Loading...
1/* lance.c: An AMD LANCE/PCnet ethernet driver for Linux. */
2/*
3 Written/copyright 1993-1998 by Donald Becker.
4
5 Copyright 1993 United States Government as represented by the
6 Director, National Security Agency.
7 This software may be used and distributed according to the terms
8 of the GNU General Public License, incorporated herein by reference.
9
10 This driver is for the Allied Telesis AT1500 and HP J2405A, and should work
11 with most other LANCE-based bus-master (NE2100/NE2500) ethercards.
12
13 The author may be reached as becker@scyld.com, or C/O
14 Scyld Computing Corporation
15 410 Severn Ave., Suite 210
16 Annapolis MD 21403
17
18 Andrey V. Savochkin:
19 - alignment problem with 1.3.* kernel and some minor changes.
20 Thomas Bogendoerfer (tsbogend@bigbug.franken.de):
21 - added support for Linux/Alpha, but removed most of it, because
22 it worked only for the PCI chip.
23 - added hook for the 32bit lance driver
24 - added PCnetPCI II (79C970A) to chip table
25 Paul Gortmaker (gpg109@rsphy1.anu.edu.au):
26 - hopefully fix above so Linux/Alpha can use ISA cards too.
27 8/20/96 Fixed 7990 autoIRQ failure and reversed unneeded alignment -djb
28 v1.12 10/27/97 Module support -djb
29 v1.14 2/3/98 Module support modified, made PCI support optional -djb
30 v1.15 5/27/99 Fixed bug in the cleanup_module(). dev->priv was freed
31 before unregister_netdev() which caused NULL pointer
32 reference later in the chain (in rtnetlink_fill_ifinfo())
33 -- Mika Kuoppala <miku@iki.fi>
34
35 Forward ported v1.14 to 2.1.129, merged the PCI and misc changes from
36 the 2.1 version of the old driver - Alan Cox
37
38 Get rid of check_region, check kmalloc return in lance_probe1
39 Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 11/01/2001
40
41 Reworked detection, added support for Racal InterLan EtherBlaster cards
42 Vesselin Kostadinov <vesok at yahoo dot com > - 22/4/2004
43*/
44
45static const char version[] = "lance.c:v1.16 2006/11/09 dplatt@3do.com, becker@cesdis.gsfc.nasa.gov\n";
46
47#include <linux/module.h>
48#include <linux/kernel.h>
49#include <linux/string.h>
50#include <linux/delay.h>
51#include <linux/errno.h>
52#include <linux/ioport.h>
53#include <linux/slab.h>
54#include <linux/interrupt.h>
55#include <linux/pci.h>
56#include <linux/init.h>
57#include <linux/netdevice.h>
58#include <linux/etherdevice.h>
59#include <linux/skbuff.h>
60#include <linux/mm.h>
61#include <linux/bitops.h>
62#include <net/Space.h>
63
64#include <asm/io.h>
65#include <asm/dma.h>
66
67static unsigned int lance_portlist[] __initdata = { 0x300, 0x320, 0x340, 0x360, 0};
68static int lance_probe1(struct net_device *dev, int ioaddr, int irq, int options);
69static int __init do_lance_probe(struct net_device *dev);
70
71
72static struct card {
73 char id_offset14;
74 char id_offset15;
75} cards[] = {
76 { //"normal"
77 .id_offset14 = 0x57,
78 .id_offset15 = 0x57,
79 },
80 { //NI6510EB
81 .id_offset14 = 0x52,
82 .id_offset15 = 0x44,
83 },
84 { //Racal InterLan EtherBlaster
85 .id_offset14 = 0x52,
86 .id_offset15 = 0x49,
87 },
88};
89#define NUM_CARDS 3
90
91#ifdef LANCE_DEBUG
92static int lance_debug = LANCE_DEBUG;
93#else
94static int lance_debug = 1;
95#endif
96
97/*
98 Theory of Operation
99
100I. Board Compatibility
101
102This device driver is designed for the AMD 79C960, the "PCnet-ISA
103single-chip ethernet controller for ISA". This chip is used in a wide
104variety of boards from vendors such as Allied Telesis, HP, Kingston,
105and Boca. This driver is also intended to work with older AMD 7990
106designs, such as the NE1500 and NE2100, and newer 79C961. For convenience,
107I use the name LANCE to refer to all of the AMD chips, even though it properly
108refers only to the original 7990.
109
110II. Board-specific settings
111
112The driver is designed to work the boards that use the faster
113bus-master mode, rather than in shared memory mode. (Only older designs
114have on-board buffer memory needed to support the slower shared memory mode.)
115
116Most ISA boards have jumpered settings for the I/O base, IRQ line, and DMA
117channel. This driver probes the likely base addresses:
118{0x300, 0x320, 0x340, 0x360}.
119After the board is found it generates a DMA-timeout interrupt and uses
120autoIRQ to find the IRQ line. The DMA channel can be set with the low bits
121of the otherwise-unused dev->mem_start value (aka PARAM1). If unset it is
122probed for by enabling each free DMA channel in turn and checking if
123initialization succeeds.
124
125The HP-J2405A board is an exception: with this board it is easy to read the
126EEPROM-set values for the base, IRQ, and DMA. (Of course you must already
127_know_ the base address -- that field is for writing the EEPROM.)
128
129III. Driver operation
130
131IIIa. Ring buffers
132The LANCE uses ring buffers of Tx and Rx descriptors. Each entry describes
133the base and length of the data buffer, along with status bits. The length
134of these buffers is set by LANCE_LOG_{RX,TX}_BUFFERS, which is log_2() of
135the buffer length (rather than being directly the buffer length) for
136implementation ease. The current values are 2 (Tx) and 4 (Rx), which leads to
137ring sizes of 4 (Tx) and 16 (Rx). Increasing the number of ring entries
138needlessly uses extra space and reduces the chance that an upper layer will
139be able to reorder queued Tx packets based on priority. Decreasing the number
140of entries makes it more difficult to achieve back-to-back packet transmission
141and increases the chance that Rx ring will overflow. (Consider the worst case
142of receiving back-to-back minimum-sized packets.)
143
144The LANCE has the capability to "chain" both Rx and Tx buffers, but this driver
145statically allocates full-sized (slightly oversized -- PKT_BUF_SZ) buffers to
146avoid the administrative overhead. For the Rx side this avoids dynamically
147allocating full-sized buffers "just in case", at the expense of a
148memory-to-memory data copy for each packet received. For most systems this
149is a good tradeoff: the Rx buffer will always be in low memory, the copy
150is inexpensive, and it primes the cache for later packet processing. For Tx
151the buffers are only used when needed as low-memory bounce buffers.
152
153IIIB. 16M memory limitations.
154For the ISA bus master mode all structures used directly by the LANCE,
155the initialization block, Rx and Tx rings, and data buffers, must be
156accessible from the ISA bus, i.e. in the lower 16M of real memory.
157This is a problem for current Linux kernels on >16M machines. The network
158devices are initialized after memory initialization, and the kernel doles out
159memory from the top of memory downward. The current solution is to have a
160special network initialization routine that's called before memory
161initialization; this will eventually be generalized for all network devices.
162As mentioned before, low-memory "bounce-buffers" are used when needed.
163
164IIIC. Synchronization
165The driver runs as two independent, single-threaded flows of control. One
166is the send-packet routine, which enforces single-threaded use by the
167dev->tbusy flag. The other thread is the interrupt handler, which is single
168threaded by the hardware and other software.
169
170The send packet thread has partial control over the Tx ring and 'dev->tbusy'
171flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
172queue slot is empty, it clears the tbusy flag when finished otherwise it sets
173the 'lp->tx_full' flag.
174
175The interrupt handler has exclusive control over the Rx ring and records stats
176from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so
177we can't avoid the interrupt overhead by having the Tx routine reap the Tx
178stats.) After reaping the stats, it marks the queue entry as empty by setting
179the 'base' to zero. Iff the 'lp->tx_full' flag is set, it clears both the
180tx_full and tbusy flags.
181
182*/
183
184/* Set the number of Tx and Rx buffers, using Log_2(# buffers).
185 Reasonable default values are 16 Tx buffers, and 16 Rx buffers.
186 That translates to 4 and 4 (16 == 2^^4).
187 This is a compile-time option for efficiency.
188 */
189#ifndef LANCE_LOG_TX_BUFFERS
190#define LANCE_LOG_TX_BUFFERS 4
191#define LANCE_LOG_RX_BUFFERS 4
192#endif
193
194#define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS))
195#define TX_RING_MOD_MASK (TX_RING_SIZE - 1)
196#define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29)
197
198#define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS))
199#define RX_RING_MOD_MASK (RX_RING_SIZE - 1)
200#define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29)
201
202#define PKT_BUF_SZ 1544
203
204/* Offsets from base I/O address. */
205#define LANCE_DATA 0x10
206#define LANCE_ADDR 0x12
207#define LANCE_RESET 0x14
208#define LANCE_BUS_IF 0x16
209#define LANCE_TOTAL_SIZE 0x18
210
211#define TX_TIMEOUT (HZ/5)
212
213/* The LANCE Rx and Tx ring descriptors. */
214struct lance_rx_head {
215 s32 base;
216 s16 buf_length; /* This length is 2s complement (negative)! */
217 s16 msg_length; /* This length is "normal". */
218};
219
220struct lance_tx_head {
221 s32 base;
222 s16 length; /* Length is 2s complement (negative)! */
223 s16 misc;
224};
225
226/* The LANCE initialization block, described in databook. */
227struct lance_init_block {
228 u16 mode; /* Pre-set mode (reg. 15) */
229 u8 phys_addr[6]; /* Physical ethernet address */
230 u32 filter[2]; /* Multicast filter (unused). */
231 /* Receive and transmit ring base, along with extra bits. */
232 u32 rx_ring; /* Tx and Rx ring base pointers */
233 u32 tx_ring;
234};
235
236struct lance_private {
237 /* The Tx and Rx ring entries must be aligned on 8-byte boundaries. */
238 struct lance_rx_head rx_ring[RX_RING_SIZE];
239 struct lance_tx_head tx_ring[TX_RING_SIZE];
240 struct lance_init_block init_block;
241 const char *name;
242 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
243 struct sk_buff* tx_skbuff[TX_RING_SIZE];
244 /* The addresses of receive-in-place skbuffs. */
245 struct sk_buff* rx_skbuff[RX_RING_SIZE];
246 unsigned long rx_buffs; /* Address of Rx and Tx buffers. */
247 /* Tx low-memory "bounce buffer" address. */
248 char (*tx_bounce_buffs)[PKT_BUF_SZ];
249 int cur_rx, cur_tx; /* The next free ring entry */
250 int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
251 int dma;
252 unsigned char chip_version; /* See lance_chip_type. */
253 spinlock_t devlock;
254};
255
256#define LANCE_MUST_PAD 0x00000001
257#define LANCE_ENABLE_AUTOSELECT 0x00000002
258#define LANCE_MUST_REINIT_RING 0x00000004
259#define LANCE_MUST_UNRESET 0x00000008
260#define LANCE_HAS_MISSED_FRAME 0x00000010
261
262/* A mapping from the chip ID number to the part number and features.
263 These are from the datasheets -- in real life the '970 version
264 reportedly has the same ID as the '965. */
265static struct lance_chip_type {
266 int id_number;
267 const char *name;
268 int flags;
269} chip_table[] = {
270 {0x0000, "LANCE 7990", /* Ancient lance chip. */
271 LANCE_MUST_PAD + LANCE_MUST_UNRESET},
272 {0x0003, "PCnet/ISA 79C960", /* 79C960 PCnet/ISA. */
273 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
274 LANCE_HAS_MISSED_FRAME},
275 {0x2260, "PCnet/ISA+ 79C961", /* 79C961 PCnet/ISA+, Plug-n-Play. */
276 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
277 LANCE_HAS_MISSED_FRAME},
278 {0x2420, "PCnet/PCI 79C970", /* 79C970 or 79C974 PCnet-SCSI, PCI. */
279 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
280 LANCE_HAS_MISSED_FRAME},
281 /* Bug: the PCnet/PCI actually uses the PCnet/VLB ID number, so just call
282 it the PCnet32. */
283 {0x2430, "PCnet32", /* 79C965 PCnet for VL bus. */
284 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
285 LANCE_HAS_MISSED_FRAME},
286 {0x2621, "PCnet/PCI-II 79C970A", /* 79C970A PCInetPCI II. */
287 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
288 LANCE_HAS_MISSED_FRAME},
289 {0x0, "PCnet (unknown)",
290 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
291 LANCE_HAS_MISSED_FRAME},
292};
293
294enum {OLD_LANCE = 0, PCNET_ISA=1, PCNET_ISAP=2, PCNET_PCI=3, PCNET_VLB=4, PCNET_PCI_II=5, LANCE_UNKNOWN=6};
295
296
297/* Non-zero if lance_probe1() needs to allocate low-memory bounce buffers.
298 Assume yes until we know the memory size. */
299static unsigned char lance_need_isa_bounce_buffers = 1;
300
301static int lance_open(struct net_device *dev);
302static void lance_init_ring(struct net_device *dev, gfp_t mode);
303static netdev_tx_t lance_start_xmit(struct sk_buff *skb,
304 struct net_device *dev);
305static int lance_rx(struct net_device *dev);
306static irqreturn_t lance_interrupt(int irq, void *dev_id);
307static int lance_close(struct net_device *dev);
308static struct net_device_stats *lance_get_stats(struct net_device *dev);
309static void set_multicast_list(struct net_device *dev);
310static void lance_tx_timeout (struct net_device *dev, unsigned int txqueue);
311
312
313
314#ifdef MODULE
315#define MAX_CARDS 8 /* Max number of interfaces (cards) per module */
316
317static struct net_device *dev_lance[MAX_CARDS];
318static int io[MAX_CARDS];
319static int dma[MAX_CARDS];
320static int irq[MAX_CARDS];
321
322module_param_hw_array(io, int, ioport, NULL, 0);
323module_param_hw_array(dma, int, dma, NULL, 0);
324module_param_hw_array(irq, int, irq, NULL, 0);
325module_param(lance_debug, int, 0);
326MODULE_PARM_DESC(io, "LANCE/PCnet I/O base address(es),required");
327MODULE_PARM_DESC(dma, "LANCE/PCnet ISA DMA channel (ignored for some devices)");
328MODULE_PARM_DESC(irq, "LANCE/PCnet IRQ number (ignored for some devices)");
329MODULE_PARM_DESC(lance_debug, "LANCE/PCnet debug level (0-7)");
330
331static int __init lance_init_module(void)
332{
333 struct net_device *dev;
334 int this_dev, found = 0;
335
336 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) {
337 if (io[this_dev] == 0) {
338 if (this_dev != 0) /* only complain once */
339 break;
340 printk(KERN_NOTICE "lance.c: Module autoprobing not allowed. Append \"io=0xNNN\" value(s).\n");
341 return -EPERM;
342 }
343 dev = alloc_etherdev(0);
344 if (!dev)
345 break;
346 dev->irq = irq[this_dev];
347 dev->base_addr = io[this_dev];
348 dev->dma = dma[this_dev];
349 if (do_lance_probe(dev) == 0) {
350 dev_lance[found++] = dev;
351 continue;
352 }
353 free_netdev(dev);
354 break;
355 }
356 if (found != 0)
357 return 0;
358 return -ENXIO;
359}
360module_init(lance_init_module);
361
362static void cleanup_card(struct net_device *dev)
363{
364 struct lance_private *lp = dev->ml_priv;
365 if (dev->dma != 4)
366 free_dma(dev->dma);
367 release_region(dev->base_addr, LANCE_TOTAL_SIZE);
368 kfree(lp->tx_bounce_buffs);
369 kfree((void*)lp->rx_buffs);
370 kfree(lp);
371}
372
373static void __exit lance_cleanup_module(void)
374{
375 int this_dev;
376
377 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) {
378 struct net_device *dev = dev_lance[this_dev];
379 if (dev) {
380 unregister_netdev(dev);
381 cleanup_card(dev);
382 free_netdev(dev);
383 }
384 }
385}
386module_exit(lance_cleanup_module);
387#endif /* MODULE */
388MODULE_LICENSE("GPL");
389
390
391/* Starting in v2.1.*, the LANCE/PCnet probe is now similar to the other
392 board probes now that kmalloc() can allocate ISA DMA-able regions.
393 This also allows the LANCE driver to be used as a module.
394 */
395static int __init do_lance_probe(struct net_device *dev)
396{
397 unsigned int *port;
398 int result;
399
400 if (high_memory <= phys_to_virt(16*1024*1024))
401 lance_need_isa_bounce_buffers = 0;
402
403 for (port = lance_portlist; *port; port++) {
404 int ioaddr = *port;
405 struct resource *r = request_region(ioaddr, LANCE_TOTAL_SIZE,
406 "lance-probe");
407
408 if (r) {
409 /* Detect the card with minimal I/O reads */
410 char offset14 = inb(ioaddr + 14);
411 int card;
412 for (card = 0; card < NUM_CARDS; ++card)
413 if (cards[card].id_offset14 == offset14)
414 break;
415 if (card < NUM_CARDS) {/*yes, the first byte matches*/
416 char offset15 = inb(ioaddr + 15);
417 for (card = 0; card < NUM_CARDS; ++card)
418 if ((cards[card].id_offset14 == offset14) &&
419 (cards[card].id_offset15 == offset15))
420 break;
421 }
422 if (card < NUM_CARDS) { /*Signature OK*/
423 result = lance_probe1(dev, ioaddr, 0, 0);
424 if (!result) {
425 struct lance_private *lp = dev->ml_priv;
426 int ver = lp->chip_version;
427
428 r->name = chip_table[ver].name;
429 return 0;
430 }
431 }
432 release_region(ioaddr, LANCE_TOTAL_SIZE);
433 }
434 }
435 return -ENODEV;
436}
437
438#ifndef MODULE
439struct net_device * __init lance_probe(int unit)
440{
441 struct net_device *dev = alloc_etherdev(0);
442 int err;
443
444 if (!dev)
445 return ERR_PTR(-ENODEV);
446
447 sprintf(dev->name, "eth%d", unit);
448 netdev_boot_setup_check(dev);
449
450 err = do_lance_probe(dev);
451 if (err)
452 goto out;
453 return dev;
454out:
455 free_netdev(dev);
456 return ERR_PTR(err);
457}
458#endif
459
460static const struct net_device_ops lance_netdev_ops = {
461 .ndo_open = lance_open,
462 .ndo_start_xmit = lance_start_xmit,
463 .ndo_stop = lance_close,
464 .ndo_get_stats = lance_get_stats,
465 .ndo_set_rx_mode = set_multicast_list,
466 .ndo_tx_timeout = lance_tx_timeout,
467 .ndo_set_mac_address = eth_mac_addr,
468 .ndo_validate_addr = eth_validate_addr,
469};
470
471static int __init lance_probe1(struct net_device *dev, int ioaddr, int irq, int options)
472{
473 struct lance_private *lp;
474 unsigned long dma_channels; /* Mark spuriously-busy DMA channels */
475 int i, reset_val, lance_version;
476 const char *chipname;
477 /* Flags for specific chips or boards. */
478 unsigned char hpJ2405A = 0; /* HP ISA adaptor */
479 int hp_builtin = 0; /* HP on-board ethernet. */
480 static int did_version; /* Already printed version info. */
481 unsigned long flags;
482 int err = -ENOMEM;
483 void __iomem *bios;
484 u8 addr[ETH_ALEN];
485
486 /* First we look for special cases.
487 Check for HP's on-board ethernet by looking for 'HP' in the BIOS.
488 There are two HP versions, check the BIOS for the configuration port.
489 This method provided by L. Julliard, Laurent_Julliard@grenoble.hp.com.
490 */
491 bios = ioremap(0xf00f0, 0x14);
492 if (!bios)
493 return -ENOMEM;
494 if (readw(bios + 0x12) == 0x5048) {
495 static const short ioaddr_table[] = { 0x300, 0x320, 0x340, 0x360};
496 int hp_port = (readl(bios + 1) & 1) ? 0x499 : 0x99;
497 /* We can have boards other than the built-in! Verify this is on-board. */
498 if ((inb(hp_port) & 0xc0) == 0x80 &&
499 ioaddr_table[inb(hp_port) & 3] == ioaddr)
500 hp_builtin = hp_port;
501 }
502 iounmap(bios);
503 /* We also recognize the HP Vectra on-board here, but check below. */
504 hpJ2405A = (inb(ioaddr) == 0x08 && inb(ioaddr+1) == 0x00 &&
505 inb(ioaddr+2) == 0x09);
506
507 /* Reset the LANCE. */
508 reset_val = inw(ioaddr+LANCE_RESET); /* Reset the LANCE */
509
510 /* The Un-Reset needed is only needed for the real NE2100, and will
511 confuse the HP board. */
512 if (!hpJ2405A)
513 outw(reset_val, ioaddr+LANCE_RESET);
514
515 outw(0x0000, ioaddr+LANCE_ADDR); /* Switch to window 0 */
516 if (inw(ioaddr+LANCE_DATA) != 0x0004)
517 return -ENODEV;
518
519 /* Get the version of the chip. */
520 outw(88, ioaddr+LANCE_ADDR);
521 if (inw(ioaddr+LANCE_ADDR) != 88) {
522 lance_version = 0;
523 } else { /* Good, it's a newer chip. */
524 int chip_version = inw(ioaddr+LANCE_DATA);
525 outw(89, ioaddr+LANCE_ADDR);
526 chip_version |= inw(ioaddr+LANCE_DATA) << 16;
527 if (lance_debug > 2)
528 printk(" LANCE chip version is %#x.\n", chip_version);
529 if ((chip_version & 0xfff) != 0x003)
530 return -ENODEV;
531 chip_version = (chip_version >> 12) & 0xffff;
532 for (lance_version = 1; chip_table[lance_version].id_number; lance_version++) {
533 if (chip_table[lance_version].id_number == chip_version)
534 break;
535 }
536 }
537
538 /* We can't allocate private data from alloc_etherdev() because it must
539 a ISA DMA-able region. */
540 chipname = chip_table[lance_version].name;
541 printk("%s: %s at %#3x, ", dev->name, chipname, ioaddr);
542
543 /* There is a 16 byte station address PROM at the base address.
544 The first six bytes are the station address. */
545 for (i = 0; i < 6; i++)
546 addr[i] = inb(ioaddr + i);
547 eth_hw_addr_set(dev, addr);
548 printk("%pM", dev->dev_addr);
549
550 dev->base_addr = ioaddr;
551 /* Make certain the data structures used by the LANCE are aligned and DMAble. */
552
553 lp = kzalloc(sizeof(*lp), GFP_DMA | GFP_KERNEL);
554 if (!lp)
555 return -ENOMEM;
556 if (lance_debug > 6) printk(" (#0x%05lx)", (unsigned long)lp);
557 dev->ml_priv = lp;
558 lp->name = chipname;
559 lp->rx_buffs = (unsigned long)kmalloc_array(RX_RING_SIZE, PKT_BUF_SZ,
560 GFP_DMA | GFP_KERNEL);
561 if (!lp->rx_buffs)
562 goto out_lp;
563 if (lance_need_isa_bounce_buffers) {
564 lp->tx_bounce_buffs = kmalloc_array(TX_RING_SIZE, PKT_BUF_SZ,
565 GFP_DMA | GFP_KERNEL);
566 if (!lp->tx_bounce_buffs)
567 goto out_rx;
568 } else
569 lp->tx_bounce_buffs = NULL;
570
571 lp->chip_version = lance_version;
572 spin_lock_init(&lp->devlock);
573
574 lp->init_block.mode = 0x0003; /* Disable Rx and Tx. */
575 for (i = 0; i < 6; i++)
576 lp->init_block.phys_addr[i] = dev->dev_addr[i];
577 lp->init_block.filter[0] = 0x00000000;
578 lp->init_block.filter[1] = 0x00000000;
579 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS;
580 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS;
581
582 outw(0x0001, ioaddr+LANCE_ADDR);
583 inw(ioaddr+LANCE_ADDR);
584 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA);
585 outw(0x0002, ioaddr+LANCE_ADDR);
586 inw(ioaddr+LANCE_ADDR);
587 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA);
588 outw(0x0000, ioaddr+LANCE_ADDR);
589 inw(ioaddr+LANCE_ADDR);
590
591 if (irq) { /* Set iff PCI card. */
592 dev->dma = 4; /* Native bus-master, no DMA channel needed. */
593 dev->irq = irq;
594 } else if (hp_builtin) {
595 static const char dma_tbl[4] = {3, 5, 6, 0};
596 static const char irq_tbl[4] = {3, 4, 5, 9};
597 unsigned char port_val = inb(hp_builtin);
598 dev->dma = dma_tbl[(port_val >> 4) & 3];
599 dev->irq = irq_tbl[(port_val >> 2) & 3];
600 printk(" HP Vectra IRQ %d DMA %d.\n", dev->irq, dev->dma);
601 } else if (hpJ2405A) {
602 static const char dma_tbl[4] = {3, 5, 6, 7};
603 static const char irq_tbl[8] = {3, 4, 5, 9, 10, 11, 12, 15};
604 short reset_val = inw(ioaddr+LANCE_RESET);
605 dev->dma = dma_tbl[(reset_val >> 2) & 3];
606 dev->irq = irq_tbl[(reset_val >> 4) & 7];
607 printk(" HP J2405A IRQ %d DMA %d.\n", dev->irq, dev->dma);
608 } else if (lance_version == PCNET_ISAP) { /* The plug-n-play version. */
609 short bus_info;
610 outw(8, ioaddr+LANCE_ADDR);
611 bus_info = inw(ioaddr+LANCE_BUS_IF);
612 dev->dma = bus_info & 0x07;
613 dev->irq = (bus_info >> 4) & 0x0F;
614 } else {
615 /* The DMA channel may be passed in PARAM1. */
616 if (dev->mem_start & 0x07)
617 dev->dma = dev->mem_start & 0x07;
618 }
619
620 if (dev->dma == 0) {
621 /* Read the DMA channel status register, so that we can avoid
622 stuck DMA channels in the DMA detection below. */
623 dma_channels = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) |
624 (inb(DMA2_STAT_REG) & 0xf0);
625 }
626 err = -ENODEV;
627 if (dev->irq >= 2)
628 printk(" assigned IRQ %d", dev->irq);
629 else if (lance_version != 0) { /* 7990 boards need DMA detection first. */
630 unsigned long irq_mask;
631
632 /* To auto-IRQ we enable the initialization-done and DMA error
633 interrupts. For ISA boards we get a DMA error, but VLB and PCI
634 boards will work. */
635 irq_mask = probe_irq_on();
636
637 /* Trigger an initialization just for the interrupt. */
638 outw(0x0041, ioaddr+LANCE_DATA);
639
640 mdelay(20);
641 dev->irq = probe_irq_off(irq_mask);
642 if (dev->irq)
643 printk(", probed IRQ %d", dev->irq);
644 else {
645 printk(", failed to detect IRQ line.\n");
646 goto out_tx;
647 }
648
649 /* Check for the initialization done bit, 0x0100, which means
650 that we don't need a DMA channel. */
651 if (inw(ioaddr+LANCE_DATA) & 0x0100)
652 dev->dma = 4;
653 }
654
655 if (dev->dma == 4) {
656 printk(", no DMA needed.\n");
657 } else if (dev->dma) {
658 if (request_dma(dev->dma, chipname)) {
659 printk("DMA %d allocation failed.\n", dev->dma);
660 goto out_tx;
661 } else
662 printk(", assigned DMA %d.\n", dev->dma);
663 } else { /* OK, we have to auto-DMA. */
664 for (i = 0; i < 4; i++) {
665 static const char dmas[] = { 5, 6, 7, 3 };
666 int dma = dmas[i];
667 int boguscnt;
668
669 /* Don't enable a permanently busy DMA channel, or the machine
670 will hang. */
671 if (test_bit(dma, &dma_channels))
672 continue;
673 outw(0x7f04, ioaddr+LANCE_DATA); /* Clear the memory error bits. */
674 if (request_dma(dma, chipname))
675 continue;
676
677 flags=claim_dma_lock();
678 set_dma_mode(dma, DMA_MODE_CASCADE);
679 enable_dma(dma);
680 release_dma_lock(flags);
681
682 /* Trigger an initialization. */
683 outw(0x0001, ioaddr+LANCE_DATA);
684 for (boguscnt = 100; boguscnt > 0; --boguscnt)
685 if (inw(ioaddr+LANCE_DATA) & 0x0900)
686 break;
687 if (inw(ioaddr+LANCE_DATA) & 0x0100) {
688 dev->dma = dma;
689 printk(", DMA %d.\n", dev->dma);
690 break;
691 } else {
692 flags=claim_dma_lock();
693 disable_dma(dma);
694 release_dma_lock(flags);
695 free_dma(dma);
696 }
697 }
698 if (i == 4) { /* Failure: bail. */
699 printk("DMA detection failed.\n");
700 goto out_tx;
701 }
702 }
703
704 if (lance_version == 0 && dev->irq == 0) {
705 /* We may auto-IRQ now that we have a DMA channel. */
706 /* Trigger an initialization just for the interrupt. */
707 unsigned long irq_mask;
708
709 irq_mask = probe_irq_on();
710 outw(0x0041, ioaddr+LANCE_DATA);
711
712 mdelay(40);
713 dev->irq = probe_irq_off(irq_mask);
714 if (dev->irq == 0) {
715 printk(" Failed to detect the 7990 IRQ line.\n");
716 goto out_dma;
717 }
718 printk(" Auto-IRQ detected IRQ%d.\n", dev->irq);
719 }
720
721 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) {
722 /* Turn on auto-select of media (10baseT or BNC) so that the user
723 can watch the LEDs even if the board isn't opened. */
724 outw(0x0002, ioaddr+LANCE_ADDR);
725 /* Don't touch 10base2 power bit. */
726 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF);
727 }
728
729 if (lance_debug > 0 && did_version++ == 0)
730 printk(version);
731
732 /* The LANCE-specific entries in the device structure. */
733 dev->netdev_ops = &lance_netdev_ops;
734 dev->watchdog_timeo = TX_TIMEOUT;
735
736 err = register_netdev(dev);
737 if (err)
738 goto out_dma;
739 return 0;
740out_dma:
741 if (dev->dma != 4)
742 free_dma(dev->dma);
743out_tx:
744 kfree(lp->tx_bounce_buffs);
745out_rx:
746 kfree((void*)lp->rx_buffs);
747out_lp:
748 kfree(lp);
749 return err;
750}
751
752
753static int
754lance_open(struct net_device *dev)
755{
756 struct lance_private *lp = dev->ml_priv;
757 int ioaddr = dev->base_addr;
758 int i;
759
760 if (dev->irq == 0 ||
761 request_irq(dev->irq, lance_interrupt, 0, dev->name, dev)) {
762 return -EAGAIN;
763 }
764
765 /* We used to allocate DMA here, but that was silly.
766 DMA lines can't be shared! We now permanently allocate them. */
767
768 /* Reset the LANCE */
769 inw(ioaddr+LANCE_RESET);
770
771 /* The DMA controller is used as a no-operation slave, "cascade mode". */
772 if (dev->dma != 4) {
773 unsigned long flags=claim_dma_lock();
774 enable_dma(dev->dma);
775 set_dma_mode(dev->dma, DMA_MODE_CASCADE);
776 release_dma_lock(flags);
777 }
778
779 /* Un-Reset the LANCE, needed only for the NE2100. */
780 if (chip_table[lp->chip_version].flags & LANCE_MUST_UNRESET)
781 outw(0, ioaddr+LANCE_RESET);
782
783 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) {
784 /* This is 79C960-specific: Turn on auto-select of media (AUI, BNC). */
785 outw(0x0002, ioaddr+LANCE_ADDR);
786 /* Only touch autoselect bit. */
787 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF);
788 }
789
790 if (lance_debug > 1)
791 printk("%s: lance_open() irq %d dma %d tx/rx rings %#x/%#x init %#x.\n",
792 dev->name, dev->irq, dev->dma,
793 (u32) isa_virt_to_bus(lp->tx_ring),
794 (u32) isa_virt_to_bus(lp->rx_ring),
795 (u32) isa_virt_to_bus(&lp->init_block));
796
797 lance_init_ring(dev, GFP_KERNEL);
798 /* Re-initialize the LANCE, and start it when done. */
799 outw(0x0001, ioaddr+LANCE_ADDR);
800 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA);
801 outw(0x0002, ioaddr+LANCE_ADDR);
802 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA);
803
804 outw(0x0004, ioaddr+LANCE_ADDR);
805 outw(0x0915, ioaddr+LANCE_DATA);
806
807 outw(0x0000, ioaddr+LANCE_ADDR);
808 outw(0x0001, ioaddr+LANCE_DATA);
809
810 netif_start_queue (dev);
811
812 i = 0;
813 while (i++ < 100)
814 if (inw(ioaddr+LANCE_DATA) & 0x0100)
815 break;
816 /*
817 * We used to clear the InitDone bit, 0x0100, here but Mark Stockton
818 * reports that doing so triggers a bug in the '974.
819 */
820 outw(0x0042, ioaddr+LANCE_DATA);
821
822 if (lance_debug > 2)
823 printk("%s: LANCE open after %d ticks, init block %#x csr0 %4.4x.\n",
824 dev->name, i, (u32) isa_virt_to_bus(&lp->init_block), inw(ioaddr+LANCE_DATA));
825
826 return 0; /* Always succeed */
827}
828
829/* The LANCE has been halted for one reason or another (busmaster memory
830 arbitration error, Tx FIFO underflow, driver stopped it to reconfigure,
831 etc.). Modern LANCE variants always reload their ring-buffer
832 configuration when restarted, so we must reinitialize our ring
833 context before restarting. As part of this reinitialization,
834 find all packets still on the Tx ring and pretend that they had been
835 sent (in effect, drop the packets on the floor) - the higher-level
836 protocols will time out and retransmit. It'd be better to shuffle
837 these skbs to a temp list and then actually re-Tx them after
838 restarting the chip, but I'm too lazy to do so right now. dplatt@3do.com
839*/
840
841static void
842lance_purge_ring(struct net_device *dev)
843{
844 struct lance_private *lp = dev->ml_priv;
845 int i;
846
847 /* Free all the skbuffs in the Rx and Tx queues. */
848 for (i = 0; i < RX_RING_SIZE; i++) {
849 struct sk_buff *skb = lp->rx_skbuff[i];
850 lp->rx_skbuff[i] = NULL;
851 lp->rx_ring[i].base = 0; /* Not owned by LANCE chip. */
852 if (skb)
853 dev_kfree_skb_any(skb);
854 }
855 for (i = 0; i < TX_RING_SIZE; i++) {
856 if (lp->tx_skbuff[i]) {
857 dev_kfree_skb_any(lp->tx_skbuff[i]);
858 lp->tx_skbuff[i] = NULL;
859 }
860 }
861}
862
863
864/* Initialize the LANCE Rx and Tx rings. */
865static void
866lance_init_ring(struct net_device *dev, gfp_t gfp)
867{
868 struct lance_private *lp = dev->ml_priv;
869 int i;
870
871 lp->cur_rx = lp->cur_tx = 0;
872 lp->dirty_rx = lp->dirty_tx = 0;
873
874 for (i = 0; i < RX_RING_SIZE; i++) {
875 struct sk_buff *skb;
876 void *rx_buff;
877
878 skb = alloc_skb(PKT_BUF_SZ, GFP_DMA | gfp);
879 lp->rx_skbuff[i] = skb;
880 if (skb)
881 rx_buff = skb->data;
882 else
883 rx_buff = kmalloc(PKT_BUF_SZ, GFP_DMA | gfp);
884 if (!rx_buff)
885 lp->rx_ring[i].base = 0;
886 else
887 lp->rx_ring[i].base = (u32)isa_virt_to_bus(rx_buff) | 0x80000000;
888 lp->rx_ring[i].buf_length = -PKT_BUF_SZ;
889 }
890 /* The Tx buffer address is filled in as needed, but we do need to clear
891 the upper ownership bit. */
892 for (i = 0; i < TX_RING_SIZE; i++) {
893 lp->tx_skbuff[i] = NULL;
894 lp->tx_ring[i].base = 0;
895 }
896
897 lp->init_block.mode = 0x0000;
898 for (i = 0; i < 6; i++)
899 lp->init_block.phys_addr[i] = dev->dev_addr[i];
900 lp->init_block.filter[0] = 0x00000000;
901 lp->init_block.filter[1] = 0x00000000;
902 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS;
903 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS;
904}
905
906static void
907lance_restart(struct net_device *dev, unsigned int csr0_bits, int must_reinit)
908{
909 struct lance_private *lp = dev->ml_priv;
910
911 if (must_reinit ||
912 (chip_table[lp->chip_version].flags & LANCE_MUST_REINIT_RING)) {
913 lance_purge_ring(dev);
914 lance_init_ring(dev, GFP_ATOMIC);
915 }
916 outw(0x0000, dev->base_addr + LANCE_ADDR);
917 outw(csr0_bits, dev->base_addr + LANCE_DATA);
918}
919
920
921static void lance_tx_timeout (struct net_device *dev, unsigned int txqueue)
922{
923 struct lance_private *lp = (struct lance_private *) dev->ml_priv;
924 int ioaddr = dev->base_addr;
925
926 outw (0, ioaddr + LANCE_ADDR);
927 printk ("%s: transmit timed out, status %4.4x, resetting.\n",
928 dev->name, inw (ioaddr + LANCE_DATA));
929 outw (0x0004, ioaddr + LANCE_DATA);
930 dev->stats.tx_errors++;
931#ifndef final_version
932 if (lance_debug > 3) {
933 int i;
934 printk (" Ring data dump: dirty_tx %d cur_tx %d%s cur_rx %d.",
935 lp->dirty_tx, lp->cur_tx, netif_queue_stopped(dev) ? " (full)" : "",
936 lp->cur_rx);
937 for (i = 0; i < RX_RING_SIZE; i++)
938 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ",
939 lp->rx_ring[i].base, -lp->rx_ring[i].buf_length,
940 lp->rx_ring[i].msg_length);
941 for (i = 0; i < TX_RING_SIZE; i++)
942 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ",
943 lp->tx_ring[i].base, -lp->tx_ring[i].length,
944 lp->tx_ring[i].misc);
945 printk ("\n");
946 }
947#endif
948 lance_restart (dev, 0x0043, 1);
949
950 netif_trans_update(dev); /* prevent tx timeout */
951 netif_wake_queue (dev);
952}
953
954
955static netdev_tx_t lance_start_xmit(struct sk_buff *skb,
956 struct net_device *dev)
957{
958 struct lance_private *lp = dev->ml_priv;
959 int ioaddr = dev->base_addr;
960 int entry;
961 unsigned long flags;
962
963 spin_lock_irqsave(&lp->devlock, flags);
964
965 if (lance_debug > 3) {
966 outw(0x0000, ioaddr+LANCE_ADDR);
967 printk("%s: lance_start_xmit() called, csr0 %4.4x.\n", dev->name,
968 inw(ioaddr+LANCE_DATA));
969 outw(0x0000, ioaddr+LANCE_DATA);
970 }
971
972 /* Fill in a Tx ring entry */
973
974 /* Mask to ring buffer boundary. */
975 entry = lp->cur_tx & TX_RING_MOD_MASK;
976
977 /* Caution: the write order is important here, set the base address
978 with the "ownership" bits last. */
979
980 /* The old LANCE chips doesn't automatically pad buffers to min. size. */
981 if (chip_table[lp->chip_version].flags & LANCE_MUST_PAD) {
982 if (skb->len < ETH_ZLEN) {
983 if (skb_padto(skb, ETH_ZLEN))
984 goto out;
985 lp->tx_ring[entry].length = -ETH_ZLEN;
986 }
987 else
988 lp->tx_ring[entry].length = -skb->len;
989 } else
990 lp->tx_ring[entry].length = -skb->len;
991
992 lp->tx_ring[entry].misc = 0x0000;
993
994 dev->stats.tx_bytes += skb->len;
995
996 /* If any part of this buffer is >16M we must copy it to a low-memory
997 buffer. */
998 if ((u32)isa_virt_to_bus(skb->data) + skb->len > 0x01000000) {
999 if (lance_debug > 5)
1000 printk("%s: bouncing a high-memory packet (%#x).\n",
1001 dev->name, (u32)isa_virt_to_bus(skb->data));
1002 skb_copy_from_linear_data(skb, &lp->tx_bounce_buffs[entry], skb->len);
1003 lp->tx_ring[entry].base =
1004 ((u32)isa_virt_to_bus((lp->tx_bounce_buffs + entry)) & 0xffffff) | 0x83000000;
1005 dev_consume_skb_irq(skb);
1006 } else {
1007 lp->tx_skbuff[entry] = skb;
1008 lp->tx_ring[entry].base = ((u32)isa_virt_to_bus(skb->data) & 0xffffff) | 0x83000000;
1009 }
1010 lp->cur_tx++;
1011
1012 /* Trigger an immediate send poll. */
1013 outw(0x0000, ioaddr+LANCE_ADDR);
1014 outw(0x0048, ioaddr+LANCE_DATA);
1015
1016 if ((lp->cur_tx - lp->dirty_tx) >= TX_RING_SIZE)
1017 netif_stop_queue(dev);
1018
1019out:
1020 spin_unlock_irqrestore(&lp->devlock, flags);
1021 return NETDEV_TX_OK;
1022}
1023
1024/* The LANCE interrupt handler. */
1025static irqreturn_t lance_interrupt(int irq, void *dev_id)
1026{
1027 struct net_device *dev = dev_id;
1028 struct lance_private *lp;
1029 int csr0, ioaddr, boguscnt=10;
1030 int must_restart;
1031
1032 ioaddr = dev->base_addr;
1033 lp = dev->ml_priv;
1034
1035 spin_lock (&lp->devlock);
1036
1037 outw(0x00, dev->base_addr + LANCE_ADDR);
1038 while ((csr0 = inw(dev->base_addr + LANCE_DATA)) & 0x8600 &&
1039 --boguscnt >= 0) {
1040 /* Acknowledge all of the current interrupt sources ASAP. */
1041 outw(csr0 & ~0x004f, dev->base_addr + LANCE_DATA);
1042
1043 must_restart = 0;
1044
1045 if (lance_debug > 5)
1046 printk("%s: interrupt csr0=%#2.2x new csr=%#2.2x.\n",
1047 dev->name, csr0, inw(dev->base_addr + LANCE_DATA));
1048
1049 if (csr0 & 0x0400) /* Rx interrupt */
1050 lance_rx(dev);
1051
1052 if (csr0 & 0x0200) { /* Tx-done interrupt */
1053 int dirty_tx = lp->dirty_tx;
1054
1055 while (dirty_tx < lp->cur_tx) {
1056 int entry = dirty_tx & TX_RING_MOD_MASK;
1057 int status = lp->tx_ring[entry].base;
1058
1059 if (status < 0)
1060 break; /* It still hasn't been Txed */
1061
1062 lp->tx_ring[entry].base = 0;
1063
1064 if (status & 0x40000000) {
1065 /* There was an major error, log it. */
1066 int err_status = lp->tx_ring[entry].misc;
1067 dev->stats.tx_errors++;
1068 if (err_status & 0x0400)
1069 dev->stats.tx_aborted_errors++;
1070 if (err_status & 0x0800)
1071 dev->stats.tx_carrier_errors++;
1072 if (err_status & 0x1000)
1073 dev->stats.tx_window_errors++;
1074 if (err_status & 0x4000) {
1075 /* Ackk! On FIFO errors the Tx unit is turned off! */
1076 dev->stats.tx_fifo_errors++;
1077 /* Remove this verbosity later! */
1078 printk("%s: Tx FIFO error! Status %4.4x.\n",
1079 dev->name, csr0);
1080 /* Restart the chip. */
1081 must_restart = 1;
1082 }
1083 } else {
1084 if (status & 0x18000000)
1085 dev->stats.collisions++;
1086 dev->stats.tx_packets++;
1087 }
1088
1089 /* We must free the original skb if it's not a data-only copy
1090 in the bounce buffer. */
1091 if (lp->tx_skbuff[entry]) {
1092 dev_consume_skb_irq(lp->tx_skbuff[entry]);
1093 lp->tx_skbuff[entry] = NULL;
1094 }
1095 dirty_tx++;
1096 }
1097
1098#ifndef final_version
1099 if (lp->cur_tx - dirty_tx >= TX_RING_SIZE) {
1100 printk("out-of-sync dirty pointer, %d vs. %d, full=%s.\n",
1101 dirty_tx, lp->cur_tx,
1102 netif_queue_stopped(dev) ? "yes" : "no");
1103 dirty_tx += TX_RING_SIZE;
1104 }
1105#endif
1106
1107 /* if the ring is no longer full, accept more packets */
1108 if (netif_queue_stopped(dev) &&
1109 dirty_tx > lp->cur_tx - TX_RING_SIZE + 2)
1110 netif_wake_queue (dev);
1111
1112 lp->dirty_tx = dirty_tx;
1113 }
1114
1115 /* Log misc errors. */
1116 if (csr0 & 0x4000)
1117 dev->stats.tx_errors++; /* Tx babble. */
1118 if (csr0 & 0x1000)
1119 dev->stats.rx_errors++; /* Missed a Rx frame. */
1120 if (csr0 & 0x0800) {
1121 printk("%s: Bus master arbitration failure, status %4.4x.\n",
1122 dev->name, csr0);
1123 /* Restart the chip. */
1124 must_restart = 1;
1125 }
1126
1127 if (must_restart) {
1128 /* stop the chip to clear the error condition, then restart */
1129 outw(0x0000, dev->base_addr + LANCE_ADDR);
1130 outw(0x0004, dev->base_addr + LANCE_DATA);
1131 lance_restart(dev, 0x0002, 0);
1132 }
1133 }
1134
1135 /* Clear any other interrupt, and set interrupt enable. */
1136 outw(0x0000, dev->base_addr + LANCE_ADDR);
1137 outw(0x7940, dev->base_addr + LANCE_DATA);
1138
1139 if (lance_debug > 4)
1140 printk("%s: exiting interrupt, csr%d=%#4.4x.\n",
1141 dev->name, inw(ioaddr + LANCE_ADDR),
1142 inw(dev->base_addr + LANCE_DATA));
1143
1144 spin_unlock (&lp->devlock);
1145 return IRQ_HANDLED;
1146}
1147
1148static int
1149lance_rx(struct net_device *dev)
1150{
1151 struct lance_private *lp = dev->ml_priv;
1152 int entry = lp->cur_rx & RX_RING_MOD_MASK;
1153 int i;
1154
1155 /* If we own the next entry, it's a new packet. Send it up. */
1156 while (lp->rx_ring[entry].base >= 0) {
1157 int status = lp->rx_ring[entry].base >> 24;
1158
1159 if (status != 0x03) { /* There was an error. */
1160 /* There is a tricky error noted by John Murphy,
1161 <murf@perftech.com> to Russ Nelson: Even with full-sized
1162 buffers it's possible for a jabber packet to use two
1163 buffers, with only the last correctly noting the error. */
1164 if (status & 0x01) /* Only count a general error at the */
1165 dev->stats.rx_errors++; /* end of a packet.*/
1166 if (status & 0x20)
1167 dev->stats.rx_frame_errors++;
1168 if (status & 0x10)
1169 dev->stats.rx_over_errors++;
1170 if (status & 0x08)
1171 dev->stats.rx_crc_errors++;
1172 if (status & 0x04)
1173 dev->stats.rx_fifo_errors++;
1174 lp->rx_ring[entry].base &= 0x03ffffff;
1175 }
1176 else
1177 {
1178 /* Malloc up new buffer, compatible with net3. */
1179 short pkt_len = (lp->rx_ring[entry].msg_length & 0xfff)-4;
1180 struct sk_buff *skb;
1181
1182 if(pkt_len<60)
1183 {
1184 printk("%s: Runt packet!\n",dev->name);
1185 dev->stats.rx_errors++;
1186 }
1187 else
1188 {
1189 skb = dev_alloc_skb(pkt_len+2);
1190 if (!skb)
1191 {
1192 printk("%s: Memory squeeze, deferring packet.\n", dev->name);
1193 for (i=0; i < RX_RING_SIZE; i++)
1194 if (lp->rx_ring[(entry+i) & RX_RING_MOD_MASK].base < 0)
1195 break;
1196
1197 if (i > RX_RING_SIZE -2)
1198 {
1199 dev->stats.rx_dropped++;
1200 lp->rx_ring[entry].base |= 0x80000000;
1201 lp->cur_rx++;
1202 }
1203 break;
1204 }
1205 skb_reserve(skb,2); /* 16 byte align */
1206 skb_put(skb,pkt_len); /* Make room */
1207 skb_copy_to_linear_data(skb,
1208 (unsigned char *)isa_bus_to_virt((lp->rx_ring[entry].base & 0x00ffffff)),
1209 pkt_len);
1210 skb->protocol=eth_type_trans(skb,dev);
1211 netif_rx(skb);
1212 dev->stats.rx_packets++;
1213 dev->stats.rx_bytes += pkt_len;
1214 }
1215 }
1216 /* The docs say that the buffer length isn't touched, but Andrew Boyd
1217 of QNX reports that some revs of the 79C965 clear it. */
1218 lp->rx_ring[entry].buf_length = -PKT_BUF_SZ;
1219 lp->rx_ring[entry].base |= 0x80000000;
1220 entry = (++lp->cur_rx) & RX_RING_MOD_MASK;
1221 }
1222
1223 /* We should check that at least two ring entries are free. If not,
1224 we should free one and mark stats->rx_dropped++. */
1225
1226 return 0;
1227}
1228
1229static int
1230lance_close(struct net_device *dev)
1231{
1232 int ioaddr = dev->base_addr;
1233 struct lance_private *lp = dev->ml_priv;
1234
1235 netif_stop_queue (dev);
1236
1237 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) {
1238 outw(112, ioaddr+LANCE_ADDR);
1239 dev->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA);
1240 }
1241 outw(0, ioaddr+LANCE_ADDR);
1242
1243 if (lance_debug > 1)
1244 printk("%s: Shutting down ethercard, status was %2.2x.\n",
1245 dev->name, inw(ioaddr+LANCE_DATA));
1246
1247 /* We stop the LANCE here -- it occasionally polls
1248 memory if we don't. */
1249 outw(0x0004, ioaddr+LANCE_DATA);
1250
1251 if (dev->dma != 4)
1252 {
1253 unsigned long flags=claim_dma_lock();
1254 disable_dma(dev->dma);
1255 release_dma_lock(flags);
1256 }
1257 free_irq(dev->irq, dev);
1258
1259 lance_purge_ring(dev);
1260
1261 return 0;
1262}
1263
1264static struct net_device_stats *lance_get_stats(struct net_device *dev)
1265{
1266 struct lance_private *lp = dev->ml_priv;
1267
1268 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) {
1269 short ioaddr = dev->base_addr;
1270 short saved_addr;
1271 unsigned long flags;
1272
1273 spin_lock_irqsave(&lp->devlock, flags);
1274 saved_addr = inw(ioaddr+LANCE_ADDR);
1275 outw(112, ioaddr+LANCE_ADDR);
1276 dev->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA);
1277 outw(saved_addr, ioaddr+LANCE_ADDR);
1278 spin_unlock_irqrestore(&lp->devlock, flags);
1279 }
1280
1281 return &dev->stats;
1282}
1283
1284/* Set or clear the multicast filter for this adaptor.
1285 */
1286
1287static void set_multicast_list(struct net_device *dev)
1288{
1289 short ioaddr = dev->base_addr;
1290
1291 outw(0, ioaddr+LANCE_ADDR);
1292 outw(0x0004, ioaddr+LANCE_DATA); /* Temporarily stop the lance. */
1293
1294 if (dev->flags&IFF_PROMISC) {
1295 outw(15, ioaddr+LANCE_ADDR);
1296 outw(0x8000, ioaddr+LANCE_DATA); /* Set promiscuous mode */
1297 } else {
1298 short multicast_table[4];
1299 int i;
1300 int num_addrs=netdev_mc_count(dev);
1301 if(dev->flags&IFF_ALLMULTI)
1302 num_addrs=1;
1303 /* FIXIT: We don't use the multicast table, but rely on upper-layer filtering. */
1304 memset(multicast_table, (num_addrs == 0) ? 0 : -1, sizeof(multicast_table));
1305 for (i = 0; i < 4; i++) {
1306 outw(8 + i, ioaddr+LANCE_ADDR);
1307 outw(multicast_table[i], ioaddr+LANCE_DATA);
1308 }
1309 outw(15, ioaddr+LANCE_ADDR);
1310 outw(0x0000, ioaddr+LANCE_DATA); /* Unset promiscuous mode */
1311 }
1312
1313 lance_restart(dev, 0x0142, 0); /* Resume normal operation */
1314
1315}
1316
1/* lance.c: An AMD LANCE/PCnet ethernet driver for Linux. */
2/*
3 Written/copyright 1993-1998 by Donald Becker.
4
5 Copyright 1993 United States Government as represented by the
6 Director, National Security Agency.
7 This software may be used and distributed according to the terms
8 of the GNU General Public License, incorporated herein by reference.
9
10 This driver is for the Allied Telesis AT1500 and HP J2405A, and should work
11 with most other LANCE-based bus-master (NE2100/NE2500) ethercards.
12
13 The author may be reached as becker@scyld.com, or C/O
14 Scyld Computing Corporation
15 410 Severn Ave., Suite 210
16 Annapolis MD 21403
17
18 Andrey V. Savochkin:
19 - alignment problem with 1.3.* kernel and some minor changes.
20 Thomas Bogendoerfer (tsbogend@bigbug.franken.de):
21 - added support for Linux/Alpha, but removed most of it, because
22 it worked only for the PCI chip.
23 - added hook for the 32bit lance driver
24 - added PCnetPCI II (79C970A) to chip table
25 Paul Gortmaker (gpg109@rsphy1.anu.edu.au):
26 - hopefully fix above so Linux/Alpha can use ISA cards too.
27 8/20/96 Fixed 7990 autoIRQ failure and reversed unneeded alignment -djb
28 v1.12 10/27/97 Module support -djb
29 v1.14 2/3/98 Module support modified, made PCI support optional -djb
30 v1.15 5/27/99 Fixed bug in the cleanup_module(). dev->priv was freed
31 before unregister_netdev() which caused NULL pointer
32 reference later in the chain (in rtnetlink_fill_ifinfo())
33 -- Mika Kuoppala <miku@iki.fi>
34
35 Forward ported v1.14 to 2.1.129, merged the PCI and misc changes from
36 the 2.1 version of the old driver - Alan Cox
37
38 Get rid of check_region, check kmalloc return in lance_probe1
39 Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 11/01/2001
40
41 Reworked detection, added support for Racal InterLan EtherBlaster cards
42 Vesselin Kostadinov <vesok at yahoo dot com > - 22/4/2004
43*/
44
45static const char version[] = "lance.c:v1.16 2006/11/09 dplatt@3do.com, becker@cesdis.gsfc.nasa.gov\n";
46
47#include <linux/module.h>
48#include <linux/kernel.h>
49#include <linux/string.h>
50#include <linux/delay.h>
51#include <linux/errno.h>
52#include <linux/ioport.h>
53#include <linux/slab.h>
54#include <linux/interrupt.h>
55#include <linux/pci.h>
56#include <linux/init.h>
57#include <linux/netdevice.h>
58#include <linux/etherdevice.h>
59#include <linux/skbuff.h>
60#include <linux/mm.h>
61#include <linux/bitops.h>
62
63#include <asm/io.h>
64#include <asm/dma.h>
65
66static unsigned int lance_portlist[] __initdata = { 0x300, 0x320, 0x340, 0x360, 0};
67static int lance_probe1(struct net_device *dev, int ioaddr, int irq, int options);
68static int __init do_lance_probe(struct net_device *dev);
69
70
71static struct card {
72 char id_offset14;
73 char id_offset15;
74} cards[] = {
75 { //"normal"
76 .id_offset14 = 0x57,
77 .id_offset15 = 0x57,
78 },
79 { //NI6510EB
80 .id_offset14 = 0x52,
81 .id_offset15 = 0x44,
82 },
83 { //Racal InterLan EtherBlaster
84 .id_offset14 = 0x52,
85 .id_offset15 = 0x49,
86 },
87};
88#define NUM_CARDS 3
89
90#ifdef LANCE_DEBUG
91static int lance_debug = LANCE_DEBUG;
92#else
93static int lance_debug = 1;
94#endif
95
96/*
97 Theory of Operation
98
99I. Board Compatibility
100
101This device driver is designed for the AMD 79C960, the "PCnet-ISA
102single-chip ethernet controller for ISA". This chip is used in a wide
103variety of boards from vendors such as Allied Telesis, HP, Kingston,
104and Boca. This driver is also intended to work with older AMD 7990
105designs, such as the NE1500 and NE2100, and newer 79C961. For convenience,
106I use the name LANCE to refer to all of the AMD chips, even though it properly
107refers only to the original 7990.
108
109II. Board-specific settings
110
111The driver is designed to work the boards that use the faster
112bus-master mode, rather than in shared memory mode. (Only older designs
113have on-board buffer memory needed to support the slower shared memory mode.)
114
115Most ISA boards have jumpered settings for the I/O base, IRQ line, and DMA
116channel. This driver probes the likely base addresses:
117{0x300, 0x320, 0x340, 0x360}.
118After the board is found it generates a DMA-timeout interrupt and uses
119autoIRQ to find the IRQ line. The DMA channel can be set with the low bits
120of the otherwise-unused dev->mem_start value (aka PARAM1). If unset it is
121probed for by enabling each free DMA channel in turn and checking if
122initialization succeeds.
123
124The HP-J2405A board is an exception: with this board it is easy to read the
125EEPROM-set values for the base, IRQ, and DMA. (Of course you must already
126_know_ the base address -- that field is for writing the EEPROM.)
127
128III. Driver operation
129
130IIIa. Ring buffers
131The LANCE uses ring buffers of Tx and Rx descriptors. Each entry describes
132the base and length of the data buffer, along with status bits. The length
133of these buffers is set by LANCE_LOG_{RX,TX}_BUFFERS, which is log_2() of
134the buffer length (rather than being directly the buffer length) for
135implementation ease. The current values are 2 (Tx) and 4 (Rx), which leads to
136ring sizes of 4 (Tx) and 16 (Rx). Increasing the number of ring entries
137needlessly uses extra space and reduces the chance that an upper layer will
138be able to reorder queued Tx packets based on priority. Decreasing the number
139of entries makes it more difficult to achieve back-to-back packet transmission
140and increases the chance that Rx ring will overflow. (Consider the worst case
141of receiving back-to-back minimum-sized packets.)
142
143The LANCE has the capability to "chain" both Rx and Tx buffers, but this driver
144statically allocates full-sized (slightly oversized -- PKT_BUF_SZ) buffers to
145avoid the administrative overhead. For the Rx side this avoids dynamically
146allocating full-sized buffers "just in case", at the expense of a
147memory-to-memory data copy for each packet received. For most systems this
148is a good tradeoff: the Rx buffer will always be in low memory, the copy
149is inexpensive, and it primes the cache for later packet processing. For Tx
150the buffers are only used when needed as low-memory bounce buffers.
151
152IIIB. 16M memory limitations.
153For the ISA bus master mode all structures used directly by the LANCE,
154the initialization block, Rx and Tx rings, and data buffers, must be
155accessible from the ISA bus, i.e. in the lower 16M of real memory.
156This is a problem for current Linux kernels on >16M machines. The network
157devices are initialized after memory initialization, and the kernel doles out
158memory from the top of memory downward. The current solution is to have a
159special network initialization routine that's called before memory
160initialization; this will eventually be generalized for all network devices.
161As mentioned before, low-memory "bounce-buffers" are used when needed.
162
163IIIC. Synchronization
164The driver runs as two independent, single-threaded flows of control. One
165is the send-packet routine, which enforces single-threaded use by the
166dev->tbusy flag. The other thread is the interrupt handler, which is single
167threaded by the hardware and other software.
168
169The send packet thread has partial control over the Tx ring and 'dev->tbusy'
170flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
171queue slot is empty, it clears the tbusy flag when finished otherwise it sets
172the 'lp->tx_full' flag.
173
174The interrupt handler has exclusive control over the Rx ring and records stats
175from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so
176we can't avoid the interrupt overhead by having the Tx routine reap the Tx
177stats.) After reaping the stats, it marks the queue entry as empty by setting
178the 'base' to zero. Iff the 'lp->tx_full' flag is set, it clears both the
179tx_full and tbusy flags.
180
181*/
182
183/* Set the number of Tx and Rx buffers, using Log_2(# buffers).
184 Reasonable default values are 16 Tx buffers, and 16 Rx buffers.
185 That translates to 4 and 4 (16 == 2^^4).
186 This is a compile-time option for efficiency.
187 */
188#ifndef LANCE_LOG_TX_BUFFERS
189#define LANCE_LOG_TX_BUFFERS 4
190#define LANCE_LOG_RX_BUFFERS 4
191#endif
192
193#define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS))
194#define TX_RING_MOD_MASK (TX_RING_SIZE - 1)
195#define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29)
196
197#define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS))
198#define RX_RING_MOD_MASK (RX_RING_SIZE - 1)
199#define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29)
200
201#define PKT_BUF_SZ 1544
202
203/* Offsets from base I/O address. */
204#define LANCE_DATA 0x10
205#define LANCE_ADDR 0x12
206#define LANCE_RESET 0x14
207#define LANCE_BUS_IF 0x16
208#define LANCE_TOTAL_SIZE 0x18
209
210#define TX_TIMEOUT (HZ/5)
211
212/* The LANCE Rx and Tx ring descriptors. */
213struct lance_rx_head {
214 s32 base;
215 s16 buf_length; /* This length is 2s complement (negative)! */
216 s16 msg_length; /* This length is "normal". */
217};
218
219struct lance_tx_head {
220 s32 base;
221 s16 length; /* Length is 2s complement (negative)! */
222 s16 misc;
223};
224
225/* The LANCE initialization block, described in databook. */
226struct lance_init_block {
227 u16 mode; /* Pre-set mode (reg. 15) */
228 u8 phys_addr[6]; /* Physical ethernet address */
229 u32 filter[2]; /* Multicast filter (unused). */
230 /* Receive and transmit ring base, along with extra bits. */
231 u32 rx_ring; /* Tx and Rx ring base pointers */
232 u32 tx_ring;
233};
234
235struct lance_private {
236 /* The Tx and Rx ring entries must be aligned on 8-byte boundaries. */
237 struct lance_rx_head rx_ring[RX_RING_SIZE];
238 struct lance_tx_head tx_ring[TX_RING_SIZE];
239 struct lance_init_block init_block;
240 const char *name;
241 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
242 struct sk_buff* tx_skbuff[TX_RING_SIZE];
243 /* The addresses of receive-in-place skbuffs. */
244 struct sk_buff* rx_skbuff[RX_RING_SIZE];
245 unsigned long rx_buffs; /* Address of Rx and Tx buffers. */
246 /* Tx low-memory "bounce buffer" address. */
247 char (*tx_bounce_buffs)[PKT_BUF_SZ];
248 int cur_rx, cur_tx; /* The next free ring entry */
249 int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
250 int dma;
251 unsigned char chip_version; /* See lance_chip_type. */
252 spinlock_t devlock;
253};
254
255#define LANCE_MUST_PAD 0x00000001
256#define LANCE_ENABLE_AUTOSELECT 0x00000002
257#define LANCE_MUST_REINIT_RING 0x00000004
258#define LANCE_MUST_UNRESET 0x00000008
259#define LANCE_HAS_MISSED_FRAME 0x00000010
260
261/* A mapping from the chip ID number to the part number and features.
262 These are from the datasheets -- in real life the '970 version
263 reportedly has the same ID as the '965. */
264static struct lance_chip_type {
265 int id_number;
266 const char *name;
267 int flags;
268} chip_table[] = {
269 {0x0000, "LANCE 7990", /* Ancient lance chip. */
270 LANCE_MUST_PAD + LANCE_MUST_UNRESET},
271 {0x0003, "PCnet/ISA 79C960", /* 79C960 PCnet/ISA. */
272 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
273 LANCE_HAS_MISSED_FRAME},
274 {0x2260, "PCnet/ISA+ 79C961", /* 79C961 PCnet/ISA+, Plug-n-Play. */
275 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
276 LANCE_HAS_MISSED_FRAME},
277 {0x2420, "PCnet/PCI 79C970", /* 79C970 or 79C974 PCnet-SCSI, PCI. */
278 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
279 LANCE_HAS_MISSED_FRAME},
280 /* Bug: the PCnet/PCI actually uses the PCnet/VLB ID number, so just call
281 it the PCnet32. */
282 {0x2430, "PCnet32", /* 79C965 PCnet for VL bus. */
283 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
284 LANCE_HAS_MISSED_FRAME},
285 {0x2621, "PCnet/PCI-II 79C970A", /* 79C970A PCInetPCI II. */
286 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
287 LANCE_HAS_MISSED_FRAME},
288 {0x0, "PCnet (unknown)",
289 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
290 LANCE_HAS_MISSED_FRAME},
291};
292
293enum {OLD_LANCE = 0, PCNET_ISA=1, PCNET_ISAP=2, PCNET_PCI=3, PCNET_VLB=4, PCNET_PCI_II=5, LANCE_UNKNOWN=6};
294
295
296/* Non-zero if lance_probe1() needs to allocate low-memory bounce buffers.
297 Assume yes until we know the memory size. */
298static unsigned char lance_need_isa_bounce_buffers = 1;
299
300static int lance_open(struct net_device *dev);
301static void lance_init_ring(struct net_device *dev, gfp_t mode);
302static netdev_tx_t lance_start_xmit(struct sk_buff *skb,
303 struct net_device *dev);
304static int lance_rx(struct net_device *dev);
305static irqreturn_t lance_interrupt(int irq, void *dev_id);
306static int lance_close(struct net_device *dev);
307static struct net_device_stats *lance_get_stats(struct net_device *dev);
308static void set_multicast_list(struct net_device *dev);
309static void lance_tx_timeout (struct net_device *dev, unsigned int txqueue);
310
311
312
313#ifdef MODULE
314#define MAX_CARDS 8 /* Max number of interfaces (cards) per module */
315
316static struct net_device *dev_lance[MAX_CARDS];
317static int io[MAX_CARDS];
318static int dma[MAX_CARDS];
319static int irq[MAX_CARDS];
320
321module_param_hw_array(io, int, ioport, NULL, 0);
322module_param_hw_array(dma, int, dma, NULL, 0);
323module_param_hw_array(irq, int, irq, NULL, 0);
324module_param(lance_debug, int, 0);
325MODULE_PARM_DESC(io, "LANCE/PCnet I/O base address(es),required");
326MODULE_PARM_DESC(dma, "LANCE/PCnet ISA DMA channel (ignored for some devices)");
327MODULE_PARM_DESC(irq, "LANCE/PCnet IRQ number (ignored for some devices)");
328MODULE_PARM_DESC(lance_debug, "LANCE/PCnet debug level (0-7)");
329
330int __init init_module(void)
331{
332 struct net_device *dev;
333 int this_dev, found = 0;
334
335 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) {
336 if (io[this_dev] == 0) {
337 if (this_dev != 0) /* only complain once */
338 break;
339 printk(KERN_NOTICE "lance.c: Module autoprobing not allowed. Append \"io=0xNNN\" value(s).\n");
340 return -EPERM;
341 }
342 dev = alloc_etherdev(0);
343 if (!dev)
344 break;
345 dev->irq = irq[this_dev];
346 dev->base_addr = io[this_dev];
347 dev->dma = dma[this_dev];
348 if (do_lance_probe(dev) == 0) {
349 dev_lance[found++] = dev;
350 continue;
351 }
352 free_netdev(dev);
353 break;
354 }
355 if (found != 0)
356 return 0;
357 return -ENXIO;
358}
359
360static void cleanup_card(struct net_device *dev)
361{
362 struct lance_private *lp = dev->ml_priv;
363 if (dev->dma != 4)
364 free_dma(dev->dma);
365 release_region(dev->base_addr, LANCE_TOTAL_SIZE);
366 kfree(lp->tx_bounce_buffs);
367 kfree((void*)lp->rx_buffs);
368 kfree(lp);
369}
370
371void __exit cleanup_module(void)
372{
373 int this_dev;
374
375 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) {
376 struct net_device *dev = dev_lance[this_dev];
377 if (dev) {
378 unregister_netdev(dev);
379 cleanup_card(dev);
380 free_netdev(dev);
381 }
382 }
383}
384#endif /* MODULE */
385MODULE_LICENSE("GPL");
386
387
388/* Starting in v2.1.*, the LANCE/PCnet probe is now similar to the other
389 board probes now that kmalloc() can allocate ISA DMA-able regions.
390 This also allows the LANCE driver to be used as a module.
391 */
392static int __init do_lance_probe(struct net_device *dev)
393{
394 unsigned int *port;
395 int result;
396
397 if (high_memory <= phys_to_virt(16*1024*1024))
398 lance_need_isa_bounce_buffers = 0;
399
400 for (port = lance_portlist; *port; port++) {
401 int ioaddr = *port;
402 struct resource *r = request_region(ioaddr, LANCE_TOTAL_SIZE,
403 "lance-probe");
404
405 if (r) {
406 /* Detect the card with minimal I/O reads */
407 char offset14 = inb(ioaddr + 14);
408 int card;
409 for (card = 0; card < NUM_CARDS; ++card)
410 if (cards[card].id_offset14 == offset14)
411 break;
412 if (card < NUM_CARDS) {/*yes, the first byte matches*/
413 char offset15 = inb(ioaddr + 15);
414 for (card = 0; card < NUM_CARDS; ++card)
415 if ((cards[card].id_offset14 == offset14) &&
416 (cards[card].id_offset15 == offset15))
417 break;
418 }
419 if (card < NUM_CARDS) { /*Signature OK*/
420 result = lance_probe1(dev, ioaddr, 0, 0);
421 if (!result) {
422 struct lance_private *lp = dev->ml_priv;
423 int ver = lp->chip_version;
424
425 r->name = chip_table[ver].name;
426 return 0;
427 }
428 }
429 release_region(ioaddr, LANCE_TOTAL_SIZE);
430 }
431 }
432 return -ENODEV;
433}
434
435#ifndef MODULE
436struct net_device * __init lance_probe(int unit)
437{
438 struct net_device *dev = alloc_etherdev(0);
439 int err;
440
441 if (!dev)
442 return ERR_PTR(-ENODEV);
443
444 sprintf(dev->name, "eth%d", unit);
445 netdev_boot_setup_check(dev);
446
447 err = do_lance_probe(dev);
448 if (err)
449 goto out;
450 return dev;
451out:
452 free_netdev(dev);
453 return ERR_PTR(err);
454}
455#endif
456
457static const struct net_device_ops lance_netdev_ops = {
458 .ndo_open = lance_open,
459 .ndo_start_xmit = lance_start_xmit,
460 .ndo_stop = lance_close,
461 .ndo_get_stats = lance_get_stats,
462 .ndo_set_rx_mode = set_multicast_list,
463 .ndo_tx_timeout = lance_tx_timeout,
464 .ndo_set_mac_address = eth_mac_addr,
465 .ndo_validate_addr = eth_validate_addr,
466};
467
468static int __init lance_probe1(struct net_device *dev, int ioaddr, int irq, int options)
469{
470 struct lance_private *lp;
471 unsigned long dma_channels; /* Mark spuriously-busy DMA channels */
472 int i, reset_val, lance_version;
473 const char *chipname;
474 /* Flags for specific chips or boards. */
475 unsigned char hpJ2405A = 0; /* HP ISA adaptor */
476 int hp_builtin = 0; /* HP on-board ethernet. */
477 static int did_version; /* Already printed version info. */
478 unsigned long flags;
479 int err = -ENOMEM;
480 void __iomem *bios;
481
482 /* First we look for special cases.
483 Check for HP's on-board ethernet by looking for 'HP' in the BIOS.
484 There are two HP versions, check the BIOS for the configuration port.
485 This method provided by L. Julliard, Laurent_Julliard@grenoble.hp.com.
486 */
487 bios = ioremap(0xf00f0, 0x14);
488 if (!bios)
489 return -ENOMEM;
490 if (readw(bios + 0x12) == 0x5048) {
491 static const short ioaddr_table[] = { 0x300, 0x320, 0x340, 0x360};
492 int hp_port = (readl(bios + 1) & 1) ? 0x499 : 0x99;
493 /* We can have boards other than the built-in! Verify this is on-board. */
494 if ((inb(hp_port) & 0xc0) == 0x80 &&
495 ioaddr_table[inb(hp_port) & 3] == ioaddr)
496 hp_builtin = hp_port;
497 }
498 iounmap(bios);
499 /* We also recognize the HP Vectra on-board here, but check below. */
500 hpJ2405A = (inb(ioaddr) == 0x08 && inb(ioaddr+1) == 0x00 &&
501 inb(ioaddr+2) == 0x09);
502
503 /* Reset the LANCE. */
504 reset_val = inw(ioaddr+LANCE_RESET); /* Reset the LANCE */
505
506 /* The Un-Reset needed is only needed for the real NE2100, and will
507 confuse the HP board. */
508 if (!hpJ2405A)
509 outw(reset_val, ioaddr+LANCE_RESET);
510
511 outw(0x0000, ioaddr+LANCE_ADDR); /* Switch to window 0 */
512 if (inw(ioaddr+LANCE_DATA) != 0x0004)
513 return -ENODEV;
514
515 /* Get the version of the chip. */
516 outw(88, ioaddr+LANCE_ADDR);
517 if (inw(ioaddr+LANCE_ADDR) != 88) {
518 lance_version = 0;
519 } else { /* Good, it's a newer chip. */
520 int chip_version = inw(ioaddr+LANCE_DATA);
521 outw(89, ioaddr+LANCE_ADDR);
522 chip_version |= inw(ioaddr+LANCE_DATA) << 16;
523 if (lance_debug > 2)
524 printk(" LANCE chip version is %#x.\n", chip_version);
525 if ((chip_version & 0xfff) != 0x003)
526 return -ENODEV;
527 chip_version = (chip_version >> 12) & 0xffff;
528 for (lance_version = 1; chip_table[lance_version].id_number; lance_version++) {
529 if (chip_table[lance_version].id_number == chip_version)
530 break;
531 }
532 }
533
534 /* We can't allocate private data from alloc_etherdev() because it must
535 a ISA DMA-able region. */
536 chipname = chip_table[lance_version].name;
537 printk("%s: %s at %#3x, ", dev->name, chipname, ioaddr);
538
539 /* There is a 16 byte station address PROM at the base address.
540 The first six bytes are the station address. */
541 for (i = 0; i < 6; i++)
542 dev->dev_addr[i] = inb(ioaddr + i);
543 printk("%pM", dev->dev_addr);
544
545 dev->base_addr = ioaddr;
546 /* Make certain the data structures used by the LANCE are aligned and DMAble. */
547
548 lp = kzalloc(sizeof(*lp), GFP_DMA | GFP_KERNEL);
549 if (!lp)
550 return -ENOMEM;
551 if (lance_debug > 6) printk(" (#0x%05lx)", (unsigned long)lp);
552 dev->ml_priv = lp;
553 lp->name = chipname;
554 lp->rx_buffs = (unsigned long)kmalloc_array(RX_RING_SIZE, PKT_BUF_SZ,
555 GFP_DMA | GFP_KERNEL);
556 if (!lp->rx_buffs)
557 goto out_lp;
558 if (lance_need_isa_bounce_buffers) {
559 lp->tx_bounce_buffs = kmalloc_array(TX_RING_SIZE, PKT_BUF_SZ,
560 GFP_DMA | GFP_KERNEL);
561 if (!lp->tx_bounce_buffs)
562 goto out_rx;
563 } else
564 lp->tx_bounce_buffs = NULL;
565
566 lp->chip_version = lance_version;
567 spin_lock_init(&lp->devlock);
568
569 lp->init_block.mode = 0x0003; /* Disable Rx and Tx. */
570 for (i = 0; i < 6; i++)
571 lp->init_block.phys_addr[i] = dev->dev_addr[i];
572 lp->init_block.filter[0] = 0x00000000;
573 lp->init_block.filter[1] = 0x00000000;
574 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS;
575 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS;
576
577 outw(0x0001, ioaddr+LANCE_ADDR);
578 inw(ioaddr+LANCE_ADDR);
579 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA);
580 outw(0x0002, ioaddr+LANCE_ADDR);
581 inw(ioaddr+LANCE_ADDR);
582 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA);
583 outw(0x0000, ioaddr+LANCE_ADDR);
584 inw(ioaddr+LANCE_ADDR);
585
586 if (irq) { /* Set iff PCI card. */
587 dev->dma = 4; /* Native bus-master, no DMA channel needed. */
588 dev->irq = irq;
589 } else if (hp_builtin) {
590 static const char dma_tbl[4] = {3, 5, 6, 0};
591 static const char irq_tbl[4] = {3, 4, 5, 9};
592 unsigned char port_val = inb(hp_builtin);
593 dev->dma = dma_tbl[(port_val >> 4) & 3];
594 dev->irq = irq_tbl[(port_val >> 2) & 3];
595 printk(" HP Vectra IRQ %d DMA %d.\n", dev->irq, dev->dma);
596 } else if (hpJ2405A) {
597 static const char dma_tbl[4] = {3, 5, 6, 7};
598 static const char irq_tbl[8] = {3, 4, 5, 9, 10, 11, 12, 15};
599 short reset_val = inw(ioaddr+LANCE_RESET);
600 dev->dma = dma_tbl[(reset_val >> 2) & 3];
601 dev->irq = irq_tbl[(reset_val >> 4) & 7];
602 printk(" HP J2405A IRQ %d DMA %d.\n", dev->irq, dev->dma);
603 } else if (lance_version == PCNET_ISAP) { /* The plug-n-play version. */
604 short bus_info;
605 outw(8, ioaddr+LANCE_ADDR);
606 bus_info = inw(ioaddr+LANCE_BUS_IF);
607 dev->dma = bus_info & 0x07;
608 dev->irq = (bus_info >> 4) & 0x0F;
609 } else {
610 /* The DMA channel may be passed in PARAM1. */
611 if (dev->mem_start & 0x07)
612 dev->dma = dev->mem_start & 0x07;
613 }
614
615 if (dev->dma == 0) {
616 /* Read the DMA channel status register, so that we can avoid
617 stuck DMA channels in the DMA detection below. */
618 dma_channels = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) |
619 (inb(DMA2_STAT_REG) & 0xf0);
620 }
621 err = -ENODEV;
622 if (dev->irq >= 2)
623 printk(" assigned IRQ %d", dev->irq);
624 else if (lance_version != 0) { /* 7990 boards need DMA detection first. */
625 unsigned long irq_mask;
626
627 /* To auto-IRQ we enable the initialization-done and DMA error
628 interrupts. For ISA boards we get a DMA error, but VLB and PCI
629 boards will work. */
630 irq_mask = probe_irq_on();
631
632 /* Trigger an initialization just for the interrupt. */
633 outw(0x0041, ioaddr+LANCE_DATA);
634
635 mdelay(20);
636 dev->irq = probe_irq_off(irq_mask);
637 if (dev->irq)
638 printk(", probed IRQ %d", dev->irq);
639 else {
640 printk(", failed to detect IRQ line.\n");
641 goto out_tx;
642 }
643
644 /* Check for the initialization done bit, 0x0100, which means
645 that we don't need a DMA channel. */
646 if (inw(ioaddr+LANCE_DATA) & 0x0100)
647 dev->dma = 4;
648 }
649
650 if (dev->dma == 4) {
651 printk(", no DMA needed.\n");
652 } else if (dev->dma) {
653 if (request_dma(dev->dma, chipname)) {
654 printk("DMA %d allocation failed.\n", dev->dma);
655 goto out_tx;
656 } else
657 printk(", assigned DMA %d.\n", dev->dma);
658 } else { /* OK, we have to auto-DMA. */
659 for (i = 0; i < 4; i++) {
660 static const char dmas[] = { 5, 6, 7, 3 };
661 int dma = dmas[i];
662 int boguscnt;
663
664 /* Don't enable a permanently busy DMA channel, or the machine
665 will hang. */
666 if (test_bit(dma, &dma_channels))
667 continue;
668 outw(0x7f04, ioaddr+LANCE_DATA); /* Clear the memory error bits. */
669 if (request_dma(dma, chipname))
670 continue;
671
672 flags=claim_dma_lock();
673 set_dma_mode(dma, DMA_MODE_CASCADE);
674 enable_dma(dma);
675 release_dma_lock(flags);
676
677 /* Trigger an initialization. */
678 outw(0x0001, ioaddr+LANCE_DATA);
679 for (boguscnt = 100; boguscnt > 0; --boguscnt)
680 if (inw(ioaddr+LANCE_DATA) & 0x0900)
681 break;
682 if (inw(ioaddr+LANCE_DATA) & 0x0100) {
683 dev->dma = dma;
684 printk(", DMA %d.\n", dev->dma);
685 break;
686 } else {
687 flags=claim_dma_lock();
688 disable_dma(dma);
689 release_dma_lock(flags);
690 free_dma(dma);
691 }
692 }
693 if (i == 4) { /* Failure: bail. */
694 printk("DMA detection failed.\n");
695 goto out_tx;
696 }
697 }
698
699 if (lance_version == 0 && dev->irq == 0) {
700 /* We may auto-IRQ now that we have a DMA channel. */
701 /* Trigger an initialization just for the interrupt. */
702 unsigned long irq_mask;
703
704 irq_mask = probe_irq_on();
705 outw(0x0041, ioaddr+LANCE_DATA);
706
707 mdelay(40);
708 dev->irq = probe_irq_off(irq_mask);
709 if (dev->irq == 0) {
710 printk(" Failed to detect the 7990 IRQ line.\n");
711 goto out_dma;
712 }
713 printk(" Auto-IRQ detected IRQ%d.\n", dev->irq);
714 }
715
716 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) {
717 /* Turn on auto-select of media (10baseT or BNC) so that the user
718 can watch the LEDs even if the board isn't opened. */
719 outw(0x0002, ioaddr+LANCE_ADDR);
720 /* Don't touch 10base2 power bit. */
721 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF);
722 }
723
724 if (lance_debug > 0 && did_version++ == 0)
725 printk(version);
726
727 /* The LANCE-specific entries in the device structure. */
728 dev->netdev_ops = &lance_netdev_ops;
729 dev->watchdog_timeo = TX_TIMEOUT;
730
731 err = register_netdev(dev);
732 if (err)
733 goto out_dma;
734 return 0;
735out_dma:
736 if (dev->dma != 4)
737 free_dma(dev->dma);
738out_tx:
739 kfree(lp->tx_bounce_buffs);
740out_rx:
741 kfree((void*)lp->rx_buffs);
742out_lp:
743 kfree(lp);
744 return err;
745}
746
747
748static int
749lance_open(struct net_device *dev)
750{
751 struct lance_private *lp = dev->ml_priv;
752 int ioaddr = dev->base_addr;
753 int i;
754
755 if (dev->irq == 0 ||
756 request_irq(dev->irq, lance_interrupt, 0, dev->name, dev)) {
757 return -EAGAIN;
758 }
759
760 /* We used to allocate DMA here, but that was silly.
761 DMA lines can't be shared! We now permanently allocate them. */
762
763 /* Reset the LANCE */
764 inw(ioaddr+LANCE_RESET);
765
766 /* The DMA controller is used as a no-operation slave, "cascade mode". */
767 if (dev->dma != 4) {
768 unsigned long flags=claim_dma_lock();
769 enable_dma(dev->dma);
770 set_dma_mode(dev->dma, DMA_MODE_CASCADE);
771 release_dma_lock(flags);
772 }
773
774 /* Un-Reset the LANCE, needed only for the NE2100. */
775 if (chip_table[lp->chip_version].flags & LANCE_MUST_UNRESET)
776 outw(0, ioaddr+LANCE_RESET);
777
778 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) {
779 /* This is 79C960-specific: Turn on auto-select of media (AUI, BNC). */
780 outw(0x0002, ioaddr+LANCE_ADDR);
781 /* Only touch autoselect bit. */
782 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF);
783 }
784
785 if (lance_debug > 1)
786 printk("%s: lance_open() irq %d dma %d tx/rx rings %#x/%#x init %#x.\n",
787 dev->name, dev->irq, dev->dma,
788 (u32) isa_virt_to_bus(lp->tx_ring),
789 (u32) isa_virt_to_bus(lp->rx_ring),
790 (u32) isa_virt_to_bus(&lp->init_block));
791
792 lance_init_ring(dev, GFP_KERNEL);
793 /* Re-initialize the LANCE, and start it when done. */
794 outw(0x0001, ioaddr+LANCE_ADDR);
795 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA);
796 outw(0x0002, ioaddr+LANCE_ADDR);
797 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA);
798
799 outw(0x0004, ioaddr+LANCE_ADDR);
800 outw(0x0915, ioaddr+LANCE_DATA);
801
802 outw(0x0000, ioaddr+LANCE_ADDR);
803 outw(0x0001, ioaddr+LANCE_DATA);
804
805 netif_start_queue (dev);
806
807 i = 0;
808 while (i++ < 100)
809 if (inw(ioaddr+LANCE_DATA) & 0x0100)
810 break;
811 /*
812 * We used to clear the InitDone bit, 0x0100, here but Mark Stockton
813 * reports that doing so triggers a bug in the '974.
814 */
815 outw(0x0042, ioaddr+LANCE_DATA);
816
817 if (lance_debug > 2)
818 printk("%s: LANCE open after %d ticks, init block %#x csr0 %4.4x.\n",
819 dev->name, i, (u32) isa_virt_to_bus(&lp->init_block), inw(ioaddr+LANCE_DATA));
820
821 return 0; /* Always succeed */
822}
823
824/* The LANCE has been halted for one reason or another (busmaster memory
825 arbitration error, Tx FIFO underflow, driver stopped it to reconfigure,
826 etc.). Modern LANCE variants always reload their ring-buffer
827 configuration when restarted, so we must reinitialize our ring
828 context before restarting. As part of this reinitialization,
829 find all packets still on the Tx ring and pretend that they had been
830 sent (in effect, drop the packets on the floor) - the higher-level
831 protocols will time out and retransmit. It'd be better to shuffle
832 these skbs to a temp list and then actually re-Tx them after
833 restarting the chip, but I'm too lazy to do so right now. dplatt@3do.com
834*/
835
836static void
837lance_purge_ring(struct net_device *dev)
838{
839 struct lance_private *lp = dev->ml_priv;
840 int i;
841
842 /* Free all the skbuffs in the Rx and Tx queues. */
843 for (i = 0; i < RX_RING_SIZE; i++) {
844 struct sk_buff *skb = lp->rx_skbuff[i];
845 lp->rx_skbuff[i] = NULL;
846 lp->rx_ring[i].base = 0; /* Not owned by LANCE chip. */
847 if (skb)
848 dev_kfree_skb_any(skb);
849 }
850 for (i = 0; i < TX_RING_SIZE; i++) {
851 if (lp->tx_skbuff[i]) {
852 dev_kfree_skb_any(lp->tx_skbuff[i]);
853 lp->tx_skbuff[i] = NULL;
854 }
855 }
856}
857
858
859/* Initialize the LANCE Rx and Tx rings. */
860static void
861lance_init_ring(struct net_device *dev, gfp_t gfp)
862{
863 struct lance_private *lp = dev->ml_priv;
864 int i;
865
866 lp->cur_rx = lp->cur_tx = 0;
867 lp->dirty_rx = lp->dirty_tx = 0;
868
869 for (i = 0; i < RX_RING_SIZE; i++) {
870 struct sk_buff *skb;
871 void *rx_buff;
872
873 skb = alloc_skb(PKT_BUF_SZ, GFP_DMA | gfp);
874 lp->rx_skbuff[i] = skb;
875 if (skb)
876 rx_buff = skb->data;
877 else
878 rx_buff = kmalloc(PKT_BUF_SZ, GFP_DMA | gfp);
879 if (rx_buff == NULL)
880 lp->rx_ring[i].base = 0;
881 else
882 lp->rx_ring[i].base = (u32)isa_virt_to_bus(rx_buff) | 0x80000000;
883 lp->rx_ring[i].buf_length = -PKT_BUF_SZ;
884 }
885 /* The Tx buffer address is filled in as needed, but we do need to clear
886 the upper ownership bit. */
887 for (i = 0; i < TX_RING_SIZE; i++) {
888 lp->tx_skbuff[i] = NULL;
889 lp->tx_ring[i].base = 0;
890 }
891
892 lp->init_block.mode = 0x0000;
893 for (i = 0; i < 6; i++)
894 lp->init_block.phys_addr[i] = dev->dev_addr[i];
895 lp->init_block.filter[0] = 0x00000000;
896 lp->init_block.filter[1] = 0x00000000;
897 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS;
898 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS;
899}
900
901static void
902lance_restart(struct net_device *dev, unsigned int csr0_bits, int must_reinit)
903{
904 struct lance_private *lp = dev->ml_priv;
905
906 if (must_reinit ||
907 (chip_table[lp->chip_version].flags & LANCE_MUST_REINIT_RING)) {
908 lance_purge_ring(dev);
909 lance_init_ring(dev, GFP_ATOMIC);
910 }
911 outw(0x0000, dev->base_addr + LANCE_ADDR);
912 outw(csr0_bits, dev->base_addr + LANCE_DATA);
913}
914
915
916static void lance_tx_timeout (struct net_device *dev, unsigned int txqueue)
917{
918 struct lance_private *lp = (struct lance_private *) dev->ml_priv;
919 int ioaddr = dev->base_addr;
920
921 outw (0, ioaddr + LANCE_ADDR);
922 printk ("%s: transmit timed out, status %4.4x, resetting.\n",
923 dev->name, inw (ioaddr + LANCE_DATA));
924 outw (0x0004, ioaddr + LANCE_DATA);
925 dev->stats.tx_errors++;
926#ifndef final_version
927 if (lance_debug > 3) {
928 int i;
929 printk (" Ring data dump: dirty_tx %d cur_tx %d%s cur_rx %d.",
930 lp->dirty_tx, lp->cur_tx, netif_queue_stopped(dev) ? " (full)" : "",
931 lp->cur_rx);
932 for (i = 0; i < RX_RING_SIZE; i++)
933 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ",
934 lp->rx_ring[i].base, -lp->rx_ring[i].buf_length,
935 lp->rx_ring[i].msg_length);
936 for (i = 0; i < TX_RING_SIZE; i++)
937 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ",
938 lp->tx_ring[i].base, -lp->tx_ring[i].length,
939 lp->tx_ring[i].misc);
940 printk ("\n");
941 }
942#endif
943 lance_restart (dev, 0x0043, 1);
944
945 netif_trans_update(dev); /* prevent tx timeout */
946 netif_wake_queue (dev);
947}
948
949
950static netdev_tx_t lance_start_xmit(struct sk_buff *skb,
951 struct net_device *dev)
952{
953 struct lance_private *lp = dev->ml_priv;
954 int ioaddr = dev->base_addr;
955 int entry;
956 unsigned long flags;
957
958 spin_lock_irqsave(&lp->devlock, flags);
959
960 if (lance_debug > 3) {
961 outw(0x0000, ioaddr+LANCE_ADDR);
962 printk("%s: lance_start_xmit() called, csr0 %4.4x.\n", dev->name,
963 inw(ioaddr+LANCE_DATA));
964 outw(0x0000, ioaddr+LANCE_DATA);
965 }
966
967 /* Fill in a Tx ring entry */
968
969 /* Mask to ring buffer boundary. */
970 entry = lp->cur_tx & TX_RING_MOD_MASK;
971
972 /* Caution: the write order is important here, set the base address
973 with the "ownership" bits last. */
974
975 /* The old LANCE chips doesn't automatically pad buffers to min. size. */
976 if (chip_table[lp->chip_version].flags & LANCE_MUST_PAD) {
977 if (skb->len < ETH_ZLEN) {
978 if (skb_padto(skb, ETH_ZLEN))
979 goto out;
980 lp->tx_ring[entry].length = -ETH_ZLEN;
981 }
982 else
983 lp->tx_ring[entry].length = -skb->len;
984 } else
985 lp->tx_ring[entry].length = -skb->len;
986
987 lp->tx_ring[entry].misc = 0x0000;
988
989 dev->stats.tx_bytes += skb->len;
990
991 /* If any part of this buffer is >16M we must copy it to a low-memory
992 buffer. */
993 if ((u32)isa_virt_to_bus(skb->data) + skb->len > 0x01000000) {
994 if (lance_debug > 5)
995 printk("%s: bouncing a high-memory packet (%#x).\n",
996 dev->name, (u32)isa_virt_to_bus(skb->data));
997 skb_copy_from_linear_data(skb, &lp->tx_bounce_buffs[entry], skb->len);
998 lp->tx_ring[entry].base =
999 ((u32)isa_virt_to_bus((lp->tx_bounce_buffs + entry)) & 0xffffff) | 0x83000000;
1000 dev_kfree_skb(skb);
1001 } else {
1002 lp->tx_skbuff[entry] = skb;
1003 lp->tx_ring[entry].base = ((u32)isa_virt_to_bus(skb->data) & 0xffffff) | 0x83000000;
1004 }
1005 lp->cur_tx++;
1006
1007 /* Trigger an immediate send poll. */
1008 outw(0x0000, ioaddr+LANCE_ADDR);
1009 outw(0x0048, ioaddr+LANCE_DATA);
1010
1011 if ((lp->cur_tx - lp->dirty_tx) >= TX_RING_SIZE)
1012 netif_stop_queue(dev);
1013
1014out:
1015 spin_unlock_irqrestore(&lp->devlock, flags);
1016 return NETDEV_TX_OK;
1017}
1018
1019/* The LANCE interrupt handler. */
1020static irqreturn_t lance_interrupt(int irq, void *dev_id)
1021{
1022 struct net_device *dev = dev_id;
1023 struct lance_private *lp;
1024 int csr0, ioaddr, boguscnt=10;
1025 int must_restart;
1026
1027 ioaddr = dev->base_addr;
1028 lp = dev->ml_priv;
1029
1030 spin_lock (&lp->devlock);
1031
1032 outw(0x00, dev->base_addr + LANCE_ADDR);
1033 while ((csr0 = inw(dev->base_addr + LANCE_DATA)) & 0x8600 &&
1034 --boguscnt >= 0) {
1035 /* Acknowledge all of the current interrupt sources ASAP. */
1036 outw(csr0 & ~0x004f, dev->base_addr + LANCE_DATA);
1037
1038 must_restart = 0;
1039
1040 if (lance_debug > 5)
1041 printk("%s: interrupt csr0=%#2.2x new csr=%#2.2x.\n",
1042 dev->name, csr0, inw(dev->base_addr + LANCE_DATA));
1043
1044 if (csr0 & 0x0400) /* Rx interrupt */
1045 lance_rx(dev);
1046
1047 if (csr0 & 0x0200) { /* Tx-done interrupt */
1048 int dirty_tx = lp->dirty_tx;
1049
1050 while (dirty_tx < lp->cur_tx) {
1051 int entry = dirty_tx & TX_RING_MOD_MASK;
1052 int status = lp->tx_ring[entry].base;
1053
1054 if (status < 0)
1055 break; /* It still hasn't been Txed */
1056
1057 lp->tx_ring[entry].base = 0;
1058
1059 if (status & 0x40000000) {
1060 /* There was an major error, log it. */
1061 int err_status = lp->tx_ring[entry].misc;
1062 dev->stats.tx_errors++;
1063 if (err_status & 0x0400)
1064 dev->stats.tx_aborted_errors++;
1065 if (err_status & 0x0800)
1066 dev->stats.tx_carrier_errors++;
1067 if (err_status & 0x1000)
1068 dev->stats.tx_window_errors++;
1069 if (err_status & 0x4000) {
1070 /* Ackk! On FIFO errors the Tx unit is turned off! */
1071 dev->stats.tx_fifo_errors++;
1072 /* Remove this verbosity later! */
1073 printk("%s: Tx FIFO error! Status %4.4x.\n",
1074 dev->name, csr0);
1075 /* Restart the chip. */
1076 must_restart = 1;
1077 }
1078 } else {
1079 if (status & 0x18000000)
1080 dev->stats.collisions++;
1081 dev->stats.tx_packets++;
1082 }
1083
1084 /* We must free the original skb if it's not a data-only copy
1085 in the bounce buffer. */
1086 if (lp->tx_skbuff[entry]) {
1087 dev_consume_skb_irq(lp->tx_skbuff[entry]);
1088 lp->tx_skbuff[entry] = NULL;
1089 }
1090 dirty_tx++;
1091 }
1092
1093#ifndef final_version
1094 if (lp->cur_tx - dirty_tx >= TX_RING_SIZE) {
1095 printk("out-of-sync dirty pointer, %d vs. %d, full=%s.\n",
1096 dirty_tx, lp->cur_tx,
1097 netif_queue_stopped(dev) ? "yes" : "no");
1098 dirty_tx += TX_RING_SIZE;
1099 }
1100#endif
1101
1102 /* if the ring is no longer full, accept more packets */
1103 if (netif_queue_stopped(dev) &&
1104 dirty_tx > lp->cur_tx - TX_RING_SIZE + 2)
1105 netif_wake_queue (dev);
1106
1107 lp->dirty_tx = dirty_tx;
1108 }
1109
1110 /* Log misc errors. */
1111 if (csr0 & 0x4000)
1112 dev->stats.tx_errors++; /* Tx babble. */
1113 if (csr0 & 0x1000)
1114 dev->stats.rx_errors++; /* Missed a Rx frame. */
1115 if (csr0 & 0x0800) {
1116 printk("%s: Bus master arbitration failure, status %4.4x.\n",
1117 dev->name, csr0);
1118 /* Restart the chip. */
1119 must_restart = 1;
1120 }
1121
1122 if (must_restart) {
1123 /* stop the chip to clear the error condition, then restart */
1124 outw(0x0000, dev->base_addr + LANCE_ADDR);
1125 outw(0x0004, dev->base_addr + LANCE_DATA);
1126 lance_restart(dev, 0x0002, 0);
1127 }
1128 }
1129
1130 /* Clear any other interrupt, and set interrupt enable. */
1131 outw(0x0000, dev->base_addr + LANCE_ADDR);
1132 outw(0x7940, dev->base_addr + LANCE_DATA);
1133
1134 if (lance_debug > 4)
1135 printk("%s: exiting interrupt, csr%d=%#4.4x.\n",
1136 dev->name, inw(ioaddr + LANCE_ADDR),
1137 inw(dev->base_addr + LANCE_DATA));
1138
1139 spin_unlock (&lp->devlock);
1140 return IRQ_HANDLED;
1141}
1142
1143static int
1144lance_rx(struct net_device *dev)
1145{
1146 struct lance_private *lp = dev->ml_priv;
1147 int entry = lp->cur_rx & RX_RING_MOD_MASK;
1148 int i;
1149
1150 /* If we own the next entry, it's a new packet. Send it up. */
1151 while (lp->rx_ring[entry].base >= 0) {
1152 int status = lp->rx_ring[entry].base >> 24;
1153
1154 if (status != 0x03) { /* There was an error. */
1155 /* There is a tricky error noted by John Murphy,
1156 <murf@perftech.com> to Russ Nelson: Even with full-sized
1157 buffers it's possible for a jabber packet to use two
1158 buffers, with only the last correctly noting the error. */
1159 if (status & 0x01) /* Only count a general error at the */
1160 dev->stats.rx_errors++; /* end of a packet.*/
1161 if (status & 0x20)
1162 dev->stats.rx_frame_errors++;
1163 if (status & 0x10)
1164 dev->stats.rx_over_errors++;
1165 if (status & 0x08)
1166 dev->stats.rx_crc_errors++;
1167 if (status & 0x04)
1168 dev->stats.rx_fifo_errors++;
1169 lp->rx_ring[entry].base &= 0x03ffffff;
1170 }
1171 else
1172 {
1173 /* Malloc up new buffer, compatible with net3. */
1174 short pkt_len = (lp->rx_ring[entry].msg_length & 0xfff)-4;
1175 struct sk_buff *skb;
1176
1177 if(pkt_len<60)
1178 {
1179 printk("%s: Runt packet!\n",dev->name);
1180 dev->stats.rx_errors++;
1181 }
1182 else
1183 {
1184 skb = dev_alloc_skb(pkt_len+2);
1185 if (skb == NULL)
1186 {
1187 printk("%s: Memory squeeze, deferring packet.\n", dev->name);
1188 for (i=0; i < RX_RING_SIZE; i++)
1189 if (lp->rx_ring[(entry+i) & RX_RING_MOD_MASK].base < 0)
1190 break;
1191
1192 if (i > RX_RING_SIZE -2)
1193 {
1194 dev->stats.rx_dropped++;
1195 lp->rx_ring[entry].base |= 0x80000000;
1196 lp->cur_rx++;
1197 }
1198 break;
1199 }
1200 skb_reserve(skb,2); /* 16 byte align */
1201 skb_put(skb,pkt_len); /* Make room */
1202 skb_copy_to_linear_data(skb,
1203 (unsigned char *)isa_bus_to_virt((lp->rx_ring[entry].base & 0x00ffffff)),
1204 pkt_len);
1205 skb->protocol=eth_type_trans(skb,dev);
1206 netif_rx(skb);
1207 dev->stats.rx_packets++;
1208 dev->stats.rx_bytes += pkt_len;
1209 }
1210 }
1211 /* The docs say that the buffer length isn't touched, but Andrew Boyd
1212 of QNX reports that some revs of the 79C965 clear it. */
1213 lp->rx_ring[entry].buf_length = -PKT_BUF_SZ;
1214 lp->rx_ring[entry].base |= 0x80000000;
1215 entry = (++lp->cur_rx) & RX_RING_MOD_MASK;
1216 }
1217
1218 /* We should check that at least two ring entries are free. If not,
1219 we should free one and mark stats->rx_dropped++. */
1220
1221 return 0;
1222}
1223
1224static int
1225lance_close(struct net_device *dev)
1226{
1227 int ioaddr = dev->base_addr;
1228 struct lance_private *lp = dev->ml_priv;
1229
1230 netif_stop_queue (dev);
1231
1232 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) {
1233 outw(112, ioaddr+LANCE_ADDR);
1234 dev->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA);
1235 }
1236 outw(0, ioaddr+LANCE_ADDR);
1237
1238 if (lance_debug > 1)
1239 printk("%s: Shutting down ethercard, status was %2.2x.\n",
1240 dev->name, inw(ioaddr+LANCE_DATA));
1241
1242 /* We stop the LANCE here -- it occasionally polls
1243 memory if we don't. */
1244 outw(0x0004, ioaddr+LANCE_DATA);
1245
1246 if (dev->dma != 4)
1247 {
1248 unsigned long flags=claim_dma_lock();
1249 disable_dma(dev->dma);
1250 release_dma_lock(flags);
1251 }
1252 free_irq(dev->irq, dev);
1253
1254 lance_purge_ring(dev);
1255
1256 return 0;
1257}
1258
1259static struct net_device_stats *lance_get_stats(struct net_device *dev)
1260{
1261 struct lance_private *lp = dev->ml_priv;
1262
1263 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) {
1264 short ioaddr = dev->base_addr;
1265 short saved_addr;
1266 unsigned long flags;
1267
1268 spin_lock_irqsave(&lp->devlock, flags);
1269 saved_addr = inw(ioaddr+LANCE_ADDR);
1270 outw(112, ioaddr+LANCE_ADDR);
1271 dev->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA);
1272 outw(saved_addr, ioaddr+LANCE_ADDR);
1273 spin_unlock_irqrestore(&lp->devlock, flags);
1274 }
1275
1276 return &dev->stats;
1277}
1278
1279/* Set or clear the multicast filter for this adaptor.
1280 */
1281
1282static void set_multicast_list(struct net_device *dev)
1283{
1284 short ioaddr = dev->base_addr;
1285
1286 outw(0, ioaddr+LANCE_ADDR);
1287 outw(0x0004, ioaddr+LANCE_DATA); /* Temporarily stop the lance. */
1288
1289 if (dev->flags&IFF_PROMISC) {
1290 outw(15, ioaddr+LANCE_ADDR);
1291 outw(0x8000, ioaddr+LANCE_DATA); /* Set promiscuous mode */
1292 } else {
1293 short multicast_table[4];
1294 int i;
1295 int num_addrs=netdev_mc_count(dev);
1296 if(dev->flags&IFF_ALLMULTI)
1297 num_addrs=1;
1298 /* FIXIT: We don't use the multicast table, but rely on upper-layer filtering. */
1299 memset(multicast_table, (num_addrs == 0) ? 0 : -1, sizeof(multicast_table));
1300 for (i = 0; i < 4; i++) {
1301 outw(8 + i, ioaddr+LANCE_ADDR);
1302 outw(multicast_table[i], ioaddr+LANCE_DATA);
1303 }
1304 outw(15, ioaddr+LANCE_ADDR);
1305 outw(0x0000, ioaddr+LANCE_DATA); /* Unset promiscuous mode */
1306 }
1307
1308 lance_restart(dev, 0x0142, 0); /* Resume normal operation */
1309
1310}
1311