Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include <net/xdp_sock_drv.h>
   5#include "ice_base.h"
   6#include "ice_lib.h"
   7#include "ice_dcb_lib.h"
   8#include "ice_sriov.h"
   9
  10/**
  11 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
  12 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
  13 *
  14 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
  15 */
  16static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
  17{
  18	unsigned int offset, i;
  19
  20	mutex_lock(qs_cfg->qs_mutex);
  21	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
  22					    0, qs_cfg->q_count, 0);
  23	if (offset >= qs_cfg->pf_map_size) {
  24		mutex_unlock(qs_cfg->qs_mutex);
  25		return -ENOMEM;
  26	}
  27
  28	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
  29	for (i = 0; i < qs_cfg->q_count; i++)
  30		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
  31	mutex_unlock(qs_cfg->qs_mutex);
  32
  33	return 0;
  34}
  35
  36/**
  37 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
  38 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
  39 *
  40 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
  41 */
  42static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
  43{
  44	unsigned int i, index = 0;
  45
  46	mutex_lock(qs_cfg->qs_mutex);
  47	for (i = 0; i < qs_cfg->q_count; i++) {
  48		index = find_next_zero_bit(qs_cfg->pf_map,
  49					   qs_cfg->pf_map_size, index);
  50		if (index >= qs_cfg->pf_map_size)
  51			goto err_scatter;
  52		set_bit(index, qs_cfg->pf_map);
  53		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
  54	}
  55	mutex_unlock(qs_cfg->qs_mutex);
  56
  57	return 0;
  58err_scatter:
  59	for (index = 0; index < i; index++) {
  60		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
  61		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
  62	}
  63	mutex_unlock(qs_cfg->qs_mutex);
  64
  65	return -ENOMEM;
  66}
  67
  68/**
  69 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
  70 * @pf: the PF being configured
  71 * @pf_q: the PF queue
  72 * @ena: enable or disable state of the queue
  73 *
  74 * This routine will wait for the given Rx queue of the PF to reach the
  75 * enabled or disabled state.
  76 * Returns -ETIMEDOUT in case of failing to reach the requested state after
  77 * multiple retries; else will return 0 in case of success.
  78 */
  79static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
  80{
  81	int i;
  82
  83	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
  84		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
  85			      QRX_CTRL_QENA_STAT_M))
  86			return 0;
  87
  88		usleep_range(20, 40);
  89	}
  90
  91	return -ETIMEDOUT;
  92}
  93
  94/**
  95 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
  96 * @vsi: the VSI being configured
  97 * @v_idx: index of the vector in the VSI struct
  98 *
  99 * We allocate one q_vector and set default value for ITR setting associated
 100 * with this q_vector. If allocation fails we return -ENOMEM.
 101 */
 102static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
 103{
 104	struct ice_pf *pf = vsi->back;
 105	struct ice_q_vector *q_vector;
 106	int err;
 107
 108	/* allocate q_vector */
 109	q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
 
 110	if (!q_vector)
 111		return -ENOMEM;
 112
 113	q_vector->vsi = vsi;
 114	q_vector->v_idx = v_idx;
 115	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
 116	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
 117	q_vector->tx.itr_mode = ITR_DYNAMIC;
 118	q_vector->rx.itr_mode = ITR_DYNAMIC;
 119	q_vector->tx.type = ICE_TX_CONTAINER;
 120	q_vector->rx.type = ICE_RX_CONTAINER;
 121	q_vector->irq.index = -ENOENT;
 122
 123	if (vsi->type == ICE_VSI_VF) {
 124		q_vector->reg_idx = ice_calc_vf_reg_idx(vsi->vf, q_vector);
 125		goto out;
 126	} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
 127		struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
 128
 129		if (ctrl_vsi) {
 130			if (unlikely(!ctrl_vsi->q_vectors)) {
 131				err = -ENOENT;
 132				goto err_free_q_vector;
 133			}
 134
 135			q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
 136			goto skip_alloc;
 137		}
 138	}
 139
 140	q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
 141	if (q_vector->irq.index < 0) {
 142		err = -ENOMEM;
 143		goto err_free_q_vector;
 144	}
 145
 146skip_alloc:
 147	q_vector->reg_idx = q_vector->irq.index;
 148
 149	/* only set affinity_mask if the CPU is online */
 150	if (cpu_online(v_idx))
 151		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
 152
 153	/* This will not be called in the driver load path because the netdev
 154	 * will not be created yet. All other cases with register the NAPI
 155	 * handler here (i.e. resume, reset/rebuild, etc.)
 156	 */
 157	if (vsi->netdev)
 158		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);
 
 159
 160out:
 161	/* tie q_vector and VSI together */
 162	vsi->q_vectors[v_idx] = q_vector;
 163
 164	return 0;
 165
 166err_free_q_vector:
 167	kfree(q_vector);
 168
 169	return err;
 170}
 171
 172/**
 173 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
 174 * @vsi: VSI having the memory freed
 175 * @v_idx: index of the vector to be freed
 176 */
 177static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
 178{
 179	struct ice_q_vector *q_vector;
 180	struct ice_pf *pf = vsi->back;
 181	struct ice_tx_ring *tx_ring;
 182	struct ice_rx_ring *rx_ring;
 183	struct device *dev;
 184
 185	dev = ice_pf_to_dev(pf);
 186	if (!vsi->q_vectors[v_idx]) {
 187		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
 188		return;
 189	}
 190	q_vector = vsi->q_vectors[v_idx];
 191
 192	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
 193		ice_queue_set_napi(vsi, tx_ring->q_index, NETDEV_QUEUE_TYPE_TX,
 194				   NULL);
 195		tx_ring->q_vector = NULL;
 196	}
 197	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
 198		ice_queue_set_napi(vsi, rx_ring->q_index, NETDEV_QUEUE_TYPE_RX,
 199				   NULL);
 200		rx_ring->q_vector = NULL;
 201	}
 202
 203	/* only VSI with an associated netdev is set up with NAPI */
 204	if (vsi->netdev)
 205		netif_napi_del(&q_vector->napi);
 206
 207	/* release MSIX interrupt if q_vector had interrupt allocated */
 208	if (q_vector->irq.index < 0)
 209		goto free_q_vector;
 210
 211	/* only free last VF ctrl vsi interrupt */
 212	if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
 213	    ice_get_vf_ctrl_vsi(pf, vsi))
 214		goto free_q_vector;
 215
 216	ice_free_irq(pf, q_vector->irq);
 217
 218free_q_vector:
 219	kfree(q_vector);
 220	vsi->q_vectors[v_idx] = NULL;
 221}
 222
 223/**
 224 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
 225 * @hw: board specific structure
 226 */
 227static void ice_cfg_itr_gran(struct ice_hw *hw)
 228{
 229	u32 regval = rd32(hw, GLINT_CTL);
 230
 231	/* no need to update global register if ITR gran is already set */
 232	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
 233	    (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
 234	    (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
 235	    (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
 236	    (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
 
 
 
 
 237		return;
 238
 239	regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
 240		 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
 241		 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
 242		 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
 
 
 
 
 243	wr32(hw, GLINT_CTL, regval);
 244}
 245
 246/**
 247 * ice_calc_txq_handle - calculate the queue handle
 248 * @vsi: VSI that ring belongs to
 249 * @ring: ring to get the absolute queue index
 250 * @tc: traffic class number
 251 */
 252static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
 253{
 254	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
 255
 256	if (ring->ch)
 257		return ring->q_index - ring->ch->base_q;
 258
 259	/* Idea here for calculation is that we subtract the number of queue
 260	 * count from TC that ring belongs to from it's absolute queue index
 261	 * and as a result we get the queue's index within TC.
 262	 */
 263	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
 264}
 265
 266/**
 267 * ice_eswitch_calc_txq_handle
 268 * @ring: pointer to ring which unique index is needed
 269 *
 270 * To correctly work with many netdevs ring->q_index of Tx rings on switchdev
 271 * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it
 272 * here by finding index in vsi->tx_rings of this ring.
 273 *
 274 * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen,
 275 * because VSI is get from ring->vsi, so it has to be present in this VSI.
 276 */
 277static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring)
 278{
 279	const struct ice_vsi *vsi = ring->vsi;
 280	int i;
 281
 282	ice_for_each_txq(vsi, i) {
 283		if (vsi->tx_rings[i] == ring)
 284			return i;
 285	}
 286
 287	return ICE_INVAL_Q_INDEX;
 288}
 289
 290/**
 291 * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
 292 * @ring: The Tx ring to configure
 293 *
 294 * This enables/disables XPS for a given Tx descriptor ring
 295 * based on the TCs enabled for the VSI that ring belongs to.
 296 */
 297static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
 298{
 299	if (!ring->q_vector || !ring->netdev)
 300		return;
 301
 302	/* We only initialize XPS once, so as not to overwrite user settings */
 303	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
 304		return;
 305
 306	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
 307			    ring->q_index);
 308}
 309
 310/**
 311 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
 312 * @ring: The Tx ring to configure
 313 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
 314 * @pf_q: queue index in the PF space
 315 *
 316 * Configure the Tx descriptor ring in TLAN context.
 317 */
 318static void
 319ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
 320{
 321	struct ice_vsi *vsi = ring->vsi;
 322	struct ice_hw *hw = &vsi->back->hw;
 323
 324	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
 325
 326	tlan_ctx->port_num = vsi->port_info->lport;
 327
 328	/* Transmit Queue Length */
 329	tlan_ctx->qlen = ring->count;
 330
 331	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
 332
 333	/* PF number */
 334	tlan_ctx->pf_num = hw->pf_id;
 335
 336	/* queue belongs to a specific VSI type
 337	 * VF / VM index should be programmed per vmvf_type setting:
 338	 * for vmvf_type = VF, it is VF number between 0-256
 339	 * for vmvf_type = VM, it is VM number between 0-767
 340	 * for PF or EMP this field should be set to zero
 341	 */
 342	switch (vsi->type) {
 343	case ICE_VSI_LB:
 344	case ICE_VSI_CTRL:
 345	case ICE_VSI_PF:
 346		if (ring->ch)
 347			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
 348		else
 349			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
 350		break;
 351	case ICE_VSI_VF:
 352		/* Firmware expects vmvf_num to be absolute VF ID */
 353		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
 354		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
 355		break;
 356	case ICE_VSI_SWITCHDEV_CTRL:
 357		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
 358		break;
 359	default:
 360		return;
 361	}
 362
 363	/* make sure the context is associated with the right VSI */
 364	if (ring->ch)
 365		tlan_ctx->src_vsi = ring->ch->vsi_num;
 366	else
 367		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
 368
 369	/* Restrict Tx timestamps to the PF VSI */
 370	switch (vsi->type) {
 371	case ICE_VSI_PF:
 372		tlan_ctx->tsyn_ena = 1;
 373		break;
 374	default:
 375		break;
 376	}
 377
 378	tlan_ctx->tso_ena = ICE_TX_LEGACY;
 379	tlan_ctx->tso_qnum = pf_q;
 380
 381	/* Legacy or Advanced Host Interface:
 382	 * 0: Advanced Host Interface
 383	 * 1: Legacy Host Interface
 384	 */
 385	tlan_ctx->legacy_int = ICE_TX_LEGACY;
 386}
 387
 388/**
 389 * ice_rx_offset - Return expected offset into page to access data
 390 * @rx_ring: Ring we are requesting offset of
 391 *
 392 * Returns the offset value for ring into the data buffer.
 393 */
 394static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
 395{
 396	if (ice_ring_uses_build_skb(rx_ring))
 397		return ICE_SKB_PAD;
 398	return 0;
 399}
 400
 401/**
 402 * ice_setup_rx_ctx - Configure a receive ring context
 403 * @ring: The Rx ring to configure
 404 *
 405 * Configure the Rx descriptor ring in RLAN context.
 406 */
 407static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
 408{
 
 
 
 409	struct ice_vsi *vsi = ring->vsi;
 410	u32 rxdid = ICE_RXDID_FLEX_NIC;
 411	struct ice_rlan_ctx rlan_ctx;
 412	struct ice_hw *hw;
 413	u16 pf_q;
 414	int err;
 415
 416	hw = &vsi->back->hw;
 417
 418	/* what is Rx queue number in global space of 2K Rx queues */
 419	pf_q = vsi->rxq_map[ring->q_index];
 420
 421	/* clear the context structure first */
 422	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
 423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424	/* Receive Queue Base Address.
 425	 * Indicates the starting address of the descriptor queue defined in
 426	 * 128 Byte units.
 427	 */
 428	rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
 429
 430	rlan_ctx.qlen = ring->count;
 431
 432	/* Receive Packet Data Buffer Size.
 433	 * The Packet Data Buffer Size is defined in 128 byte units.
 434	 */
 435	rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
 436				     BIT_ULL(ICE_RLAN_CTX_DBUF_S));
 437
 438	/* use 32 byte descriptors */
 439	rlan_ctx.dsize = 1;
 440
 441	/* Strip the Ethernet CRC bytes before the packet is posted to host
 442	 * memory.
 443	 */
 444	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
 445
 446	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
 447	 * and it needs to remain 1 for non-DVM capable configurations to not
 448	 * break backward compatibility for VF drivers. Setting this field to 0
 449	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
 450	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
 451	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
 452	 * check for the tag
 453	 */
 454	if (ice_is_dvm_ena(hw))
 455		if (vsi->type == ICE_VSI_VF &&
 456		    ice_vf_is_port_vlan_ena(vsi->vf))
 457			rlan_ctx.l2tsel = 1;
 458		else
 459			rlan_ctx.l2tsel = 0;
 460	else
 461		rlan_ctx.l2tsel = 1;
 462
 463	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
 464	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
 465	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
 466
 467	/* This controls whether VLAN is stripped from inner headers
 468	 * The VLAN in the inner L2 header is stripped to the receive
 469	 * descriptor if enabled by this flag.
 470	 */
 471	rlan_ctx.showiv = 0;
 472
 473	/* Max packet size for this queue - must not be set to a larger value
 474	 * than 5 x DBUF
 475	 */
 476	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
 477			       ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
 478
 479	/* Rx queue threshold in units of 64 */
 480	rlan_ctx.lrxqthresh = 1;
 481
 482	/* Enable Flexible Descriptors in the queue context which
 483	 * allows this driver to select a specific receive descriptor format
 484	 * increasing context priority to pick up profile ID; default is 0x01;
 485	 * setting to 0x03 to ensure profile is programming if prev context is
 486	 * of same priority
 487	 */
 488	if (vsi->type != ICE_VSI_VF)
 489		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
 490	else
 491		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
 492					false);
 493
 494	/* Absolute queue number out of 2K needs to be passed */
 495	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
 496	if (err) {
 497		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
 498			pf_q, err);
 499		return -EIO;
 500	}
 501
 502	if (vsi->type == ICE_VSI_VF)
 503		return 0;
 504
 505	/* configure Rx buffer alignment */
 506	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
 507		ice_clear_ring_build_skb_ena(ring);
 508	else
 509		ice_set_ring_build_skb_ena(ring);
 510
 511	ring->rx_offset = ice_rx_offset(ring);
 512
 513	/* init queue specific tail register */
 514	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
 515	writel(0, ring->tail);
 516
 517	return 0;
 518}
 519
 520static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring)
 521{
 522	void *ctx_ptr = &ring->pkt_ctx;
 523	struct xsk_cb_desc desc = {};
 524
 525	XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff);
 526	desc.src = &ctx_ptr;
 527	desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) -
 528		   sizeof(struct xdp_buff);
 529	desc.bytes = sizeof(ctx_ptr);
 530	xsk_pool_fill_cb(ring->xsk_pool, &desc);
 531}
 532
 533/**
 534 * ice_vsi_cfg_rxq - Configure an Rx queue
 535 * @ring: the ring being configured
 536 *
 537 * Return 0 on success and a negative value on error.
 538 */
 539int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
 540{
 541	struct device *dev = ice_pf_to_dev(ring->vsi->back);
 542	u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
 543	int err;
 544
 545	ring->rx_buf_len = ring->vsi->rx_buf_len;
 546
 547	if (ring->vsi->type == ICE_VSI_PF) {
 548		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
 549			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
 550						 ring->q_index,
 551						 ring->q_vector->napi.napi_id,
 552						 ring->rx_buf_len);
 553			if (err)
 554				return err;
 555		}
 556
 557		ring->xsk_pool = ice_xsk_pool(ring);
 558		if (ring->xsk_pool) {
 559			xdp_rxq_info_unreg(&ring->xdp_rxq);
 560
 561			ring->rx_buf_len =
 562				xsk_pool_get_rx_frame_size(ring->xsk_pool);
 563			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
 564						 ring->q_index,
 565						 ring->q_vector->napi.napi_id,
 566						 ring->rx_buf_len);
 567			if (err)
 568				return err;
 569			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
 570							 MEM_TYPE_XSK_BUFF_POOL,
 571							 NULL);
 572			if (err)
 573				return err;
 574			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
 575			ice_xsk_pool_fill_cb(ring);
 576
 577			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
 578				 ring->q_index);
 579		} else {
 580			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
 581				err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
 582							 ring->q_index,
 583							 ring->q_vector->napi.napi_id,
 584							 ring->rx_buf_len);
 585				if (err)
 586					return err;
 587			}
 588
 589			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
 590							 MEM_TYPE_PAGE_SHARED,
 591							 NULL);
 592			if (err)
 593				return err;
 594		}
 595	}
 596
 597	xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq);
 598	ring->xdp.data = NULL;
 599	ring->xdp_ext.pkt_ctx = &ring->pkt_ctx;
 600	err = ice_setup_rx_ctx(ring);
 601	if (err) {
 602		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
 603			ring->q_index, err);
 604		return err;
 605	}
 606
 607	if (ring->xsk_pool) {
 608		bool ok;
 609
 610		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
 611			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
 612				 num_bufs, ring->q_index);
 613			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
 614
 615			return 0;
 616		}
 617
 618		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
 619		if (!ok) {
 620			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
 621
 622			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
 623				 ring->q_index, pf_q);
 624		}
 625
 626		return 0;
 627	}
 628
 629	ice_alloc_rx_bufs(ring, num_bufs);
 630
 631	return 0;
 632}
 633
 634/**
 635 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
 636 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 637 *
 638 * This function first tries to find contiguous space. If it is not successful,
 639 * it tries with the scatter approach.
 640 *
 641 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 642 */
 643int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
 644{
 645	int ret = 0;
 646
 647	ret = __ice_vsi_get_qs_contig(qs_cfg);
 648	if (ret) {
 649		/* contig failed, so try with scatter approach */
 650		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
 651		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
 652					qs_cfg->scatter_count);
 653		ret = __ice_vsi_get_qs_sc(qs_cfg);
 654	}
 655	return ret;
 656}
 657
 658/**
 659 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
 660 * @vsi: the VSI being configured
 661 * @ena: start or stop the Rx ring
 662 * @rxq_idx: 0-based Rx queue index for the VSI passed in
 663 * @wait: wait or don't wait for configuration to finish in hardware
 664 *
 665 * Return 0 on success and negative on error.
 666 */
 667int
 668ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
 669{
 670	int pf_q = vsi->rxq_map[rxq_idx];
 671	struct ice_pf *pf = vsi->back;
 672	struct ice_hw *hw = &pf->hw;
 673	u32 rx_reg;
 674
 675	rx_reg = rd32(hw, QRX_CTRL(pf_q));
 676
 677	/* Skip if the queue is already in the requested state */
 678	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
 679		return 0;
 680
 681	/* turn on/off the queue */
 682	if (ena)
 683		rx_reg |= QRX_CTRL_QENA_REQ_M;
 684	else
 685		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
 686	wr32(hw, QRX_CTRL(pf_q), rx_reg);
 687
 688	if (!wait)
 689		return 0;
 690
 691	ice_flush(hw);
 692	return ice_pf_rxq_wait(pf, pf_q, ena);
 693}
 694
 695/**
 696 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
 697 * @vsi: the VSI being configured
 698 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
 699 * @rxq_idx: 0-based Rx queue index for the VSI passed in
 700 *
 701 * This routine will wait for the given Rx queue of the VSI to reach the
 702 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
 703 * the requested state after multiple retries; else will return 0 in case of
 704 * success.
 705 */
 706int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
 707{
 708	int pf_q = vsi->rxq_map[rxq_idx];
 709	struct ice_pf *pf = vsi->back;
 710
 711	return ice_pf_rxq_wait(pf, pf_q, ena);
 712}
 713
 714/**
 715 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
 716 * @vsi: the VSI being configured
 717 *
 718 * We allocate one q_vector per queue interrupt. If allocation fails we
 719 * return -ENOMEM.
 720 */
 721int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
 722{
 723	struct device *dev = ice_pf_to_dev(vsi->back);
 724	u16 v_idx;
 725	int err;
 726
 727	if (vsi->q_vectors[0]) {
 728		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
 729		return -EEXIST;
 730	}
 731
 732	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
 733		err = ice_vsi_alloc_q_vector(vsi, v_idx);
 734		if (err)
 735			goto err_out;
 736	}
 737
 738	return 0;
 739
 740err_out:
 741	while (v_idx--)
 742		ice_free_q_vector(vsi, v_idx);
 743
 744	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
 745		vsi->num_q_vectors, vsi->vsi_num, err);
 746	vsi->num_q_vectors = 0;
 747	return err;
 748}
 749
 750/**
 751 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
 752 * @vsi: the VSI being configured
 753 *
 754 * This function maps descriptor rings to the queue-specific vectors allotted
 755 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
 756 * and Rx rings to the vector as "efficiently" as possible.
 757 */
 758void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
 759{
 760	int q_vectors = vsi->num_q_vectors;
 761	u16 tx_rings_rem, rx_rings_rem;
 762	int v_id;
 763
 764	/* initially assigning remaining rings count to VSIs num queue value */
 765	tx_rings_rem = vsi->num_txq;
 766	rx_rings_rem = vsi->num_rxq;
 767
 768	for (v_id = 0; v_id < q_vectors; v_id++) {
 769		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
 770		u8 tx_rings_per_v, rx_rings_per_v;
 771		u16 q_id, q_base;
 772
 773		/* Tx rings mapping to vector */
 774		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
 775						  q_vectors - v_id);
 776		q_vector->num_ring_tx = tx_rings_per_v;
 777		q_vector->tx.tx_ring = NULL;
 778		q_vector->tx.itr_idx = ICE_TX_ITR;
 779		q_base = vsi->num_txq - tx_rings_rem;
 780
 781		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
 782			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
 783
 784			tx_ring->q_vector = q_vector;
 785			tx_ring->next = q_vector->tx.tx_ring;
 786			q_vector->tx.tx_ring = tx_ring;
 787		}
 788		tx_rings_rem -= tx_rings_per_v;
 789
 790		/* Rx rings mapping to vector */
 791		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
 792						  q_vectors - v_id);
 793		q_vector->num_ring_rx = rx_rings_per_v;
 794		q_vector->rx.rx_ring = NULL;
 795		q_vector->rx.itr_idx = ICE_RX_ITR;
 796		q_base = vsi->num_rxq - rx_rings_rem;
 797
 798		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
 799			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
 800
 801			rx_ring->q_vector = q_vector;
 802			rx_ring->next = q_vector->rx.rx_ring;
 803			q_vector->rx.rx_ring = rx_ring;
 804		}
 805		rx_rings_rem -= rx_rings_per_v;
 806	}
 807}
 808
 809/**
 810 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
 811 * @vsi: the VSI having memory freed
 812 */
 813void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
 814{
 815	int v_idx;
 816
 817	ice_for_each_q_vector(vsi, v_idx)
 818		ice_free_q_vector(vsi, v_idx);
 819
 820	vsi->num_q_vectors = 0;
 821}
 822
 823/**
 824 * ice_vsi_cfg_txq - Configure single Tx queue
 825 * @vsi: the VSI that queue belongs to
 826 * @ring: Tx ring to be configured
 827 * @qg_buf: queue group buffer
 828 */
 829int
 830ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
 831		struct ice_aqc_add_tx_qgrp *qg_buf)
 832{
 833	u8 buf_len = struct_size(qg_buf, txqs, 1);
 834	struct ice_tlan_ctx tlan_ctx = { 0 };
 835	struct ice_aqc_add_txqs_perq *txq;
 836	struct ice_channel *ch = ring->ch;
 837	struct ice_pf *pf = vsi->back;
 838	struct ice_hw *hw = &pf->hw;
 839	int status;
 840	u16 pf_q;
 841	u8 tc;
 842
 843	/* Configure XPS */
 844	ice_cfg_xps_tx_ring(ring);
 845
 846	pf_q = ring->reg_idx;
 847	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
 848	/* copy context contents into the qg_buf */
 849	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
 850	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
 851		    ice_tlan_ctx_info);
 852
 853	/* init queue specific tail reg. It is referred as
 854	 * transmit comm scheduler queue doorbell.
 855	 */
 856	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
 857
 858	if (IS_ENABLED(CONFIG_DCB))
 859		tc = ring->dcb_tc;
 860	else
 861		tc = 0;
 862
 863	/* Add unique software queue handle of the Tx queue per
 864	 * TC into the VSI Tx ring
 865	 */
 866	if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
 867		ring->q_handle = ice_eswitch_calc_txq_handle(ring);
 868
 869		if (ring->q_handle == ICE_INVAL_Q_INDEX)
 870			return -ENODEV;
 871	} else {
 872		ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
 873	}
 874
 875	if (ch)
 876		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
 877					 ring->q_handle, 1, qg_buf, buf_len,
 878					 NULL);
 879	else
 880		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
 881					 ring->q_handle, 1, qg_buf, buf_len,
 882					 NULL);
 883	if (status) {
 884		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
 885			status);
 886		return status;
 887	}
 888
 889	/* Add Tx Queue TEID into the VSI Tx ring from the
 890	 * response. This will complete configuring and
 891	 * enabling the queue.
 892	 */
 893	txq = &qg_buf->txqs[0];
 894	if (pf_q == le16_to_cpu(txq->txq_id))
 895		ring->txq_teid = le32_to_cpu(txq->q_teid);
 896
 897	return 0;
 898}
 899
 900/**
 901 * ice_cfg_itr - configure the initial interrupt throttle values
 902 * @hw: pointer to the HW structure
 903 * @q_vector: interrupt vector that's being configured
 904 *
 905 * Configure interrupt throttling values for the ring containers that are
 906 * associated with the interrupt vector passed in.
 907 */
 908void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
 909{
 910	ice_cfg_itr_gran(hw);
 911
 912	if (q_vector->num_ring_rx)
 913		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
 914
 915	if (q_vector->num_ring_tx)
 916		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
 917
 918	ice_write_intrl(q_vector, q_vector->intrl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919}
 920
 921/**
 922 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
 923 * @vsi: the VSI being configured
 924 * @txq: Tx queue being mapped to MSI-X vector
 925 * @msix_idx: MSI-X vector index within the function
 926 * @itr_idx: ITR index of the interrupt cause
 927 *
 928 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
 929 * within the function space.
 930 */
 931void
 932ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
 933{
 934	struct ice_pf *pf = vsi->back;
 935	struct ice_hw *hw = &pf->hw;
 936	u32 val;
 937
 938	itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);
 939
 940	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
 941	      FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);
 942
 943	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
 944	if (ice_is_xdp_ena_vsi(vsi)) {
 945		u32 xdp_txq = txq + vsi->num_xdp_txq;
 946
 947		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
 948		     val);
 949	}
 950	ice_flush(hw);
 951}
 952
 953/**
 954 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
 955 * @vsi: the VSI being configured
 956 * @rxq: Rx queue being mapped to MSI-X vector
 957 * @msix_idx: MSI-X vector index within the function
 958 * @itr_idx: ITR index of the interrupt cause
 959 *
 960 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
 961 * within the function space.
 962 */
 963void
 964ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
 965{
 966	struct ice_pf *pf = vsi->back;
 967	struct ice_hw *hw = &pf->hw;
 968	u32 val;
 969
 970	itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);
 971
 972	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
 973	      FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);
 974
 975	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
 976
 977	ice_flush(hw);
 978}
 979
 980/**
 981 * ice_trigger_sw_intr - trigger a software interrupt
 982 * @hw: pointer to the HW structure
 983 * @q_vector: interrupt vector to trigger the software interrupt for
 984 */
 985void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
 986{
 987	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
 988	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
 989	     GLINT_DYN_CTL_SWINT_TRIG_M |
 990	     GLINT_DYN_CTL_INTENA_M);
 991}
 992
 993/**
 994 * ice_vsi_stop_tx_ring - Disable single Tx ring
 995 * @vsi: the VSI being configured
 996 * @rst_src: reset source
 997 * @rel_vmvf_num: Relative ID of VF/VM
 998 * @ring: Tx ring to be stopped
 999 * @txq_meta: Meta data of Tx ring to be stopped
1000 */
1001int
1002ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1003		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
1004		     struct ice_txq_meta *txq_meta)
1005{
1006	struct ice_pf *pf = vsi->back;
1007	struct ice_q_vector *q_vector;
1008	struct ice_hw *hw = &pf->hw;
1009	int status;
1010	u32 val;
1011
1012	/* clear cause_ena bit for disabled queues */
1013	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1014	val &= ~QINT_TQCTL_CAUSE_ENA_M;
1015	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1016
1017	/* software is expected to wait for 100 ns */
1018	ndelay(100);
1019
1020	/* trigger a software interrupt for the vector
1021	 * associated to the queue to schedule NAPI handler
1022	 */
1023	q_vector = ring->q_vector;
1024	if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1025		ice_trigger_sw_intr(hw, q_vector);
1026
1027	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1028				 txq_meta->tc, 1, &txq_meta->q_handle,
1029				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1030				 rel_vmvf_num, NULL);
1031
1032	/* if the disable queue command was exercised during an
1033	 * active reset flow, -EBUSY is returned.
1034	 * This is not an error as the reset operation disables
1035	 * queues at the hardware level anyway.
1036	 */
1037	if (status == -EBUSY) {
1038		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1039	} else if (status == -ENOENT) {
1040		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1041	} else if (status) {
1042		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1043			status);
1044		return status;
1045	}
1046
1047	return 0;
1048}
1049
1050/**
1051 * ice_fill_txq_meta - Prepare the Tx queue's meta data
1052 * @vsi: VSI that ring belongs to
1053 * @ring: ring that txq_meta will be based on
1054 * @txq_meta: a helper struct that wraps Tx queue's information
1055 *
1056 * Set up a helper struct that will contain all the necessary fields that
1057 * are needed for stopping Tx queue
1058 */
1059void
1060ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
1061		  struct ice_txq_meta *txq_meta)
1062{
1063	struct ice_channel *ch = ring->ch;
1064	u8 tc;
1065
1066	if (IS_ENABLED(CONFIG_DCB))
1067		tc = ring->dcb_tc;
1068	else
1069		tc = 0;
1070
1071	txq_meta->q_id = ring->reg_idx;
1072	txq_meta->q_teid = ring->txq_teid;
1073	txq_meta->q_handle = ring->q_handle;
1074	if (ch) {
1075		txq_meta->vsi_idx = ch->ch_vsi->idx;
1076		txq_meta->tc = 0;
1077	} else {
1078		txq_meta->vsi_idx = vsi->idx;
1079		txq_meta->tc = tc;
1080	}
1081}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c) 2019, Intel Corporation. */
  3
  4#include <net/xdp_sock_drv.h>
  5#include "ice_base.h"
  6#include "ice_lib.h"
  7#include "ice_dcb_lib.h"
 
  8
  9/**
 10 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
 11 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
 12 *
 13 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 14 */
 15static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
 16{
 17	unsigned int offset, i;
 18
 19	mutex_lock(qs_cfg->qs_mutex);
 20	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
 21					    0, qs_cfg->q_count, 0);
 22	if (offset >= qs_cfg->pf_map_size) {
 23		mutex_unlock(qs_cfg->qs_mutex);
 24		return -ENOMEM;
 25	}
 26
 27	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
 28	for (i = 0; i < qs_cfg->q_count; i++)
 29		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
 30	mutex_unlock(qs_cfg->qs_mutex);
 31
 32	return 0;
 33}
 34
 35/**
 36 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
 37 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
 38 *
 39 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
 40 */
 41static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
 42{
 43	unsigned int i, index = 0;
 44
 45	mutex_lock(qs_cfg->qs_mutex);
 46	for (i = 0; i < qs_cfg->q_count; i++) {
 47		index = find_next_zero_bit(qs_cfg->pf_map,
 48					   qs_cfg->pf_map_size, index);
 49		if (index >= qs_cfg->pf_map_size)
 50			goto err_scatter;
 51		set_bit(index, qs_cfg->pf_map);
 52		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
 53	}
 54	mutex_unlock(qs_cfg->qs_mutex);
 55
 56	return 0;
 57err_scatter:
 58	for (index = 0; index < i; index++) {
 59		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
 60		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
 61	}
 62	mutex_unlock(qs_cfg->qs_mutex);
 63
 64	return -ENOMEM;
 65}
 66
 67/**
 68 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
 69 * @pf: the PF being configured
 70 * @pf_q: the PF queue
 71 * @ena: enable or disable state of the queue
 72 *
 73 * This routine will wait for the given Rx queue of the PF to reach the
 74 * enabled or disabled state.
 75 * Returns -ETIMEDOUT in case of failing to reach the requested state after
 76 * multiple retries; else will return 0 in case of success.
 77 */
 78static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
 79{
 80	int i;
 81
 82	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
 83		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
 84			      QRX_CTRL_QENA_STAT_M))
 85			return 0;
 86
 87		usleep_range(20, 40);
 88	}
 89
 90	return -ETIMEDOUT;
 91}
 92
 93/**
 94 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
 95 * @vsi: the VSI being configured
 96 * @v_idx: index of the vector in the VSI struct
 97 *
 98 * We allocate one q_vector and set default value for ITR setting associated
 99 * with this q_vector. If allocation fails we return -ENOMEM.
100 */
101static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
102{
103	struct ice_pf *pf = vsi->back;
104	struct ice_q_vector *q_vector;
 
105
106	/* allocate q_vector */
107	q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
108				GFP_KERNEL);
109	if (!q_vector)
110		return -ENOMEM;
111
112	q_vector->vsi = vsi;
113	q_vector->v_idx = v_idx;
114	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
115	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
116	if (vsi->type == ICE_VSI_VF)
 
 
 
 
 
 
 
117		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118	/* only set affinity_mask if the CPU is online */
119	if (cpu_online(v_idx))
120		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
121
122	/* This will not be called in the driver load path because the netdev
123	 * will not be created yet. All other cases with register the NAPI
124	 * handler here (i.e. resume, reset/rebuild, etc.)
125	 */
126	if (vsi->netdev)
127		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
128			       NAPI_POLL_WEIGHT);
129
130out:
131	/* tie q_vector and VSI together */
132	vsi->q_vectors[v_idx] = q_vector;
133
134	return 0;
 
 
 
 
 
135}
136
137/**
138 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
139 * @vsi: VSI having the memory freed
140 * @v_idx: index of the vector to be freed
141 */
142static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
143{
144	struct ice_q_vector *q_vector;
145	struct ice_pf *pf = vsi->back;
146	struct ice_ring *ring;
 
147	struct device *dev;
148
149	dev = ice_pf_to_dev(pf);
150	if (!vsi->q_vectors[v_idx]) {
151		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
152		return;
153	}
154	q_vector = vsi->q_vectors[v_idx];
155
156	ice_for_each_ring(ring, q_vector->tx)
157		ring->q_vector = NULL;
158	ice_for_each_ring(ring, q_vector->rx)
159		ring->q_vector = NULL;
 
 
 
 
 
 
160
161	/* only VSI with an associated netdev is set up with NAPI */
162	if (vsi->netdev)
163		netif_napi_del(&q_vector->napi);
164
165	devm_kfree(dev, q_vector);
 
 
 
 
 
 
 
 
 
 
 
 
166	vsi->q_vectors[v_idx] = NULL;
167}
168
169/**
170 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
171 * @hw: board specific structure
172 */
173static void ice_cfg_itr_gran(struct ice_hw *hw)
174{
175	u32 regval = rd32(hw, GLINT_CTL);
176
177	/* no need to update global register if ITR gran is already set */
178	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
179	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
180	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
181	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
182	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
183	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
184	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
185	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
186	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
187		return;
188
189	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
190		  GLINT_CTL_ITR_GRAN_200_M) |
191		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
192		  GLINT_CTL_ITR_GRAN_100_M) |
193		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
194		  GLINT_CTL_ITR_GRAN_50_M) |
195		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
196		  GLINT_CTL_ITR_GRAN_25_M);
197	wr32(hw, GLINT_CTL, regval);
198}
199
200/**
201 * ice_calc_q_handle - calculate the queue handle
202 * @vsi: VSI that ring belongs to
203 * @ring: ring to get the absolute queue index
204 * @tc: traffic class number
205 */
206static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc)
207{
208	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
209
 
 
 
210	/* Idea here for calculation is that we subtract the number of queue
211	 * count from TC that ring belongs to from it's absolute queue index
212	 * and as a result we get the queue's index within TC.
213	 */
214	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
215}
216
217/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
219 * @ring: The Tx ring to configure
220 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
221 * @pf_q: queue index in the PF space
222 *
223 * Configure the Tx descriptor ring in TLAN context.
224 */
225static void
226ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
227{
228	struct ice_vsi *vsi = ring->vsi;
229	struct ice_hw *hw = &vsi->back->hw;
230
231	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
232
233	tlan_ctx->port_num = vsi->port_info->lport;
234
235	/* Transmit Queue Length */
236	tlan_ctx->qlen = ring->count;
237
238	ice_set_cgd_num(tlan_ctx, ring);
239
240	/* PF number */
241	tlan_ctx->pf_num = hw->pf_id;
242
243	/* queue belongs to a specific VSI type
244	 * VF / VM index should be programmed per vmvf_type setting:
245	 * for vmvf_type = VF, it is VF number between 0-256
246	 * for vmvf_type = VM, it is VM number between 0-767
247	 * for PF or EMP this field should be set to zero
248	 */
249	switch (vsi->type) {
250	case ICE_VSI_LB:
251	case ICE_VSI_CTRL:
252	case ICE_VSI_PF:
253		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
 
 
 
254		break;
255	case ICE_VSI_VF:
256		/* Firmware expects vmvf_num to be absolute VF ID */
257		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
258		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
259		break;
 
 
 
260	default:
261		return;
262	}
263
264	/* make sure the context is associated with the right VSI */
265	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
 
 
 
 
 
 
 
 
 
 
 
 
266
267	tlan_ctx->tso_ena = ICE_TX_LEGACY;
268	tlan_ctx->tso_qnum = pf_q;
269
270	/* Legacy or Advanced Host Interface:
271	 * 0: Advanced Host Interface
272	 * 1: Legacy Host Interface
273	 */
274	tlan_ctx->legacy_int = ICE_TX_LEGACY;
275}
276
277/**
 
 
 
 
 
 
 
 
 
 
 
 
 
278 * ice_setup_rx_ctx - Configure a receive ring context
279 * @ring: The Rx ring to configure
280 *
281 * Configure the Rx descriptor ring in RLAN context.
282 */
283int ice_setup_rx_ctx(struct ice_ring *ring)
284{
285	struct device *dev = ice_pf_to_dev(ring->vsi->back);
286	int chain_len = ICE_MAX_CHAINED_RX_BUFS;
287	u16 num_bufs = ICE_DESC_UNUSED(ring);
288	struct ice_vsi *vsi = ring->vsi;
289	u32 rxdid = ICE_RXDID_FLEX_NIC;
290	struct ice_rlan_ctx rlan_ctx;
291	struct ice_hw *hw;
292	u16 pf_q;
293	int err;
294
295	hw = &vsi->back->hw;
296
297	/* what is Rx queue number in global space of 2K Rx queues */
298	pf_q = vsi->rxq_map[ring->q_index];
299
300	/* clear the context structure first */
301	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
302
303	ring->rx_buf_len = vsi->rx_buf_len;
304
305	if (ring->vsi->type == ICE_VSI_PF) {
306		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
307			/* coverity[check_return] */
308			xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
309					 ring->q_index);
310
311		ring->xsk_umem = ice_xsk_umem(ring);
312		if (ring->xsk_umem) {
313			xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
314
315			ring->rx_buf_len =
316				xsk_umem_get_rx_frame_size(ring->xsk_umem);
317			/* For AF_XDP ZC, we disallow packets to span on
318			 * multiple buffers, thus letting us skip that
319			 * handling in the fast-path.
320			 */
321			chain_len = 1;
322			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
323							 MEM_TYPE_XSK_BUFF_POOL,
324							 NULL);
325			if (err)
326				return err;
327			xsk_buff_set_rxq_info(ring->xsk_umem, &ring->xdp_rxq);
328
329			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
330				 ring->q_index);
331		} else {
332			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
333				/* coverity[check_return] */
334				xdp_rxq_info_reg(&ring->xdp_rxq,
335						 ring->netdev,
336						 ring->q_index);
337
338			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
339							 MEM_TYPE_PAGE_SHARED,
340							 NULL);
341			if (err)
342				return err;
343		}
344	}
345	/* Receive Queue Base Address.
346	 * Indicates the starting address of the descriptor queue defined in
347	 * 128 Byte units.
348	 */
349	rlan_ctx.base = ring->dma >> 7;
350
351	rlan_ctx.qlen = ring->count;
352
353	/* Receive Packet Data Buffer Size.
354	 * The Packet Data Buffer Size is defined in 128 byte units.
355	 */
356	rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
 
357
358	/* use 32 byte descriptors */
359	rlan_ctx.dsize = 1;
360
361	/* Strip the Ethernet CRC bytes before the packet is posted to host
362	 * memory.
363	 */
364	rlan_ctx.crcstrip = 1;
365
366	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
367	rlan_ctx.l2tsel = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368
369	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
370	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
371	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
372
373	/* This controls whether VLAN is stripped from inner headers
374	 * The VLAN in the inner L2 header is stripped to the receive
375	 * descriptor if enabled by this flag.
376	 */
377	rlan_ctx.showiv = 0;
378
379	/* Max packet size for this queue - must not be set to a larger value
380	 * than 5 x DBUF
381	 */
382	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
383			       chain_len * ring->rx_buf_len);
384
385	/* Rx queue threshold in units of 64 */
386	rlan_ctx.lrxqthresh = 1;
387
388	/* Enable Flexible Descriptors in the queue context which
389	 * allows this driver to select a specific receive descriptor format
390	 * increasing context priority to pick up profile ID; default is 0x01;
391	 * setting to 0x03 to ensure profile is programming if prev context is
392	 * of same priority
393	 */
394	if (vsi->type != ICE_VSI_VF)
395		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3);
396	else
397		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3);
 
398
399	/* Absolute queue number out of 2K needs to be passed */
400	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
401	if (err) {
402		dev_err(dev, "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
403			pf_q, err);
404		return -EIO;
405	}
406
407	if (vsi->type == ICE_VSI_VF)
408		return 0;
409
410	/* configure Rx buffer alignment */
411	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
412		ice_clear_ring_build_skb_ena(ring);
413	else
414		ice_set_ring_build_skb_ena(ring);
415
 
 
416	/* init queue specific tail register */
417	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
418	writel(0, ring->tail);
419
420	if (ring->xsk_umem) {
421		if (!xsk_buff_can_alloc(ring->xsk_umem, num_bufs)) {
422			dev_warn(dev, "UMEM does not provide enough addresses to fill %d buffers on Rx ring %d\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423				 num_bufs, ring->q_index);
424			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
425
426			return 0;
427		}
428
429		err = ice_alloc_rx_bufs_zc(ring, num_bufs);
430		if (err)
431			dev_info(dev, "Failed to allocate some buffers on UMEM enabled Rx ring %d (pf_q %d)\n",
 
 
432				 ring->q_index, pf_q);
 
 
433		return 0;
434	}
435
436	ice_alloc_rx_bufs(ring, num_bufs);
437
438	return 0;
439}
440
441/**
442 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
443 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
444 *
445 * This function first tries to find contiguous space. If it is not successful,
446 * it tries with the scatter approach.
447 *
448 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
449 */
450int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
451{
452	int ret = 0;
453
454	ret = __ice_vsi_get_qs_contig(qs_cfg);
455	if (ret) {
456		/* contig failed, so try with scatter approach */
457		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
458		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
459					qs_cfg->scatter_count);
460		ret = __ice_vsi_get_qs_sc(qs_cfg);
461	}
462	return ret;
463}
464
465/**
466 * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
467 * @vsi: the VSI being configured
468 * @ena: start or stop the Rx ring
469 * @rxq_idx: 0-based Rx queue index for the VSI passed in
470 * @wait: wait or don't wait for configuration to finish in hardware
471 *
472 * Return 0 on success and negative on error.
473 */
474int
475ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
476{
477	int pf_q = vsi->rxq_map[rxq_idx];
478	struct ice_pf *pf = vsi->back;
479	struct ice_hw *hw = &pf->hw;
480	u32 rx_reg;
481
482	rx_reg = rd32(hw, QRX_CTRL(pf_q));
483
484	/* Skip if the queue is already in the requested state */
485	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
486		return 0;
487
488	/* turn on/off the queue */
489	if (ena)
490		rx_reg |= QRX_CTRL_QENA_REQ_M;
491	else
492		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
493	wr32(hw, QRX_CTRL(pf_q), rx_reg);
494
495	if (!wait)
496		return 0;
497
498	ice_flush(hw);
499	return ice_pf_rxq_wait(pf, pf_q, ena);
500}
501
502/**
503 * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
504 * @vsi: the VSI being configured
505 * @ena: true/false to verify Rx ring has been enabled/disabled respectively
506 * @rxq_idx: 0-based Rx queue index for the VSI passed in
507 *
508 * This routine will wait for the given Rx queue of the VSI to reach the
509 * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
510 * the requested state after multiple retries; else will return 0 in case of
511 * success.
512 */
513int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
514{
515	int pf_q = vsi->rxq_map[rxq_idx];
516	struct ice_pf *pf = vsi->back;
517
518	return ice_pf_rxq_wait(pf, pf_q, ena);
519}
520
521/**
522 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
523 * @vsi: the VSI being configured
524 *
525 * We allocate one q_vector per queue interrupt. If allocation fails we
526 * return -ENOMEM.
527 */
528int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
529{
530	struct device *dev = ice_pf_to_dev(vsi->back);
531	u16 v_idx;
532	int err;
533
534	if (vsi->q_vectors[0]) {
535		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
536		return -EEXIST;
537	}
538
539	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
540		err = ice_vsi_alloc_q_vector(vsi, v_idx);
541		if (err)
542			goto err_out;
543	}
544
545	return 0;
546
547err_out:
548	while (v_idx--)
549		ice_free_q_vector(vsi, v_idx);
550
551	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
552		vsi->num_q_vectors, vsi->vsi_num, err);
553	vsi->num_q_vectors = 0;
554	return err;
555}
556
557/**
558 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
559 * @vsi: the VSI being configured
560 *
561 * This function maps descriptor rings to the queue-specific vectors allotted
562 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
563 * and Rx rings to the vector as "efficiently" as possible.
564 */
565void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
566{
567	int q_vectors = vsi->num_q_vectors;
568	u16 tx_rings_rem, rx_rings_rem;
569	int v_id;
570
571	/* initially assigning remaining rings count to VSIs num queue value */
572	tx_rings_rem = vsi->num_txq;
573	rx_rings_rem = vsi->num_rxq;
574
575	for (v_id = 0; v_id < q_vectors; v_id++) {
576		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
577		u8 tx_rings_per_v, rx_rings_per_v;
578		u16 q_id, q_base;
579
580		/* Tx rings mapping to vector */
581		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
582						  q_vectors - v_id);
583		q_vector->num_ring_tx = tx_rings_per_v;
584		q_vector->tx.ring = NULL;
585		q_vector->tx.itr_idx = ICE_TX_ITR;
586		q_base = vsi->num_txq - tx_rings_rem;
587
588		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
589			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
590
591			tx_ring->q_vector = q_vector;
592			tx_ring->next = q_vector->tx.ring;
593			q_vector->tx.ring = tx_ring;
594		}
595		tx_rings_rem -= tx_rings_per_v;
596
597		/* Rx rings mapping to vector */
598		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
599						  q_vectors - v_id);
600		q_vector->num_ring_rx = rx_rings_per_v;
601		q_vector->rx.ring = NULL;
602		q_vector->rx.itr_idx = ICE_RX_ITR;
603		q_base = vsi->num_rxq - rx_rings_rem;
604
605		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
606			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
607
608			rx_ring->q_vector = q_vector;
609			rx_ring->next = q_vector->rx.ring;
610			q_vector->rx.ring = rx_ring;
611		}
612		rx_rings_rem -= rx_rings_per_v;
613	}
614}
615
616/**
617 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
618 * @vsi: the VSI having memory freed
619 */
620void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
621{
622	int v_idx;
623
624	ice_for_each_q_vector(vsi, v_idx)
625		ice_free_q_vector(vsi, v_idx);
 
 
626}
627
628/**
629 * ice_vsi_cfg_txq - Configure single Tx queue
630 * @vsi: the VSI that queue belongs to
631 * @ring: Tx ring to be configured
632 * @qg_buf: queue group buffer
633 */
634int
635ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring,
636		struct ice_aqc_add_tx_qgrp *qg_buf)
637{
638	u8 buf_len = struct_size(qg_buf, txqs, 1);
639	struct ice_tlan_ctx tlan_ctx = { 0 };
640	struct ice_aqc_add_txqs_perq *txq;
 
641	struct ice_pf *pf = vsi->back;
642	struct ice_hw *hw = &pf->hw;
643	enum ice_status status;
644	u16 pf_q;
645	u8 tc;
646
 
 
 
647	pf_q = ring->reg_idx;
648	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
649	/* copy context contents into the qg_buf */
650	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
651	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
652		    ice_tlan_ctx_info);
653
654	/* init queue specific tail reg. It is referred as
655	 * transmit comm scheduler queue doorbell.
656	 */
657	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
658
659	if (IS_ENABLED(CONFIG_DCB))
660		tc = ring->dcb_tc;
661	else
662		tc = 0;
663
664	/* Add unique software queue handle of the Tx queue per
665	 * TC into the VSI Tx ring
666	 */
667	ring->q_handle = ice_calc_q_handle(vsi, ring, tc);
 
 
 
 
 
 
 
668
669	status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
670				 1, qg_buf, buf_len, NULL);
 
 
 
 
 
 
671	if (status) {
672		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n",
673			ice_stat_str(status));
674		return -ENODEV;
675	}
676
677	/* Add Tx Queue TEID into the VSI Tx ring from the
678	 * response. This will complete configuring and
679	 * enabling the queue.
680	 */
681	txq = &qg_buf->txqs[0];
682	if (pf_q == le16_to_cpu(txq->txq_id))
683		ring->txq_teid = le32_to_cpu(txq->q_teid);
684
685	return 0;
686}
687
688/**
689 * ice_cfg_itr - configure the initial interrupt throttle values
690 * @hw: pointer to the HW structure
691 * @q_vector: interrupt vector that's being configured
692 *
693 * Configure interrupt throttling values for the ring containers that are
694 * associated with the interrupt vector passed in.
695 */
696void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
697{
698	ice_cfg_itr_gran(hw);
699
700	if (q_vector->num_ring_rx) {
701		struct ice_ring_container *rc = &q_vector->rx;
 
 
 
702
703		rc->target_itr = ITR_TO_REG(rc->itr_setting);
704		rc->next_update = jiffies + 1;
705		rc->current_itr = rc->target_itr;
706		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
707		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
708	}
709
710	if (q_vector->num_ring_tx) {
711		struct ice_ring_container *rc = &q_vector->tx;
712
713		rc->target_itr = ITR_TO_REG(rc->itr_setting);
714		rc->next_update = jiffies + 1;
715		rc->current_itr = rc->target_itr;
716		wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
717		     ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
718	}
719}
720
721/**
722 * ice_cfg_txq_interrupt - configure interrupt on Tx queue
723 * @vsi: the VSI being configured
724 * @txq: Tx queue being mapped to MSI-X vector
725 * @msix_idx: MSI-X vector index within the function
726 * @itr_idx: ITR index of the interrupt cause
727 *
728 * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
729 * within the function space.
730 */
731void
732ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
733{
734	struct ice_pf *pf = vsi->back;
735	struct ice_hw *hw = &pf->hw;
736	u32 val;
737
738	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
739
740	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
741	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
742
743	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
744	if (ice_is_xdp_ena_vsi(vsi)) {
745		u32 xdp_txq = txq + vsi->num_xdp_txq;
746
747		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
748		     val);
749	}
750	ice_flush(hw);
751}
752
753/**
754 * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
755 * @vsi: the VSI being configured
756 * @rxq: Rx queue being mapped to MSI-X vector
757 * @msix_idx: MSI-X vector index within the function
758 * @itr_idx: ITR index of the interrupt cause
759 *
760 * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
761 * within the function space.
762 */
763void
764ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
765{
766	struct ice_pf *pf = vsi->back;
767	struct ice_hw *hw = &pf->hw;
768	u32 val;
769
770	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
771
772	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
773	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
774
775	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
776
777	ice_flush(hw);
778}
779
780/**
781 * ice_trigger_sw_intr - trigger a software interrupt
782 * @hw: pointer to the HW structure
783 * @q_vector: interrupt vector to trigger the software interrupt for
784 */
785void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
786{
787	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
788	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
789	     GLINT_DYN_CTL_SWINT_TRIG_M |
790	     GLINT_DYN_CTL_INTENA_M);
791}
792
793/**
794 * ice_vsi_stop_tx_ring - Disable single Tx ring
795 * @vsi: the VSI being configured
796 * @rst_src: reset source
797 * @rel_vmvf_num: Relative ID of VF/VM
798 * @ring: Tx ring to be stopped
799 * @txq_meta: Meta data of Tx ring to be stopped
800 */
801int
802ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
803		     u16 rel_vmvf_num, struct ice_ring *ring,
804		     struct ice_txq_meta *txq_meta)
805{
806	struct ice_pf *pf = vsi->back;
807	struct ice_q_vector *q_vector;
808	struct ice_hw *hw = &pf->hw;
809	enum ice_status status;
810	u32 val;
811
812	/* clear cause_ena bit for disabled queues */
813	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
814	val &= ~QINT_TQCTL_CAUSE_ENA_M;
815	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
816
817	/* software is expected to wait for 100 ns */
818	ndelay(100);
819
820	/* trigger a software interrupt for the vector
821	 * associated to the queue to schedule NAPI handler
822	 */
823	q_vector = ring->q_vector;
824	if (q_vector)
825		ice_trigger_sw_intr(hw, q_vector);
826
827	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
828				 txq_meta->tc, 1, &txq_meta->q_handle,
829				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
830				 rel_vmvf_num, NULL);
831
832	/* if the disable queue command was exercised during an
833	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
834	 * This is not an error as the reset operation disables
835	 * queues at the hardware level anyway.
836	 */
837	if (status == ICE_ERR_RESET_ONGOING) {
838		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
839	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
840		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
841	} else if (status) {
842		dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n",
843			ice_stat_str(status));
844		return -ENODEV;
845	}
846
847	return 0;
848}
849
850/**
851 * ice_fill_txq_meta - Prepare the Tx queue's meta data
852 * @vsi: VSI that ring belongs to
853 * @ring: ring that txq_meta will be based on
854 * @txq_meta: a helper struct that wraps Tx queue's information
855 *
856 * Set up a helper struct that will contain all the necessary fields that
857 * are needed for stopping Tx queue
858 */
859void
860ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
861		  struct ice_txq_meta *txq_meta)
862{
 
863	u8 tc;
864
865	if (IS_ENABLED(CONFIG_DCB))
866		tc = ring->dcb_tc;
867	else
868		tc = 0;
869
870	txq_meta->q_id = ring->reg_idx;
871	txq_meta->q_teid = ring->txq_teid;
872	txq_meta->q_handle = ring->q_handle;
873	txq_meta->vsi_idx = vsi->idx;
874	txq_meta->tc = tc;
 
 
 
 
 
875}