Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Freescale QUICC Engine HDLC Device Driver
   3 *
   4 * Copyright 2016 Freescale Semiconductor Inc.
 
 
 
 
 
   5 */
   6
   7#include <linux/delay.h>
   8#include <linux/dma-mapping.h>
   9#include <linux/hdlc.h>
  10#include <linux/init.h>
  11#include <linux/interrupt.h>
  12#include <linux/io.h>
  13#include <linux/irq.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/netdevice.h>
  17#include <linux/of_address.h>
  18#include <linux/of_irq.h>
  19#include <linux/of_platform.h>
  20#include <linux/platform_device.h>
  21#include <linux/sched.h>
  22#include <linux/skbuff.h>
  23#include <linux/slab.h>
  24#include <linux/spinlock.h>
  25#include <linux/stddef.h>
  26#include <soc/fsl/qe/qe_tdm.h>
  27#include <uapi/linux/if_arp.h>
  28
  29#include "fsl_ucc_hdlc.h"
  30
  31#define DRV_DESC "Freescale QE UCC HDLC Driver"
  32#define DRV_NAME "ucc_hdlc"
  33
  34#define TDM_PPPOHT_SLIC_MAXIN
  35#define RX_BD_ERRORS (R_CD_S | R_OV_S | R_CR_S | R_AB_S | R_NO_S | R_LG_S)
  36
  37static int uhdlc_close(struct net_device *dev);
  38
  39static struct ucc_tdm_info utdm_primary_info = {
  40	.uf_info = {
  41		.tsa = 0,
  42		.cdp = 0,
  43		.cds = 1,
  44		.ctsp = 1,
  45		.ctss = 1,
  46		.revd = 0,
  47		.urfs = 256,
  48		.utfs = 256,
  49		.urfet = 128,
  50		.urfset = 192,
  51		.utfet = 128,
  52		.utftt = 0x40,
  53		.ufpt = 256,
  54		.mode = UCC_FAST_PROTOCOL_MODE_HDLC,
  55		.ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
  56		.tenc = UCC_FAST_TX_ENCODING_NRZ,
  57		.renc = UCC_FAST_RX_ENCODING_NRZ,
  58		.tcrc = UCC_FAST_16_BIT_CRC,
  59		.synl = UCC_FAST_SYNC_LEN_NOT_USED,
  60	},
  61
  62	.si_info = {
  63#ifdef TDM_PPPOHT_SLIC_MAXIN
  64		.simr_rfsd = 1,
  65		.simr_tfsd = 2,
  66#else
  67		.simr_rfsd = 0,
  68		.simr_tfsd = 0,
  69#endif
  70		.simr_crt = 0,
  71		.simr_sl = 0,
  72		.simr_ce = 1,
  73		.simr_fe = 1,
  74		.simr_gm = 0,
  75	},
  76};
  77
  78static struct ucc_tdm_info utdm_info[UCC_MAX_NUM];
  79
  80static int uhdlc_init(struct ucc_hdlc_private *priv)
  81{
  82	struct ucc_tdm_info *ut_info;
  83	struct ucc_fast_info *uf_info;
  84	u32 cecr_subblock;
  85	u16 bd_status;
  86	int ret, i;
  87	void *bd_buffer;
  88	dma_addr_t bd_dma_addr;
  89	s32 riptr;
  90	s32 tiptr;
  91	u32 gumr;
  92
  93	ut_info = priv->ut_info;
  94	uf_info = &ut_info->uf_info;
  95
  96	if (priv->tsa) {
  97		uf_info->tsa = 1;
  98		uf_info->ctsp = 1;
  99		uf_info->cds = 1;
 100		uf_info->ctss = 1;
 101	} else {
 102		uf_info->cds = 0;
 103		uf_info->ctsp = 0;
 104		uf_info->ctss = 0;
 105	}
 106
 107	/* This sets HPM register in CMXUCR register which configures a
 108	 * open drain connected HDLC bus
 109	 */
 110	if (priv->hdlc_bus)
 111		uf_info->brkpt_support = 1;
 112
 113	uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
 114				UCC_HDLC_UCCE_TXB) << 16);
 115
 116	ret = ucc_fast_init(uf_info, &priv->uccf);
 117	if (ret) {
 118		dev_err(priv->dev, "Failed to init uccf.");
 119		return ret;
 120	}
 121
 122	priv->uf_regs = priv->uccf->uf_regs;
 123	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 124
 125	/* Loopback mode */
 126	if (priv->loopback) {
 127		dev_info(priv->dev, "Loopback Mode\n");
 128		/* use the same clock when work in loopback */
 129		qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
 130
 131		gumr = ioread32be(&priv->uf_regs->gumr);
 132		gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
 133			 UCC_FAST_GUMR_TCI);
 134		gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
 135		iowrite32be(gumr, &priv->uf_regs->gumr);
 136	}
 137
 138	/* Initialize SI */
 139	if (priv->tsa)
 140		ucc_tdm_init(priv->utdm, priv->ut_info);
 141
 142	/* Write to QE CECR, UCCx channel to Stop Transmission */
 143	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 144	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
 145			   QE_CR_PROTOCOL_UNSPECIFIED, 0);
 146
 147	/* Set UPSMR normal mode (need fixed)*/
 148	iowrite32be(0, &priv->uf_regs->upsmr);
 149
 150	/* hdlc_bus mode */
 151	if (priv->hdlc_bus) {
 152		u32 upsmr;
 153
 154		dev_info(priv->dev, "HDLC bus Mode\n");
 155		upsmr = ioread32be(&priv->uf_regs->upsmr);
 156
 157		/* bus mode and retransmit enable, with collision window
 158		 * set to 8 bytes
 159		 */
 160		upsmr |= UCC_HDLC_UPSMR_RTE | UCC_HDLC_UPSMR_BUS |
 161				UCC_HDLC_UPSMR_CW8;
 162		iowrite32be(upsmr, &priv->uf_regs->upsmr);
 163
 164		/* explicitly disable CDS & CTSP */
 165		gumr = ioread32be(&priv->uf_regs->gumr);
 166		gumr &= ~(UCC_FAST_GUMR_CDS | UCC_FAST_GUMR_CTSP);
 167		/* set automatic sync to explicitly ignore CD signal */
 168		gumr |= UCC_FAST_GUMR_SYNL_AUTO;
 169		iowrite32be(gumr, &priv->uf_regs->gumr);
 170	}
 171
 172	priv->rx_ring_size = RX_BD_RING_LEN;
 173	priv->tx_ring_size = TX_BD_RING_LEN;
 174	/* Alloc Rx BD */
 175	priv->rx_bd_base = dma_alloc_coherent(priv->dev,
 176			RX_BD_RING_LEN * sizeof(struct qe_bd),
 177			&priv->dma_rx_bd, GFP_KERNEL);
 178
 179	if (!priv->rx_bd_base) {
 180		dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
 181		ret = -ENOMEM;
 182		goto free_uccf;
 183	}
 184
 185	/* Alloc Tx BD */
 186	priv->tx_bd_base = dma_alloc_coherent(priv->dev,
 187			TX_BD_RING_LEN * sizeof(struct qe_bd),
 188			&priv->dma_tx_bd, GFP_KERNEL);
 189
 190	if (!priv->tx_bd_base) {
 191		dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
 192		ret = -ENOMEM;
 193		goto free_rx_bd;
 194	}
 195
 196	/* Alloc parameter ram for ucc hdlc */
 197	priv->ucc_pram_offset = qe_muram_alloc(sizeof(struct ucc_hdlc_param),
 198				ALIGNMENT_OF_UCC_HDLC_PRAM);
 199
 200	if (priv->ucc_pram_offset < 0) {
 201		dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
 202		ret = -ENOMEM;
 203		goto free_tx_bd;
 204	}
 205
 206	priv->rx_skbuff = kcalloc(priv->rx_ring_size,
 207				  sizeof(*priv->rx_skbuff),
 208				  GFP_KERNEL);
 209	if (!priv->rx_skbuff) {
 210		ret = -ENOMEM;
 211		goto free_ucc_pram;
 212	}
 213
 214	priv->tx_skbuff = kcalloc(priv->tx_ring_size,
 215				  sizeof(*priv->tx_skbuff),
 216				  GFP_KERNEL);
 217	if (!priv->tx_skbuff) {
 218		ret = -ENOMEM;
 219		goto free_rx_skbuff;
 220	}
 221
 222	priv->skb_curtx = 0;
 223	priv->skb_dirtytx = 0;
 224	priv->curtx_bd = priv->tx_bd_base;
 225	priv->dirty_tx = priv->tx_bd_base;
 226	priv->currx_bd = priv->rx_bd_base;
 227	priv->currx_bdnum = 0;
 228
 229	/* init parameter base */
 230	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 231	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
 232			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
 233
 234	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
 235					qe_muram_addr(priv->ucc_pram_offset);
 236
 237	/* Zero out parameter ram */
 238	memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
 239
 240	/* Alloc riptr, tiptr */
 241	riptr = qe_muram_alloc(32, 32);
 242	if (riptr < 0) {
 243		dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
 244		ret = -ENOMEM;
 245		goto free_tx_skbuff;
 246	}
 247
 248	tiptr = qe_muram_alloc(32, 32);
 249	if (tiptr < 0) {
 250		dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
 251		ret = -ENOMEM;
 252		goto free_riptr;
 253	}
 254	if (riptr != (u16)riptr || tiptr != (u16)tiptr) {
 255		dev_err(priv->dev, "MURAM allocation out of addressable range\n");
 256		ret = -ENOMEM;
 257		goto free_tiptr;
 258	}
 259
 260	/* Set RIPTR, TIPTR */
 261	iowrite16be(riptr, &priv->ucc_pram->riptr);
 262	iowrite16be(tiptr, &priv->ucc_pram->tiptr);
 263
 264	/* Set MRBLR */
 265	iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
 266
 267	/* Set RBASE, TBASE */
 268	iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
 269	iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
 270
 271	/* Set RSTATE, TSTATE */
 272	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
 273	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
 274
 275	/* Set C_MASK, C_PRES for 16bit CRC */
 276	iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
 277	iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
 278
 279	iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
 280	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
 281	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
 282	iowrite16be(priv->hmask, &priv->ucc_pram->hmask);
 283	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
 284	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
 285	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
 286	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
 287
 288	/* Get BD buffer */
 289	bd_buffer = dma_alloc_coherent(priv->dev,
 290				       (RX_BD_RING_LEN + TX_BD_RING_LEN) * MAX_RX_BUF_LENGTH,
 
 291				       &bd_dma_addr, GFP_KERNEL);
 292
 293	if (!bd_buffer) {
 294		dev_err(priv->dev, "Could not allocate buffer descriptors\n");
 295		ret = -ENOMEM;
 296		goto free_tiptr;
 297	}
 298
 
 
 
 299	priv->rx_buffer = bd_buffer;
 300	priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
 301
 302	priv->dma_rx_addr = bd_dma_addr;
 303	priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
 304
 305	for (i = 0; i < RX_BD_RING_LEN; i++) {
 306		if (i < (RX_BD_RING_LEN - 1))
 307			bd_status = R_E_S | R_I_S;
 308		else
 309			bd_status = R_E_S | R_I_S | R_W_S;
 310
 311		priv->rx_bd_base[i].status = cpu_to_be16(bd_status);
 312		priv->rx_bd_base[i].buf = cpu_to_be32(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH);
 
 313	}
 314
 315	for (i = 0; i < TX_BD_RING_LEN; i++) {
 316		if (i < (TX_BD_RING_LEN - 1))
 317			bd_status =  T_I_S | T_TC_S;
 318		else
 319			bd_status =  T_I_S | T_TC_S | T_W_S;
 320
 321		priv->tx_bd_base[i].status = cpu_to_be16(bd_status);
 322		priv->tx_bd_base[i].buf = cpu_to_be32(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH);
 
 323	}
 324	dma_wmb();
 325
 326	return 0;
 327
 328free_tiptr:
 329	qe_muram_free(tiptr);
 330free_riptr:
 331	qe_muram_free(riptr);
 332free_tx_skbuff:
 333	kfree(priv->tx_skbuff);
 334free_rx_skbuff:
 335	kfree(priv->rx_skbuff);
 336free_ucc_pram:
 337	qe_muram_free(priv->ucc_pram_offset);
 338free_tx_bd:
 339	dma_free_coherent(priv->dev,
 340			  TX_BD_RING_LEN * sizeof(struct qe_bd),
 341			  priv->tx_bd_base, priv->dma_tx_bd);
 342free_rx_bd:
 343	dma_free_coherent(priv->dev,
 344			  RX_BD_RING_LEN * sizeof(struct qe_bd),
 345			  priv->rx_bd_base, priv->dma_rx_bd);
 346free_uccf:
 347	ucc_fast_free(priv->uccf);
 348
 349	return ret;
 350}
 351
 352static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
 353{
 354	hdlc_device *hdlc = dev_to_hdlc(dev);
 355	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
 356	struct qe_bd *bd;
 357	u16 bd_status;
 358	unsigned long flags;
 359	__be16 *proto_head;
 
 
 360
 361	switch (dev->type) {
 362	case ARPHRD_RAWHDLC:
 363		if (skb_headroom(skb) < HDLC_HEAD_LEN) {
 364			dev->stats.tx_dropped++;
 365			dev_kfree_skb(skb);
 366			netdev_err(dev, "No enough space for hdlc head\n");
 367			return -ENOMEM;
 368		}
 369
 370		skb_push(skb, HDLC_HEAD_LEN);
 371
 372		proto_head = (__be16 *)skb->data;
 373		*proto_head = htons(DEFAULT_HDLC_HEAD);
 374
 375		dev->stats.tx_bytes += skb->len;
 376		break;
 377
 378	case ARPHRD_PPP:
 379		proto_head = (__be16 *)skb->data;
 380		if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
 381			dev->stats.tx_dropped++;
 382			dev_kfree_skb(skb);
 383			netdev_err(dev, "Wrong ppp header\n");
 384			return -ENOMEM;
 385		}
 386
 387		dev->stats.tx_bytes += skb->len;
 388		break;
 389
 390	case ARPHRD_ETHER:
 391		dev->stats.tx_bytes += skb->len;
 392		break;
 393
 394	default:
 395		dev->stats.tx_dropped++;
 396		dev_kfree_skb(skb);
 397		return -ENOMEM;
 398	}
 399	netdev_sent_queue(dev, skb->len);
 
 
 
 
 
 
 
 
 
 400	spin_lock_irqsave(&priv->lock, flags);
 401
 402	dma_rmb();
 403	/* Start from the next BD that should be filled */
 404	bd = priv->curtx_bd;
 405	bd_status = be16_to_cpu(bd->status);
 406	/* Save the skb pointer so we can free it later */
 407	priv->tx_skbuff[priv->skb_curtx] = skb;
 408
 409	/* Update the current skb pointer (wrapping if this was the last) */
 410	priv->skb_curtx =
 411	    (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
 412
 413	/* copy skb data to tx buffer for sdma processing */
 414	memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
 415	       skb->data, skb->len);
 416
 417	/* set bd status and length */
 418	bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
 419
 420	bd->length = cpu_to_be16(skb->len);
 421	bd->status = cpu_to_be16(bd_status);
 422
 423	/* Move to next BD in the ring */
 424	if (!(bd_status & T_W_S))
 425		bd += 1;
 426	else
 427		bd = priv->tx_bd_base;
 428
 429	if (bd == priv->dirty_tx) {
 430		if (!netif_queue_stopped(dev))
 431			netif_stop_queue(dev);
 432	}
 433
 434	priv->curtx_bd = bd;
 435
 436	spin_unlock_irqrestore(&priv->lock, flags);
 437
 438	return NETDEV_TX_OK;
 439}
 440
 441static int hdlc_tx_restart(struct ucc_hdlc_private *priv)
 442{
 443	u32 cecr_subblock;
 444
 445	cecr_subblock =
 446		ucc_fast_get_qe_cr_subblock(priv->ut_info->uf_info.ucc_num);
 447
 448	qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
 449		     QE_CR_PROTOCOL_UNSPECIFIED, 0);
 450	return 0;
 451}
 452
 453static int hdlc_tx_done(struct ucc_hdlc_private *priv)
 454{
 455	/* Start from the next BD that should be filled */
 456	struct net_device *dev = priv->ndev;
 457	unsigned int bytes_sent = 0;
 458	int howmany = 0;
 459	struct qe_bd *bd;		/* BD pointer */
 460	u16 bd_status;
 461	int tx_restart = 0;
 462
 463	dma_rmb();
 464	bd = priv->dirty_tx;
 465	bd_status = be16_to_cpu(bd->status);
 466
 467	/* Normal processing. */
 468	while ((bd_status & T_R_S) == 0) {
 469		struct sk_buff *skb;
 470
 471		if (bd_status & T_UN_S) { /* Underrun */
 472			dev->stats.tx_fifo_errors++;
 473			tx_restart = 1;
 474		}
 475		if (bd_status & T_CT_S) { /* Carrier lost */
 476			dev->stats.tx_carrier_errors++;
 477			tx_restart = 1;
 478		}
 479
 480		/* BD contains already transmitted buffer.   */
 481		/* Handle the transmitted buffer and release */
 482		/* the BD to be used with the current frame  */
 483
 484		skb = priv->tx_skbuff[priv->skb_dirtytx];
 485		if (!skb)
 486			break;
 487		howmany++;
 488		bytes_sent += skb->len;
 489		dev->stats.tx_packets++;
 490		memset(priv->tx_buffer +
 491		       (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
 492		       0, skb->len);
 493		dev_consume_skb_irq(skb);
 494
 495		priv->tx_skbuff[priv->skb_dirtytx] = NULL;
 496		priv->skb_dirtytx =
 497		    (priv->skb_dirtytx +
 498		     1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
 499
 500		/* We freed a buffer, so now we can restart transmission */
 501		if (netif_queue_stopped(dev))
 502			netif_wake_queue(dev);
 503
 504		/* Advance the confirmation BD pointer */
 505		if (!(bd_status & T_W_S))
 506			bd += 1;
 507		else
 508			bd = priv->tx_bd_base;
 509		bd_status = be16_to_cpu(bd->status);
 510	}
 511	priv->dirty_tx = bd;
 512
 513	if (tx_restart)
 514		hdlc_tx_restart(priv);
 515
 516	netdev_completed_queue(dev, howmany, bytes_sent);
 517	return 0;
 518}
 519
 520static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
 521{
 522	struct net_device *dev = priv->ndev;
 523	struct sk_buff *skb = NULL;
 524	hdlc_device *hdlc = dev_to_hdlc(dev);
 525	struct qe_bd *bd;
 526	u16 bd_status;
 527	u16 length, howmany = 0;
 528	u8 *bdbuffer;
 
 
 529
 530	dma_rmb();
 531	bd = priv->currx_bd;
 532	bd_status = be16_to_cpu(bd->status);
 533
 534	/* while there are received buffers and BD is full (~R_E) */
 535	while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
 536		if (bd_status & (RX_BD_ERRORS)) {
 537			dev->stats.rx_errors++;
 538
 539			if (bd_status & R_CD_S)
 540				dev->stats.collisions++;
 541			if (bd_status & R_OV_S)
 542				dev->stats.rx_fifo_errors++;
 543			if (bd_status & R_CR_S)
 544				dev->stats.rx_crc_errors++;
 545			if (bd_status & R_AB_S)
 546				dev->stats.rx_over_errors++;
 547			if (bd_status & R_NO_S)
 548				dev->stats.rx_frame_errors++;
 549			if (bd_status & R_LG_S)
 550				dev->stats.rx_length_errors++;
 551
 552			goto recycle;
 553		}
 554		bdbuffer = priv->rx_buffer +
 555			(priv->currx_bdnum * MAX_RX_BUF_LENGTH);
 556		length = be16_to_cpu(bd->length);
 
 
 
 
 
 
 
 
 
 
 
 557
 558		switch (dev->type) {
 559		case ARPHRD_RAWHDLC:
 560			bdbuffer += HDLC_HEAD_LEN;
 561			length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
 562
 563			skb = dev_alloc_skb(length);
 564			if (!skb) {
 565				dev->stats.rx_dropped++;
 566				return -ENOMEM;
 567			}
 568
 569			skb_put(skb, length);
 570			skb->len = length;
 571			skb->dev = dev;
 572			memcpy(skb->data, bdbuffer, length);
 573			break;
 574
 575		case ARPHRD_PPP:
 576		case ARPHRD_ETHER:
 577			length -= HDLC_CRC_SIZE;
 578
 579			skb = dev_alloc_skb(length);
 580			if (!skb) {
 581				dev->stats.rx_dropped++;
 582				return -ENOMEM;
 583			}
 584
 585			skb_put(skb, length);
 586			skb->len = length;
 587			skb->dev = dev;
 588			memcpy(skb->data, bdbuffer, length);
 589			break;
 590		}
 591
 592		dev->stats.rx_packets++;
 593		dev->stats.rx_bytes += skb->len;
 594		howmany++;
 595		if (hdlc->proto)
 596			skb->protocol = hdlc_type_trans(skb, dev);
 
 597		netif_receive_skb(skb);
 598
 599recycle:
 600		bd->status = cpu_to_be16((bd_status & R_W_S) | R_E_S | R_I_S);
 601
 602		/* update to point at the next bd */
 603		if (bd_status & R_W_S) {
 604			priv->currx_bdnum = 0;
 605			bd = priv->rx_bd_base;
 606		} else {
 607			if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
 608				priv->currx_bdnum += 1;
 609			else
 610				priv->currx_bdnum = RX_BD_RING_LEN - 1;
 611
 612			bd += 1;
 613		}
 614
 615		bd_status = be16_to_cpu(bd->status);
 616	}
 617	dma_rmb();
 618
 619	priv->currx_bd = bd;
 620	return howmany;
 621}
 622
 623static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
 624{
 625	struct ucc_hdlc_private *priv = container_of(napi,
 626						     struct ucc_hdlc_private,
 627						     napi);
 628	int howmany;
 629
 630	/* Tx event processing */
 631	spin_lock(&priv->lock);
 632	hdlc_tx_done(priv);
 633	spin_unlock(&priv->lock);
 634
 635	howmany = 0;
 636	howmany += hdlc_rx_done(priv, budget - howmany);
 637
 638	if (howmany < budget) {
 639		napi_complete_done(napi, howmany);
 640		qe_setbits_be32(priv->uccf->p_uccm,
 641				(UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
 642	}
 643
 644	return howmany;
 645}
 646
 647static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
 648{
 649	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
 650	struct net_device *dev = priv->ndev;
 651	struct ucc_fast_private *uccf;
 
 652	u32 ucce;
 653	u32 uccm;
 654
 
 655	uccf = priv->uccf;
 656
 657	ucce = ioread32be(uccf->p_ucce);
 658	uccm = ioread32be(uccf->p_uccm);
 659	ucce &= uccm;
 660	iowrite32be(ucce, uccf->p_ucce);
 
 661	if (!ucce)
 662		return IRQ_NONE;
 663
 664	if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
 665		if (napi_schedule_prep(&priv->napi)) {
 666			uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
 667				  << 16);
 668			iowrite32be(uccm, uccf->p_uccm);
 669			__napi_schedule(&priv->napi);
 670		}
 671	}
 672
 673	/* Errors and other events */
 674	if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
 675		dev->stats.rx_missed_errors++;
 676	if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
 677		dev->stats.tx_errors++;
 678
 679	return IRQ_HANDLED;
 680}
 681
 682static int uhdlc_ioctl(struct net_device *dev, struct if_settings *ifs)
 683{
 684	const size_t size = sizeof(te1_settings);
 685	te1_settings line;
 686	struct ucc_hdlc_private *priv = netdev_priv(dev);
 687
 688	switch (ifs->type) {
 
 
 
 689	case IF_GET_IFACE:
 690		ifs->type = IF_IFACE_E1;
 691		if (ifs->size < size) {
 692			ifs->size = size; /* data size wanted */
 693			return -ENOBUFS;
 694		}
 695		memset(&line, 0, sizeof(line));
 696		line.clock_type = priv->clocking;
 697
 698		if (copy_to_user(ifs->ifs_ifsu.sync, &line, size))
 699			return -EFAULT;
 700		return 0;
 701
 702	default:
 703		return hdlc_ioctl(dev, ifs);
 704	}
 705}
 706
 707static int uhdlc_open(struct net_device *dev)
 708{
 709	u32 cecr_subblock;
 710	hdlc_device *hdlc = dev_to_hdlc(dev);
 711	struct ucc_hdlc_private *priv = hdlc->priv;
 712	struct ucc_tdm *utdm = priv->utdm;
 713	int rc = 0;
 714
 715	if (priv->hdlc_busy != 1) {
 716		if (request_irq(priv->ut_info->uf_info.irq,
 717				ucc_hdlc_irq_handler, 0, "hdlc", priv))
 718			return -ENODEV;
 719
 720		cecr_subblock = ucc_fast_get_qe_cr_subblock(
 721					priv->ut_info->uf_info.ucc_num);
 722
 723		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
 724			     QE_CR_PROTOCOL_UNSPECIFIED, 0);
 725
 726		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 727
 728		/* Enable the TDM port */
 729		if (priv->tsa)
 730			qe_setbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
 731
 732		priv->hdlc_busy = 1;
 733		netif_device_attach(priv->ndev);
 734		napi_enable(&priv->napi);
 735		netdev_reset_queue(dev);
 736		netif_start_queue(dev);
 737
 738		rc = hdlc_open(dev);
 739		if (rc)
 740			uhdlc_close(dev);
 741	}
 742
 743	return rc;
 744}
 745
 746static void uhdlc_memclean(struct ucc_hdlc_private *priv)
 747{
 748	qe_muram_free(ioread16be(&priv->ucc_pram->riptr));
 749	qe_muram_free(ioread16be(&priv->ucc_pram->tiptr));
 750
 751	if (priv->rx_bd_base) {
 752		dma_free_coherent(priv->dev,
 753				  RX_BD_RING_LEN * sizeof(struct qe_bd),
 754				  priv->rx_bd_base, priv->dma_rx_bd);
 755
 756		priv->rx_bd_base = NULL;
 757		priv->dma_rx_bd = 0;
 758	}
 759
 760	if (priv->tx_bd_base) {
 761		dma_free_coherent(priv->dev,
 762				  TX_BD_RING_LEN * sizeof(struct qe_bd),
 763				  priv->tx_bd_base, priv->dma_tx_bd);
 764
 765		priv->tx_bd_base = NULL;
 766		priv->dma_tx_bd = 0;
 767	}
 768
 769	if (priv->ucc_pram) {
 770		qe_muram_free(priv->ucc_pram_offset);
 771		priv->ucc_pram = NULL;
 772		priv->ucc_pram_offset = 0;
 773	 }
 774
 775	kfree(priv->rx_skbuff);
 776	priv->rx_skbuff = NULL;
 777
 778	kfree(priv->tx_skbuff);
 779	priv->tx_skbuff = NULL;
 780
 781	if (priv->uf_regs) {
 782		iounmap(priv->uf_regs);
 783		priv->uf_regs = NULL;
 784	}
 785
 786	if (priv->uccf) {
 787		ucc_fast_free(priv->uccf);
 788		priv->uccf = NULL;
 789	}
 790
 791	if (priv->rx_buffer) {
 792		dma_free_coherent(priv->dev,
 793				  RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
 794				  priv->rx_buffer, priv->dma_rx_addr);
 795		priv->rx_buffer = NULL;
 796		priv->dma_rx_addr = 0;
 797	}
 798
 799	if (priv->tx_buffer) {
 800		dma_free_coherent(priv->dev,
 801				  TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
 802				  priv->tx_buffer, priv->dma_tx_addr);
 803		priv->tx_buffer = NULL;
 804		priv->dma_tx_addr = 0;
 805	}
 806}
 807
 808static int uhdlc_close(struct net_device *dev)
 809{
 810	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
 811	struct ucc_tdm *utdm = priv->utdm;
 812	u32 cecr_subblock;
 813
 814	napi_disable(&priv->napi);
 815	cecr_subblock = ucc_fast_get_qe_cr_subblock(
 816				priv->ut_info->uf_info.ucc_num);
 817
 818	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
 819		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 820	qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
 821		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 822
 823	if (priv->tsa)
 824		qe_clrbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
 825
 826	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 827
 828	free_irq(priv->ut_info->uf_info.irq, priv);
 829	netif_stop_queue(dev);
 830	netdev_reset_queue(dev);
 831	priv->hdlc_busy = 0;
 832
 833	hdlc_close(dev);
 834
 835	return 0;
 836}
 837
 838static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
 839			   unsigned short parity)
 840{
 841	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
 842
 843	if (encoding != ENCODING_NRZ &&
 844	    encoding != ENCODING_NRZI)
 845		return -EINVAL;
 846
 847	if (parity != PARITY_NONE &&
 848	    parity != PARITY_CRC32_PR1_CCITT &&
 849	    parity != PARITY_CRC16_PR0_CCITT &&
 850	    parity != PARITY_CRC16_PR1_CCITT)
 851		return -EINVAL;
 852
 853	priv->encoding = encoding;
 854	priv->parity = parity;
 855
 856	return 0;
 857}
 858
 859#ifdef CONFIG_PM
 860static void store_clk_config(struct ucc_hdlc_private *priv)
 861{
 862	struct qe_mux __iomem *qe_mux_reg = &qe_immr->qmx;
 863
 864	/* store si clk */
 865	priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
 866	priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
 867
 868	/* store si sync */
 869	priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
 870
 871	/* store ucc clk */
 872	memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
 873}
 874
 875static void resume_clk_config(struct ucc_hdlc_private *priv)
 876{
 877	struct qe_mux __iomem *qe_mux_reg = &qe_immr->qmx;
 878
 879	memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
 880
 881	iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
 882	iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
 883
 884	iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
 885}
 886
 887static int uhdlc_suspend(struct device *dev)
 888{
 889	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
 
 890	struct ucc_fast __iomem *uf_regs;
 891
 892	if (!priv)
 893		return -EINVAL;
 894
 895	if (!netif_running(priv->ndev))
 896		return 0;
 897
 898	netif_device_detach(priv->ndev);
 899	napi_disable(&priv->napi);
 900
 
 901	uf_regs = priv->uf_regs;
 902
 903	/* backup gumr guemr*/
 904	priv->gumr = ioread32be(&uf_regs->gumr);
 905	priv->guemr = ioread8(&uf_regs->guemr);
 906
 907	priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
 908					GFP_KERNEL);
 909	if (!priv->ucc_pram_bak)
 910		return -ENOMEM;
 911
 912	/* backup HDLC parameter */
 913	memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
 914		      sizeof(struct ucc_hdlc_param));
 915
 916	/* store the clk configuration */
 917	store_clk_config(priv);
 918
 919	/* save power */
 920	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 921
 
 922	return 0;
 923}
 924
 925static int uhdlc_resume(struct device *dev)
 926{
 927	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
 928	struct ucc_tdm *utdm;
 929	struct ucc_tdm_info *ut_info;
 930	struct ucc_fast __iomem *uf_regs;
 931	struct ucc_fast_private *uccf;
 932	struct ucc_fast_info *uf_info;
 933	int i;
 934	u32 cecr_subblock;
 935	u16 bd_status;
 936
 937	if (!priv)
 938		return -EINVAL;
 939
 940	if (!netif_running(priv->ndev))
 941		return 0;
 942
 943	utdm = priv->utdm;
 944	ut_info = priv->ut_info;
 945	uf_info = &ut_info->uf_info;
 946	uf_regs = priv->uf_regs;
 947	uccf = priv->uccf;
 948
 949	/* restore gumr guemr */
 950	iowrite8(priv->guemr, &uf_regs->guemr);
 951	iowrite32be(priv->gumr, &uf_regs->gumr);
 952
 953	/* Set Virtual Fifo registers */
 954	iowrite16be(uf_info->urfs, &uf_regs->urfs);
 955	iowrite16be(uf_info->urfet, &uf_regs->urfet);
 956	iowrite16be(uf_info->urfset, &uf_regs->urfset);
 957	iowrite16be(uf_info->utfs, &uf_regs->utfs);
 958	iowrite16be(uf_info->utfet, &uf_regs->utfet);
 959	iowrite16be(uf_info->utftt, &uf_regs->utftt);
 960	/* utfb, urfb are offsets from MURAM base */
 961	iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
 962	iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
 963
 964	/* Rx Tx and sync clock routing */
 965	resume_clk_config(priv);
 966
 967	iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
 968	iowrite32be(0xffffffff, &uf_regs->ucce);
 969
 970	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 971
 972	/* rebuild SIRAM */
 973	if (priv->tsa)
 974		ucc_tdm_init(priv->utdm, priv->ut_info);
 975
 976	/* Write to QE CECR, UCCx channel to Stop Transmission */
 977	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 978	qe_issue_cmd(QE_STOP_TX, cecr_subblock,
 979		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 980
 981	/* Set UPSMR normal mode */
 982	iowrite32be(0, &uf_regs->upsmr);
 983
 984	/* init parameter base */
 985	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 986	qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
 987		     QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
 988
 989	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
 990				qe_muram_addr(priv->ucc_pram_offset);
 991
 992	/* restore ucc parameter */
 993	memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
 994		    sizeof(struct ucc_hdlc_param));
 995	kfree(priv->ucc_pram_bak);
 996
 997	/* rebuild BD entry */
 998	for (i = 0; i < RX_BD_RING_LEN; i++) {
 999		if (i < (RX_BD_RING_LEN - 1))
1000			bd_status = R_E_S | R_I_S;
1001		else
1002			bd_status = R_E_S | R_I_S | R_W_S;
1003
1004		priv->rx_bd_base[i].status = cpu_to_be16(bd_status);
1005		priv->rx_bd_base[i].buf = cpu_to_be32(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH);
 
1006	}
1007
1008	for (i = 0; i < TX_BD_RING_LEN; i++) {
1009		if (i < (TX_BD_RING_LEN - 1))
1010			bd_status =  T_I_S | T_TC_S;
1011		else
1012			bd_status =  T_I_S | T_TC_S | T_W_S;
1013
1014		priv->tx_bd_base[i].status = cpu_to_be16(bd_status);
1015		priv->tx_bd_base[i].buf = cpu_to_be32(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH);
 
1016	}
1017	dma_wmb();
1018
1019	/* if hdlc is busy enable TX and RX */
1020	if (priv->hdlc_busy == 1) {
1021		cecr_subblock = ucc_fast_get_qe_cr_subblock(
1022					priv->ut_info->uf_info.ucc_num);
1023
1024		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
1025			     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
1026
1027		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
1028
1029		/* Enable the TDM port */
1030		if (priv->tsa)
1031			qe_setbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
1032	}
1033
1034	napi_enable(&priv->napi);
1035	netif_device_attach(priv->ndev);
1036
1037	return 0;
1038}
1039
1040static const struct dev_pm_ops uhdlc_pm_ops = {
1041	.suspend = uhdlc_suspend,
1042	.resume = uhdlc_resume,
1043	.freeze = uhdlc_suspend,
1044	.thaw = uhdlc_resume,
1045};
1046
1047#define HDLC_PM_OPS (&uhdlc_pm_ops)
1048
1049#else
1050
1051#define HDLC_PM_OPS NULL
1052
1053#endif
1054static void uhdlc_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1055{
1056	netdev_err(ndev, "%s\n", __func__);
1057}
1058
1059static const struct net_device_ops uhdlc_ops = {
1060	.ndo_open       = uhdlc_open,
1061	.ndo_stop       = uhdlc_close,
1062	.ndo_start_xmit = hdlc_start_xmit,
1063	.ndo_siocwandev = uhdlc_ioctl,
1064	.ndo_tx_timeout	= uhdlc_tx_timeout,
1065};
1066
1067static int hdlc_map_iomem(char *name, int init_flag, void __iomem **ptr)
1068{
1069	struct device_node *np;
1070	struct platform_device *pdev;
1071	struct resource *res;
1072	static int siram_init_flag;
1073	int ret = 0;
1074
1075	np = of_find_compatible_node(NULL, NULL, name);
1076	if (!np)
1077		return -EINVAL;
1078
1079	pdev = of_find_device_by_node(np);
1080	if (!pdev) {
1081		pr_err("%pOFn: failed to lookup pdev\n", np);
1082		of_node_put(np);
1083		return -EINVAL;
1084	}
1085
1086	of_node_put(np);
1087	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1088	if (!res) {
1089		ret = -EINVAL;
1090		goto error_put_device;
1091	}
1092	*ptr = ioremap(res->start, resource_size(res));
1093	if (!*ptr) {
1094		ret = -ENOMEM;
1095		goto error_put_device;
1096	}
1097
1098	/* We've remapped the addresses, and we don't need the device any
1099	 * more, so we should release it.
1100	 */
1101	put_device(&pdev->dev);
1102
1103	if (init_flag && siram_init_flag == 0) {
1104		memset_io(*ptr, 0, resource_size(res));
1105		siram_init_flag = 1;
1106	}
1107	return  0;
1108
1109error_put_device:
1110	put_device(&pdev->dev);
1111
1112	return ret;
1113}
1114
1115static int ucc_hdlc_probe(struct platform_device *pdev)
1116{
1117	struct device_node *np = pdev->dev.of_node;
1118	struct ucc_hdlc_private *uhdlc_priv = NULL;
1119	struct ucc_tdm_info *ut_info;
1120	struct ucc_tdm *utdm = NULL;
1121	struct resource res;
1122	struct net_device *dev;
1123	hdlc_device *hdlc;
1124	int ucc_num;
1125	const char *sprop;
1126	int ret;
1127	u32 val;
1128
1129	ret = of_property_read_u32_index(np, "cell-index", 0, &val);
1130	if (ret) {
1131		dev_err(&pdev->dev, "Invalid ucc property\n");
1132		return -ENODEV;
1133	}
1134
1135	ucc_num = val - 1;
1136	if (ucc_num > (UCC_MAX_NUM - 1) || ucc_num < 0) {
1137		dev_err(&pdev->dev, ": Invalid UCC num\n");
1138		return -EINVAL;
1139	}
1140
1141	memcpy(&utdm_info[ucc_num], &utdm_primary_info,
1142	       sizeof(utdm_primary_info));
1143
1144	ut_info = &utdm_info[ucc_num];
1145	ut_info->uf_info.ucc_num = ucc_num;
1146
1147	sprop = of_get_property(np, "rx-clock-name", NULL);
1148	if (sprop) {
1149		ut_info->uf_info.rx_clock = qe_clock_source(sprop);
1150		if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
1151		    (ut_info->uf_info.rx_clock > QE_CLK24)) {
1152			dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1153			return -EINVAL;
1154		}
1155	} else {
1156		dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1157		return -EINVAL;
1158	}
1159
1160	sprop = of_get_property(np, "tx-clock-name", NULL);
1161	if (sprop) {
1162		ut_info->uf_info.tx_clock = qe_clock_source(sprop);
1163		if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
1164		    (ut_info->uf_info.tx_clock > QE_CLK24)) {
1165			dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1166			return -EINVAL;
1167		}
1168	} else {
1169		dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1170		return -EINVAL;
1171	}
1172
 
 
 
 
1173	ret = of_address_to_resource(np, 0, &res);
1174	if (ret)
1175		return -EINVAL;
1176
1177	ut_info->uf_info.regs = res.start;
1178	ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
1179
1180	uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
1181	if (!uhdlc_priv)
1182		return -ENOMEM;
 
1183
1184	dev_set_drvdata(&pdev->dev, uhdlc_priv);
1185	uhdlc_priv->dev = &pdev->dev;
1186	uhdlc_priv->ut_info = ut_info;
1187
1188	uhdlc_priv->tsa = of_property_read_bool(np, "fsl,tdm-interface");
1189	uhdlc_priv->loopback = of_property_read_bool(np, "fsl,ucc-internal-loopback");
1190	uhdlc_priv->hdlc_bus = of_property_read_bool(np, "fsl,hdlc-bus");
 
 
1191
1192	if (uhdlc_priv->tsa == 1) {
1193		utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
1194		if (!utdm) {
1195			ret = -ENOMEM;
1196			dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
1197			goto free_uhdlc_priv;
1198		}
1199		uhdlc_priv->utdm = utdm;
1200		ret = ucc_of_parse_tdm(np, utdm, ut_info);
1201		if (ret)
1202			goto free_utdm;
1203
1204		ret = hdlc_map_iomem("fsl,t1040-qe-si", 0,
1205				     (void __iomem **)&utdm->si_regs);
1206		if (ret)
1207			goto free_utdm;
1208		ret = hdlc_map_iomem("fsl,t1040-qe-siram", 1,
1209				     (void __iomem **)&utdm->siram);
1210		if (ret)
1211			goto unmap_si_regs;
1212	}
1213
1214	if (of_property_read_u16(np, "fsl,hmask", &uhdlc_priv->hmask))
1215		uhdlc_priv->hmask = DEFAULT_ADDR_MASK;
1216
1217	ret = uhdlc_init(uhdlc_priv);
1218	if (ret) {
1219		dev_err(&pdev->dev, "Failed to init uhdlc\n");
1220		goto undo_uhdlc_init;
1221	}
1222
1223	dev = alloc_hdlcdev(uhdlc_priv);
1224	if (!dev) {
1225		ret = -ENOMEM;
1226		pr_err("ucc_hdlc: unable to allocate memory\n");
1227		goto undo_uhdlc_init;
1228	}
1229
1230	uhdlc_priv->ndev = dev;
1231	hdlc = dev_to_hdlc(dev);
1232	dev->tx_queue_len = 16;
1233	dev->netdev_ops = &uhdlc_ops;
1234	dev->watchdog_timeo = 2 * HZ;
1235	hdlc->attach = ucc_hdlc_attach;
1236	hdlc->xmit = ucc_hdlc_tx;
1237	netif_napi_add_weight(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
1238	if (register_hdlc_device(dev)) {
1239		ret = -ENOBUFS;
1240		pr_err("ucc_hdlc: unable to register hdlc device\n");
 
1241		goto free_dev;
1242	}
1243
1244	return 0;
1245
1246free_dev:
1247	free_netdev(dev);
1248undo_uhdlc_init:
1249	if (utdm)
1250		iounmap(utdm->siram);
1251unmap_si_regs:
1252	if (utdm)
1253		iounmap(utdm->si_regs);
1254free_utdm:
1255	if (uhdlc_priv->tsa)
1256		kfree(utdm);
1257free_uhdlc_priv:
1258	kfree(uhdlc_priv);
1259	return ret;
1260}
1261
1262static void ucc_hdlc_remove(struct platform_device *pdev)
1263{
1264	struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
1265
1266	uhdlc_memclean(priv);
1267
1268	if (priv->utdm->si_regs) {
1269		iounmap(priv->utdm->si_regs);
1270		priv->utdm->si_regs = NULL;
1271	}
1272
1273	if (priv->utdm->siram) {
1274		iounmap(priv->utdm->siram);
1275		priv->utdm->siram = NULL;
1276	}
1277	kfree(priv);
1278
1279	dev_info(&pdev->dev, "UCC based hdlc module removed\n");
 
 
1280}
1281
1282static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
1283	{
1284	.compatible = "fsl,ucc-hdlc",
1285	},
1286	{},
1287};
1288
1289MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
1290
1291static struct platform_driver ucc_hdlc_driver = {
1292	.probe	= ucc_hdlc_probe,
1293	.remove_new = ucc_hdlc_remove,
1294	.driver	= {
1295		.name		= DRV_NAME,
1296		.pm		= HDLC_PM_OPS,
1297		.of_match_table	= fsl_ucc_hdlc_of_match,
1298	},
1299};
1300
1301module_platform_driver(ucc_hdlc_driver);
1302MODULE_LICENSE("GPL");
1303MODULE_DESCRIPTION(DRV_DESC);
v4.10.11
 
   1/* Freescale QUICC Engine HDLC Device Driver
   2 *
   3 * Copyright 2016 Freescale Semiconductor Inc.
   4 *
   5 * This program is free software; you can redistribute  it and/or modify it
   6 * under  the terms of  the GNU General  Public License as published by the
   7 * Free Software Foundation;  either version 2 of the  License, or (at your
   8 * option) any later version.
   9 */
  10
  11#include <linux/delay.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/hdlc.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/irq.h>
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/netdevice.h>
  21#include <linux/of_address.h>
  22#include <linux/of_irq.h>
  23#include <linux/of_platform.h>
  24#include <linux/platform_device.h>
  25#include <linux/sched.h>
  26#include <linux/skbuff.h>
  27#include <linux/slab.h>
  28#include <linux/spinlock.h>
  29#include <linux/stddef.h>
  30#include <soc/fsl/qe/qe_tdm.h>
  31#include <uapi/linux/if_arp.h>
  32
  33#include "fsl_ucc_hdlc.h"
  34
  35#define DRV_DESC "Freescale QE UCC HDLC Driver"
  36#define DRV_NAME "ucc_hdlc"
  37
  38#define TDM_PPPOHT_SLIC_MAXIN
  39#define BROKEN_FRAME_INFO
 
 
  40
  41static struct ucc_tdm_info utdm_primary_info = {
  42	.uf_info = {
  43		.tsa = 0,
  44		.cdp = 0,
  45		.cds = 1,
  46		.ctsp = 1,
  47		.ctss = 1,
  48		.revd = 0,
  49		.urfs = 256,
  50		.utfs = 256,
  51		.urfet = 128,
  52		.urfset = 192,
  53		.utfet = 128,
  54		.utftt = 0x40,
  55		.ufpt = 256,
  56		.mode = UCC_FAST_PROTOCOL_MODE_HDLC,
  57		.ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
  58		.tenc = UCC_FAST_TX_ENCODING_NRZ,
  59		.renc = UCC_FAST_RX_ENCODING_NRZ,
  60		.tcrc = UCC_FAST_16_BIT_CRC,
  61		.synl = UCC_FAST_SYNC_LEN_NOT_USED,
  62	},
  63
  64	.si_info = {
  65#ifdef TDM_PPPOHT_SLIC_MAXIN
  66		.simr_rfsd = 1,
  67		.simr_tfsd = 2,
  68#else
  69		.simr_rfsd = 0,
  70		.simr_tfsd = 0,
  71#endif
  72		.simr_crt = 0,
  73		.simr_sl = 0,
  74		.simr_ce = 1,
  75		.simr_fe = 1,
  76		.simr_gm = 0,
  77	},
  78};
  79
  80static struct ucc_tdm_info utdm_info[MAX_HDLC_NUM];
  81
  82static int uhdlc_init(struct ucc_hdlc_private *priv)
  83{
  84	struct ucc_tdm_info *ut_info;
  85	struct ucc_fast_info *uf_info;
  86	u32 cecr_subblock;
  87	u16 bd_status;
  88	int ret, i;
  89	void *bd_buffer;
  90	dma_addr_t bd_dma_addr;
  91	u32 riptr;
  92	u32 tiptr;
  93	u32 gumr;
  94
  95	ut_info = priv->ut_info;
  96	uf_info = &ut_info->uf_info;
  97
  98	if (priv->tsa) {
  99		uf_info->tsa = 1;
 100		uf_info->ctsp = 1;
 
 
 
 
 
 
 101	}
 
 
 
 
 
 
 
 102	uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
 103				UCC_HDLC_UCCE_TXB) << 16);
 104
 105	ret = ucc_fast_init(uf_info, &priv->uccf);
 106	if (ret) {
 107		dev_err(priv->dev, "Failed to init uccf.");
 108		return ret;
 109	}
 110
 111	priv->uf_regs = priv->uccf->uf_regs;
 112	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 113
 114	/* Loopback mode */
 115	if (priv->loopback) {
 116		dev_info(priv->dev, "Loopback Mode\n");
 
 
 
 117		gumr = ioread32be(&priv->uf_regs->gumr);
 118		gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
 119			 UCC_FAST_GUMR_TCI);
 120		gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
 121		iowrite32be(gumr, &priv->uf_regs->gumr);
 122	}
 123
 124	/* Initialize SI */
 125	if (priv->tsa)
 126		ucc_tdm_init(priv->utdm, priv->ut_info);
 127
 128	/* Write to QE CECR, UCCx channel to Stop Transmission */
 129	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 130	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
 131			   QE_CR_PROTOCOL_UNSPECIFIED, 0);
 132
 133	/* Set UPSMR normal mode (need fixed)*/
 134	iowrite32be(0, &priv->uf_regs->upsmr);
 135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136	priv->rx_ring_size = RX_BD_RING_LEN;
 137	priv->tx_ring_size = TX_BD_RING_LEN;
 138	/* Alloc Rx BD */
 139	priv->rx_bd_base = dma_alloc_coherent(priv->dev,
 140			RX_BD_RING_LEN * sizeof(struct qe_bd *),
 141			&priv->dma_rx_bd, GFP_KERNEL);
 142
 143	if (!priv->rx_bd_base) {
 144		dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
 145		ret = -ENOMEM;
 146		goto free_uccf;
 147	}
 148
 149	/* Alloc Tx BD */
 150	priv->tx_bd_base = dma_alloc_coherent(priv->dev,
 151			TX_BD_RING_LEN * sizeof(struct qe_bd *),
 152			&priv->dma_tx_bd, GFP_KERNEL);
 153
 154	if (!priv->tx_bd_base) {
 155		dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
 156		ret = -ENOMEM;
 157		goto free_rx_bd;
 158	}
 159
 160	/* Alloc parameter ram for ucc hdlc */
 161	priv->ucc_pram_offset = qe_muram_alloc(sizeof(priv->ucc_pram),
 162				ALIGNMENT_OF_UCC_HDLC_PRAM);
 163
 164	if (priv->ucc_pram_offset < 0) {
 165		dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
 166		ret = -ENOMEM;
 167		goto free_tx_bd;
 168	}
 169
 170	priv->rx_skbuff = kzalloc(priv->rx_ring_size * sizeof(*priv->rx_skbuff),
 
 171				  GFP_KERNEL);
 172	if (!priv->rx_skbuff)
 
 173		goto free_ucc_pram;
 
 174
 175	priv->tx_skbuff = kzalloc(priv->tx_ring_size * sizeof(*priv->tx_skbuff),
 
 176				  GFP_KERNEL);
 177	if (!priv->tx_skbuff)
 
 178		goto free_rx_skbuff;
 
 179
 180	priv->skb_curtx = 0;
 181	priv->skb_dirtytx = 0;
 182	priv->curtx_bd = priv->tx_bd_base;
 183	priv->dirty_tx = priv->tx_bd_base;
 184	priv->currx_bd = priv->rx_bd_base;
 185	priv->currx_bdnum = 0;
 186
 187	/* init parameter base */
 188	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 189	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
 190			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
 191
 192	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
 193					qe_muram_addr(priv->ucc_pram_offset);
 194
 195	/* Zero out parameter ram */
 196	memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
 197
 198	/* Alloc riptr, tiptr */
 199	riptr = qe_muram_alloc(32, 32);
 200	if (riptr < 0) {
 201		dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
 202		ret = -ENOMEM;
 203		goto free_tx_skbuff;
 204	}
 205
 206	tiptr = qe_muram_alloc(32, 32);
 207	if (tiptr < 0) {
 208		dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
 209		ret = -ENOMEM;
 210		goto free_riptr;
 211	}
 
 
 
 
 
 212
 213	/* Set RIPTR, TIPTR */
 214	iowrite16be(riptr, &priv->ucc_pram->riptr);
 215	iowrite16be(tiptr, &priv->ucc_pram->tiptr);
 216
 217	/* Set MRBLR */
 218	iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
 219
 220	/* Set RBASE, TBASE */
 221	iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
 222	iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
 223
 224	/* Set RSTATE, TSTATE */
 225	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
 226	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
 227
 228	/* Set C_MASK, C_PRES for 16bit CRC */
 229	iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
 230	iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
 231
 232	iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
 233	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
 234	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
 235	iowrite16be(DEFAULT_ADDR_MASK, &priv->ucc_pram->hmask);
 236	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
 237	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
 238	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
 239	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
 240
 241	/* Get BD buffer */
 242	bd_buffer = dma_alloc_coherent(priv->dev,
 243				       (RX_BD_RING_LEN + TX_BD_RING_LEN) *
 244				       MAX_RX_BUF_LENGTH,
 245				       &bd_dma_addr, GFP_KERNEL);
 246
 247	if (!bd_buffer) {
 248		dev_err(priv->dev, "Could not allocate buffer descriptors\n");
 249		ret = -ENOMEM;
 250		goto free_tiptr;
 251	}
 252
 253	memset(bd_buffer, 0, (RX_BD_RING_LEN + TX_BD_RING_LEN)
 254			* MAX_RX_BUF_LENGTH);
 255
 256	priv->rx_buffer = bd_buffer;
 257	priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
 258
 259	priv->dma_rx_addr = bd_dma_addr;
 260	priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
 261
 262	for (i = 0; i < RX_BD_RING_LEN; i++) {
 263		if (i < (RX_BD_RING_LEN - 1))
 264			bd_status = R_E_S | R_I_S;
 265		else
 266			bd_status = R_E_S | R_I_S | R_W_S;
 267
 268		iowrite16be(bd_status, &priv->rx_bd_base[i].status);
 269		iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
 270			    &priv->rx_bd_base[i].buf);
 271	}
 272
 273	for (i = 0; i < TX_BD_RING_LEN; i++) {
 274		if (i < (TX_BD_RING_LEN - 1))
 275			bd_status =  T_I_S | T_TC_S;
 276		else
 277			bd_status =  T_I_S | T_TC_S | T_W_S;
 278
 279		iowrite16be(bd_status, &priv->tx_bd_base[i].status);
 280		iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
 281			    &priv->tx_bd_base[i].buf);
 282	}
 
 283
 284	return 0;
 285
 286free_tiptr:
 287	qe_muram_free(tiptr);
 288free_riptr:
 289	qe_muram_free(riptr);
 290free_tx_skbuff:
 291	kfree(priv->tx_skbuff);
 292free_rx_skbuff:
 293	kfree(priv->rx_skbuff);
 294free_ucc_pram:
 295	qe_muram_free(priv->ucc_pram_offset);
 296free_tx_bd:
 297	dma_free_coherent(priv->dev,
 298			  TX_BD_RING_LEN * sizeof(struct qe_bd *),
 299			  priv->tx_bd_base, priv->dma_tx_bd);
 300free_rx_bd:
 301	dma_free_coherent(priv->dev,
 302			  RX_BD_RING_LEN * sizeof(struct qe_bd *),
 303			  priv->rx_bd_base, priv->dma_rx_bd);
 304free_uccf:
 305	ucc_fast_free(priv->uccf);
 306
 307	return ret;
 308}
 309
 310static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
 311{
 312	hdlc_device *hdlc = dev_to_hdlc(dev);
 313	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
 314	struct qe_bd __iomem *bd;
 315	u16 bd_status;
 316	unsigned long flags;
 317	u8 *send_buf;
 318	int i;
 319	u16 *proto_head;
 320
 321	switch (dev->type) {
 322	case ARPHRD_RAWHDLC:
 323		if (skb_headroom(skb) < HDLC_HEAD_LEN) {
 324			dev->stats.tx_dropped++;
 325			dev_kfree_skb(skb);
 326			netdev_err(dev, "No enough space for hdlc head\n");
 327			return -ENOMEM;
 328		}
 329
 330		skb_push(skb, HDLC_HEAD_LEN);
 331
 332		proto_head = (u16 *)skb->data;
 333		*proto_head = htons(DEFAULT_HDLC_HEAD);
 334
 335		dev->stats.tx_bytes += skb->len;
 336		break;
 337
 338	case ARPHRD_PPP:
 339		proto_head = (u16 *)skb->data;
 340		if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
 341			dev->stats.tx_dropped++;
 342			dev_kfree_skb(skb);
 343			netdev_err(dev, "Wrong ppp header\n");
 344			return -ENOMEM;
 345		}
 346
 347		dev->stats.tx_bytes += skb->len;
 348		break;
 349
 
 
 
 
 350	default:
 351		dev->stats.tx_dropped++;
 352		dev_kfree_skb(skb);
 353		return -ENOMEM;
 354	}
 355
 356	pr_info("Tx data skb->len:%d ", skb->len);
 357	send_buf = (u8 *)skb->data;
 358	pr_info("\nTransmitted data:\n");
 359	for (i = 0; i < 16; i++) {
 360		if (i == skb->len)
 361			pr_info("++++");
 362		else
 363		pr_info("%02x\n", send_buf[i]);
 364	}
 365	spin_lock_irqsave(&priv->lock, flags);
 366
 
 367	/* Start from the next BD that should be filled */
 368	bd = priv->curtx_bd;
 369	bd_status = ioread16be(&bd->status);
 370	/* Save the skb pointer so we can free it later */
 371	priv->tx_skbuff[priv->skb_curtx] = skb;
 372
 373	/* Update the current skb pointer (wrapping if this was the last) */
 374	priv->skb_curtx =
 375	    (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
 376
 377	/* copy skb data to tx buffer for sdma processing */
 378	memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
 379	       skb->data, skb->len);
 380
 381	/* set bd status and length */
 382	bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
 383
 384	iowrite16be(bd_status, &bd->status);
 385	iowrite16be(skb->len, &bd->length);
 386
 387	/* Move to next BD in the ring */
 388	if (!(bd_status & T_W_S))
 389		bd += 1;
 390	else
 391		bd = priv->tx_bd_base;
 392
 393	if (bd == priv->dirty_tx) {
 394		if (!netif_queue_stopped(dev))
 395			netif_stop_queue(dev);
 396	}
 397
 398	priv->curtx_bd = bd;
 399
 400	spin_unlock_irqrestore(&priv->lock, flags);
 401
 402	return NETDEV_TX_OK;
 403}
 404
 
 
 
 
 
 
 
 
 
 
 
 
 405static int hdlc_tx_done(struct ucc_hdlc_private *priv)
 406{
 407	/* Start from the next BD that should be filled */
 408	struct net_device *dev = priv->ndev;
 
 
 409	struct qe_bd *bd;		/* BD pointer */
 410	u16 bd_status;
 
 411
 
 412	bd = priv->dirty_tx;
 413	bd_status = ioread16be(&bd->status);
 414
 415	/* Normal processing. */
 416	while ((bd_status & T_R_S) == 0) {
 417		struct sk_buff *skb;
 418
 
 
 
 
 
 
 
 
 
 419		/* BD contains already transmitted buffer.   */
 420		/* Handle the transmitted buffer and release */
 421		/* the BD to be used with the current frame  */
 422
 423		skb = priv->tx_skbuff[priv->skb_dirtytx];
 424		if (!skb)
 425			break;
 426		pr_info("TxBD: %x\n", bd_status);
 
 427		dev->stats.tx_packets++;
 428		memset(priv->tx_buffer +
 429		       (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
 430		       0, skb->len);
 431		dev_kfree_skb_irq(skb);
 432
 433		priv->tx_skbuff[priv->skb_dirtytx] = NULL;
 434		priv->skb_dirtytx =
 435		    (priv->skb_dirtytx +
 436		     1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
 437
 438		/* We freed a buffer, so now we can restart transmission */
 439		if (netif_queue_stopped(dev))
 440			netif_wake_queue(dev);
 441
 442		/* Advance the confirmation BD pointer */
 443		if (!(bd_status & T_W_S))
 444			bd += 1;
 445		else
 446			bd = priv->tx_bd_base;
 447		bd_status = ioread16be(&bd->status);
 448	}
 449	priv->dirty_tx = bd;
 450
 
 
 
 
 451	return 0;
 452}
 453
 454static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
 455{
 456	struct net_device *dev = priv->ndev;
 457	struct sk_buff *skb;
 458	hdlc_device *hdlc = dev_to_hdlc(dev);
 459	struct qe_bd *bd;
 460	u32 bd_status;
 461	u16 length, howmany = 0;
 462	u8 *bdbuffer;
 463	int i;
 464	static int entry;
 465
 
 466	bd = priv->currx_bd;
 467	bd_status = ioread16be(&bd->status);
 468
 469	/* while there are received buffers and BD is full (~R_E) */
 470	while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
 471		if (bd_status & R_OV_S)
 472			dev->stats.rx_over_errors++;
 473		if (bd_status & R_CR_S) {
 474#ifdef BROKEN_FRAME_INFO
 475			pr_info("Broken Frame with RxBD: %x\n", bd_status);
 476#endif
 477			dev->stats.rx_crc_errors++;
 478			dev->stats.rx_dropped++;
 
 
 
 
 
 
 
 
 479			goto recycle;
 480		}
 481		bdbuffer = priv->rx_buffer +
 482			(priv->currx_bdnum * MAX_RX_BUF_LENGTH);
 483		length = ioread16be(&bd->length);
 484
 485		pr_info("Received data length:%d", length);
 486		pr_info("while entry times:%d", entry++);
 487
 488		pr_info("\nReceived data:\n");
 489		for (i = 0; (i < 16); i++) {
 490			if (i == length)
 491				pr_info("++++");
 492			else
 493			pr_info("%02x\n", bdbuffer[i]);
 494		}
 495
 496		switch (dev->type) {
 497		case ARPHRD_RAWHDLC:
 498			bdbuffer += HDLC_HEAD_LEN;
 499			length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
 500
 501			skb = dev_alloc_skb(length);
 502			if (!skb) {
 503				dev->stats.rx_dropped++;
 504				return -ENOMEM;
 505			}
 506
 507			skb_put(skb, length);
 508			skb->len = length;
 509			skb->dev = dev;
 510			memcpy(skb->data, bdbuffer, length);
 511			break;
 512
 513		case ARPHRD_PPP:
 
 514			length -= HDLC_CRC_SIZE;
 515
 516			skb = dev_alloc_skb(length);
 517			if (!skb) {
 518				dev->stats.rx_dropped++;
 519				return -ENOMEM;
 520			}
 521
 522			skb_put(skb, length);
 523			skb->len = length;
 524			skb->dev = dev;
 525			memcpy(skb->data, bdbuffer, length);
 526			break;
 527		}
 528
 529		dev->stats.rx_packets++;
 530		dev->stats.rx_bytes += skb->len;
 531		howmany++;
 532		if (hdlc->proto)
 533			skb->protocol = hdlc_type_trans(skb, dev);
 534		pr_info("skb->protocol:%x\n", skb->protocol);
 535		netif_receive_skb(skb);
 536
 537recycle:
 538		iowrite16be(bd_status | R_E_S | R_I_S, &bd->status);
 539
 540		/* update to point at the next bd */
 541		if (bd_status & R_W_S) {
 542			priv->currx_bdnum = 0;
 543			bd = priv->rx_bd_base;
 544		} else {
 545			if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
 546				priv->currx_bdnum += 1;
 547			else
 548				priv->currx_bdnum = RX_BD_RING_LEN - 1;
 549
 550			bd += 1;
 551		}
 552
 553		bd_status = ioread16be(&bd->status);
 554	}
 
 555
 556	priv->currx_bd = bd;
 557	return howmany;
 558}
 559
 560static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
 561{
 562	struct ucc_hdlc_private *priv = container_of(napi,
 563						     struct ucc_hdlc_private,
 564						     napi);
 565	int howmany;
 566
 567	/* Tx event processing */
 568	spin_lock(&priv->lock);
 569		hdlc_tx_done(priv);
 570	spin_unlock(&priv->lock);
 571
 572	howmany = 0;
 573	howmany += hdlc_rx_done(priv, budget - howmany);
 574
 575	if (howmany < budget) {
 576		napi_complete(napi);
 577		qe_setbits32(priv->uccf->p_uccm,
 578			     (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
 579	}
 580
 581	return howmany;
 582}
 583
 584static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
 585{
 586	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
 587	struct net_device *dev = priv->ndev;
 588	struct ucc_fast_private *uccf;
 589	struct ucc_tdm_info *ut_info;
 590	u32 ucce;
 591	u32 uccm;
 592
 593	ut_info = priv->ut_info;
 594	uccf = priv->uccf;
 595
 596	ucce = ioread32be(uccf->p_ucce);
 597	uccm = ioread32be(uccf->p_uccm);
 598	ucce &= uccm;
 599	iowrite32be(ucce, uccf->p_ucce);
 600	pr_info("irq ucce:%x\n", ucce);
 601	if (!ucce)
 602		return IRQ_NONE;
 603
 604	if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
 605		if (napi_schedule_prep(&priv->napi)) {
 606			uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
 607				  << 16);
 608			iowrite32be(uccm, uccf->p_uccm);
 609			__napi_schedule(&priv->napi);
 610		}
 611	}
 612
 613	/* Errors and other events */
 614	if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
 615		dev->stats.rx_errors++;
 616	if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
 617		dev->stats.tx_errors++;
 618
 619	return IRQ_HANDLED;
 620}
 621
 622static int uhdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 623{
 624	const size_t size = sizeof(te1_settings);
 625	te1_settings line;
 626	struct ucc_hdlc_private *priv = netdev_priv(dev);
 627
 628	if (cmd != SIOCWANDEV)
 629		return hdlc_ioctl(dev, ifr, cmd);
 630
 631	switch (ifr->ifr_settings.type) {
 632	case IF_GET_IFACE:
 633		ifr->ifr_settings.type = IF_IFACE_E1;
 634		if (ifr->ifr_settings.size < size) {
 635			ifr->ifr_settings.size = size; /* data size wanted */
 636			return -ENOBUFS;
 637		}
 638		memset(&line, 0, sizeof(line));
 639		line.clock_type = priv->clocking;
 640
 641		if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size))
 642			return -EFAULT;
 643		return 0;
 644
 645	default:
 646		return hdlc_ioctl(dev, ifr, cmd);
 647	}
 648}
 649
 650static int uhdlc_open(struct net_device *dev)
 651{
 652	u32 cecr_subblock;
 653	hdlc_device *hdlc = dev_to_hdlc(dev);
 654	struct ucc_hdlc_private *priv = hdlc->priv;
 655	struct ucc_tdm *utdm = priv->utdm;
 
 656
 657	if (priv->hdlc_busy != 1) {
 658		if (request_irq(priv->ut_info->uf_info.irq,
 659				ucc_hdlc_irq_handler, 0, "hdlc", priv))
 660			return -ENODEV;
 661
 662		cecr_subblock = ucc_fast_get_qe_cr_subblock(
 663					priv->ut_info->uf_info.ucc_num);
 664
 665		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
 666			     QE_CR_PROTOCOL_UNSPECIFIED, 0);
 667
 668		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 669
 670		/* Enable the TDM port */
 671		if (priv->tsa)
 672			utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
 673
 674		priv->hdlc_busy = 1;
 675		netif_device_attach(priv->ndev);
 676		napi_enable(&priv->napi);
 
 677		netif_start_queue(dev);
 678		hdlc_open(dev);
 
 
 
 679	}
 680
 681	return 0;
 682}
 683
 684static void uhdlc_memclean(struct ucc_hdlc_private *priv)
 685{
 686	qe_muram_free(priv->ucc_pram->riptr);
 687	qe_muram_free(priv->ucc_pram->tiptr);
 688
 689	if (priv->rx_bd_base) {
 690		dma_free_coherent(priv->dev,
 691				  RX_BD_RING_LEN * sizeof(struct qe_bd *),
 692				  priv->rx_bd_base, priv->dma_rx_bd);
 693
 694		priv->rx_bd_base = NULL;
 695		priv->dma_rx_bd = 0;
 696	}
 697
 698	if (priv->tx_bd_base) {
 699		dma_free_coherent(priv->dev,
 700				  TX_BD_RING_LEN * sizeof(struct qe_bd *),
 701				  priv->tx_bd_base, priv->dma_tx_bd);
 702
 703		priv->tx_bd_base = NULL;
 704		priv->dma_tx_bd = 0;
 705	}
 706
 707	if (priv->ucc_pram) {
 708		qe_muram_free(priv->ucc_pram_offset);
 709		priv->ucc_pram = NULL;
 710		priv->ucc_pram_offset = 0;
 711	 }
 712
 713	kfree(priv->rx_skbuff);
 714	priv->rx_skbuff = NULL;
 715
 716	kfree(priv->tx_skbuff);
 717	priv->tx_skbuff = NULL;
 718
 719	if (priv->uf_regs) {
 720		iounmap(priv->uf_regs);
 721		priv->uf_regs = NULL;
 722	}
 723
 724	if (priv->uccf) {
 725		ucc_fast_free(priv->uccf);
 726		priv->uccf = NULL;
 727	}
 728
 729	if (priv->rx_buffer) {
 730		dma_free_coherent(priv->dev,
 731				  RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
 732				  priv->rx_buffer, priv->dma_rx_addr);
 733		priv->rx_buffer = NULL;
 734		priv->dma_rx_addr = 0;
 735	}
 736
 737	if (priv->tx_buffer) {
 738		dma_free_coherent(priv->dev,
 739				  TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
 740				  priv->tx_buffer, priv->dma_tx_addr);
 741		priv->tx_buffer = NULL;
 742		priv->dma_tx_addr = 0;
 743	}
 744}
 745
 746static int uhdlc_close(struct net_device *dev)
 747{
 748	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
 749	struct ucc_tdm *utdm = priv->utdm;
 750	u32 cecr_subblock;
 751
 752	napi_disable(&priv->napi);
 753	cecr_subblock = ucc_fast_get_qe_cr_subblock(
 754				priv->ut_info->uf_info.ucc_num);
 755
 756	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
 757		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 758	qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
 759		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 760
 761	if (priv->tsa)
 762		utdm->si_regs->siglmr1_h &= ~(0x1 << utdm->tdm_port);
 763
 764	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 765
 766	free_irq(priv->ut_info->uf_info.irq, priv);
 767	netif_stop_queue(dev);
 
 768	priv->hdlc_busy = 0;
 769
 
 
 770	return 0;
 771}
 772
 773static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
 774			   unsigned short parity)
 775{
 776	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
 777
 778	if (encoding != ENCODING_NRZ &&
 779	    encoding != ENCODING_NRZI)
 780		return -EINVAL;
 781
 782	if (parity != PARITY_NONE &&
 783	    parity != PARITY_CRC32_PR1_CCITT &&
 
 784	    parity != PARITY_CRC16_PR1_CCITT)
 785		return -EINVAL;
 786
 787	priv->encoding = encoding;
 788	priv->parity = parity;
 789
 790	return 0;
 791}
 792
 793#ifdef CONFIG_PM
 794static void store_clk_config(struct ucc_hdlc_private *priv)
 795{
 796	struct qe_mux *qe_mux_reg = &qe_immr->qmx;
 797
 798	/* store si clk */
 799	priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
 800	priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
 801
 802	/* store si sync */
 803	priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
 804
 805	/* store ucc clk */
 806	memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
 807}
 808
 809static void resume_clk_config(struct ucc_hdlc_private *priv)
 810{
 811	struct qe_mux *qe_mux_reg = &qe_immr->qmx;
 812
 813	memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
 814
 815	iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
 816	iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
 817
 818	iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
 819}
 820
 821static int uhdlc_suspend(struct device *dev)
 822{
 823	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
 824	struct ucc_tdm_info *ut_info;
 825	struct ucc_fast __iomem *uf_regs;
 826
 827	if (!priv)
 828		return -EINVAL;
 829
 830	if (!netif_running(priv->ndev))
 831		return 0;
 832
 833	netif_device_detach(priv->ndev);
 834	napi_disable(&priv->napi);
 835
 836	ut_info = priv->ut_info;
 837	uf_regs = priv->uf_regs;
 838
 839	/* backup gumr guemr*/
 840	priv->gumr = ioread32be(&uf_regs->gumr);
 841	priv->guemr = ioread8(&uf_regs->guemr);
 842
 843	priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
 844					GFP_KERNEL);
 845	if (!priv->ucc_pram_bak)
 846		return -ENOMEM;
 847
 848	/* backup HDLC parameter */
 849	memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
 850		      sizeof(struct ucc_hdlc_param));
 851
 852	/* store the clk configuration */
 853	store_clk_config(priv);
 854
 855	/* save power */
 856	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 857
 858	dev_dbg(dev, "ucc hdlc suspend\n");
 859	return 0;
 860}
 861
 862static int uhdlc_resume(struct device *dev)
 863{
 864	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
 865	struct ucc_tdm *utdm;
 866	struct ucc_tdm_info *ut_info;
 867	struct ucc_fast __iomem *uf_regs;
 868	struct ucc_fast_private *uccf;
 869	struct ucc_fast_info *uf_info;
 870	int ret, i;
 871	u32 cecr_subblock;
 872	u16 bd_status;
 873
 874	if (!priv)
 875		return -EINVAL;
 876
 877	if (!netif_running(priv->ndev))
 878		return 0;
 879
 880	utdm = priv->utdm;
 881	ut_info = priv->ut_info;
 882	uf_info = &ut_info->uf_info;
 883	uf_regs = priv->uf_regs;
 884	uccf = priv->uccf;
 885
 886	/* restore gumr guemr */
 887	iowrite8(priv->guemr, &uf_regs->guemr);
 888	iowrite32be(priv->gumr, &uf_regs->gumr);
 889
 890	/* Set Virtual Fifo registers */
 891	iowrite16be(uf_info->urfs, &uf_regs->urfs);
 892	iowrite16be(uf_info->urfet, &uf_regs->urfet);
 893	iowrite16be(uf_info->urfset, &uf_regs->urfset);
 894	iowrite16be(uf_info->utfs, &uf_regs->utfs);
 895	iowrite16be(uf_info->utfet, &uf_regs->utfet);
 896	iowrite16be(uf_info->utftt, &uf_regs->utftt);
 897	/* utfb, urfb are offsets from MURAM base */
 898	iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
 899	iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
 900
 901	/* Rx Tx and sync clock routing */
 902	resume_clk_config(priv);
 903
 904	iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
 905	iowrite32be(0xffffffff, &uf_regs->ucce);
 906
 907	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 908
 909	/* rebuild SIRAM */
 910	if (priv->tsa)
 911		ucc_tdm_init(priv->utdm, priv->ut_info);
 912
 913	/* Write to QE CECR, UCCx channel to Stop Transmission */
 914	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 915	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
 916			   (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 917
 918	/* Set UPSMR normal mode */
 919	iowrite32be(0, &uf_regs->upsmr);
 920
 921	/* init parameter base */
 922	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
 923	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
 924			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
 925
 926	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
 927				qe_muram_addr(priv->ucc_pram_offset);
 928
 929	/* restore ucc parameter */
 930	memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
 931		    sizeof(struct ucc_hdlc_param));
 932	kfree(priv->ucc_pram_bak);
 933
 934	/* rebuild BD entry */
 935	for (i = 0; i < RX_BD_RING_LEN; i++) {
 936		if (i < (RX_BD_RING_LEN - 1))
 937			bd_status = R_E_S | R_I_S;
 938		else
 939			bd_status = R_E_S | R_I_S | R_W_S;
 940
 941		iowrite16be(bd_status, &priv->rx_bd_base[i].status);
 942		iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
 943			    &priv->rx_bd_base[i].buf);
 944	}
 945
 946	for (i = 0; i < TX_BD_RING_LEN; i++) {
 947		if (i < (TX_BD_RING_LEN - 1))
 948			bd_status =  T_I_S | T_TC_S;
 949		else
 950			bd_status =  T_I_S | T_TC_S | T_W_S;
 951
 952		iowrite16be(bd_status, &priv->tx_bd_base[i].status);
 953		iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
 954			    &priv->tx_bd_base[i].buf);
 955	}
 
 956
 957	/* if hdlc is busy enable TX and RX */
 958	if (priv->hdlc_busy == 1) {
 959		cecr_subblock = ucc_fast_get_qe_cr_subblock(
 960					priv->ut_info->uf_info.ucc_num);
 961
 962		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
 963			     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
 964
 965		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
 966
 967		/* Enable the TDM port */
 968		if (priv->tsa)
 969			utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
 970	}
 971
 972	napi_enable(&priv->napi);
 973	netif_device_attach(priv->ndev);
 974
 975	return 0;
 976}
 977
 978static const struct dev_pm_ops uhdlc_pm_ops = {
 979	.suspend = uhdlc_suspend,
 980	.resume = uhdlc_resume,
 981	.freeze = uhdlc_suspend,
 982	.thaw = uhdlc_resume,
 983};
 984
 985#define HDLC_PM_OPS (&uhdlc_pm_ops)
 986
 987#else
 988
 989#define HDLC_PM_OPS NULL
 990
 991#endif
 
 
 
 
 
 992static const struct net_device_ops uhdlc_ops = {
 993	.ndo_open       = uhdlc_open,
 994	.ndo_stop       = uhdlc_close,
 995	.ndo_start_xmit = hdlc_start_xmit,
 996	.ndo_do_ioctl   = uhdlc_ioctl,
 
 997};
 998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 999static int ucc_hdlc_probe(struct platform_device *pdev)
1000{
1001	struct device_node *np = pdev->dev.of_node;
1002	struct ucc_hdlc_private *uhdlc_priv = NULL;
1003	struct ucc_tdm_info *ut_info;
1004	struct ucc_tdm *utdm;
1005	struct resource res;
1006	struct net_device *dev;
1007	hdlc_device *hdlc;
1008	int ucc_num;
1009	const char *sprop;
1010	int ret;
1011	u32 val;
1012
1013	ret = of_property_read_u32_index(np, "cell-index", 0, &val);
1014	if (ret) {
1015		dev_err(&pdev->dev, "Invalid ucc property\n");
1016		return -ENODEV;
1017	}
1018
1019	ucc_num = val - 1;
1020	if ((ucc_num > 3) || (ucc_num < 0)) {
1021		dev_err(&pdev->dev, ": Invalid UCC num\n");
1022		return -EINVAL;
1023	}
1024
1025	memcpy(&utdm_info[ucc_num], &utdm_primary_info,
1026	       sizeof(utdm_primary_info));
1027
1028	ut_info = &utdm_info[ucc_num];
1029	ut_info->uf_info.ucc_num = ucc_num;
1030
1031	sprop = of_get_property(np, "rx-clock-name", NULL);
1032	if (sprop) {
1033		ut_info->uf_info.rx_clock = qe_clock_source(sprop);
1034		if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
1035		    (ut_info->uf_info.rx_clock > QE_CLK24)) {
1036			dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1037			return -EINVAL;
1038		}
1039	} else {
1040		dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1041		return -EINVAL;
1042	}
1043
1044	sprop = of_get_property(np, "tx-clock-name", NULL);
1045	if (sprop) {
1046		ut_info->uf_info.tx_clock = qe_clock_source(sprop);
1047		if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
1048		    (ut_info->uf_info.tx_clock > QE_CLK24)) {
1049			dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1050			return -EINVAL;
1051		}
1052	} else {
1053		dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1054		return -EINVAL;
1055	}
1056
1057	/* use the same clock when work in loopback */
1058	if (ut_info->uf_info.rx_clock == ut_info->uf_info.tx_clock)
1059		qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
1060
1061	ret = of_address_to_resource(np, 0, &res);
1062	if (ret)
1063		return -EINVAL;
1064
1065	ut_info->uf_info.regs = res.start;
1066	ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
1067
1068	uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
1069	if (!uhdlc_priv) {
1070		return -ENOMEM;
1071	}
1072
1073	dev_set_drvdata(&pdev->dev, uhdlc_priv);
1074	uhdlc_priv->dev = &pdev->dev;
1075	uhdlc_priv->ut_info = ut_info;
1076
1077	if (of_get_property(np, "fsl,tdm-interface", NULL))
1078		uhdlc_priv->tsa = 1;
1079
1080	if (of_get_property(np, "fsl,ucc-internal-loopback", NULL))
1081		uhdlc_priv->loopback = 1;
1082
1083	if (uhdlc_priv->tsa == 1) {
1084		utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
1085		if (!utdm) {
1086			ret = -ENOMEM;
1087			dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
1088			goto free_uhdlc_priv;
1089		}
1090		uhdlc_priv->utdm = utdm;
1091		ret = ucc_of_parse_tdm(np, utdm, ut_info);
1092		if (ret)
1093			goto free_utdm;
 
 
 
 
 
 
 
 
 
1094	}
1095
 
 
 
1096	ret = uhdlc_init(uhdlc_priv);
1097	if (ret) {
1098		dev_err(&pdev->dev, "Failed to init uhdlc\n");
1099		goto free_utdm;
1100	}
1101
1102	dev = alloc_hdlcdev(uhdlc_priv);
1103	if (!dev) {
1104		ret = -ENOMEM;
1105		pr_err("ucc_hdlc: unable to allocate memory\n");
1106		goto undo_uhdlc_init;
1107	}
1108
1109	uhdlc_priv->ndev = dev;
1110	hdlc = dev_to_hdlc(dev);
1111	dev->tx_queue_len = 16;
1112	dev->netdev_ops = &uhdlc_ops;
 
1113	hdlc->attach = ucc_hdlc_attach;
1114	hdlc->xmit = ucc_hdlc_tx;
1115	netif_napi_add(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
1116	if (register_hdlc_device(dev)) {
1117		ret = -ENOBUFS;
1118		pr_err("ucc_hdlc: unable to register hdlc device\n");
1119		free_netdev(dev);
1120		goto free_dev;
1121	}
1122
1123	return 0;
1124
1125free_dev:
1126	free_netdev(dev);
1127undo_uhdlc_init:
 
 
 
 
 
1128free_utdm:
1129	if (uhdlc_priv->tsa)
1130		kfree(utdm);
1131free_uhdlc_priv:
1132	kfree(uhdlc_priv);
1133	return ret;
1134}
1135
1136static int ucc_hdlc_remove(struct platform_device *pdev)
1137{
1138	struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
1139
1140	uhdlc_memclean(priv);
1141
1142	if (priv->utdm->si_regs) {
1143		iounmap(priv->utdm->si_regs);
1144		priv->utdm->si_regs = NULL;
1145	}
1146
1147	if (priv->utdm->siram) {
1148		iounmap(priv->utdm->siram);
1149		priv->utdm->siram = NULL;
1150	}
1151	kfree(priv);
1152
1153	dev_info(&pdev->dev, "UCC based hdlc module removed\n");
1154
1155	return 0;
1156}
1157
1158static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
1159	{
1160	.compatible = "fsl,ucc-hdlc",
1161	},
1162	{},
1163};
1164
1165MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
1166
1167static struct platform_driver ucc_hdlc_driver = {
1168	.probe	= ucc_hdlc_probe,
1169	.remove	= ucc_hdlc_remove,
1170	.driver	= {
1171		.name		= DRV_NAME,
1172		.pm		= HDLC_PM_OPS,
1173		.of_match_table	= fsl_ucc_hdlc_of_match,
1174	},
1175};
1176
1177module_platform_driver(ucc_hdlc_driver);