Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*  de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
   2             ethernet driver for Linux.
   3
   4    Copyright 1994, 1995 Digital Equipment Corporation.
   5
   6    Testing resources for this driver have been made available
   7    in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
   8
   9    The author may be reached at davies@maniac.ultranet.com.
  10
  11    This program is free software; you can redistribute  it and/or modify it
  12    under  the terms of  the GNU General  Public License as published by the
  13    Free Software Foundation;  either version 2 of the  License, or (at your
  14    option) any later version.
  15
  16    THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR   IMPLIED
  17    WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
  18    MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
  19    NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT,  INDIRECT,
  20    INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  21    NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
  22    USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  23    ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
  24    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  25    THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26
  27    You should have received a copy of the  GNU General Public License along
  28    with this program; if not, write  to the Free Software Foundation, Inc.,
  29    675 Mass Ave, Cambridge, MA 02139, USA.
  30
  31    Originally,   this  driver  was    written  for the  Digital   Equipment
  32    Corporation series of EtherWORKS ethernet cards:
  33
  34        DE425 TP/COAX EISA
  35	DE434 TP PCI
  36	DE435 TP/COAX/AUI PCI
  37	DE450 TP/COAX/AUI PCI
  38	DE500 10/100 PCI Fasternet
  39
  40    but it  will  now attempt  to  support all  cards which   conform to the
  41    Digital Semiconductor   SROM   Specification.    The  driver   currently
  42    recognises the following chips:
  43
  44        DC21040  (no SROM)
  45	DC21041[A]
  46	DC21140[A]
  47	DC21142
  48	DC21143
  49
  50    So far the driver is known to work with the following cards:
  51
  52        KINGSTON
  53	Linksys
  54	ZNYX342
  55	SMC8432
  56	SMC9332 (w/new SROM)
  57	ZNYX31[45]
  58	ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
  59
  60    The driver has been tested on a relatively busy network using the DE425,
  61    DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
  62    16M of data to a DECstation 5000/200 as follows:
  63
  64                TCP           UDP
  65             TX     RX     TX     RX
  66    DE425   1030k  997k   1170k  1128k
  67    DE434   1063k  995k   1170k  1125k
  68    DE435   1063k  995k   1170k  1125k
  69    DE500   1063k  998k   1170k  1125k  in 10Mb/s mode
  70
  71    All  values are typical (in   kBytes/sec) from a  sample  of 4 for  each
  72    measurement. Their error is +/-20k on a quiet (private) network and also
  73    depend on what load the CPU has.
  74
  75    =========================================================================
  76    This driver  has been written substantially  from  scratch, although its
  77    inheritance of style and stack interface from 'ewrk3.c' and in turn from
  78    Donald Becker's 'lance.c' should be obvious. With the module autoload of
  79    every  usable DECchip board,  I  pinched Donald's 'next_module' field to
  80    link my modules together.
  81
  82    Up to 15 EISA cards can be supported under this driver, limited primarily
  83    by the available IRQ lines.  I have  checked different configurations of
  84    multiple depca, EtherWORKS 3 cards and de4x5 cards and  have not found a
  85    problem yet (provided you have at least depca.c v0.38) ...
  86
  87    PCI support has been added  to allow the driver  to work with the DE434,
  88    DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
  89    to the differences in the EISA and PCI CSR address offsets from the base
  90    address.
  91
  92    The ability to load this  driver as a loadable  module has been included
  93    and used extensively  during the driver development  (to save those long
  94    reboot sequences).  Loadable module support  under PCI and EISA has been
  95    achieved by letting the driver autoprobe as if it were compiled into the
  96    kernel. Do make sure  you're not sharing  interrupts with anything  that
  97    cannot accommodate  interrupt  sharing!
  98
  99    To utilise this ability, you have to do 8 things:
 100
 101    0) have a copy of the loadable modules code installed on your system.
 102    1) copy de4x5.c from the  /linux/drivers/net directory to your favourite
 103    temporary directory.
 104    2) for fixed  autoprobes (not  recommended),  edit the source code  near
 105    line 5594 to reflect the I/O address  you're using, or assign these when
 106    loading by:
 107
 108                   insmod de4x5 io=0xghh           where g = bus number
 109		                                        hh = device number
 110
 111       NB: autoprobing for modules is now supported by default. You may just
 112           use:
 113
 114                   insmod de4x5
 115
 116           to load all available boards. For a specific board, still use
 117	   the 'io=?' above.
 118    3) compile  de4x5.c, but include -DMODULE in  the command line to ensure
 119    that the correct bits are compiled (see end of source code).
 120    4) if you are wanting to add a new  card, goto 5. Otherwise, recompile a
 121    kernel with the de4x5 configuration turned off and reboot.
 122    5) insmod de4x5 [io=0xghh]
 123    6) run the net startup bits for your new eth?? interface(s) manually
 124    (usually /etc/rc.inet[12] at boot time).
 125    7) enjoy!
 126
 127    To unload a module, turn off the associated interface(s)
 128    'ifconfig eth?? down' then 'rmmod de4x5'.
 129
 130    Automedia detection is included so that in  principal you can disconnect
 131    from, e.g.  TP, reconnect  to BNC  and  things will still work  (after a
 132    pause whilst the   driver figures out   where its media went).  My tests
 133    using ping showed that it appears to work....
 134
 135    By  default,  the driver will  now   autodetect any  DECchip based card.
 136    Should you have a need to restrict the driver to DIGITAL only cards, you
 137    can compile with a  DEC_ONLY define, or if  loading as a module, use the
 138    'dec_only=1'  parameter.
 139
 140    I've changed the timing routines to  use the kernel timer and scheduling
 141    functions  so that the  hangs  and other assorted problems that occurred
 142    while autosensing the  media  should be gone.  A  bonus  for the DC21040
 143    auto  media sense algorithm is  that it can now  use one that is more in
 144    line with the  rest (the DC21040  chip doesn't  have a hardware  timer).
 145    The downside is the 1 'jiffies' (10ms) resolution.
 146
 147    IEEE 802.3u MII interface code has  been added in anticipation that some
 148    products may use it in the future.
 149
 150    The SMC9332 card  has a non-compliant SROM  which needs fixing -  I have
 151    patched this  driver to detect it  because the SROM format used complies
 152    to a previous DEC-STD format.
 153
 154    I have removed the buffer copies needed for receive on Intels.  I cannot
 155    remove them for   Alphas since  the  Tulip hardware   only does longword
 156    aligned  DMA transfers  and  the  Alphas get   alignment traps with  non
 157    longword aligned data copies (which makes them really slow). No comment.
 158
 159    I  have added SROM decoding  routines to make this  driver work with any
 160    card that  supports the Digital  Semiconductor SROM spec. This will help
 161    all  cards running the dc2114x  series chips in particular.  Cards using
 162    the dc2104x  chips should run correctly with  the basic  driver.  I'm in
 163    debt to <mjacob@feral.com> for the  testing and feedback that helped get
 164    this feature working.  So far we have  tested KINGSTON, SMC8432, SMC9332
 165    (with the latest SROM complying  with the SROM spec  V3: their first was
 166    broken), ZNYX342  and  LinkSys. ZYNX314 (dual  21041  MAC) and  ZNYX 315
 167    (quad 21041 MAC)  cards also  appear  to work despite their  incorrectly
 168    wired IRQs.
 169
 170    I have added a temporary fix for interrupt problems when some SCSI cards
 171    share the same interrupt as the DECchip based  cards. The problem occurs
 172    because  the SCSI card wants to  grab the interrupt  as a fast interrupt
 173    (runs the   service routine with interrupts turned   off) vs.  this card
 174    which really needs to run the service routine with interrupts turned on.
 175    This driver will  now   add the interrupt service   routine  as  a  fast
 176    interrupt if it   is bounced from the   slow interrupt.  THIS IS NOT   A
 177    RECOMMENDED WAY TO RUN THE DRIVER  and has been done  for a limited time
 178    until  people   sort  out their  compatibility    issues and the  kernel
 179    interrupt  service code  is  fixed.   YOU  SHOULD SEPARATE OUT  THE FAST
 180    INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
 181    run on the same interrupt. PCMCIA/CardBus is another can of worms...
 182
 183    Finally, I think  I have really  fixed  the module  loading problem with
 184    more than one DECchip based  card.  As a  side effect, I don't mess with
 185    the  device structure any  more which means that  if more than 1 card in
 186    2.0.x is    installed (4  in   2.1.x),  the  user   will have   to  edit
 187    linux/drivers/net/Space.c  to make room for  them. Hence, module loading
 188    is  the preferred way to use   this driver, since  it  doesn't have this
 189    limitation.
 190
 191    Where SROM media  detection is used and  full duplex is specified in the
 192    SROM,  the feature is  ignored unless  lp->params.fdx  is set at compile
 193    time  OR during  a   module load  (insmod  de4x5   args='eth??:fdx' [see
 194    below]).  This is because there  is no way  to automatically detect full
 195    duplex   links  except through   autonegotiation.    When I  include the
 196    autonegotiation feature in  the SROM autoconf  code, this detection will
 197    occur automatically for that case.
 198
 199    Command  line arguments are  now  allowed, similar  to passing arguments
 200    through LILO. This will allow a per adapter board  set up of full duplex
 201    and media. The only lexical constraints  are: the board name (dev->name)
 202    appears in the list before its  parameters.  The list of parameters ends
 203    either at the end of the parameter list or with another board name.  The
 204    following parameters are allowed:
 205
 206            fdx        for full duplex
 207	    autosense  to set the media/speed; with the following
 208	               sub-parameters:
 209		       TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
 210
 211    Case sensitivity is important  for  the sub-parameters. They *must*   be
 212    upper case. Examples:
 213
 214        insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
 215
 216    For a compiled in driver, at or above line 548, place e.g.
 217	#define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
 218
 219    Yes,  I know full duplex isn't  permissible on BNC  or AUI; they're just
 220    examples. By default, full duplex is turned off and  AUTO is the default
 221    autosense setting.  In reality, I expect only  the full duplex option to
 222    be used. Note the use of single quotes in the two examples above and the
 223    lack of commas to separate items. ALSO, you must get the requested media
 224    correct in relation to what the adapter SROM says it has. There's no way
 225    to  determine this in  advance other than by  trial and error and common
 226    sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
 227
 228    Changed the bus probing.  EISA used to be  done first,  followed by PCI.
 229    Most people probably don't even know  what a de425 is today and the EISA
 230    probe has messed  up some SCSI cards  in the past,  so now PCI is always
 231    probed  first  followed by  EISA if  a) the architecture allows EISA and
 232    either  b) there have been no PCI cards detected or  c) an EISA probe is
 233    forced by  the user.  To force  a probe  include  "force_eisa"  in  your
 234    insmod "args" line;  for built-in kernels either change the driver to do
 235    this  automatically  or include  #define DE4X5_FORCE_EISA  on or  before
 236    line 1040 in the driver.
 237
 238    TO DO:
 239    ------
 240
 241    Revision History
 242    ----------------
 243
 244    Version   Date        Description
 245
 246      0.1     17-Nov-94   Initial writing. ALPHA code release.
 247      0.2     13-Jan-95   Added PCI support for DE435's.
 248      0.21    19-Jan-95   Added auto media detection.
 249      0.22    10-Feb-95   Fix interrupt handler call <chris@cosy.sbg.ac.at>.
 250                          Fix recognition bug reported by <bkm@star.rl.ac.uk>.
 251			  Add request/release_region code.
 252			  Add loadable modules support for PCI.
 253			  Clean up loadable modules support.
 254      0.23    28-Feb-95   Added DC21041 and DC21140 support.
 255                          Fix missed frame counter value and initialisation.
 256			  Fixed EISA probe.
 257      0.24    11-Apr-95   Change delay routine to use <linux/udelay>.
 258                          Change TX_BUFFS_AVAIL macro.
 259			  Change media autodetection to allow manual setting.
 260			  Completed DE500 (DC21140) support.
 261      0.241   18-Apr-95   Interim release without DE500 Autosense Algorithm.
 262      0.242   10-May-95   Minor changes.
 263      0.30    12-Jun-95   Timer fix for DC21140.
 264                          Portability changes.
 265			  Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
 266			  Add DE500 semi automatic autosense.
 267			  Add Link Fail interrupt TP failure detection.
 268			  Add timer based link change detection.
 269			  Plugged a memory leak in de4x5_queue_pkt().
 270      0.31    13-Jun-95   Fixed PCI stuff for 1.3.1.
 271      0.32    26-Jun-95   Added verify_area() calls in de4x5_ioctl() from a
 272                          suggestion by <heiko@colossus.escape.de>.
 273      0.33     8-Aug-95   Add shared interrupt support (not released yet).
 274      0.331   21-Aug-95   Fix de4x5_open() with fast CPUs.
 275                          Fix de4x5_interrupt().
 276                          Fix dc21140_autoconf() mess.
 277			  No shared interrupt support.
 278      0.332   11-Sep-95   Added MII management interface routines.
 279      0.40     5-Mar-96   Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
 280                          Add kernel timer code (h/w is too flaky).
 281			  Add MII based PHY autosense.
 282			  Add new multicasting code.
 283			  Add new autosense algorithms for media/mode
 284			  selection using kernel scheduling/timing.
 285			  Re-formatted.
 286			  Made changes suggested by <jeff@router.patch.net>:
 287			    Change driver to detect all DECchip based cards
 288			    with DEC_ONLY restriction a special case.
 289			    Changed driver to autoprobe as a module. No irq
 290			    checking is done now - assume BIOS is good!
 291			  Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
 292      0.41    21-Mar-96   Don't check for get_hw_addr checksum unless DEC card
 293                          only <niles@axp745gsfc.nasa.gov>
 294			  Fix for multiple PCI cards reported by <jos@xos.nl>
 295			  Duh, put the IRQF_SHARED flag into request_interrupt().
 296			  Fix SMC ethernet address in enet_det[].
 297			  Print chip name instead of "UNKNOWN" during boot.
 298      0.42    26-Apr-96   Fix MII write TA bit error.
 299                          Fix bug in dc21040 and dc21041 autosense code.
 300			  Remove buffer copies on receive for Intels.
 301			  Change sk_buff handling during media disconnects to
 302			   eliminate DUP packets.
 303			  Add dynamic TX thresholding.
 304			  Change all chips to use perfect multicast filtering.
 305			  Fix alloc_device() bug <jari@markkus2.fimr.fi>
 306      0.43   21-Jun-96    Fix unconnected media TX retry bug.
 307                          Add Accton to the list of broken cards.
 308			  Fix TX under-run bug for non DC21140 chips.
 309			  Fix boot command probe bug in alloc_device() as
 310			   reported by <koen.gadeyne@barco.com> and
 311			   <orava@nether.tky.hut.fi>.
 312			  Add cache locks to prevent a race condition as
 313			   reported by <csd@microplex.com> and
 314			   <baba@beckman.uiuc.edu>.
 315			  Upgraded alloc_device() code.
 316      0.431  28-Jun-96    Fix potential bug in queue_pkt() from discussion
 317                          with <csd@microplex.com>
 318      0.44   13-Aug-96    Fix RX overflow bug in 2114[023] chips.
 319                          Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
 320			  and <michael@compurex.com>.
 321      0.441   9-Sep-96    Change dc21041_autoconf() to probe quiet BNC media
 322                           with a loopback packet.
 323      0.442   9-Sep-96    Include AUI in dc21041 media printout. Bug reported
 324                           by <bhat@mundook.cs.mu.OZ.AU>
 325      0.45    8-Dec-96    Include endian functions for PPC use, from work
 326                           by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
 327      0.451  28-Dec-96    Added fix to allow autoprobe for modules after
 328                           suggestion from <mjacob@feral.com>.
 329      0.5    30-Jan-97    Added SROM decoding functions.
 330                          Updated debug flags.
 331			  Fix sleep/wakeup calls for PCI cards, bug reported
 332			   by <cross@gweep.lkg.dec.com>.
 333			  Added multi-MAC, one SROM feature from discussion
 334			   with <mjacob@feral.com>.
 335			  Added full module autoprobe capability.
 336			  Added attempt to use an SMC9332 with broken SROM.
 337			  Added fix for ZYNX multi-mac cards that didn't
 338			   get their IRQs wired correctly.
 339      0.51   13-Feb-97    Added endian fixes for the SROM accesses from
 340			   <paubert@iram.es>
 341			  Fix init_connection() to remove extra device reset.
 342			  Fix MAC/PHY reset ordering in dc21140m_autoconf().
 343			  Fix initialisation problem with lp->timeout in
 344			   typeX_infoblock() from <paubert@iram.es>.
 345			  Fix MII PHY reset problem from work done by
 346			   <paubert@iram.es>.
 347      0.52   26-Apr-97    Some changes may not credit the right people -
 348                           a disk crash meant I lost some mail.
 349			  Change RX interrupt routine to drop rather than
 350			   defer packets to avoid hang reported by
 351			   <g.thomas@opengroup.org>.
 352			  Fix srom_exec() to return for COMPACT and type 1
 353			   infoblocks.
 354			  Added DC21142 and DC21143 functions.
 355			  Added byte counters from <phil@tazenda.demon.co.uk>
 356			  Added IRQF_DISABLED temporary fix from
 357			   <mjacob@feral.com>.
 358      0.53   12-Nov-97    Fix the *_probe() to include 'eth??' name during
 359                           module load: bug reported by
 360			   <Piete.Brooks@cl.cam.ac.uk>
 361			  Fix multi-MAC, one SROM, to work with 2114x chips:
 362			   bug reported by <cmetz@inner.net>.
 363			  Make above search independent of BIOS device scan
 364			   direction.
 365			  Completed DC2114[23] autosense functions.
 366      0.531  21-Dec-97    Fix DE500-XA 100Mb/s bug reported by
 367                           <robin@intercore.com
 368			  Fix type1_infoblock() bug introduced in 0.53, from
 369			   problem reports by
 370			   <parmee@postecss.ncrfran.france.ncr.com> and
 371			   <jo@ice.dillingen.baynet.de>.
 372			  Added argument list to set up each board from either
 373			   a module's command line or a compiled in #define.
 374			  Added generic MII PHY functionality to deal with
 375			   newer PHY chips.
 376			  Fix the mess in 2.1.67.
 377      0.532   5-Jan-98    Fix bug in mii_get_phy() reported by
 378                           <redhat@cococo.net>.
 379                          Fix bug in pci_probe() for 64 bit systems reported
 380			   by <belliott@accessone.com>.
 381      0.533   9-Jan-98    Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
 382      0.534  24-Jan-98    Fix last (?) endian bug from <geert@linux-m68k.org>
 383      0.535  21-Feb-98    Fix Ethernet Address PROM reset bug for DC21040.
 384      0.536  21-Mar-98    Change pci_probe() to use the pci_dev structure.
 385			  **Incompatible with 2.0.x from here.**
 386      0.540   5-Jul-98    Atomicize assertion of dev->interrupt for SMP
 387                           from <lma@varesearch.com>
 388			  Add TP, AUI and BNC cases to 21140m_autoconf() for
 389			   case where a 21140 under SROM control uses, e.g. AUI
 390			   from problem report by <delchini@lpnp09.in2p3.fr>
 391			  Add MII parallel detection to 2114x_autoconf() for
 392			   case where no autonegotiation partner exists from
 393			   problem report by <mlapsley@ndirect.co.uk>.
 394			  Add ability to force connection type directly even
 395			   when using SROM control from problem report by
 396			   <earl@exis.net>.
 397			  Updated the PCI interface to conform with the latest
 398			   version. I hope nothing is broken...
 399          		  Add TX done interrupt modification from suggestion
 400			   by <Austin.Donnelly@cl.cam.ac.uk>.
 401			  Fix is_anc_capable() bug reported by
 402			   <Austin.Donnelly@cl.cam.ac.uk>.
 403			  Fix type[13]_infoblock() bug: during MII search, PHY
 404			   lp->rst not run because lp->ibn not initialised -
 405			   from report & fix by <paubert@iram.es>.
 406			  Fix probe bug with EISA & PCI cards present from
 407                           report by <eirik@netcom.com>.
 408      0.541  24-Aug-98    Fix compiler problems associated with i386-string
 409                           ops from multiple bug reports and temporary fix
 410			   from <paubert@iram.es>.
 411			  Fix pci_probe() to correctly emulate the old
 412			   pcibios_find_class() function.
 413			  Add an_exception() for old ZYNX346 and fix compile
 414			   warning on PPC & SPARC, from <ecd@skynet.be>.
 415			  Fix lastPCI to correctly work with compiled in
 416			   kernels and modules from bug report by
 417			   <Zlatko.Calusic@CARNet.hr> et al.
 418      0.542  15-Sep-98    Fix dc2114x_autoconf() to stop multiple messages
 419                           when media is unconnected.
 420			  Change dev->interrupt to lp->interrupt to ensure
 421			   alignment for Alpha's and avoid their unaligned
 422			   access traps. This flag is merely for log messages:
 423			   should do something more definitive though...
 424      0.543  30-Dec-98    Add SMP spin locking.
 425      0.544   8-May-99    Fix for buggy SROM in Motorola embedded boards using
 426                           a 21143 by <mmporter@home.com>.
 427			  Change PCI/EISA bus probing order.
 428      0.545  28-Nov-99    Further Moto SROM bug fix from
 429                           <mporter@eng.mcd.mot.com>
 430                          Remove double checking for DEBUG_RX in de4x5_dbg_rx()
 431			   from report by <geert@linux-m68k.org>
 432      0.546  22-Feb-01    Fixes Alpha XP1000 oops.  The srom_search function
 433                           was causing a page fault when initializing the
 434                           variable 'pb', on a non de4x5 PCI device, in this
 435                           case a PCI bridge (DEC chip 21152). The value of
 436                           'pb' is now only initialized if a de4x5 chip is
 437                           present.
 438                           <france@handhelds.org>
 439      0.547  08-Nov-01    Use library crc32 functions by <Matt_Domsch@dell.com>
 440      0.548  30-Aug-03    Big 2.6 cleanup. Ported to PCI/EISA probing and
 441                           generic DMA APIs. Fixed DE425 support on Alpha.
 442			   <maz@wild-wind.fr.eu.org>
 443    =========================================================================
 444*/
 445
 446#include <linux/module.h>
 447#include <linux/kernel.h>
 448#include <linux/string.h>
 449#include <linux/interrupt.h>
 450#include <linux/ptrace.h>
 451#include <linux/errno.h>
 452#include <linux/ioport.h>
 453#include <linux/pci.h>
 454#include <linux/eisa.h>
 455#include <linux/delay.h>
 456#include <linux/init.h>
 457#include <linux/spinlock.h>
 458#include <linux/crc32.h>
 459#include <linux/netdevice.h>
 460#include <linux/etherdevice.h>
 461#include <linux/skbuff.h>
 462#include <linux/time.h>
 463#include <linux/types.h>
 464#include <linux/unistd.h>
 465#include <linux/ctype.h>
 466#include <linux/dma-mapping.h>
 467#include <linux/moduleparam.h>
 468#include <linux/bitops.h>
 469#include <linux/gfp.h>
 470
 471#include <asm/io.h>
 472#include <asm/dma.h>
 473#include <asm/byteorder.h>
 474#include <asm/unaligned.h>
 475#include <asm/uaccess.h>
 476#ifdef CONFIG_PPC_PMAC
 477#include <asm/machdep.h>
 478#endif /* CONFIG_PPC_PMAC */
 479
 480#include "de4x5.h"
 481
 482static const char version[] =
 483	KERN_INFO "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
 484
 485#define c_char const char
 486
 487/*
 488** MII Information
 489*/
 490struct phy_table {
 491    int reset;              /* Hard reset required?                         */
 492    int id;                 /* IEEE OUI                                     */
 493    int ta;                 /* One cycle TA time - 802.3u is confusing here */
 494    struct {                /* Non autonegotiation (parallel) speed det.    */
 495	int reg;
 496	int mask;
 497	int value;
 498    } spd;
 499};
 500
 501struct mii_phy {
 502    int reset;              /* Hard reset required?                      */
 503    int id;                 /* IEEE OUI                                  */
 504    int ta;                 /* One cycle TA time                         */
 505    struct {                /* Non autonegotiation (parallel) speed det. */
 506	int reg;
 507	int mask;
 508	int value;
 509    } spd;
 510    int addr;               /* MII address for the PHY                   */
 511    u_char  *gep;           /* Start of GEP sequence block in SROM       */
 512    u_char  *rst;           /* Start of reset sequence in SROM           */
 513    u_int mc;               /* Media Capabilities                        */
 514    u_int ana;              /* NWay Advertisement                        */
 515    u_int fdx;              /* Full DupleX capabilities for each media   */
 516    u_int ttm;              /* Transmit Threshold Mode for each media    */
 517    u_int mci;              /* 21142 MII Connector Interrupt info        */
 518};
 519
 520#define DE4X5_MAX_PHY 8     /* Allow up to 8 attached PHY devices per board */
 521
 522struct sia_phy {
 523    u_char mc;              /* Media Code                                */
 524    u_char ext;             /* csr13-15 valid when set                   */
 525    int csr13;              /* SIA Connectivity Register                 */
 526    int csr14;              /* SIA TX/RX Register                        */
 527    int csr15;              /* SIA General Register                      */
 528    int gepc;               /* SIA GEP Control Information               */
 529    int gep;                /* SIA GEP Data                              */
 530};
 531
 532/*
 533** Define the know universe of PHY devices that can be
 534** recognised by this driver.
 535*/
 536static struct phy_table phy_info[] = {
 537    {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}},       /* National TX      */
 538    {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}},       /* Broadcom T4      */
 539    {0, SEEQ_T4    , 1, {0x12, 0x10, 0x10}},       /* SEEQ T4          */
 540    {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}},       /* Cypress T4       */
 541    {0, 0x7810     , 1, {0x14, 0x0800, 0x0800}}    /* Level One LTX970 */
 542};
 543
 544/*
 545** These GENERIC values assumes that the PHY devices follow 802.3u and
 546** allow parallel detection to set the link partner ability register.
 547** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
 548*/
 549#define GENERIC_REG   0x05      /* Autoneg. Link Partner Advertisement Reg. */
 550#define GENERIC_MASK  MII_ANLPA_100M /* All 100Mb/s Technologies            */
 551#define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4       */
 552
 553/*
 554** Define special SROM detection cases
 555*/
 556static c_char enet_det[][ETH_ALEN] = {
 557    {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
 558    {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
 559};
 560
 561#define SMC    1
 562#define ACCTON 2
 563
 564/*
 565** SROM Repair definitions. If a broken SROM is detected a card may
 566** use this information to help figure out what to do. This is a
 567** "stab in the dark" and so far for SMC9332's only.
 568*/
 569static c_char srom_repair_info[][100] = {
 570    {0x00,0x1e,0x00,0x00,0x00,0x08,             /* SMC9332 */
 571     0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
 572     0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
 573     0x00,0x18,}
 574};
 575
 576
 577#ifdef DE4X5_DEBUG
 578static int de4x5_debug = DE4X5_DEBUG;
 579#else
 580/*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
 581static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
 582#endif
 583
 584/*
 585** Allow per adapter set up. For modules this is simply a command line
 586** parameter, e.g.:
 587** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
 588**
 589** For a compiled in driver, place e.g.
 590**     #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
 591** here
 592*/
 593#ifdef DE4X5_PARM
 594static char *args = DE4X5_PARM;
 595#else
 596static char *args;
 597#endif
 598
 599struct parameters {
 600    bool fdx;
 601    int autosense;
 602};
 603
 604#define DE4X5_AUTOSENSE_MS 250      /* msec autosense tick (DE500) */
 605
 606#define DE4X5_NDA 0xffe0            /* No Device (I/O) Address */
 607
 608/*
 609** Ethernet PROM defines
 610*/
 611#define PROBE_LENGTH    32
 612#define ETH_PROM_SIG    0xAA5500FFUL
 613
 614/*
 615** Ethernet Info
 616*/
 617#define PKT_BUF_SZ	1536            /* Buffer size for each Tx/Rx buffer */
 618#define IEEE802_3_SZ    1518            /* Packet + CRC */
 619#define MAX_PKT_SZ   	1514            /* Maximum ethernet packet length */
 620#define MAX_DAT_SZ   	1500            /* Maximum ethernet data length */
 621#define MIN_DAT_SZ   	1               /* Minimum ethernet data length */
 622#define PKT_HDR_LEN     14              /* Addresses and data length info */
 623#define FAKE_FRAME_LEN  (MAX_PKT_SZ + 1)
 624#define QUEUE_PKT_TIMEOUT (3*HZ)        /* 3 second timeout */
 625
 626
 627/*
 628** EISA bus defines
 629*/
 630#define DE4X5_EISA_IO_PORTS   0x0c00    /* I/O port base address, slot 0 */
 631#define DE4X5_EISA_TOTAL_SIZE 0x100     /* I/O address extent */
 632
 633#define EISA_ALLOWED_IRQ_LIST  {5, 9, 10, 11}
 634
 635#define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
 636#define DE4X5_NAME_LENGTH 8
 637
 638static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
 639
 640/*
 641** Ethernet PROM defines for DC21040
 642*/
 643#define PROBE_LENGTH    32
 644#define ETH_PROM_SIG    0xAA5500FFUL
 645
 646/*
 647** PCI Bus defines
 648*/
 649#define PCI_MAX_BUS_NUM      8
 650#define DE4X5_PCI_TOTAL_SIZE 0x80       /* I/O address extent */
 651#define DE4X5_CLASS_CODE     0x00020000 /* Network controller, Ethernet */
 652
 653/*
 654** Memory Alignment. Each descriptor is 4 longwords long. To force a
 655** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
 656** DESC_ALIGN. ALIGN aligns the start address of the private memory area
 657** and hence the RX descriptor ring's first entry.
 658*/
 659#define DE4X5_ALIGN4      ((u_long)4 - 1)     /* 1 longword align */
 660#define DE4X5_ALIGN8      ((u_long)8 - 1)     /* 2 longword align */
 661#define DE4X5_ALIGN16     ((u_long)16 - 1)    /* 4 longword align */
 662#define DE4X5_ALIGN32     ((u_long)32 - 1)    /* 8 longword align */
 663#define DE4X5_ALIGN64     ((u_long)64 - 1)    /* 16 longword align */
 664#define DE4X5_ALIGN128    ((u_long)128 - 1)   /* 32 longword align */
 665
 666#define DE4X5_ALIGN         DE4X5_ALIGN32           /* Keep the DC21040 happy... */
 667#define DE4X5_CACHE_ALIGN   CAL_16LONG
 668#define DESC_SKIP_LEN DSL_0             /* Must agree with DESC_ALIGN */
 669/*#define DESC_ALIGN    u32 dummy[4];  / * Must agree with DESC_SKIP_LEN */
 670#define DESC_ALIGN
 671
 672#ifndef DEC_ONLY                        /* See README.de4x5 for using this */
 673static int dec_only;
 674#else
 675static int dec_only = 1;
 676#endif
 677
 678/*
 679** DE4X5 IRQ ENABLE/DISABLE
 680*/
 681#define ENABLE_IRQs { \
 682    imr |= lp->irq_en;\
 683    outl(imr, DE4X5_IMR);               /* Enable the IRQs */\
 684}
 685
 686#define DISABLE_IRQs {\
 687    imr = inl(DE4X5_IMR);\
 688    imr &= ~lp->irq_en;\
 689    outl(imr, DE4X5_IMR);               /* Disable the IRQs */\
 690}
 691
 692#define UNMASK_IRQs {\
 693    imr |= lp->irq_mask;\
 694    outl(imr, DE4X5_IMR);               /* Unmask the IRQs */\
 695}
 696
 697#define MASK_IRQs {\
 698    imr = inl(DE4X5_IMR);\
 699    imr &= ~lp->irq_mask;\
 700    outl(imr, DE4X5_IMR);               /* Mask the IRQs */\
 701}
 702
 703/*
 704** DE4X5 START/STOP
 705*/
 706#define START_DE4X5 {\
 707    omr = inl(DE4X5_OMR);\
 708    omr |= OMR_ST | OMR_SR;\
 709    outl(omr, DE4X5_OMR);               /* Enable the TX and/or RX */\
 710}
 711
 712#define STOP_DE4X5 {\
 713    omr = inl(DE4X5_OMR);\
 714    omr &= ~(OMR_ST|OMR_SR);\
 715    outl(omr, DE4X5_OMR);               /* Disable the TX and/or RX */ \
 716}
 717
 718/*
 719** DE4X5 SIA RESET
 720*/
 721#define RESET_SIA outl(0, DE4X5_SICR);  /* Reset SIA connectivity regs */
 722
 723/*
 724** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
 725*/
 726#define DE4X5_AUTOSENSE_MS  250
 727
 728/*
 729** SROM Structure
 730*/
 731struct de4x5_srom {
 732    char sub_vendor_id[2];
 733    char sub_system_id[2];
 734    char reserved[12];
 735    char id_block_crc;
 736    char reserved2;
 737    char version;
 738    char num_controllers;
 739    char ieee_addr[6];
 740    char info[100];
 741    short chksum;
 742};
 743#define SUB_VENDOR_ID 0x500a
 744
 745/*
 746** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
 747** and have sizes of both a power of 2 and a multiple of 4.
 748** A size of 256 bytes for each buffer could be chosen because over 90% of
 749** all packets in our network are <256 bytes long and 64 longword alignment
 750** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
 751** descriptors are needed for machines with an ALPHA CPU.
 752*/
 753#define NUM_RX_DESC 8                   /* Number of RX descriptors   */
 754#define NUM_TX_DESC 32                  /* Number of TX descriptors   */
 755#define RX_BUFF_SZ  1536                /* Power of 2 for kmalloc and */
 756                                        /* Multiple of 4 for DC21040  */
 757                                        /* Allows 512 byte alignment  */
 758struct de4x5_desc {
 759    volatile __le32 status;
 760    __le32 des1;
 761    __le32 buf;
 762    __le32 next;
 763    DESC_ALIGN
 764};
 765
 766/*
 767** The DE4X5 private structure
 768*/
 769#define DE4X5_PKT_STAT_SZ 16
 770#define DE4X5_PKT_BIN_SZ  128            /* Should be >=100 unless you
 771                                            increase DE4X5_PKT_STAT_SZ */
 772
 773struct pkt_stats {
 774	u_int bins[DE4X5_PKT_STAT_SZ];      /* Private stats counters       */
 775	u_int unicast;
 776	u_int multicast;
 777	u_int broadcast;
 778	u_int excessive_collisions;
 779	u_int tx_underruns;
 780	u_int excessive_underruns;
 781	u_int rx_runt_frames;
 782	u_int rx_collision;
 783	u_int rx_dribble;
 784	u_int rx_overflow;
 785};
 786
 787struct de4x5_private {
 788    char adapter_name[80];                  /* Adapter name                 */
 789    u_long interrupt;                       /* Aligned ISR flag             */
 790    struct de4x5_desc *rx_ring;		    /* RX descriptor ring           */
 791    struct de4x5_desc *tx_ring;		    /* TX descriptor ring           */
 792    struct sk_buff *tx_skb[NUM_TX_DESC];    /* TX skb for freeing when sent */
 793    struct sk_buff *rx_skb[NUM_RX_DESC];    /* RX skb's                     */
 794    int rx_new, rx_old;                     /* RX descriptor ring pointers  */
 795    int tx_new, tx_old;                     /* TX descriptor ring pointers  */
 796    char setup_frame[SETUP_FRAME_LEN];      /* Holds MCA and PA info.       */
 797    char frame[64];                         /* Min sized packet for loopback*/
 798    spinlock_t lock;                        /* Adapter specific spinlock    */
 799    struct net_device_stats stats;          /* Public stats                 */
 800    struct pkt_stats pktStats;	            /* Private stats counters	    */
 801    char rxRingSize;
 802    char txRingSize;
 803    int  bus;                               /* EISA or PCI                  */
 804    int  bus_num;                           /* PCI Bus number               */
 805    int  device;                            /* Device number on PCI bus     */
 806    int  state;                             /* Adapter OPENED or CLOSED     */
 807    int  chipset;                           /* DC21040, DC21041 or DC21140  */
 808    s32  irq_mask;                          /* Interrupt Mask (Enable) bits */
 809    s32  irq_en;                            /* Summary interrupt bits       */
 810    int  media;                             /* Media (eg TP), mode (eg 100B)*/
 811    int  c_media;                           /* Remember the last media conn */
 812    bool fdx;                               /* media full duplex flag       */
 813    int  linkOK;                            /* Link is OK                   */
 814    int  autosense;                         /* Allow/disallow autosensing   */
 815    bool tx_enable;                         /* Enable descriptor polling    */
 816    int  setup_f;                           /* Setup frame filtering type   */
 817    int  local_state;                       /* State within a 'media' state */
 818    struct mii_phy phy[DE4X5_MAX_PHY];      /* List of attached PHY devices */
 819    struct sia_phy sia;                     /* SIA PHY Information          */
 820    int  active;                            /* Index to active PHY device   */
 821    int  mii_cnt;                           /* Number of attached PHY's     */
 822    int  timeout;                           /* Scheduling counter           */
 823    struct timer_list timer;                /* Timer info for kernel        */
 824    int tmp;                                /* Temporary global per card    */
 825    struct {
 826	u_long lock;                        /* Lock the cache accesses      */
 827	s32 csr0;                           /* Saved Bus Mode Register      */
 828	s32 csr6;                           /* Saved Operating Mode Reg.    */
 829	s32 csr7;                           /* Saved IRQ Mask Register      */
 830	s32 gep;                            /* Saved General Purpose Reg.   */
 831	s32 gepc;                           /* Control info for GEP         */
 832	s32 csr13;                          /* Saved SIA Connectivity Reg.  */
 833	s32 csr14;                          /* Saved SIA TX/RX Register     */
 834	s32 csr15;                          /* Saved SIA General Register   */
 835	int save_cnt;                       /* Flag if state already saved  */
 836	struct sk_buff_head queue;          /* Save the (re-ordered) skb's  */
 837    } cache;
 838    struct de4x5_srom srom;                 /* A copy of the SROM           */
 839    int cfrv;				    /* Card CFRV copy */
 840    int rx_ovf;                             /* Check for 'RX overflow' tag  */
 841    bool useSROM;                           /* For non-DEC card use SROM    */
 842    bool useMII;                            /* Infoblock using the MII      */
 843    int asBitValid;                         /* Autosense bits in GEP?       */
 844    int asPolarity;                         /* 0 => asserted high           */
 845    int asBit;                              /* Autosense bit number in GEP  */
 846    int defMedium;                          /* SROM default medium          */
 847    int tcount;                             /* Last infoblock number        */
 848    int infoblock_init;                     /* Initialised this infoblock?  */
 849    int infoleaf_offset;                    /* SROM infoleaf for controller */
 850    s32 infoblock_csr6;                     /* csr6 value in SROM infoblock */
 851    int infoblock_media;                    /* infoblock media              */
 852    int (*infoleaf_fn)(struct net_device *);    /* Pointer to infoleaf function */
 853    u_char *rst;                            /* Pointer to Type 5 reset info */
 854    u_char  ibn;                            /* Infoblock number             */
 855    struct parameters params;               /* Command line/ #defined params */
 856    struct device *gendev;	            /* Generic device */
 857    dma_addr_t dma_rings;		    /* DMA handle for rings	    */
 858    int dma_size;			    /* Size of the DMA area	    */
 859    char *rx_bufs;			    /* rx bufs on alpha, sparc, ... */
 860};
 861
 862/*
 863** To get around certain poxy cards that don't provide an SROM
 864** for the second and more DECchip, I have to key off the first
 865** chip's address. I'll assume there's not a bad SROM iff:
 866**
 867**      o the chipset is the same
 868**      o the bus number is the same and > 0
 869**      o the sum of all the returned hw address bytes is 0 or 0x5fa
 870**
 871** Also have to save the irq for those cards whose hardware designers
 872** can't follow the PCI to PCI Bridge Architecture spec.
 873*/
 874static struct {
 875    int chipset;
 876    int bus;
 877    int irq;
 878    u_char addr[ETH_ALEN];
 879} last = {0,};
 880
 881/*
 882** The transmit ring full condition is described by the tx_old and tx_new
 883** pointers by:
 884**    tx_old            = tx_new    Empty ring
 885**    tx_old            = tx_new+1  Full ring
 886**    tx_old+txRingSize = tx_new+1  Full ring  (wrapped condition)
 887*/
 888#define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
 889			lp->tx_old+lp->txRingSize-lp->tx_new-1:\
 890			lp->tx_old               -lp->tx_new-1)
 891
 892#define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
 893
 894/*
 895** Public Functions
 896*/
 897static int     de4x5_open(struct net_device *dev);
 898static netdev_tx_t de4x5_queue_pkt(struct sk_buff *skb,
 899					 struct net_device *dev);
 900static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
 901static int     de4x5_close(struct net_device *dev);
 902static struct  net_device_stats *de4x5_get_stats(struct net_device *dev);
 903static void    de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
 904static void    set_multicast_list(struct net_device *dev);
 905static int     de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 906
 907/*
 908** Private functions
 909*/
 910static int     de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
 911static int     de4x5_init(struct net_device *dev);
 912static int     de4x5_sw_reset(struct net_device *dev);
 913static int     de4x5_rx(struct net_device *dev);
 914static int     de4x5_tx(struct net_device *dev);
 915static void    de4x5_ast(struct net_device *dev);
 916static int     de4x5_txur(struct net_device *dev);
 917static int     de4x5_rx_ovfc(struct net_device *dev);
 918
 919static int     autoconf_media(struct net_device *dev);
 920static void    create_packet(struct net_device *dev, char *frame, int len);
 921static void    load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
 922static int     dc21040_autoconf(struct net_device *dev);
 923static int     dc21041_autoconf(struct net_device *dev);
 924static int     dc21140m_autoconf(struct net_device *dev);
 925static int     dc2114x_autoconf(struct net_device *dev);
 926static int     srom_autoconf(struct net_device *dev);
 927static int     de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
 928static int     dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
 929static int     test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
 930static int     test_for_100Mb(struct net_device *dev, int msec);
 931static int     wait_for_link(struct net_device *dev);
 932static int     test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
 933static int     is_spd_100(struct net_device *dev);
 934static int     is_100_up(struct net_device *dev);
 935static int     is_10_up(struct net_device *dev);
 936static int     is_anc_capable(struct net_device *dev);
 937static int     ping_media(struct net_device *dev, int msec);
 938static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
 939static void    de4x5_free_rx_buffs(struct net_device *dev);
 940static void    de4x5_free_tx_buffs(struct net_device *dev);
 941static void    de4x5_save_skbs(struct net_device *dev);
 942static void    de4x5_rst_desc_ring(struct net_device *dev);
 943static void    de4x5_cache_state(struct net_device *dev, int flag);
 944static void    de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
 945static void    de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
 946static struct  sk_buff *de4x5_get_cache(struct net_device *dev);
 947static void    de4x5_setup_intr(struct net_device *dev);
 948static void    de4x5_init_connection(struct net_device *dev);
 949static int     de4x5_reset_phy(struct net_device *dev);
 950static void    reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
 951static int     test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
 952static int     test_tp(struct net_device *dev, s32 msec);
 953static int     EISA_signature(char *name, struct device *device);
 954static int     PCI_signature(char *name, struct de4x5_private *lp);
 955static void    DevicePresent(struct net_device *dev, u_long iobase);
 956static void    enet_addr_rst(u_long aprom_addr);
 957static int     de4x5_bad_srom(struct de4x5_private *lp);
 958static short   srom_rd(u_long address, u_char offset);
 959static void    srom_latch(u_int command, u_long address);
 960static void    srom_command(u_int command, u_long address);
 961static void    srom_address(u_int command, u_long address, u_char offset);
 962static short   srom_data(u_int command, u_long address);
 963/*static void    srom_busy(u_int command, u_long address);*/
 964static void    sendto_srom(u_int command, u_long addr);
 965static int     getfrom_srom(u_long addr);
 966static int     srom_map_media(struct net_device *dev);
 967static int     srom_infoleaf_info(struct net_device *dev);
 968static void    srom_init(struct net_device *dev);
 969static void    srom_exec(struct net_device *dev, u_char *p);
 970static int     mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
 971static void    mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
 972static int     mii_rdata(u_long ioaddr);
 973static void    mii_wdata(int data, int len, u_long ioaddr);
 974static void    mii_ta(u_long rw, u_long ioaddr);
 975static int     mii_swap(int data, int len);
 976static void    mii_address(u_char addr, u_long ioaddr);
 977static void    sendto_mii(u32 command, int data, u_long ioaddr);
 978static int     getfrom_mii(u32 command, u_long ioaddr);
 979static int     mii_get_oui(u_char phyaddr, u_long ioaddr);
 980static int     mii_get_phy(struct net_device *dev);
 981static void    SetMulticastFilter(struct net_device *dev);
 982static int     get_hw_addr(struct net_device *dev);
 983static void    srom_repair(struct net_device *dev, int card);
 984static int     test_bad_enet(struct net_device *dev, int status);
 985static int     an_exception(struct de4x5_private *lp);
 986static char    *build_setup_frame(struct net_device *dev, int mode);
 987static void    disable_ast(struct net_device *dev);
 988static long    de4x5_switch_mac_port(struct net_device *dev);
 989static int     gep_rd(struct net_device *dev);
 990static void    gep_wr(s32 data, struct net_device *dev);
 991static void    yawn(struct net_device *dev, int state);
 992static void    de4x5_parse_params(struct net_device *dev);
 993static void    de4x5_dbg_open(struct net_device *dev);
 994static void    de4x5_dbg_mii(struct net_device *dev, int k);
 995static void    de4x5_dbg_media(struct net_device *dev);
 996static void    de4x5_dbg_srom(struct de4x5_srom *p);
 997static void    de4x5_dbg_rx(struct sk_buff *skb, int len);
 998static int     dc21041_infoleaf(struct net_device *dev);
 999static int     dc21140_infoleaf(struct net_device *dev);
1000static int     dc21142_infoleaf(struct net_device *dev);
1001static int     dc21143_infoleaf(struct net_device *dev);
1002static int     type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1003static int     type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1004static int     type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1005static int     type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1006static int     type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1007static int     type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1008static int     compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1009
1010/*
1011** Note now that module autoprobing is allowed under EISA and PCI. The
1012** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1013** to "do the right thing".
1014*/
1015
1016static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED        */
1017
1018module_param(io, int, 0);
1019module_param(de4x5_debug, int, 0);
1020module_param(dec_only, int, 0);
1021module_param(args, charp, 0);
1022
1023MODULE_PARM_DESC(io, "de4x5 I/O base address");
1024MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1025MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1026MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1027MODULE_LICENSE("GPL");
1028
1029/*
1030** List the SROM infoleaf functions and chipsets
1031*/
1032struct InfoLeaf {
1033    int chipset;
1034    int (*fn)(struct net_device *);
1035};
1036static struct InfoLeaf infoleaf_array[] = {
1037    {DC21041, dc21041_infoleaf},
1038    {DC21140, dc21140_infoleaf},
1039    {DC21142, dc21142_infoleaf},
1040    {DC21143, dc21143_infoleaf}
1041};
1042#define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1043
1044/*
1045** List the SROM info block functions
1046*/
1047static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1048    type0_infoblock,
1049    type1_infoblock,
1050    type2_infoblock,
1051    type3_infoblock,
1052    type4_infoblock,
1053    type5_infoblock,
1054    compact_infoblock
1055};
1056
1057#define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1058
1059/*
1060** Miscellaneous defines...
1061*/
1062#define RESET_DE4X5 {\
1063    int i;\
1064    i=inl(DE4X5_BMR);\
1065    mdelay(1);\
1066    outl(i | BMR_SWR, DE4X5_BMR);\
1067    mdelay(1);\
1068    outl(i, DE4X5_BMR);\
1069    mdelay(1);\
1070    for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1071    mdelay(1);\
1072}
1073
1074#define PHY_HARD_RESET {\
1075    outl(GEP_HRST, DE4X5_GEP);           /* Hard RESET the PHY dev. */\
1076    mdelay(1);                           /* Assert for 1ms */\
1077    outl(0x00, DE4X5_GEP);\
1078    mdelay(2);                           /* Wait for 2ms */\
1079}
1080
1081static const struct net_device_ops de4x5_netdev_ops = {
1082    .ndo_open		= de4x5_open,
1083    .ndo_stop		= de4x5_close,
1084    .ndo_start_xmit	= de4x5_queue_pkt,
1085    .ndo_get_stats	= de4x5_get_stats,
1086    .ndo_set_rx_mode	= set_multicast_list,
1087    .ndo_do_ioctl	= de4x5_ioctl,
1088    .ndo_change_mtu	= eth_change_mtu,
1089    .ndo_set_mac_address= eth_mac_addr,
1090    .ndo_validate_addr	= eth_validate_addr,
1091};
1092
1093
1094static int
1095de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1096{
1097    char name[DE4X5_NAME_LENGTH + 1];
1098    struct de4x5_private *lp = netdev_priv(dev);
1099    struct pci_dev *pdev = NULL;
1100    int i, status=0;
1101
1102    dev_set_drvdata(gendev, dev);
1103
1104    /* Ensure we're not sleeping */
1105    if (lp->bus == EISA) {
1106	outb(WAKEUP, PCI_CFPM);
1107    } else {
1108	pdev = to_pci_dev (gendev);
1109	pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1110    }
1111    mdelay(10);
1112
1113    RESET_DE4X5;
1114
1115    if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1116	return -ENXIO;                       /* Hardware could not reset */
1117    }
1118
1119    /*
1120    ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1121    */
1122    lp->useSROM = false;
1123    if (lp->bus == PCI) {
1124	PCI_signature(name, lp);
1125    } else {
1126	EISA_signature(name, gendev);
1127    }
1128
1129    if (*name == '\0') {                     /* Not found a board signature */
1130	return -ENXIO;
1131    }
1132
1133    dev->base_addr = iobase;
1134    printk ("%s: %s at 0x%04lx", dev_name(gendev), name, iobase);
1135
1136    status = get_hw_addr(dev);
1137    printk(", h/w address %pM\n", dev->dev_addr);
1138
1139    if (status != 0) {
1140	printk("      which has an Ethernet PROM CRC error.\n");
1141	return -ENXIO;
1142    } else {
1143	skb_queue_head_init(&lp->cache.queue);
1144	lp->cache.gepc = GEP_INIT;
1145	lp->asBit = GEP_SLNK;
1146	lp->asPolarity = GEP_SLNK;
1147	lp->asBitValid = ~0;
1148	lp->timeout = -1;
1149	lp->gendev = gendev;
1150	spin_lock_init(&lp->lock);
1151	init_timer(&lp->timer);
1152	lp->timer.function = (void (*)(unsigned long))de4x5_ast;
1153	lp->timer.data = (unsigned long)dev;
1154	de4x5_parse_params(dev);
1155
1156	/*
1157	** Choose correct autosensing in case someone messed up
1158	*/
1159        lp->autosense = lp->params.autosense;
1160        if (lp->chipset != DC21140) {
1161            if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1162                lp->params.autosense = TP;
1163            }
1164            if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1165                lp->params.autosense = BNC;
1166            }
1167        }
1168	lp->fdx = lp->params.fdx;
1169	sprintf(lp->adapter_name,"%s (%s)", name, dev_name(gendev));
1170
1171	lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1172#if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1173	lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1174#endif
1175	lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1176					 &lp->dma_rings, GFP_ATOMIC);
1177	if (lp->rx_ring == NULL) {
1178	    return -ENOMEM;
1179	}
1180
1181	lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1182
1183	/*
1184	** Set up the RX descriptor ring (Intels)
1185	** Allocate contiguous receive buffers, long word aligned (Alphas)
1186	*/
1187#if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1188	for (i=0; i<NUM_RX_DESC; i++) {
1189	    lp->rx_ring[i].status = 0;
1190	    lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1191	    lp->rx_ring[i].buf = 0;
1192	    lp->rx_ring[i].next = 0;
1193	    lp->rx_skb[i] = (struct sk_buff *) 1;     /* Dummy entry */
1194	}
1195
1196#else
1197	{
1198		dma_addr_t dma_rx_bufs;
1199
1200		dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1201		      	* sizeof(struct de4x5_desc);
1202		dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1203		lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1204		      	+ NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1205		for (i=0; i<NUM_RX_DESC; i++) {
1206	    		lp->rx_ring[i].status = 0;
1207	    		lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1208	    		lp->rx_ring[i].buf =
1209				cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1210	    		lp->rx_ring[i].next = 0;
1211	    		lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1212		}
1213
1214	}
1215#endif
1216
1217	barrier();
1218
1219	lp->rxRingSize = NUM_RX_DESC;
1220	lp->txRingSize = NUM_TX_DESC;
1221
1222	/* Write the end of list marker to the descriptor lists */
1223	lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1224	lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1225
1226	/* Tell the adapter where the TX/RX rings are located. */
1227	outl(lp->dma_rings, DE4X5_RRBA);
1228	outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1229	     DE4X5_TRBA);
1230
1231	/* Initialise the IRQ mask and Enable/Disable */
1232	lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1233	lp->irq_en   = IMR_NIM | IMR_AIM;
1234
1235	/* Create a loopback packet frame for later media probing */
1236	create_packet(dev, lp->frame, sizeof(lp->frame));
1237
1238	/* Check if the RX overflow bug needs testing for */
1239	i = lp->cfrv & 0x000000fe;
1240	if ((lp->chipset == DC21140) && (i == 0x20)) {
1241	    lp->rx_ovf = 1;
1242	}
1243
1244	/* Initialise the SROM pointers if possible */
1245	if (lp->useSROM) {
1246	    lp->state = INITIALISED;
1247	    if (srom_infoleaf_info(dev)) {
1248	        dma_free_coherent (gendev, lp->dma_size,
1249			       lp->rx_ring, lp->dma_rings);
1250		return -ENXIO;
1251	    }
1252	    srom_init(dev);
1253	}
1254
1255	lp->state = CLOSED;
1256
1257	/*
1258	** Check for an MII interface
1259	*/
1260	if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1261	    mii_get_phy(dev);
1262	}
1263
1264	printk("      and requires IRQ%d (provided by %s).\n", dev->irq,
1265	       ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1266    }
1267
1268    if (de4x5_debug & DEBUG_VERSION) {
1269	printk(version);
1270    }
1271
1272    /* The DE4X5-specific entries in the device structure. */
1273    SET_NETDEV_DEV(dev, gendev);
1274    dev->netdev_ops = &de4x5_netdev_ops;
1275    dev->mem_start = 0;
1276
1277    /* Fill in the generic fields of the device structure. */
1278    if ((status = register_netdev (dev))) {
1279	    dma_free_coherent (gendev, lp->dma_size,
1280			       lp->rx_ring, lp->dma_rings);
1281	    return status;
1282    }
1283
1284    /* Let the adapter sleep to save power */
1285    yawn(dev, SLEEP);
1286
1287    return status;
1288}
1289
1290
1291static int
1292de4x5_open(struct net_device *dev)
1293{
1294    struct de4x5_private *lp = netdev_priv(dev);
1295    u_long iobase = dev->base_addr;
1296    int i, status = 0;
1297    s32 omr;
1298
1299    /* Allocate the RX buffers */
1300    for (i=0; i<lp->rxRingSize; i++) {
1301	if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1302	    de4x5_free_rx_buffs(dev);
1303	    return -EAGAIN;
1304	}
1305    }
1306
1307    /*
1308    ** Wake up the adapter
1309    */
1310    yawn(dev, WAKEUP);
1311
1312    /*
1313    ** Re-initialize the DE4X5...
1314    */
1315    status = de4x5_init(dev);
1316    spin_lock_init(&lp->lock);
1317    lp->state = OPEN;
1318    de4x5_dbg_open(dev);
1319
1320    if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1321		                                     lp->adapter_name, dev)) {
1322	printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev->irq);
1323	if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1324			                             lp->adapter_name, dev)) {
1325	    printk("\n              Cannot get IRQ- reconfigure your hardware.\n");
1326	    disable_ast(dev);
1327	    de4x5_free_rx_buffs(dev);
1328	    de4x5_free_tx_buffs(dev);
1329	    yawn(dev, SLEEP);
1330	    lp->state = CLOSED;
1331	    return -EAGAIN;
1332	} else {
1333	    printk("\n              Succeeded, but you should reconfigure your hardware to avoid this.\n");
1334	    printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1335	}
1336    }
1337
1338    lp->interrupt = UNMASK_INTERRUPTS;
1339    dev->trans_start = jiffies; /* prevent tx timeout */
1340
1341    START_DE4X5;
1342
1343    de4x5_setup_intr(dev);
1344
1345    if (de4x5_debug & DEBUG_OPEN) {
1346	printk("\tsts:  0x%08x\n", inl(DE4X5_STS));
1347	printk("\tbmr:  0x%08x\n", inl(DE4X5_BMR));
1348	printk("\timr:  0x%08x\n", inl(DE4X5_IMR));
1349	printk("\tomr:  0x%08x\n", inl(DE4X5_OMR));
1350	printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1351	printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1352	printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1353	printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1354    }
1355
1356    return status;
1357}
1358
1359/*
1360** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1361** DC21140 requires using perfect filtering mode for that chip. Since I can't
1362** see why I'd want > 14 multicast addresses, I have changed all chips to use
1363** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1364** to be data corruption problems if it is larger (UDP errors seen from a
1365** ttcp source).
1366*/
1367static int
1368de4x5_init(struct net_device *dev)
1369{
1370    /* Lock out other processes whilst setting up the hardware */
1371    netif_stop_queue(dev);
1372
1373    de4x5_sw_reset(dev);
1374
1375    /* Autoconfigure the connected port */
1376    autoconf_media(dev);
1377
1378    return 0;
1379}
1380
1381static int
1382de4x5_sw_reset(struct net_device *dev)
1383{
1384    struct de4x5_private *lp = netdev_priv(dev);
1385    u_long iobase = dev->base_addr;
1386    int i, j, status = 0;
1387    s32 bmr, omr;
1388
1389    /* Select the MII or SRL port now and RESET the MAC */
1390    if (!lp->useSROM) {
1391	if (lp->phy[lp->active].id != 0) {
1392	    lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1393	} else {
1394	    lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1395	}
1396	de4x5_switch_mac_port(dev);
1397    }
1398
1399    /*
1400    ** Set the programmable burst length to 8 longwords for all the DC21140
1401    ** Fasternet chips and 4 longwords for all others: DMA errors result
1402    ** without these values. Cache align 16 long.
1403    */
1404    bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1405    bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1406    outl(bmr, DE4X5_BMR);
1407
1408    omr = inl(DE4X5_OMR) & ~OMR_PR;             /* Turn off promiscuous mode */
1409    if (lp->chipset == DC21140) {
1410	omr |= (OMR_SDP | OMR_SB);
1411    }
1412    lp->setup_f = PERFECT;
1413    outl(lp->dma_rings, DE4X5_RRBA);
1414    outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1415	 DE4X5_TRBA);
1416
1417    lp->rx_new = lp->rx_old = 0;
1418    lp->tx_new = lp->tx_old = 0;
1419
1420    for (i = 0; i < lp->rxRingSize; i++) {
1421	lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1422    }
1423
1424    for (i = 0; i < lp->txRingSize; i++) {
1425	lp->tx_ring[i].status = cpu_to_le32(0);
1426    }
1427
1428    barrier();
1429
1430    /* Build the setup frame depending on filtering mode */
1431    SetMulticastFilter(dev);
1432
1433    load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1434    outl(omr|OMR_ST, DE4X5_OMR);
1435
1436    /* Poll for setup frame completion (adapter interrupts are disabled now) */
1437
1438    for (j=0, i=0;(i<500) && (j==0);i++) {       /* Up to 500ms delay */
1439	mdelay(1);
1440	if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1441    }
1442    outl(omr, DE4X5_OMR);                        /* Stop everything! */
1443
1444    if (j == 0) {
1445	printk("%s: Setup frame timed out, status %08x\n", dev->name,
1446	       inl(DE4X5_STS));
1447	status = -EIO;
1448    }
1449
1450    lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1451    lp->tx_old = lp->tx_new;
1452
1453    return status;
1454}
1455
1456/*
1457** Writes a socket buffer address to the next available transmit descriptor.
1458*/
1459static netdev_tx_t
1460de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1461{
1462    struct de4x5_private *lp = netdev_priv(dev);
1463    u_long iobase = dev->base_addr;
1464    u_long flags = 0;
1465
1466    netif_stop_queue(dev);
1467    if (!lp->tx_enable)                   /* Cannot send for now */
1468	return NETDEV_TX_LOCKED;
1469
1470    /*
1471    ** Clean out the TX ring asynchronously to interrupts - sometimes the
1472    ** interrupts are lost by delayed descriptor status updates relative to
1473    ** the irq assertion, especially with a busy PCI bus.
1474    */
1475    spin_lock_irqsave(&lp->lock, flags);
1476    de4x5_tx(dev);
1477    spin_unlock_irqrestore(&lp->lock, flags);
1478
1479    /* Test if cache is already locked - requeue skb if so */
1480    if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1481	return NETDEV_TX_LOCKED;
1482
1483    /* Transmit descriptor ring full or stale skb */
1484    if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1485	if (lp->interrupt) {
1486	    de4x5_putb_cache(dev, skb);          /* Requeue the buffer */
1487	} else {
1488	    de4x5_put_cache(dev, skb);
1489	}
1490	if (de4x5_debug & DEBUG_TX) {
1491	    printk("%s: transmit busy, lost media or stale skb found:\n  STS:%08x\n  tbusy:%d\n  IMR:%08x\n  OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1492	}
1493    } else if (skb->len > 0) {
1494	/* If we already have stuff queued locally, use that first */
1495	if (!skb_queue_empty(&lp->cache.queue) && !lp->interrupt) {
1496	    de4x5_put_cache(dev, skb);
1497	    skb = de4x5_get_cache(dev);
1498	}
1499
1500	while (skb && !netif_queue_stopped(dev) &&
1501	       (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1502	    spin_lock_irqsave(&lp->lock, flags);
1503	    netif_stop_queue(dev);
1504	    load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1505 	    lp->stats.tx_bytes += skb->len;
1506	    outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1507
1508	    lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1509
1510	    if (TX_BUFFS_AVAIL) {
1511		netif_start_queue(dev);         /* Another pkt may be queued */
1512	    }
1513	    skb = de4x5_get_cache(dev);
1514	    spin_unlock_irqrestore(&lp->lock, flags);
1515	}
1516	if (skb) de4x5_putb_cache(dev, skb);
1517    }
1518
1519    lp->cache.lock = 0;
1520
1521    return NETDEV_TX_OK;
1522}
1523
1524/*
1525** The DE4X5 interrupt handler.
1526**
1527** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1528** so that the asserted interrupt always has some real data to work with -
1529** if these I/O accesses are ever changed to memory accesses, ensure the
1530** STS write is read immediately to complete the transaction if the adapter
1531** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1532** is high and descriptor status bits cannot be set before the associated
1533** interrupt is asserted and this routine entered.
1534*/
1535static irqreturn_t
1536de4x5_interrupt(int irq, void *dev_id)
1537{
1538    struct net_device *dev = dev_id;
1539    struct de4x5_private *lp;
1540    s32 imr, omr, sts, limit;
1541    u_long iobase;
1542    unsigned int handled = 0;
1543
1544    lp = netdev_priv(dev);
1545    spin_lock(&lp->lock);
1546    iobase = dev->base_addr;
1547
1548    DISABLE_IRQs;                        /* Ensure non re-entrancy */
1549
1550    if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1551	printk("%s: Re-entering the interrupt handler.\n", dev->name);
1552
1553    synchronize_irq(dev->irq);
1554
1555    for (limit=0; limit<8; limit++) {
1556	sts = inl(DE4X5_STS);            /* Read IRQ status */
1557	outl(sts, DE4X5_STS);            /* Reset the board interrupts */
1558
1559	if (!(sts & lp->irq_mask)) break;/* All done */
1560	handled = 1;
1561
1562	if (sts & (STS_RI | STS_RU))     /* Rx interrupt (packet[s] arrived) */
1563	  de4x5_rx(dev);
1564
1565	if (sts & (STS_TI | STS_TU))     /* Tx interrupt (packet sent) */
1566	  de4x5_tx(dev);
1567
1568	if (sts & STS_LNF) {             /* TP Link has failed */
1569	    lp->irq_mask &= ~IMR_LFM;
1570	}
1571
1572	if (sts & STS_UNF) {             /* Transmit underrun */
1573	    de4x5_txur(dev);
1574	}
1575
1576	if (sts & STS_SE) {              /* Bus Error */
1577	    STOP_DE4X5;
1578	    printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1579		   dev->name, sts);
1580	    spin_unlock(&lp->lock);
1581	    return IRQ_HANDLED;
1582	}
1583    }
1584
1585    /* Load the TX ring with any locally stored packets */
1586    if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1587	while (!skb_queue_empty(&lp->cache.queue) && !netif_queue_stopped(dev) && lp->tx_enable) {
1588	    de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1589	}
1590	lp->cache.lock = 0;
1591    }
1592
1593    lp->interrupt = UNMASK_INTERRUPTS;
1594    ENABLE_IRQs;
1595    spin_unlock(&lp->lock);
1596
1597    return IRQ_RETVAL(handled);
1598}
1599
1600static int
1601de4x5_rx(struct net_device *dev)
1602{
1603    struct de4x5_private *lp = netdev_priv(dev);
1604    u_long iobase = dev->base_addr;
1605    int entry;
1606    s32 status;
1607
1608    for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1609	                                                    entry=lp->rx_new) {
1610	status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1611
1612	if (lp->rx_ovf) {
1613	    if (inl(DE4X5_MFC) & MFC_FOCM) {
1614		de4x5_rx_ovfc(dev);
1615		break;
1616	    }
1617	}
1618
1619	if (status & RD_FS) {                 /* Remember the start of frame */
1620	    lp->rx_old = entry;
1621	}
1622
1623	if (status & RD_LS) {                 /* Valid frame status */
1624	    if (lp->tx_enable) lp->linkOK++;
1625	    if (status & RD_ES) {	      /* There was an error. */
1626		lp->stats.rx_errors++;        /* Update the error stats. */
1627		if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1628		if (status & RD_CE)           lp->stats.rx_crc_errors++;
1629		if (status & RD_OF)           lp->stats.rx_fifo_errors++;
1630		if (status & RD_TL)           lp->stats.rx_length_errors++;
1631		if (status & RD_RF)           lp->pktStats.rx_runt_frames++;
1632		if (status & RD_CS)           lp->pktStats.rx_collision++;
1633		if (status & RD_DB)           lp->pktStats.rx_dribble++;
1634		if (status & RD_OF)           lp->pktStats.rx_overflow++;
1635	    } else {                          /* A valid frame received */
1636		struct sk_buff *skb;
1637		short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1638					                            >> 16) - 4;
1639
1640		if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1641		    printk("%s: Insufficient memory; nuking packet.\n",
1642			                                            dev->name);
1643		    lp->stats.rx_dropped++;
1644		} else {
1645		    de4x5_dbg_rx(skb, pkt_len);
1646
1647		    /* Push up the protocol stack */
1648		    skb->protocol=eth_type_trans(skb,dev);
1649		    de4x5_local_stats(dev, skb->data, pkt_len);
1650		    netif_rx(skb);
1651
1652		    /* Update stats */
1653		    lp->stats.rx_packets++;
1654 		    lp->stats.rx_bytes += pkt_len;
1655		}
1656	    }
1657
1658	    /* Change buffer ownership for this frame, back to the adapter */
1659	    for (;lp->rx_old!=entry;lp->rx_old=(lp->rx_old + 1)%lp->rxRingSize) {
1660		lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1661		barrier();
1662	    }
1663	    lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1664	    barrier();
1665	}
1666
1667	/*
1668	** Update entry information
1669	*/
1670	lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1671    }
1672
1673    return 0;
1674}
1675
1676static inline void
1677de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1678{
1679    dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1680		     le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1681		     DMA_TO_DEVICE);
1682    if ((u_long) lp->tx_skb[entry] > 1)
1683	dev_kfree_skb_irq(lp->tx_skb[entry]);
1684    lp->tx_skb[entry] = NULL;
1685}
1686
1687/*
1688** Buffer sent - check for TX buffer errors.
1689*/
1690static int
1691de4x5_tx(struct net_device *dev)
1692{
1693    struct de4x5_private *lp = netdev_priv(dev);
1694    u_long iobase = dev->base_addr;
1695    int entry;
1696    s32 status;
1697
1698    for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1699	status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1700	if (status < 0) {                     /* Buffer not sent yet */
1701	    break;
1702	} else if (status != 0x7fffffff) {    /* Not setup frame */
1703	    if (status & TD_ES) {             /* An error happened */
1704		lp->stats.tx_errors++;
1705		if (status & TD_NC) lp->stats.tx_carrier_errors++;
1706		if (status & TD_LC) lp->stats.tx_window_errors++;
1707		if (status & TD_UF) lp->stats.tx_fifo_errors++;
1708		if (status & TD_EC) lp->pktStats.excessive_collisions++;
1709		if (status & TD_DE) lp->stats.tx_aborted_errors++;
1710
1711		if (TX_PKT_PENDING) {
1712		    outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1713		}
1714	    } else {                      /* Packet sent */
1715		lp->stats.tx_packets++;
1716		if (lp->tx_enable) lp->linkOK++;
1717	    }
1718	    /* Update the collision counter */
1719	    lp->stats.collisions += ((status & TD_EC) ? 16 :
1720				                      ((status & TD_CC) >> 3));
1721
1722	    /* Free the buffer. */
1723	    if (lp->tx_skb[entry] != NULL)
1724	    	de4x5_free_tx_buff(lp, entry);
1725	}
1726
1727	/* Update all the pointers */
1728	lp->tx_old = (lp->tx_old + 1) % lp->txRingSize;
1729    }
1730
1731    /* Any resources available? */
1732    if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1733	if (lp->interrupt)
1734	    netif_wake_queue(dev);
1735	else
1736	    netif_start_queue(dev);
1737    }
1738
1739    return 0;
1740}
1741
1742static void
1743de4x5_ast(struct net_device *dev)
1744{
1745	struct de4x5_private *lp = netdev_priv(dev);
1746	int next_tick = DE4X5_AUTOSENSE_MS;
1747	int dt;
1748
1749	if (lp->useSROM)
1750		next_tick = srom_autoconf(dev);
1751	else if (lp->chipset == DC21140)
1752		next_tick = dc21140m_autoconf(dev);
1753	else if (lp->chipset == DC21041)
1754		next_tick = dc21041_autoconf(dev);
1755	else if (lp->chipset == DC21040)
1756		next_tick = dc21040_autoconf(dev);
1757	lp->linkOK = 0;
1758
1759	dt = (next_tick * HZ) / 1000;
1760
1761	if (!dt)
1762		dt = 1;
1763
1764	mod_timer(&lp->timer, jiffies + dt);
1765}
1766
1767static int
1768de4x5_txur(struct net_device *dev)
1769{
1770    struct de4x5_private *lp = netdev_priv(dev);
1771    u_long iobase = dev->base_addr;
1772    int omr;
1773
1774    omr = inl(DE4X5_OMR);
1775    if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1776	omr &= ~(OMR_ST|OMR_SR);
1777	outl(omr, DE4X5_OMR);
1778	while (inl(DE4X5_STS) & STS_TS);
1779	if ((omr & OMR_TR) < OMR_TR) {
1780	    omr += 0x4000;
1781	} else {
1782	    omr |= OMR_SF;
1783	}
1784	outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1785    }
1786
1787    return 0;
1788}
1789
1790static int
1791de4x5_rx_ovfc(struct net_device *dev)
1792{
1793    struct de4x5_private *lp = netdev_priv(dev);
1794    u_long iobase = dev->base_addr;
1795    int omr;
1796
1797    omr = inl(DE4X5_OMR);
1798    outl(omr & ~OMR_SR, DE4X5_OMR);
1799    while (inl(DE4X5_STS) & STS_RS);
1800
1801    for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1802	lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1803	lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1804    }
1805
1806    outl(omr, DE4X5_OMR);
1807
1808    return 0;
1809}
1810
1811static int
1812de4x5_close(struct net_device *dev)
1813{
1814    struct de4x5_private *lp = netdev_priv(dev);
1815    u_long iobase = dev->base_addr;
1816    s32 imr, omr;
1817
1818    disable_ast(dev);
1819
1820    netif_stop_queue(dev);
1821
1822    if (de4x5_debug & DEBUG_CLOSE) {
1823	printk("%s: Shutting down ethercard, status was %8.8x.\n",
1824	       dev->name, inl(DE4X5_STS));
1825    }
1826
1827    /*
1828    ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1829    */
1830    DISABLE_IRQs;
1831    STOP_DE4X5;
1832
1833    /* Free the associated irq */
1834    free_irq(dev->irq, dev);
1835    lp->state = CLOSED;
1836
1837    /* Free any socket buffers */
1838    de4x5_free_rx_buffs(dev);
1839    de4x5_free_tx_buffs(dev);
1840
1841    /* Put the adapter to sleep to save power */
1842    yawn(dev, SLEEP);
1843
1844    return 0;
1845}
1846
1847static struct net_device_stats *
1848de4x5_get_stats(struct net_device *dev)
1849{
1850    struct de4x5_private *lp = netdev_priv(dev);
1851    u_long iobase = dev->base_addr;
1852
1853    lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1854
1855    return &lp->stats;
1856}
1857
1858static void
1859de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1860{
1861    struct de4x5_private *lp = netdev_priv(dev);
1862    int i;
1863
1864    for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1865        if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1866	    lp->pktStats.bins[i]++;
1867	    i = DE4X5_PKT_STAT_SZ;
1868	}
1869    }
1870    if (is_multicast_ether_addr(buf)) {
1871        if (is_broadcast_ether_addr(buf)) {
1872	    lp->pktStats.broadcast++;
1873	} else {
1874	    lp->pktStats.multicast++;
1875	}
1876    } else if (ether_addr_equal(buf, dev->dev_addr)) {
1877        lp->pktStats.unicast++;
1878    }
1879
1880    lp->pktStats.bins[0]++;       /* Duplicates stats.rx_packets */
1881    if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1882        memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1883    }
1884}
1885
1886/*
1887** Removes the TD_IC flag from previous descriptor to improve TX performance.
1888** If the flag is changed on a descriptor that is being read by the hardware,
1889** I assume PCI transaction ordering will mean you are either successful or
1890** just miss asserting the change to the hardware. Anyway you're messing with
1891** a descriptor you don't own, but this shouldn't kill the chip provided
1892** the descriptor register is read only to the hardware.
1893*/
1894static void
1895load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1896{
1897    struct de4x5_private *lp = netdev_priv(dev);
1898    int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1899    dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1900
1901    lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1902    lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1903    lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1904    lp->tx_skb[lp->tx_new] = skb;
1905    lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1906    barrier();
1907
1908    lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1909    barrier();
1910}
1911
1912/*
1913** Set or clear the multicast filter for this adaptor.
1914*/
1915static void
1916set_multicast_list(struct net_device *dev)
1917{
1918    struct de4x5_private *lp = netdev_priv(dev);
1919    u_long iobase = dev->base_addr;
1920
1921    /* First, double check that the adapter is open */
1922    if (lp->state == OPEN) {
1923	if (dev->flags & IFF_PROMISC) {         /* set promiscuous mode */
1924	    u32 omr;
1925	    omr = inl(DE4X5_OMR);
1926	    omr |= OMR_PR;
1927	    outl(omr, DE4X5_OMR);
1928	} else {
1929	    SetMulticastFilter(dev);
1930	    load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1931			                                SETUP_FRAME_LEN, (struct sk_buff *)1);
1932
1933	    lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1934	    outl(POLL_DEMAND, DE4X5_TPD);       /* Start the TX */
1935	    dev->trans_start = jiffies; /* prevent tx timeout */
1936	}
1937    }
1938}
1939
1940/*
1941** Calculate the hash code and update the logical address filter
1942** from a list of ethernet multicast addresses.
1943** Little endian crc one liner from Matt Thomas, DEC.
1944*/
1945static void
1946SetMulticastFilter(struct net_device *dev)
1947{
1948    struct de4x5_private *lp = netdev_priv(dev);
1949    struct netdev_hw_addr *ha;
1950    u_long iobase = dev->base_addr;
1951    int i, bit, byte;
1952    u16 hashcode;
1953    u32 omr, crc;
1954    char *pa;
1955    unsigned char *addrs;
1956
1957    omr = inl(DE4X5_OMR);
1958    omr &= ~(OMR_PR | OMR_PM);
1959    pa = build_setup_frame(dev, ALL);        /* Build the basic frame */
1960
1961    if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 14)) {
1962	omr |= OMR_PM;                       /* Pass all multicasts */
1963    } else if (lp->setup_f == HASH_PERF) {   /* Hash Filtering */
1964	netdev_for_each_mc_addr(ha, dev) {
1965		crc = ether_crc_le(ETH_ALEN, ha->addr);
1966		hashcode = crc & HASH_BITS;  /* hashcode is 9 LSb of CRC */
1967
1968		byte = hashcode >> 3;        /* bit[3-8] -> byte in filter */
1969		bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1970
1971		byte <<= 1;                  /* calc offset into setup frame */
1972		if (byte & 0x02) {
1973		    byte -= 1;
1974		}
1975		lp->setup_frame[byte] |= bit;
1976	}
1977    } else {                                 /* Perfect filtering */
1978	netdev_for_each_mc_addr(ha, dev) {
1979	    addrs = ha->addr;
1980	    for (i=0; i<ETH_ALEN; i++) {
1981		*(pa + (i&1)) = *addrs++;
1982		if (i & 0x01) pa += 4;
1983	    }
1984	}
1985    }
1986    outl(omr, DE4X5_OMR);
1987}
1988
1989#ifdef CONFIG_EISA
1990
1991static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
1992
1993static int de4x5_eisa_probe(struct device *gendev)
1994{
1995	struct eisa_device *edev;
1996	u_long iobase;
1997	u_char irq, regval;
1998	u_short vendor;
1999	u32 cfid;
2000	int status, device;
2001	struct net_device *dev;
2002	struct de4x5_private *lp;
2003
2004	edev = to_eisa_device (gendev);
2005	iobase = edev->base_addr;
2006
2007	if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2008		return -EBUSY;
2009
2010	if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2011			     DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2012		status = -EBUSY;
2013		goto release_reg_1;
2014	}
2015
2016	if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2017		status = -ENOMEM;
2018		goto release_reg_2;
2019	}
2020	lp = netdev_priv(dev);
2021
2022	cfid = (u32) inl(PCI_CFID);
2023	lp->cfrv = (u_short) inl(PCI_CFRV);
2024	device = (cfid >> 8) & 0x00ffff00;
2025	vendor = (u_short) cfid;
2026
2027	/* Read the EISA Configuration Registers */
2028	regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2029#ifdef CONFIG_ALPHA
2030	/* Looks like the Jensen firmware (rev 2.2) doesn't really
2031	 * care about the EISA configuration, and thus doesn't
2032	 * configure the PLX bridge properly. Oh well... Simply mimic
2033	 * the EISA config file to sort it out. */
2034
2035	/* EISA REG1: Assert DecChip 21040 HW Reset */
2036	outb (ER1_IAM | 1, EISA_REG1);
2037	mdelay (1);
2038
2039        /* EISA REG1: Deassert DecChip 21040 HW Reset */
2040	outb (ER1_IAM, EISA_REG1);
2041	mdelay (1);
2042
2043	/* EISA REG3: R/W Burst Transfer Enable */
2044	outb (ER3_BWE | ER3_BRE, EISA_REG3);
2045
2046	/* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2047	outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2048#endif
2049	irq = de4x5_irq[(regval >> 1) & 0x03];
2050
2051	if (is_DC2114x) {
2052	    device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2053	}
2054	lp->chipset = device;
2055	lp->bus = EISA;
2056
2057	/* Write the PCI Configuration Registers */
2058	outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2059	outl(0x00006000, PCI_CFLT);
2060	outl(iobase, PCI_CBIO);
2061
2062	DevicePresent(dev, EISA_APROM);
2063
2064	dev->irq = irq;
2065
2066	if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2067		return 0;
2068	}
2069
2070	free_netdev (dev);
2071 release_reg_2:
2072	release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2073 release_reg_1:
2074	release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2075
2076	return status;
2077}
2078
2079static int de4x5_eisa_remove(struct device *device)
2080{
2081	struct net_device *dev;
2082	u_long iobase;
2083
2084	dev = dev_get_drvdata(device);
2085	iobase = dev->base_addr;
2086
2087	unregister_netdev (dev);
2088	free_netdev (dev);
2089	release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2090	release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2091
2092	return 0;
2093}
2094
2095static struct eisa_device_id de4x5_eisa_ids[] = {
2096        { "DEC4250", 0 },	/* 0 is the board name index... */
2097        { "" }
2098};
2099MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2100
2101static struct eisa_driver de4x5_eisa_driver = {
2102        .id_table = de4x5_eisa_ids,
2103        .driver   = {
2104                .name    = "de4x5",
2105                .probe   = de4x5_eisa_probe,
2106		.remove  = de4x5_eisa_remove,
2107        }
2108};
2109MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2110#endif
2111
2112#ifdef CONFIG_PCI
2113
2114/*
2115** This function searches the current bus (which is >0) for a DECchip with an
2116** SROM, so that in multiport cards that have one SROM shared between multiple
2117** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2118** For single port cards this is a time waster...
2119*/
2120static void
2121srom_search(struct net_device *dev, struct pci_dev *pdev)
2122{
2123    u_char pb;
2124    u_short vendor, status;
2125    u_int irq = 0, device;
2126    u_long iobase = 0;                     /* Clear upper 32 bits in Alphas */
2127    int i, j;
2128    struct de4x5_private *lp = netdev_priv(dev);
2129    struct pci_dev *this_dev;
2130
2131    list_for_each_entry(this_dev, &pdev->bus->devices, bus_list) {
2132	vendor = this_dev->vendor;
2133	device = this_dev->device << 8;
2134	if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2135
2136	/* Get the chip configuration revision register */
2137	pb = this_dev->bus->number;
2138
2139	/* Set the device number information */
2140	lp->device = PCI_SLOT(this_dev->devfn);
2141	lp->bus_num = pb;
2142
2143	/* Set the chipset information */
2144	if (is_DC2114x) {
2145	    device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2146		      ? DC21142 : DC21143);
2147	}
2148	lp->chipset = device;
2149
2150	/* Get the board I/O address (64 bits on sparc64) */
2151	iobase = pci_resource_start(this_dev, 0);
2152
2153	/* Fetch the IRQ to be used */
2154	irq = this_dev->irq;
2155	if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2156
2157	/* Check if I/O accesses are enabled */
2158	pci_read_config_word(this_dev, PCI_COMMAND, &status);
2159	if (!(status & PCI_COMMAND_IO)) continue;
2160
2161	/* Search for a valid SROM attached to this DECchip */
2162	DevicePresent(dev, DE4X5_APROM);
2163	for (j=0, i=0; i<ETH_ALEN; i++) {
2164	    j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2165	}
2166	if (j != 0 && j != 6 * 0xff) {
2167	    last.chipset = device;
2168	    last.bus = pb;
2169	    last.irq = irq;
2170	    for (i=0; i<ETH_ALEN; i++) {
2171		last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2172	    }
2173	    return;
2174	}
2175    }
2176}
2177
2178/*
2179** PCI bus I/O device probe
2180** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2181** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2182** enabled by the user first in the set up utility. Hence we just check for
2183** enabled features and silently ignore the card if they're not.
2184**
2185** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2186** bit. Here, check for I/O accesses and then set BM. If you put the card in
2187** a non BM slot, you're on your own (and complain to the PC vendor that your
2188** PC doesn't conform to the PCI standard)!
2189**
2190** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2191** kernels use the V0.535[n] drivers.
2192*/
2193
2194static int de4x5_pci_probe(struct pci_dev *pdev,
2195			   const struct pci_device_id *ent)
2196{
2197	u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2198	u_short vendor, status;
2199	u_int irq = 0, device;
2200	u_long iobase = 0;	/* Clear upper 32 bits in Alphas */
2201	int error;
2202	struct net_device *dev;
2203	struct de4x5_private *lp;
2204
2205	dev_num = PCI_SLOT(pdev->devfn);
2206	pb = pdev->bus->number;
2207
2208	if (io) { /* probe a single PCI device */
2209		pbus = (u_short)(io >> 8);
2210		dnum = (u_short)(io & 0xff);
2211		if ((pbus != pb) || (dnum != dev_num))
2212			return -ENODEV;
2213	}
2214
2215	vendor = pdev->vendor;
2216	device = pdev->device << 8;
2217	if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2218		return -ENODEV;
2219
2220	/* Ok, the device seems to be for us. */
2221	if ((error = pci_enable_device (pdev)))
2222		return error;
2223
2224	if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2225		error = -ENOMEM;
2226		goto disable_dev;
2227	}
2228
2229	lp = netdev_priv(dev);
2230	lp->bus = PCI;
2231	lp->bus_num = 0;
2232
2233	/* Search for an SROM on this bus */
2234	if (lp->bus_num != pb) {
2235	    lp->bus_num = pb;
2236	    srom_search(dev, pdev);
2237	}
2238
2239	/* Get the chip configuration revision register */
2240	lp->cfrv = pdev->revision;
2241
2242	/* Set the device number information */
2243	lp->device = dev_num;
2244	lp->bus_num = pb;
2245
2246	/* Set the chipset information */
2247	if (is_DC2114x) {
2248	    device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2249	}
2250	lp->chipset = device;
2251
2252	/* Get the board I/O address (64 bits on sparc64) */
2253	iobase = pci_resource_start(pdev, 0);
2254
2255	/* Fetch the IRQ to be used */
2256	irq = pdev->irq;
2257	if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2258		error = -ENODEV;
2259		goto free_dev;
2260	}
2261
2262	/* Check if I/O accesses and Bus Mastering are enabled */
2263	pci_read_config_word(pdev, PCI_COMMAND, &status);
2264#ifdef __powerpc__
2265	if (!(status & PCI_COMMAND_IO)) {
2266	    status |= PCI_COMMAND_IO;
2267	    pci_write_config_word(pdev, PCI_COMMAND, status);
2268	    pci_read_config_word(pdev, PCI_COMMAND, &status);
2269	}
2270#endif /* __powerpc__ */
2271	if (!(status & PCI_COMMAND_IO)) {
2272		error = -ENODEV;
2273		goto free_dev;
2274	}
2275
2276	if (!(status & PCI_COMMAND_MASTER)) {
2277	    status |= PCI_COMMAND_MASTER;
2278	    pci_write_config_word(pdev, PCI_COMMAND, status);
2279	    pci_read_config_word(pdev, PCI_COMMAND, &status);
2280	}
2281	if (!(status & PCI_COMMAND_MASTER)) {
2282		error = -ENODEV;
2283		goto free_dev;
2284	}
2285
2286	/* Check the latency timer for values >= 0x60 */
2287	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2288	if (timer < 0x60) {
2289	    pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2290	}
2291
2292	DevicePresent(dev, DE4X5_APROM);
2293
2294	if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2295		error = -EBUSY;
2296		goto free_dev;
2297	}
2298
2299	dev->irq = irq;
2300
2301	if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2302		goto release;
2303	}
2304
2305	return 0;
2306
2307 release:
2308	release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2309 free_dev:
2310	free_netdev (dev);
2311 disable_dev:
2312	pci_disable_device (pdev);
2313	return error;
2314}
2315
2316static void de4x5_pci_remove(struct pci_dev *pdev)
2317{
2318	struct net_device *dev;
2319	u_long iobase;
2320
2321	dev = pci_get_drvdata(pdev);
2322	iobase = dev->base_addr;
2323
2324	unregister_netdev (dev);
2325	free_netdev (dev);
2326	release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2327	pci_disable_device (pdev);
2328}
2329
2330static const struct pci_device_id de4x5_pci_tbl[] = {
2331        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2332          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2333        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2334          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2335        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2336	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2337        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2338	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2339        { },
2340};
2341
2342static struct pci_driver de4x5_pci_driver = {
2343        .name           = "de4x5",
2344        .id_table       = de4x5_pci_tbl,
2345        .probe          = de4x5_pci_probe,
2346	.remove         = de4x5_pci_remove,
2347};
2348
2349#endif
2350
2351/*
2352** Auto configure the media here rather than setting the port at compile
2353** time. This routine is called by de4x5_init() and when a loss of media is
2354** detected (excessive collisions, loss of carrier, no carrier or link fail
2355** [TP] or no recent receive activity) to check whether the user has been
2356** sneaky and changed the port on us.
2357*/
2358static int
2359autoconf_media(struct net_device *dev)
2360{
2361	struct de4x5_private *lp = netdev_priv(dev);
2362	u_long iobase = dev->base_addr;
2363
2364	disable_ast(dev);
2365
2366	lp->c_media = AUTO;                     /* Bogus last media */
2367	inl(DE4X5_MFC);                         /* Zero the lost frames counter */
2368	lp->media = INIT;
2369	lp->tcount = 0;
2370
2371	de4x5_ast(dev);
2372
2373	return lp->media;
2374}
2375
2376/*
2377** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2378** from BNC as the port has a jumper to set thick or thin wire. When set for
2379** BNC, the BNC port will indicate activity if it's not terminated correctly.
2380** The only way to test for that is to place a loopback packet onto the
2381** network and watch for errors. Since we're messing with the interrupt mask
2382** register, disable the board interrupts and do not allow any more packets to
2383** be queued to the hardware. Re-enable everything only when the media is
2384** found.
2385** I may have to "age out" locally queued packets so that the higher layer
2386** timeouts don't effectively duplicate packets on the network.
2387*/
2388static int
2389dc21040_autoconf(struct net_device *dev)
2390{
2391    struct de4x5_private *lp = netdev_priv(dev);
2392    u_long iobase = dev->base_addr;
2393    int next_tick = DE4X5_AUTOSENSE_MS;
2394    s32 imr;
2395
2396    switch (lp->media) {
2397    case INIT:
2398	DISABLE_IRQs;
2399	lp->tx_enable = false;
2400	lp->timeout = -1;
2401	de4x5_save_skbs(dev);
2402	if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2403	    lp->media = TP;
2404	} else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2405	    lp->media = BNC_AUI;
2406	} else if (lp->autosense == EXT_SIA) {
2407	    lp->media = EXT_SIA;
2408	} else {
2409	    lp->media = NC;
2410	}
2411	lp->local_state = 0;
2412	next_tick = dc21040_autoconf(dev);
2413	break;
2414
2415    case TP:
2416	next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2417		                                         TP_SUSPECT, test_tp);
2418	break;
2419
2420    case TP_SUSPECT:
2421	next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2422	break;
2423
2424    case BNC:
2425    case AUI:
2426    case BNC_AUI:
2427	next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2428		                                  BNC_AUI_SUSPECT, ping_media);
2429	break;
2430
2431    case BNC_AUI_SUSPECT:
2432	next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2433	break;
2434
2435    case EXT_SIA:
2436	next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2437		                              NC, EXT_SIA_SUSPECT, ping_media);
2438	break;
2439
2440    case EXT_SIA_SUSPECT:
2441	next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2442	break;
2443
2444    case NC:
2445	/* default to TP for all */
2446	reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2447	if (lp->media != lp->c_media) {
2448	    de4x5_dbg_media(dev);
2449	    lp->c_media = lp->media;
2450	}
2451	lp->media = INIT;
2452	lp->tx_enable = false;
2453	break;
2454    }
2455
2456    return next_tick;
2457}
2458
2459static int
2460dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2461	      int next_state, int suspect_state,
2462	      int (*fn)(struct net_device *, int))
2463{
2464    struct de4x5_private *lp = netdev_priv(dev);
2465    int next_tick = DE4X5_AUTOSENSE_MS;
2466    int linkBad;
2467
2468    switch (lp->local_state) {
2469    case 0:
2470	reset_init_sia(dev, csr13, csr14, csr15);
2471	lp->local_state++;
2472	next_tick = 500;
2473	break;
2474
2475    case 1:
2476	if (!lp->tx_enable) {
2477	    linkBad = fn(dev, timeout);
2478	    if (linkBad < 0) {
2479		next_tick = linkBad & ~TIMER_CB;
2480	    } else {
2481		if (linkBad && (lp->autosense == AUTO)) {
2482		    lp->local_state = 0;
2483		    lp->media = next_state;
2484		} else {
2485		    de4x5_init_connection(dev);
2486		}
2487	    }
2488	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2489	    lp->media = suspect_state;
2490	    next_tick = 3000;
2491	}
2492	break;
2493    }
2494
2495    return next_tick;
2496}
2497
2498static int
2499de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2500		      int (*fn)(struct net_device *, int),
2501		      int (*asfn)(struct net_device *))
2502{
2503    struct de4x5_private *lp = netdev_priv(dev);
2504    int next_tick = DE4X5_AUTOSENSE_MS;
2505    int linkBad;
2506
2507    switch (lp->local_state) {
2508    case 1:
2509	if (lp->linkOK) {
2510	    lp->media = prev_state;
2511	} else {
2512	    lp->local_state++;
2513	    next_tick = asfn(dev);
2514	}
2515	break;
2516
2517    case 2:
2518	linkBad = fn(dev, timeout);
2519	if (linkBad < 0) {
2520	    next_tick = linkBad & ~TIMER_CB;
2521	} else if (!linkBad) {
2522	    lp->local_state--;
2523	    lp->media = prev_state;
2524	} else {
2525	    lp->media = INIT;
2526	    lp->tcount++;
2527	}
2528    }
2529
2530    return next_tick;
2531}
2532
2533/*
2534** Autoconfigure the media when using the DC21041. AUI needs to be tested
2535** before BNC, because the BNC port will indicate activity if it's not
2536** terminated correctly. The only way to test for that is to place a loopback
2537** packet onto the network and watch for errors. Since we're messing with
2538** the interrupt mask register, disable the board interrupts and do not allow
2539** any more packets to be queued to the hardware. Re-enable everything only
2540** when the media is found.
2541*/
2542static int
2543dc21041_autoconf(struct net_device *dev)
2544{
2545    struct de4x5_private *lp = netdev_priv(dev);
2546    u_long iobase = dev->base_addr;
2547    s32 sts, irqs, irq_mask, imr, omr;
2548    int next_tick = DE4X5_AUTOSENSE_MS;
2549
2550    switch (lp->media) {
2551    case INIT:
2552	DISABLE_IRQs;
2553	lp->tx_enable = false;
2554	lp->timeout = -1;
2555	de4x5_save_skbs(dev);          /* Save non transmitted skb's */
2556	if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2557	    lp->media = TP;            /* On chip auto negotiation is broken */
2558	} else if (lp->autosense == TP) {
2559	    lp->media = TP;
2560	} else if (lp->autosense == BNC) {
2561	    lp->media = BNC;
2562	} else if (lp->autosense == AUI) {
2563	    lp->media = AUI;
2564	} else {
2565	    lp->media = NC;
2566	}
2567	lp->local_state = 0;
2568	next_tick = dc21041_autoconf(dev);
2569	break;
2570
2571    case TP_NW:
2572	if (lp->timeout < 0) {
2573	    omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2574	    outl(omr | OMR_FDX, DE4X5_OMR);
2575	}
2576	irqs = STS_LNF | STS_LNP;
2577	irq_mask = IMR_LFM | IMR_LPM;
2578	sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2579	if (sts < 0) {
2580	    next_tick = sts & ~TIMER_CB;
2581	} else {
2582	    if (sts & STS_LNP) {
2583		lp->media = ANS;
2584	    } else {
2585		lp->media = AUI;
2586	    }
2587	    next_tick = dc21041_autoconf(dev);
2588	}
2589	break;
2590
2591    case ANS:
2592	if (!lp->tx_enable) {
2593	    irqs = STS_LNP;
2594	    irq_mask = IMR_LPM;
2595	    sts = test_ans(dev, irqs, irq_mask, 3000);
2596	    if (sts < 0) {
2597		next_tick = sts & ~TIMER_CB;
2598	    } else {
2599		if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2600		    lp->media = TP;
2601		    next_tick = dc21041_autoconf(dev);
2602		} else {
2603		    lp->local_state = 1;
2604		    de4x5_init_connection(dev);
2605		}
2606	    }
2607	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2608	    lp->media = ANS_SUSPECT;
2609	    next_tick = 3000;
2610	}
2611	break;
2612
2613    case ANS_SUSPECT:
2614	next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2615	break;
2616
2617    case TP:
2618	if (!lp->tx_enable) {
2619	    if (lp->timeout < 0) {
2620		omr = inl(DE4X5_OMR);          /* Set up half duplex for TP */
2621		outl(omr & ~OMR_FDX, DE4X5_OMR);
2622	    }
2623	    irqs = STS_LNF | STS_LNP;
2624	    irq_mask = IMR_LFM | IMR_LPM;
2625	    sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2626	    if (sts < 0) {
2627		next_tick = sts & ~TIMER_CB;
2628	    } else {
2629		if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2630		    if (inl(DE4X5_SISR) & SISR_NRA) {
2631			lp->media = AUI;       /* Non selected port activity */
2632		    } else {
2633			lp->media = BNC;
2634		    }
2635		    next_tick = dc21041_autoconf(dev);
2636		} else {
2637		    lp->local_state = 1;
2638		    de4x5_init_connection(dev);
2639		}
2640	    }
2641	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2642	    lp->media = TP_SUSPECT;
2643	    next_tick = 3000;
2644	}
2645	break;
2646
2647    case TP_SUSPECT:
2648	next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2649	break;
2650
2651    case AUI:
2652	if (!lp->tx_enable) {
2653	    if (lp->timeout < 0) {
2654		omr = inl(DE4X5_OMR);          /* Set up half duplex for AUI */
2655		outl(omr & ~OMR_FDX, DE4X5_OMR);
2656	    }
2657	    irqs = 0;
2658	    irq_mask = 0;
2659	    sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2660	    if (sts < 0) {
2661		next_tick = sts & ~TIMER_CB;
2662	    } else {
2663		if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2664		    lp->media = BNC;
2665		    next_tick = dc21041_autoconf(dev);
2666		} else {
2667		    lp->local_state = 1;
2668		    de4x5_init_connection(dev);
2669		}
2670	    }
2671	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2672	    lp->media = AUI_SUSPECT;
2673	    next_tick = 3000;
2674	}
2675	break;
2676
2677    case AUI_SUSPECT:
2678	next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2679	break;
2680
2681    case BNC:
2682	switch (lp->local_state) {
2683	case 0:
2684	    if (lp->timeout < 0) {
2685		omr = inl(DE4X5_OMR);          /* Set up half duplex for BNC */
2686		outl(omr & ~OMR_FDX, DE4X5_OMR);
2687	    }
2688	    irqs = 0;
2689	    irq_mask = 0;
2690	    sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2691	    if (sts < 0) {
2692		next_tick = sts & ~TIMER_CB;
2693	    } else {
2694		lp->local_state++;             /* Ensure media connected */
2695		next_tick = dc21041_autoconf(dev);
2696	    }
2697	    break;
2698
2699	case 1:
2700	    if (!lp->tx_enable) {
2701		if ((sts = ping_media(dev, 3000)) < 0) {
2702		    next_tick = sts & ~TIMER_CB;
2703		} else {
2704		    if (sts) {
2705			lp->local_state = 0;
2706			lp->media = NC;
2707		    } else {
2708			de4x5_init_connection(dev);
2709		    }
2710		}
2711	    } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2712		lp->media = BNC_SUSPECT;
2713		next_tick = 3000;
2714	    }
2715	    break;
2716	}
2717	break;
2718
2719    case BNC_SUSPECT:
2720	next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2721	break;
2722
2723    case NC:
2724	omr = inl(DE4X5_OMR);    /* Set up full duplex for the autonegotiate */
2725	outl(omr | OMR_FDX, DE4X5_OMR);
2726	reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2727	if (lp->media != lp->c_media) {
2728	    de4x5_dbg_media(dev);
2729	    lp->c_media = lp->media;
2730	}
2731	lp->media = INIT;
2732	lp->tx_enable = false;
2733	break;
2734    }
2735
2736    return next_tick;
2737}
2738
2739/*
2740** Some autonegotiation chips are broken in that they do not return the
2741** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2742** register, except at the first power up negotiation.
2743*/
2744static int
2745dc21140m_autoconf(struct net_device *dev)
2746{
2747    struct de4x5_private *lp = netdev_priv(dev);
2748    int ana, anlpa, cap, cr, slnk, sr;
2749    int next_tick = DE4X5_AUTOSENSE_MS;
2750    u_long imr, omr, iobase = dev->base_addr;
2751
2752    switch(lp->media) {
2753    case INIT:
2754        if (lp->timeout < 0) {
2755	    DISABLE_IRQs;
2756	    lp->tx_enable = false;
2757	    lp->linkOK = 0;
2758	    de4x5_save_skbs(dev);          /* Save non transmitted skb's */
2759	}
2760	if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2761	    next_tick &= ~TIMER_CB;
2762	} else {
2763	    if (lp->useSROM) {
2764		if (srom_map_media(dev) < 0) {
2765		    lp->tcount++;
2766		    return next_tick;
2767		}
2768		srom_exec(dev, lp->phy[lp->active].gep);
2769		if (lp->infoblock_media == ANS) {
2770		    ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2771		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2772		}
2773	    } else {
2774		lp->tmp = MII_SR_ASSC;     /* Fake out the MII speed set */
2775		SET_10Mb;
2776		if (lp->autosense == _100Mb) {
2777		    lp->media = _100Mb;
2778		} else if (lp->autosense == _10Mb) {
2779		    lp->media = _10Mb;
2780		} else if ((lp->autosense == AUTO) &&
2781			            ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2782		    ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2783		    ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2784		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2785		    lp->media = ANS;
2786		} else if (lp->autosense == AUTO) {
2787		    lp->media = SPD_DET;
2788		} else if (is_spd_100(dev) && is_100_up(dev)) {
2789		    lp->media = _100Mb;
2790		} else {
2791		    lp->media = NC;
2792		}
2793	    }
2794	    lp->local_state = 0;
2795	    next_tick = dc21140m_autoconf(dev);
2796	}
2797	break;
2798
2799    case ANS:
2800	switch (lp->local_state) {
2801	case 0:
2802	    if (lp->timeout < 0) {
2803		mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2804	    }
2805	    cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2806	    if (cr < 0) {
2807		next_tick = cr & ~TIMER_CB;
2808	    } else {
2809		if (cr) {
2810		    lp->local_state = 0;
2811		    lp->media = SPD_DET;
2812		} else {
2813		    lp->local_state++;
2814		}
2815		next_tick = dc21140m_autoconf(dev);
2816	    }
2817	    break;
2818
2819	case 1:
2820	    if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2821		next_tick = sr & ~TIMER_CB;
2822	    } else {
2823		lp->media = SPD_DET;
2824		lp->local_state = 0;
2825		if (sr) {                         /* Success! */
2826		    lp->tmp = MII_SR_ASSC;
2827		    anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2828		    ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2829		    if (!(anlpa & MII_ANLPA_RF) &&
2830			 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2831			if (cap & MII_ANA_100M) {
2832			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2833			    lp->media = _100Mb;
2834			} else if (cap & MII_ANA_10M) {
2835			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2836
2837			    lp->media = _10Mb;
2838			}
2839		    }
2840		}                       /* Auto Negotiation failed to finish */
2841		next_tick = dc21140m_autoconf(dev);
2842	    }                           /* Auto Negotiation failed to start */
2843	    break;
2844	}
2845	break;
2846
2847    case SPD_DET:                              /* Choose 10Mb/s or 100Mb/s */
2848        if (lp->timeout < 0) {
2849	    lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2850		                                  (~gep_rd(dev) & GEP_LNP));
2851	    SET_100Mb_PDET;
2852	}
2853        if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2854	    next_tick = slnk & ~TIMER_CB;
2855	} else {
2856	    if (is_spd_100(dev) && is_100_up(dev)) {
2857		lp->media = _100Mb;
2858	    } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2859		lp->media = _10Mb;
2860	    } else {
2861		lp->media = NC;
2862	    }
2863	    next_tick = dc21140m_autoconf(dev);
2864	}
2865	break;
2866
2867    case _100Mb:                               /* Set 100Mb/s */
2868        next_tick = 3000;
2869	if (!lp->tx_enable) {
2870	    SET_100Mb;
2871	    de4x5_init_connection(dev);
2872	} else {
2873	    if (!lp->linkOK && (lp->autosense == AUTO)) {
2874		if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2875		    lp->media = INIT;
2876		    lp->tcount++;
2877		    next_tick = DE4X5_AUTOSENSE_MS;
2878		}
2879	    }
2880	}
2881	break;
2882
2883    case BNC:
2884    case AUI:
2885    case _10Mb:                                /* Set 10Mb/s */
2886        next_tick = 3000;
2887	if (!lp->tx_enable) {
2888	    SET_10Mb;
2889	    de4x5_init_connection(dev);
2890	} else {
2891	    if (!lp->linkOK && (lp->autosense == AUTO)) {
2892		if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2893		    lp->media = INIT;
2894		    lp->tcount++;
2895		    next_tick = DE4X5_AUTOSENSE_MS;
2896		}
2897	    }
2898	}
2899	break;
2900
2901    case NC:
2902        if (lp->media != lp->c_media) {
2903	    de4x5_dbg_media(dev);
2904	    lp->c_media = lp->media;
2905	}
2906	lp->media = INIT;
2907	lp->tx_enable = false;
2908	break;
2909    }
2910
2911    return next_tick;
2912}
2913
2914/*
2915** This routine may be merged into dc21140m_autoconf() sometime as I'm
2916** changing how I figure out the media - but trying to keep it backwards
2917** compatible with the de500-xa and de500-aa.
2918** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2919** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2920** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2921** active.
2922** When autonegotiation is working, the ANS part searches the SROM for
2923** the highest common speed (TP) link that both can run and if that can
2924** be full duplex. That infoblock is executed and then the link speed set.
2925**
2926** Only _10Mb and _100Mb are tested here.
2927*/
2928static int
2929dc2114x_autoconf(struct net_device *dev)
2930{
2931    struct de4x5_private *lp = netdev_priv(dev);
2932    u_long iobase = dev->base_addr;
2933    s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2934    int next_tick = DE4X5_AUTOSENSE_MS;
2935
2936    switch (lp->media) {
2937    case INIT:
2938        if (lp->timeout < 0) {
2939	    DISABLE_IRQs;
2940	    lp->tx_enable = false;
2941	    lp->linkOK = 0;
2942            lp->timeout = -1;
2943	    de4x5_save_skbs(dev);            /* Save non transmitted skb's */
2944	    if (lp->params.autosense & ~AUTO) {
2945		srom_map_media(dev);         /* Fixed media requested      */
2946		if (lp->media != lp->params.autosense) {
2947		    lp->tcount++;
2948		    lp->media = INIT;
2949		    return next_tick;
2950		}
2951		lp->media = INIT;
2952	    }
2953	}
2954	if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2955	    next_tick &= ~TIMER_CB;
2956	} else {
2957	    if (lp->autosense == _100Mb) {
2958		lp->media = _100Mb;
2959	    } else if (lp->autosense == _10Mb) {
2960		lp->media = _10Mb;
2961	    } else if (lp->autosense == TP) {
2962		lp->media = TP;
2963	    } else if (lp->autosense == BNC) {
2964		lp->media = BNC;
2965	    } else if (lp->autosense == AUI) {
2966		lp->media = AUI;
2967	    } else {
2968		lp->media = SPD_DET;
2969		if ((lp->infoblock_media == ANS) &&
2970		                    ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2971		    ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2972		    ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2973		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2974		    lp->media = ANS;
2975		}
2976	    }
2977	    lp->local_state = 0;
2978	    next_tick = dc2114x_autoconf(dev);
2979        }
2980	break;
2981
2982    case ANS:
2983	switch (lp->local_state) {
2984	case 0:
2985	    if (lp->timeout < 0) {
2986		mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2987	    }
2988	    cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2989	    if (cr < 0) {
2990		next_tick = cr & ~TIMER_CB;
2991	    } else {
2992		if (cr) {
2993		    lp->local_state = 0;
2994		    lp->media = SPD_DET;
2995		} else {
2996		    lp->local_state++;
2997		}
2998		next_tick = dc2114x_autoconf(dev);
2999	    }
3000	    break;
3001
3002	case 1:
3003	    sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3004	    if (sr < 0) {
3005		next_tick = sr & ~TIMER_CB;
3006	    } else {
3007		lp->media = SPD_DET;
3008		lp->local_state = 0;
3009		if (sr) {                         /* Success! */
3010		    lp->tmp = MII_SR_ASSC;
3011		    anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3012		    ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3013		    if (!(anlpa & MII_ANLPA_RF) &&
3014			 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3015			if (cap & MII_ANA_100M) {
3016			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3017			    lp->media = _100Mb;
3018			} else if (cap & MII_ANA_10M) {
3019			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3020			    lp->media = _10Mb;
3021			}
3022		    }
3023		}                       /* Auto Negotiation failed to finish */
3024		next_tick = dc2114x_autoconf(dev);
3025	    }                           /* Auto Negotiation failed to start  */
3026	    break;
3027	}
3028	break;
3029
3030    case AUI:
3031	if (!lp->tx_enable) {
3032	    if (lp->timeout < 0) {
3033		omr = inl(DE4X5_OMR);   /* Set up half duplex for AUI        */
3034		outl(omr & ~OMR_FDX, DE4X5_OMR);
3035	    }
3036	    irqs = 0;
3037	    irq_mask = 0;
3038	    sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3039	    if (sts < 0) {
3040		next_tick = sts & ~TIMER_CB;
3041	    } else {
3042		if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3043		    lp->media = BNC;
3044		    next_tick = dc2114x_autoconf(dev);
3045		} else {
3046		    lp->local_state = 1;
3047		    de4x5_init_connection(dev);
3048		}
3049	    }
3050	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
3051	    lp->media = AUI_SUSPECT;
3052	    next_tick = 3000;
3053	}
3054	break;
3055
3056    case AUI_SUSPECT:
3057	next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3058	break;
3059
3060    case BNC:
3061	switch (lp->local_state) {
3062	case 0:
3063	    if (lp->timeout < 0) {
3064		omr = inl(DE4X5_OMR);          /* Set up half duplex for BNC */
3065		outl(omr & ~OMR_FDX, DE4X5_OMR);
3066	    }
3067	    irqs = 0;
3068	    irq_mask = 0;
3069	    sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3070	    if (sts < 0) {
3071		next_tick = sts & ~TIMER_CB;
3072	    } else {
3073		lp->local_state++;             /* Ensure media connected */
3074		next_tick = dc2114x_autoconf(dev);
3075	    }
3076	    break;
3077
3078	case 1:
3079	    if (!lp->tx_enable) {
3080		if ((sts = ping_media(dev, 3000)) < 0) {
3081		    next_tick = sts & ~TIMER_CB;
3082		} else {
3083		    if (sts) {
3084			lp->local_state = 0;
3085			lp->tcount++;
3086			lp->media = INIT;
3087		    } else {
3088			de4x5_init_connection(dev);
3089		    }
3090		}
3091	    } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3092		lp->media = BNC_SUSPECT;
3093		next_tick = 3000;
3094	    }
3095	    break;
3096	}
3097	break;
3098
3099    case BNC_SUSPECT:
3100	next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3101	break;
3102
3103    case SPD_DET:                              /* Choose 10Mb/s or 100Mb/s */
3104	  if (srom_map_media(dev) < 0) {
3105	      lp->tcount++;
3106	      lp->media = INIT;
3107	      return next_tick;
3108	  }
3109	  if (lp->media == _100Mb) {
3110	      if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3111		  lp->media = SPD_DET;
3112		  return slnk & ~TIMER_CB;
3113	      }
3114	  } else {
3115	      if (wait_for_link(dev) < 0) {
3116		  lp->media = SPD_DET;
3117		  return PDET_LINK_WAIT;
3118	      }
3119	  }
3120	  if (lp->media == ANS) {           /* Do MII parallel detection */
3121	      if (is_spd_100(dev)) {
3122		  lp->media = _100Mb;
3123	      } else {
3124		  lp->media = _10Mb;
3125	      }
3126	      next_tick = dc2114x_autoconf(dev);
3127	  } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3128		     (((lp->media == _10Mb) || (lp->media == TP) ||
3129		       (lp->media == BNC)   || (lp->media == AUI)) &&
3130		      is_10_up(dev))) {
3131	      next_tick = dc2114x_autoconf(dev);
3132	  } else {
3133	      lp->tcount++;
3134	      lp->media = INIT;
3135	  }
3136	  break;
3137
3138    case _10Mb:
3139        next_tick = 3000;
3140	if (!lp->tx_enable) {
3141	    SET_10Mb;
3142	    de4x5_init_connection(dev);
3143	} else {
3144	    if (!lp->linkOK && (lp->autosense == AUTO)) {
3145		if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3146		    lp->media = INIT;
3147		    lp->tcount++;
3148		    next_tick = DE4X5_AUTOSENSE_MS;
3149		}
3150	    }
3151	}
3152	break;
3153
3154    case _100Mb:
3155        next_tick = 3000;
3156	if (!lp->tx_enable) {
3157	    SET_100Mb;
3158	    de4x5_init_connection(dev);
3159	} else {
3160	    if (!lp->linkOK && (lp->autosense == AUTO)) {
3161		if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3162		    lp->media = INIT;
3163		    lp->tcount++;
3164		    next_tick = DE4X5_AUTOSENSE_MS;
3165		}
3166	    }
3167	}
3168	break;
3169
3170    default:
3171	lp->tcount++;
3172printk("Huh?: media:%02x\n", lp->media);
3173	lp->media = INIT;
3174	break;
3175    }
3176
3177    return next_tick;
3178}
3179
3180static int
3181srom_autoconf(struct net_device *dev)
3182{
3183    struct de4x5_private *lp = netdev_priv(dev);
3184
3185    return lp->infoleaf_fn(dev);
3186}
3187
3188/*
3189** This mapping keeps the original media codes and FDX flag unchanged.
3190** While it isn't strictly necessary, it helps me for the moment...
3191** The early return avoids a media state / SROM media space clash.
3192*/
3193static int
3194srom_map_media(struct net_device *dev)
3195{
3196    struct de4x5_private *lp = netdev_priv(dev);
3197
3198    lp->fdx = false;
3199    if (lp->infoblock_media == lp->media)
3200      return 0;
3201
3202    switch(lp->infoblock_media) {
3203      case SROM_10BASETF:
3204	if (!lp->params.fdx) return -1;
3205	lp->fdx = true;
3206      case SROM_10BASET:
3207	if (lp->params.fdx && !lp->fdx) return -1;
3208	if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3209	    lp->media = _10Mb;
3210	} else {
3211	    lp->media = TP;
3212	}
3213	break;
3214
3215      case SROM_10BASE2:
3216	lp->media = BNC;
3217	break;
3218
3219      case SROM_10BASE5:
3220	lp->media = AUI;
3221	break;
3222
3223      case SROM_100BASETF:
3224        if (!lp->params.fdx) return -1;
3225	lp->fdx = true;
3226      case SROM_100BASET:
3227	if (lp->params.fdx && !lp->fdx) return -1;
3228	lp->media = _100Mb;
3229	break;
3230
3231      case SROM_100BASET4:
3232	lp->media = _100Mb;
3233	break;
3234
3235      case SROM_100BASEFF:
3236	if (!lp->params.fdx) return -1;
3237	lp->fdx = true;
3238      case SROM_100BASEF:
3239	if (lp->params.fdx && !lp->fdx) return -1;
3240	lp->media = _100Mb;
3241	break;
3242
3243      case ANS:
3244	lp->media = ANS;
3245	lp->fdx = lp->params.fdx;
3246	break;
3247
3248      default:
3249	printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3250	                                                  lp->infoblock_media);
3251	return -1;
3252    }
3253
3254    return 0;
3255}
3256
3257static void
3258de4x5_init_connection(struct net_device *dev)
3259{
3260    struct de4x5_private *lp = netdev_priv(dev);
3261    u_long iobase = dev->base_addr;
3262    u_long flags = 0;
3263
3264    if (lp->media != lp->c_media) {
3265        de4x5_dbg_media(dev);
3266	lp->c_media = lp->media;          /* Stop scrolling media messages */
3267    }
3268
3269    spin_lock_irqsave(&lp->lock, flags);
3270    de4x5_rst_desc_ring(dev);
3271    de4x5_setup_intr(dev);
3272    lp->tx_enable = true;
3273    spin_unlock_irqrestore(&lp->lock, flags);
3274    outl(POLL_DEMAND, DE4X5_TPD);
3275
3276    netif_wake_queue(dev);
3277}
3278
3279/*
3280** General PHY reset function. Some MII devices don't reset correctly
3281** since their MII address pins can float at voltages that are dependent
3282** on the signal pin use. Do a double reset to ensure a reset.
3283*/
3284static int
3285de4x5_reset_phy(struct net_device *dev)
3286{
3287    struct de4x5_private *lp = netdev_priv(dev);
3288    u_long iobase = dev->base_addr;
3289    int next_tick = 0;
3290
3291    if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3292	if (lp->timeout < 0) {
3293	    if (lp->useSROM) {
3294		if (lp->phy[lp->active].rst) {
3295		    srom_exec(dev, lp->phy[lp->active].rst);
3296		    srom_exec(dev, lp->phy[lp->active].rst);
3297		} else if (lp->rst) {          /* Type 5 infoblock reset */
3298		    srom_exec(dev, lp->rst);
3299		    srom_exec(dev, lp->rst);
3300		}
3301	    } else {
3302		PHY_HARD_RESET;
3303	    }
3304	    if (lp->useMII) {
3305	        mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3306            }
3307        }
3308	if (lp->useMII) {
3309	    next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3310	}
3311    } else if (lp->chipset == DC21140) {
3312	PHY_HARD_RESET;
3313    }
3314
3315    return next_tick;
3316}
3317
3318static int
3319test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3320{
3321    struct de4x5_private *lp = netdev_priv(dev);
3322    u_long iobase = dev->base_addr;
3323    s32 sts, csr12;
3324
3325    if (lp->timeout < 0) {
3326	lp->timeout = msec/100;
3327	if (!lp->useSROM) {      /* Already done if by SROM, else dc2104[01] */
3328	    reset_init_sia(dev, csr13, csr14, csr15);
3329	}
3330
3331	/* set up the interrupt mask */
3332	outl(irq_mask, DE4X5_IMR);
3333
3334	/* clear all pending interrupts */
3335	sts = inl(DE4X5_STS);
3336	outl(sts, DE4X5_STS);
3337
3338	/* clear csr12 NRA and SRA bits */
3339	if ((lp->chipset == DC21041) || lp->useSROM) {
3340	    csr12 = inl(DE4X5_SISR);
3341	    outl(csr12, DE4X5_SISR);
3342	}
3343    }
3344
3345    sts = inl(DE4X5_STS) & ~TIMER_CB;
3346
3347    if (!(sts & irqs) && --lp->timeout) {
3348	sts = 100 | TIMER_CB;
3349    } else {
3350	lp->timeout = -1;
3351    }
3352
3353    return sts;
3354}
3355
3356static int
3357test_tp(struct net_device *dev, s32 msec)
3358{
3359    struct de4x5_private *lp = netdev_priv(dev);
3360    u_long iobase = dev->base_addr;
3361    int sisr;
3362
3363    if (lp->timeout < 0) {
3364	lp->timeout = msec/100;
3365    }
3366
3367    sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3368
3369    if (sisr && --lp->timeout) {
3370	sisr = 100 | TIMER_CB;
3371    } else {
3372	lp->timeout = -1;
3373    }
3374
3375    return sisr;
3376}
3377
3378/*
3379** Samples the 100Mb Link State Signal. The sample interval is important
3380** because too fast a rate can give erroneous results and confuse the
3381** speed sense algorithm.
3382*/
3383#define SAMPLE_INTERVAL 500  /* ms */
3384#define SAMPLE_DELAY    2000 /* ms */
3385static int
3386test_for_100Mb(struct net_device *dev, int msec)
3387{
3388    struct de4x5_private *lp = netdev_priv(dev);
3389    int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3390
3391    if (lp->timeout < 0) {
3392	if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3393	if (msec > SAMPLE_DELAY) {
3394	    lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3395	    gep = SAMPLE_DELAY | TIMER_CB;
3396	    return gep;
3397	} else {
3398	    lp->timeout = msec/SAMPLE_INTERVAL;
3399	}
3400    }
3401
3402    if (lp->phy[lp->active].id || lp->useSROM) {
3403	gep = is_100_up(dev) | is_spd_100(dev);
3404    } else {
3405	gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3406    }
3407    if (!(gep & ret) && --lp->timeout) {
3408	gep = SAMPLE_INTERVAL | TIMER_CB;
3409    } else {
3410	lp->timeout = -1;
3411    }
3412
3413    return gep;
3414}
3415
3416static int
3417wait_for_link(struct net_device *dev)
3418{
3419    struct de4x5_private *lp = netdev_priv(dev);
3420
3421    if (lp->timeout < 0) {
3422	lp->timeout = 1;
3423    }
3424
3425    if (lp->timeout--) {
3426	return TIMER_CB;
3427    } else {
3428	lp->timeout = -1;
3429    }
3430
3431    return 0;
3432}
3433
3434/*
3435**
3436**
3437*/
3438static int
3439test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3440{
3441    struct de4x5_private *lp = netdev_priv(dev);
3442    int test;
3443    u_long iobase = dev->base_addr;
3444
3445    if (lp->timeout < 0) {
3446	lp->timeout = msec/100;
3447    }
3448
3449    reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3450    test = (reg ^ (pol ? ~0 : 0)) & mask;
3451
3452    if (test && --lp->timeout) {
3453	reg = 100 | TIMER_CB;
3454    } else {
3455	lp->timeout = -1;
3456    }
3457
3458    return reg;
3459}
3460
3461static int
3462is_spd_100(struct net_device *dev)
3463{
3464    struct de4x5_private *lp = netdev_priv(dev);
3465    u_long iobase = dev->base_addr;
3466    int spd;
3467
3468    if (lp->useMII) {
3469	spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3470	spd = ~(spd ^ lp->phy[lp->active].spd.value);
3471	spd &= lp->phy[lp->active].spd.mask;
3472    } else if (!lp->useSROM) {                      /* de500-xa */
3473	spd = ((~gep_rd(dev)) & GEP_SLNK);
3474    } else {
3475	if ((lp->ibn == 2) || !lp->asBitValid)
3476	    return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3477
3478	spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3479	          (lp->linkOK & ~lp->asBitValid);
3480    }
3481
3482    return spd;
3483}
3484
3485static int
3486is_100_up(struct net_device *dev)
3487{
3488    struct de4x5_private *lp = netdev_priv(dev);
3489    u_long iobase = dev->base_addr;
3490
3491    if (lp->useMII) {
3492	/* Double read for sticky bits & temporary drops */
3493	mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3494	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3495    } else if (!lp->useSROM) {                       /* de500-xa */
3496	return (~gep_rd(dev)) & GEP_SLNK;
3497    } else {
3498	if ((lp->ibn == 2) || !lp->asBitValid)
3499	    return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3500
3501        return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3502		(lp->linkOK & ~lp->asBitValid);
3503    }
3504}
3505
3506static int
3507is_10_up(struct net_device *dev)
3508{
3509    struct de4x5_private *lp = netdev_priv(dev);
3510    u_long iobase = dev->base_addr;
3511
3512    if (lp->useMII) {
3513	/* Double read for sticky bits & temporary drops */
3514	mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3515	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3516    } else if (!lp->useSROM) {                       /* de500-xa */
3517	return (~gep_rd(dev)) & GEP_LNP;
3518    } else {
3519	if ((lp->ibn == 2) || !lp->asBitValid)
3520	    return ((lp->chipset & ~0x00ff) == DC2114x) ?
3521		    (~inl(DE4X5_SISR)&SISR_LS10):
3522		    0;
3523
3524	return	(lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3525		(lp->linkOK & ~lp->asBitValid);
3526    }
3527}
3528
3529static int
3530is_anc_capable(struct net_device *dev)
3531{
3532    struct de4x5_private *lp = netdev_priv(dev);
3533    u_long iobase = dev->base_addr;
3534
3535    if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3536	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3537    } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3538	return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3539    } else {
3540	return 0;
3541    }
3542}
3543
3544/*
3545** Send a packet onto the media and watch for send errors that indicate the
3546** media is bad or unconnected.
3547*/
3548static int
3549ping_media(struct net_device *dev, int msec)
3550{
3551    struct de4x5_private *lp = netdev_priv(dev);
3552    u_long iobase = dev->base_addr;
3553    int sisr;
3554
3555    if (lp->timeout < 0) {
3556	lp->timeout = msec/100;
3557
3558	lp->tmp = lp->tx_new;                /* Remember the ring position */
3559	load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3560	lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
3561	outl(POLL_DEMAND, DE4X5_TPD);
3562    }
3563
3564    sisr = inl(DE4X5_SISR);
3565
3566    if ((!(sisr & SISR_NCR)) &&
3567	((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3568	 (--lp->timeout)) {
3569	sisr = 100 | TIMER_CB;
3570    } else {
3571	if ((!(sisr & SISR_NCR)) &&
3572	    !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3573	    lp->timeout) {
3574	    sisr = 0;
3575	} else {
3576	    sisr = 1;
3577	}
3578	lp->timeout = -1;
3579    }
3580
3581    return sisr;
3582}
3583
3584/*
3585** This function does 2 things: on Intels it kmalloc's another buffer to
3586** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3587** into which the packet is copied.
3588*/
3589static struct sk_buff *
3590de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3591{
3592    struct de4x5_private *lp = netdev_priv(dev);
3593    struct sk_buff *p;
3594
3595#if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3596    struct sk_buff *ret;
3597    u_long i=0, tmp;
3598
3599    p = netdev_alloc_skb(dev, IEEE802_3_SZ + DE4X5_ALIGN + 2);
3600    if (!p) return NULL;
3601
3602    tmp = virt_to_bus(p->data);
3603    i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3604    skb_reserve(p, i);
3605    lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3606
3607    ret = lp->rx_skb[index];
3608    lp->rx_skb[index] = p;
3609
3610    if ((u_long) ret > 1) {
3611	skb_put(ret, len);
3612    }
3613
3614    return ret;
3615
3616#else
3617    if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3618
3619    p = netdev_alloc_skb(dev, len + 2);
3620    if (!p) return NULL;
3621
3622    skb_reserve(p, 2);	                               /* Align */
3623    if (index < lp->rx_old) {                          /* Wrapped buffer */
3624	short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3625	memcpy(skb_put(p,tlen),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,tlen);
3626	memcpy(skb_put(p,len-tlen),lp->rx_bufs,len-tlen);
3627    } else {                                           /* Linear buffer */
3628	memcpy(skb_put(p,len),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,len);
3629    }
3630
3631    return p;
3632#endif
3633}
3634
3635static void
3636de4x5_free_rx_buffs(struct net_device *dev)
3637{
3638    struct de4x5_private *lp = netdev_priv(dev);
3639    int i;
3640
3641    for (i=0; i<lp->rxRingSize; i++) {
3642	if ((u_long) lp->rx_skb[i] > 1) {
3643	    dev_kfree_skb(lp->rx_skb[i]);
3644	}
3645	lp->rx_ring[i].status = 0;
3646	lp->rx_skb[i] = (struct sk_buff *)1;    /* Dummy entry */
3647    }
3648}
3649
3650static void
3651de4x5_free_tx_buffs(struct net_device *dev)
3652{
3653    struct de4x5_private *lp = netdev_priv(dev);
3654    int i;
3655
3656    for (i=0; i<lp->txRingSize; i++) {
3657	if (lp->tx_skb[i])
3658	    de4x5_free_tx_buff(lp, i);
3659	lp->tx_ring[i].status = 0;
3660    }
3661
3662    /* Unload the locally queued packets */
3663    __skb_queue_purge(&lp->cache.queue);
3664}
3665
3666/*
3667** When a user pulls a connection, the DECchip can end up in a
3668** 'running - waiting for end of transmission' state. This means that we
3669** have to perform a chip soft reset to ensure that we can synchronize
3670** the hardware and software and make any media probes using a loopback
3671** packet meaningful.
3672*/
3673static void
3674de4x5_save_skbs(struct net_device *dev)
3675{
3676    struct de4x5_private *lp = netdev_priv(dev);
3677    u_long iobase = dev->base_addr;
3678    s32 omr;
3679
3680    if (!lp->cache.save_cnt) {
3681	STOP_DE4X5;
3682	de4x5_tx(dev);                          /* Flush any sent skb's */
3683	de4x5_free_tx_buffs(dev);
3684	de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3685	de4x5_sw_reset(dev);
3686	de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3687	lp->cache.save_cnt++;
3688	START_DE4X5;
3689    }
3690}
3691
3692static void
3693de4x5_rst_desc_ring(struct net_device *dev)
3694{
3695    struct de4x5_private *lp = netdev_priv(dev);
3696    u_long iobase = dev->base_addr;
3697    int i;
3698    s32 omr;
3699
3700    if (lp->cache.save_cnt) {
3701	STOP_DE4X5;
3702	outl(lp->dma_rings, DE4X5_RRBA);
3703	outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3704	     DE4X5_TRBA);
3705
3706	lp->rx_new = lp->rx_old = 0;
3707	lp->tx_new = lp->tx_old = 0;
3708
3709	for (i = 0; i < lp->rxRingSize; i++) {
3710	    lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3711	}
3712
3713	for (i = 0; i < lp->txRingSize; i++) {
3714	    lp->tx_ring[i].status = cpu_to_le32(0);
3715	}
3716
3717	barrier();
3718	lp->cache.save_cnt--;
3719	START_DE4X5;
3720    }
3721}
3722
3723static void
3724de4x5_cache_state(struct net_device *dev, int flag)
3725{
3726    struct de4x5_private *lp = netdev_priv(dev);
3727    u_long iobase = dev->base_addr;
3728
3729    switch(flag) {
3730      case DE4X5_SAVE_STATE:
3731	lp->cache.csr0 = inl(DE4X5_BMR);
3732	lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3733	lp->cache.csr7 = inl(DE4X5_IMR);
3734	break;
3735
3736      case DE4X5_RESTORE_STATE:
3737	outl(lp->cache.csr0, DE4X5_BMR);
3738	outl(lp->cache.csr6, DE4X5_OMR);
3739	outl(lp->cache.csr7, DE4X5_IMR);
3740	if (lp->chipset == DC21140) {
3741	    gep_wr(lp->cache.gepc, dev);
3742	    gep_wr(lp->cache.gep, dev);
3743	} else {
3744	    reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3745			                                      lp->cache.csr15);
3746	}
3747	break;
3748    }
3749}
3750
3751static void
3752de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3753{
3754    struct de4x5_private *lp = netdev_priv(dev);
3755
3756    __skb_queue_tail(&lp->cache.queue, skb);
3757}
3758
3759static void
3760de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3761{
3762    struct de4x5_private *lp = netdev_priv(dev);
3763
3764    __skb_queue_head(&lp->cache.queue, skb);
3765}
3766
3767static struct sk_buff *
3768de4x5_get_cache(struct net_device *dev)
3769{
3770    struct de4x5_private *lp = netdev_priv(dev);
3771
3772    return __skb_dequeue(&lp->cache.queue);
3773}
3774
3775/*
3776** Check the Auto Negotiation State. Return OK when a link pass interrupt
3777** is received and the auto-negotiation status is NWAY OK.
3778*/
3779static int
3780test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3781{
3782    struct de4x5_private *lp = netdev_priv(dev);
3783    u_long iobase = dev->base_addr;
3784    s32 sts, ans;
3785
3786    if (lp->timeout < 0) {
3787	lp->timeout = msec/100;
3788	outl(irq_mask, DE4X5_IMR);
3789
3790	/* clear all pending interrupts */
3791	sts = inl(DE4X5_STS);
3792	outl(sts, DE4X5_STS);
3793    }
3794
3795    ans = inl(DE4X5_SISR) & SISR_ANS;
3796    sts = inl(DE4X5_STS) & ~TIMER_CB;
3797
3798    if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3799	sts = 100 | TIMER_CB;
3800    } else {
3801	lp->timeout = -1;
3802    }
3803
3804    return sts;
3805}
3806
3807static void
3808de4x5_setup_intr(struct net_device *dev)
3809{
3810    struct de4x5_private *lp = netdev_priv(dev);
3811    u_long iobase = dev->base_addr;
3812    s32 imr, sts;
3813
3814    if (inl(DE4X5_OMR) & OMR_SR) {   /* Only unmask if TX/RX is enabled */
3815	imr = 0;
3816	UNMASK_IRQs;
3817	sts = inl(DE4X5_STS);        /* Reset any pending (stale) interrupts */
3818	outl(sts, DE4X5_STS);
3819	ENABLE_IRQs;
3820    }
3821}
3822
3823/*
3824**
3825*/
3826static void
3827reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3828{
3829    struct de4x5_private *lp = netdev_priv(dev);
3830    u_long iobase = dev->base_addr;
3831
3832    RESET_SIA;
3833    if (lp->useSROM) {
3834	if (lp->ibn == 3) {
3835	    srom_exec(dev, lp->phy[lp->active].rst);
3836	    srom_exec(dev, lp->phy[lp->active].gep);
3837	    outl(1, DE4X5_SICR);
3838	    return;
3839	} else {
3840	    csr15 = lp->cache.csr15;
3841	    csr14 = lp->cache.csr14;
3842	    csr13 = lp->cache.csr13;
3843	    outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3844	    outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3845	}
3846    } else {
3847	outl(csr15, DE4X5_SIGR);
3848    }
3849    outl(csr14, DE4X5_STRR);
3850    outl(csr13, DE4X5_SICR);
3851
3852    mdelay(10);
3853}
3854
3855/*
3856** Create a loopback ethernet packet
3857*/
3858static void
3859create_packet(struct net_device *dev, char *frame, int len)
3860{
3861    int i;
3862    char *buf = frame;
3863
3864    for (i=0; i<ETH_ALEN; i++) {             /* Use this source address */
3865	*buf++ = dev->dev_addr[i];
3866    }
3867    for (i=0; i<ETH_ALEN; i++) {             /* Use this destination address */
3868	*buf++ = dev->dev_addr[i];
3869    }
3870
3871    *buf++ = 0;                              /* Packet length (2 bytes) */
3872    *buf++ = 1;
3873}
3874
3875/*
3876** Look for a particular board name in the EISA configuration space
3877*/
3878static int
3879EISA_signature(char *name, struct device *device)
3880{
3881    int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3882    struct eisa_device *edev;
3883
3884    *name = '\0';
3885    edev = to_eisa_device (device);
3886    i = edev->id.driver_data;
3887
3888    if (i >= 0 && i < siglen) {
3889	    strcpy (name, de4x5_signatures[i]);
3890	    status = 1;
3891    }
3892
3893    return status;                         /* return the device name string */
3894}
3895
3896/*
3897** Look for a particular board name in the PCI configuration space
3898*/
3899static int
3900PCI_signature(char *name, struct de4x5_private *lp)
3901{
3902    int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3903
3904    if (lp->chipset == DC21040) {
3905	strcpy(name, "DE434/5");
3906	return status;
3907    } else {                           /* Search for a DEC name in the SROM */
3908	int tmp = *((char *)&lp->srom + 19) * 3;
3909	strncpy(name, (char *)&lp->srom + 26 + tmp, 8);
3910    }
3911    name[8] = '\0';
3912    for (i=0; i<siglen; i++) {
3913	if (strstr(name,de4x5_signatures[i])!=NULL) break;
3914    }
3915    if (i == siglen) {
3916	if (dec_only) {
3917	    *name = '\0';
3918	} else {                        /* Use chip name to avoid confusion */
3919	    strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3920			   ((lp->chipset == DC21041) ? "DC21041" :
3921			    ((lp->chipset == DC21140) ? "DC21140" :
3922			     ((lp->chipset == DC21142) ? "DC21142" :
3923			      ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3924			     )))))));
3925	}
3926	if (lp->chipset != DC21041) {
3927	    lp->useSROM = true;             /* card is not recognisably DEC */
3928	}
3929    } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3930	lp->useSROM = true;
3931    }
3932
3933    return status;
3934}
3935
3936/*
3937** Set up the Ethernet PROM counter to the start of the Ethernet address on
3938** the DC21040, else  read the SROM for the other chips.
3939** The SROM may not be present in a multi-MAC card, so first read the
3940** MAC address and check for a bad address. If there is a bad one then exit
3941** immediately with the prior srom contents intact (the h/w address will
3942** be fixed up later).
3943*/
3944static void
3945DevicePresent(struct net_device *dev, u_long aprom_addr)
3946{
3947    int i, j=0;
3948    struct de4x5_private *lp = netdev_priv(dev);
3949
3950    if (lp->chipset == DC21040) {
3951	if (lp->bus == EISA) {
3952	    enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
3953	} else {
3954	    outl(0, aprom_addr);       /* Reset Ethernet Address ROM Pointer */
3955	}
3956    } else {                           /* Read new srom */
3957	u_short tmp;
3958	__le16 *p = (__le16 *)((char *)&lp->srom + SROM_HWADD);
3959	for (i=0; i<(ETH_ALEN>>1); i++) {
3960	    tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
3961	    j += tmp;	/* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
3962	    *p = cpu_to_le16(tmp);
3963	}
3964	if (j == 0 || j == 3 * 0xffff) {
3965		/* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
3966		return;
3967	}
3968
3969	p = (__le16 *)&lp->srom;
3970	for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
3971	    tmp = srom_rd(aprom_addr, i);
3972	    *p++ = cpu_to_le16(tmp);
3973	}
3974	de4x5_dbg_srom(&lp->srom);
3975    }
3976}
3977
3978/*
3979** Since the write on the Enet PROM register doesn't seem to reset the PROM
3980** pointer correctly (at least on my DE425 EISA card), this routine should do
3981** it...from depca.c.
3982*/
3983static void
3984enet_addr_rst(u_long aprom_addr)
3985{
3986    union {
3987	struct {
3988	    u32 a;
3989	    u32 b;
3990	} llsig;
3991	char Sig[sizeof(u32) << 1];
3992    } dev;
3993    short sigLength=0;
3994    s8 data;
3995    int i, j;
3996
3997    dev.llsig.a = ETH_PROM_SIG;
3998    dev.llsig.b = ETH_PROM_SIG;
3999    sigLength = sizeof(u32) << 1;
4000
4001    for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4002	data = inb(aprom_addr);
4003	if (dev.Sig[j] == data) {    /* track signature */
4004	    j++;
4005	} else {                     /* lost signature; begin search again */
4006	    if (data == dev.Sig[0]) {  /* rare case.... */
4007		j=1;
4008	    } else {
4009		j=0;
4010	    }
4011	}
4012    }
4013}
4014
4015/*
4016** For the bad status case and no SROM, then add one to the previous
4017** address. However, need to add one backwards in case we have 0xff
4018** as one or more of the bytes. Only the last 3 bytes should be checked
4019** as the first three are invariant - assigned to an organisation.
4020*/
4021static int
4022get_hw_addr(struct net_device *dev)
4023{
4024    u_long iobase = dev->base_addr;
4025    int broken, i, k, tmp, status = 0;
4026    u_short j,chksum;
4027    struct de4x5_private *lp = netdev_priv(dev);
4028
4029    broken = de4x5_bad_srom(lp);
4030
4031    for (i=0,k=0,j=0;j<3;j++) {
4032	k <<= 1;
4033	if (k > 0xffff) k-=0xffff;
4034
4035	if (lp->bus == PCI) {
4036	    if (lp->chipset == DC21040) {
4037		while ((tmp = inl(DE4X5_APROM)) < 0);
4038		k += (u_char) tmp;
4039		dev->dev_addr[i++] = (u_char) tmp;
4040		while ((tmp = inl(DE4X5_APROM)) < 0);
4041		k += (u_short) (tmp << 8);
4042		dev->dev_addr[i++] = (u_char) tmp;
4043	    } else if (!broken) {
4044		dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4045		dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4046	    } else if ((broken == SMC) || (broken == ACCTON)) {
4047		dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4048		dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4049	    }
4050	} else {
4051	    k += (u_char) (tmp = inb(EISA_APROM));
4052	    dev->dev_addr[i++] = (u_char) tmp;
4053	    k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4054	    dev->dev_addr[i++] = (u_char) tmp;
4055	}
4056
4057	if (k > 0xffff) k-=0xffff;
4058    }
4059    if (k == 0xffff) k=0;
4060
4061    if (lp->bus == PCI) {
4062	if (lp->chipset == DC21040) {
4063	    while ((tmp = inl(DE4X5_APROM)) < 0);
4064	    chksum = (u_char) tmp;
4065	    while ((tmp = inl(DE4X5_APROM)) < 0);
4066	    chksum |= (u_short) (tmp << 8);
4067	    if ((k != chksum) && (dec_only)) status = -1;
4068	}
4069    } else {
4070	chksum = (u_char) inb(EISA_APROM);
4071	chksum |= (u_short) (inb(EISA_APROM) << 8);
4072	if ((k != chksum) && (dec_only)) status = -1;
4073    }
4074
4075    /* If possible, try to fix a broken card - SMC only so far */
4076    srom_repair(dev, broken);
4077
4078#ifdef CONFIG_PPC_PMAC
4079    /*
4080    ** If the address starts with 00 a0, we have to bit-reverse
4081    ** each byte of the address.
4082    */
4083    if ( machine_is(powermac) &&
4084	 (dev->dev_addr[0] == 0) &&
4085	 (dev->dev_addr[1] == 0xa0) )
4086    {
4087	    for (i = 0; i < ETH_ALEN; ++i)
4088	    {
4089		    int x = dev->dev_addr[i];
4090		    x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4091		    x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4092		    dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4093	    }
4094    }
4095#endif /* CONFIG_PPC_PMAC */
4096
4097    /* Test for a bad enet address */
4098    status = test_bad_enet(dev, status);
4099
4100    return status;
4101}
4102
4103/*
4104** Test for enet addresses in the first 32 bytes.
4105*/
4106static int
4107de4x5_bad_srom(struct de4x5_private *lp)
4108{
4109    int i, status = 0;
4110
4111    for (i = 0; i < ARRAY_SIZE(enet_det); i++) {
4112	if (!memcmp(&lp->srom, &enet_det[i], 3) &&
4113	    !memcmp((char *)&lp->srom+0x10, &enet_det[i], 3)) {
4114	    if (i == 0) {
4115		status = SMC;
4116	    } else if (i == 1) {
4117		status = ACCTON;
4118	    }
4119	    break;
4120	}
4121    }
4122
4123    return status;
4124}
4125
4126static void
4127srom_repair(struct net_device *dev, int card)
4128{
4129    struct de4x5_private *lp = netdev_priv(dev);
4130
4131    switch(card) {
4132      case SMC:
4133	memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4134	memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4135	memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4136	lp->useSROM = true;
4137	break;
4138    }
4139}
4140
4141/*
4142** Assume that the irq's do not follow the PCI spec - this is seems
4143** to be true so far (2 for 2).
4144*/
4145static int
4146test_bad_enet(struct net_device *dev, int status)
4147{
4148    struct de4x5_private *lp = netdev_priv(dev);
4149    int i, tmp;
4150
4151    for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4152    if ((tmp == 0) || (tmp == 0x5fa)) {
4153	if ((lp->chipset == last.chipset) &&
4154	    (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4155	    for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4156	    for (i=ETH_ALEN-1; i>2; --i) {
4157		dev->dev_addr[i] += 1;
4158		if (dev->dev_addr[i] != 0) break;
4159	    }
4160	    for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4161	    if (!an_exception(lp)) {
4162		dev->irq = last.irq;
4163	    }
4164
4165	    status = 0;
4166	}
4167    } else if (!status) {
4168	last.chipset = lp->chipset;
4169	last.bus = lp->bus_num;
4170	last.irq = dev->irq;
4171	for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4172    }
4173
4174    return status;
4175}
4176
4177/*
4178** List of board exceptions with correctly wired IRQs
4179*/
4180static int
4181an_exception(struct de4x5_private *lp)
4182{
4183    if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4184	(*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4185	return -1;
4186    }
4187
4188    return 0;
4189}
4190
4191/*
4192** SROM Read
4193*/
4194static short
4195srom_rd(u_long addr, u_char offset)
4196{
4197    sendto_srom(SROM_RD | SROM_SR, addr);
4198
4199    srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4200    srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4201    srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4202
4203    return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4204}
4205
4206static void
4207srom_latch(u_int command, u_long addr)
4208{
4209    sendto_srom(command, addr);
4210    sendto_srom(command | DT_CLK, addr);
4211    sendto_srom(command, addr);
4212}
4213
4214static void
4215srom_command(u_int command, u_long addr)
4216{
4217    srom_latch(command, addr);
4218    srom_latch(command, addr);
4219    srom_latch((command & 0x0000ff00) | DT_CS, addr);
4220}
4221
4222static void
4223srom_address(u_int command, u_long addr, u_char offset)
4224{
4225    int i, a;
4226
4227    a = offset << 2;
4228    for (i=0; i<6; i++, a <<= 1) {
4229	srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4230    }
4231    udelay(1);
4232
4233    i = (getfrom_srom(addr) >> 3) & 0x01;
4234}
4235
4236static short
4237srom_data(u_int command, u_long addr)
4238{
4239    int i;
4240    short word = 0;
4241    s32 tmp;
4242
4243    for (i=0; i<16; i++) {
4244	sendto_srom(command  | DT_CLK, addr);
4245	tmp = getfrom_srom(addr);
4246	sendto_srom(command, addr);
4247
4248	word = (word << 1) | ((tmp >> 3) & 0x01);
4249    }
4250
4251    sendto_srom(command & 0x0000ff00, addr);
4252
4253    return word;
4254}
4255
4256/*
4257static void
4258srom_busy(u_int command, u_long addr)
4259{
4260   sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4261
4262   while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4263       mdelay(1);
4264   }
4265
4266   sendto_srom(command & 0x0000ff00, addr);
4267}
4268*/
4269
4270static void
4271sendto_srom(u_int command, u_long addr)
4272{
4273    outl(command, addr);
4274    udelay(1);
4275}
4276
4277static int
4278getfrom_srom(u_long addr)
4279{
4280    s32 tmp;
4281
4282    tmp = inl(addr);
4283    udelay(1);
4284
4285    return tmp;
4286}
4287
4288static int
4289srom_infoleaf_info(struct net_device *dev)
4290{
4291    struct de4x5_private *lp = netdev_priv(dev);
4292    int i, count;
4293    u_char *p;
4294
4295    /* Find the infoleaf decoder function that matches this chipset */
4296    for (i=0; i<INFOLEAF_SIZE; i++) {
4297	if (lp->chipset == infoleaf_array[i].chipset) break;
4298    }
4299    if (i == INFOLEAF_SIZE) {
4300	lp->useSROM = false;
4301	printk("%s: Cannot find correct chipset for SROM decoding!\n",
4302	                                                          dev->name);
4303	return -ENXIO;
4304    }
4305
4306    lp->infoleaf_fn = infoleaf_array[i].fn;
4307
4308    /* Find the information offset that this function should use */
4309    count = *((u_char *)&lp->srom + 19);
4310    p  = (u_char *)&lp->srom + 26;
4311
4312    if (count > 1) {
4313	for (i=count; i; --i, p+=3) {
4314	    if (lp->device == *p) break;
4315	}
4316	if (i == 0) {
4317	    lp->useSROM = false;
4318	    printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4319	                                               dev->name, lp->device);
4320	    return -ENXIO;
4321	}
4322    }
4323
4324	lp->infoleaf_offset = get_unaligned_le16(p + 1);
4325
4326    return 0;
4327}
4328
4329/*
4330** This routine loads any type 1 or 3 MII info into the mii device
4331** struct and executes any type 5 code to reset PHY devices for this
4332** controller.
4333** The info for the MII devices will be valid since the index used
4334** will follow the discovery process from MII address 1-31 then 0.
4335*/
4336static void
4337srom_init(struct net_device *dev)
4338{
4339    struct de4x5_private *lp = netdev_priv(dev);
4340    u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4341    u_char count;
4342
4343    p+=2;
4344    if (lp->chipset == DC21140) {
4345	lp->cache.gepc = (*p++ | GEP_CTRL);
4346	gep_wr(lp->cache.gepc, dev);
4347    }
4348
4349    /* Block count */
4350    count = *p++;
4351
4352    /* Jump the infoblocks to find types */
4353    for (;count; --count) {
4354	if (*p < 128) {
4355	    p += COMPACT_LEN;
4356	} else if (*(p+1) == 5) {
4357	    type5_infoblock(dev, 1, p);
4358	    p += ((*p & BLOCK_LEN) + 1);
4359	} else if (*(p+1) == 4) {
4360	    p += ((*p & BLOCK_LEN) + 1);
4361	} else if (*(p+1) == 3) {
4362	    type3_infoblock(dev, 1, p);
4363	    p += ((*p & BLOCK_LEN) + 1);
4364	} else if (*(p+1) == 2) {
4365	    p += ((*p & BLOCK_LEN) + 1);
4366	} else if (*(p+1) == 1) {
4367	    type1_infoblock(dev, 1, p);
4368	    p += ((*p & BLOCK_LEN) + 1);
4369	} else {
4370	    p += ((*p & BLOCK_LEN) + 1);
4371	}
4372    }
4373}
4374
4375/*
4376** A generic routine that writes GEP control, data and reset information
4377** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4378*/
4379static void
4380srom_exec(struct net_device *dev, u_char *p)
4381{
4382    struct de4x5_private *lp = netdev_priv(dev);
4383    u_long iobase = dev->base_addr;
4384    u_char count = (p ? *p++ : 0);
4385    u_short *w = (u_short *)p;
4386
4387    if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4388
4389    if (lp->chipset != DC21140) RESET_SIA;
4390
4391    while (count--) {
4392	gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4393		                                   *p++ : get_unaligned_le16(w++)), dev);
4394	mdelay(2);                          /* 2ms per action */
4395    }
4396
4397    if (lp->chipset != DC21140) {
4398	outl(lp->cache.csr14, DE4X5_STRR);
4399	outl(lp->cache.csr13, DE4X5_SICR);
4400    }
4401}
4402
4403/*
4404** Basically this function is a NOP since it will never be called,
4405** unless I implement the DC21041 SROM functions. There's no need
4406** since the existing code will be satisfactory for all boards.
4407*/
4408static int
4409dc21041_infoleaf(struct net_device *dev)
4410{
4411    return DE4X5_AUTOSENSE_MS;
4412}
4413
4414static int
4415dc21140_infoleaf(struct net_device *dev)
4416{
4417    struct de4x5_private *lp = netdev_priv(dev);
4418    u_char count = 0;
4419    u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4420    int next_tick = DE4X5_AUTOSENSE_MS;
4421
4422    /* Read the connection type */
4423    p+=2;
4424
4425    /* GEP control */
4426    lp->cache.gepc = (*p++ | GEP_CTRL);
4427
4428    /* Block count */
4429    count = *p++;
4430
4431    /* Recursively figure out the info blocks */
4432    if (*p < 128) {
4433	next_tick = dc_infoblock[COMPACT](dev, count, p);
4434    } else {
4435	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4436    }
4437
4438    if (lp->tcount == count) {
4439	lp->media = NC;
4440        if (lp->media != lp->c_media) {
4441	    de4x5_dbg_media(dev);
4442	    lp->c_media = lp->media;
4443	}
4444	lp->media = INIT;
4445	lp->tcount = 0;
4446	lp->tx_enable = false;
4447    }
4448
4449    return next_tick & ~TIMER_CB;
4450}
4451
4452static int
4453dc21142_infoleaf(struct net_device *dev)
4454{
4455    struct de4x5_private *lp = netdev_priv(dev);
4456    u_char count = 0;
4457    u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4458    int next_tick = DE4X5_AUTOSENSE_MS;
4459
4460    /* Read the connection type */
4461    p+=2;
4462
4463    /* Block count */
4464    count = *p++;
4465
4466    /* Recursively figure out the info blocks */
4467    if (*p < 128) {
4468	next_tick = dc_infoblock[COMPACT](dev, count, p);
4469    } else {
4470	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4471    }
4472
4473    if (lp->tcount == count) {
4474	lp->media = NC;
4475        if (lp->media != lp->c_media) {
4476	    de4x5_dbg_media(dev);
4477	    lp->c_media = lp->media;
4478	}
4479	lp->media = INIT;
4480	lp->tcount = 0;
4481	lp->tx_enable = false;
4482    }
4483
4484    return next_tick & ~TIMER_CB;
4485}
4486
4487static int
4488dc21143_infoleaf(struct net_device *dev)
4489{
4490    struct de4x5_private *lp = netdev_priv(dev);
4491    u_char count = 0;
4492    u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4493    int next_tick = DE4X5_AUTOSENSE_MS;
4494
4495    /* Read the connection type */
4496    p+=2;
4497
4498    /* Block count */
4499    count = *p++;
4500
4501    /* Recursively figure out the info blocks */
4502    if (*p < 128) {
4503	next_tick = dc_infoblock[COMPACT](dev, count, p);
4504    } else {
4505	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4506    }
4507    if (lp->tcount == count) {
4508	lp->media = NC;
4509        if (lp->media != lp->c_media) {
4510	    de4x5_dbg_media(dev);
4511	    lp->c_media = lp->media;
4512	}
4513	lp->media = INIT;
4514	lp->tcount = 0;
4515	lp->tx_enable = false;
4516    }
4517
4518    return next_tick & ~TIMER_CB;
4519}
4520
4521/*
4522** The compact infoblock is only designed for DC21140[A] chips, so
4523** we'll reuse the dc21140m_autoconf function. Non MII media only.
4524*/
4525static int
4526compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4527{
4528    struct de4x5_private *lp = netdev_priv(dev);
4529    u_char flags, csr6;
4530
4531    /* Recursively figure out the info blocks */
4532    if (--count > lp->tcount) {
4533	if (*(p+COMPACT_LEN) < 128) {
4534	    return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4535	} else {
4536	    return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4537	}
4538    }
4539
4540    if ((lp->media == INIT) && (lp->timeout < 0)) {
4541        lp->ibn = COMPACT;
4542        lp->active = 0;
4543	gep_wr(lp->cache.gepc, dev);
4544	lp->infoblock_media = (*p++) & COMPACT_MC;
4545	lp->cache.gep = *p++;
4546	csr6 = *p++;
4547	flags = *p++;
4548
4549	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4550	lp->defMedium = (flags & 0x40) ? -1 : 0;
4551	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4552	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4553	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4554	lp->useMII = false;
4555
4556	de4x5_switch_mac_port(dev);
4557    }
4558
4559    return dc21140m_autoconf(dev);
4560}
4561
4562/*
4563** This block describes non MII media for the DC21140[A] only.
4564*/
4565static int
4566type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4567{
4568    struct de4x5_private *lp = netdev_priv(dev);
4569    u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4570
4571    /* Recursively figure out the info blocks */
4572    if (--count > lp->tcount) {
4573	if (*(p+len) < 128) {
4574	    return dc_infoblock[COMPACT](dev, count, p+len);
4575	} else {
4576	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4577	}
4578    }
4579
4580    if ((lp->media == INIT) && (lp->timeout < 0)) {
4581        lp->ibn = 0;
4582        lp->active = 0;
4583        gep_wr(lp->cache.gepc, dev);
4584	p+=2;
4585	lp->infoblock_media = (*p++) & BLOCK0_MC;
4586	lp->cache.gep = *p++;
4587	csr6 = *p++;
4588	flags = *p++;
4589
4590	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4591	lp->defMedium = (flags & 0x40) ? -1 : 0;
4592	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4593	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4594	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4595	lp->useMII = false;
4596
4597	de4x5_switch_mac_port(dev);
4598    }
4599
4600    return dc21140m_autoconf(dev);
4601}
4602
4603/* These functions are under construction! */
4604
4605static int
4606type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4607{
4608    struct de4x5_private *lp = netdev_priv(dev);
4609    u_char len = (*p & BLOCK_LEN)+1;
4610
4611    /* Recursively figure out the info blocks */
4612    if (--count > lp->tcount) {
4613	if (*(p+len) < 128) {
4614	    return dc_infoblock[COMPACT](dev, count, p+len);
4615	} else {
4616	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4617	}
4618    }
4619
4620    p += 2;
4621    if (lp->state == INITIALISED) {
4622        lp->ibn = 1;
4623	lp->active = *p++;
4624	lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4625	lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4626	lp->phy[lp->active].mc  = get_unaligned_le16(p); p += 2;
4627	lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4628	lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4629	lp->phy[lp->active].ttm = get_unaligned_le16(p);
4630	return 0;
4631    } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4632        lp->ibn = 1;
4633        lp->active = *p;
4634	lp->infoblock_csr6 = OMR_MII_100;
4635	lp->useMII = true;
4636	lp->infoblock_media = ANS;
4637
4638	de4x5_switch_mac_port(dev);
4639    }
4640
4641    return dc21140m_autoconf(dev);
4642}
4643
4644static int
4645type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4646{
4647    struct de4x5_private *lp = netdev_priv(dev);
4648    u_char len = (*p & BLOCK_LEN)+1;
4649
4650    /* Recursively figure out the info blocks */
4651    if (--count > lp->tcount) {
4652	if (*(p+len) < 128) {
4653	    return dc_infoblock[COMPACT](dev, count, p+len);
4654	} else {
4655	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4656	}
4657    }
4658
4659    if ((lp->media == INIT) && (lp->timeout < 0)) {
4660        lp->ibn = 2;
4661        lp->active = 0;
4662	p += 2;
4663	lp->infoblock_media = (*p) & MEDIA_CODE;
4664
4665        if ((*p++) & EXT_FIELD) {
4666	    lp->cache.csr13 = get_unaligned_le16(p); p += 2;
4667	    lp->cache.csr14 = get_unaligned_le16(p); p += 2;
4668	    lp->cache.csr15 = get_unaligned_le16(p); p += 2;
4669	} else {
4670	    lp->cache.csr13 = CSR13;
4671	    lp->cache.csr14 = CSR14;
4672	    lp->cache.csr15 = CSR15;
4673	}
4674        lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4675        lp->cache.gep  = ((s32)(get_unaligned_le16(p)) << 16);
4676	lp->infoblock_csr6 = OMR_SIA;
4677	lp->useMII = false;
4678
4679	de4x5_switch_mac_port(dev);
4680    }
4681
4682    return dc2114x_autoconf(dev);
4683}
4684
4685static int
4686type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4687{
4688    struct de4x5_private *lp = netdev_priv(dev);
4689    u_char len = (*p & BLOCK_LEN)+1;
4690
4691    /* Recursively figure out the info blocks */
4692    if (--count > lp->tcount) {
4693	if (*(p+len) < 128) {
4694	    return dc_infoblock[COMPACT](dev, count, p+len);
4695	} else {
4696	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4697	}
4698    }
4699
4700    p += 2;
4701    if (lp->state == INITIALISED) {
4702        lp->ibn = 3;
4703        lp->active = *p++;
4704	if (MOTO_SROM_BUG) lp->active = 0;
4705	lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4706	lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4707	lp->phy[lp->active].mc  = get_unaligned_le16(p); p += 2;
4708	lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4709	lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4710	lp->phy[lp->active].ttm = get_unaligned_le16(p); p += 2;
4711	lp->phy[lp->active].mci = *p;
4712	return 0;
4713    } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4714        lp->ibn = 3;
4715	lp->active = *p;
4716	if (MOTO_SROM_BUG) lp->active = 0;
4717	lp->infoblock_csr6 = OMR_MII_100;
4718	lp->useMII = true;
4719	lp->infoblock_media = ANS;
4720
4721	de4x5_switch_mac_port(dev);
4722    }
4723
4724    return dc2114x_autoconf(dev);
4725}
4726
4727static int
4728type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4729{
4730    struct de4x5_private *lp = netdev_priv(dev);
4731    u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4732
4733    /* Recursively figure out the info blocks */
4734    if (--count > lp->tcount) {
4735	if (*(p+len) < 128) {
4736	    return dc_infoblock[COMPACT](dev, count, p+len);
4737	} else {
4738	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4739	}
4740    }
4741
4742    if ((lp->media == INIT) && (lp->timeout < 0)) {
4743        lp->ibn = 4;
4744        lp->active = 0;
4745	p+=2;
4746	lp->infoblock_media = (*p++) & MEDIA_CODE;
4747        lp->cache.csr13 = CSR13;              /* Hard coded defaults */
4748	lp->cache.csr14 = CSR14;
4749	lp->cache.csr15 = CSR15;
4750        lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4751        lp->cache.gep  = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4752	csr6 = *p++;
4753	flags = *p++;
4754
4755	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4756	lp->defMedium = (flags & 0x40) ? -1 : 0;
4757	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4758	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4759	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4760	lp->useMII = false;
4761
4762	de4x5_switch_mac_port(dev);
4763    }
4764
4765    return dc2114x_autoconf(dev);
4766}
4767
4768/*
4769** This block type provides information for resetting external devices
4770** (chips) through the General Purpose Register.
4771*/
4772static int
4773type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4774{
4775    struct de4x5_private *lp = netdev_priv(dev);
4776    u_char len = (*p & BLOCK_LEN)+1;
4777
4778    /* Recursively figure out the info blocks */
4779    if (--count > lp->tcount) {
4780	if (*(p+len) < 128) {
4781	    return dc_infoblock[COMPACT](dev, count, p+len);
4782	} else {
4783	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4784	}
4785    }
4786
4787    /* Must be initializing to run this code */
4788    if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4789	p+=2;
4790        lp->rst = p;
4791        srom_exec(dev, lp->rst);
4792    }
4793
4794    return DE4X5_AUTOSENSE_MS;
4795}
4796
4797/*
4798** MII Read/Write
4799*/
4800
4801static int
4802mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4803{
4804    mii_wdata(MII_PREAMBLE,  2, ioaddr);   /* Start of 34 bit preamble...    */
4805    mii_wdata(MII_PREAMBLE, 32, ioaddr);   /* ...continued                   */
4806    mii_wdata(MII_STRD, 4, ioaddr);        /* SFD and Read operation         */
4807    mii_address(phyaddr, ioaddr);          /* PHY address to be accessed     */
4808    mii_address(phyreg, ioaddr);           /* PHY Register to read           */
4809    mii_ta(MII_STRD, ioaddr);              /* Turn around time - 2 MDC       */
4810
4811    return mii_rdata(ioaddr);              /* Read data                      */
4812}
4813
4814static void
4815mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4816{
4817    mii_wdata(MII_PREAMBLE,  2, ioaddr);   /* Start of 34 bit preamble...    */
4818    mii_wdata(MII_PREAMBLE, 32, ioaddr);   /* ...continued                   */
4819    mii_wdata(MII_STWR, 4, ioaddr);        /* SFD and Write operation        */
4820    mii_address(phyaddr, ioaddr);          /* PHY address to be accessed     */
4821    mii_address(phyreg, ioaddr);           /* PHY Register to write          */
4822    mii_ta(MII_STWR, ioaddr);              /* Turn around time - 2 MDC       */
4823    data = mii_swap(data, 16);             /* Swap data bit ordering         */
4824    mii_wdata(data, 16, ioaddr);           /* Write data                     */
4825}
4826
4827static int
4828mii_rdata(u_long ioaddr)
4829{
4830    int i;
4831    s32 tmp = 0;
4832
4833    for (i=0; i<16; i++) {
4834	tmp <<= 1;
4835	tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4836    }
4837
4838    return tmp;
4839}
4840
4841static void
4842mii_wdata(int data, int len, u_long ioaddr)
4843{
4844    int i;
4845
4846    for (i=0; i<len; i++) {
4847	sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4848	data >>= 1;
4849    }
4850}
4851
4852static void
4853mii_address(u_char addr, u_long ioaddr)
4854{
4855    int i;
4856
4857    addr = mii_swap(addr, 5);
4858    for (i=0; i<5; i++) {
4859	sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4860	addr >>= 1;
4861    }
4862}
4863
4864static void
4865mii_ta(u_long rw, u_long ioaddr)
4866{
4867    if (rw == MII_STWR) {
4868	sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4869	sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4870    } else {
4871	getfrom_mii(MII_MRD | MII_RD, ioaddr);        /* Tri-state MDIO */
4872    }
4873}
4874
4875static int
4876mii_swap(int data, int len)
4877{
4878    int i, tmp = 0;
4879
4880    for (i=0; i<len; i++) {
4881	tmp <<= 1;
4882	tmp |= (data & 1);
4883	data >>= 1;
4884    }
4885
4886    return tmp;
4887}
4888
4889static void
4890sendto_mii(u32 command, int data, u_long ioaddr)
4891{
4892    u32 j;
4893
4894    j = (data & 1) << 17;
4895    outl(command | j, ioaddr);
4896    udelay(1);
4897    outl(command | MII_MDC | j, ioaddr);
4898    udelay(1);
4899}
4900
4901static int
4902getfrom_mii(u32 command, u_long ioaddr)
4903{
4904    outl(command, ioaddr);
4905    udelay(1);
4906    outl(command | MII_MDC, ioaddr);
4907    udelay(1);
4908
4909    return (inl(ioaddr) >> 19) & 1;
4910}
4911
4912/*
4913** Here's 3 ways to calculate the OUI from the ID registers.
4914*/
4915static int
4916mii_get_oui(u_char phyaddr, u_long ioaddr)
4917{
4918/*
4919    union {
4920	u_short reg;
4921	u_char breg[2];
4922    } a;
4923    int i, r2, r3, ret=0;*/
4924    int r2, r3;
4925
4926    /* Read r2 and r3 */
4927    r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
4928    r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
4929                                                /* SEEQ and Cypress way * /
4930    / * Shuffle r2 and r3 * /
4931    a.reg=0;
4932    r3 = ((r3>>10)|(r2<<6))&0x0ff;
4933    r2 = ((r2>>2)&0x3fff);
4934
4935    / * Bit reverse r3 * /
4936    for (i=0;i<8;i++) {
4937	ret<<=1;
4938	ret |= (r3&1);
4939	r3>>=1;
4940    }
4941
4942    / * Bit reverse r2 * /
4943    for (i=0;i<16;i++) {
4944	a.reg<<=1;
4945	a.reg |= (r2&1);
4946	r2>>=1;
4947    }
4948
4949    / * Swap r2 bytes * /
4950    i=a.breg[0];
4951    a.breg[0]=a.breg[1];
4952    a.breg[1]=i;
4953
4954    return (a.reg<<8)|ret; */                 /* SEEQ and Cypress way */
4955/*    return (r2<<6)|(u_int)(r3>>10); */      /* NATIONAL and BROADCOM way */
4956    return r2;                                  /* (I did it) My way */
4957}
4958
4959/*
4960** The SROM spec forces us to search addresses [1-31 0]. Bummer.
4961*/
4962static int
4963mii_get_phy(struct net_device *dev)
4964{
4965    struct de4x5_private *lp = netdev_priv(dev);
4966    u_long iobase = dev->base_addr;
4967    int i, j, k, n, limit=ARRAY_SIZE(phy_info);
4968    int id;
4969
4970    lp->active = 0;
4971    lp->useMII = true;
4972
4973    /* Search the MII address space for possible PHY devices */
4974    for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
4975	lp->phy[lp->active].addr = i;
4976	if (i==0) n++;                             /* Count cycles */
4977	while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
4978	id = mii_get_oui(i, DE4X5_MII);
4979	if ((id == 0) || (id == 65535)) continue;  /* Valid ID? */
4980	for (j=0; j<limit; j++) {                  /* Search PHY table */
4981	    if (id != phy_info[j].id) continue;    /* ID match? */
4982	    for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4983	    if (k < DE4X5_MAX_PHY) {
4984		memcpy((char *)&lp->phy[k],
4985		       (char *)&phy_info[j], sizeof(struct phy_table));
4986		lp->phy[k].addr = i;
4987		lp->mii_cnt++;
4988		lp->active++;
4989	    } else {
4990		goto purgatory;                    /* Stop the search */
4991	    }
4992	    break;
4993	}
4994	if ((j == limit) && (i < DE4X5_MAX_MII)) {
4995	    for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4996	    lp->phy[k].addr = i;
4997	    lp->phy[k].id = id;
4998	    lp->phy[k].spd.reg = GENERIC_REG;      /* ANLPA register         */
4999	    lp->phy[k].spd.mask = GENERIC_MASK;    /* 100Mb/s technologies   */
5000	    lp->phy[k].spd.value = GENERIC_VALUE;  /* TX & T4, H/F Duplex    */
5001	    lp->mii_cnt++;
5002	    lp->active++;
5003	    printk("%s: Using generic MII device control. If the board doesn't operate,\nplease mail the following dump to the author:\n", dev->name);
5004	    j = de4x5_debug;
5005	    de4x5_debug |= DEBUG_MII;
5006	    de4x5_dbg_mii(dev, k);
5007	    de4x5_debug = j;
5008	    printk("\n");
5009	}
5010    }
5011  purgatory:
5012    lp->active = 0;
5013    if (lp->phy[0].id) {                           /* Reset the PHY devices */
5014	for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++) { /*For each PHY*/
5015	    mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5016	    while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5017
5018	    de4x5_dbg_mii(dev, k);
5019	}
5020    }
5021    if (!lp->mii_cnt) lp->useMII = false;
5022
5023    return lp->mii_cnt;
5024}
5025
5026static char *
5027build_setup_frame(struct net_device *dev, int mode)
5028{
5029    struct de4x5_private *lp = netdev_priv(dev);
5030    int i;
5031    char *pa = lp->setup_frame;
5032
5033    /* Initialise the setup frame */
5034    if (mode == ALL) {
5035	memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5036    }
5037
5038    if (lp->setup_f == HASH_PERF) {
5039	for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5040	    *(pa + i) = dev->dev_addr[i];                 /* Host address */
5041	    if (i & 0x01) pa += 2;
5042	}
5043	*(lp->setup_frame + (HASH_TABLE_LEN >> 3) - 3) = 0x80;
5044    } else {
5045	for (i=0; i<ETH_ALEN; i++) { /* Host address */
5046	    *(pa + (i&1)) = dev->dev_addr[i];
5047	    if (i & 0x01) pa += 4;
5048	}
5049	for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5050	    *(pa + (i&1)) = (char) 0xff;
5051	    if (i & 0x01) pa += 4;
5052	}
5053    }
5054
5055    return pa;                     /* Points to the next entry */
5056}
5057
5058static void
5059disable_ast(struct net_device *dev)
5060{
5061	struct de4x5_private *lp = netdev_priv(dev);
5062	del_timer_sync(&lp->timer);
5063}
5064
5065static long
5066de4x5_switch_mac_port(struct net_device *dev)
5067{
5068    struct de4x5_private *lp = netdev_priv(dev);
5069    u_long iobase = dev->base_addr;
5070    s32 omr;
5071
5072    STOP_DE4X5;
5073
5074    /* Assert the OMR_PS bit in CSR6 */
5075    omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5076			                                             OMR_FDX));
5077    omr |= lp->infoblock_csr6;
5078    if (omr & OMR_PS) omr |= OMR_HBD;
5079    outl(omr, DE4X5_OMR);
5080
5081    /* Soft Reset */
5082    RESET_DE4X5;
5083
5084    /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5085    if (lp->chipset == DC21140) {
5086	gep_wr(lp->cache.gepc, dev);
5087	gep_wr(lp->cache.gep, dev);
5088    } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5089	reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5090    }
5091
5092    /* Restore CSR6 */
5093    outl(omr, DE4X5_OMR);
5094
5095    /* Reset CSR8 */
5096    inl(DE4X5_MFC);
5097
5098    return omr;
5099}
5100
5101static void
5102gep_wr(s32 data, struct net_device *dev)
5103{
5104    struct de4x5_private *lp = netdev_priv(dev);
5105    u_long iobase = dev->base_addr;
5106
5107    if (lp->chipset == DC21140) {
5108	outl(data, DE4X5_GEP);
5109    } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5110	outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5111    }
5112}
5113
5114static int
5115gep_rd(struct net_device *dev)
5116{
5117    struct de4x5_private *lp = netdev_priv(dev);
5118    u_long iobase = dev->base_addr;
5119
5120    if (lp->chipset == DC21140) {
5121	return inl(DE4X5_GEP);
5122    } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5123	return inl(DE4X5_SIGR) & 0x000fffff;
5124    }
5125
5126    return 0;
5127}
5128
5129static void
5130yawn(struct net_device *dev, int state)
5131{
5132    struct de4x5_private *lp = netdev_priv(dev);
5133    u_long iobase = dev->base_addr;
5134
5135    if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5136
5137    if(lp->bus == EISA) {
5138	switch(state) {
5139	  case WAKEUP:
5140	    outb(WAKEUP, PCI_CFPM);
5141	    mdelay(10);
5142	    break;
5143
5144	  case SNOOZE:
5145	    outb(SNOOZE, PCI_CFPM);
5146	    break;
5147
5148	  case SLEEP:
5149	    outl(0, DE4X5_SICR);
5150	    outb(SLEEP, PCI_CFPM);
5151	    break;
5152	}
5153    } else {
5154	struct pci_dev *pdev = to_pci_dev (lp->gendev);
5155	switch(state) {
5156	  case WAKEUP:
5157	    pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5158	    mdelay(10);
5159	    break;
5160
5161	  case SNOOZE:
5162	    pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5163	    break;
5164
5165	  case SLEEP:
5166	    outl(0, DE4X5_SICR);
5167	    pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5168	    break;
5169	}
5170    }
5171}
5172
5173static void
5174de4x5_parse_params(struct net_device *dev)
5175{
5176    struct de4x5_private *lp = netdev_priv(dev);
5177    char *p, *q, t;
5178
5179    lp->params.fdx = false;
5180    lp->params.autosense = AUTO;
5181
5182    if (args == NULL) return;
5183
5184    if ((p = strstr(args, dev->name))) {
5185	if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5186	t = *q;
5187	*q = '\0';
5188
5189	if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = true;
5190
5191	if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5192	    if (strstr(p, "TP_NW")) {
5193		lp->params.autosense = TP_NW;
5194	    } else if (strstr(p, "TP")) {
5195		lp->params.autosense = TP;
5196	    } else if (strstr(p, "BNC_AUI")) {
5197		lp->params.autosense = BNC;
5198	    } else if (strstr(p, "BNC")) {
5199		lp->params.autosense = BNC;
5200	    } else if (strstr(p, "AUI")) {
5201		lp->params.autosense = AUI;
5202	    } else if (strstr(p, "10Mb")) {
5203		lp->params.autosense = _10Mb;
5204	    } else if (strstr(p, "100Mb")) {
5205		lp->params.autosense = _100Mb;
5206	    } else if (strstr(p, "AUTO")) {
5207		lp->params.autosense = AUTO;
5208	    }
5209	}
5210	*q = t;
5211    }
5212}
5213
5214static void
5215de4x5_dbg_open(struct net_device *dev)
5216{
5217    struct de4x5_private *lp = netdev_priv(dev);
5218    int i;
5219
5220    if (de4x5_debug & DEBUG_OPEN) {
5221	printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5222	printk("\tphysical address: %pM\n", dev->dev_addr);
5223	printk("Descriptor head addresses:\n");
5224	printk("\t0x%8.8lx  0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5225	printk("Descriptor addresses:\nRX: ");
5226	for (i=0;i<lp->rxRingSize-1;i++){
5227	    if (i < 3) {
5228		printk("0x%8.8lx  ",(u_long)&lp->rx_ring[i].status);
5229	    }
5230	}
5231	printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5232	printk("TX: ");
5233	for (i=0;i<lp->txRingSize-1;i++){
5234	    if (i < 3) {
5235		printk("0x%8.8lx  ", (u_long)&lp->tx_ring[i].status);
5236	    }
5237	}
5238	printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5239	printk("Descriptor buffers:\nRX: ");
5240	for (i=0;i<lp->rxRingSize-1;i++){
5241	    if (i < 3) {
5242		printk("0x%8.8x  ",le32_to_cpu(lp->rx_ring[i].buf));
5243	    }
5244	}
5245	printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5246	printk("TX: ");
5247	for (i=0;i<lp->txRingSize-1;i++){
5248	    if (i < 3) {
5249		printk("0x%8.8x  ", le32_to_cpu(lp->tx_ring[i].buf));
5250	    }
5251	}
5252	printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5253	printk("Ring size:\nRX: %d\nTX: %d\n",
5254	       (short)lp->rxRingSize,
5255	       (short)lp->txRingSize);
5256    }
5257}
5258
5259static void
5260de4x5_dbg_mii(struct net_device *dev, int k)
5261{
5262    struct de4x5_private *lp = netdev_priv(dev);
5263    u_long iobase = dev->base_addr;
5264
5265    if (de4x5_debug & DEBUG_MII) {
5266	printk("\nMII device address: %d\n", lp->phy[k].addr);
5267	printk("MII CR:  %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5268	printk("MII SR:  %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5269	printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5270	printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5271	if (lp->phy[k].id != BROADCOM_T4) {
5272	    printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5273	    printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5274	}
5275	printk("MII 16:  %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5276	if (lp->phy[k].id != BROADCOM_T4) {
5277	    printk("MII 17:  %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5278	    printk("MII 18:  %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5279	} else {
5280	    printk("MII 20:  %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5281	}
5282    }
5283}
5284
5285static void
5286de4x5_dbg_media(struct net_device *dev)
5287{
5288    struct de4x5_private *lp = netdev_priv(dev);
5289
5290    if (lp->media != lp->c_media) {
5291	if (de4x5_debug & DEBUG_MEDIA) {
5292	    printk("%s: media is %s%s\n", dev->name,
5293		   (lp->media == NC  ? "unconnected, link down or incompatible connection" :
5294		    (lp->media == TP  ? "TP" :
5295		     (lp->media == ANS ? "TP/Nway" :
5296		      (lp->media == BNC ? "BNC" :
5297		       (lp->media == AUI ? "AUI" :
5298			(lp->media == BNC_AUI ? "BNC/AUI" :
5299			 (lp->media == EXT_SIA ? "EXT SIA" :
5300			  (lp->media == _100Mb  ? "100Mb/s" :
5301			   (lp->media == _10Mb   ? "10Mb/s" :
5302			    "???"
5303			    ))))))))), (lp->fdx?" full duplex.":"."));
5304	}
5305	lp->c_media = lp->media;
5306    }
5307}
5308
5309static void
5310de4x5_dbg_srom(struct de4x5_srom *p)
5311{
5312    int i;
5313
5314    if (de4x5_debug & DEBUG_SROM) {
5315	printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5316	printk("Sub-system ID:        %04x\n", *((u_short *)p->sub_system_id));
5317	printk("ID Block CRC:         %02x\n", (u_char)(p->id_block_crc));
5318	printk("SROM version:         %02x\n", (u_char)(p->version));
5319	printk("# controllers:        %02x\n", (u_char)(p->num_controllers));
5320
5321	printk("Hardware Address:     %pM\n", p->ieee_addr);
5322	printk("CRC checksum:         %04x\n", (u_short)(p->chksum));
5323	for (i=0; i<64; i++) {
5324	    printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5325	}
5326    }
5327}
5328
5329static void
5330de4x5_dbg_rx(struct sk_buff *skb, int len)
5331{
5332    int i, j;
5333
5334    if (de4x5_debug & DEBUG_RX) {
5335	printk("R: %pM <- %pM len/SAP:%02x%02x [%d]\n",
5336	       skb->data, &skb->data[6],
5337	       (u_char)skb->data[12],
5338	       (u_char)skb->data[13],
5339	       len);
5340	for (j=0; len>0;j+=16, len-=16) {
5341	  printk("    %03x: ",j);
5342	  for (i=0; i<16 && i<len; i++) {
5343	    printk("%02x ",(u_char)skb->data[i+j]);
5344	  }
5345	  printk("\n");
5346	}
5347    }
5348}
5349
5350/*
5351** Perform IOCTL call functions here. Some are privileged operations and the
5352** effective uid is checked in those cases. In the normal course of events
5353** this function is only used for my testing.
5354*/
5355static int
5356de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5357{
5358    struct de4x5_private *lp = netdev_priv(dev);
5359    struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5360    u_long iobase = dev->base_addr;
5361    int i, j, status = 0;
5362    s32 omr;
5363    union {
5364	u8  addr[144];
5365	u16 sval[72];
5366	u32 lval[36];
5367    } tmp;
5368    u_long flags = 0;
5369
5370    switch(ioc->cmd) {
5371    case DE4X5_GET_HWADDR:           /* Get the hardware address */
5372	ioc->len = ETH_ALEN;
5373	for (i=0; i<ETH_ALEN; i++) {
5374	    tmp.addr[i] = dev->dev_addr[i];
5375	}
5376	if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5377	break;
5378
5379    case DE4X5_SET_HWADDR:           /* Set the hardware address */
5380	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5381	if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5382	if (netif_queue_stopped(dev))
5383		return -EBUSY;
5384	netif_stop_queue(dev);
5385	for (i=0; i<ETH_ALEN; i++) {
5386	    dev->dev_addr[i] = tmp.addr[i];
5387	}
5388	build_setup_frame(dev, PHYS_ADDR_ONLY);
5389	/* Set up the descriptor and give ownership to the card */
5390	load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5391		                                       SETUP_FRAME_LEN, (struct sk_buff *)1);
5392	lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
5393	outl(POLL_DEMAND, DE4X5_TPD);                /* Start the TX */
5394	netif_wake_queue(dev);                      /* Unlock the TX ring */
5395	break;
5396
5397    case DE4X5_SAY_BOO:              /* Say "Boo!" to the kernel log file */
5398	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5399	printk("%s: Boo!\n", dev->name);
5400	break;
5401
5402    case DE4X5_MCA_EN:               /* Enable pass all multicast addressing */
5403	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5404	omr = inl(DE4X5_OMR);
5405	omr |= OMR_PM;
5406	outl(omr, DE4X5_OMR);
5407	break;
5408
5409    case DE4X5_GET_STATS:            /* Get the driver statistics */
5410    {
5411        struct pkt_stats statbuf;
5412	ioc->len = sizeof(statbuf);
5413	spin_lock_irqsave(&lp->lock, flags);
5414	memcpy(&statbuf, &lp->pktStats, ioc->len);
5415	spin_unlock_irqrestore(&lp->lock, flags);
5416	if (copy_to_user(ioc->data, &statbuf, ioc->len))
5417		return -EFAULT;
5418	break;
5419    }
5420    case DE4X5_CLR_STATS:            /* Zero out the driver statistics */
5421	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5422	spin_lock_irqsave(&lp->lock, flags);
5423	memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5424	spin_unlock_irqrestore(&lp->lock, flags);
5425	break;
5426
5427    case DE4X5_GET_OMR:              /* Get the OMR Register contents */
5428	tmp.addr[0] = inl(DE4X5_OMR);
5429	if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5430	break;
5431
5432    case DE4X5_SET_OMR:              /* Set the OMR Register contents */
5433	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5434	if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5435	outl(tmp.addr[0], DE4X5_OMR);
5436	break;
5437
5438    case DE4X5_GET_REG:              /* Get the DE4X5 Registers */
5439	j = 0;
5440	tmp.lval[0] = inl(DE4X5_STS); j+=4;
5441	tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5442	tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5443	tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5444	tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5445	tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5446	tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5447	tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5448	ioc->len = j;
5449	if (copy_to_user(ioc->data, tmp.lval, ioc->len))
5450		return -EFAULT;
5451	break;
5452
5453#define DE4X5_DUMP              0x0f /* Dump the DE4X5 Status */
5454/*
5455      case DE4X5_DUMP:
5456	j = 0;
5457	tmp.addr[j++] = dev->irq;
5458	for (i=0; i<ETH_ALEN; i++) {
5459	    tmp.addr[j++] = dev->dev_addr[i];
5460	}
5461	tmp.addr[j++] = lp->rxRingSize;
5462	tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5463	tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5464
5465	for (i=0;i<lp->rxRingSize-1;i++){
5466	    if (i < 3) {
5467		tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5468	    }
5469	}
5470	tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5471	for (i=0;i<lp->txRingSize-1;i++){
5472	    if (i < 3) {
5473		tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5474	    }
5475	}
5476	tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5477
5478	for (i=0;i<lp->rxRingSize-1;i++){
5479	    if (i < 3) {
5480		tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5481	    }
5482	}
5483	tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5484	for (i=0;i<lp->txRingSize-1;i++){
5485	    if (i < 3) {
5486		tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5487	    }
5488	}
5489	tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5490
5491	for (i=0;i<lp->rxRingSize;i++){
5492	    tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5493	}
5494	for (i=0;i<lp->txRingSize;i++){
5495	    tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5496	}
5497
5498	tmp.lval[j>>2] = inl(DE4X5_BMR);  j+=4;
5499	tmp.lval[j>>2] = inl(DE4X5_TPD);  j+=4;
5500	tmp.lval[j>>2] = inl(DE4X5_RPD);  j+=4;
5501	tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5502	tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5503	tmp.lval[j>>2] = inl(DE4X5_STS);  j+=4;
5504	tmp.lval[j>>2] = inl(DE4X5_OMR);  j+=4;
5505	tmp.lval[j>>2] = inl(DE4X5_IMR);  j+=4;
5506	tmp.lval[j>>2] = lp->chipset; j+=4;
5507	if (lp->chipset == DC21140) {
5508	    tmp.lval[j>>2] = gep_rd(dev);  j+=4;
5509	} else {
5510	    tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5511	    tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5512	    tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5513	    tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5514	}
5515	tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5516	if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5517	    tmp.lval[j>>2] = lp->active; j+=4;
5518	    tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5519	    tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5520	    tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5521	    tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5522	    if (lp->phy[lp->active].id != BROADCOM_T4) {
5523		tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5524		tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5525	    }
5526	    tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5527	    if (lp->phy[lp->active].id != BROADCOM_T4) {
5528		tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5529		tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5530	    } else {
5531		tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5532	    }
5533	}
5534
5535	tmp.addr[j++] = lp->txRingSize;
5536	tmp.addr[j++] = netif_queue_stopped(dev);
5537
5538	ioc->len = j;
5539	if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5540	break;
5541
5542*/
5543    default:
5544	return -EOPNOTSUPP;
5545    }
5546
5547    return status;
5548}
5549
5550static int __init de4x5_module_init (void)
5551{
5552	int err = 0;
5553
5554#ifdef CONFIG_PCI
5555	err = pci_register_driver(&de4x5_pci_driver);
5556#endif
5557#ifdef CONFIG_EISA
5558	err |= eisa_driver_register (&de4x5_eisa_driver);
5559#endif
5560
5561	return err;
5562}
5563
5564static void __exit de4x5_module_exit (void)
5565{
5566#ifdef CONFIG_PCI
5567	pci_unregister_driver (&de4x5_pci_driver);
5568#endif
5569#ifdef CONFIG_EISA
5570	eisa_driver_unregister (&de4x5_eisa_driver);
5571#endif
5572}
5573
5574module_init (de4x5_module_init);
5575module_exit (de4x5_module_exit);