,
  43		.cds = 1,
  44		.ctsp = 1,
  45		.ctss = 1,
  46		.revd = 0,
  47		.urfs = 256,
  48		.utfs = 256,
  49		.urfet = 128,
  50		.urfset = 192,
  51		.utfet = 128,
  52		.utftt = 0x40,
  53		.ufpt = 256,
  54		.mode = UCC_FAST_PROTOCOL_MODE_HDLC,
  55		.ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
  56		.tenc = UCC_FAST_TX_ENCODING_NRZ,
  57		.renc = UCC_FAST_RX_ENCODING_NRZ,
  58		.tcrc = UCC_FAST_16_BIT_CRC,
  59		.synl = UCC_FAST_SYNC_LEN_NOT_USED,
  60	},
  61
  62	.si_info = {
  63#ifdef TDM_PPPOHT_SLIC_MAXIN
  64		.simr_rfsd = 1,
  65		.simr_tfsd = 2,
  66#else
  67		.simr_rfsd = 0,
  68		.simr_tfsd = 0,
  69#endif
  70		.simr_crt = 0,
  71		.simr_sl = 0,
  72		.simr_ce = 1,
  73		.simr_fe = 1,
  74		.simr_gm = 0,
  75	},
  76};
  77
  78static struct ucc_tdm_info utdm_info[UCC_MAX_NUM];
  79
  80static int uhdlc_init(struct ucc_hdlc_private *priv)
  81{
  82	struct ucc_tdm_info *ut_info;
  83	struct ucc_fast_info *uf_info;
  84	u32 cecr_subblock;
  85	u16 bd_status;
  86	int ret, i;
  87	void *bd_buffer;
  88	dma_addr_t bd_dma_addr;
  89	s32 riptr;
  90	s32 tiptr;
  91	u32 gumr;
  92
  93	ut_info = priv->ut_info;
  94	uf_info = &ut_info->uf_info;
  95
  96	if (priv->tsa) {
  97		uf_info->tsa = 1;
  98		uf_info->ctsp = 1;
  99		uf_info->cds = 1;
 100		uf_info->ctss = 1;
 101	} else {
 102		uf_info->cds = 0;
 103		uf_info->ctsp = 0;
 104		uf_info->ctss = 0;
 105	}
 106
 107	/* This sets HPM register in CMXUCR register which configures a
 108	 * open drain connected HDLC bus
 109	 */
 110	if (priv->hdlc_bus)
 111		uf_info->brkpt_support = 1;
 112
 113	uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
 114				UCC_HDLC_UCCE_TXB) << 16);
 115
 116	ret = ucc_fast_init(uf_info, &priv->uccf);
 117	if (ret) {
 118		dev_err(priv->dev, "Failed to init uccf.");
 119		return ret;
 120	}
 121
 122	priv->uf_regs = priv->uccf->uf_regs;
 123	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 124
 125	/* Loopback mode */
 126	if (priv->loopback) {
 127		dev_info(priv->dev, "Loopback Mode\n");
 128		/* use the same clock when work in loopback */
 129		qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
 130
 131		gumr = ioread32be(&priv->uf_regs->gumr);
 132		gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
 133			 UCC_FAST_GUMR_TCI);
 134		gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
 135		iowrite32be(gumr, &priv->uf_regs->gumr);
 136	}
 137
 138	/* Initialize SI */
 139	if (priv->tsa)
 140		ucc_tdm_init(priv->utdm, priv->ut_info);
 141
 142	/* Write to QE CECR, UCCx channel to Stop Transmission */
 143	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 144	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
 145			   QE_CR_PROTOCOL_UNSPECIFIED, 0);
 146
 147	/* Set UPSMR normal mode (need fixed)*/
 148	iowrite32be(0, &priv->uf_regs->upsmr);
 149
 150	/* hdlc_bus mode */
 151	if (priv->hdlc_bus) {
 152		u32 upsmr;
 153
 154		dev_info(priv->dev, "HDLC bus Mode\n");
 155		upsmr = ioread32be(&priv->uf_regs->upsmr);
 156
 157		/* bus mode and retransmit enable, with collision window
 158		 * set to 8 bytes
 159		 */
 160		upsmr |= UCC_HDLC_UPSMR_RTE | UCC_HDLC_UPSMR_BUS |
 161				UCC_HDLC_UPSMR_CW8;
 162		iowrite32be(upsmr, &priv->uf_regs->upsmr);
 163
 164		/* explicitly disable CDS & CTSP */
 165		gumr = ioread32be(&priv->uf_regs->gumr);
 166		gumr &= ~(UCC_FAST_GUMR_CDS | UCC_FAST_GUMR_CTSP);
 167		/* set automatic sync to explicitly ignore CD signal */
 168		gumr |= UCC_FAST_GUMR_SYNL_AUTO;
 169		iowrite32be(gumr, &priv->uf_regs->gumr);
 170	}
 171
 172	priv->rx_ring_size = RX_BD_RING_LEN;
 173	priv->tx_ring_size = TX_BD_RING_LEN;
 174	/* Alloc Rx BD */
 175	priv->rx_bd_base = dma_alloc_coherent(priv->dev,
 176			RX_BD_RING_LEN * sizeof(struct qe_bd),
 177			&priv->dma_rx_bd, GFP_KERNEL);
 178
 179	if (!priv->rx_bd_base) {
 180		dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
 181		ret = -ENOMEM;
 182		goto free_uccf;
 183	}
 184
 185	/* Alloc Tx BD */
 186	priv->tx_bd_base = dma_alloc_coherent(priv->dev,
 187			TX_BD_RING_LEN * sizeof(struct qe_bd),
 188			&priv->dma_tx_bd, GFP_KERNEL);
 189
 190	if (!priv->tx_bd_base) {
 191		dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
 192		ret = -ENOMEM;
 193		goto free_rx_bd;
 194	}
 195
 196	/* Alloc parameter ram for ucc hdlc */
 197	priv->ucc_pram_offset = qe_muram_alloc(sizeof(struct ucc_hdlc_param),
 198				ALIGNMENT_OF_UCC_HDLC_PRAM);
 199
 200	if (priv->ucc_pram_offset < 0) {
 201		dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
 202		ret = -ENOMEM;
 203		goto free_tx_bd;
 204	}
 205
 206	priv->rx_skbuff = kcalloc(priv->rx_ring_size,
 207				  sizeof(*priv->rx_skbuff),
 208				  GFP_KERNEL);
 209	if (!priv->rx_skbuff) {
 210		ret = -ENOMEM;
 211		goto free_ucc_pram;
 212	}
 213
 214	priv->tx_skbuff = kcalloc(priv->tx_ring_size,
 215				  sizeof(*priv->tx_skbuff),
 216				  GFP_KERNEL);
 217	if (!priv->tx_skbuff) {
 218		ret = -ENOMEM;
 219		goto free_rx_skbuff;
 220	}
 221
 222	priv->skb_curtx = 0;
 223	priv->skb_dirtytx = 0;
 224	priv->curtx_bd = priv->tx_bd_base;
 225	priv->dirty_tx = priv->tx_bd_base;
 226	priv->currx_bd = priv->rx_bd_base;
 227	priv->currx_bdnum = 0;
 228
 229	/* init parameter base */
 230	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 231	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
 232			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
 233
 234	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
 235					qe_muram_addr(priv->ucc_pram_offset);
 236
 237	/* Zero out parameter ram */
 238	memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
 239
 240	/* Alloc riptr, tiptr */
 241	riptr = qe_muram_alloc(32, 32);
 242	if (riptr < 0) {
 243		dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
 244		ret = -ENOMEM;
 245		goto free_tx_skbuff;
 246	}
 247
 248	tiptr = qe_muram_alloc(32, 32);
 249	if (tiptr < 0) {
 250		dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
 251		ret = -ENOMEM;
 252		goto free_riptr;
 253	}
 254	if (riptr != (u16)riptr || tiptr != (u16)tiptr) {
 255		dev_err(priv->dev, "MURAM allocation out of addressable range\n");
 256		ret = -ENOMEM;
 257		goto free_tiptr;
 258	}
 259
 260	/* Set RIPTR, TIPTR */
 261	iowrite16be(riptr, &priv->ucc_pram->riptr);
 262	iowrite16be(tiptr, &priv->ucc_pram->tiptr);
 263
 264	/* Set MRBLR */
 265	iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
 266
 267	/* Set RBASE, TBASE */
 268	iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
 269	iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
 270
 271	/* Set RSTATE, TSTATE */
 272	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
 273	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
 274
 275	/* Set C_MASK, C_PRES for 16bit CRC */
 276	iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
 277	iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
 278
 279	iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
 280	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
 281	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
 282	iowrite16be(priv->hmask, &priv->ucc_pram->hmask);
 283	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
 284	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
 285	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
 286	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
 287
 288	/* Get BD buffer */
 289	bd_buffer = dma_alloc_coherent(priv->dev,
 290				       (RX_BD_RING_LEN + TX_BD_RING_LEN) * MAX_RX_BUF_LENGTH,
 291				       &bd_dma_addr, GFP_KERNEL);
 292
 293	if (!bd_buffer) {
 294		dev_err(priv->dev, "Could not allocate buffer descriptors\n");
 295		ret = -ENOMEM;
 296		goto free_tiptr;
 297	}
 298
 299	priv->rx_buffer = bd_buffer;
 300	priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
 301
 302	priv->dma_rx_addr = bd_dma_addr;
 303	priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
 304
 305	for (i = 0; i < RX_BD_RING_LEN; i++) {
 306		if (i < (RX_BD_RING_LEN - 1))
 307			bd_status = R_E_S | R_I_S;
 308		else
 309			bd_status = R_E_S | R_I_S | R_W_S;
 310
 311		priv->rx_bd_base[i].status = cpu_to_be16(bd_status);
 312		priv->rx_bd_base[i].buf = cpu_to_be32(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH);
 
 313	}
 314
 315	for (i = 0; i < TX_BD_RING_LEN; i++) {
 316		if (i < (TX_BD_RING_LEN - 1))
 317			bd_status =  T_I_S | T_TC_S;
 318		else
 319			bd_status =  T_I_S | T_TC_S | T_W_S;
 320
 321		priv->tx_bd_base[i].status = cpu_to_be16(bd_status);
 322		priv->tx_bd_base[i].buf = cpu_to_be32(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH);
 
 323	}
 324	dma_wmb();
 325
 326	return 0;
 327
 328free_tiptr:
 329	qe_muram_free(tiptr);
 330free_riptr:
 331	qe_muram_free(riptr);
 332free_tx_skbuff:
 333	kfree(priv->tx_skbuff);
 334free_rx_skbuff:
 335	kfree(priv->rx_skbuff);
 336free_ucc_pram:
 337	qe_muram_free(priv->ucc_pram_offset);
 338free_tx_bd:
 339	dma_free_coherent(priv->dev,
 340			  TX_BD_RING_LEN * sizeof(struct qe_bd),
 341			  priv->tx_bd_base, priv->dma_tx_bd);
 342free_rx_bd:
 343	dma_free_coherent(priv->dev,
 344			  RX_BD_RING_LEN * sizeof(struct qe_bd),
 345			  priv->rx_bd_base, priv->dma_rx_bd);
 346free_uccf:
 347	ucc_fast_free(priv->uccf);
 348
 349	return ret;
 350}
 351
 352static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
 353{
 354	hdlc_device *hdlc = dev_to_hdlc(dev);
 355	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
 356	struct qe_bd *bd;
 357	u16 bd_status;
 358	unsigned long flags;
 359	__be16 *proto_head;
 360
 361	switch (dev->type) {
 362	case ARPHRD_RAWHDLC:
 363		if (skb_headroom(skb) < HDLC_HEAD_LEN) {
 364			dev->stats.tx_dropped++;
 365			dev_kfree_skb(skb);
 366			netdev_err(dev, "No enough space for hdlc head\n");
 367			return -ENOMEM;
 368		}
 369
 370		skb_push(skb, HDLC_HEAD_LEN);
 371
 372		proto_head = (__be16 *)skb->data;
 373		*proto_head = htons(DEFAULT_HDLC_HEAD);
 374
 375		dev->stats.tx_bytes += skb->len;
 376		break;
 377
 378	case ARPHRD_PPP:
 379		proto_head = (__be16 *)skb->data;
 380		if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
 381			dev->stats.tx_dropped++;
 382			dev_kfree_skb(skb);
 383			netdev_err(dev, "Wrong ppp header\n");
 384			return -ENOMEM;
 385		}
 386
 387		dev->stats.tx_bytes += skb->len;
 388		break;
 389
 390	case ARPHRD_ETHER:
 391		dev->stats.tx_bytes += skb->len;
 392		break;
 393
 394	default:
 395		dev->stats.tx_dropped++;
 396		dev_kfree_skb(skb);
 397		return -ENOMEM;
 398	}
 399	netdev_sent_queue(dev, skb->len);
 400	spin_lock_irqsave(&priv->lock, flags);
 401
 402	dma_rmb();
 403	/* Start from the next BD that should be filled */
 404	bd = priv->curtx_bd;
 405	bd_status = be16_to_cpu(bd->status);
 406	/* Save the skb pointer so we can free it later */
 407	priv->tx_skbuff[priv->skb_curtx] = skb;
 408
 409	/* Update the current skb pointer (wrapping if this was the last) */
 410	priv->skb_curtx =
 411	    (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
 412
 413	/* copy skb data to tx buffer for sdma processing */
 414	memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
 415	       skb->data, skb->len);
 416
 417	/* set bd status and length */
 418	bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
 419
 420	bd->length = cpu_to_be16(skb->len);
 421	bd->status = cpu_to_be16(bd_status);
 422
 423	/* Move to next BD in the ring */
 424	if (!(bd_status & T_W_S))
 425		bd += 1;
 426	else
 427		bd = priv->tx_bd_base;
 428
 429	if (bd == priv->dirty_tx) {
 430		if (!netif_queue_stopped(dev))
 431			netif_stop_queue(dev);
 432	}
 433
 434	priv->curtx_bd = bd;
 435
 436	spin_unlock_irqrestore(&priv->lock, flags);
 437
 438	return NETDEV_TX_OK;
 439}
 440
 441static int hdlc_tx_restart(struct ucc_hdlc_private *priv)
 442{
 443	u32 cecr_subblock;
 444
 445	cecr_subblock =
 446		ucc_fast_get_qe_cr_subblock(priv->ut_info->uf_info.ucc_num);
 447
 448	qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
 449		     QE_CR_PROTOCOL_UNSPECIFIED, 0);
 450	return 0;
 451}
 452
 453static int hdlc_tx_done(struct ucc_hdlc_private *priv)
 454{
 455	/* Start from the next BD that should be filled */
 456	struct net_device *dev = priv->ndev;
 457	unsigned int bytes_sent = 0;
 458	int howmany = 0;
 459	struct qe_bd *bd;		/* BD pointer */
 460	u16 bd_status;
 461	int tx_restart = 0;
 462
 463	dma_rmb();
 464	bd = priv->dirty_tx;
 465	bd_status = be16_to_cpu(bd->status);
 466
 467	/* Normal processing. */
 468	while ((bd_status & T_R_S) == 0) {
 469		struct sk_buff *skb;
 470
 471		if (bd_status & T_UN_S) { /* Underrun */
 472			dev->stats.tx_fifo_errors++;
 473			tx_restart = 1;
 474		}
 475		if (bd_status & T_CT_S) { /* Carrier lost */
 476			dev->stats.tx_carrier_errors++;
 477			tx_restart = 1;
 478		}
 479
 480		/* BD contains already transmitted buffer.   */
 481		/* Handle the transmitted buffer and release */
 482		/* the BD to be used with the current frame  */
 483
 484		skb = priv->tx_skbuff[priv->skb_dirtytx];
 485		if (!skb)
 486			break;
 487		howmany++;
 488		bytes_sent += skb->len;
 489		dev->stats.tx_packets++;
 490		memset(priv->tx_buffer +
 491		       (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
 492		       0, skb->len);
 493		dev_consume_skb_irq(skb);
 494
 495		priv->tx_skbuff[priv->skb_dirtytx] = NULL;
 496		priv->skb_dirtytx =
 497		    (priv->skb_dirtytx +
 498		     1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
 499
 500		/* We freed a buffer, so now we can restart transmission */
 501		if (netif_queue_stopped(dev))
 502			netif_wake_queue(dev);
 503
 504		/* Advance the confirmation BD pointer */
 505		if (!(bd_status & T_W_S))
 506			bd += 1;
 507		else
 508			bd = priv->tx_bd_base;
 509		bd_status = be16_to_cpu(bd->status);
 510	}
 511	priv->dirty_tx = bd;
 512
 513	if (tx_restart)
 514		hdlc_tx_restart(priv);
 515
 516	netdev_completed_queue(dev, howmany, bytes_sent);
 517	return 0;
 518}
 519
 520static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
 521{
 522	struct net_device *dev = priv->ndev;
 523	struct sk_buff *skb = NULL;
 524	hdlc_device *hdlc = dev_to_hdlc(dev);
 525	struct qe_bd *bd;
 526	u16 bd_status;
 527	u16 length, howmany = 0;
 528	u8 *bdbuffer;
 529
 530	dma_rmb();
 531	bd = priv->currx_bd;
 532	bd_status = be16_to_cpu(bd->status);
 533
 534	/* while there are received buffers and BD is full (~R_E) */
 535	while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
 536		if (bd_status & (RX_BD_ERRORS)) {
 537			dev->stats.rx_errors++;
 538
 539			if (bd_status & R_CD_S)
 540				dev->stats.collisions++;
 541			if (bd_status & R_OV_S)
 542				dev->stats.rx_fifo_errors++;
 543			if (bd_status & R_CR_S)
 544				dev->stats.rx_crc_errors++;
 545			if (bd_status & R_AB_S)
 546				dev->stats.rx_over_errors++;
 547			if (bd_status & R_NO_S)
 548				dev->stats.rx_frame_errors++;
 549			if (bd_status & R_LG_S)
 550				dev->stats.rx_length_errors++;
 551
 552			goto recycle;
 553		}
 554		bdbuffer = priv->rx_buffer +
 555			(priv->currx_bdnum * MAX_RX_BUF_LENGTH);
 556		length = be16_to_cpu(bd->length);
 557
 558		switch (dev->type) {
 559		case ARPHRD_RAWHDLC:
 560			bdbuffer += HDLC_HEAD_LEN;
 561			length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
 562
 563			skb = dev_alloc_skb(length);
 564			if (!skb) {
 565				dev->stats.rx_dropped++;
 566				return -ENOMEM;
 567			}
 568
 569			skb_put(skb, length);
 570			skb->len = length;
 571			skb->dev = dev;
 572			memcpy(skb->data, bdbuffer, length);
 573			break;
 574
 575		case ARPHRD_PPP:
 576		case ARPHRD_ETHER:
 577			length -= HDLC_CRC_SIZE;
 578
 579			skb = dev_alloc_skb(length);
 580			if (!skb) {
 581				dev->stats.rx_dropped++;
 582				return -ENOMEM;
 583			}
 584
 585			skb_put(skb, length);
 586			skb->len = length;
 587			skb->dev = dev;
 588			memcpy(skb->data, bdbuffer, length);
 589			break;
 590		}
 591
 592		dev->stats.rx_packets++;
 593		dev->stats.rx_bytes += skb->len;
 594		howmany++;
 595		if (hdlc->proto)
 596			skb->protocol = hdlc_type_trans(skb, dev);
 597		netif_receive_skb(skb);
 598
 599recycle:
 600		bd->status = cpu_to_be16((bd_status & R_W_S) | R_E_S | R_I_S);
 601
 602		/* update to point at the next bd */
 603		if (bd_status & R_W_S) {
 604			priv->currx_bdnum = 0;
 605			bd = priv->rx_bd_base;
 606		} else {
 607			if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
 608				priv->currx_bdnum += 1;
 609			else
 610				priv->currx_bdnum = RX_BD_RING_LEN - 1;
 611
 612			bd += 1;
 613		}
 614
 615		bd_status = be16_to_cpu(bd->status);
 616	}
 617	dma_rmb();
 618
 619	priv->currx_bd = bd;
 620	return howmany;
 621}
 622
 623static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
 624{
 625	struct ucc_hdlc_private *priv = container_of(napi,
 626						     struct ucc_hdlc_private,
 627						     napi);
 628	int howmany;
 629
 630	/* Tx event processing */
 631	spin_lock(&priv->lock);
 632	hdlc_tx_done(priv);
 633	spin_unlock(&priv->lock);
 634
 635	howmany = 0;
 636	howmany += hdlc_rx_done(priv, budget - howmany);
 637
 638	if (howmany < budget) {
 639		napi_complete_done(napi, howmany);
 640		qe_setbits_be32(priv->uccf->p_uccm,
 641				(UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
 642	}
 643
 644	return howmany;
 645}
 646
 647static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
 648{
 649	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
 650	struct net_device *dev = priv->ndev;
 651	struct ucc_fast_private *uccf;
 652	u32 ucce;
 653	u32 uccm;
 654
 655	uccf = priv->uccf;
 656
 657	ucce = ioread32be(uccf->p_ucce);
 658	uccm = ioread32be(uccf->p_uccm);
 659	ucce &= uccm;
 660	iowrite32be(ucce, uccf->p_ucce);
 661	if (!ucce)
 662		return IRQ_NONE;
 663
 664	if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
 665		if (napi_schedule_prep(&priv->napi)) {
 666			uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
 667				  << 16);
 668			iowrite32be(uccm, uccf->p_uccm);
 669			__napi_schedule(&priv->napi);
 670		}
 671	}
 672
 673	/* Errors and other events */
 674	if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
 675		dev->stats.rx_missed_errors++;
 676	if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
 677		dev->stats.tx_errors++;
 678
 679	return IRQ_HANDLED;
 680}
 681
 682static int uhdlc_ioctl(struct net_device *dev, struct if_settings *ifs)
 683{
 684	const size_t size = sizeof(te1_settings);
 685	te1_settings line;
 686	struct ucc_hdlc_private *priv = netdev_priv(dev);
 687
 688	switch (ifs->type) {
 
 
 
 689	case IF_GET_IFACE:
 690		ifs->type = IF_IFACE_E1;
 691		if (ifs->size < size) {
 692			ifs->size = size; /* data size wanted */
 693			return -ENOBUFS;
 694		}
 695		memset(&line, 0, sizeof(line));
 696		line.clock_type = priv->clocking;
 697
 698		if (copy_to_user(ifs->ifs_ifsu.sync, &line, size))
 699			return -EFAULT;
 700		return 0;
 701
 702	default:
 703		return hdlc_ioctl(dev, ifs);
 704	}
 705}
 706
 707static int uhdlc_open(struct net_device *dev)
 708{
 709	u32 cecr_subblock;
 710	hdlc_device *hdlc = dev_to_hdlc(dev);
 711	struct ucc_hdlc_private *priv = hdlc->priv;
 712	struct ucc_tdm *utdm = priv->utdm;
 713	int rc = 0;
 714
 715	if (priv->hdlc_busy != 1) {
 716		if (request_irq(priv->ut_info->uf_info.irq,
 717				ucc_hdlc_irq_handler, 0, "hdlc", priv))
 718			return -ENODEV;
 719
 720		cecr_subblock = ucc_fast_get_qe_cr_subblock(
 721					priv->ut_info->uf_info.ucc_num);
 722
 723		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
 724			     QE_CR_PROTOCOL_UNSPECIFIED, 0);
 725
 726		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 727
 728		/* Enable the TDM port */
 729		if (priv->tsa)
 730			qe_setbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
 731
 732		priv->hdlc_busy = 1;
 733		netif_device_attach(priv->ndev);
 734		napi_enable(&priv->napi);
 735		netdev_reset_queue(dev);
 736		netif_start_queue(dev);
 737
 738		rc = hdlc_open(dev);
 739		if (rc)
 740			uhdlc_close(dev);
 741	}
 742
 743	return rc;
 744}
 745
 746static void uhdlc_memclean(struct ucc_hdlc_private *priv)
 747{
 748	qe_muram_free(ioread16be(&priv->ucc_pram->riptr));
 749	qe_muram_free(ioread16be(&priv->ucc_pram->tiptr));
 750
 751	if (priv->rx_bd_base) {
 752		dma_free_coherent(priv->dev,
 753				  RX_BD_RING_LEN * sizeof(struct qe_bd),
 754				  priv->rx_bd_base, priv->dma_rx_bd);
 755
 756		priv->rx_bd_base = NULL;
 757		priv->dma_rx_bd = 0;
 758	}
 759
 760	if (priv->tx_bd_base) {
 761		dma_free_coherent(priv->dev,
 762				  TX_BD_RING_LEN * sizeof(struct qe_bd),
 763				  priv->tx_bd_base, priv->dma_tx_bd);
 764
 765		priv->tx_bd_base = NULL;
 766		priv->dma_tx_bd = 0;
 767	}
 768
 769	if (priv->ucc_pram) {
 770		qe_muram_free(priv->ucc_pram_offset);
 771		priv->ucc_pram = NULL;
 772		priv->ucc_pram_offset = 0;
 773	 }
 774
 775	kfree(priv->rx_skbuff);
 776	priv->rx_skbuff = NULL;
 777
 778	kfree(priv->tx_skbuff);
 779	priv->tx_skbuff = NULL;
 780
 781	if (priv->uf_regs) {
 782		iounmap(priv->uf_regs);
 783		priv->uf_regs = NULL;
 784	}
 785
 786	if (priv->uccf) {
 787		ucc_fast_free(priv->uccf);
 788		priv->uccf = NULL;
 789	}
 790
 791	if (priv->rx_buffer) {
 792		dma_free_coherent(priv->dev,
 793				  RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
 794				  priv->rx_buffer, priv->dma_rx_addr);
 795		priv->rx_buffer = NULL;
 796		priv->dma_rx_addr = 0;
 797	}
 798
 799	if (priv->tx_buffer) {
 800		dma_free_coherent(priv->dev,
 801				  TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
 802				  priv->tx_buffer, priv->dma_tx_addr);
 803		priv->tx_buffer = NULL;
 804		priv->dma_tx_addr = 0;
 805	}
 806}
 807
 808static int uhdlc_close(struct net_device *dev)
 809{
 810	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
 811	struct ucc_tdm *utdm = priv->utdm;
 812	u32 cecr_subblock;
 813
 814	napi_disable(&priv->napi);
 815	cecr_subblock = ucc_fast_get_qe_cr_subblock(
 816				priv->ut_info->uf_info.ucc_num);
 817
 818	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
 819		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 820	qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
 821		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 822
 823	if (priv->tsa)
 824		qe_clrbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
 825
 826	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 827
 828	free_irq(priv->ut_info->uf_info.irq, priv);
 829	netif_stop_queue(dev);
 830	netdev_reset_queue(dev);
 831	priv->hdlc_busy = 0;
 832
 833	hdlc_close(dev);
 834
 835	return 0;
 836}
 837
 838static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
 839			   unsigned short parity)
 840{
 841	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
 842
 843	if (encoding != ENCODING_NRZ &&
 844	    encoding != ENCODING_NRZI)
 845		return -EINVAL;
 846
 847	if (parity != PARITY_NONE &&
 848	    parity != PARITY_CRC32_PR1_CCITT &&
 849	    parity != PARITY_CRC16_PR0_CCITT &&
 850	    parity != PARITY_CRC16_PR1_CCITT)
 851		return -EINVAL;
 852
 853	priv->encoding = encoding;
 854	priv->parity = parity;
 855
 856	return 0;
 857}
 858
 859#ifdef CONFIG_PM
 860static void store_clk_config(struct ucc_hdlc_private *priv)
 861{
 862	struct qe_mux __iomem *qe_mux_reg = &qe_immr->qmx;
 863
 864	/* store si clk */
 865	priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
 866	priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
 867
 868	/* store si sync */
 869	priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
 870
 871	/* store ucc clk */
 872	memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
 873}
 874
 875static void resume_clk_config(struct ucc_hdlc_private *priv)
 876{
 877	struct qe_mux __iomem *qe_mux_reg = &qe_immr->qmx;
 878
 879	memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
 880
 881	iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
 882	iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
 883
 884	iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
 885}
 886
 887static int uhdlc_suspend(struct device *dev)
 888{
 889	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
 890	struct ucc_fast __iomem *uf_regs;
 891
 892	if (!priv)
 893		return -EINVAL;
 894
 895	if (!netif_running(priv->ndev))
 896		return 0;
 897
 898	netif_device_detach(priv->ndev);
 899	napi_disable(&priv->napi);
 900
 901	uf_regs = priv->uf_regs;
 902
 903	/* backup gumr guemr*/
 904	priv->gumr = ioread32be(&uf_regs->gumr);
 905	priv->guemr = ioread8(&uf_regs->guemr);
 906
 907	priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
 908					GFP_KERNEL);
 909	if (!priv->ucc_pram_bak)
 910		return -ENOMEM;
 911
 912	/* backup HDLC parameter */
 913	memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
 914		      sizeof(struct ucc_hdlc_param));
 915
 916	/* store the clk configuration */
 917	store_clk_config(priv);
 918
 919	/* save power */
 920	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 921
 922	return 0;
 923}
 924
 925static int uhdlc_resume(struct device *dev)
 926{
 927	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
 928	struct ucc_tdm *utdm;
 929	struct ucc_tdm_info *ut_info;
 930	struct ucc_fast __iomem *uf_regs;
 931	struct ucc_fast_private *uccf;
 932	struct ucc_fast_info *uf_info;
 933	int i;
 934	u32 cecr_subblock;
 935	u16 bd_status;
 936
 937	if (!priv)
 938		return -EINVAL;
 939
 940	if (!netif_running(priv->ndev))
 941		return 0;
 942
 943	utdm = priv->utdm;
 944	ut_info = priv->ut_info;
 945	uf_info = &ut_info->uf_info;
 946	uf_regs = priv->uf_regs;
 947	uccf = priv->uccf;
 948
 949	/* restore gumr guemr */
 950	iowrite8(priv->guemr, &uf_regs->guemr);
 951	iowrite32be(priv->gumr, &uf_regs->gumr);
 952
 953	/* Set Virtual Fifo registers */
 954	iowrite16be(uf_info->urfs, &uf_regs->urfs);
 955	iowrite16be(uf_info->urfet, &uf_regs->urfet);
 956	iowrite16be(uf_info->urfset, &uf_regs->urfset);
 957	iowrite16be(uf_info->utfs, &uf_regs->utfs);
 958	iowrite16be(uf_info->utfet, &uf_regs->utfet);
 959	iowrite16be(uf_info->utftt, &uf_regs->utftt);
 960	/* utfb, urfb are offsets from MURAM base */
 961	iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
 962	iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
 963
 964	/* Rx Tx and sync clock routing */
 965	resume_clk_config(priv);
 966
 967	iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
 968	iowrite32be(0xffffffff, &uf_regs->ucce);
 969
 970	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 971
 972	/* rebuild SIRAM */
 973	if (priv->tsa)
 974		ucc_tdm_init(priv->utdm, priv->ut_info);
 975
 976	/* Write to QE CECR, UCCx channel to Stop Transmission */
 977	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 978	qe_issue_cmd(QE_STOP_TX, cecr_subblock,
 979		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 980
 981	/* Set UPSMR normal mode */
 982	iowrite32be(0, &uf_regs->upsmr);
 983
 984	/* init parameter base */
 985	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 986	qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
 987		     QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
 988
 989	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
 990				qe_muram_addr(priv->ucc_pram_offset);
 991
 992	/* restore ucc parameter */
 993	memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
 994		    sizeof(struct ucc_hdlc_param));
 995	kfree(priv->ucc_pram_bak);
 996
 997	/* rebuild BD entry */
 998	for (i = 0; i < RX_BD_RING_LEN; i++) {
 999		if (i < (RX_BD_RING_LEN - 1))
1000			bd_status = R_E_S | R_I_S;
1001		else
1002			bd_status = R_E_S | R_I_S | R_W_S;
1003
1004		priv->rx_bd_base[i].status = cpu_to_be16(bd_status);
1005		priv->rx_bd_base[i].buf = cpu_to_be32(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH);
 
1006	}
1007
1008	for (i = 0; i < TX_BD_RING_LEN; i++) {
1009		if (i < (TX_BD_RING_LEN - 1))
1010			bd_status =  T_I_S | T_TC_S;
1011		else
1012			bd_status =  T_I_S | T_TC_S | T_W_S;
1013
1014		priv->tx_bd_base[i].status = cpu_to_be16(bd_status);
1015		priv->tx_bd_base[i].buf = cpu_to_be32(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH);
 
1016	}
1017	dma_wmb();
1018
1019	/* if hdlc is busy enable TX and RX */
1020	if (priv->hdlc_busy == 1) {
1021		cecr_subblock = ucc_fast_get_qe_cr_subblock(
1022					priv->ut_info->uf_info.ucc_num);
1023
1024		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
1025			     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
1026
1027		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
1028
1029		/* Enable the TDM port */
1030		if (priv->tsa)
1031			qe_setbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
1032	}
1033
1034	napi_enable(&priv->napi);
1035	netif_device_attach(priv->ndev);
1036
1037	return 0;
1038}
1039
1040static const struct dev_pm_ops uhdlc_pm_ops = {
1041	.suspend = uhdlc_suspend,
1042	.resume = uhdlc_resume,
1043	.freeze = uhdlc_suspend,
1044	.thaw = uhdlc_resume,
1045};
1046
1047#define HDLC_PM_OPS (&uhdlc_pm_ops)
1048
1049#else
1050
1051#define HDLC_PM_OPS NULL
1052
1053#endif
1054static void uhdlc_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1055{
1056	netdev_err(ndev, "%s\n", __func__);
1057}
1058
1059static const struct net_device_ops uhdlc_ops = {
1060	.ndo_open       = uhdlc_open,
1061	.ndo_stop       = uhdlc_close,
1062	.ndo_start_xmit = hdlc_start_xmit,
1063	.ndo_siocwandev = uhdlc_ioctl,
1064	.ndo_tx_timeout	= uhdlc_tx_timeout,
1065};
1066
1067static int hdlc_map_iomem(char *name, int init_flag, void __iomem **ptr)
1068{
1069	struct device_node *np;
1070	struct platform_device *pdev;
1071	struct resource *res;
1072	static int siram_init_flag;
1073	int ret = 0;
1074
1075	np = of_find_compatible_node(NULL, NULL, name);
1076	if (!np)
1077		return -EINVAL;
1078
1079	pdev = of_find_device_by_node(np);
1080	if (!pdev) {
1081		pr_err("%pOFn: failed to lookup pdev\n", np);
1082		of_node_put(np);
1083		return -EINVAL;
1084	}
1085
1086	of_node_put(np);
1087	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1088	if (!res) {
1089		ret = -EINVAL;
1090		goto error_put_device;
1091	}
1092	*ptr = ioremap(res->start, resource_size(res));
1093	if (!*ptr) {
1094		ret = -ENOMEM;
1095		goto error_put_device;
1096	}
1097
1098	/* We've remapped the addresses, and we don't need the device any
1099	 * more, so we should release it.
1100	 */
1101	put_device(&pdev->dev);
1102
1103	if (init_flag && siram_init_flag == 0) {
1104		memset_io(*ptr, 0, resource_size(res));
1105		siram_init_flag = 1;
1106	}
1107	return  0;
1108
1109error_put_device:
1110	put_device(&pdev->dev);
1111
1112	return ret;
1113}
1114
1115static int ucc_hdlc_probe(struct platform_device *pdev)
1116{
1117	struct device_node *np = pdev->dev.of_node;
1118	struct ucc_hdlc_private *uhdlc_priv = NULL;
1119	struct ucc_tdm_info *ut_info;
1120	struct ucc_tdm *utdm = NULL;
1121	struct resource res;
1122	struct net_device *dev;
1123	hdlc_device *hdlc;
1124	int ucc_num;
1125	const char *sprop;
1126	int ret;
1127	u32 val;
1128
1129	ret = of_property_read_u32_index(np, "cell-index", 0, &val);
1130	if (ret) {
1131		dev_err(&pdev->dev, "Invalid ucc property\n");
1132		return -ENODEV;
1133	}
1134
1135	ucc_num = val - 1;
1136	if (ucc_num > (UCC_MAX_NUM - 1) || ucc_num < 0) {
1137		dev_err(&pdev->dev, ": Invalid UCC num\n");
1138		return -EINVAL;
1139	}
1140
1141	memcpy(&utdm_info[ucc_num], &utdm_primary_info,
1142	       sizeof(utdm_primary_info));
1143
1144	ut_info = &utdm_info[ucc_num];
1145	ut_info->uf_info.ucc_num = ucc_num;
1146
1147	sprop = of_get_property(np, "rx-clock-name", NULL);
1148	if (sprop) {
1149		ut_info->uf_info.rx_clock = qe_clock_source(sprop);
1150		if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
1151		    (ut_info->uf_info.rx_clock > QE_CLK24)) {
1152			dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1153			return -EINVAL;
1154		}
1155	} else {
1156		dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1157		return -EINVAL;
1158	}
1159
1160	sprop = of_get_property(np, "tx-clock-name", NULL);
1161	if (sprop) {
1162		ut_info->uf_info.tx_clock = qe_clock_source(sprop);
1163		if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
1164		    (ut_info->uf_info.tx_clock > QE_CLK24)) {
1165			dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1166			return -EINVAL;
1167		}
1168	} else {
1169		dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1170		return -EINVAL;
1171	}
1172
1173	ret = of_address_to_resource(np, 0, &res);
1174	if (ret)
1175		return -EINVAL;
1176
1177	ut_info->uf_info.regs = res.start;
1178	ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
1179
1180	uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
1181	if (!uhdlc_priv)
1182		return -ENOMEM;
 
1183
1184	dev_set_drvdata(&pdev->dev, uhdlc_priv);
1185	uhdlc_priv->dev = &pdev->dev;
1186	uhdlc_priv->ut_info = ut_info;
1187
1188	uhdlc_priv->tsa = of_property_read_bool(np, "fsl,tdm-interface");
1189	uhdlc_priv->loopback = of_property_read_bool(np, "fsl,ucc-internal-loopback");
1190	uhdlc_priv->hdlc_bus = of_property_read_bool(np, "fsl,hdlc-bus");
 
 
 
 
 
1191
1192	if (uhdlc_priv->tsa == 1) {
1193		utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
1194		if (!utdm) {
1195			ret = -ENOMEM;
1196			dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
1197			goto free_uhdlc_priv;
1198		}
1199		uhdlc_priv->utdm = utdm;
1200		ret = ucc_of_parse_tdm(np, utdm, ut_info);
1201		if (ret)
1202			goto free_utdm;
1203
1204		ret = hdlc_map_iomem("fsl,t1040-qe-si", 0,
1205				     (void __iomem **)&utdm->si_regs);
1206		if (ret)
1207			goto free_utdm;
1208		ret = hdlc_map_iomem("fsl,t1040-qe-siram", 1,
1209				     (void __iomem **)&utdm->siram);
1210		if (ret)
1211			goto unmap_si_regs;
1212	}
1213
1214	if (of_property_read_u16(np, "fsl,hmask", &uhdlc_priv->hmask))
1215		uhdlc_priv->hmask = DEFAULT_ADDR_MASK;
1216
1217	ret = uhdlc_init(uhdlc_priv);
1218	if (ret) {
1219		dev_err(&pdev->dev, "Failed to init uhdlc\n");
1220		goto undo_uhdlc_init;
1221	}
1222
1223	dev = alloc_hdlcdev(uhdlc_priv);
1224	if (!dev) {
1225		ret = -ENOMEM;
1226		pr_err("ucc_hdlc: unable to allocate memory\n");
1227		goto undo_uhdlc_init;
1228	}
1229
1230	uhdlc_priv->ndev = dev;
1231	hdlc = dev_to_hdlc(dev);
1232	dev->tx_queue_len = 16;
1233	dev->netdev_ops = &uhdlc_ops;
1234	dev->watchdog_timeo = 2 * HZ;
1235	hdlc->attach = ucc_hdlc_attach;
1236	hdlc->xmit = ucc_hdlc_tx;
1237	netif_napi_add_weight(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
1238	if (register_hdlc_device(dev)) {
1239		ret = -ENOBUFS;
1240		pr_err("ucc_hdlc: unable to register hdlc device\n");
1241		goto free_dev;
1242	}
1243
1244	return 0;
1245
1246free_dev:
1247	free_netdev(dev);
1248undo_uhdlc_init:
1249	if (utdm)
1250		iounmap(utdm->siram);
1251unmap_si_regs:
1252	if (utdm)
1253		iounmap(utdm->si_regs);
1254free_utdm:
1255	if (uhdlc_priv->tsa)
1256		kfree(utdm);
1257free_uhdlc_priv:
1258	kfree(uhdlc_priv);
1259	return ret;
1260}
1261
1262static void ucc_hdlc_remove(struct platform_device *pdev)
1263{
1264	struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
1265
1266	uhdlc_memclean(priv);
1267
1268	if (priv->utdm->si_regs) {
1269		iounmap(priv->utdm->si_regs);
1270		priv->utdm->si_regs = NULL;
1271	}
1272
1273	if (priv->utdm->siram) {
1274		iounmap(priv->utdm->siram);
1275		priv->utdm->siram = NULL;
1276	}
1277	kfree(priv);
1278
1279	dev_info(&pdev->dev, "UCC based hdlc module removed\n");
 
 
1280}
1281
1282static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
1283	{
1284	.compatible = "fsl,ucc-hdlc",
1285	},
1286	{},
1287};
1288
1289MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
1290
1291static struct platform_driver ucc_hdlc_driver = {
1292	.probe	= ucc_hdlc_probe,
1293	.remove_new = ucc_hdlc_remove,
1294	.driver	= {
1295		.name		= DRV_NAME,
1296		.pm		= HDLC_PM_OPS,
1297		.of_match_table	= fsl_ucc_hdlc_of_match,
1298	},
1299};
1300
1301module_platform_driver(ucc_hdlc_driver);
1302MODULE_LICENSE("GPL");
1303MODULE_DESCRIPTION(DRV_DESC);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Freescale QUICC Engine HDLC Device Driver
   3 *
   4 * Copyright 2016 Freescale Semiconductor Inc.
   5 */
   6
   7#include <linux/delay.h>
   8#include <linux/dma-mapping.h>
   9#include <linux/hdlc.h>
  10#include <linux/init.h>
  11#include <linux/interrupt.h>
  12#include <linux/io.h>
  13#include <linux/irq.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/netdevice.h>
  17#include <linux/of_address.h>
  18#include <linux/of_irq.h>
  19#include <linux/of_platform.h>
  20#include <linux/platform_device.h>
  21#include <linux/sched.h>
  22#include <linux/skbuff.h>
  23#include <linux/slab.h>
  24#include <linux/spinlock.h>
  25#include <linux/stddef.h>
  26#include <soc/fsl/qe/qe_tdm.h>
  27#include <uapi/linux/if_arp.h>
  28
  29#include "fsl_ucc_hdlc.h"
  30
  31#define DRV_DESC "Freescale QE UCC HDLC Driver"
  32#define DRV_NAME "ucc_hdlc"
  33
  34#define TDM_PPPOHT_SLIC_MAXIN
  35#define RX_BD_ERRORS (R_CD_S | R_OV_S | R_CR_S | R_AB_S | R_NO_S | R_LG_S)
  36
 
 
  37static struct ucc_tdm_info utdm_primary_info = {
  38	.uf_info = {
  39		.tsa = 0,
  40		.cdp = 0,
  41		.cds = 1,
  42		.ctsp = 1,
  43		.ctss = 1,
  44		.revd = 0,
  45		.urfs = 256,
  46		.utfs = 256,
  47		.urfet = 128,
  48		.urfset = 192,
  49		.utfet = 128,
  50		.utftt = 0x40,
  51		.ufpt = 256,
  52		.mode = UCC_FAST_PROTOCOL_MODE_HDLC,
  53		.ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
  54		.tenc = UCC_FAST_TX_ENCODING_NRZ,
  55		.renc = UCC_FAST_RX_ENCODING_NRZ,
  56		.tcrc = UCC_FAST_16_BIT_CRC,
  57		.synl = UCC_FAST_SYNC_LEN_NOT_USED,
  58	},
  59
  60	.si_info = {
  61#ifdef TDM_PPPOHT_SLIC_MAXIN
  62		.simr_rfsd = 1,
  63		.simr_tfsd = 2,
  64#else
  65		.simr_rfsd = 0,
  66		.simr_tfsd = 0,
  67#endif
  68		.simr_crt = 0,
  69		.simr_sl = 0,
  70		.simr_ce = 1,
  71		.simr_fe = 1,
  72		.simr_gm = 0,
  73	},
  74};
  75
  76static struct ucc_tdm_info utdm_info[UCC_MAX_NUM];
  77
  78static int uhdlc_init(struct ucc_hdlc_private *priv)
  79{
  80	struct ucc_tdm_info *ut_info;
  81	struct ucc_fast_info *uf_info;
  82	u32 cecr_subblock;
  83	u16 bd_status;
  84	int ret, i;
  85	void *bd_buffer;
  86	dma_addr_t bd_dma_addr;
  87	s32 riptr;
  88	s32 tiptr;
  89	u32 gumr;
  90
  91	ut_info = priv->ut_info;
  92	uf_info = &ut_info->uf_info;
  93
  94	if (priv->tsa) {
  95		uf_info->tsa = 1;
  96		uf_info->ctsp = 1;
  97		uf_info->cds = 1;
  98		uf_info->ctss = 1;
  99	} else {
 100		uf_info->cds = 0;
 101		uf_info->ctsp = 0;
 102		uf_info->ctss = 0;
 103	}
 104
 105	/* This sets HPM register in CMXUCR register which configures a
 106	 * open drain connected HDLC bus
 107	 */
 108	if (priv->hdlc_bus)
 109		uf_info->brkpt_support = 1;
 110
 111	uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
 112				UCC_HDLC_UCCE_TXB) << 16);
 113
 114	ret = ucc_fast_init(uf_info, &priv->uccf);
 115	if (ret) {
 116		dev_err(priv->dev, "Failed to init uccf.");
 117		return ret;
 118	}
 119
 120	priv->uf_regs = priv->uccf->uf_regs;
 121	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 122
 123	/* Loopback mode */
 124	if (priv->loopback) {
 125		dev_info(priv->dev, "Loopback Mode\n");
 126		/* use the same clock when work in loopback */
 127		qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
 128
 129		gumr = ioread32be(&priv->uf_regs->gumr);
 130		gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
 131			 UCC_FAST_GUMR_TCI);
 132		gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
 133		iowrite32be(gumr, &priv->uf_regs->gumr);
 134	}
 135
 136	/* Initialize SI */
 137	if (priv->tsa)
 138		ucc_tdm_init(priv->utdm, priv->ut_info);
 139
 140	/* Write to QE CECR, UCCx channel to Stop Transmission */
 141	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 142	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
 143			   QE_CR_PROTOCOL_UNSPECIFIED, 0);
 144
 145	/* Set UPSMR normal mode (need fixed)*/
 146	iowrite32be(0, &priv->uf_regs->upsmr);
 147
 148	/* hdlc_bus mode */
 149	if (priv->hdlc_bus) {
 150		u32 upsmr;
 151
 152		dev_info(priv->dev, "HDLC bus Mode\n");
 153		upsmr = ioread32be(&priv->uf_regs->upsmr);
 154
 155		/* bus mode and retransmit enable, with collision window
 156		 * set to 8 bytes
 157		 */
 158		upsmr |= UCC_HDLC_UPSMR_RTE | UCC_HDLC_UPSMR_BUS |
 159				UCC_HDLC_UPSMR_CW8;
 160		iowrite32be(upsmr, &priv->uf_regs->upsmr);
 161
 162		/* explicitly disable CDS & CTSP */
 163		gumr = ioread32be(&priv->uf_regs->gumr);
 164		gumr &= ~(UCC_FAST_GUMR_CDS | UCC_FAST_GUMR_CTSP);
 165		/* set automatic sync to explicitly ignore CD signal */
 166		gumr |= UCC_FAST_GUMR_SYNL_AUTO;
 167		iowrite32be(gumr, &priv->uf_regs->gumr);
 168	}
 169
 170	priv->rx_ring_size = RX_BD_RING_LEN;
 171	priv->tx_ring_size = TX_BD_RING_LEN;
 172	/* Alloc Rx BD */
 173	priv->rx_bd_base = dma_alloc_coherent(priv->dev,
 174			RX_BD_RING_LEN * sizeof(struct qe_bd),
 175			&priv->dma_rx_bd, GFP_KERNEL);
 176
 177	if (!priv->rx_bd_base) {
 178		dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
 179		ret = -ENOMEM;
 180		goto free_uccf;
 181	}
 182
 183	/* Alloc Tx BD */
 184	priv->tx_bd_base = dma_alloc_coherent(priv->dev,
 185			TX_BD_RING_LEN * sizeof(struct qe_bd),
 186			&priv->dma_tx_bd, GFP_KERNEL);
 187
 188	if (!priv->tx_bd_base) {
 189		dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
 190		ret = -ENOMEM;
 191		goto free_rx_bd;
 192	}
 193
 194	/* Alloc parameter ram for ucc hdlc */
 195	priv->ucc_pram_offset = qe_muram_alloc(sizeof(struct ucc_hdlc_param),
 196				ALIGNMENT_OF_UCC_HDLC_PRAM);
 197
 198	if (priv->ucc_pram_offset < 0) {
 199		dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
 200		ret = -ENOMEM;
 201		goto free_tx_bd;
 202	}
 203
 204	priv->rx_skbuff = kcalloc(priv->rx_ring_size,
 205				  sizeof(*priv->rx_skbuff),
 206				  GFP_KERNEL);
 207	if (!priv->rx_skbuff)
 
 208		goto free_ucc_pram;
 
 209
 210	priv->tx_skbuff = kcalloc(priv->tx_ring_size,
 211				  sizeof(*priv->tx_skbuff),
 212				  GFP_KERNEL);
 213	if (!priv->tx_skbuff)
 
 214		goto free_rx_skbuff;
 
 215
 216	priv->skb_curtx = 0;
 217	priv->skb_dirtytx = 0;
 218	priv->curtx_bd = priv->tx_bd_base;
 219	priv->dirty_tx = priv->tx_bd_base;
 220	priv->currx_bd = priv->rx_bd_base;
 221	priv->currx_bdnum = 0;
 222
 223	/* init parameter base */
 224	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 225	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
 226			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
 227
 228	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
 229					qe_muram_addr(priv->ucc_pram_offset);
 230
 231	/* Zero out parameter ram */
 232	memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
 233
 234	/* Alloc riptr, tiptr */
 235	riptr = qe_muram_alloc(32, 32);
 236	if (riptr < 0) {
 237		dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
 238		ret = -ENOMEM;
 239		goto free_tx_skbuff;
 240	}
 241
 242	tiptr = qe_muram_alloc(32, 32);
 243	if (tiptr < 0) {
 244		dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
 245		ret = -ENOMEM;
 246		goto free_riptr;
 247	}
 248	if (riptr != (u16)riptr || tiptr != (u16)tiptr) {
 249		dev_err(priv->dev, "MURAM allocation out of addressable range\n");
 250		ret = -ENOMEM;
 251		goto free_tiptr;
 252	}
 253
 254	/* Set RIPTR, TIPTR */
 255	iowrite16be(riptr, &priv->ucc_pram->riptr);
 256	iowrite16be(tiptr, &priv->ucc_pram->tiptr);
 257
 258	/* Set MRBLR */
 259	iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
 260
 261	/* Set RBASE, TBASE */
 262	iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
 263	iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
 264
 265	/* Set RSTATE, TSTATE */
 266	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
 267	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
 268
 269	/* Set C_MASK, C_PRES for 16bit CRC */
 270	iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
 271	iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
 272
 273	iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
 274	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
 275	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
 276	iowrite16be(priv->hmask, &priv->ucc_pram->hmask);
 277	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
 278	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
 279	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
 280	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
 281
 282	/* Get BD buffer */
 283	bd_buffer = dma_alloc_coherent(priv->dev,
 284				       (RX_BD_RING_LEN + TX_BD_RING_LEN) * MAX_RX_BUF_LENGTH,
 285				       &bd_dma_addr, GFP_KERNEL);
 286
 287	if (!bd_buffer) {
 288		dev_err(priv->dev, "Could not allocate buffer descriptors\n");
 289		ret = -ENOMEM;
 290		goto free_tiptr;
 291	}
 292
 293	priv->rx_buffer = bd_buffer;
 294	priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
 295
 296	priv->dma_rx_addr = bd_dma_addr;
 297	priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
 298
 299	for (i = 0; i < RX_BD_RING_LEN; i++) {
 300		if (i < (RX_BD_RING_LEN - 1))
 301			bd_status = R_E_S | R_I_S;
 302		else
 303			bd_status = R_E_S | R_I_S | R_W_S;
 304
 305		iowrite16be(bd_status, &priv->rx_bd_base[i].status);
 306		iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
 307			    &priv->rx_bd_base[i].buf);
 308	}
 309
 310	for (i = 0; i < TX_BD_RING_LEN; i++) {
 311		if (i < (TX_BD_RING_LEN - 1))
 312			bd_status =  T_I_S | T_TC_S;
 313		else
 314			bd_status =  T_I_S | T_TC_S | T_W_S;
 315
 316		iowrite16be(bd_status, &priv->tx_bd_base[i].status);
 317		iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
 318			    &priv->tx_bd_base[i].buf);
 319	}
 
 320
 321	return 0;
 322
 323free_tiptr:
 324	qe_muram_free(tiptr);
 325free_riptr:
 326	qe_muram_free(riptr);
 327free_tx_skbuff:
 328	kfree(priv->tx_skbuff);
 329free_rx_skbuff:
 330	kfree(priv->rx_skbuff);
 331free_ucc_pram:
 332	qe_muram_free(priv->ucc_pram_offset);
 333free_tx_bd:
 334	dma_free_coherent(priv->dev,
 335			  TX_BD_RING_LEN * sizeof(struct qe_bd),
 336			  priv->tx_bd_base, priv->dma_tx_bd);
 337free_rx_bd:
 338	dma_free_coherent(priv->dev,
 339			  RX_BD_RING_LEN * sizeof(struct qe_bd),
 340			  priv->rx_bd_base, priv->dma_rx_bd);
 341free_uccf:
 342	ucc_fast_free(priv->uccf);
 343
 344	return ret;
 345}
 346
 347static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
 348{
 349	hdlc_device *hdlc = dev_to_hdlc(dev);
 350	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
 351	struct qe_bd __iomem *bd;
 352	u16 bd_status;
 353	unsigned long flags;
 354	u16 *proto_head;
 355
 356	switch (dev->type) {
 357	case ARPHRD_RAWHDLC:
 358		if (skb_headroom(skb) < HDLC_HEAD_LEN) {
 359			dev->stats.tx_dropped++;
 360			dev_kfree_skb(skb);
 361			netdev_err(dev, "No enough space for hdlc head\n");
 362			return -ENOMEM;
 363		}
 364
 365		skb_push(skb, HDLC_HEAD_LEN);
 366
 367		proto_head = (u16 *)skb->data;
 368		*proto_head = htons(DEFAULT_HDLC_HEAD);
 369
 370		dev->stats.tx_bytes += skb->len;
 371		break;
 372
 373	case ARPHRD_PPP:
 374		proto_head = (u16 *)skb->data;
 375		if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
 376			dev->stats.tx_dropped++;
 377			dev_kfree_skb(skb);
 378			netdev_err(dev, "Wrong ppp header\n");
 379			return -ENOMEM;
 380		}
 381
 382		dev->stats.tx_bytes += skb->len;
 383		break;
 384
 385	case ARPHRD_ETHER:
 386		dev->stats.tx_bytes += skb->len;
 387		break;
 388
 389	default:
 390		dev->stats.tx_dropped++;
 391		dev_kfree_skb(skb);
 392		return -ENOMEM;
 393	}
 394	netdev_sent_queue(dev, skb->len);
 395	spin_lock_irqsave(&priv->lock, flags);
 396
 
 397	/* Start from the next BD that should be filled */
 398	bd = priv->curtx_bd;
 399	bd_status = ioread16be(&bd->status);
 400	/* Save the skb pointer so we can free it later */
 401	priv->tx_skbuff[priv->skb_curtx] = skb;
 402
 403	/* Update the current skb pointer (wrapping if this was the last) */
 404	priv->skb_curtx =
 405	    (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
 406
 407	/* copy skb data to tx buffer for sdma processing */
 408	memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
 409	       skb->data, skb->len);
 410
 411	/* set bd status and length */
 412	bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
 413
 414	iowrite16be(skb->len, &bd->length);
 415	iowrite16be(bd_status, &bd->status);
 416
 417	/* Move to next BD in the ring */
 418	if (!(bd_status & T_W_S))
 419		bd += 1;
 420	else
 421		bd = priv->tx_bd_base;
 422
 423	if (bd == priv->dirty_tx) {
 424		if (!netif_queue_stopped(dev))
 425			netif_stop_queue(dev);
 426	}
 427
 428	priv->curtx_bd = bd;
 429
 430	spin_unlock_irqrestore(&priv->lock, flags);
 431
 432	return NETDEV_TX_OK;
 433}
 434
 435static int hdlc_tx_restart(struct ucc_hdlc_private *priv)
 436{
 437	u32 cecr_subblock;
 438
 439	cecr_subblock =
 440		ucc_fast_get_qe_cr_subblock(priv->ut_info->uf_info.ucc_num);
 441
 442	qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
 443		     QE_CR_PROTOCOL_UNSPECIFIED, 0);
 444	return 0;
 445}
 446
 447static int hdlc_tx_done(struct ucc_hdlc_private *priv)
 448{
 449	/* Start from the next BD that should be filled */
 450	struct net_device *dev = priv->ndev;
 451	unsigned int bytes_sent = 0;
 452	int howmany = 0;
 453	struct qe_bd *bd;		/* BD pointer */
 454	u16 bd_status;
 455	int tx_restart = 0;
 456
 
 457	bd = priv->dirty_tx;
 458	bd_status = ioread16be(&bd->status);
 459
 460	/* Normal processing. */
 461	while ((bd_status & T_R_S) == 0) {
 462		struct sk_buff *skb;
 463
 464		if (bd_status & T_UN_S) { /* Underrun */
 465			dev->stats.tx_fifo_errors++;
 466			tx_restart = 1;
 467		}
 468		if (bd_status & T_CT_S) { /* Carrier lost */
 469			dev->stats.tx_carrier_errors++;
 470			tx_restart = 1;
 471		}
 472
 473		/* BD contains already transmitted buffer.   */
 474		/* Handle the transmitted buffer and release */
 475		/* the BD to be used with the current frame  */
 476
 477		skb = priv->tx_skbuff[priv->skb_dirtytx];
 478		if (!skb)
 479			break;
 480		howmany++;
 481		bytes_sent += skb->len;
 482		dev->stats.tx_packets++;
 483		memset(priv->tx_buffer +
 484		       (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
 485		       0, skb->len);
 486		dev_consume_skb_irq(skb);
 487
 488		priv->tx_skbuff[priv->skb_dirtytx] = NULL;
 489		priv->skb_dirtytx =
 490		    (priv->skb_dirtytx +
 491		     1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
 492
 493		/* We freed a buffer, so now we can restart transmission */
 494		if (netif_queue_stopped(dev))
 495			netif_wake_queue(dev);
 496
 497		/* Advance the confirmation BD pointer */
 498		if (!(bd_status & T_W_S))
 499			bd += 1;
 500		else
 501			bd = priv->tx_bd_base;
 502		bd_status = ioread16be(&bd->status);
 503	}
 504	priv->dirty_tx = bd;
 505
 506	if (tx_restart)
 507		hdlc_tx_restart(priv);
 508
 509	netdev_completed_queue(dev, howmany, bytes_sent);
 510	return 0;
 511}
 512
 513static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
 514{
 515	struct net_device *dev = priv->ndev;
 516	struct sk_buff *skb = NULL;
 517	hdlc_device *hdlc = dev_to_hdlc(dev);
 518	struct qe_bd *bd;
 519	u16 bd_status;
 520	u16 length, howmany = 0;
 521	u8 *bdbuffer;
 522
 
 523	bd = priv->currx_bd;
 524	bd_status = ioread16be(&bd->status);
 525
 526	/* while there are received buffers and BD is full (~R_E) */
 527	while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
 528		if (bd_status & (RX_BD_ERRORS)) {
 529			dev->stats.rx_errors++;
 530
 531			if (bd_status & R_CD_S)
 532				dev->stats.collisions++;
 533			if (bd_status & R_OV_S)
 534				dev->stats.rx_fifo_errors++;
 535			if (bd_status & R_CR_S)
 536				dev->stats.rx_crc_errors++;
 537			if (bd_status & R_AB_S)
 538				dev->stats.rx_over_errors++;
 539			if (bd_status & R_NO_S)
 540				dev->stats.rx_frame_errors++;
 541			if (bd_status & R_LG_S)
 542				dev->stats.rx_length_errors++;
 543
 544			goto recycle;
 545		}
 546		bdbuffer = priv->rx_buffer +
 547			(priv->currx_bdnum * MAX_RX_BUF_LENGTH);
 548		length = ioread16be(&bd->length);
 549
 550		switch (dev->type) {
 551		case ARPHRD_RAWHDLC:
 552			bdbuffer += HDLC_HEAD_LEN;
 553			length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
 554
 555			skb = dev_alloc_skb(length);
 556			if (!skb) {
 557				dev->stats.rx_dropped++;
 558				return -ENOMEM;
 559			}
 560
 561			skb_put(skb, length);
 562			skb->len = length;
 563			skb->dev = dev;
 564			memcpy(skb->data, bdbuffer, length);
 565			break;
 566
 567		case ARPHRD_PPP:
 568		case ARPHRD_ETHER:
 569			length -= HDLC_CRC_SIZE;
 570
 571			skb = dev_alloc_skb(length);
 572			if (!skb) {
 573				dev->stats.rx_dropped++;
 574				return -ENOMEM;
 575			}
 576
 577			skb_put(skb, length);
 578			skb->len = length;
 579			skb->dev = dev;
 580			memcpy(skb->data, bdbuffer, length);
 581			break;
 582		}
 583
 584		dev->stats.rx_packets++;
 585		dev->stats.rx_bytes += skb->len;
 586		howmany++;
 587		if (hdlc->proto)
 588			skb->protocol = hdlc_type_trans(skb, dev);
 589		netif_receive_skb(skb);
 590
 591recycle:
 592		iowrite16be((bd_status & R_W_S) | R_E_S | R_I_S, &bd->status);
 593
 594		/* update to point at the next bd */
 595		if (bd_status & R_W_S) {
 596			priv->currx_bdnum = 0;
 597			bd = priv->rx_bd_base;
 598		} else {
 599			if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
 600				priv->currx_bdnum += 1;
 601			else
 602				priv->currx_bdnum = RX_BD_RING_LEN - 1;
 603
 604			bd += 1;
 605		}
 606
 607		bd_status = ioread16be(&bd->status);
 608	}
 
 609
 610	priv->currx_bd = bd;
 611	return howmany;
 612}
 613
 614static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
 615{
 616	struct ucc_hdlc_private *priv = container_of(napi,
 617						     struct ucc_hdlc_private,
 618						     napi);
 619	int howmany;
 620
 621	/* Tx event processing */
 622	spin_lock(&priv->lock);
 623	hdlc_tx_done(priv);
 624	spin_unlock(&priv->lock);
 625
 626	howmany = 0;
 627	howmany += hdlc_rx_done(priv, budget - howmany);
 628
 629	if (howmany < budget) {
 630		napi_complete_done(napi, howmany);
 631		qe_setbits_be32(priv->uccf->p_uccm,
 632				(UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
 633	}
 634
 635	return howmany;
 636}
 637
 638static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
 639{
 640	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
 641	struct net_device *dev = priv->ndev;
 642	struct ucc_fast_private *uccf;
 643	u32 ucce;
 644	u32 uccm;
 645
 646	uccf = priv->uccf;
 647
 648	ucce = ioread32be(uccf->p_ucce);
 649	uccm = ioread32be(uccf->p_uccm);
 650	ucce &= uccm;
 651	iowrite32be(ucce, uccf->p_ucce);
 652	if (!ucce)
 653		return IRQ_NONE;
 654
 655	if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
 656		if (napi_schedule_prep(&priv->napi)) {
 657			uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
 658				  << 16);
 659			iowrite32be(uccm, uccf->p_uccm);
 660			__napi_schedule(&priv->napi);
 661		}
 662	}
 663
 664	/* Errors and other events */
 665	if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
 666		dev->stats.rx_missed_errors++;
 667	if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
 668		dev->stats.tx_errors++;
 669
 670	return IRQ_HANDLED;
 671}
 672
 673static int uhdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 674{
 675	const size_t size = sizeof(te1_settings);
 676	te1_settings line;
 677	struct ucc_hdlc_private *priv = netdev_priv(dev);
 678
 679	if (cmd != SIOCWANDEV)
 680		return hdlc_ioctl(dev, ifr, cmd);
 681
 682	switch (ifr->ifr_settings.type) {
 683	case IF_GET_IFACE:
 684		ifr->ifr_settings.type = IF_IFACE_E1;
 685		if (ifr->ifr_settings.size < size) {
 686			ifr->ifr_settings.size = size; /* data size wanted */
 687			return -ENOBUFS;
 688		}
 689		memset(&line, 0, sizeof(line));
 690		line.clock_type = priv->clocking;
 691
 692		if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size))
 693			return -EFAULT;
 694		return 0;
 695
 696	default:
 697		return hdlc_ioctl(dev, ifr, cmd);
 698	}
 699}
 700
 701static int uhdlc_open(struct net_device *dev)
 702{
 703	u32 cecr_subblock;
 704	hdlc_device *hdlc = dev_to_hdlc(dev);
 705	struct ucc_hdlc_private *priv = hdlc->priv;
 706	struct ucc_tdm *utdm = priv->utdm;
 
 707
 708	if (priv->hdlc_busy != 1) {
 709		if (request_irq(priv->ut_info->uf_info.irq,
 710				ucc_hdlc_irq_handler, 0, "hdlc", priv))
 711			return -ENODEV;
 712
 713		cecr_subblock = ucc_fast_get_qe_cr_subblock(
 714					priv->ut_info->uf_info.ucc_num);
 715
 716		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
 717			     QE_CR_PROTOCOL_UNSPECIFIED, 0);
 718
 719		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 720
 721		/* Enable the TDM port */
 722		if (priv->tsa)
 723			utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
 724
 725		priv->hdlc_busy = 1;
 726		netif_device_attach(priv->ndev);
 727		napi_enable(&priv->napi);
 728		netdev_reset_queue(dev);
 729		netif_start_queue(dev);
 730		hdlc_open(dev);
 
 
 
 731	}
 732
 733	return 0;
 734}
 735
 736static void uhdlc_memclean(struct ucc_hdlc_private *priv)
 737{
 738	qe_muram_free(ioread16be(&priv->ucc_pram->riptr));
 739	qe_muram_free(ioread16be(&priv->ucc_pram->tiptr));
 740
 741	if (priv->rx_bd_base) {
 742		dma_free_coherent(priv->dev,
 743				  RX_BD_RING_LEN * sizeof(struct qe_bd),
 744				  priv->rx_bd_base, priv->dma_rx_bd);
 745
 746		priv->rx_bd_base = NULL;
 747		priv->dma_rx_bd = 0;
 748	}
 749
 750	if (priv->tx_bd_base) {
 751		dma_free_coherent(priv->dev,
 752				  TX_BD_RING_LEN * sizeof(struct qe_bd),
 753				  priv->tx_bd_base, priv->dma_tx_bd);
 754
 755		priv->tx_bd_base = NULL;
 756		priv->dma_tx_bd = 0;
 757	}
 758
 759	if (priv->ucc_pram) {
 760		qe_muram_free(priv->ucc_pram_offset);
 761		priv->ucc_pram = NULL;
 762		priv->ucc_pram_offset = 0;
 763	 }
 764
 765	kfree(priv->rx_skbuff);
 766	priv->rx_skbuff = NULL;
 767
 768	kfree(priv->tx_skbuff);
 769	priv->tx_skbuff = NULL;
 770
 771	if (priv->uf_regs) {
 772		iounmap(priv->uf_regs);
 773		priv->uf_regs = NULL;
 774	}
 775
 776	if (priv->uccf) {
 777		ucc_fast_free(priv->uccf);
 778		priv->uccf = NULL;
 779	}
 780
 781	if (priv->rx_buffer) {
 782		dma_free_coherent(priv->dev,
 783				  RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
 784				  priv->rx_buffer, priv->dma_rx_addr);
 785		priv->rx_buffer = NULL;
 786		priv->dma_rx_addr = 0;
 787	}
 788
 789	if (priv->tx_buffer) {
 790		dma_free_coherent(priv->dev,
 791				  TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
 792				  priv->tx_buffer, priv->dma_tx_addr);
 793		priv->tx_buffer = NULL;
 794		priv->dma_tx_addr = 0;
 795	}
 796}
 797
 798static int uhdlc_close(struct net_device *dev)
 799{
 800	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
 801	struct ucc_tdm *utdm = priv->utdm;
 802	u32 cecr_subblock;
 803
 804	napi_disable(&priv->napi);
 805	cecr_subblock = ucc_fast_get_qe_cr_subblock(
 806				priv->ut_info->uf_info.ucc_num);
 807
 808	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
 809		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 810	qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
 811		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 812
 813	if (priv->tsa)
 814		utdm->si_regs->siglmr1_h &= ~(0x1 << utdm->tdm_port);
 815
 816	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 817
 818	free_irq(priv->ut_info->uf_info.irq, priv);
 819	netif_stop_queue(dev);
 820	netdev_reset_queue(dev);
 821	priv->hdlc_busy = 0;
 822
 
 
 823	return 0;
 824}
 825
 826static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
 827			   unsigned short parity)
 828{
 829	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
 830
 831	if (encoding != ENCODING_NRZ &&
 832	    encoding != ENCODING_NRZI)
 833		return -EINVAL;
 834
 835	if (parity != PARITY_NONE &&
 836	    parity != PARITY_CRC32_PR1_CCITT &&
 837	    parity != PARITY_CRC16_PR0_CCITT &&
 838	    parity != PARITY_CRC16_PR1_CCITT)
 839		return -EINVAL;
 840
 841	priv->encoding = encoding;
 842	priv->parity = parity;
 843
 844	return 0;
 845}
 846
 847#ifdef CONFIG_PM
 848static void store_clk_config(struct ucc_hdlc_private *priv)
 849{
 850	struct qe_mux *qe_mux_reg = &qe_immr->qmx;
 851
 852	/* store si clk */
 853	priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
 854	priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
 855
 856	/* store si sync */
 857	priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
 858
 859	/* store ucc clk */
 860	memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
 861}
 862
 863static void resume_clk_config(struct ucc_hdlc_private *priv)
 864{
 865	struct qe_mux *qe_mux_reg = &qe_immr->qmx;
 866
 867	memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
 868
 869	iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
 870	iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
 871
 872	iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
 873}
 874
 875static int uhdlc_suspend(struct device *dev)
 876{
 877	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
 878	struct ucc_fast __iomem *uf_regs;
 879
 880	if (!priv)
 881		return -EINVAL;
 882
 883	if (!netif_running(priv->ndev))
 884		return 0;
 885
 886	netif_device_detach(priv->ndev);
 887	napi_disable(&priv->napi);
 888
 889	uf_regs = priv->uf_regs;
 890
 891	/* backup gumr guemr*/
 892	priv->gumr = ioread32be(&uf_regs->gumr);
 893	priv->guemr = ioread8(&uf_regs->guemr);
 894
 895	priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
 896					GFP_KERNEL);
 897	if (!priv->ucc_pram_bak)
 898		return -ENOMEM;
 899
 900	/* backup HDLC parameter */
 901	memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
 902		      sizeof(struct ucc_hdlc_param));
 903
 904	/* store the clk configuration */
 905	store_clk_config(priv);
 906
 907	/* save power */
 908	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 909
 910	return 0;
 911}
 912
 913static int uhdlc_resume(struct device *dev)
 914{
 915	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
 916	struct ucc_tdm *utdm;
 917	struct ucc_tdm_info *ut_info;
 918	struct ucc_fast __iomem *uf_regs;
 919	struct ucc_fast_private *uccf;
 920	struct ucc_fast_info *uf_info;
 921	int i;
 922	u32 cecr_subblock;
 923	u16 bd_status;
 924
 925	if (!priv)
 926		return -EINVAL;
 927
 928	if (!netif_running(priv->ndev))
 929		return 0;
 930
 931	utdm = priv->utdm;
 932	ut_info = priv->ut_info;
 933	uf_info = &ut_info->uf_info;
 934	uf_regs = priv->uf_regs;
 935	uccf = priv->uccf;
 936
 937	/* restore gumr guemr */
 938	iowrite8(priv->guemr, &uf_regs->guemr);
 939	iowrite32be(priv->gumr, &uf_regs->gumr);
 940
 941	/* Set Virtual Fifo registers */
 942	iowrite16be(uf_info->urfs, &uf_regs->urfs);
 943	iowrite16be(uf_info->urfet, &uf_regs->urfet);
 944	iowrite16be(uf_info->urfset, &uf_regs->urfset);
 945	iowrite16be(uf_info->utfs, &uf_regs->utfs);
 946	iowrite16be(uf_info->utfet, &uf_regs->utfet);
 947	iowrite16be(uf_info->utftt, &uf_regs->utftt);
 948	/* utfb, urfb are offsets from MURAM base */
 949	iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
 950	iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
 951
 952	/* Rx Tx and sync clock routing */
 953	resume_clk_config(priv);
 954
 955	iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
 956	iowrite32be(0xffffffff, &uf_regs->ucce);
 957
 958	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 959
 960	/* rebuild SIRAM */
 961	if (priv->tsa)
 962		ucc_tdm_init(priv->utdm, priv->ut_info);
 963
 964	/* Write to QE CECR, UCCx channel to Stop Transmission */
 965	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 966	qe_issue_cmd(QE_STOP_TX, cecr_subblock,
 967		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 968
 969	/* Set UPSMR normal mode */
 970	iowrite32be(0, &uf_regs->upsmr);
 971
 972	/* init parameter base */
 973	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 974	qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
 975		     QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
 976
 977	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
 978				qe_muram_addr(priv->ucc_pram_offset);
 979
 980	/* restore ucc parameter */
 981	memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
 982		    sizeof(struct ucc_hdlc_param));
 983	kfree(priv->ucc_pram_bak);
 984
 985	/* rebuild BD entry */
 986	for (i = 0; i < RX_BD_RING_LEN; i++) {
 987		if (i < (RX_BD_RING_LEN - 1))
 988			bd_status = R_E_S | R_I_S;
 989		else
 990			bd_status = R_E_S | R_I_S | R_W_S;
 991
 992		iowrite16be(bd_status, &priv->rx_bd_base[i].status);
 993		iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
 994			    &priv->rx_bd_base[i].buf);
 995	}
 996
 997	for (i = 0; i < TX_BD_RING_LEN; i++) {
 998		if (i < (TX_BD_RING_LEN - 1))
 999			bd_status =  T_I_S | T_TC_S;
1000		else
1001			bd_status =  T_I_S | T_TC_S | T_W_S;
1002
1003		iowrite16be(bd_status, &priv->tx_bd_base[i].status);
1004		iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
1005			    &priv->tx_bd_base[i].buf);
1006	}
 
1007
1008	/* if hdlc is busy enable TX and RX */
1009	if (priv->hdlc_busy == 1) {
1010		cecr_subblock = ucc_fast_get_qe_cr_subblock(
1011					priv->ut_info->uf_info.ucc_num);
1012
1013		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
1014			     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
1015
1016		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
1017
1018		/* Enable the TDM port */
1019		if (priv->tsa)
1020			utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
1021	}
1022
1023	napi_enable(&priv->napi);
1024	netif_device_attach(priv->ndev);
1025
1026	return 0;
1027}
1028
1029static const struct dev_pm_ops uhdlc_pm_ops = {
1030	.suspend = uhdlc_suspend,
1031	.resume = uhdlc_resume,
1032	.freeze = uhdlc_suspend,
1033	.thaw = uhdlc_resume,
1034};
1035
1036#define HDLC_PM_OPS (&uhdlc_pm_ops)
1037
1038#else
1039
1040#define HDLC_PM_OPS NULL
1041
1042#endif
1043static void uhdlc_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1044{
1045	netdev_err(ndev, "%s\n", __func__);
1046}
1047
1048static const struct net_device_ops uhdlc_ops = {
1049	.ndo_open       = uhdlc_open,
1050	.ndo_stop       = uhdlc_close,
1051	.ndo_start_xmit = hdlc_start_xmit,
1052	.ndo_do_ioctl   = uhdlc_ioctl,
1053	.ndo_tx_timeout	= uhdlc_tx_timeout,
1054};
1055
1056static int hdlc_map_iomem(char *name, int init_flag, void __iomem **ptr)
1057{
1058	struct device_node *np;
1059	struct platform_device *pdev;
1060	struct resource *res;
1061	static int siram_init_flag;
1062	int ret = 0;
1063
1064	np = of_find_compatible_node(NULL, NULL, name);
1065	if (!np)
1066		return -EINVAL;
1067
1068	pdev = of_find_device_by_node(np);
1069	if (!pdev) {
1070		pr_err("%pOFn: failed to lookup pdev\n", np);
1071		of_node_put(np);
1072		return -EINVAL;
1073	}
1074
1075	of_node_put(np);
1076	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1077	if (!res) {
1078		ret = -EINVAL;
1079		goto error_put_device;
1080	}
1081	*ptr = ioremap(res->start, resource_size(res));
1082	if (!*ptr) {
1083		ret = -ENOMEM;
1084		goto error_put_device;
1085	}
1086
1087	/* We've remapped the addresses, and we don't need the device any
1088	 * more, so we should release it.
1089	 */
1090	put_device(&pdev->dev);
1091
1092	if (init_flag && siram_init_flag == 0) {
1093		memset_io(*ptr, 0, resource_size(res));
1094		siram_init_flag = 1;
1095	}
1096	return  0;
1097
1098error_put_device:
1099	put_device(&pdev->dev);
1100
1101	return ret;
1102}
1103
1104static int ucc_hdlc_probe(struct platform_device *pdev)
1105{
1106	struct device_node *np = pdev->dev.of_node;
1107	struct ucc_hdlc_private *uhdlc_priv = NULL;
1108	struct ucc_tdm_info *ut_info;
1109	struct ucc_tdm *utdm = NULL;
1110	struct resource res;
1111	struct net_device *dev;
1112	hdlc_device *hdlc;
1113	int ucc_num;
1114	const char *sprop;
1115	int ret;
1116	u32 val;
1117
1118	ret = of_property_read_u32_index(np, "cell-index", 0, &val);
1119	if (ret) {
1120		dev_err(&pdev->dev, "Invalid ucc property\n");
1121		return -ENODEV;
1122	}
1123
1124	ucc_num = val - 1;
1125	if (ucc_num > (UCC_MAX_NUM - 1) || ucc_num < 0) {
1126		dev_err(&pdev->dev, ": Invalid UCC num\n");
1127		return -EINVAL;
1128	}
1129
1130	memcpy(&utdm_info[ucc_num], &utdm_primary_info,
1131	       sizeof(utdm_primary_info));
1132
1133	ut_info = &utdm_info[ucc_num];
1134	ut_info->uf_info.ucc_num = ucc_num;
1135
1136	sprop = of_get_property(np, "rx-clock-name", NULL);
1137	if (sprop) {
1138		ut_info->uf_info.rx_clock = qe_clock_source(sprop);
1139		if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
1140		    (ut_info->uf_info.rx_clock > QE_CLK24)) {
1141			dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1142			return -EINVAL;
1143		}
1144	} else {
1145		dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1146		return -EINVAL;
1147	}
1148
1149	sprop = of_get_property(np, "tx-clock-name", NULL);
1150	if (sprop) {
1151		ut_info->uf_info.tx_clock = qe_clock_source(sprop);
1152		if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
1153		    (ut_info->uf_info.tx_clock > QE_CLK24)) {
1154			dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1155			return -EINVAL;
1156		}
1157	} else {
1158		dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1159		return -EINVAL;
1160	}
1161
1162	ret = of_address_to_resource(np, 0, &res);
1163	if (ret)
1164		return -EINVAL;
1165
1166	ut_info->uf_info.regs = res.start;
1167	ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
1168
1169	uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
1170	if (!uhdlc_priv) {
1171		return -ENOMEM;
1172	}
1173
1174	dev_set_drvdata(&pdev->dev, uhdlc_priv);
1175	uhdlc_priv->dev = &pdev->dev;
1176	uhdlc_priv->ut_info = ut_info;
1177
1178	if (of_get_property(np, "fsl,tdm-interface", NULL))
1179		uhdlc_priv->tsa = 1;
1180
1181	if (of_get_property(np, "fsl,ucc-internal-loopback", NULL))
1182		uhdlc_priv->loopback = 1;
1183
1184	if (of_get_property(np, "fsl,hdlc-bus", NULL))
1185		uhdlc_priv->hdlc_bus = 1;
1186
1187	if (uhdlc_priv->tsa == 1) {
1188		utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
1189		if (!utdm) {
1190			ret = -ENOMEM;
1191			dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
1192			goto free_uhdlc_priv;
1193		}
1194		uhdlc_priv->utdm = utdm;
1195		ret = ucc_of_parse_tdm(np, utdm, ut_info);
1196		if (ret)
1197			goto free_utdm;
1198
1199		ret = hdlc_map_iomem("fsl,t1040-qe-si", 0,
1200				     (void __iomem **)&utdm->si_regs);
1201		if (ret)
1202			goto free_utdm;
1203		ret = hdlc_map_iomem("fsl,t1040-qe-siram", 1,
1204				     (void __iomem **)&utdm->siram);
1205		if (ret)
1206			goto unmap_si_regs;
1207	}
1208
1209	if (of_property_read_u16(np, "fsl,hmask", &uhdlc_priv->hmask))
1210		uhdlc_priv->hmask = DEFAULT_ADDR_MASK;
1211
1212	ret = uhdlc_init(uhdlc_priv);
1213	if (ret) {
1214		dev_err(&pdev->dev, "Failed to init uhdlc\n");
1215		goto undo_uhdlc_init;
1216	}
1217
1218	dev = alloc_hdlcdev(uhdlc_priv);
1219	if (!dev) {
1220		ret = -ENOMEM;
1221		pr_err("ucc_hdlc: unable to allocate memory\n");
1222		goto undo_uhdlc_init;
1223	}
1224
1225	uhdlc_priv->ndev = dev;
1226	hdlc = dev_to_hdlc(dev);
1227	dev->tx_queue_len = 16;
1228	dev->netdev_ops = &uhdlc_ops;
1229	dev->watchdog_timeo = 2 * HZ;
1230	hdlc->attach = ucc_hdlc_attach;
1231	hdlc->xmit = ucc_hdlc_tx;
1232	netif_napi_add(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
1233	if (register_hdlc_device(dev)) {
1234		ret = -ENOBUFS;
1235		pr_err("ucc_hdlc: unable to register hdlc device\n");
1236		goto free_dev;
1237	}
1238
1239	return 0;
1240
1241free_dev:
1242	free_netdev(dev);
1243undo_uhdlc_init:
1244	iounmap(utdm->siram);
 
1245unmap_si_regs:
1246	iounmap(utdm->si_regs);
 
1247free_utdm:
1248	if (uhdlc_priv->tsa)
1249		kfree(utdm);
1250free_uhdlc_priv:
1251	kfree(uhdlc_priv);
1252	return ret;
1253}
1254
1255static int ucc_hdlc_remove(struct platform_device *pdev)
1256{
1257	struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
1258
1259	uhdlc_memclean(priv);
1260
1261	if (priv->utdm->si_regs) {
1262		iounmap(priv->utdm->si_regs);
1263		priv->utdm->si_regs = NULL;
1264	}
1265
1266	if (priv->utdm->siram) {
1267		iounmap(priv->utdm->siram);
1268		priv->utdm->siram = NULL;
1269	}
1270	kfree(priv);
1271
1272	dev_info(&pdev->dev, "UCC based hdlc module removed\n");
1273
1274	return 0;
1275}
1276
1277static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
1278	{
1279	.compatible = "fsl,ucc-hdlc",
1280	},
1281	{},
1282};
1283
1284MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
1285
1286static struct platform_driver ucc_hdlc_driver = {
1287	.probe	= ucc_hdlc_probe,
1288	.remove	= ucc_hdlc_remove,
1289	.driver	= {
1290		.name		= DRV_NAME,
1291		.pm		= HDLC_PM_OPS,
1292		.of_match_table	= fsl_ucc_hdlc_of_match,
1293	},
1294};
1295
1296module_platform_driver(ucc_hdlc_driver);
1297MODULE_LICENSE("GPL");