Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*  de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
   2             ethernet driver for Linux.
   3
   4    Copyright 1994, 1995 Digital Equipment Corporation.
   5
   6    Testing resources for this driver have been made available
   7    in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
   8
   9    The author may be reached at davies@maniac.ultranet.com.
  10
  11    This program is free software; you can redistribute  it and/or modify it
  12    under  the terms of  the GNU General  Public License as published by the
  13    Free Software Foundation;  either version 2 of the  License, or (at your
  14    option) any later version.
  15
  16    THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR   IMPLIED
  17    WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
  18    MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
  19    NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT,  INDIRECT,
  20    INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  21    NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
  22    USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  23    ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
  24    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  25    THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26
  27    You should have received a copy of the  GNU General Public License along
  28    with this program; if not, write  to the Free Software Foundation, Inc.,
  29    675 Mass Ave, Cambridge, MA 02139, USA.
  30
  31    Originally,   this  driver  was    written  for the  Digital   Equipment
  32    Corporation series of EtherWORKS ethernet cards:
  33
  34        DE425 TP/COAX EISA
  35	DE434 TP PCI
  36	DE435 TP/COAX/AUI PCI
  37	DE450 TP/COAX/AUI PCI
  38	DE500 10/100 PCI Fasternet
  39
  40    but it  will  now attempt  to  support all  cards which   conform to the
  41    Digital Semiconductor   SROM   Specification.    The  driver   currently
  42    recognises the following chips:
  43
  44        DC21040  (no SROM)
  45	DC21041[A]
  46	DC21140[A]
  47	DC21142
  48	DC21143
  49
  50    So far the driver is known to work with the following cards:
  51
  52        KINGSTON
  53	Linksys
  54	ZNYX342
  55	SMC8432
  56	SMC9332 (w/new SROM)
  57	ZNYX31[45]
  58	ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
  59
  60    The driver has been tested on a relatively busy network using the DE425,
  61    DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
  62    16M of data to a DECstation 5000/200 as follows:
  63
  64                TCP           UDP
  65             TX     RX     TX     RX
  66    DE425   1030k  997k   1170k  1128k
  67    DE434   1063k  995k   1170k  1125k
  68    DE435   1063k  995k   1170k  1125k
  69    DE500   1063k  998k   1170k  1125k  in 10Mb/s mode
  70
  71    All  values are typical (in   kBytes/sec) from a  sample  of 4 for  each
  72    measurement. Their error is +/-20k on a quiet (private) network and also
  73    depend on what load the CPU has.
  74
  75    =========================================================================
  76    This driver  has been written substantially  from  scratch, although its
  77    inheritance of style and stack interface from 'ewrk3.c' and in turn from
  78    Donald Becker's 'lance.c' should be obvious. With the module autoload of
  79    every  usable DECchip board,  I  pinched Donald's 'next_module' field to
  80    link my modules together.
  81
  82    Up to 15 EISA cards can be supported under this driver, limited primarily
  83    by the available IRQ lines.  I have  checked different configurations of
  84    multiple depca, EtherWORKS 3 cards and de4x5 cards and  have not found a
  85    problem yet (provided you have at least depca.c v0.38) ...
  86
  87    PCI support has been added  to allow the driver  to work with the DE434,
  88    DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
  89    to the differences in the EISA and PCI CSR address offsets from the base
  90    address.
  91
  92    The ability to load this  driver as a loadable  module has been included
  93    and used extensively  during the driver development  (to save those long
  94    reboot sequences).  Loadable module support  under PCI and EISA has been
  95    achieved by letting the driver autoprobe as if it were compiled into the
  96    kernel. Do make sure  you're not sharing  interrupts with anything  that
  97    cannot accommodate  interrupt  sharing!
  98
  99    To utilise this ability, you have to do 8 things:
 100
 101    0) have a copy of the loadable modules code installed on your system.
 102    1) copy de4x5.c from the  /linux/drivers/net directory to your favourite
 103    temporary directory.
 104    2) for fixed  autoprobes (not  recommended),  edit the source code  near
 105    line 5594 to reflect the I/O address  you're using, or assign these when
 106    loading by:
 107
 108                   insmod de4x5 io=0xghh           where g = bus number
 109		                                        hh = device number
 110
 111       NB: autoprobing for modules is now supported by default. You may just
 112           use:
 113
 114                   insmod de4x5
 115
 116           to load all available boards. For a specific board, still use
 117	   the 'io=?' above.
 118    3) compile  de4x5.c, but include -DMODULE in  the command line to ensure
 119    that the correct bits are compiled (see end of source code).
 120    4) if you are wanting to add a new  card, goto 5. Otherwise, recompile a
 121    kernel with the de4x5 configuration turned off and reboot.
 122    5) insmod de4x5 [io=0xghh]
 123    6) run the net startup bits for your new eth?? interface(s) manually
 124    (usually /etc/rc.inet[12] at boot time).
 125    7) enjoy!
 126
 127    To unload a module, turn off the associated interface(s)
 128    'ifconfig eth?? down' then 'rmmod de4x5'.
 129
 130    Automedia detection is included so that in  principal you can disconnect
 131    from, e.g.  TP, reconnect  to BNC  and  things will still work  (after a
 132    pause whilst the   driver figures out   where its media went).  My tests
 133    using ping showed that it appears to work....
 134
 135    By  default,  the driver will  now   autodetect any  DECchip based card.
 136    Should you have a need to restrict the driver to DIGITAL only cards, you
 137    can compile with a  DEC_ONLY define, or if  loading as a module, use the
 138    'dec_only=1'  parameter.
 139
 140    I've changed the timing routines to  use the kernel timer and scheduling
 141    functions  so that the  hangs  and other assorted problems that occurred
 142    while autosensing the  media  should be gone.  A  bonus  for the DC21040
 143    auto  media sense algorithm is  that it can now  use one that is more in
 144    line with the  rest (the DC21040  chip doesn't  have a hardware  timer).
 145    The downside is the 1 'jiffies' (10ms) resolution.
 146
 147    IEEE 802.3u MII interface code has  been added in anticipation that some
 148    products may use it in the future.
 149
 150    The SMC9332 card  has a non-compliant SROM  which needs fixing -  I have
 151    patched this  driver to detect it  because the SROM format used complies
 152    to a previous DEC-STD format.
 153
 154    I have removed the buffer copies needed for receive on Intels.  I cannot
 155    remove them for   Alphas since  the  Tulip hardware   only does longword
 156    aligned  DMA transfers  and  the  Alphas get   alignment traps with  non
 157    longword aligned data copies (which makes them really slow). No comment.
 158
 159    I  have added SROM decoding  routines to make this  driver work with any
 160    card that  supports the Digital  Semiconductor SROM spec. This will help
 161    all  cards running the dc2114x  series chips in particular.  Cards using
 162    the dc2104x  chips should run correctly with  the basic  driver.  I'm in
 163    debt to <mjacob@feral.com> for the  testing and feedback that helped get
 164    this feature working.  So far we have  tested KINGSTON, SMC8432, SMC9332
 165    (with the latest SROM complying  with the SROM spec  V3: their first was
 166    broken), ZNYX342  and  LinkSys. ZYNX314 (dual  21041  MAC) and  ZNYX 315
 167    (quad 21041 MAC)  cards also  appear  to work despite their  incorrectly
 168    wired IRQs.
 169
 170    I have added a temporary fix for interrupt problems when some SCSI cards
 171    share the same interrupt as the DECchip based  cards. The problem occurs
 172    because  the SCSI card wants to  grab the interrupt  as a fast interrupt
 173    (runs the   service routine with interrupts turned   off) vs.  this card
 174    which really needs to run the service routine with interrupts turned on.
 175    This driver will  now   add the interrupt service   routine  as  a  fast
 176    interrupt if it   is bounced from the   slow interrupt.  THIS IS NOT   A
 177    RECOMMENDED WAY TO RUN THE DRIVER  and has been done  for a limited time
 178    until  people   sort  out their  compatibility    issues and the  kernel
 179    interrupt  service code  is  fixed.   YOU  SHOULD SEPARATE OUT  THE FAST
 180    INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
 181    run on the same interrupt. PCMCIA/CardBus is another can of worms...
 182
 183    Finally, I think  I have really  fixed  the module  loading problem with
 184    more than one DECchip based  card.  As a  side effect, I don't mess with
 185    the  device structure any  more which means that  if more than 1 card in
 186    2.0.x is    installed (4  in   2.1.x),  the  user   will have   to  edit
 187    linux/drivers/net/Space.c  to make room for  them. Hence, module loading
 188    is  the preferred way to use   this driver, since  it  doesn't have this
 189    limitation.
 190
 191    Where SROM media  detection is used and  full duplex is specified in the
 192    SROM,  the feature is  ignored unless  lp->params.fdx  is set at compile
 193    time  OR during  a   module load  (insmod  de4x5   args='eth??:fdx' [see
 194    below]).  This is because there  is no way  to automatically detect full
 195    duplex   links  except through   autonegotiation.    When I  include the
 196    autonegotiation feature in  the SROM autoconf  code, this detection will
 197    occur automatically for that case.
 198
 199    Command  line arguments are  now  allowed, similar  to passing arguments
 200    through LILO. This will allow a per adapter board  set up of full duplex
 201    and media. The only lexical constraints  are: the board name (dev->name)
 202    appears in the list before its  parameters.  The list of parameters ends
 203    either at the end of the parameter list or with another board name.  The
 204    following parameters are allowed:
 205
 206            fdx        for full duplex
 207	    autosense  to set the media/speed; with the following
 208	               sub-parameters:
 209		       TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
 210
 211    Case sensitivity is important  for  the sub-parameters. They *must*   be
 212    upper case. Examples:
 213
 214        insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
 215
 216    For a compiled in driver, at or above line 548, place e.g.
 217	#define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
 218
 219    Yes,  I know full duplex isn't  permissible on BNC  or AUI; they're just
 220    examples. By default, full duplex is turned off and  AUTO is the default
 221    autosense setting.  In reality, I expect only  the full duplex option to
 222    be used. Note the use of single quotes in the two examples above and the
 223    lack of commas to separate items. ALSO, you must get the requested media
 224    correct in relation to what the adapter SROM says it has. There's no way
 225    to  determine this in  advance other than by  trial and error and common
 226    sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
 227
 228    Changed the bus probing.  EISA used to be  done first,  followed by PCI.
 229    Most people probably don't even know  what a de425 is today and the EISA
 230    probe has messed  up some SCSI cards  in the past,  so now PCI is always
 231    probed  first  followed by  EISA if  a) the architecture allows EISA and
 232    either  b) there have been no PCI cards detected or  c) an EISA probe is
 233    forced by  the user.  To force  a probe  include  "force_eisa"  in  your
 234    insmod "args" line;  for built-in kernels either change the driver to do
 235    this  automatically  or include  #define DE4X5_FORCE_EISA  on or  before
 236    line 1040 in the driver.
 237
 238    TO DO:
 239    ------
 240
 241    Revision History
 242    ----------------
 243
 244    Version   Date        Description
 245
 246      0.1     17-Nov-94   Initial writing. ALPHA code release.
 247      0.2     13-Jan-95   Added PCI support for DE435's.
 248      0.21    19-Jan-95   Added auto media detection.
 249      0.22    10-Feb-95   Fix interrupt handler call <chris@cosy.sbg.ac.at>.
 250                          Fix recognition bug reported by <bkm@star.rl.ac.uk>.
 251			  Add request/release_region code.
 252			  Add loadable modules support for PCI.
 253			  Clean up loadable modules support.
 254      0.23    28-Feb-95   Added DC21041 and DC21140 support.
 255                          Fix missed frame counter value and initialisation.
 256			  Fixed EISA probe.
 257      0.24    11-Apr-95   Change delay routine to use <linux/udelay>.
 258                          Change TX_BUFFS_AVAIL macro.
 259			  Change media autodetection to allow manual setting.
 260			  Completed DE500 (DC21140) support.
 261      0.241   18-Apr-95   Interim release without DE500 Autosense Algorithm.
 262      0.242   10-May-95   Minor changes.
 263      0.30    12-Jun-95   Timer fix for DC21140.
 264                          Portability changes.
 265			  Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
 266			  Add DE500 semi automatic autosense.
 267			  Add Link Fail interrupt TP failure detection.
 268			  Add timer based link change detection.
 269			  Plugged a memory leak in de4x5_queue_pkt().
 270      0.31    13-Jun-95   Fixed PCI stuff for 1.3.1.
 271      0.32    26-Jun-95   Added verify_area() calls in de4x5_ioctl() from a
 272                          suggestion by <heiko@colossus.escape.de>.
 273      0.33     8-Aug-95   Add shared interrupt support (not released yet).
 274      0.331   21-Aug-95   Fix de4x5_open() with fast CPUs.
 275                          Fix de4x5_interrupt().
 276                          Fix dc21140_autoconf() mess.
 277			  No shared interrupt support.
 278      0.332   11-Sep-95   Added MII management interface routines.
 279      0.40     5-Mar-96   Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
 280                          Add kernel timer code (h/w is too flaky).
 281			  Add MII based PHY autosense.
 282			  Add new multicasting code.
 283			  Add new autosense algorithms for media/mode
 284			  selection using kernel scheduling/timing.
 285			  Re-formatted.
 286			  Made changes suggested by <jeff@router.patch.net>:
 287			    Change driver to detect all DECchip based cards
 288			    with DEC_ONLY restriction a special case.
 289			    Changed driver to autoprobe as a module. No irq
 290			    checking is done now - assume BIOS is good!
 291			  Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
 292      0.41    21-Mar-96   Don't check for get_hw_addr checksum unless DEC card
 293                          only <niles@axp745gsfc.nasa.gov>
 294			  Fix for multiple PCI cards reported by <jos@xos.nl>
 295			  Duh, put the IRQF_SHARED flag into request_interrupt().
 296			  Fix SMC ethernet address in enet_det[].
 297			  Print chip name instead of "UNKNOWN" during boot.
 298      0.42    26-Apr-96   Fix MII write TA bit error.
 299                          Fix bug in dc21040 and dc21041 autosense code.
 300			  Remove buffer copies on receive for Intels.
 301			  Change sk_buff handling during media disconnects to
 302			   eliminate DUP packets.
 303			  Add dynamic TX thresholding.
 304			  Change all chips to use perfect multicast filtering.
 305			  Fix alloc_device() bug <jari@markkus2.fimr.fi>
 306      0.43   21-Jun-96    Fix unconnected media TX retry bug.
 307                          Add Accton to the list of broken cards.
 308			  Fix TX under-run bug for non DC21140 chips.
 309			  Fix boot command probe bug in alloc_device() as
 310			   reported by <koen.gadeyne@barco.com> and
 311			   <orava@nether.tky.hut.fi>.
 312			  Add cache locks to prevent a race condition as
 313			   reported by <csd@microplex.com> and
 314			   <baba@beckman.uiuc.edu>.
 315			  Upgraded alloc_device() code.
 316      0.431  28-Jun-96    Fix potential bug in queue_pkt() from discussion
 317                          with <csd@microplex.com>
 318      0.44   13-Aug-96    Fix RX overflow bug in 2114[023] chips.
 319                          Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
 320			  and <michael@compurex.com>.
 321      0.441   9-Sep-96    Change dc21041_autoconf() to probe quiet BNC media
 322                           with a loopback packet.
 323      0.442   9-Sep-96    Include AUI in dc21041 media printout. Bug reported
 324                           by <bhat@mundook.cs.mu.OZ.AU>
 325      0.45    8-Dec-96    Include endian functions for PPC use, from work
 326                           by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
 327      0.451  28-Dec-96    Added fix to allow autoprobe for modules after
 328                           suggestion from <mjacob@feral.com>.
 329      0.5    30-Jan-97    Added SROM decoding functions.
 330                          Updated debug flags.
 331			  Fix sleep/wakeup calls for PCI cards, bug reported
 332			   by <cross@gweep.lkg.dec.com>.
 333			  Added multi-MAC, one SROM feature from discussion
 334			   with <mjacob@feral.com>.
 335			  Added full module autoprobe capability.
 336			  Added attempt to use an SMC9332 with broken SROM.
 337			  Added fix for ZYNX multi-mac cards that didn't
 338			   get their IRQs wired correctly.
 339      0.51   13-Feb-97    Added endian fixes for the SROM accesses from
 340			   <paubert@iram.es>
 341			  Fix init_connection() to remove extra device reset.
 342			  Fix MAC/PHY reset ordering in dc21140m_autoconf().
 343			  Fix initialisation problem with lp->timeout in
 344			   typeX_infoblock() from <paubert@iram.es>.
 345			  Fix MII PHY reset problem from work done by
 346			   <paubert@iram.es>.
 347      0.52   26-Apr-97    Some changes may not credit the right people -
 348                           a disk crash meant I lost some mail.
 349			  Change RX interrupt routine to drop rather than
 350			   defer packets to avoid hang reported by
 351			   <g.thomas@opengroup.org>.
 352			  Fix srom_exec() to return for COMPACT and type 1
 353			   infoblocks.
 354			  Added DC21142 and DC21143 functions.
 355			  Added byte counters from <phil@tazenda.demon.co.uk>
 356			  Added IRQF_DISABLED temporary fix from
 357			   <mjacob@feral.com>.
 358      0.53   12-Nov-97    Fix the *_probe() to include 'eth??' name during
 359                           module load: bug reported by
 360			   <Piete.Brooks@cl.cam.ac.uk>
 361			  Fix multi-MAC, one SROM, to work with 2114x chips:
 362			   bug reported by <cmetz@inner.net>.
 363			  Make above search independent of BIOS device scan
 364			   direction.
 365			  Completed DC2114[23] autosense functions.
 366      0.531  21-Dec-97    Fix DE500-XA 100Mb/s bug reported by
 367                           <robin@intercore.com
 368			  Fix type1_infoblock() bug introduced in 0.53, from
 369			   problem reports by
 370			   <parmee@postecss.ncrfran.france.ncr.com> and
 371			   <jo@ice.dillingen.baynet.de>.
 372			  Added argument list to set up each board from either
 373			   a module's command line or a compiled in #define.
 374			  Added generic MII PHY functionality to deal with
 375			   newer PHY chips.
 376			  Fix the mess in 2.1.67.
 377      0.532   5-Jan-98    Fix bug in mii_get_phy() reported by
 378                           <redhat@cococo.net>.
 379                          Fix bug in pci_probe() for 64 bit systems reported
 380			   by <belliott@accessone.com>.
 381      0.533   9-Jan-98    Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
 382      0.534  24-Jan-98    Fix last (?) endian bug from <geert@linux-m68k.org>
 383      0.535  21-Feb-98    Fix Ethernet Address PROM reset bug for DC21040.
 384      0.536  21-Mar-98    Change pci_probe() to use the pci_dev structure.
 385			  **Incompatible with 2.0.x from here.**
 386      0.540   5-Jul-98    Atomicize assertion of dev->interrupt for SMP
 387                           from <lma@varesearch.com>
 388			  Add TP, AUI and BNC cases to 21140m_autoconf() for
 389			   case where a 21140 under SROM control uses, e.g. AUI
 390			   from problem report by <delchini@lpnp09.in2p3.fr>
 391			  Add MII parallel detection to 2114x_autoconf() for
 392			   case where no autonegotiation partner exists from
 393			   problem report by <mlapsley@ndirect.co.uk>.
 394			  Add ability to force connection type directly even
 395			   when using SROM control from problem report by
 396			   <earl@exis.net>.
 397			  Updated the PCI interface to conform with the latest
 398			   version. I hope nothing is broken...
 399          		  Add TX done interrupt modification from suggestion
 400			   by <Austin.Donnelly@cl.cam.ac.uk>.
 401			  Fix is_anc_capable() bug reported by
 402			   <Austin.Donnelly@cl.cam.ac.uk>.
 403			  Fix type[13]_infoblock() bug: during MII search, PHY
 404			   lp->rst not run because lp->ibn not initialised -
 405			   from report & fix by <paubert@iram.es>.
 406			  Fix probe bug with EISA & PCI cards present from
 407                           report by <eirik@netcom.com>.
 408      0.541  24-Aug-98    Fix compiler problems associated with i386-string
 409                           ops from multiple bug reports and temporary fix
 410			   from <paubert@iram.es>.
 411			  Fix pci_probe() to correctly emulate the old
 412			   pcibios_find_class() function.
 413			  Add an_exception() for old ZYNX346 and fix compile
 414			   warning on PPC & SPARC, from <ecd@skynet.be>.
 415			  Fix lastPCI to correctly work with compiled in
 416			   kernels and modules from bug report by
 417			   <Zlatko.Calusic@CARNet.hr> et al.
 418      0.542  15-Sep-98    Fix dc2114x_autoconf() to stop multiple messages
 419                           when media is unconnected.
 420			  Change dev->interrupt to lp->interrupt to ensure
 421			   alignment for Alpha's and avoid their unaligned
 422			   access traps. This flag is merely for log messages:
 423			   should do something more definitive though...
 424      0.543  30-Dec-98    Add SMP spin locking.
 425      0.544   8-May-99    Fix for buggy SROM in Motorola embedded boards using
 426                           a 21143 by <mmporter@home.com>.
 427			  Change PCI/EISA bus probing order.
 428      0.545  28-Nov-99    Further Moto SROM bug fix from
 429                           <mporter@eng.mcd.mot.com>
 430                          Remove double checking for DEBUG_RX in de4x5_dbg_rx()
 431			   from report by <geert@linux-m68k.org>
 432      0.546  22-Feb-01    Fixes Alpha XP1000 oops.  The srom_search function
 433                           was causing a page fault when initializing the
 434                           variable 'pb', on a non de4x5 PCI device, in this
 435                           case a PCI bridge (DEC chip 21152). The value of
 436                           'pb' is now only initialized if a de4x5 chip is
 437                           present.
 438                           <france@handhelds.org>
 439      0.547  08-Nov-01    Use library crc32 functions by <Matt_Domsch@dell.com>
 440      0.548  30-Aug-03    Big 2.6 cleanup. Ported to PCI/EISA probing and
 441                           generic DMA APIs. Fixed DE425 support on Alpha.
 442			   <maz@wild-wind.fr.eu.org>
 443    =========================================================================
 444*/
 445
 446#include <linux/module.h>
 447#include <linux/kernel.h>
 448#include <linux/string.h>
 449#include <linux/interrupt.h>
 450#include <linux/ptrace.h>
 451#include <linux/errno.h>
 452#include <linux/ioport.h>
 453#include <linux/pci.h>
 454#include <linux/eisa.h>
 455#include <linux/delay.h>
 456#include <linux/init.h>
 457#include <linux/spinlock.h>
 458#include <linux/crc32.h>
 459#include <linux/netdevice.h>
 460#include <linux/etherdevice.h>
 461#include <linux/skbuff.h>
 462#include <linux/time.h>
 463#include <linux/types.h>
 464#include <linux/unistd.h>
 465#include <linux/ctype.h>
 466#include <linux/dma-mapping.h>
 467#include <linux/moduleparam.h>
 468#include <linux/bitops.h>
 469#include <linux/gfp.h>
 470
 471#include <asm/io.h>
 472#include <asm/dma.h>
 473#include <asm/byteorder.h>
 474#include <asm/unaligned.h>
 475#include <linux/uaccess.h>
 476#ifdef CONFIG_PPC_PMAC
 477#include <asm/machdep.h>
 478#endif /* CONFIG_PPC_PMAC */
 479
 480#include "de4x5.h"
 481
 482static const char version[] =
 483	KERN_INFO "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
 484
 485#define c_char const char
 486
 487/*
 488** MII Information
 489*/
 490struct phy_table {
 491    int reset;              /* Hard reset required?                         */
 492    int id;                 /* IEEE OUI                                     */
 493    int ta;                 /* One cycle TA time - 802.3u is confusing here */
 494    struct {                /* Non autonegotiation (parallel) speed det.    */
 495	int reg;
 496	int mask;
 497	int value;
 498    } spd;
 499};
 500
 501struct mii_phy {
 502    int reset;              /* Hard reset required?                      */
 503    int id;                 /* IEEE OUI                                  */
 504    int ta;                 /* One cycle TA time                         */
 505    struct {                /* Non autonegotiation (parallel) speed det. */
 506	int reg;
 507	int mask;
 508	int value;
 509    } spd;
 510    int addr;               /* MII address for the PHY                   */
 511    u_char  *gep;           /* Start of GEP sequence block in SROM       */
 512    u_char  *rst;           /* Start of reset sequence in SROM           */
 513    u_int mc;               /* Media Capabilities                        */
 514    u_int ana;              /* NWay Advertisement                        */
 515    u_int fdx;              /* Full DupleX capabilities for each media   */
 516    u_int ttm;              /* Transmit Threshold Mode for each media    */
 517    u_int mci;              /* 21142 MII Connector Interrupt info        */
 518};
 519
 520#define DE4X5_MAX_PHY 8     /* Allow up to 8 attached PHY devices per board */
 521
 522struct sia_phy {
 523    u_char mc;              /* Media Code                                */
 524    u_char ext;             /* csr13-15 valid when set                   */
 525    int csr13;              /* SIA Connectivity Register                 */
 526    int csr14;              /* SIA TX/RX Register                        */
 527    int csr15;              /* SIA General Register                      */
 528    int gepc;               /* SIA GEP Control Information               */
 529    int gep;                /* SIA GEP Data                              */
 530};
 531
 532/*
 533** Define the know universe of PHY devices that can be
 534** recognised by this driver.
 535*/
 536static struct phy_table phy_info[] = {
 537    {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}},       /* National TX      */
 538    {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}},       /* Broadcom T4      */
 539    {0, SEEQ_T4    , 1, {0x12, 0x10, 0x10}},       /* SEEQ T4          */
 540    {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}},       /* Cypress T4       */
 541    {0, 0x7810     , 1, {0x14, 0x0800, 0x0800}}    /* Level One LTX970 */
 542};
 543
 544/*
 545** These GENERIC values assumes that the PHY devices follow 802.3u and
 546** allow parallel detection to set the link partner ability register.
 547** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
 548*/
 549#define GENERIC_REG   0x05      /* Autoneg. Link Partner Advertisement Reg. */
 550#define GENERIC_MASK  MII_ANLPA_100M /* All 100Mb/s Technologies            */
 551#define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4       */
 552
 553/*
 554** Define special SROM detection cases
 555*/
 556static c_char enet_det[][ETH_ALEN] = {
 557    {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
 558    {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
 559};
 560
 561#define SMC    1
 562#define ACCTON 2
 563
 564/*
 565** SROM Repair definitions. If a broken SROM is detected a card may
 566** use this information to help figure out what to do. This is a
 567** "stab in the dark" and so far for SMC9332's only.
 568*/
 569static c_char srom_repair_info[][100] = {
 570    {0x00,0x1e,0x00,0x00,0x00,0x08,             /* SMC9332 */
 571     0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
 572     0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
 573     0x00,0x18,}
 574};
 575
 576
 577#ifdef DE4X5_DEBUG
 578static int de4x5_debug = DE4X5_DEBUG;
 579#else
 580/*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
 581static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
 582#endif
 583
 584/*
 585** Allow per adapter set up. For modules this is simply a command line
 586** parameter, e.g.:
 587** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
 588**
 589** For a compiled in driver, place e.g.
 590**     #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
 591** here
 592*/
 593#ifdef DE4X5_PARM
 594static char *args = DE4X5_PARM;
 595#else
 596static char *args;
 597#endif
 598
 599struct parameters {
 600    bool fdx;
 601    int autosense;
 602};
 603
 604#define DE4X5_AUTOSENSE_MS 250      /* msec autosense tick (DE500) */
 605
 606#define DE4X5_NDA 0xffe0            /* No Device (I/O) Address */
 607
 608/*
 609** Ethernet PROM defines
 610*/
 611#define PROBE_LENGTH    32
 612#define ETH_PROM_SIG    0xAA5500FFUL
 613
 614/*
 615** Ethernet Info
 616*/
 617#define PKT_BUF_SZ	1536            /* Buffer size for each Tx/Rx buffer */
 618#define IEEE802_3_SZ    1518            /* Packet + CRC */
 619#define MAX_PKT_SZ   	1514            /* Maximum ethernet packet length */
 620#define MAX_DAT_SZ   	1500            /* Maximum ethernet data length */
 621#define MIN_DAT_SZ   	1               /* Minimum ethernet data length */
 622#define PKT_HDR_LEN     14              /* Addresses and data length info */
 623#define FAKE_FRAME_LEN  (MAX_PKT_SZ + 1)
 624#define QUEUE_PKT_TIMEOUT (3*HZ)        /* 3 second timeout */
 625
 626
 627/*
 628** EISA bus defines
 629*/
 630#define DE4X5_EISA_IO_PORTS   0x0c00    /* I/O port base address, slot 0 */
 631#define DE4X5_EISA_TOTAL_SIZE 0x100     /* I/O address extent */
 632
 633#define EISA_ALLOWED_IRQ_LIST  {5, 9, 10, 11}
 634
 635#define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
 636#define DE4X5_NAME_LENGTH 8
 637
 638static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
 639
 640/*
 641** Ethernet PROM defines for DC21040
 642*/
 643#define PROBE_LENGTH    32
 644#define ETH_PROM_SIG    0xAA5500FFUL
 645
 646/*
 647** PCI Bus defines
 648*/
 649#define PCI_MAX_BUS_NUM      8
 650#define DE4X5_PCI_TOTAL_SIZE 0x80       /* I/O address extent */
 651#define DE4X5_CLASS_CODE     0x00020000 /* Network controller, Ethernet */
 652
 653/*
 654** Memory Alignment. Each descriptor is 4 longwords long. To force a
 655** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
 656** DESC_ALIGN. ALIGN aligns the start address of the private memory area
 657** and hence the RX descriptor ring's first entry.
 658*/
 659#define DE4X5_ALIGN4      ((u_long)4 - 1)     /* 1 longword align */
 660#define DE4X5_ALIGN8      ((u_long)8 - 1)     /* 2 longword align */
 661#define DE4X5_ALIGN16     ((u_long)16 - 1)    /* 4 longword align */
 662#define DE4X5_ALIGN32     ((u_long)32 - 1)    /* 8 longword align */
 663#define DE4X5_ALIGN64     ((u_long)64 - 1)    /* 16 longword align */
 664#define DE4X5_ALIGN128    ((u_long)128 - 1)   /* 32 longword align */
 665
 666#define DE4X5_ALIGN         DE4X5_ALIGN32           /* Keep the DC21040 happy... */
 667#define DE4X5_CACHE_ALIGN   CAL_16LONG
 668#define DESC_SKIP_LEN DSL_0             /* Must agree with DESC_ALIGN */
 669/*#define DESC_ALIGN    u32 dummy[4];  / * Must agree with DESC_SKIP_LEN */
 670#define DESC_ALIGN
 671
 672#ifndef DEC_ONLY                        /* See README.de4x5 for using this */
 673static int dec_only;
 674#else
 675static int dec_only = 1;
 676#endif
 677
 678/*
 679** DE4X5 IRQ ENABLE/DISABLE
 680*/
 681#define ENABLE_IRQs { \
 682    imr |= lp->irq_en;\
 683    outl(imr, DE4X5_IMR);               /* Enable the IRQs */\
 684}
 685
 686#define DISABLE_IRQs {\
 687    imr = inl(DE4X5_IMR);\
 688    imr &= ~lp->irq_en;\
 689    outl(imr, DE4X5_IMR);               /* Disable the IRQs */\
 690}
 691
 692#define UNMASK_IRQs {\
 693    imr |= lp->irq_mask;\
 694    outl(imr, DE4X5_IMR);               /* Unmask the IRQs */\
 695}
 696
 697#define MASK_IRQs {\
 698    imr = inl(DE4X5_IMR);\
 699    imr &= ~lp->irq_mask;\
 700    outl(imr, DE4X5_IMR);               /* Mask the IRQs */\
 701}
 702
 703/*
 704** DE4X5 START/STOP
 705*/
 706#define START_DE4X5 {\
 707    omr = inl(DE4X5_OMR);\
 708    omr |= OMR_ST | OMR_SR;\
 709    outl(omr, DE4X5_OMR);               /* Enable the TX and/or RX */\
 710}
 711
 712#define STOP_DE4X5 {\
 713    omr = inl(DE4X5_OMR);\
 714    omr &= ~(OMR_ST|OMR_SR);\
 715    outl(omr, DE4X5_OMR);               /* Disable the TX and/or RX */ \
 716}
 717
 718/*
 719** DE4X5 SIA RESET
 720*/
 721#define RESET_SIA outl(0, DE4X5_SICR);  /* Reset SIA connectivity regs */
 722
 723/*
 724** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
 725*/
 726#define DE4X5_AUTOSENSE_MS  250
 727
 728/*
 729** SROM Structure
 730*/
 731struct de4x5_srom {
 732    char sub_vendor_id[2];
 733    char sub_system_id[2];
 734    char reserved[12];
 735    char id_block_crc;
 736    char reserved2;
 737    char version;
 738    char num_controllers;
 739    char ieee_addr[6];
 740    char info[100];
 741    short chksum;
 742};
 743#define SUB_VENDOR_ID 0x500a
 744
 745/*
 746** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
 747** and have sizes of both a power of 2 and a multiple of 4.
 748** A size of 256 bytes for each buffer could be chosen because over 90% of
 749** all packets in our network are <256 bytes long and 64 longword alignment
 750** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
 751** descriptors are needed for machines with an ALPHA CPU.
 752*/
 753#define NUM_RX_DESC 8                   /* Number of RX descriptors   */
 754#define NUM_TX_DESC 32                  /* Number of TX descriptors   */
 755#define RX_BUFF_SZ  1536                /* Power of 2 for kmalloc and */
 756                                        /* Multiple of 4 for DC21040  */
 757                                        /* Allows 512 byte alignment  */
 758struct de4x5_desc {
 759    volatile __le32 status;
 760    __le32 des1;
 761    __le32 buf;
 762    __le32 next;
 763    DESC_ALIGN
 764};
 765
 766/*
 767** The DE4X5 private structure
 768*/
 769#define DE4X5_PKT_STAT_SZ 16
 770#define DE4X5_PKT_BIN_SZ  128            /* Should be >=100 unless you
 771                                            increase DE4X5_PKT_STAT_SZ */
 772
 773struct pkt_stats {
 774	u_int bins[DE4X5_PKT_STAT_SZ];      /* Private stats counters       */
 775	u_int unicast;
 776	u_int multicast;
 777	u_int broadcast;
 778	u_int excessive_collisions;
 779	u_int tx_underruns;
 780	u_int excessive_underruns;
 781	u_int rx_runt_frames;
 782	u_int rx_collision;
 783	u_int rx_dribble;
 784	u_int rx_overflow;
 785};
 786
 787struct de4x5_private {
 788    char adapter_name[80];                  /* Adapter name                 */
 789    u_long interrupt;                       /* Aligned ISR flag             */
 790    struct de4x5_desc *rx_ring;		    /* RX descriptor ring           */
 791    struct de4x5_desc *tx_ring;		    /* TX descriptor ring           */
 792    struct sk_buff *tx_skb[NUM_TX_DESC];    /* TX skb for freeing when sent */
 793    struct sk_buff *rx_skb[NUM_RX_DESC];    /* RX skb's                     */
 794    int rx_new, rx_old;                     /* RX descriptor ring pointers  */
 795    int tx_new, tx_old;                     /* TX descriptor ring pointers  */
 796    char setup_frame[SETUP_FRAME_LEN];      /* Holds MCA and PA info.       */
 797    char frame[64];                         /* Min sized packet for loopback*/
 798    spinlock_t lock;                        /* Adapter specific spinlock    */
 799    struct net_device_stats stats;          /* Public stats                 */
 800    struct pkt_stats pktStats;	            /* Private stats counters	    */
 801    char rxRingSize;
 802    char txRingSize;
 803    int  bus;                               /* EISA or PCI                  */
 804    int  bus_num;                           /* PCI Bus number               */
 805    int  device;                            /* Device number on PCI bus     */
 806    int  state;                             /* Adapter OPENED or CLOSED     */
 807    int  chipset;                           /* DC21040, DC21041 or DC21140  */
 808    s32  irq_mask;                          /* Interrupt Mask (Enable) bits */
 809    s32  irq_en;                            /* Summary interrupt bits       */
 810    int  media;                             /* Media (eg TP), mode (eg 100B)*/
 811    int  c_media;                           /* Remember the last media conn */
 812    bool fdx;                               /* media full duplex flag       */
 813    int  linkOK;                            /* Link is OK                   */
 814    int  autosense;                         /* Allow/disallow autosensing   */
 815    bool tx_enable;                         /* Enable descriptor polling    */
 816    int  setup_f;                           /* Setup frame filtering type   */
 817    int  local_state;                       /* State within a 'media' state */
 818    struct mii_phy phy[DE4X5_MAX_PHY];      /* List of attached PHY devices */
 819    struct sia_phy sia;                     /* SIA PHY Information          */
 820    int  active;                            /* Index to active PHY device   */
 821    int  mii_cnt;                           /* Number of attached PHY's     */
 822    int  timeout;                           /* Scheduling counter           */
 823    struct timer_list timer;                /* Timer info for kernel        */
 824    int tmp;                                /* Temporary global per card    */
 825    struct {
 826	u_long lock;                        /* Lock the cache accesses      */
 827	s32 csr0;                           /* Saved Bus Mode Register      */
 828	s32 csr6;                           /* Saved Operating Mode Reg.    */
 829	s32 csr7;                           /* Saved IRQ Mask Register      */
 830	s32 gep;                            /* Saved General Purpose Reg.   */
 831	s32 gepc;                           /* Control info for GEP         */
 832	s32 csr13;                          /* Saved SIA Connectivity Reg.  */
 833	s32 csr14;                          /* Saved SIA TX/RX Register     */
 834	s32 csr15;                          /* Saved SIA General Register   */
 835	int save_cnt;                       /* Flag if state already saved  */
 836	struct sk_buff_head queue;          /* Save the (re-ordered) skb's  */
 837    } cache;
 838    struct de4x5_srom srom;                 /* A copy of the SROM           */
 839    int cfrv;				    /* Card CFRV copy */
 840    int rx_ovf;                             /* Check for 'RX overflow' tag  */
 841    bool useSROM;                           /* For non-DEC card use SROM    */
 842    bool useMII;                            /* Infoblock using the MII      */
 843    int asBitValid;                         /* Autosense bits in GEP?       */
 844    int asPolarity;                         /* 0 => asserted high           */
 845    int asBit;                              /* Autosense bit number in GEP  */
 846    int defMedium;                          /* SROM default medium          */
 847    int tcount;                             /* Last infoblock number        */
 848    int infoblock_init;                     /* Initialised this infoblock?  */
 849    int infoleaf_offset;                    /* SROM infoleaf for controller */
 850    s32 infoblock_csr6;                     /* csr6 value in SROM infoblock */
 851    int infoblock_media;                    /* infoblock media              */
 852    int (*infoleaf_fn)(struct net_device *);    /* Pointer to infoleaf function */
 853    u_char *rst;                            /* Pointer to Type 5 reset info */
 854    u_char  ibn;                            /* Infoblock number             */
 855    struct parameters params;               /* Command line/ #defined params */
 856    struct device *gendev;	            /* Generic device */
 857    dma_addr_t dma_rings;		    /* DMA handle for rings	    */
 858    int dma_size;			    /* Size of the DMA area	    */
 859    char *rx_bufs;			    /* rx bufs on alpha, sparc, ... */
 860};
 861
 862/*
 863** To get around certain poxy cards that don't provide an SROM
 864** for the second and more DECchip, I have to key off the first
 865** chip's address. I'll assume there's not a bad SROM iff:
 866**
 867**      o the chipset is the same
 868**      o the bus number is the same and > 0
 869**      o the sum of all the returned hw address bytes is 0 or 0x5fa
 870**
 871** Also have to save the irq for those cards whose hardware designers
 872** can't follow the PCI to PCI Bridge Architecture spec.
 873*/
 874static struct {
 875    int chipset;
 876    int bus;
 877    int irq;
 878    u_char addr[ETH_ALEN];
 879} last = {0,};
 880
 881/*
 882** The transmit ring full condition is described by the tx_old and tx_new
 883** pointers by:
 884**    tx_old            = tx_new    Empty ring
 885**    tx_old            = tx_new+1  Full ring
 886**    tx_old+txRingSize = tx_new+1  Full ring  (wrapped condition)
 887*/
 888#define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
 889			lp->tx_old+lp->txRingSize-lp->tx_new-1:\
 890			lp->tx_old               -lp->tx_new-1)
 891
 892#define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
 893
 894/*
 895** Public Functions
 896*/
 897static int     de4x5_open(struct net_device *dev);
 898static netdev_tx_t de4x5_queue_pkt(struct sk_buff *skb,
 899					 struct net_device *dev);
 900static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
 901static int     de4x5_close(struct net_device *dev);
 902static struct  net_device_stats *de4x5_get_stats(struct net_device *dev);
 903static void    de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
 904static void    set_multicast_list(struct net_device *dev);
 905static int     de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 906
 907/*
 908** Private functions
 909*/
 910static int     de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
 911static int     de4x5_init(struct net_device *dev);
 912static int     de4x5_sw_reset(struct net_device *dev);
 913static int     de4x5_rx(struct net_device *dev);
 914static int     de4x5_tx(struct net_device *dev);
 915static void    de4x5_ast(struct timer_list *t);
 916static int     de4x5_txur(struct net_device *dev);
 917static int     de4x5_rx_ovfc(struct net_device *dev);
 918
 919static int     autoconf_media(struct net_device *dev);
 920static void    create_packet(struct net_device *dev, char *frame, int len);
 921static void    load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
 922static int     dc21040_autoconf(struct net_device *dev);
 923static int     dc21041_autoconf(struct net_device *dev);
 924static int     dc21140m_autoconf(struct net_device *dev);
 925static int     dc2114x_autoconf(struct net_device *dev);
 926static int     srom_autoconf(struct net_device *dev);
 927static int     de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
 928static int     dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
 929static int     test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
 930static int     test_for_100Mb(struct net_device *dev, int msec);
 931static int     wait_for_link(struct net_device *dev);
 932static int     test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
 933static int     is_spd_100(struct net_device *dev);
 934static int     is_100_up(struct net_device *dev);
 935static int     is_10_up(struct net_device *dev);
 936static int     is_anc_capable(struct net_device *dev);
 937static int     ping_media(struct net_device *dev, int msec);
 938static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
 939static void    de4x5_free_rx_buffs(struct net_device *dev);
 940static void    de4x5_free_tx_buffs(struct net_device *dev);
 941static void    de4x5_save_skbs(struct net_device *dev);
 942static void    de4x5_rst_desc_ring(struct net_device *dev);
 943static void    de4x5_cache_state(struct net_device *dev, int flag);
 944static void    de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
 945static void    de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
 946static struct  sk_buff *de4x5_get_cache(struct net_device *dev);
 947static void    de4x5_setup_intr(struct net_device *dev);
 948static void    de4x5_init_connection(struct net_device *dev);
 949static int     de4x5_reset_phy(struct net_device *dev);
 950static void    reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
 951static int     test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
 952static int     test_tp(struct net_device *dev, s32 msec);
 953static int     EISA_signature(char *name, struct device *device);
 954static void    PCI_signature(char *name, struct de4x5_private *lp);
 955static void    DevicePresent(struct net_device *dev, u_long iobase);
 956static void    enet_addr_rst(u_long aprom_addr);
 957static int     de4x5_bad_srom(struct de4x5_private *lp);
 958static short   srom_rd(u_long address, u_char offset);
 959static void    srom_latch(u_int command, u_long address);
 960static void    srom_command(u_int command, u_long address);
 961static void    srom_address(u_int command, u_long address, u_char offset);
 962static short   srom_data(u_int command, u_long address);
 963/*static void    srom_busy(u_int command, u_long address);*/
 964static void    sendto_srom(u_int command, u_long addr);
 965static int     getfrom_srom(u_long addr);
 966static int     srom_map_media(struct net_device *dev);
 967static int     srom_infoleaf_info(struct net_device *dev);
 968static void    srom_init(struct net_device *dev);
 969static void    srom_exec(struct net_device *dev, u_char *p);
 970static int     mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
 971static void    mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
 972static int     mii_rdata(u_long ioaddr);
 973static void    mii_wdata(int data, int len, u_long ioaddr);
 974static void    mii_ta(u_long rw, u_long ioaddr);
 975static int     mii_swap(int data, int len);
 976static void    mii_address(u_char addr, u_long ioaddr);
 977static void    sendto_mii(u32 command, int data, u_long ioaddr);
 978static int     getfrom_mii(u32 command, u_long ioaddr);
 979static int     mii_get_oui(u_char phyaddr, u_long ioaddr);
 980static int     mii_get_phy(struct net_device *dev);
 981static void    SetMulticastFilter(struct net_device *dev);
 982static int     get_hw_addr(struct net_device *dev);
 983static void    srom_repair(struct net_device *dev, int card);
 984static int     test_bad_enet(struct net_device *dev, int status);
 985static int     an_exception(struct de4x5_private *lp);
 986static char    *build_setup_frame(struct net_device *dev, int mode);
 987static void    disable_ast(struct net_device *dev);
 988static long    de4x5_switch_mac_port(struct net_device *dev);
 989static int     gep_rd(struct net_device *dev);
 990static void    gep_wr(s32 data, struct net_device *dev);
 991static void    yawn(struct net_device *dev, int state);
 992static void    de4x5_parse_params(struct net_device *dev);
 993static void    de4x5_dbg_open(struct net_device *dev);
 994static void    de4x5_dbg_mii(struct net_device *dev, int k);
 995static void    de4x5_dbg_media(struct net_device *dev);
 996static void    de4x5_dbg_srom(struct de4x5_srom *p);
 997static void    de4x5_dbg_rx(struct sk_buff *skb, int len);
 998static int     dc21041_infoleaf(struct net_device *dev);
 999static int     dc21140_infoleaf(struct net_device *dev);
1000static int     dc21142_infoleaf(struct net_device *dev);
1001static int     dc21143_infoleaf(struct net_device *dev);
1002static int     type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1003static int     type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1004static int     type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1005static int     type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1006static int     type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1007static int     type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1008static int     compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1009
1010/*
1011** Note now that module autoprobing is allowed under EISA and PCI. The
1012** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1013** to "do the right thing".
1014*/
1015
1016static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED        */
1017
1018module_param_hw(io, int, ioport, 0);
1019module_param(de4x5_debug, int, 0);
1020module_param(dec_only, int, 0);
1021module_param(args, charp, 0);
1022
1023MODULE_PARM_DESC(io, "de4x5 I/O base address");
1024MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1025MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1026MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1027MODULE_LICENSE("GPL");
1028
1029/*
1030** List the SROM infoleaf functions and chipsets
1031*/
1032struct InfoLeaf {
1033    int chipset;
1034    int (*fn)(struct net_device *);
1035};
1036static struct InfoLeaf infoleaf_array[] = {
1037    {DC21041, dc21041_infoleaf},
1038    {DC21140, dc21140_infoleaf},
1039    {DC21142, dc21142_infoleaf},
1040    {DC21143, dc21143_infoleaf}
1041};
1042#define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1043
1044/*
1045** List the SROM info block functions
1046*/
1047static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1048    type0_infoblock,
1049    type1_infoblock,
1050    type2_infoblock,
1051    type3_infoblock,
1052    type4_infoblock,
1053    type5_infoblock,
1054    compact_infoblock
1055};
1056
1057#define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1058
1059/*
1060** Miscellaneous defines...
1061*/
1062#define RESET_DE4X5 {\
1063    int i;\
1064    i=inl(DE4X5_BMR);\
1065    mdelay(1);\
1066    outl(i | BMR_SWR, DE4X5_BMR);\
1067    mdelay(1);\
1068    outl(i, DE4X5_BMR);\
1069    mdelay(1);\
1070    for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1071    mdelay(1);\
1072}
1073
1074#define PHY_HARD_RESET {\
1075    outl(GEP_HRST, DE4X5_GEP);           /* Hard RESET the PHY dev. */\
1076    mdelay(1);                           /* Assert for 1ms */\
1077    outl(0x00, DE4X5_GEP);\
1078    mdelay(2);                           /* Wait for 2ms */\
1079}
1080
1081static const struct net_device_ops de4x5_netdev_ops = {
1082    .ndo_open		= de4x5_open,
1083    .ndo_stop		= de4x5_close,
1084    .ndo_start_xmit	= de4x5_queue_pkt,
1085    .ndo_get_stats	= de4x5_get_stats,
1086    .ndo_set_rx_mode	= set_multicast_list,
1087    .ndo_do_ioctl	= de4x5_ioctl,
1088    .ndo_set_mac_address= eth_mac_addr,
1089    .ndo_validate_addr	= eth_validate_addr,
1090};
1091
1092
1093static int
1094de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1095{
1096    char name[DE4X5_NAME_LENGTH + 1];
1097    struct de4x5_private *lp = netdev_priv(dev);
1098    struct pci_dev *pdev = NULL;
1099    int i, status=0;
1100
1101    dev_set_drvdata(gendev, dev);
1102
1103    /* Ensure we're not sleeping */
1104    if (lp->bus == EISA) {
1105	outb(WAKEUP, PCI_CFPM);
1106    } else {
1107	pdev = to_pci_dev (gendev);
1108	pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1109    }
1110    mdelay(10);
1111
1112    RESET_DE4X5;
1113
1114    if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1115	return -ENXIO;                       /* Hardware could not reset */
1116    }
1117
1118    /*
1119    ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1120    */
1121    lp->useSROM = false;
1122    if (lp->bus == PCI) {
1123	PCI_signature(name, lp);
1124    } else {
1125	EISA_signature(name, gendev);
1126    }
1127
1128    if (*name == '\0') {                     /* Not found a board signature */
1129	return -ENXIO;
1130    }
1131
1132    dev->base_addr = iobase;
1133    printk ("%s: %s at 0x%04lx", dev_name(gendev), name, iobase);
1134
1135    status = get_hw_addr(dev);
1136    printk(", h/w address %pM\n", dev->dev_addr);
1137
1138    if (status != 0) {
1139	printk("      which has an Ethernet PROM CRC error.\n");
1140	return -ENXIO;
1141    } else {
1142	skb_queue_head_init(&lp->cache.queue);
1143	lp->cache.gepc = GEP_INIT;
1144	lp->asBit = GEP_SLNK;
1145	lp->asPolarity = GEP_SLNK;
1146	lp->asBitValid = ~0;
1147	lp->timeout = -1;
1148	lp->gendev = gendev;
1149	spin_lock_init(&lp->lock);
1150	timer_setup(&lp->timer, de4x5_ast, 0);
1151	de4x5_parse_params(dev);
1152
1153	/*
1154	** Choose correct autosensing in case someone messed up
1155	*/
1156        lp->autosense = lp->params.autosense;
1157        if (lp->chipset != DC21140) {
1158            if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1159                lp->params.autosense = TP;
1160            }
1161            if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1162                lp->params.autosense = BNC;
1163            }
1164        }
1165	lp->fdx = lp->params.fdx;
1166	sprintf(lp->adapter_name,"%s (%s)", name, dev_name(gendev));
1167
1168	lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1169#if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1170	lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1171#endif
1172	lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1173					 &lp->dma_rings, GFP_ATOMIC);
1174	if (lp->rx_ring == NULL) {
1175	    return -ENOMEM;
1176	}
1177
1178	lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1179
1180	/*
1181	** Set up the RX descriptor ring (Intels)
1182	** Allocate contiguous receive buffers, long word aligned (Alphas)
1183	*/
1184#if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1185	for (i=0; i<NUM_RX_DESC; i++) {
1186	    lp->rx_ring[i].status = 0;
1187	    lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1188	    lp->rx_ring[i].buf = 0;
1189	    lp->rx_ring[i].next = 0;
1190	    lp->rx_skb[i] = (struct sk_buff *) 1;     /* Dummy entry */
1191	}
1192
1193#else
1194	{
1195		dma_addr_t dma_rx_bufs;
1196
1197		dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1198		      	* sizeof(struct de4x5_desc);
1199		dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1200		lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1201		      	+ NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1202		for (i=0; i<NUM_RX_DESC; i++) {
1203	    		lp->rx_ring[i].status = 0;
1204	    		lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1205	    		lp->rx_ring[i].buf =
1206				cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1207	    		lp->rx_ring[i].next = 0;
1208	    		lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1209		}
1210
1211	}
1212#endif
1213
1214	barrier();
1215
1216	lp->rxRingSize = NUM_RX_DESC;
1217	lp->txRingSize = NUM_TX_DESC;
1218
1219	/* Write the end of list marker to the descriptor lists */
1220	lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1221	lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1222
1223	/* Tell the adapter where the TX/RX rings are located. */
1224	outl(lp->dma_rings, DE4X5_RRBA);
1225	outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1226	     DE4X5_TRBA);
1227
1228	/* Initialise the IRQ mask and Enable/Disable */
1229	lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1230	lp->irq_en   = IMR_NIM | IMR_AIM;
1231
1232	/* Create a loopback packet frame for later media probing */
1233	create_packet(dev, lp->frame, sizeof(lp->frame));
1234
1235	/* Check if the RX overflow bug needs testing for */
1236	i = lp->cfrv & 0x000000fe;
1237	if ((lp->chipset == DC21140) && (i == 0x20)) {
1238	    lp->rx_ovf = 1;
1239	}
1240
1241	/* Initialise the SROM pointers if possible */
1242	if (lp->useSROM) {
1243	    lp->state = INITIALISED;
1244	    if (srom_infoleaf_info(dev)) {
1245	        dma_free_coherent (gendev, lp->dma_size,
1246			       lp->rx_ring, lp->dma_rings);
1247		return -ENXIO;
1248	    }
1249	    srom_init(dev);
1250	}
1251
1252	lp->state = CLOSED;
1253
1254	/*
1255	** Check for an MII interface
1256	*/
1257	if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1258	    mii_get_phy(dev);
1259	}
1260
1261	printk("      and requires IRQ%d (provided by %s).\n", dev->irq,
1262	       ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1263    }
1264
1265    if (de4x5_debug & DEBUG_VERSION) {
1266	printk(version);
1267    }
1268
1269    /* The DE4X5-specific entries in the device structure. */
1270    SET_NETDEV_DEV(dev, gendev);
1271    dev->netdev_ops = &de4x5_netdev_ops;
1272    dev->mem_start = 0;
1273
1274    /* Fill in the generic fields of the device structure. */
1275    if ((status = register_netdev (dev))) {
1276	    dma_free_coherent (gendev, lp->dma_size,
1277			       lp->rx_ring, lp->dma_rings);
1278	    return status;
1279    }
1280
1281    /* Let the adapter sleep to save power */
1282    yawn(dev, SLEEP);
1283
1284    return status;
1285}
1286
1287
1288static int
1289de4x5_open(struct net_device *dev)
1290{
1291    struct de4x5_private *lp = netdev_priv(dev);
1292    u_long iobase = dev->base_addr;
1293    int i, status = 0;
1294    s32 omr;
1295
1296    /* Allocate the RX buffers */
1297    for (i=0; i<lp->rxRingSize; i++) {
1298	if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1299	    de4x5_free_rx_buffs(dev);
1300	    return -EAGAIN;
1301	}
1302    }
1303
1304    /*
1305    ** Wake up the adapter
1306    */
1307    yawn(dev, WAKEUP);
1308
1309    /*
1310    ** Re-initialize the DE4X5...
1311    */
1312    status = de4x5_init(dev);
1313    spin_lock_init(&lp->lock);
1314    lp->state = OPEN;
1315    de4x5_dbg_open(dev);
1316
1317    if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1318		                                     lp->adapter_name, dev)) {
1319	printk("de4x5_open(): Requested IRQ%d is busy - attempting FAST/SHARE...", dev->irq);
1320	if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1321			                             lp->adapter_name, dev)) {
1322	    printk("\n              Cannot get IRQ- reconfigure your hardware.\n");
1323	    disable_ast(dev);
1324	    de4x5_free_rx_buffs(dev);
1325	    de4x5_free_tx_buffs(dev);
1326	    yawn(dev, SLEEP);
1327	    lp->state = CLOSED;
1328	    return -EAGAIN;
1329	} else {
1330	    printk("\n              Succeeded, but you should reconfigure your hardware to avoid this.\n");
1331	    printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1332	}
1333    }
1334
1335    lp->interrupt = UNMASK_INTERRUPTS;
1336    netif_trans_update(dev); /* prevent tx timeout */
1337
1338    START_DE4X5;
1339
1340    de4x5_setup_intr(dev);
1341
1342    if (de4x5_debug & DEBUG_OPEN) {
1343	printk("\tsts:  0x%08x\n", inl(DE4X5_STS));
1344	printk("\tbmr:  0x%08x\n", inl(DE4X5_BMR));
1345	printk("\timr:  0x%08x\n", inl(DE4X5_IMR));
1346	printk("\tomr:  0x%08x\n", inl(DE4X5_OMR));
1347	printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1348	printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1349	printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1350	printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1351    }
1352
1353    return status;
1354}
1355
1356/*
1357** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1358** DC21140 requires using perfect filtering mode for that chip. Since I can't
1359** see why I'd want > 14 multicast addresses, I have changed all chips to use
1360** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1361** to be data corruption problems if it is larger (UDP errors seen from a
1362** ttcp source).
1363*/
1364static int
1365de4x5_init(struct net_device *dev)
1366{
1367    /* Lock out other processes whilst setting up the hardware */
1368    netif_stop_queue(dev);
1369
1370    de4x5_sw_reset(dev);
1371
1372    /* Autoconfigure the connected port */
1373    autoconf_media(dev);
1374
1375    return 0;
1376}
1377
1378static int
1379de4x5_sw_reset(struct net_device *dev)
1380{
1381    struct de4x5_private *lp = netdev_priv(dev);
1382    u_long iobase = dev->base_addr;
1383    int i, j, status = 0;
1384    s32 bmr, omr;
1385
1386    /* Select the MII or SRL port now and RESET the MAC */
1387    if (!lp->useSROM) {
1388	if (lp->phy[lp->active].id != 0) {
1389	    lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1390	} else {
1391	    lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1392	}
1393	de4x5_switch_mac_port(dev);
1394    }
1395
1396    /*
1397    ** Set the programmable burst length to 8 longwords for all the DC21140
1398    ** Fasternet chips and 4 longwords for all others: DMA errors result
1399    ** without these values. Cache align 16 long.
1400    */
1401    bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1402    bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1403    outl(bmr, DE4X5_BMR);
1404
1405    omr = inl(DE4X5_OMR) & ~OMR_PR;             /* Turn off promiscuous mode */
1406    if (lp->chipset == DC21140) {
1407	omr |= (OMR_SDP | OMR_SB);
1408    }
1409    lp->setup_f = PERFECT;
1410    outl(lp->dma_rings, DE4X5_RRBA);
1411    outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1412	 DE4X5_TRBA);
1413
1414    lp->rx_new = lp->rx_old = 0;
1415    lp->tx_new = lp->tx_old = 0;
1416
1417    for (i = 0; i < lp->rxRingSize; i++) {
1418	lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1419    }
1420
1421    for (i = 0; i < lp->txRingSize; i++) {
1422	lp->tx_ring[i].status = cpu_to_le32(0);
1423    }
1424
1425    barrier();
1426
1427    /* Build the setup frame depending on filtering mode */
1428    SetMulticastFilter(dev);
1429
1430    load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1431    outl(omr|OMR_ST, DE4X5_OMR);
1432
1433    /* Poll for setup frame completion (adapter interrupts are disabled now) */
1434
1435    for (j=0, i=0;(i<500) && (j==0);i++) {       /* Up to 500ms delay */
1436	mdelay(1);
1437	if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1438    }
1439    outl(omr, DE4X5_OMR);                        /* Stop everything! */
1440
1441    if (j == 0) {
1442	printk("%s: Setup frame timed out, status %08x\n", dev->name,
1443	       inl(DE4X5_STS));
1444	status = -EIO;
1445    }
1446
1447    lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1448    lp->tx_old = lp->tx_new;
1449
1450    return status;
1451}
1452
1453/*
1454** Writes a socket buffer address to the next available transmit descriptor.
1455*/
1456static netdev_tx_t
1457de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1458{
1459    struct de4x5_private *lp = netdev_priv(dev);
1460    u_long iobase = dev->base_addr;
1461    u_long flags = 0;
1462
1463    netif_stop_queue(dev);
1464    if (!lp->tx_enable)                   /* Cannot send for now */
1465		goto tx_err;
1466
1467    /*
1468    ** Clean out the TX ring asynchronously to interrupts - sometimes the
1469    ** interrupts are lost by delayed descriptor status updates relative to
1470    ** the irq assertion, especially with a busy PCI bus.
1471    */
1472    spin_lock_irqsave(&lp->lock, flags);
1473    de4x5_tx(dev);
1474    spin_unlock_irqrestore(&lp->lock, flags);
1475
1476    /* Test if cache is already locked - requeue skb if so */
1477    if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1478		goto tx_err;
1479
1480    /* Transmit descriptor ring full or stale skb */
1481    if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1482	if (lp->interrupt) {
1483	    de4x5_putb_cache(dev, skb);          /* Requeue the buffer */
1484	} else {
1485	    de4x5_put_cache(dev, skb);
1486	}
1487	if (de4x5_debug & DEBUG_TX) {
1488	    printk("%s: transmit busy, lost media or stale skb found:\n  STS:%08x\n  tbusy:%d\n  IMR:%08x\n  OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1489	}
1490    } else if (skb->len > 0) {
1491	/* If we already have stuff queued locally, use that first */
1492	if (!skb_queue_empty(&lp->cache.queue) && !lp->interrupt) {
1493	    de4x5_put_cache(dev, skb);
1494	    skb = de4x5_get_cache(dev);
1495	}
1496
1497	while (skb && !netif_queue_stopped(dev) &&
1498	       (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1499	    spin_lock_irqsave(&lp->lock, flags);
1500	    netif_stop_queue(dev);
1501	    load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1502 	    lp->stats.tx_bytes += skb->len;
1503	    outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1504
1505	    lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1506
1507	    if (TX_BUFFS_AVAIL) {
1508		netif_start_queue(dev);         /* Another pkt may be queued */
1509	    }
1510	    skb = de4x5_get_cache(dev);
1511	    spin_unlock_irqrestore(&lp->lock, flags);
1512	}
1513	if (skb) de4x5_putb_cache(dev, skb);
1514    }
1515
1516    lp->cache.lock = 0;
1517
1518    return NETDEV_TX_OK;
1519tx_err:
1520	dev_kfree_skb_any(skb);
1521	return NETDEV_TX_OK;
1522}
1523
1524/*
1525** The DE4X5 interrupt handler.
1526**
1527** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1528** so that the asserted interrupt always has some real data to work with -
1529** if these I/O accesses are ever changed to memory accesses, ensure the
1530** STS write is read immediately to complete the transaction if the adapter
1531** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1532** is high and descriptor status bits cannot be set before the associated
1533** interrupt is asserted and this routine entered.
1534*/
1535static irqreturn_t
1536de4x5_interrupt(int irq, void *dev_id)
1537{
1538    struct net_device *dev = dev_id;
1539    struct de4x5_private *lp;
1540    s32 imr, omr, sts, limit;
1541    u_long iobase;
1542    unsigned int handled = 0;
1543
1544    lp = netdev_priv(dev);
1545    spin_lock(&lp->lock);
1546    iobase = dev->base_addr;
1547
1548    DISABLE_IRQs;                        /* Ensure non re-entrancy */
1549
1550    if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1551	printk("%s: Re-entering the interrupt handler.\n", dev->name);
1552
1553    synchronize_irq(dev->irq);
1554
1555    for (limit=0; limit<8; limit++) {
1556	sts = inl(DE4X5_STS);            /* Read IRQ status */
1557	outl(sts, DE4X5_STS);            /* Reset the board interrupts */
1558
1559	if (!(sts & lp->irq_mask)) break;/* All done */
1560	handled = 1;
1561
1562	if (sts & (STS_RI | STS_RU))     /* Rx interrupt (packet[s] arrived) */
1563	  de4x5_rx(dev);
1564
1565	if (sts & (STS_TI | STS_TU))     /* Tx interrupt (packet sent) */
1566	  de4x5_tx(dev);
1567
1568	if (sts & STS_LNF) {             /* TP Link has failed */
1569	    lp->irq_mask &= ~IMR_LFM;
1570	}
1571
1572	if (sts & STS_UNF) {             /* Transmit underrun */
1573	    de4x5_txur(dev);
1574	}
1575
1576	if (sts & STS_SE) {              /* Bus Error */
1577	    STOP_DE4X5;
1578	    printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1579		   dev->name, sts);
1580	    spin_unlock(&lp->lock);
1581	    return IRQ_HANDLED;
1582	}
1583    }
1584
1585    /* Load the TX ring with any locally stored packets */
1586    if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1587	while (!skb_queue_empty(&lp->cache.queue) && !netif_queue_stopped(dev) && lp->tx_enable) {
1588	    de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1589	}
1590	lp->cache.lock = 0;
1591    }
1592
1593    lp->interrupt = UNMASK_INTERRUPTS;
1594    ENABLE_IRQs;
1595    spin_unlock(&lp->lock);
1596
1597    return IRQ_RETVAL(handled);
1598}
1599
1600static int
1601de4x5_rx(struct net_device *dev)
1602{
1603    struct de4x5_private *lp = netdev_priv(dev);
1604    u_long iobase = dev->base_addr;
1605    int entry;
1606    s32 status;
1607
1608    for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1609	                                                    entry=lp->rx_new) {
1610	status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1611
1612	if (lp->rx_ovf) {
1613	    if (inl(DE4X5_MFC) & MFC_FOCM) {
1614		de4x5_rx_ovfc(dev);
1615		break;
1616	    }
1617	}
1618
1619	if (status & RD_FS) {                 /* Remember the start of frame */
1620	    lp->rx_old = entry;
1621	}
1622
1623	if (status & RD_LS) {                 /* Valid frame status */
1624	    if (lp->tx_enable) lp->linkOK++;
1625	    if (status & RD_ES) {	      /* There was an error. */
1626		lp->stats.rx_errors++;        /* Update the error stats. */
1627		if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1628		if (status & RD_CE)           lp->stats.rx_crc_errors++;
1629		if (status & RD_OF)           lp->stats.rx_fifo_errors++;
1630		if (status & RD_TL)           lp->stats.rx_length_errors++;
1631		if (status & RD_RF)           lp->pktStats.rx_runt_frames++;
1632		if (status & RD_CS)           lp->pktStats.rx_collision++;
1633		if (status & RD_DB)           lp->pktStats.rx_dribble++;
1634		if (status & RD_OF)           lp->pktStats.rx_overflow++;
1635	    } else {                          /* A valid frame received */
1636		struct sk_buff *skb;
1637		short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1638					                            >> 16) - 4;
1639
1640		if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1641		    printk("%s: Insufficient memory; nuking packet.\n",
1642			                                            dev->name);
1643		    lp->stats.rx_dropped++;
1644		} else {
1645		    de4x5_dbg_rx(skb, pkt_len);
1646
1647		    /* Push up the protocol stack */
1648		    skb->protocol=eth_type_trans(skb,dev);
1649		    de4x5_local_stats(dev, skb->data, pkt_len);
1650		    netif_rx(skb);
1651
1652		    /* Update stats */
1653		    lp->stats.rx_packets++;
1654 		    lp->stats.rx_bytes += pkt_len;
1655		}
1656	    }
1657
1658	    /* Change buffer ownership for this frame, back to the adapter */
1659	    for (;lp->rx_old!=entry;lp->rx_old=(lp->rx_old + 1)%lp->rxRingSize) {
1660		lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1661		barrier();
1662	    }
1663	    lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1664	    barrier();
1665	}
1666
1667	/*
1668	** Update entry information
1669	*/
1670	lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1671    }
1672
1673    return 0;
1674}
1675
1676static inline void
1677de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1678{
1679    dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1680		     le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1681		     DMA_TO_DEVICE);
1682    if ((u_long) lp->tx_skb[entry] > 1)
1683	dev_kfree_skb_irq(lp->tx_skb[entry]);
1684    lp->tx_skb[entry] = NULL;
1685}
1686
1687/*
1688** Buffer sent - check for TX buffer errors.
1689*/
1690static int
1691de4x5_tx(struct net_device *dev)
1692{
1693    struct de4x5_private *lp = netdev_priv(dev);
1694    u_long iobase = dev->base_addr;
1695    int entry;
1696    s32 status;
1697
1698    for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1699	status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1700	if (status < 0) {                     /* Buffer not sent yet */
1701	    break;
1702	} else if (status != 0x7fffffff) {    /* Not setup frame */
1703	    if (status & TD_ES) {             /* An error happened */
1704		lp->stats.tx_errors++;
1705		if (status & TD_NC) lp->stats.tx_carrier_errors++;
1706		if (status & TD_LC) lp->stats.tx_window_errors++;
1707		if (status & TD_UF) lp->stats.tx_fifo_errors++;
1708		if (status & TD_EC) lp->pktStats.excessive_collisions++;
1709		if (status & TD_DE) lp->stats.tx_aborted_errors++;
1710
1711		if (TX_PKT_PENDING) {
1712		    outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1713		}
1714	    } else {                      /* Packet sent */
1715		lp->stats.tx_packets++;
1716		if (lp->tx_enable) lp->linkOK++;
1717	    }
1718	    /* Update the collision counter */
1719	    lp->stats.collisions += ((status & TD_EC) ? 16 :
1720				                      ((status & TD_CC) >> 3));
1721
1722	    /* Free the buffer. */
1723	    if (lp->tx_skb[entry] != NULL)
1724	    	de4x5_free_tx_buff(lp, entry);
1725	}
1726
1727	/* Update all the pointers */
1728	lp->tx_old = (lp->tx_old + 1) % lp->txRingSize;
1729    }
1730
1731    /* Any resources available? */
1732    if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1733	if (lp->interrupt)
1734	    netif_wake_queue(dev);
1735	else
1736	    netif_start_queue(dev);
1737    }
1738
1739    return 0;
1740}
1741
1742static void
1743de4x5_ast(struct timer_list *t)
1744{
1745	struct de4x5_private *lp = from_timer(lp, t, timer);
1746	struct net_device *dev = dev_get_drvdata(lp->gendev);
1747	int next_tick = DE4X5_AUTOSENSE_MS;
1748	int dt;
1749
1750	if (lp->useSROM)
1751		next_tick = srom_autoconf(dev);
1752	else if (lp->chipset == DC21140)
1753		next_tick = dc21140m_autoconf(dev);
1754	else if (lp->chipset == DC21041)
1755		next_tick = dc21041_autoconf(dev);
1756	else if (lp->chipset == DC21040)
1757		next_tick = dc21040_autoconf(dev);
1758	lp->linkOK = 0;
1759
1760	dt = (next_tick * HZ) / 1000;
1761
1762	if (!dt)
1763		dt = 1;
1764
1765	mod_timer(&lp->timer, jiffies + dt);
1766}
1767
1768static int
1769de4x5_txur(struct net_device *dev)
1770{
1771    struct de4x5_private *lp = netdev_priv(dev);
1772    u_long iobase = dev->base_addr;
1773    int omr;
1774
1775    omr = inl(DE4X5_OMR);
1776    if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1777	omr &= ~(OMR_ST|OMR_SR);
1778	outl(omr, DE4X5_OMR);
1779	while (inl(DE4X5_STS) & STS_TS);
1780	if ((omr & OMR_TR) < OMR_TR) {
1781	    omr += 0x4000;
1782	} else {
1783	    omr |= OMR_SF;
1784	}
1785	outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1786    }
1787
1788    return 0;
1789}
1790
1791static int
1792de4x5_rx_ovfc(struct net_device *dev)
1793{
1794    struct de4x5_private *lp = netdev_priv(dev);
1795    u_long iobase = dev->base_addr;
1796    int omr;
1797
1798    omr = inl(DE4X5_OMR);
1799    outl(omr & ~OMR_SR, DE4X5_OMR);
1800    while (inl(DE4X5_STS) & STS_RS);
1801
1802    for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1803	lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1804	lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1805    }
1806
1807    outl(omr, DE4X5_OMR);
1808
1809    return 0;
1810}
1811
1812static int
1813de4x5_close(struct net_device *dev)
1814{
1815    struct de4x5_private *lp = netdev_priv(dev);
1816    u_long iobase = dev->base_addr;
1817    s32 imr, omr;
1818
1819    disable_ast(dev);
1820
1821    netif_stop_queue(dev);
1822
1823    if (de4x5_debug & DEBUG_CLOSE) {
1824	printk("%s: Shutting down ethercard, status was %8.8x.\n",
1825	       dev->name, inl(DE4X5_STS));
1826    }
1827
1828    /*
1829    ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1830    */
1831    DISABLE_IRQs;
1832    STOP_DE4X5;
1833
1834    /* Free the associated irq */
1835    free_irq(dev->irq, dev);
1836    lp->state = CLOSED;
1837
1838    /* Free any socket buffers */
1839    de4x5_free_rx_buffs(dev);
1840    de4x5_free_tx_buffs(dev);
1841
1842    /* Put the adapter to sleep to save power */
1843    yawn(dev, SLEEP);
1844
1845    return 0;
1846}
1847
1848static struct net_device_stats *
1849de4x5_get_stats(struct net_device *dev)
1850{
1851    struct de4x5_private *lp = netdev_priv(dev);
1852    u_long iobase = dev->base_addr;
1853
1854    lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1855
1856    return &lp->stats;
1857}
1858
1859static void
1860de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1861{
1862    struct de4x5_private *lp = netdev_priv(dev);
1863    int i;
1864
1865    for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1866        if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1867	    lp->pktStats.bins[i]++;
1868	    i = DE4X5_PKT_STAT_SZ;
1869	}
1870    }
1871    if (is_multicast_ether_addr(buf)) {
1872        if (is_broadcast_ether_addr(buf)) {
1873	    lp->pktStats.broadcast++;
1874	} else {
1875	    lp->pktStats.multicast++;
1876	}
1877    } else if (ether_addr_equal(buf, dev->dev_addr)) {
1878        lp->pktStats.unicast++;
1879    }
1880
1881    lp->pktStats.bins[0]++;       /* Duplicates stats.rx_packets */
1882    if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1883        memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1884    }
1885}
1886
1887/*
1888** Removes the TD_IC flag from previous descriptor to improve TX performance.
1889** If the flag is changed on a descriptor that is being read by the hardware,
1890** I assume PCI transaction ordering will mean you are either successful or
1891** just miss asserting the change to the hardware. Anyway you're messing with
1892** a descriptor you don't own, but this shouldn't kill the chip provided
1893** the descriptor register is read only to the hardware.
1894*/
1895static void
1896load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1897{
1898    struct de4x5_private *lp = netdev_priv(dev);
1899    int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1900    dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1901
1902    lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1903    lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1904    lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1905    lp->tx_skb[lp->tx_new] = skb;
1906    lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1907    barrier();
1908
1909    lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1910    barrier();
1911}
1912
1913/*
1914** Set or clear the multicast filter for this adaptor.
1915*/
1916static void
1917set_multicast_list(struct net_device *dev)
1918{
1919    struct de4x5_private *lp = netdev_priv(dev);
1920    u_long iobase = dev->base_addr;
1921
1922    /* First, double check that the adapter is open */
1923    if (lp->state == OPEN) {
1924	if (dev->flags & IFF_PROMISC) {         /* set promiscuous mode */
1925	    u32 omr;
1926	    omr = inl(DE4X5_OMR);
1927	    omr |= OMR_PR;
1928	    outl(omr, DE4X5_OMR);
1929	} else {
1930	    SetMulticastFilter(dev);
1931	    load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1932			                                SETUP_FRAME_LEN, (struct sk_buff *)1);
1933
1934	    lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1935	    outl(POLL_DEMAND, DE4X5_TPD);       /* Start the TX */
1936	    netif_trans_update(dev); /* prevent tx timeout */
1937	}
1938    }
1939}
1940
1941/*
1942** Calculate the hash code and update the logical address filter
1943** from a list of ethernet multicast addresses.
1944** Little endian crc one liner from Matt Thomas, DEC.
1945*/
1946static void
1947SetMulticastFilter(struct net_device *dev)
1948{
1949    struct de4x5_private *lp = netdev_priv(dev);
1950    struct netdev_hw_addr *ha;
1951    u_long iobase = dev->base_addr;
1952    int i, bit, byte;
1953    u16 hashcode;
1954    u32 omr, crc;
1955    char *pa;
1956    unsigned char *addrs;
1957
1958    omr = inl(DE4X5_OMR);
1959    omr &= ~(OMR_PR | OMR_PM);
1960    pa = build_setup_frame(dev, ALL);        /* Build the basic frame */
1961
1962    if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 14)) {
1963	omr |= OMR_PM;                       /* Pass all multicasts */
1964    } else if (lp->setup_f == HASH_PERF) {   /* Hash Filtering */
1965	netdev_for_each_mc_addr(ha, dev) {
1966		crc = ether_crc_le(ETH_ALEN, ha->addr);
1967		hashcode = crc & DE4X5_HASH_BITS;  /* hashcode is 9 LSb of CRC */
1968
1969		byte = hashcode >> 3;        /* bit[3-8] -> byte in filter */
1970		bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1971
1972		byte <<= 1;                  /* calc offset into setup frame */
1973		if (byte & 0x02) {
1974		    byte -= 1;
1975		}
1976		lp->setup_frame[byte] |= bit;
1977	}
1978    } else {                                 /* Perfect filtering */
1979	netdev_for_each_mc_addr(ha, dev) {
1980	    addrs = ha->addr;
1981	    for (i=0; i<ETH_ALEN; i++) {
1982		*(pa + (i&1)) = *addrs++;
1983		if (i & 0x01) pa += 4;
1984	    }
1985	}
1986    }
1987    outl(omr, DE4X5_OMR);
1988}
1989
1990#ifdef CONFIG_EISA
1991
1992static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
1993
1994static int de4x5_eisa_probe(struct device *gendev)
1995{
1996	struct eisa_device *edev;
1997	u_long iobase;
1998	u_char irq, regval;
1999	u_short vendor;
2000	u32 cfid;
2001	int status, device;
2002	struct net_device *dev;
2003	struct de4x5_private *lp;
2004
2005	edev = to_eisa_device (gendev);
2006	iobase = edev->base_addr;
2007
2008	if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2009		return -EBUSY;
2010
2011	if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2012			     DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2013		status = -EBUSY;
2014		goto release_reg_1;
2015	}
2016
2017	if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2018		status = -ENOMEM;
2019		goto release_reg_2;
2020	}
2021	lp = netdev_priv(dev);
2022
2023	cfid = (u32) inl(PCI_CFID);
2024	lp->cfrv = (u_short) inl(PCI_CFRV);
2025	device = (cfid >> 8) & 0x00ffff00;
2026	vendor = (u_short) cfid;
2027
2028	/* Read the EISA Configuration Registers */
2029	regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2030#ifdef CONFIG_ALPHA
2031	/* Looks like the Jensen firmware (rev 2.2) doesn't really
2032	 * care about the EISA configuration, and thus doesn't
2033	 * configure the PLX bridge properly. Oh well... Simply mimic
2034	 * the EISA config file to sort it out. */
2035
2036	/* EISA REG1: Assert DecChip 21040 HW Reset */
2037	outb (ER1_IAM | 1, EISA_REG1);
2038	mdelay (1);
2039
2040        /* EISA REG1: Deassert DecChip 21040 HW Reset */
2041	outb (ER1_IAM, EISA_REG1);
2042	mdelay (1);
2043
2044	/* EISA REG3: R/W Burst Transfer Enable */
2045	outb (ER3_BWE | ER3_BRE, EISA_REG3);
2046
2047	/* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2048	outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2049#endif
2050	irq = de4x5_irq[(regval >> 1) & 0x03];
2051
2052	if (is_DC2114x) {
2053	    device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2054	}
2055	lp->chipset = device;
2056	lp->bus = EISA;
2057
2058	/* Write the PCI Configuration Registers */
2059	outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2060	outl(0x00006000, PCI_CFLT);
2061	outl(iobase, PCI_CBIO);
2062
2063	DevicePresent(dev, EISA_APROM);
2064
2065	dev->irq = irq;
2066
2067	if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2068		return 0;
2069	}
2070
2071	free_netdev (dev);
2072 release_reg_2:
2073	release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2074 release_reg_1:
2075	release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2076
2077	return status;
2078}
2079
2080static int de4x5_eisa_remove(struct device *device)
2081{
2082	struct net_device *dev;
2083	u_long iobase;
2084
2085	dev = dev_get_drvdata(device);
2086	iobase = dev->base_addr;
2087
2088	unregister_netdev (dev);
2089	free_netdev (dev);
2090	release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2091	release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2092
2093	return 0;
2094}
2095
2096static const struct eisa_device_id de4x5_eisa_ids[] = {
2097        { "DEC4250", 0 },	/* 0 is the board name index... */
2098        { "" }
2099};
2100MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2101
2102static struct eisa_driver de4x5_eisa_driver = {
2103        .id_table = de4x5_eisa_ids,
2104        .driver   = {
2105                .name    = "de4x5",
2106                .probe   = de4x5_eisa_probe,
2107		.remove  = de4x5_eisa_remove,
2108        }
2109};
2110#endif
2111
2112#ifdef CONFIG_PCI
2113
2114/*
2115** This function searches the current bus (which is >0) for a DECchip with an
2116** SROM, so that in multiport cards that have one SROM shared between multiple
2117** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2118** For single port cards this is a time waster...
2119*/
2120static void
2121srom_search(struct net_device *dev, struct pci_dev *pdev)
2122{
2123    u_char pb;
2124    u_short vendor, status;
2125    u_int irq = 0, device;
2126    u_long iobase = 0;                     /* Clear upper 32 bits in Alphas */
2127    int i, j;
2128    struct de4x5_private *lp = netdev_priv(dev);
2129    struct pci_dev *this_dev;
2130
2131    list_for_each_entry(this_dev, &pdev->bus->devices, bus_list) {
2132	vendor = this_dev->vendor;
2133	device = this_dev->device << 8;
2134	if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2135
2136	/* Get the chip configuration revision register */
2137	pb = this_dev->bus->number;
2138
2139	/* Set the device number information */
2140	lp->device = PCI_SLOT(this_dev->devfn);
2141	lp->bus_num = pb;
2142
2143	/* Set the chipset information */
2144	if (is_DC2114x) {
2145	    device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2146		      ? DC21142 : DC21143);
2147	}
2148	lp->chipset = device;
2149
2150	/* Get the board I/O address (64 bits on sparc64) */
2151	iobase = pci_resource_start(this_dev, 0);
2152
2153	/* Fetch the IRQ to be used */
2154	irq = this_dev->irq;
2155	if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2156
2157	/* Check if I/O accesses are enabled */
2158	pci_read_config_word(this_dev, PCI_COMMAND, &status);
2159	if (!(status & PCI_COMMAND_IO)) continue;
2160
2161	/* Search for a valid SROM attached to this DECchip */
2162	DevicePresent(dev, DE4X5_APROM);
2163	for (j=0, i=0; i<ETH_ALEN; i++) {
2164	    j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2165	}
2166	if (j != 0 && j != 6 * 0xff) {
2167	    last.chipset = device;
2168	    last.bus = pb;
2169	    last.irq = irq;
2170	    for (i=0; i<ETH_ALEN; i++) {
2171		last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2172	    }
2173	    return;
2174	}
2175    }
2176}
2177
2178/*
2179** PCI bus I/O device probe
2180** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2181** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2182** enabled by the user first in the set up utility. Hence we just check for
2183** enabled features and silently ignore the card if they're not.
2184**
2185** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2186** bit. Here, check for I/O accesses and then set BM. If you put the card in
2187** a non BM slot, you're on your own (and complain to the PC vendor that your
2188** PC doesn't conform to the PCI standard)!
2189**
2190** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2191** kernels use the V0.535[n] drivers.
2192*/
2193
2194static int de4x5_pci_probe(struct pci_dev *pdev,
2195			   const struct pci_device_id *ent)
2196{
2197	u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2198	u_short vendor, status;
2199	u_int irq = 0, device;
2200	u_long iobase = 0;	/* Clear upper 32 bits in Alphas */
2201	int error;
2202	struct net_device *dev;
2203	struct de4x5_private *lp;
2204
2205	dev_num = PCI_SLOT(pdev->devfn);
2206	pb = pdev->bus->number;
2207
2208	if (io) { /* probe a single PCI device */
2209		pbus = (u_short)(io >> 8);
2210		dnum = (u_short)(io & 0xff);
2211		if ((pbus != pb) || (dnum != dev_num))
2212			return -ENODEV;
2213	}
2214
2215	vendor = pdev->vendor;
2216	device = pdev->device << 8;
2217	if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2218		return -ENODEV;
2219
2220	/* Ok, the device seems to be for us. */
2221	if ((error = pci_enable_device (pdev)))
2222		return error;
2223
2224	if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2225		error = -ENOMEM;
2226		goto disable_dev;
2227	}
2228
2229	lp = netdev_priv(dev);
2230	lp->bus = PCI;
2231	lp->bus_num = 0;
2232
2233	/* Search for an SROM on this bus */
2234	if (lp->bus_num != pb) {
2235	    lp->bus_num = pb;
2236	    srom_search(dev, pdev);
2237	}
2238
2239	/* Get the chip configuration revision register */
2240	lp->cfrv = pdev->revision;
2241
2242	/* Set the device number information */
2243	lp->device = dev_num;
2244	lp->bus_num = pb;
2245
2246	/* Set the chipset information */
2247	if (is_DC2114x) {
2248	    device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2249	}
2250	lp->chipset = device;
2251
2252	/* Get the board I/O address (64 bits on sparc64) */
2253	iobase = pci_resource_start(pdev, 0);
2254
2255	/* Fetch the IRQ to be used */
2256	irq = pdev->irq;
2257	if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2258		error = -ENODEV;
2259		goto free_dev;
2260	}
2261
2262	/* Check if I/O accesses and Bus Mastering are enabled */
2263	pci_read_config_word(pdev, PCI_COMMAND, &status);
2264#ifdef __powerpc__
2265	if (!(status & PCI_COMMAND_IO)) {
2266	    status |= PCI_COMMAND_IO;
2267	    pci_write_config_word(pdev, PCI_COMMAND, status);
2268	    pci_read_config_word(pdev, PCI_COMMAND, &status);
2269	}
2270#endif /* __powerpc__ */
2271	if (!(status & PCI_COMMAND_IO)) {
2272		error = -ENODEV;
2273		goto free_dev;
2274	}
2275
2276	if (!(status & PCI_COMMAND_MASTER)) {
2277	    status |= PCI_COMMAND_MASTER;
2278	    pci_write_config_word(pdev, PCI_COMMAND, status);
2279	    pci_read_config_word(pdev, PCI_COMMAND, &status);
2280	}
2281	if (!(status & PCI_COMMAND_MASTER)) {
2282		error = -ENODEV;
2283		goto free_dev;
2284	}
2285
2286	/* Check the latency timer for values >= 0x60 */
2287	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2288	if (timer < 0x60) {
2289	    pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2290	}
2291
2292	DevicePresent(dev, DE4X5_APROM);
2293
2294	if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2295		error = -EBUSY;
2296		goto free_dev;
2297	}
2298
2299	dev->irq = irq;
2300
2301	if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2302		goto release;
2303	}
2304
2305	return 0;
2306
2307 release:
2308	release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2309 free_dev:
2310	free_netdev (dev);
2311 disable_dev:
2312	pci_disable_device (pdev);
2313	return error;
2314}
2315
2316static void de4x5_pci_remove(struct pci_dev *pdev)
2317{
2318	struct net_device *dev;
2319	u_long iobase;
2320
2321	dev = pci_get_drvdata(pdev);
2322	iobase = dev->base_addr;
2323
2324	unregister_netdev (dev);
2325	free_netdev (dev);
2326	release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2327	pci_disable_device (pdev);
2328}
2329
2330static const struct pci_device_id de4x5_pci_tbl[] = {
2331        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2332          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2333        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2334          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2335        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2336	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2337        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2338	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2339        { },
2340};
2341
2342static struct pci_driver de4x5_pci_driver = {
2343        .name           = "de4x5",
2344        .id_table       = de4x5_pci_tbl,
2345        .probe          = de4x5_pci_probe,
2346	.remove         = de4x5_pci_remove,
2347};
2348
2349#endif
2350
2351/*
2352** Auto configure the media here rather than setting the port at compile
2353** time. This routine is called by de4x5_init() and when a loss of media is
2354** detected (excessive collisions, loss of carrier, no carrier or link fail
2355** [TP] or no recent receive activity) to check whether the user has been
2356** sneaky and changed the port on us.
2357*/
2358static int
2359autoconf_media(struct net_device *dev)
2360{
2361	struct de4x5_private *lp = netdev_priv(dev);
2362	u_long iobase = dev->base_addr;
2363
2364	disable_ast(dev);
2365
2366	lp->c_media = AUTO;                     /* Bogus last media */
2367	inl(DE4X5_MFC);                         /* Zero the lost frames counter */
2368	lp->media = INIT;
2369	lp->tcount = 0;
2370
2371	de4x5_ast(&lp->timer);
2372
2373	return lp->media;
2374}
2375
2376/*
2377** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2378** from BNC as the port has a jumper to set thick or thin wire. When set for
2379** BNC, the BNC port will indicate activity if it's not terminated correctly.
2380** The only way to test for that is to place a loopback packet onto the
2381** network and watch for errors. Since we're messing with the interrupt mask
2382** register, disable the board interrupts and do not allow any more packets to
2383** be queued to the hardware. Re-enable everything only when the media is
2384** found.
2385** I may have to "age out" locally queued packets so that the higher layer
2386** timeouts don't effectively duplicate packets on the network.
2387*/
2388static int
2389dc21040_autoconf(struct net_device *dev)
2390{
2391    struct de4x5_private *lp = netdev_priv(dev);
2392    u_long iobase = dev->base_addr;
2393    int next_tick = DE4X5_AUTOSENSE_MS;
2394    s32 imr;
2395
2396    switch (lp->media) {
2397    case INIT:
2398	DISABLE_IRQs;
2399	lp->tx_enable = false;
2400	lp->timeout = -1;
2401	de4x5_save_skbs(dev);
2402	if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2403	    lp->media = TP;
2404	} else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2405	    lp->media = BNC_AUI;
2406	} else if (lp->autosense == EXT_SIA) {
2407	    lp->media = EXT_SIA;
2408	} else {
2409	    lp->media = NC;
2410	}
2411	lp->local_state = 0;
2412	next_tick = dc21040_autoconf(dev);
2413	break;
2414
2415    case TP:
2416	next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2417		                                         TP_SUSPECT, test_tp);
2418	break;
2419
2420    case TP_SUSPECT:
2421	next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2422	break;
2423
2424    case BNC:
2425    case AUI:
2426    case BNC_AUI:
2427	next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2428		                                  BNC_AUI_SUSPECT, ping_media);
2429	break;
2430
2431    case BNC_AUI_SUSPECT:
2432	next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2433	break;
2434
2435    case EXT_SIA:
2436	next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2437		                              NC, EXT_SIA_SUSPECT, ping_media);
2438	break;
2439
2440    case EXT_SIA_SUSPECT:
2441	next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2442	break;
2443
2444    case NC:
2445	/* default to TP for all */
2446	reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2447	if (lp->media != lp->c_media) {
2448	    de4x5_dbg_media(dev);
2449	    lp->c_media = lp->media;
2450	}
2451	lp->media = INIT;
2452	lp->tx_enable = false;
2453	break;
2454    }
2455
2456    return next_tick;
2457}
2458
2459static int
2460dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2461	      int next_state, int suspect_state,
2462	      int (*fn)(struct net_device *, int))
2463{
2464    struct de4x5_private *lp = netdev_priv(dev);
2465    int next_tick = DE4X5_AUTOSENSE_MS;
2466    int linkBad;
2467
2468    switch (lp->local_state) {
2469    case 0:
2470	reset_init_sia(dev, csr13, csr14, csr15);
2471	lp->local_state++;
2472	next_tick = 500;
2473	break;
2474
2475    case 1:
2476	if (!lp->tx_enable) {
2477	    linkBad = fn(dev, timeout);
2478	    if (linkBad < 0) {
2479		next_tick = linkBad & ~TIMER_CB;
2480	    } else {
2481		if (linkBad && (lp->autosense == AUTO)) {
2482		    lp->local_state = 0;
2483		    lp->media = next_state;
2484		} else {
2485		    de4x5_init_connection(dev);
2486		}
2487	    }
2488	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2489	    lp->media = suspect_state;
2490	    next_tick = 3000;
2491	}
2492	break;
2493    }
2494
2495    return next_tick;
2496}
2497
2498static int
2499de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2500		      int (*fn)(struct net_device *, int),
2501		      int (*asfn)(struct net_device *))
2502{
2503    struct de4x5_private *lp = netdev_priv(dev);
2504    int next_tick = DE4X5_AUTOSENSE_MS;
2505    int linkBad;
2506
2507    switch (lp->local_state) {
2508    case 1:
2509	if (lp->linkOK) {
2510	    lp->media = prev_state;
2511	} else {
2512	    lp->local_state++;
2513	    next_tick = asfn(dev);
2514	}
2515	break;
2516
2517    case 2:
2518	linkBad = fn(dev, timeout);
2519	if (linkBad < 0) {
2520	    next_tick = linkBad & ~TIMER_CB;
2521	} else if (!linkBad) {
2522	    lp->local_state--;
2523	    lp->media = prev_state;
2524	} else {
2525	    lp->media = INIT;
2526	    lp->tcount++;
2527	}
2528    }
2529
2530    return next_tick;
2531}
2532
2533/*
2534** Autoconfigure the media when using the DC21041. AUI needs to be tested
2535** before BNC, because the BNC port will indicate activity if it's not
2536** terminated correctly. The only way to test for that is to place a loopback
2537** packet onto the network and watch for errors. Since we're messing with
2538** the interrupt mask register, disable the board interrupts and do not allow
2539** any more packets to be queued to the hardware. Re-enable everything only
2540** when the media is found.
2541*/
2542static int
2543dc21041_autoconf(struct net_device *dev)
2544{
2545    struct de4x5_private *lp = netdev_priv(dev);
2546    u_long iobase = dev->base_addr;
2547    s32 sts, irqs, irq_mask, imr, omr;
2548    int next_tick = DE4X5_AUTOSENSE_MS;
2549
2550    switch (lp->media) {
2551    case INIT:
2552	DISABLE_IRQs;
2553	lp->tx_enable = false;
2554	lp->timeout = -1;
2555	de4x5_save_skbs(dev);          /* Save non transmitted skb's */
2556	if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2557	    lp->media = TP;            /* On chip auto negotiation is broken */
2558	} else if (lp->autosense == TP) {
2559	    lp->media = TP;
2560	} else if (lp->autosense == BNC) {
2561	    lp->media = BNC;
2562	} else if (lp->autosense == AUI) {
2563	    lp->media = AUI;
2564	} else {
2565	    lp->media = NC;
2566	}
2567	lp->local_state = 0;
2568	next_tick = dc21041_autoconf(dev);
2569	break;
2570
2571    case TP_NW:
2572	if (lp->timeout < 0) {
2573	    omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2574	    outl(omr | OMR_FDX, DE4X5_OMR);
2575	}
2576	irqs = STS_LNF | STS_LNP;
2577	irq_mask = IMR_LFM | IMR_LPM;
2578	sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2579	if (sts < 0) {
2580	    next_tick = sts & ~TIMER_CB;
2581	} else {
2582	    if (sts & STS_LNP) {
2583		lp->media = ANS;
2584	    } else {
2585		lp->media = AUI;
2586	    }
2587	    next_tick = dc21041_autoconf(dev);
2588	}
2589	break;
2590
2591    case ANS:
2592	if (!lp->tx_enable) {
2593	    irqs = STS_LNP;
2594	    irq_mask = IMR_LPM;
2595	    sts = test_ans(dev, irqs, irq_mask, 3000);
2596	    if (sts < 0) {
2597		next_tick = sts & ~TIMER_CB;
2598	    } else {
2599		if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2600		    lp->media = TP;
2601		    next_tick = dc21041_autoconf(dev);
2602		} else {
2603		    lp->local_state = 1;
2604		    de4x5_init_connection(dev);
2605		}
2606	    }
2607	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2608	    lp->media = ANS_SUSPECT;
2609	    next_tick = 3000;
2610	}
2611	break;
2612
2613    case ANS_SUSPECT:
2614	next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2615	break;
2616
2617    case TP:
2618	if (!lp->tx_enable) {
2619	    if (lp->timeout < 0) {
2620		omr = inl(DE4X5_OMR);          /* Set up half duplex for TP */
2621		outl(omr & ~OMR_FDX, DE4X5_OMR);
2622	    }
2623	    irqs = STS_LNF | STS_LNP;
2624	    irq_mask = IMR_LFM | IMR_LPM;
2625	    sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2626	    if (sts < 0) {
2627		next_tick = sts & ~TIMER_CB;
2628	    } else {
2629		if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2630		    if (inl(DE4X5_SISR) & SISR_NRA) {
2631			lp->media = AUI;       /* Non selected port activity */
2632		    } else {
2633			lp->media = BNC;
2634		    }
2635		    next_tick = dc21041_autoconf(dev);
2636		} else {
2637		    lp->local_state = 1;
2638		    de4x5_init_connection(dev);
2639		}
2640	    }
2641	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2642	    lp->media = TP_SUSPECT;
2643	    next_tick = 3000;
2644	}
2645	break;
2646
2647    case TP_SUSPECT:
2648	next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2649	break;
2650
2651    case AUI:
2652	if (!lp->tx_enable) {
2653	    if (lp->timeout < 0) {
2654		omr = inl(DE4X5_OMR);          /* Set up half duplex for AUI */
2655		outl(omr & ~OMR_FDX, DE4X5_OMR);
2656	    }
2657	    irqs = 0;
2658	    irq_mask = 0;
2659	    sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2660	    if (sts < 0) {
2661		next_tick = sts & ~TIMER_CB;
2662	    } else {
2663		if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2664		    lp->media = BNC;
2665		    next_tick = dc21041_autoconf(dev);
2666		} else {
2667		    lp->local_state = 1;
2668		    de4x5_init_connection(dev);
2669		}
2670	    }
2671	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2672	    lp->media = AUI_SUSPECT;
2673	    next_tick = 3000;
2674	}
2675	break;
2676
2677    case AUI_SUSPECT:
2678	next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2679	break;
2680
2681    case BNC:
2682	switch (lp->local_state) {
2683	case 0:
2684	    if (lp->timeout < 0) {
2685		omr = inl(DE4X5_OMR);          /* Set up half duplex for BNC */
2686		outl(omr & ~OMR_FDX, DE4X5_OMR);
2687	    }
2688	    irqs = 0;
2689	    irq_mask = 0;
2690	    sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2691	    if (sts < 0) {
2692		next_tick = sts & ~TIMER_CB;
2693	    } else {
2694		lp->local_state++;             /* Ensure media connected */
2695		next_tick = dc21041_autoconf(dev);
2696	    }
2697	    break;
2698
2699	case 1:
2700	    if (!lp->tx_enable) {
2701		if ((sts = ping_media(dev, 3000)) < 0) {
2702		    next_tick = sts & ~TIMER_CB;
2703		} else {
2704		    if (sts) {
2705			lp->local_state = 0;
2706			lp->media = NC;
2707		    } else {
2708			de4x5_init_connection(dev);
2709		    }
2710		}
2711	    } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2712		lp->media = BNC_SUSPECT;
2713		next_tick = 3000;
2714	    }
2715	    break;
2716	}
2717	break;
2718
2719    case BNC_SUSPECT:
2720	next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2721	break;
2722
2723    case NC:
2724	omr = inl(DE4X5_OMR);    /* Set up full duplex for the autonegotiate */
2725	outl(omr | OMR_FDX, DE4X5_OMR);
2726	reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2727	if (lp->media != lp->c_media) {
2728	    de4x5_dbg_media(dev);
2729	    lp->c_media = lp->media;
2730	}
2731	lp->media = INIT;
2732	lp->tx_enable = false;
2733	break;
2734    }
2735
2736    return next_tick;
2737}
2738
2739/*
2740** Some autonegotiation chips are broken in that they do not return the
2741** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2742** register, except at the first power up negotiation.
2743*/
2744static int
2745dc21140m_autoconf(struct net_device *dev)
2746{
2747    struct de4x5_private *lp = netdev_priv(dev);
2748    int ana, anlpa, cap, cr, slnk, sr;
2749    int next_tick = DE4X5_AUTOSENSE_MS;
2750    u_long imr, omr, iobase = dev->base_addr;
2751
2752    switch(lp->media) {
2753    case INIT:
2754        if (lp->timeout < 0) {
2755	    DISABLE_IRQs;
2756	    lp->tx_enable = false;
2757	    lp->linkOK = 0;
2758	    de4x5_save_skbs(dev);          /* Save non transmitted skb's */
2759	}
2760	if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2761	    next_tick &= ~TIMER_CB;
2762	} else {
2763	    if (lp->useSROM) {
2764		if (srom_map_media(dev) < 0) {
2765		    lp->tcount++;
2766		    return next_tick;
2767		}
2768		srom_exec(dev, lp->phy[lp->active].gep);
2769		if (lp->infoblock_media == ANS) {
2770		    ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2771		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2772		}
2773	    } else {
2774		lp->tmp = MII_SR_ASSC;     /* Fake out the MII speed set */
2775		SET_10Mb;
2776		if (lp->autosense == _100Mb) {
2777		    lp->media = _100Mb;
2778		} else if (lp->autosense == _10Mb) {
2779		    lp->media = _10Mb;
2780		} else if ((lp->autosense == AUTO) &&
2781			            ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2782		    ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2783		    ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2784		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2785		    lp->media = ANS;
2786		} else if (lp->autosense == AUTO) {
2787		    lp->media = SPD_DET;
2788		} else if (is_spd_100(dev) && is_100_up(dev)) {
2789		    lp->media = _100Mb;
2790		} else {
2791		    lp->media = NC;
2792		}
2793	    }
2794	    lp->local_state = 0;
2795	    next_tick = dc21140m_autoconf(dev);
2796	}
2797	break;
2798
2799    case ANS:
2800	switch (lp->local_state) {
2801	case 0:
2802	    if (lp->timeout < 0) {
2803		mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2804	    }
2805	    cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2806	    if (cr < 0) {
2807		next_tick = cr & ~TIMER_CB;
2808	    } else {
2809		if (cr) {
2810		    lp->local_state = 0;
2811		    lp->media = SPD_DET;
2812		} else {
2813		    lp->local_state++;
2814		}
2815		next_tick = dc21140m_autoconf(dev);
2816	    }
2817	    break;
2818
2819	case 1:
2820	    if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2821		next_tick = sr & ~TIMER_CB;
2822	    } else {
2823		lp->media = SPD_DET;
2824		lp->local_state = 0;
2825		if (sr) {                         /* Success! */
2826		    lp->tmp = MII_SR_ASSC;
2827		    anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2828		    ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2829		    if (!(anlpa & MII_ANLPA_RF) &&
2830			 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2831			if (cap & MII_ANA_100M) {
2832			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2833			    lp->media = _100Mb;
2834			} else if (cap & MII_ANA_10M) {
2835			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2836
2837			    lp->media = _10Mb;
2838			}
2839		    }
2840		}                       /* Auto Negotiation failed to finish */
2841		next_tick = dc21140m_autoconf(dev);
2842	    }                           /* Auto Negotiation failed to start */
2843	    break;
2844	}
2845	break;
2846
2847    case SPD_DET:                              /* Choose 10Mb/s or 100Mb/s */
2848        if (lp->timeout < 0) {
2849	    lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2850		                                  (~gep_rd(dev) & GEP_LNP));
2851	    SET_100Mb_PDET;
2852	}
2853        if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2854	    next_tick = slnk & ~TIMER_CB;
2855	} else {
2856	    if (is_spd_100(dev) && is_100_up(dev)) {
2857		lp->media = _100Mb;
2858	    } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2859		lp->media = _10Mb;
2860	    } else {
2861		lp->media = NC;
2862	    }
2863	    next_tick = dc21140m_autoconf(dev);
2864	}
2865	break;
2866
2867    case _100Mb:                               /* Set 100Mb/s */
2868        next_tick = 3000;
2869	if (!lp->tx_enable) {
2870	    SET_100Mb;
2871	    de4x5_init_connection(dev);
2872	} else {
2873	    if (!lp->linkOK && (lp->autosense == AUTO)) {
2874		if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2875		    lp->media = INIT;
2876		    lp->tcount++;
2877		    next_tick = DE4X5_AUTOSENSE_MS;
2878		}
2879	    }
2880	}
2881	break;
2882
2883    case BNC:
2884    case AUI:
2885    case _10Mb:                                /* Set 10Mb/s */
2886        next_tick = 3000;
2887	if (!lp->tx_enable) {
2888	    SET_10Mb;
2889	    de4x5_init_connection(dev);
2890	} else {
2891	    if (!lp->linkOK && (lp->autosense == AUTO)) {
2892		if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2893		    lp->media = INIT;
2894		    lp->tcount++;
2895		    next_tick = DE4X5_AUTOSENSE_MS;
2896		}
2897	    }
2898	}
2899	break;
2900
2901    case NC:
2902        if (lp->media != lp->c_media) {
2903	    de4x5_dbg_media(dev);
2904	    lp->c_media = lp->media;
2905	}
2906	lp->media = INIT;
2907	lp->tx_enable = false;
2908	break;
2909    }
2910
2911    return next_tick;
2912}
2913
2914/*
2915** This routine may be merged into dc21140m_autoconf() sometime as I'm
2916** changing how I figure out the media - but trying to keep it backwards
2917** compatible with the de500-xa and de500-aa.
2918** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2919** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2920** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2921** active.
2922** When autonegotiation is working, the ANS part searches the SROM for
2923** the highest common speed (TP) link that both can run and if that can
2924** be full duplex. That infoblock is executed and then the link speed set.
2925**
2926** Only _10Mb and _100Mb are tested here.
2927*/
2928static int
2929dc2114x_autoconf(struct net_device *dev)
2930{
2931    struct de4x5_private *lp = netdev_priv(dev);
2932    u_long iobase = dev->base_addr;
2933    s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2934    int next_tick = DE4X5_AUTOSENSE_MS;
2935
2936    switch (lp->media) {
2937    case INIT:
2938        if (lp->timeout < 0) {
2939	    DISABLE_IRQs;
2940	    lp->tx_enable = false;
2941	    lp->linkOK = 0;
2942            lp->timeout = -1;
2943	    de4x5_save_skbs(dev);            /* Save non transmitted skb's */
2944	    if (lp->params.autosense & ~AUTO) {
2945		srom_map_media(dev);         /* Fixed media requested      */
2946		if (lp->media != lp->params.autosense) {
2947		    lp->tcount++;
2948		    lp->media = INIT;
2949		    return next_tick;
2950		}
2951		lp->media = INIT;
2952	    }
2953	}
2954	if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2955	    next_tick &= ~TIMER_CB;
2956	} else {
2957	    if (lp->autosense == _100Mb) {
2958		lp->media = _100Mb;
2959	    } else if (lp->autosense == _10Mb) {
2960		lp->media = _10Mb;
2961	    } else if (lp->autosense == TP) {
2962		lp->media = TP;
2963	    } else if (lp->autosense == BNC) {
2964		lp->media = BNC;
2965	    } else if (lp->autosense == AUI) {
2966		lp->media = AUI;
2967	    } else {
2968		lp->media = SPD_DET;
2969		if ((lp->infoblock_media == ANS) &&
2970		                    ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2971		    ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2972		    ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2973		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2974		    lp->media = ANS;
2975		}
2976	    }
2977	    lp->local_state = 0;
2978	    next_tick = dc2114x_autoconf(dev);
2979        }
2980	break;
2981
2982    case ANS:
2983	switch (lp->local_state) {
2984	case 0:
2985	    if (lp->timeout < 0) {
2986		mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2987	    }
2988	    cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2989	    if (cr < 0) {
2990		next_tick = cr & ~TIMER_CB;
2991	    } else {
2992		if (cr) {
2993		    lp->local_state = 0;
2994		    lp->media = SPD_DET;
2995		} else {
2996		    lp->local_state++;
2997		}
2998		next_tick = dc2114x_autoconf(dev);
2999	    }
3000	    break;
3001
3002	case 1:
3003	    sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3004	    if (sr < 0) {
3005		next_tick = sr & ~TIMER_CB;
3006	    } else {
3007		lp->media = SPD_DET;
3008		lp->local_state = 0;
3009		if (sr) {                         /* Success! */
3010		    lp->tmp = MII_SR_ASSC;
3011		    anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3012		    ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3013		    if (!(anlpa & MII_ANLPA_RF) &&
3014			 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3015			if (cap & MII_ANA_100M) {
3016			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3017			    lp->media = _100Mb;
3018			} else if (cap & MII_ANA_10M) {
3019			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3020			    lp->media = _10Mb;
3021			}
3022		    }
3023		}                       /* Auto Negotiation failed to finish */
3024		next_tick = dc2114x_autoconf(dev);
3025	    }                           /* Auto Negotiation failed to start  */
3026	    break;
3027	}
3028	break;
3029
3030    case AUI:
3031	if (!lp->tx_enable) {
3032	    if (lp->timeout < 0) {
3033		omr = inl(DE4X5_OMR);   /* Set up half duplex for AUI        */
3034		outl(omr & ~OMR_FDX, DE4X5_OMR);
3035	    }
3036	    irqs = 0;
3037	    irq_mask = 0;
3038	    sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3039	    if (sts < 0) {
3040		next_tick = sts & ~TIMER_CB;
3041	    } else {
3042		if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3043		    lp->media = BNC;
3044		    next_tick = dc2114x_autoconf(dev);
3045		} else {
3046		    lp->local_state = 1;
3047		    de4x5_init_connection(dev);
3048		}
3049	    }
3050	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
3051	    lp->media = AUI_SUSPECT;
3052	    next_tick = 3000;
3053	}
3054	break;
3055
3056    case AUI_SUSPECT:
3057	next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3058	break;
3059
3060    case BNC:
3061	switch (lp->local_state) {
3062	case 0:
3063	    if (lp->timeout < 0) {
3064		omr = inl(DE4X5_OMR);          /* Set up half duplex for BNC */
3065		outl(omr & ~OMR_FDX, DE4X5_OMR);
3066	    }
3067	    irqs = 0;
3068	    irq_mask = 0;
3069	    sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3070	    if (sts < 0) {
3071		next_tick = sts & ~TIMER_CB;
3072	    } else {
3073		lp->local_state++;             /* Ensure media connected */
3074		next_tick = dc2114x_autoconf(dev);
3075	    }
3076	    break;
3077
3078	case 1:
3079	    if (!lp->tx_enable) {
3080		if ((sts = ping_media(dev, 3000)) < 0) {
3081		    next_tick = sts & ~TIMER_CB;
3082		} else {
3083		    if (sts) {
3084			lp->local_state = 0;
3085			lp->tcount++;
3086			lp->media = INIT;
3087		    } else {
3088			de4x5_init_connection(dev);
3089		    }
3090		}
3091	    } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3092		lp->media = BNC_SUSPECT;
3093		next_tick = 3000;
3094	    }
3095	    break;
3096	}
3097	break;
3098
3099    case BNC_SUSPECT:
3100	next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3101	break;
3102
3103    case SPD_DET:                              /* Choose 10Mb/s or 100Mb/s */
3104	  if (srom_map_media(dev) < 0) {
3105	      lp->tcount++;
3106	      lp->media = INIT;
3107	      return next_tick;
3108	  }
3109	  if (lp->media == _100Mb) {
3110	      if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3111		  lp->media = SPD_DET;
3112		  return slnk & ~TIMER_CB;
3113	      }
3114	  } else {
3115	      if (wait_for_link(dev) < 0) {
3116		  lp->media = SPD_DET;
3117		  return PDET_LINK_WAIT;
3118	      }
3119	  }
3120	  if (lp->media == ANS) {           /* Do MII parallel detection */
3121	      if (is_spd_100(dev)) {
3122		  lp->media = _100Mb;
3123	      } else {
3124		  lp->media = _10Mb;
3125	      }
3126	      next_tick = dc2114x_autoconf(dev);
3127	  } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3128		     (((lp->media == _10Mb) || (lp->media == TP) ||
3129		       (lp->media == BNC)   || (lp->media == AUI)) &&
3130		      is_10_up(dev))) {
3131	      next_tick = dc2114x_autoconf(dev);
3132	  } else {
3133	      lp->tcount++;
3134	      lp->media = INIT;
3135	  }
3136	  break;
3137
3138    case _10Mb:
3139        next_tick = 3000;
3140	if (!lp->tx_enable) {
3141	    SET_10Mb;
3142	    de4x5_init_connection(dev);
3143	} else {
3144	    if (!lp->linkOK && (lp->autosense == AUTO)) {
3145		if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3146		    lp->media = INIT;
3147		    lp->tcount++;
3148		    next_tick = DE4X5_AUTOSENSE_MS;
3149		}
3150	    }
3151	}
3152	break;
3153
3154    case _100Mb:
3155        next_tick = 3000;
3156	if (!lp->tx_enable) {
3157	    SET_100Mb;
3158	    de4x5_init_connection(dev);
3159	} else {
3160	    if (!lp->linkOK && (lp->autosense == AUTO)) {
3161		if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3162		    lp->media = INIT;
3163		    lp->tcount++;
3164		    next_tick = DE4X5_AUTOSENSE_MS;
3165		}
3166	    }
3167	}
3168	break;
3169
3170    default:
3171	lp->tcount++;
3172printk("Huh?: media:%02x\n", lp->media);
3173	lp->media = INIT;
3174	break;
3175    }
3176
3177    return next_tick;
3178}
3179
3180static int
3181srom_autoconf(struct net_device *dev)
3182{
3183    struct de4x5_private *lp = netdev_priv(dev);
3184
3185    return lp->infoleaf_fn(dev);
3186}
3187
3188/*
3189** This mapping keeps the original media codes and FDX flag unchanged.
3190** While it isn't strictly necessary, it helps me for the moment...
3191** The early return avoids a media state / SROM media space clash.
3192*/
3193static int
3194srom_map_media(struct net_device *dev)
3195{
3196    struct de4x5_private *lp = netdev_priv(dev);
3197
3198    lp->fdx = false;
3199    if (lp->infoblock_media == lp->media)
3200      return 0;
3201
3202    switch(lp->infoblock_media) {
3203      case SROM_10BASETF:
3204	if (!lp->params.fdx) return -1;
3205	lp->fdx = true;
3206	fallthrough;
3207
3208      case SROM_10BASET:
3209	if (lp->params.fdx && !lp->fdx) return -1;
3210	if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3211	    lp->media = _10Mb;
3212	} else {
3213	    lp->media = TP;
3214	}
3215	break;
3216
3217      case SROM_10BASE2:
3218	lp->media = BNC;
3219	break;
3220
3221      case SROM_10BASE5:
3222	lp->media = AUI;
3223	break;
3224
3225      case SROM_100BASETF:
3226        if (!lp->params.fdx) return -1;
3227	lp->fdx = true;
3228	fallthrough;
3229
3230      case SROM_100BASET:
3231	if (lp->params.fdx && !lp->fdx) return -1;
3232	lp->media = _100Mb;
3233	break;
3234
3235      case SROM_100BASET4:
3236	lp->media = _100Mb;
3237	break;
3238
3239      case SROM_100BASEFF:
3240	if (!lp->params.fdx) return -1;
3241	lp->fdx = true;
3242	fallthrough;
3243
3244      case SROM_100BASEF:
3245	if (lp->params.fdx && !lp->fdx) return -1;
3246	lp->media = _100Mb;
3247	break;
3248
3249      case ANS:
3250	lp->media = ANS;
3251	lp->fdx = lp->params.fdx;
3252	break;
3253
3254      default:
3255	printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3256	                                                  lp->infoblock_media);
3257	return -1;
3258    }
3259
3260    return 0;
3261}
3262
3263static void
3264de4x5_init_connection(struct net_device *dev)
3265{
3266    struct de4x5_private *lp = netdev_priv(dev);
3267    u_long iobase = dev->base_addr;
3268    u_long flags = 0;
3269
3270    if (lp->media != lp->c_media) {
3271        de4x5_dbg_media(dev);
3272	lp->c_media = lp->media;          /* Stop scrolling media messages */
3273    }
3274
3275    spin_lock_irqsave(&lp->lock, flags);
3276    de4x5_rst_desc_ring(dev);
3277    de4x5_setup_intr(dev);
3278    lp->tx_enable = true;
3279    spin_unlock_irqrestore(&lp->lock, flags);
3280    outl(POLL_DEMAND, DE4X5_TPD);
3281
3282    netif_wake_queue(dev);
3283}
3284
3285/*
3286** General PHY reset function. Some MII devices don't reset correctly
3287** since their MII address pins can float at voltages that are dependent
3288** on the signal pin use. Do a double reset to ensure a reset.
3289*/
3290static int
3291de4x5_reset_phy(struct net_device *dev)
3292{
3293    struct de4x5_private *lp = netdev_priv(dev);
3294    u_long iobase = dev->base_addr;
3295    int next_tick = 0;
3296
3297    if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3298	if (lp->timeout < 0) {
3299	    if (lp->useSROM) {
3300		if (lp->phy[lp->active].rst) {
3301		    srom_exec(dev, lp->phy[lp->active].rst);
3302		    srom_exec(dev, lp->phy[lp->active].rst);
3303		} else if (lp->rst) {          /* Type 5 infoblock reset */
3304		    srom_exec(dev, lp->rst);
3305		    srom_exec(dev, lp->rst);
3306		}
3307	    } else {
3308		PHY_HARD_RESET;
3309	    }
3310	    if (lp->useMII) {
3311	        mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3312            }
3313        }
3314	if (lp->useMII) {
3315	    next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3316	}
3317    } else if (lp->chipset == DC21140) {
3318	PHY_HARD_RESET;
3319    }
3320
3321    return next_tick;
3322}
3323
3324static int
3325test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3326{
3327    struct de4x5_private *lp = netdev_priv(dev);
3328    u_long iobase = dev->base_addr;
3329    s32 sts, csr12;
3330
3331    if (lp->timeout < 0) {
3332	lp->timeout = msec/100;
3333	if (!lp->useSROM) {      /* Already done if by SROM, else dc2104[01] */
3334	    reset_init_sia(dev, csr13, csr14, csr15);
3335	}
3336
3337	/* set up the interrupt mask */
3338	outl(irq_mask, DE4X5_IMR);
3339
3340	/* clear all pending interrupts */
3341	sts = inl(DE4X5_STS);
3342	outl(sts, DE4X5_STS);
3343
3344	/* clear csr12 NRA and SRA bits */
3345	if ((lp->chipset == DC21041) || lp->useSROM) {
3346	    csr12 = inl(DE4X5_SISR);
3347	    outl(csr12, DE4X5_SISR);
3348	}
3349    }
3350
3351    sts = inl(DE4X5_STS) & ~TIMER_CB;
3352
3353    if (!(sts & irqs) && --lp->timeout) {
3354	sts = 100 | TIMER_CB;
3355    } else {
3356	lp->timeout = -1;
3357    }
3358
3359    return sts;
3360}
3361
3362static int
3363test_tp(struct net_device *dev, s32 msec)
3364{
3365    struct de4x5_private *lp = netdev_priv(dev);
3366    u_long iobase = dev->base_addr;
3367    int sisr;
3368
3369    if (lp->timeout < 0) {
3370	lp->timeout = msec/100;
3371    }
3372
3373    sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3374
3375    if (sisr && --lp->timeout) {
3376	sisr = 100 | TIMER_CB;
3377    } else {
3378	lp->timeout = -1;
3379    }
3380
3381    return sisr;
3382}
3383
3384/*
3385** Samples the 100Mb Link State Signal. The sample interval is important
3386** because too fast a rate can give erroneous results and confuse the
3387** speed sense algorithm.
3388*/
3389#define SAMPLE_INTERVAL 500  /* ms */
3390#define SAMPLE_DELAY    2000 /* ms */
3391static int
3392test_for_100Mb(struct net_device *dev, int msec)
3393{
3394    struct de4x5_private *lp = netdev_priv(dev);
3395    int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3396
3397    if (lp->timeout < 0) {
3398	if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3399	if (msec > SAMPLE_DELAY) {
3400	    lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3401	    gep = SAMPLE_DELAY | TIMER_CB;
3402	    return gep;
3403	} else {
3404	    lp->timeout = msec/SAMPLE_INTERVAL;
3405	}
3406    }
3407
3408    if (lp->phy[lp->active].id || lp->useSROM) {
3409	gep = is_100_up(dev) | is_spd_100(dev);
3410    } else {
3411	gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3412    }
3413    if (!(gep & ret) && --lp->timeout) {
3414	gep = SAMPLE_INTERVAL | TIMER_CB;
3415    } else {
3416	lp->timeout = -1;
3417    }
3418
3419    return gep;
3420}
3421
3422static int
3423wait_for_link(struct net_device *dev)
3424{
3425    struct de4x5_private *lp = netdev_priv(dev);
3426
3427    if (lp->timeout < 0) {
3428	lp->timeout = 1;
3429    }
3430
3431    if (lp->timeout--) {
3432	return TIMER_CB;
3433    } else {
3434	lp->timeout = -1;
3435    }
3436
3437    return 0;
3438}
3439
3440/*
3441**
3442**
3443*/
3444static int
3445test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3446{
3447    struct de4x5_private *lp = netdev_priv(dev);
3448    int test;
3449    u_long iobase = dev->base_addr;
3450
3451    if (lp->timeout < 0) {
3452	lp->timeout = msec/100;
3453    }
3454
3455    reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3456    test = (reg ^ (pol ? ~0 : 0)) & mask;
3457
3458    if (test && --lp->timeout) {
3459	reg = 100 | TIMER_CB;
3460    } else {
3461	lp->timeout = -1;
3462    }
3463
3464    return reg;
3465}
3466
3467static int
3468is_spd_100(struct net_device *dev)
3469{
3470    struct de4x5_private *lp = netdev_priv(dev);
3471    u_long iobase = dev->base_addr;
3472    int spd;
3473
3474    if (lp->useMII) {
3475	spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3476	spd = ~(spd ^ lp->phy[lp->active].spd.value);
3477	spd &= lp->phy[lp->active].spd.mask;
3478    } else if (!lp->useSROM) {                      /* de500-xa */
3479	spd = ((~gep_rd(dev)) & GEP_SLNK);
3480    } else {
3481	if ((lp->ibn == 2) || !lp->asBitValid)
3482	    return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3483
3484	spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3485	          (lp->linkOK & ~lp->asBitValid);
3486    }
3487
3488    return spd;
3489}
3490
3491static int
3492is_100_up(struct net_device *dev)
3493{
3494    struct de4x5_private *lp = netdev_priv(dev);
3495    u_long iobase = dev->base_addr;
3496
3497    if (lp->useMII) {
3498	/* Double read for sticky bits & temporary drops */
3499	mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3500	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3501    } else if (!lp->useSROM) {                       /* de500-xa */
3502	return (~gep_rd(dev)) & GEP_SLNK;
3503    } else {
3504	if ((lp->ibn == 2) || !lp->asBitValid)
3505	    return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3506
3507        return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3508		(lp->linkOK & ~lp->asBitValid);
3509    }
3510}
3511
3512static int
3513is_10_up(struct net_device *dev)
3514{
3515    struct de4x5_private *lp = netdev_priv(dev);
3516    u_long iobase = dev->base_addr;
3517
3518    if (lp->useMII) {
3519	/* Double read for sticky bits & temporary drops */
3520	mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3521	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3522    } else if (!lp->useSROM) {                       /* de500-xa */
3523	return (~gep_rd(dev)) & GEP_LNP;
3524    } else {
3525	if ((lp->ibn == 2) || !lp->asBitValid)
3526	    return ((lp->chipset & ~0x00ff) == DC2114x) ?
3527		    (~inl(DE4X5_SISR)&SISR_LS10):
3528		    0;
3529
3530	return	(lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3531		(lp->linkOK & ~lp->asBitValid);
3532    }
3533}
3534
3535static int
3536is_anc_capable(struct net_device *dev)
3537{
3538    struct de4x5_private *lp = netdev_priv(dev);
3539    u_long iobase = dev->base_addr;
3540
3541    if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3542	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3543    } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3544	return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3545    } else {
3546	return 0;
3547    }
3548}
3549
3550/*
3551** Send a packet onto the media and watch for send errors that indicate the
3552** media is bad or unconnected.
3553*/
3554static int
3555ping_media(struct net_device *dev, int msec)
3556{
3557    struct de4x5_private *lp = netdev_priv(dev);
3558    u_long iobase = dev->base_addr;
3559    int sisr;
3560
3561    if (lp->timeout < 0) {
3562	lp->timeout = msec/100;
3563
3564	lp->tmp = lp->tx_new;                /* Remember the ring position */
3565	load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3566	lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
3567	outl(POLL_DEMAND, DE4X5_TPD);
3568    }
3569
3570    sisr = inl(DE4X5_SISR);
3571
3572    if ((!(sisr & SISR_NCR)) &&
3573	((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3574	 (--lp->timeout)) {
3575	sisr = 100 | TIMER_CB;
3576    } else {
3577	if ((!(sisr & SISR_NCR)) &&
3578	    !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3579	    lp->timeout) {
3580	    sisr = 0;
3581	} else {
3582	    sisr = 1;
3583	}
3584	lp->timeout = -1;
3585    }
3586
3587    return sisr;
3588}
3589
3590/*
3591** This function does 2 things: on Intels it kmalloc's another buffer to
3592** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3593** into which the packet is copied.
3594*/
3595static struct sk_buff *
3596de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3597{
3598    struct de4x5_private *lp = netdev_priv(dev);
3599    struct sk_buff *p;
3600
3601#if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3602    struct sk_buff *ret;
3603    u_long i=0, tmp;
3604
3605    p = netdev_alloc_skb(dev, IEEE802_3_SZ + DE4X5_ALIGN + 2);
3606    if (!p) return NULL;
3607
3608    tmp = virt_to_bus(p->data);
3609    i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3610    skb_reserve(p, i);
3611    lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3612
3613    ret = lp->rx_skb[index];
3614    lp->rx_skb[index] = p;
3615
3616    if ((u_long) ret > 1) {
3617	skb_put(ret, len);
3618    }
3619
3620    return ret;
3621
3622#else
3623    if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3624
3625    p = netdev_alloc_skb(dev, len + 2);
3626    if (!p) return NULL;
3627
3628    skb_reserve(p, 2);	                               /* Align */
3629    if (index < lp->rx_old) {                          /* Wrapped buffer */
3630	short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3631	skb_put_data(p, lp->rx_bufs + lp->rx_old * RX_BUFF_SZ, tlen);
3632	skb_put_data(p, lp->rx_bufs, len - tlen);
3633    } else {                                           /* Linear buffer */
3634	skb_put_data(p, lp->rx_bufs + lp->rx_old * RX_BUFF_SZ, len);
3635    }
3636
3637    return p;
3638#endif
3639}
3640
3641static void
3642de4x5_free_rx_buffs(struct net_device *dev)
3643{
3644    struct de4x5_private *lp = netdev_priv(dev);
3645    int i;
3646
3647    for (i=0; i<lp->rxRingSize; i++) {
3648	if ((u_long) lp->rx_skb[i] > 1) {
3649	    dev_kfree_skb(lp->rx_skb[i]);
3650	}
3651	lp->rx_ring[i].status = 0;
3652	lp->rx_skb[i] = (struct sk_buff *)1;    /* Dummy entry */
3653    }
3654}
3655
3656static void
3657de4x5_free_tx_buffs(struct net_device *dev)
3658{
3659    struct de4x5_private *lp = netdev_priv(dev);
3660    int i;
3661
3662    for (i=0; i<lp->txRingSize; i++) {
3663	if (lp->tx_skb[i])
3664	    de4x5_free_tx_buff(lp, i);
3665	lp->tx_ring[i].status = 0;
3666    }
3667
3668    /* Unload the locally queued packets */
3669    __skb_queue_purge(&lp->cache.queue);
3670}
3671
3672/*
3673** When a user pulls a connection, the DECchip can end up in a
3674** 'running - waiting for end of transmission' state. This means that we
3675** have to perform a chip soft reset to ensure that we can synchronize
3676** the hardware and software and make any media probes using a loopback
3677** packet meaningful.
3678*/
3679static void
3680de4x5_save_skbs(struct net_device *dev)
3681{
3682    struct de4x5_private *lp = netdev_priv(dev);
3683    u_long iobase = dev->base_addr;
3684    s32 omr;
3685
3686    if (!lp->cache.save_cnt) {
3687	STOP_DE4X5;
3688	de4x5_tx(dev);                          /* Flush any sent skb's */
3689	de4x5_free_tx_buffs(dev);
3690	de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3691	de4x5_sw_reset(dev);
3692	de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3693	lp->cache.save_cnt++;
3694	START_DE4X5;
3695    }
3696}
3697
3698static void
3699de4x5_rst_desc_ring(struct net_device *dev)
3700{
3701    struct de4x5_private *lp = netdev_priv(dev);
3702    u_long iobase = dev->base_addr;
3703    int i;
3704    s32 omr;
3705
3706    if (lp->cache.save_cnt) {
3707	STOP_DE4X5;
3708	outl(lp->dma_rings, DE4X5_RRBA);
3709	outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3710	     DE4X5_TRBA);
3711
3712	lp->rx_new = lp->rx_old = 0;
3713	lp->tx_new = lp->tx_old = 0;
3714
3715	for (i = 0; i < lp->rxRingSize; i++) {
3716	    lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3717	}
3718
3719	for (i = 0; i < lp->txRingSize; i++) {
3720	    lp->tx_ring[i].status = cpu_to_le32(0);
3721	}
3722
3723	barrier();
3724	lp->cache.save_cnt--;
3725	START_DE4X5;
3726    }
3727}
3728
3729static void
3730de4x5_cache_state(struct net_device *dev, int flag)
3731{
3732    struct de4x5_private *lp = netdev_priv(dev);
3733    u_long iobase = dev->base_addr;
3734
3735    switch(flag) {
3736      case DE4X5_SAVE_STATE:
3737	lp->cache.csr0 = inl(DE4X5_BMR);
3738	lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3739	lp->cache.csr7 = inl(DE4X5_IMR);
3740	break;
3741
3742      case DE4X5_RESTORE_STATE:
3743	outl(lp->cache.csr0, DE4X5_BMR);
3744	outl(lp->cache.csr6, DE4X5_OMR);
3745	outl(lp->cache.csr7, DE4X5_IMR);
3746	if (lp->chipset == DC21140) {
3747	    gep_wr(lp->cache.gepc, dev);
3748	    gep_wr(lp->cache.gep, dev);
3749	} else {
3750	    reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3751			                                      lp->cache.csr15);
3752	}
3753	break;
3754    }
3755}
3756
3757static void
3758de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3759{
3760    struct de4x5_private *lp = netdev_priv(dev);
3761
3762    __skb_queue_tail(&lp->cache.queue, skb);
3763}
3764
3765static void
3766de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3767{
3768    struct de4x5_private *lp = netdev_priv(dev);
3769
3770    __skb_queue_head(&lp->cache.queue, skb);
3771}
3772
3773static struct sk_buff *
3774de4x5_get_cache(struct net_device *dev)
3775{
3776    struct de4x5_private *lp = netdev_priv(dev);
3777
3778    return __skb_dequeue(&lp->cache.queue);
3779}
3780
3781/*
3782** Check the Auto Negotiation State. Return OK when a link pass interrupt
3783** is received and the auto-negotiation status is NWAY OK.
3784*/
3785static int
3786test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3787{
3788    struct de4x5_private *lp = netdev_priv(dev);
3789    u_long iobase = dev->base_addr;
3790    s32 sts, ans;
3791
3792    if (lp->timeout < 0) {
3793	lp->timeout = msec/100;
3794	outl(irq_mask, DE4X5_IMR);
3795
3796	/* clear all pending interrupts */
3797	sts = inl(DE4X5_STS);
3798	outl(sts, DE4X5_STS);
3799    }
3800
3801    ans = inl(DE4X5_SISR) & SISR_ANS;
3802    sts = inl(DE4X5_STS) & ~TIMER_CB;
3803
3804    if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3805	sts = 100 | TIMER_CB;
3806    } else {
3807	lp->timeout = -1;
3808    }
3809
3810    return sts;
3811}
3812
3813static void
3814de4x5_setup_intr(struct net_device *dev)
3815{
3816    struct de4x5_private *lp = netdev_priv(dev);
3817    u_long iobase = dev->base_addr;
3818    s32 imr, sts;
3819
3820    if (inl(DE4X5_OMR) & OMR_SR) {   /* Only unmask if TX/RX is enabled */
3821	imr = 0;
3822	UNMASK_IRQs;
3823	sts = inl(DE4X5_STS);        /* Reset any pending (stale) interrupts */
3824	outl(sts, DE4X5_STS);
3825	ENABLE_IRQs;
3826    }
3827}
3828
3829/*
3830**
3831*/
3832static void
3833reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3834{
3835    struct de4x5_private *lp = netdev_priv(dev);
3836    u_long iobase = dev->base_addr;
3837
3838    RESET_SIA;
3839    if (lp->useSROM) {
3840	if (lp->ibn == 3) {
3841	    srom_exec(dev, lp->phy[lp->active].rst);
3842	    srom_exec(dev, lp->phy[lp->active].gep);
3843	    outl(1, DE4X5_SICR);
3844	    return;
3845	} else {
3846	    csr15 = lp->cache.csr15;
3847	    csr14 = lp->cache.csr14;
3848	    csr13 = lp->cache.csr13;
3849	    outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3850	    outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3851	}
3852    } else {
3853	outl(csr15, DE4X5_SIGR);
3854    }
3855    outl(csr14, DE4X5_STRR);
3856    outl(csr13, DE4X5_SICR);
3857
3858    mdelay(10);
3859}
3860
3861/*
3862** Create a loopback ethernet packet
3863*/
3864static void
3865create_packet(struct net_device *dev, char *frame, int len)
3866{
3867    int i;
3868    char *buf = frame;
3869
3870    for (i=0; i<ETH_ALEN; i++) {             /* Use this source address */
3871	*buf++ = dev->dev_addr[i];
3872    }
3873    for (i=0; i<ETH_ALEN; i++) {             /* Use this destination address */
3874	*buf++ = dev->dev_addr[i];
3875    }
3876
3877    *buf++ = 0;                              /* Packet length (2 bytes) */
3878    *buf++ = 1;
3879}
3880
3881/*
3882** Look for a particular board name in the EISA configuration space
3883*/
3884static int
3885EISA_signature(char *name, struct device *device)
3886{
3887    int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3888    struct eisa_device *edev;
3889
3890    *name = '\0';
3891    edev = to_eisa_device (device);
3892    i = edev->id.driver_data;
3893
3894    if (i >= 0 && i < siglen) {
3895	    strcpy (name, de4x5_signatures[i]);
3896	    status = 1;
3897    }
3898
3899    return status;                         /* return the device name string */
3900}
3901
3902/*
3903** Look for a particular board name in the PCI configuration space
3904*/
3905static void
3906PCI_signature(char *name, struct de4x5_private *lp)
3907{
3908    int i, siglen = ARRAY_SIZE(de4x5_signatures);
3909
3910    if (lp->chipset == DC21040) {
3911	strcpy(name, "DE434/5");
3912	return;
3913    } else {                           /* Search for a DEC name in the SROM */
3914	int tmp = *((char *)&lp->srom + 19) * 3;
3915	strncpy(name, (char *)&lp->srom + 26 + tmp, 8);
3916    }
3917    name[8] = '\0';
3918    for (i=0; i<siglen; i++) {
3919	if (strstr(name,de4x5_signatures[i])!=NULL) break;
3920    }
3921    if (i == siglen) {
3922	if (dec_only) {
3923	    *name = '\0';
3924	} else {                        /* Use chip name to avoid confusion */
3925	    strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3926			   ((lp->chipset == DC21041) ? "DC21041" :
3927			    ((lp->chipset == DC21140) ? "DC21140" :
3928			     ((lp->chipset == DC21142) ? "DC21142" :
3929			      ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3930			     )))))));
3931	}
3932	if (lp->chipset != DC21041) {
3933	    lp->useSROM = true;             /* card is not recognisably DEC */
3934	}
3935    } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3936	lp->useSROM = true;
3937    }
3938}
3939
3940/*
3941** Set up the Ethernet PROM counter to the start of the Ethernet address on
3942** the DC21040, else  read the SROM for the other chips.
3943** The SROM may not be present in a multi-MAC card, so first read the
3944** MAC address and check for a bad address. If there is a bad one then exit
3945** immediately with the prior srom contents intact (the h/w address will
3946** be fixed up later).
3947*/
3948static void
3949DevicePresent(struct net_device *dev, u_long aprom_addr)
3950{
3951    int i, j=0;
3952    struct de4x5_private *lp = netdev_priv(dev);
3953
3954    if (lp->chipset == DC21040) {
3955	if (lp->bus == EISA) {
3956	    enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
3957	} else {
3958	    outl(0, aprom_addr);       /* Reset Ethernet Address ROM Pointer */
3959	}
3960    } else {                           /* Read new srom */
3961	u_short tmp;
3962	__le16 *p = (__le16 *)((char *)&lp->srom + SROM_HWADD);
3963	for (i=0; i<(ETH_ALEN>>1); i++) {
3964	    tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
3965	    j += tmp;	/* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
3966	    *p = cpu_to_le16(tmp);
3967	}
3968	if (j == 0 || j == 3 * 0xffff) {
3969		/* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
3970		return;
3971	}
3972
3973	p = (__le16 *)&lp->srom;
3974	for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
3975	    tmp = srom_rd(aprom_addr, i);
3976	    *p++ = cpu_to_le16(tmp);
3977	}
3978	de4x5_dbg_srom(&lp->srom);
3979    }
3980}
3981
3982/*
3983** Since the write on the Enet PROM register doesn't seem to reset the PROM
3984** pointer correctly (at least on my DE425 EISA card), this routine should do
3985** it...from depca.c.
3986*/
3987static void
3988enet_addr_rst(u_long aprom_addr)
3989{
3990    union {
3991	struct {
3992	    u32 a;
3993	    u32 b;
3994	} llsig;
3995	char Sig[sizeof(u32) << 1];
3996    } dev;
3997    short sigLength=0;
3998    s8 data;
3999    int i, j;
4000
4001    dev.llsig.a = ETH_PROM_SIG;
4002    dev.llsig.b = ETH_PROM_SIG;
4003    sigLength = sizeof(u32) << 1;
4004
4005    for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4006	data = inb(aprom_addr);
4007	if (dev.Sig[j] == data) {    /* track signature */
4008	    j++;
4009	} else {                     /* lost signature; begin search again */
4010	    if (data == dev.Sig[0]) {  /* rare case.... */
4011		j=1;
4012	    } else {
4013		j=0;
4014	    }
4015	}
4016    }
4017}
4018
4019/*
4020** For the bad status case and no SROM, then add one to the previous
4021** address. However, need to add one backwards in case we have 0xff
4022** as one or more of the bytes. Only the last 3 bytes should be checked
4023** as the first three are invariant - assigned to an organisation.
4024*/
4025static int
4026get_hw_addr(struct net_device *dev)
4027{
4028    u_long iobase = dev->base_addr;
4029    int broken, i, k, tmp, status = 0;
4030    u_short j,chksum;
4031    struct de4x5_private *lp = netdev_priv(dev);
4032
4033    broken = de4x5_bad_srom(lp);
4034
4035    for (i=0,k=0,j=0;j<3;j++) {
4036	k <<= 1;
4037	if (k > 0xffff) k-=0xffff;
4038
4039	if (lp->bus == PCI) {
4040	    if (lp->chipset == DC21040) {
4041		while ((tmp = inl(DE4X5_APROM)) < 0);
4042		k += (u_char) tmp;
4043		dev->dev_addr[i++] = (u_char) tmp;
4044		while ((tmp = inl(DE4X5_APROM)) < 0);
4045		k += (u_short) (tmp << 8);
4046		dev->dev_addr[i++] = (u_char) tmp;
4047	    } else if (!broken) {
4048		dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4049		dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4050	    } else if ((broken == SMC) || (broken == ACCTON)) {
4051		dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4052		dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4053	    }
4054	} else {
4055	    k += (u_char) (tmp = inb(EISA_APROM));
4056	    dev->dev_addr[i++] = (u_char) tmp;
4057	    k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4058	    dev->dev_addr[i++] = (u_char) tmp;
4059	}
4060
4061	if (k > 0xffff) k-=0xffff;
4062    }
4063    if (k == 0xffff) k=0;
4064
4065    if (lp->bus == PCI) {
4066	if (lp->chipset == DC21040) {
4067	    while ((tmp = inl(DE4X5_APROM)) < 0);
4068	    chksum = (u_char) tmp;
4069	    while ((tmp = inl(DE4X5_APROM)) < 0);
4070	    chksum |= (u_short) (tmp << 8);
4071	    if ((k != chksum) && (dec_only)) status = -1;
4072	}
4073    } else {
4074	chksum = (u_char) inb(EISA_APROM);
4075	chksum |= (u_short) (inb(EISA_APROM) << 8);
4076	if ((k != chksum) && (dec_only)) status = -1;
4077    }
4078
4079    /* If possible, try to fix a broken card - SMC only so far */
4080    srom_repair(dev, broken);
4081
4082#ifdef CONFIG_PPC_PMAC
4083    /*
4084    ** If the address starts with 00 a0, we have to bit-reverse
4085    ** each byte of the address.
4086    */
4087    if ( machine_is(powermac) &&
4088	 (dev->dev_addr[0] == 0) &&
4089	 (dev->dev_addr[1] == 0xa0) )
4090    {
4091	    for (i = 0; i < ETH_ALEN; ++i)
4092	    {
4093		    int x = dev->dev_addr[i];
4094		    x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4095		    x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4096		    dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4097	    }
4098    }
4099#endif /* CONFIG_PPC_PMAC */
4100
4101    /* Test for a bad enet address */
4102    status = test_bad_enet(dev, status);
4103
4104    return status;
4105}
4106
4107/*
4108** Test for enet addresses in the first 32 bytes.
4109*/
4110static int
4111de4x5_bad_srom(struct de4x5_private *lp)
4112{
4113    int i, status = 0;
4114
4115    for (i = 0; i < ARRAY_SIZE(enet_det); i++) {
4116	if (!memcmp(&lp->srom, &enet_det[i], 3) &&
4117	    !memcmp((char *)&lp->srom+0x10, &enet_det[i], 3)) {
4118	    if (i == 0) {
4119		status = SMC;
4120	    } else if (i == 1) {
4121		status = ACCTON;
4122	    }
4123	    break;
4124	}
4125    }
4126
4127    return status;
4128}
4129
4130static void
4131srom_repair(struct net_device *dev, int card)
4132{
4133    struct de4x5_private *lp = netdev_priv(dev);
4134
4135    switch(card) {
4136      case SMC:
4137	memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4138	memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4139	memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4140	lp->useSROM = true;
4141	break;
4142    }
4143}
4144
4145/*
4146** Assume that the irq's do not follow the PCI spec - this is seems
4147** to be true so far (2 for 2).
4148*/
4149static int
4150test_bad_enet(struct net_device *dev, int status)
4151{
4152    struct de4x5_private *lp = netdev_priv(dev);
4153    int i, tmp;
4154
4155    for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4156    if ((tmp == 0) || (tmp == 0x5fa)) {
4157	if ((lp->chipset == last.chipset) &&
4158	    (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4159	    for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4160	    for (i=ETH_ALEN-1; i>2; --i) {
4161		dev->dev_addr[i] += 1;
4162		if (dev->dev_addr[i] != 0) break;
4163	    }
4164	    for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4165	    if (!an_exception(lp)) {
4166		dev->irq = last.irq;
4167	    }
4168
4169	    status = 0;
4170	}
4171    } else if (!status) {
4172	last.chipset = lp->chipset;
4173	last.bus = lp->bus_num;
4174	last.irq = dev->irq;
4175	for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4176    }
4177
4178    return status;
4179}
4180
4181/*
4182** List of board exceptions with correctly wired IRQs
4183*/
4184static int
4185an_exception(struct de4x5_private *lp)
4186{
4187    if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4188	(*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4189	return -1;
4190    }
4191
4192    return 0;
4193}
4194
4195/*
4196** SROM Read
4197*/
4198static short
4199srom_rd(u_long addr, u_char offset)
4200{
4201    sendto_srom(SROM_RD | SROM_SR, addr);
4202
4203    srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4204    srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4205    srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4206
4207    return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4208}
4209
4210static void
4211srom_latch(u_int command, u_long addr)
4212{
4213    sendto_srom(command, addr);
4214    sendto_srom(command | DT_CLK, addr);
4215    sendto_srom(command, addr);
4216}
4217
4218static void
4219srom_command(u_int command, u_long addr)
4220{
4221    srom_latch(command, addr);
4222    srom_latch(command, addr);
4223    srom_latch((command & 0x0000ff00) | DT_CS, addr);
4224}
4225
4226static void
4227srom_address(u_int command, u_long addr, u_char offset)
4228{
4229    int i, a;
4230
4231    a = offset << 2;
4232    for (i=0; i<6; i++, a <<= 1) {
4233	srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4234    }
4235    udelay(1);
4236
4237    i = (getfrom_srom(addr) >> 3) & 0x01;
4238}
4239
4240static short
4241srom_data(u_int command, u_long addr)
4242{
4243    int i;
4244    short word = 0;
4245    s32 tmp;
4246
4247    for (i=0; i<16; i++) {
4248	sendto_srom(command  | DT_CLK, addr);
4249	tmp = getfrom_srom(addr);
4250	sendto_srom(command, addr);
4251
4252	word = (word << 1) | ((tmp >> 3) & 0x01);
4253    }
4254
4255    sendto_srom(command & 0x0000ff00, addr);
4256
4257    return word;
4258}
4259
4260/*
4261static void
4262srom_busy(u_int command, u_long addr)
4263{
4264   sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4265
4266   while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4267       mdelay(1);
4268   }
4269
4270   sendto_srom(command & 0x0000ff00, addr);
4271}
4272*/
4273
4274static void
4275sendto_srom(u_int command, u_long addr)
4276{
4277    outl(command, addr);
4278    udelay(1);
4279}
4280
4281static int
4282getfrom_srom(u_long addr)
4283{
4284    s32 tmp;
4285
4286    tmp = inl(addr);
4287    udelay(1);
4288
4289    return tmp;
4290}
4291
4292static int
4293srom_infoleaf_info(struct net_device *dev)
4294{
4295    struct de4x5_private *lp = netdev_priv(dev);
4296    int i, count;
4297    u_char *p;
4298
4299    /* Find the infoleaf decoder function that matches this chipset */
4300    for (i=0; i<INFOLEAF_SIZE; i++) {
4301	if (lp->chipset == infoleaf_array[i].chipset) break;
4302    }
4303    if (i == INFOLEAF_SIZE) {
4304	lp->useSROM = false;
4305	printk("%s: Cannot find correct chipset for SROM decoding!\n",
4306	                                                          dev->name);
4307	return -ENXIO;
4308    }
4309
4310    lp->infoleaf_fn = infoleaf_array[i].fn;
4311
4312    /* Find the information offset that this function should use */
4313    count = *((u_char *)&lp->srom + 19);
4314    p  = (u_char *)&lp->srom + 26;
4315
4316    if (count > 1) {
4317	for (i=count; i; --i, p+=3) {
4318	    if (lp->device == *p) break;
4319	}
4320	if (i == 0) {
4321	    lp->useSROM = false;
4322	    printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4323	                                               dev->name, lp->device);
4324	    return -ENXIO;
4325	}
4326    }
4327
4328	lp->infoleaf_offset = get_unaligned_le16(p + 1);
4329
4330    return 0;
4331}
4332
4333/*
4334** This routine loads any type 1 or 3 MII info into the mii device
4335** struct and executes any type 5 code to reset PHY devices for this
4336** controller.
4337** The info for the MII devices will be valid since the index used
4338** will follow the discovery process from MII address 1-31 then 0.
4339*/
4340static void
4341srom_init(struct net_device *dev)
4342{
4343    struct de4x5_private *lp = netdev_priv(dev);
4344    u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4345    u_char count;
4346
4347    p+=2;
4348    if (lp->chipset == DC21140) {
4349	lp->cache.gepc = (*p++ | GEP_CTRL);
4350	gep_wr(lp->cache.gepc, dev);
4351    }
4352
4353    /* Block count */
4354    count = *p++;
4355
4356    /* Jump the infoblocks to find types */
4357    for (;count; --count) {
4358	if (*p < 128) {
4359	    p += COMPACT_LEN;
4360	} else if (*(p+1) == 5) {
4361	    type5_infoblock(dev, 1, p);
4362	    p += ((*p & BLOCK_LEN) + 1);
4363	} else if (*(p+1) == 4) {
4364	    p += ((*p & BLOCK_LEN) + 1);
4365	} else if (*(p+1) == 3) {
4366	    type3_infoblock(dev, 1, p);
4367	    p += ((*p & BLOCK_LEN) + 1);
4368	} else if (*(p+1) == 2) {
4369	    p += ((*p & BLOCK_LEN) + 1);
4370	} else if (*(p+1) == 1) {
4371	    type1_infoblock(dev, 1, p);
4372	    p += ((*p & BLOCK_LEN) + 1);
4373	} else {
4374	    p += ((*p & BLOCK_LEN) + 1);
4375	}
4376    }
4377}
4378
4379/*
4380** A generic routine that writes GEP control, data and reset information
4381** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4382*/
4383static void
4384srom_exec(struct net_device *dev, u_char *p)
4385{
4386    struct de4x5_private *lp = netdev_priv(dev);
4387    u_long iobase = dev->base_addr;
4388    u_char count = (p ? *p++ : 0);
4389    u_short *w = (u_short *)p;
4390
4391    if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4392
4393    if (lp->chipset != DC21140) RESET_SIA;
4394
4395    while (count--) {
4396	gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4397		                                   *p++ : get_unaligned_le16(w++)), dev);
4398	mdelay(2);                          /* 2ms per action */
4399    }
4400
4401    if (lp->chipset != DC21140) {
4402	outl(lp->cache.csr14, DE4X5_STRR);
4403	outl(lp->cache.csr13, DE4X5_SICR);
4404    }
4405}
4406
4407/*
4408** Basically this function is a NOP since it will never be called,
4409** unless I implement the DC21041 SROM functions. There's no need
4410** since the existing code will be satisfactory for all boards.
4411*/
4412static int
4413dc21041_infoleaf(struct net_device *dev)
4414{
4415    return DE4X5_AUTOSENSE_MS;
4416}
4417
4418static int
4419dc21140_infoleaf(struct net_device *dev)
4420{
4421    struct de4x5_private *lp = netdev_priv(dev);
4422    u_char count = 0;
4423    u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4424    int next_tick = DE4X5_AUTOSENSE_MS;
4425
4426    /* Read the connection type */
4427    p+=2;
4428
4429    /* GEP control */
4430    lp->cache.gepc = (*p++ | GEP_CTRL);
4431
4432    /* Block count */
4433    count = *p++;
4434
4435    /* Recursively figure out the info blocks */
4436    if (*p < 128) {
4437	next_tick = dc_infoblock[COMPACT](dev, count, p);
4438    } else {
4439	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4440    }
4441
4442    if (lp->tcount == count) {
4443	lp->media = NC;
4444        if (lp->media != lp->c_media) {
4445	    de4x5_dbg_media(dev);
4446	    lp->c_media = lp->media;
4447	}
4448	lp->media = INIT;
4449	lp->tcount = 0;
4450	lp->tx_enable = false;
4451    }
4452
4453    return next_tick & ~TIMER_CB;
4454}
4455
4456static int
4457dc21142_infoleaf(struct net_device *dev)
4458{
4459    struct de4x5_private *lp = netdev_priv(dev);
4460    u_char count = 0;
4461    u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4462    int next_tick = DE4X5_AUTOSENSE_MS;
4463
4464    /* Read the connection type */
4465    p+=2;
4466
4467    /* Block count */
4468    count = *p++;
4469
4470    /* Recursively figure out the info blocks */
4471    if (*p < 128) {
4472	next_tick = dc_infoblock[COMPACT](dev, count, p);
4473    } else {
4474	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4475    }
4476
4477    if (lp->tcount == count) {
4478	lp->media = NC;
4479        if (lp->media != lp->c_media) {
4480	    de4x5_dbg_media(dev);
4481	    lp->c_media = lp->media;
4482	}
4483	lp->media = INIT;
4484	lp->tcount = 0;
4485	lp->tx_enable = false;
4486    }
4487
4488    return next_tick & ~TIMER_CB;
4489}
4490
4491static int
4492dc21143_infoleaf(struct net_device *dev)
4493{
4494    struct de4x5_private *lp = netdev_priv(dev);
4495    u_char count = 0;
4496    u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4497    int next_tick = DE4X5_AUTOSENSE_MS;
4498
4499    /* Read the connection type */
4500    p+=2;
4501
4502    /* Block count */
4503    count = *p++;
4504
4505    /* Recursively figure out the info blocks */
4506    if (*p < 128) {
4507	next_tick = dc_infoblock[COMPACT](dev, count, p);
4508    } else {
4509	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4510    }
4511    if (lp->tcount == count) {
4512	lp->media = NC;
4513        if (lp->media != lp->c_media) {
4514	    de4x5_dbg_media(dev);
4515	    lp->c_media = lp->media;
4516	}
4517	lp->media = INIT;
4518	lp->tcount = 0;
4519	lp->tx_enable = false;
4520    }
4521
4522    return next_tick & ~TIMER_CB;
4523}
4524
4525/*
4526** The compact infoblock is only designed for DC21140[A] chips, so
4527** we'll reuse the dc21140m_autoconf function. Non MII media only.
4528*/
4529static int
4530compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4531{
4532    struct de4x5_private *lp = netdev_priv(dev);
4533    u_char flags, csr6;
4534
4535    /* Recursively figure out the info blocks */
4536    if (--count > lp->tcount) {
4537	if (*(p+COMPACT_LEN) < 128) {
4538	    return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4539	} else {
4540	    return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4541	}
4542    }
4543
4544    if ((lp->media == INIT) && (lp->timeout < 0)) {
4545        lp->ibn = COMPACT;
4546        lp->active = 0;
4547	gep_wr(lp->cache.gepc, dev);
4548	lp->infoblock_media = (*p++) & COMPACT_MC;
4549	lp->cache.gep = *p++;
4550	csr6 = *p++;
4551	flags = *p++;
4552
4553	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4554	lp->defMedium = (flags & 0x40) ? -1 : 0;
4555	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4556	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4557	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4558	lp->useMII = false;
4559
4560	de4x5_switch_mac_port(dev);
4561    }
4562
4563    return dc21140m_autoconf(dev);
4564}
4565
4566/*
4567** This block describes non MII media for the DC21140[A] only.
4568*/
4569static int
4570type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4571{
4572    struct de4x5_private *lp = netdev_priv(dev);
4573    u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4574
4575    /* Recursively figure out the info blocks */
4576    if (--count > lp->tcount) {
4577	if (*(p+len) < 128) {
4578	    return dc_infoblock[COMPACT](dev, count, p+len);
4579	} else {
4580	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4581	}
4582    }
4583
4584    if ((lp->media == INIT) && (lp->timeout < 0)) {
4585        lp->ibn = 0;
4586        lp->active = 0;
4587        gep_wr(lp->cache.gepc, dev);
4588	p+=2;
4589	lp->infoblock_media = (*p++) & BLOCK0_MC;
4590	lp->cache.gep = *p++;
4591	csr6 = *p++;
4592	flags = *p++;
4593
4594	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4595	lp->defMedium = (flags & 0x40) ? -1 : 0;
4596	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4597	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4598	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4599	lp->useMII = false;
4600
4601	de4x5_switch_mac_port(dev);
4602    }
4603
4604    return dc21140m_autoconf(dev);
4605}
4606
4607/* These functions are under construction! */
4608
4609static int
4610type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4611{
4612    struct de4x5_private *lp = netdev_priv(dev);
4613    u_char len = (*p & BLOCK_LEN)+1;
4614
4615    /* Recursively figure out the info blocks */
4616    if (--count > lp->tcount) {
4617	if (*(p+len) < 128) {
4618	    return dc_infoblock[COMPACT](dev, count, p+len);
4619	} else {
4620	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4621	}
4622    }
4623
4624    p += 2;
4625    if (lp->state == INITIALISED) {
4626        lp->ibn = 1;
4627	lp->active = *p++;
4628	lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4629	lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4630	lp->phy[lp->active].mc  = get_unaligned_le16(p); p += 2;
4631	lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4632	lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4633	lp->phy[lp->active].ttm = get_unaligned_le16(p);
4634	return 0;
4635    } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4636        lp->ibn = 1;
4637        lp->active = *p;
4638	lp->infoblock_csr6 = OMR_MII_100;
4639	lp->useMII = true;
4640	lp->infoblock_media = ANS;
4641
4642	de4x5_switch_mac_port(dev);
4643    }
4644
4645    return dc21140m_autoconf(dev);
4646}
4647
4648static int
4649type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4650{
4651    struct de4x5_private *lp = netdev_priv(dev);
4652    u_char len = (*p & BLOCK_LEN)+1;
4653
4654    /* Recursively figure out the info blocks */
4655    if (--count > lp->tcount) {
4656	if (*(p+len) < 128) {
4657	    return dc_infoblock[COMPACT](dev, count, p+len);
4658	} else {
4659	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4660	}
4661    }
4662
4663    if ((lp->media == INIT) && (lp->timeout < 0)) {
4664        lp->ibn = 2;
4665        lp->active = 0;
4666	p += 2;
4667	lp->infoblock_media = (*p) & MEDIA_CODE;
4668
4669        if ((*p++) & EXT_FIELD) {
4670	    lp->cache.csr13 = get_unaligned_le16(p); p += 2;
4671	    lp->cache.csr14 = get_unaligned_le16(p); p += 2;
4672	    lp->cache.csr15 = get_unaligned_le16(p); p += 2;
4673	} else {
4674	    lp->cache.csr13 = CSR13;
4675	    lp->cache.csr14 = CSR14;
4676	    lp->cache.csr15 = CSR15;
4677	}
4678        lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4679        lp->cache.gep  = ((s32)(get_unaligned_le16(p)) << 16);
4680	lp->infoblock_csr6 = OMR_SIA;
4681	lp->useMII = false;
4682
4683	de4x5_switch_mac_port(dev);
4684    }
4685
4686    return dc2114x_autoconf(dev);
4687}
4688
4689static int
4690type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4691{
4692    struct de4x5_private *lp = netdev_priv(dev);
4693    u_char len = (*p & BLOCK_LEN)+1;
4694
4695    /* Recursively figure out the info blocks */
4696    if (--count > lp->tcount) {
4697	if (*(p+len) < 128) {
4698	    return dc_infoblock[COMPACT](dev, count, p+len);
4699	} else {
4700	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4701	}
4702    }
4703
4704    p += 2;
4705    if (lp->state == INITIALISED) {
4706        lp->ibn = 3;
4707        lp->active = *p++;
4708	if (MOTO_SROM_BUG) lp->active = 0;
4709	lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4710	lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4711	lp->phy[lp->active].mc  = get_unaligned_le16(p); p += 2;
4712	lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4713	lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4714	lp->phy[lp->active].ttm = get_unaligned_le16(p); p += 2;
4715	lp->phy[lp->active].mci = *p;
4716	return 0;
4717    } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4718        lp->ibn = 3;
4719	lp->active = *p;
4720	if (MOTO_SROM_BUG) lp->active = 0;
4721	lp->infoblock_csr6 = OMR_MII_100;
4722	lp->useMII = true;
4723	lp->infoblock_media = ANS;
4724
4725	de4x5_switch_mac_port(dev);
4726    }
4727
4728    return dc2114x_autoconf(dev);
4729}
4730
4731static int
4732type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4733{
4734    struct de4x5_private *lp = netdev_priv(dev);
4735    u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4736
4737    /* Recursively figure out the info blocks */
4738    if (--count > lp->tcount) {
4739	if (*(p+len) < 128) {
4740	    return dc_infoblock[COMPACT](dev, count, p+len);
4741	} else {
4742	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4743	}
4744    }
4745
4746    if ((lp->media == INIT) && (lp->timeout < 0)) {
4747        lp->ibn = 4;
4748        lp->active = 0;
4749	p+=2;
4750	lp->infoblock_media = (*p++) & MEDIA_CODE;
4751        lp->cache.csr13 = CSR13;              /* Hard coded defaults */
4752	lp->cache.csr14 = CSR14;
4753	lp->cache.csr15 = CSR15;
4754        lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4755        lp->cache.gep  = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4756	csr6 = *p++;
4757	flags = *p++;
4758
4759	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4760	lp->defMedium = (flags & 0x40) ? -1 : 0;
4761	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4762	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4763	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4764	lp->useMII = false;
4765
4766	de4x5_switch_mac_port(dev);
4767    }
4768
4769    return dc2114x_autoconf(dev);
4770}
4771
4772/*
4773** This block type provides information for resetting external devices
4774** (chips) through the General Purpose Register.
4775*/
4776static int
4777type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4778{
4779    struct de4x5_private *lp = netdev_priv(dev);
4780    u_char len = (*p & BLOCK_LEN)+1;
4781
4782    /* Recursively figure out the info blocks */
4783    if (--count > lp->tcount) {
4784	if (*(p+len) < 128) {
4785	    return dc_infoblock[COMPACT](dev, count, p+len);
4786	} else {
4787	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4788	}
4789    }
4790
4791    /* Must be initializing to run this code */
4792    if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4793	p+=2;
4794        lp->rst = p;
4795        srom_exec(dev, lp->rst);
4796    }
4797
4798    return DE4X5_AUTOSENSE_MS;
4799}
4800
4801/*
4802** MII Read/Write
4803*/
4804
4805static int
4806mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4807{
4808    mii_wdata(MII_PREAMBLE,  2, ioaddr);   /* Start of 34 bit preamble...    */
4809    mii_wdata(MII_PREAMBLE, 32, ioaddr);   /* ...continued                   */
4810    mii_wdata(MII_STRD, 4, ioaddr);        /* SFD and Read operation         */
4811    mii_address(phyaddr, ioaddr);          /* PHY address to be accessed     */
4812    mii_address(phyreg, ioaddr);           /* PHY Register to read           */
4813    mii_ta(MII_STRD, ioaddr);              /* Turn around time - 2 MDC       */
4814
4815    return mii_rdata(ioaddr);              /* Read data                      */
4816}
4817
4818static void
4819mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4820{
4821    mii_wdata(MII_PREAMBLE,  2, ioaddr);   /* Start of 34 bit preamble...    */
4822    mii_wdata(MII_PREAMBLE, 32, ioaddr);   /* ...continued                   */
4823    mii_wdata(MII_STWR, 4, ioaddr);        /* SFD and Write operation        */
4824    mii_address(phyaddr, ioaddr);          /* PHY address to be accessed     */
4825    mii_address(phyreg, ioaddr);           /* PHY Register to write          */
4826    mii_ta(MII_STWR, ioaddr);              /* Turn around time - 2 MDC       */
4827    data = mii_swap(data, 16);             /* Swap data bit ordering         */
4828    mii_wdata(data, 16, ioaddr);           /* Write data                     */
4829}
4830
4831static int
4832mii_rdata(u_long ioaddr)
4833{
4834    int i;
4835    s32 tmp = 0;
4836
4837    for (i=0; i<16; i++) {
4838	tmp <<= 1;
4839	tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4840    }
4841
4842    return tmp;
4843}
4844
4845static void
4846mii_wdata(int data, int len, u_long ioaddr)
4847{
4848    int i;
4849
4850    for (i=0; i<len; i++) {
4851	sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4852	data >>= 1;
4853    }
4854}
4855
4856static void
4857mii_address(u_char addr, u_long ioaddr)
4858{
4859    int i;
4860
4861    addr = mii_swap(addr, 5);
4862    for (i=0; i<5; i++) {
4863	sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4864	addr >>= 1;
4865    }
4866}
4867
4868static void
4869mii_ta(u_long rw, u_long ioaddr)
4870{
4871    if (rw == MII_STWR) {
4872	sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4873	sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4874    } else {
4875	getfrom_mii(MII_MRD | MII_RD, ioaddr);        /* Tri-state MDIO */
4876    }
4877}
4878
4879static int
4880mii_swap(int data, int len)
4881{
4882    int i, tmp = 0;
4883
4884    for (i=0; i<len; i++) {
4885	tmp <<= 1;
4886	tmp |= (data & 1);
4887	data >>= 1;
4888    }
4889
4890    return tmp;
4891}
4892
4893static void
4894sendto_mii(u32 command, int data, u_long ioaddr)
4895{
4896    u32 j;
4897
4898    j = (data & 1) << 17;
4899    outl(command | j, ioaddr);
4900    udelay(1);
4901    outl(command | MII_MDC | j, ioaddr);
4902    udelay(1);
4903}
4904
4905static int
4906getfrom_mii(u32 command, u_long ioaddr)
4907{
4908    outl(command, ioaddr);
4909    udelay(1);
4910    outl(command | MII_MDC, ioaddr);
4911    udelay(1);
4912
4913    return (inl(ioaddr) >> 19) & 1;
4914}
4915
4916/*
4917** Here's 3 ways to calculate the OUI from the ID registers.
4918*/
4919static int
4920mii_get_oui(u_char phyaddr, u_long ioaddr)
4921{
4922/*
4923    union {
4924	u_short reg;
4925	u_char breg[2];
4926    } a;
4927    int i, r2, r3, ret=0;*/
4928    int r2, r3;
4929
4930    /* Read r2 and r3 */
4931    r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
4932    r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
4933                                                /* SEEQ and Cypress way * /
4934    / * Shuffle r2 and r3 * /
4935    a.reg=0;
4936    r3 = ((r3>>10)|(r2<<6))&0x0ff;
4937    r2 = ((r2>>2)&0x3fff);
4938
4939    / * Bit reverse r3 * /
4940    for (i=0;i<8;i++) {
4941	ret<<=1;
4942	ret |= (r3&1);
4943	r3>>=1;
4944    }
4945
4946    / * Bit reverse r2 * /
4947    for (i=0;i<16;i++) {
4948	a.reg<<=1;
4949	a.reg |= (r2&1);
4950	r2>>=1;
4951    }
4952
4953    / * Swap r2 bytes * /
4954    i=a.breg[0];
4955    a.breg[0]=a.breg[1];
4956    a.breg[1]=i;
4957
4958    return (a.reg<<8)|ret; */                 /* SEEQ and Cypress way */
4959/*    return (r2<<6)|(u_int)(r3>>10); */      /* NATIONAL and BROADCOM way */
4960    return r2;                                  /* (I did it) My way */
4961}
4962
4963/*
4964** The SROM spec forces us to search addresses [1-31 0]. Bummer.
4965*/
4966static int
4967mii_get_phy(struct net_device *dev)
4968{
4969    struct de4x5_private *lp = netdev_priv(dev);
4970    u_long iobase = dev->base_addr;
4971    int i, j, k, n, limit=ARRAY_SIZE(phy_info);
4972    int id;
4973
4974    lp->active = 0;
4975    lp->useMII = true;
4976
4977    /* Search the MII address space for possible PHY devices */
4978    for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
4979	lp->phy[lp->active].addr = i;
4980	if (i==0) n++;                             /* Count cycles */
4981	while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
4982	id = mii_get_oui(i, DE4X5_MII);
4983	if ((id == 0) || (id == 65535)) continue;  /* Valid ID? */
4984	for (j=0; j<limit; j++) {                  /* Search PHY table */
4985	    if (id != phy_info[j].id) continue;    /* ID match? */
4986	    for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4987	    if (k < DE4X5_MAX_PHY) {
4988		memcpy((char *)&lp->phy[k],
4989		       (char *)&phy_info[j], sizeof(struct phy_table));
4990		lp->phy[k].addr = i;
4991		lp->mii_cnt++;
4992		lp->active++;
4993	    } else {
4994		goto purgatory;                    /* Stop the search */
4995	    }
4996	    break;
4997	}
4998	if ((j == limit) && (i < DE4X5_MAX_MII)) {
4999	    for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
5000	    lp->phy[k].addr = i;
5001	    lp->phy[k].id = id;
5002	    lp->phy[k].spd.reg = GENERIC_REG;      /* ANLPA register         */
5003	    lp->phy[k].spd.mask = GENERIC_MASK;    /* 100Mb/s technologies   */
5004	    lp->phy[k].spd.value = GENERIC_VALUE;  /* TX & T4, H/F Duplex    */
5005	    lp->mii_cnt++;
5006	    lp->active++;
5007	    printk("%s: Using generic MII device control. If the board doesn't operate,\nplease mail the following dump to the author:\n", dev->name);
5008	    j = de4x5_debug;
5009	    de4x5_debug |= DEBUG_MII;
5010	    de4x5_dbg_mii(dev, k);
5011	    de4x5_debug = j;
5012	    printk("\n");
5013	}
5014    }
5015  purgatory:
5016    lp->active = 0;
5017    if (lp->phy[0].id) {                           /* Reset the PHY devices */
5018	for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++) { /*For each PHY*/
5019	    mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5020	    while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5021
5022	    de4x5_dbg_mii(dev, k);
5023	}
5024    }
5025    if (!lp->mii_cnt) lp->useMII = false;
5026
5027    return lp->mii_cnt;
5028}
5029
5030static char *
5031build_setup_frame(struct net_device *dev, int mode)
5032{
5033    struct de4x5_private *lp = netdev_priv(dev);
5034    int i;
5035    char *pa = lp->setup_frame;
5036
5037    /* Initialise the setup frame */
5038    if (mode == ALL) {
5039	memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5040    }
5041
5042    if (lp->setup_f == HASH_PERF) {
5043	for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5044	    *(pa + i) = dev->dev_addr[i];                 /* Host address */
5045	    if (i & 0x01) pa += 2;
5046	}
5047	*(lp->setup_frame + (DE4X5_HASH_TABLE_LEN >> 3) - 3) = 0x80;
5048    } else {
5049	for (i=0; i<ETH_ALEN; i++) { /* Host address */
5050	    *(pa + (i&1)) = dev->dev_addr[i];
5051	    if (i & 0x01) pa += 4;
5052	}
5053	for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5054	    *(pa + (i&1)) = (char) 0xff;
5055	    if (i & 0x01) pa += 4;
5056	}
5057    }
5058
5059    return pa;                     /* Points to the next entry */
5060}
5061
5062static void
5063disable_ast(struct net_device *dev)
5064{
5065	struct de4x5_private *lp = netdev_priv(dev);
5066	del_timer_sync(&lp->timer);
5067}
5068
5069static long
5070de4x5_switch_mac_port(struct net_device *dev)
5071{
5072    struct de4x5_private *lp = netdev_priv(dev);
5073    u_long iobase = dev->base_addr;
5074    s32 omr;
5075
5076    STOP_DE4X5;
5077
5078    /* Assert the OMR_PS bit in CSR6 */
5079    omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5080			                                             OMR_FDX));
5081    omr |= lp->infoblock_csr6;
5082    if (omr & OMR_PS) omr |= OMR_HBD;
5083    outl(omr, DE4X5_OMR);
5084
5085    /* Soft Reset */
5086    RESET_DE4X5;
5087
5088    /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5089    if (lp->chipset == DC21140) {
5090	gep_wr(lp->cache.gepc, dev);
5091	gep_wr(lp->cache.gep, dev);
5092    } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5093	reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5094    }
5095
5096    /* Restore CSR6 */
5097    outl(omr, DE4X5_OMR);
5098
5099    /* Reset CSR8 */
5100    inl(DE4X5_MFC);
5101
5102    return omr;
5103}
5104
5105static void
5106gep_wr(s32 data, struct net_device *dev)
5107{
5108    struct de4x5_private *lp = netdev_priv(dev);
5109    u_long iobase = dev->base_addr;
5110
5111    if (lp->chipset == DC21140) {
5112	outl(data, DE4X5_GEP);
5113    } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5114	outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5115    }
5116}
5117
5118static int
5119gep_rd(struct net_device *dev)
5120{
5121    struct de4x5_private *lp = netdev_priv(dev);
5122    u_long iobase = dev->base_addr;
5123
5124    if (lp->chipset == DC21140) {
5125	return inl(DE4X5_GEP);
5126    } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5127	return inl(DE4X5_SIGR) & 0x000fffff;
5128    }
5129
5130    return 0;
5131}
5132
5133static void
5134yawn(struct net_device *dev, int state)
5135{
5136    struct de4x5_private *lp = netdev_priv(dev);
5137    u_long iobase = dev->base_addr;
5138
5139    if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5140
5141    if(lp->bus == EISA) {
5142	switch(state) {
5143	  case WAKEUP:
5144	    outb(WAKEUP, PCI_CFPM);
5145	    mdelay(10);
5146	    break;
5147
5148	  case SNOOZE:
5149	    outb(SNOOZE, PCI_CFPM);
5150	    break;
5151
5152	  case SLEEP:
5153	    outl(0, DE4X5_SICR);
5154	    outb(SLEEP, PCI_CFPM);
5155	    break;
5156	}
5157    } else {
5158	struct pci_dev *pdev = to_pci_dev (lp->gendev);
5159	switch(state) {
5160	  case WAKEUP:
5161	    pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5162	    mdelay(10);
5163	    break;
5164
5165	  case SNOOZE:
5166	    pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5167	    break;
5168
5169	  case SLEEP:
5170	    outl(0, DE4X5_SICR);
5171	    pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5172	    break;
5173	}
5174    }
5175}
5176
5177static void
5178de4x5_parse_params(struct net_device *dev)
5179{
5180    struct de4x5_private *lp = netdev_priv(dev);
5181    char *p, *q, t;
5182
5183    lp->params.fdx = false;
5184    lp->params.autosense = AUTO;
5185
5186    if (args == NULL) return;
5187
5188    if ((p = strstr(args, dev->name))) {
5189	if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5190	t = *q;
5191	*q = '\0';
5192
5193	if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = true;
5194
5195	if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5196	    if (strstr(p, "TP_NW")) {
5197		lp->params.autosense = TP_NW;
5198	    } else if (strstr(p, "TP")) {
5199		lp->params.autosense = TP;
5200	    } else if (strstr(p, "BNC_AUI")) {
5201		lp->params.autosense = BNC;
5202	    } else if (strstr(p, "BNC")) {
5203		lp->params.autosense = BNC;
5204	    } else if (strstr(p, "AUI")) {
5205		lp->params.autosense = AUI;
5206	    } else if (strstr(p, "10Mb")) {
5207		lp->params.autosense = _10Mb;
5208	    } else if (strstr(p, "100Mb")) {
5209		lp->params.autosense = _100Mb;
5210	    } else if (strstr(p, "AUTO")) {
5211		lp->params.autosense = AUTO;
5212	    }
5213	}
5214	*q = t;
5215    }
5216}
5217
5218static void
5219de4x5_dbg_open(struct net_device *dev)
5220{
5221    struct de4x5_private *lp = netdev_priv(dev);
5222    int i;
5223
5224    if (de4x5_debug & DEBUG_OPEN) {
5225	printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5226	printk("\tphysical address: %pM\n", dev->dev_addr);
5227	printk("Descriptor head addresses:\n");
5228	printk("\t0x%8.8lx  0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5229	printk("Descriptor addresses:\nRX: ");
5230	for (i=0;i<lp->rxRingSize-1;i++){
5231	    if (i < 3) {
5232		printk("0x%8.8lx  ",(u_long)&lp->rx_ring[i].status);
5233	    }
5234	}
5235	printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5236	printk("TX: ");
5237	for (i=0;i<lp->txRingSize-1;i++){
5238	    if (i < 3) {
5239		printk("0x%8.8lx  ", (u_long)&lp->tx_ring[i].status);
5240	    }
5241	}
5242	printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5243	printk("Descriptor buffers:\nRX: ");
5244	for (i=0;i<lp->rxRingSize-1;i++){
5245	    if (i < 3) {
5246		printk("0x%8.8x  ",le32_to_cpu(lp->rx_ring[i].buf));
5247	    }
5248	}
5249	printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5250	printk("TX: ");
5251	for (i=0;i<lp->txRingSize-1;i++){
5252	    if (i < 3) {
5253		printk("0x%8.8x  ", le32_to_cpu(lp->tx_ring[i].buf));
5254	    }
5255	}
5256	printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5257	printk("Ring size:\nRX: %d\nTX: %d\n",
5258	       (short)lp->rxRingSize,
5259	       (short)lp->txRingSize);
5260    }
5261}
5262
5263static void
5264de4x5_dbg_mii(struct net_device *dev, int k)
5265{
5266    struct de4x5_private *lp = netdev_priv(dev);
5267    u_long iobase = dev->base_addr;
5268
5269    if (de4x5_debug & DEBUG_MII) {
5270	printk("\nMII device address: %d\n", lp->phy[k].addr);
5271	printk("MII CR:  %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5272	printk("MII SR:  %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5273	printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5274	printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5275	if (lp->phy[k].id != BROADCOM_T4) {
5276	    printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5277	    printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5278	}
5279	printk("MII 16:  %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5280	if (lp->phy[k].id != BROADCOM_T4) {
5281	    printk("MII 17:  %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5282	    printk("MII 18:  %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5283	} else {
5284	    printk("MII 20:  %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5285	}
5286    }
5287}
5288
5289static void
5290de4x5_dbg_media(struct net_device *dev)
5291{
5292    struct de4x5_private *lp = netdev_priv(dev);
5293
5294    if (lp->media != lp->c_media) {
5295	if (de4x5_debug & DEBUG_MEDIA) {
5296	    printk("%s: media is %s%s\n", dev->name,
5297		   (lp->media == NC  ? "unconnected, link down or incompatible connection" :
5298		    (lp->media == TP  ? "TP" :
5299		     (lp->media == ANS ? "TP/Nway" :
5300		      (lp->media == BNC ? "BNC" :
5301		       (lp->media == AUI ? "AUI" :
5302			(lp->media == BNC_AUI ? "BNC/AUI" :
5303			 (lp->media == EXT_SIA ? "EXT SIA" :
5304			  (lp->media == _100Mb  ? "100Mb/s" :
5305			   (lp->media == _10Mb   ? "10Mb/s" :
5306			    "???"
5307			    ))))))))), (lp->fdx?" full duplex.":"."));
5308	}
5309	lp->c_media = lp->media;
5310    }
5311}
5312
5313static void
5314de4x5_dbg_srom(struct de4x5_srom *p)
5315{
5316    int i;
5317
5318    if (de4x5_debug & DEBUG_SROM) {
5319	printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5320	printk("Sub-system ID:        %04x\n", *((u_short *)p->sub_system_id));
5321	printk("ID Block CRC:         %02x\n", (u_char)(p->id_block_crc));
5322	printk("SROM version:         %02x\n", (u_char)(p->version));
5323	printk("# controllers:        %02x\n", (u_char)(p->num_controllers));
5324
5325	printk("Hardware Address:     %pM\n", p->ieee_addr);
5326	printk("CRC checksum:         %04x\n", (u_short)(p->chksum));
5327	for (i=0; i<64; i++) {
5328	    printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5329	}
5330    }
5331}
5332
5333static void
5334de4x5_dbg_rx(struct sk_buff *skb, int len)
5335{
5336    int i, j;
5337
5338    if (de4x5_debug & DEBUG_RX) {
5339	printk("R: %pM <- %pM len/SAP:%02x%02x [%d]\n",
5340	       skb->data, &skb->data[6],
5341	       (u_char)skb->data[12],
5342	       (u_char)skb->data[13],
5343	       len);
5344	for (j=0; len>0;j+=16, len-=16) {
5345	  printk("    %03x: ",j);
5346	  for (i=0; i<16 && i<len; i++) {
5347	    printk("%02x ",(u_char)skb->data[i+j]);
5348	  }
5349	  printk("\n");
5350	}
5351    }
5352}
5353
5354/*
5355** Perform IOCTL call functions here. Some are privileged operations and the
5356** effective uid is checked in those cases. In the normal course of events
5357** this function is only used for my testing.
5358*/
5359static int
5360de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5361{
5362    struct de4x5_private *lp = netdev_priv(dev);
5363    struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5364    u_long iobase = dev->base_addr;
5365    int i, j, status = 0;
5366    s32 omr;
5367    union {
5368	u8  addr[144];
5369	u16 sval[72];
5370	u32 lval[36];
5371    } tmp;
5372    u_long flags = 0;
5373
5374    switch(ioc->cmd) {
5375    case DE4X5_GET_HWADDR:           /* Get the hardware address */
5376	ioc->len = ETH_ALEN;
5377	for (i=0; i<ETH_ALEN; i++) {
5378	    tmp.addr[i] = dev->dev_addr[i];
5379	}
5380	if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5381	break;
5382
5383    case DE4X5_SET_HWADDR:           /* Set the hardware address */
5384	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5385	if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5386	if (netif_queue_stopped(dev))
5387		return -EBUSY;
5388	netif_stop_queue(dev);
5389	for (i=0; i<ETH_ALEN; i++) {
5390	    dev->dev_addr[i] = tmp.addr[i];
5391	}
5392	build_setup_frame(dev, PHYS_ADDR_ONLY);
5393	/* Set up the descriptor and give ownership to the card */
5394	load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5395		                                       SETUP_FRAME_LEN, (struct sk_buff *)1);
5396	lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
5397	outl(POLL_DEMAND, DE4X5_TPD);                /* Start the TX */
5398	netif_wake_queue(dev);                      /* Unlock the TX ring */
5399	break;
5400
5401    case DE4X5_SAY_BOO:              /* Say "Boo!" to the kernel log file */
5402	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5403	printk("%s: Boo!\n", dev->name);
5404	break;
5405
5406    case DE4X5_MCA_EN:               /* Enable pass all multicast addressing */
5407	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5408	omr = inl(DE4X5_OMR);
5409	omr |= OMR_PM;
5410	outl(omr, DE4X5_OMR);
5411	break;
5412
5413    case DE4X5_GET_STATS:            /* Get the driver statistics */
5414    {
5415        struct pkt_stats statbuf;
5416	ioc->len = sizeof(statbuf);
5417	spin_lock_irqsave(&lp->lock, flags);
5418	memcpy(&statbuf, &lp->pktStats, ioc->len);
5419	spin_unlock_irqrestore(&lp->lock, flags);
5420	if (copy_to_user(ioc->data, &statbuf, ioc->len))
5421		return -EFAULT;
5422	break;
5423    }
5424    case DE4X5_CLR_STATS:            /* Zero out the driver statistics */
5425	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5426	spin_lock_irqsave(&lp->lock, flags);
5427	memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5428	spin_unlock_irqrestore(&lp->lock, flags);
5429	break;
5430
5431    case DE4X5_GET_OMR:              /* Get the OMR Register contents */
5432	tmp.addr[0] = inl(DE4X5_OMR);
5433	if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5434	break;
5435
5436    case DE4X5_SET_OMR:              /* Set the OMR Register contents */
5437	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5438	if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5439	outl(tmp.addr[0], DE4X5_OMR);
5440	break;
5441
5442    case DE4X5_GET_REG:              /* Get the DE4X5 Registers */
5443	j = 0;
5444	tmp.lval[0] = inl(DE4X5_STS); j+=4;
5445	tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5446	tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5447	tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5448	tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5449	tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5450	tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5451	tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5452	ioc->len = j;
5453	if (copy_to_user(ioc->data, tmp.lval, ioc->len))
5454		return -EFAULT;
5455	break;
5456
5457#define DE4X5_DUMP              0x0f /* Dump the DE4X5 Status */
5458/*
5459      case DE4X5_DUMP:
5460	j = 0;
5461	tmp.addr[j++] = dev->irq;
5462	for (i=0; i<ETH_ALEN; i++) {
5463	    tmp.addr[j++] = dev->dev_addr[i];
5464	}
5465	tmp.addr[j++] = lp->rxRingSize;
5466	tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5467	tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5468
5469	for (i=0;i<lp->rxRingSize-1;i++){
5470	    if (i < 3) {
5471		tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5472	    }
5473	}
5474	tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5475	for (i=0;i<lp->txRingSize-1;i++){
5476	    if (i < 3) {
5477		tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5478	    }
5479	}
5480	tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5481
5482	for (i=0;i<lp->rxRingSize-1;i++){
5483	    if (i < 3) {
5484		tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5485	    }
5486	}
5487	tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5488	for (i=0;i<lp->txRingSize-1;i++){
5489	    if (i < 3) {
5490		tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5491	    }
5492	}
5493	tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5494
5495	for (i=0;i<lp->rxRingSize;i++){
5496	    tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5497	}
5498	for (i=0;i<lp->txRingSize;i++){
5499	    tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5500	}
5501
5502	tmp.lval[j>>2] = inl(DE4X5_BMR);  j+=4;
5503	tmp.lval[j>>2] = inl(DE4X5_TPD);  j+=4;
5504	tmp.lval[j>>2] = inl(DE4X5_RPD);  j+=4;
5505	tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5506	tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5507	tmp.lval[j>>2] = inl(DE4X5_STS);  j+=4;
5508	tmp.lval[j>>2] = inl(DE4X5_OMR);  j+=4;
5509	tmp.lval[j>>2] = inl(DE4X5_IMR);  j+=4;
5510	tmp.lval[j>>2] = lp->chipset; j+=4;
5511	if (lp->chipset == DC21140) {
5512	    tmp.lval[j>>2] = gep_rd(dev);  j+=4;
5513	} else {
5514	    tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5515	    tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5516	    tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5517	    tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5518	}
5519	tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5520	if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5521	    tmp.lval[j>>2] = lp->active; j+=4;
5522	    tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5523	    tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5524	    tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5525	    tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5526	    if (lp->phy[lp->active].id != BROADCOM_T4) {
5527		tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5528		tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5529	    }
5530	    tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5531	    if (lp->phy[lp->active].id != BROADCOM_T4) {
5532		tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5533		tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5534	    } else {
5535		tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5536	    }
5537	}
5538
5539	tmp.addr[j++] = lp->txRingSize;
5540	tmp.addr[j++] = netif_queue_stopped(dev);
5541
5542	ioc->len = j;
5543	if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5544	break;
5545
5546*/
5547    default:
5548	return -EOPNOTSUPP;
5549    }
5550
5551    return status;
5552}
5553
5554static int __init de4x5_module_init (void)
5555{
5556	int err = 0;
5557
5558#ifdef CONFIG_PCI
5559	err = pci_register_driver(&de4x5_pci_driver);
5560#endif
5561#ifdef CONFIG_EISA
5562	err |= eisa_driver_register (&de4x5_eisa_driver);
5563#endif
5564
5565	return err;
5566}
5567
5568static void __exit de4x5_module_exit (void)
5569{
5570#ifdef CONFIG_PCI
5571	pci_unregister_driver (&de4x5_pci_driver);
5572#endif
5573#ifdef CONFIG_EISA
5574	eisa_driver_unregister (&de4x5_eisa_driver);
5575#endif
5576}
5577
5578module_init (de4x5_module_init);
5579module_exit (de4x5_module_exit);