Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright(c) 2020 Cornelis Networks, Inc.
   4 * Copyright(c) 2015-2020 Intel Corporation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/poll.h>
   8#include <linux/cdev.h>
   9#include <linux/vmalloc.h>
  10#include <linux/io.h>
  11#include <linux/sched/mm.h>
  12#include <linux/bitmap.h>
  13
  14#include <rdma/ib.h>
  15
  16#include "hfi.h"
  17#include "pio.h"
  18#include "device.h"
  19#include "common.h"
  20#include "trace.h"
  21#include "mmu_rb.h"
  22#include "user_sdma.h"
  23#include "user_exp_rcv.h"
  24#include "aspm.h"
  25
  26#undef pr_fmt
  27#define pr_fmt(fmt) DRIVER_NAME ": " fmt
  28
  29#define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
  30
  31/*
  32 * File operation functions
  33 */
  34static int hfi1_file_open(struct inode *inode, struct file *fp);
  35static int hfi1_file_close(struct inode *inode, struct file *fp);
  36static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
  37static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
  38static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
  39
  40static u64 kvirt_to_phys(void *addr);
  41static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
  42static void init_subctxts(struct hfi1_ctxtdata *uctxt,
  43			  const struct hfi1_user_info *uinfo);
  44static int init_user_ctxt(struct hfi1_filedata *fd,
  45			  struct hfi1_ctxtdata *uctxt);
  46static void user_init(struct hfi1_ctxtdata *uctxt);
  47static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
  48static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
  49static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
  50			      u32 len);
  51static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
  52			      u32 len);
  53static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
  54				u32 len);
  55static int setup_base_ctxt(struct hfi1_filedata *fd,
  56			   struct hfi1_ctxtdata *uctxt);
  57static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
  58
  59static int find_sub_ctxt(struct hfi1_filedata *fd,
  60			 const struct hfi1_user_info *uinfo);
  61static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
  62			 struct hfi1_user_info *uinfo,
  63			 struct hfi1_ctxtdata **cd);
  64static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
  65static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
  66static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
  67static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
  68			  unsigned long arg);
  69static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
  70static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
  71static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
  72		       unsigned long arg);
  73static vm_fault_t vma_fault(struct vm_fault *vmf);
  74static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
  75			    unsigned long arg);
  76
  77static const struct file_operations hfi1_file_ops = {
  78	.owner = THIS_MODULE,
  79	.write_iter = hfi1_write_iter,
  80	.open = hfi1_file_open,
  81	.release = hfi1_file_close,
  82	.unlocked_ioctl = hfi1_file_ioctl,
  83	.poll = hfi1_poll,
  84	.mmap = hfi1_file_mmap,
  85	.llseek = noop_llseek,
  86};
  87
  88static const struct vm_operations_struct vm_ops = {
  89	.fault = vma_fault,
  90};
  91
  92/*
  93 * Types of memories mapped into user processes' space
  94 */
  95enum mmap_types {
  96	PIO_BUFS = 1,
  97	PIO_BUFS_SOP,
  98	PIO_CRED,
  99	RCV_HDRQ,
 100	RCV_EGRBUF,
 101	UREGS,
 102	EVENTS,
 103	STATUS,
 104	RTAIL,
 105	SUBCTXT_UREGS,
 106	SUBCTXT_RCV_HDRQ,
 107	SUBCTXT_EGRBUF,
 108	SDMA_COMP
 109};
 110
 111/*
 112 * Masks and offsets defining the mmap tokens
 113 */
 114#define HFI1_MMAP_OFFSET_MASK   0xfffULL
 115#define HFI1_MMAP_OFFSET_SHIFT  0
 116#define HFI1_MMAP_SUBCTXT_MASK  0xfULL
 117#define HFI1_MMAP_SUBCTXT_SHIFT 12
 118#define HFI1_MMAP_CTXT_MASK     0xffULL
 119#define HFI1_MMAP_CTXT_SHIFT    16
 120#define HFI1_MMAP_TYPE_MASK     0xfULL
 121#define HFI1_MMAP_TYPE_SHIFT    24
 122#define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
 123#define HFI1_MMAP_MAGIC_SHIFT   32
 124
 125#define HFI1_MMAP_MAGIC         0xdabbad00
 126
 127#define HFI1_MMAP_TOKEN_SET(field, val)	\
 128	(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
 129#define HFI1_MMAP_TOKEN_GET(field, token) \
 130	(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
 131#define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
 132	(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
 133	HFI1_MMAP_TOKEN_SET(TYPE, type) | \
 134	HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
 135	HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
 136	HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
 137
 138#define dbg(fmt, ...)				\
 139	pr_info(fmt, ##__VA_ARGS__)
 140
 141static inline int is_valid_mmap(u64 token)
 142{
 143	return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
 144}
 145
 146static int hfi1_file_open(struct inode *inode, struct file *fp)
 147{
 148	struct hfi1_filedata *fd;
 149	struct hfi1_devdata *dd = container_of(inode->i_cdev,
 150					       struct hfi1_devdata,
 151					       user_cdev);
 152
 153	if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
 154		return -EINVAL;
 155
 156	if (!refcount_inc_not_zero(&dd->user_refcount))
 157		return -ENXIO;
 158
 159	/* The real work is performed later in assign_ctxt() */
 160
 161	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
 162
 163	if (!fd || init_srcu_struct(&fd->pq_srcu))
 164		goto nomem;
 165	spin_lock_init(&fd->pq_rcu_lock);
 166	spin_lock_init(&fd->tid_lock);
 167	spin_lock_init(&fd->invalid_lock);
 168	fd->rec_cpu_num = -1; /* no cpu affinity by default */
 
 
 169	fd->dd = dd;
 170	fp->private_data = fd;
 171	return 0;
 172nomem:
 173	kfree(fd);
 174	fp->private_data = NULL;
 175	if (refcount_dec_and_test(&dd->user_refcount))
 176		complete(&dd->user_comp);
 177	return -ENOMEM;
 178}
 179
 180static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
 181			    unsigned long arg)
 182{
 183	struct hfi1_filedata *fd = fp->private_data;
 184	struct hfi1_ctxtdata *uctxt = fd->uctxt;
 185	int ret = 0;
 186	int uval = 0;
 187
 188	hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
 189	if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
 190	    cmd != HFI1_IOCTL_GET_VERS &&
 191	    !uctxt)
 192		return -EINVAL;
 193
 194	switch (cmd) {
 195	case HFI1_IOCTL_ASSIGN_CTXT:
 196		ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
 197		break;
 198
 199	case HFI1_IOCTL_CTXT_INFO:
 200		ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
 201		break;
 202
 203	case HFI1_IOCTL_USER_INFO:
 204		ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
 205		break;
 206
 207	case HFI1_IOCTL_CREDIT_UPD:
 208		if (uctxt)
 209			sc_return_credits(uctxt->sc);
 210		break;
 211
 212	case HFI1_IOCTL_TID_UPDATE:
 213		ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
 214		break;
 215
 216	case HFI1_IOCTL_TID_FREE:
 217		ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
 218		break;
 219
 220	case HFI1_IOCTL_TID_INVAL_READ:
 221		ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
 222		break;
 223
 224	case HFI1_IOCTL_RECV_CTRL:
 225		ret = manage_rcvq(uctxt, fd->subctxt, arg);
 226		break;
 227
 228	case HFI1_IOCTL_POLL_TYPE:
 229		if (get_user(uval, (int __user *)arg))
 230			return -EFAULT;
 231		uctxt->poll_type = (typeof(uctxt->poll_type))uval;
 232		break;
 233
 234	case HFI1_IOCTL_ACK_EVENT:
 235		ret = user_event_ack(uctxt, fd->subctxt, arg);
 236		break;
 237
 238	case HFI1_IOCTL_SET_PKEY:
 239		ret = set_ctxt_pkey(uctxt, arg);
 240		break;
 241
 242	case HFI1_IOCTL_CTXT_RESET:
 243		ret = ctxt_reset(uctxt);
 244		break;
 245
 246	case HFI1_IOCTL_GET_VERS:
 247		uval = HFI1_USER_SWVERSION;
 248		if (put_user(uval, (int __user *)arg))
 249			return -EFAULT;
 250		break;
 251
 252	default:
 253		return -EINVAL;
 254	}
 255
 256	return ret;
 257}
 258
 259static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
 260{
 261	struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
 262	struct hfi1_user_sdma_pkt_q *pq;
 263	struct hfi1_user_sdma_comp_q *cq = fd->cq;
 264	int done = 0, reqs = 0;
 265	unsigned long dim = from->nr_segs;
 266	int idx;
 267
 268	if (!HFI1_CAP_IS_KSET(SDMA))
 269		return -EINVAL;
 270	if (!user_backed_iter(from))
 271		return -EINVAL;
 272	idx = srcu_read_lock(&fd->pq_srcu);
 273	pq = srcu_dereference(fd->pq, &fd->pq_srcu);
 274	if (!cq || !pq) {
 275		srcu_read_unlock(&fd->pq_srcu, idx);
 276		return -EIO;
 277	}
 278
 
 
 
 
 
 279	trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
 280
 281	if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
 282		srcu_read_unlock(&fd->pq_srcu, idx);
 283		return -ENOSPC;
 284	}
 285
 286	while (dim) {
 287		const struct iovec *iov = iter_iov(from);
 288		int ret;
 289		unsigned long count = 0;
 290
 291		ret = hfi1_user_sdma_process_request(
 292			fd, (struct iovec *)(iov + done),
 293			dim, &count);
 294		if (ret) {
 295			reqs = ret;
 296			break;
 297		}
 298		dim -= count;
 299		done += count;
 300		reqs++;
 301	}
 302
 303	srcu_read_unlock(&fd->pq_srcu, idx);
 304	return reqs;
 305}
 306
 307static inline void mmap_cdbg(u16 ctxt, u8 subctxt, u8 type, u8 mapio, u8 vmf,
 308			     u64 memaddr, void *memvirt, dma_addr_t memdma,
 309			     ssize_t memlen, struct vm_area_struct *vma)
 310{
 311	hfi1_cdbg(PROC,
 312		  "%u:%u type:%u io/vf/dma:%d/%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx",
 313		  ctxt, subctxt, type, mapio, vmf, !!memdma,
 314		  memaddr ?: (u64)memvirt, memlen,
 315		  vma->vm_end - vma->vm_start, vma->vm_flags);
 316}
 317
 318static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
 319{
 320	struct hfi1_filedata *fd = fp->private_data;
 321	struct hfi1_ctxtdata *uctxt = fd->uctxt;
 322	struct hfi1_devdata *dd;
 323	unsigned long flags;
 324	u64 token = vma->vm_pgoff << PAGE_SHIFT,
 325		memaddr = 0;
 326	void *memvirt = NULL;
 327	dma_addr_t memdma = 0;
 328	u8 subctxt, mapio = 0, vmf = 0, type;
 329	ssize_t memlen = 0;
 330	int ret = 0;
 331	u16 ctxt;
 332
 333	if (!is_valid_mmap(token) || !uctxt ||
 334	    !(vma->vm_flags & VM_SHARED)) {
 335		ret = -EINVAL;
 336		goto done;
 337	}
 338	dd = uctxt->dd;
 339	ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
 340	subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
 341	type = HFI1_MMAP_TOKEN_GET(TYPE, token);
 342	if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
 343		ret = -EINVAL;
 344		goto done;
 345	}
 346
 347	/*
 348	 * vm_pgoff is used as a buffer selector cookie.  Always mmap from
 349	 * the beginning.
 350	 */ 
 351	vma->vm_pgoff = 0;
 352	flags = vma->vm_flags;
 353
 354	switch (type) {
 355	case PIO_BUFS:
 356	case PIO_BUFS_SOP:
 357		memaddr = ((dd->physaddr + TXE_PIO_SEND) +
 358				/* chip pio base */
 359			   (uctxt->sc->hw_context * BIT(16))) +
 360				/* 64K PIO space / ctxt */
 361			(type == PIO_BUFS_SOP ?
 362				(TXE_PIO_SIZE / 2) : 0); /* sop? */
 363		/*
 364		 * Map only the amount allocated to the context, not the
 365		 * entire available context's PIO space.
 366		 */
 367		memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
 368		flags &= ~VM_MAYREAD;
 369		flags |= VM_DONTCOPY | VM_DONTEXPAND;
 370		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
 371		mapio = 1;
 372		break;
 373	case PIO_CRED: {
 374		u64 cr_page_offset;
 375		if (flags & VM_WRITE) {
 376			ret = -EPERM;
 377			goto done;
 378		}
 379		/*
 380		 * The credit return location for this context could be on the
 381		 * second or third page allocated for credit returns (if number
 382		 * of enabled contexts > 64 and 128 respectively).
 383		 */
 384		cr_page_offset = ((u64)uctxt->sc->hw_free -
 385			  	     (u64)dd->cr_base[uctxt->numa_id].va) &
 386				   PAGE_MASK;
 387		memvirt = dd->cr_base[uctxt->numa_id].va + cr_page_offset;
 388		memdma = dd->cr_base[uctxt->numa_id].dma + cr_page_offset;
 389		memlen = PAGE_SIZE;
 390		flags &= ~VM_MAYWRITE;
 391		flags |= VM_DONTCOPY | VM_DONTEXPAND;
 392		/*
 393		 * The driver has already allocated memory for credit
 394		 * returns and programmed it into the chip. Has that
 395		 * memory been flagged as non-cached?
 396		 */
 397		/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
 
 398		break;
 399	}
 400	case RCV_HDRQ:
 401		memlen = rcvhdrq_size(uctxt);
 402		memvirt = uctxt->rcvhdrq;
 403		memdma = uctxt->rcvhdrq_dma;
 404		break;
 405	case RCV_EGRBUF: {
 406		unsigned long vm_start_save;
 407		unsigned long vm_end_save;
 408		int i;
 409		/*
 410		 * The RcvEgr buffer need to be handled differently
 411		 * as multiple non-contiguous pages need to be mapped
 412		 * into the user process.
 413		 */
 414		memlen = uctxt->egrbufs.size;
 415		if ((vma->vm_end - vma->vm_start) != memlen) {
 416			dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
 417				   (vma->vm_end - vma->vm_start), memlen);
 418			ret = -EINVAL;
 419			goto done;
 420		}
 421		if (vma->vm_flags & VM_WRITE) {
 422			ret = -EPERM;
 423			goto done;
 424		}
 425		vm_flags_clear(vma, VM_MAYWRITE);
 426		/*
 427		 * Mmap multiple separate allocations into a single vma.  From
 428		 * here, dma_mmap_coherent() calls dma_direct_mmap(), which
 429		 * requires the mmap to exactly fill the vma starting at
 430		 * vma_start.  Adjust the vma start and end for each eager
 431		 * buffer segment mapped.  Restore the originals when done.
 432		 */
 433		vm_start_save = vma->vm_start;
 434		vm_end_save = vma->vm_end;
 435		vma->vm_end = vma->vm_start;
 436		for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
 437			memlen = uctxt->egrbufs.buffers[i].len;
 438			memvirt = uctxt->egrbufs.buffers[i].addr;
 439			memdma = uctxt->egrbufs.buffers[i].dma;
 440			vma->vm_end += memlen;
 441			mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr,
 442				  memvirt, memdma, memlen, vma);
 443			ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
 444						memvirt, memdma, memlen);
 445			if (ret < 0) {
 446				vma->vm_start = vm_start_save;
 447				vma->vm_end = vm_end_save;
 
 
 448				goto done;
 449			}
 450			vma->vm_start += memlen;
 451		}
 452		vma->vm_start = vm_start_save;
 453		vma->vm_end = vm_end_save;
 454		ret = 0;
 455		goto done;
 456	}
 457	case UREGS:
 458		/*
 459		 * Map only the page that contains this context's user
 460		 * registers.
 461		 */
 462		memaddr = (unsigned long)
 463			(dd->physaddr + RXE_PER_CONTEXT_USER)
 464			+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
 465		/*
 466		 * TidFlow table is on the same page as the rest of the
 467		 * user registers.
 468		 */
 469		memlen = PAGE_SIZE;
 470		flags |= VM_DONTCOPY | VM_DONTEXPAND;
 471		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 472		mapio = 1;
 473		break;
 474	case EVENTS:
 475		/*
 476		 * Use the page where this context's flags are. User level
 477		 * knows where it's own bitmap is within the page.
 478		 */
 479		memaddr = (unsigned long)
 480			(dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
 481		memlen = PAGE_SIZE;
 482		/*
 483		 * v3.7 removes VM_RESERVED but the effect is kept by
 484		 * using VM_IO.
 485		 */
 486		flags |= VM_IO | VM_DONTEXPAND;
 487		vmf = 1;
 488		break;
 489	case STATUS:
 490		if (flags & VM_WRITE) {
 491			ret = -EPERM;
 492			goto done;
 493		}
 494		memaddr = kvirt_to_phys((void *)dd->status);
 495		memlen = PAGE_SIZE;
 496		flags |= VM_IO | VM_DONTEXPAND;
 497		break;
 498	case RTAIL:
 499		if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
 500			/*
 501			 * If the memory allocation failed, the context alloc
 502			 * also would have failed, so we would never get here
 503			 */
 504			ret = -EINVAL;
 505			goto done;
 506		}
 507		if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
 508			ret = -EPERM;
 509			goto done;
 510		}
 511		memlen = PAGE_SIZE;
 512		memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
 513		memdma = uctxt->rcvhdrqtailaddr_dma;
 514		flags &= ~VM_MAYWRITE;
 515		break;
 516	case SUBCTXT_UREGS:
 517		memaddr = (u64)uctxt->subctxt_uregbase;
 518		memlen = PAGE_SIZE;
 519		flags |= VM_IO | VM_DONTEXPAND;
 520		vmf = 1;
 521		break;
 522	case SUBCTXT_RCV_HDRQ:
 523		memaddr = (u64)uctxt->subctxt_rcvhdr_base;
 524		memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
 525		flags |= VM_IO | VM_DONTEXPAND;
 526		vmf = 1;
 527		break;
 528	case SUBCTXT_EGRBUF:
 529		memaddr = (u64)uctxt->subctxt_rcvegrbuf;
 530		memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
 531		flags |= VM_IO | VM_DONTEXPAND;
 532		flags &= ~VM_MAYWRITE;
 533		vmf = 1;
 534		break;
 535	case SDMA_COMP: {
 536		struct hfi1_user_sdma_comp_q *cq = fd->cq;
 537
 538		if (!cq) {
 539			ret = -EFAULT;
 540			goto done;
 541		}
 542		memaddr = (u64)cq->comps;
 543		memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
 544		flags |= VM_IO | VM_DONTEXPAND;
 545		vmf = 1;
 546		break;
 547	}
 548	default:
 549		ret = -EINVAL;
 550		break;
 551	}
 552
 553	if ((vma->vm_end - vma->vm_start) != memlen) {
 554		hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
 555			  uctxt->ctxt, fd->subctxt,
 556			  (vma->vm_end - vma->vm_start), memlen);
 557		ret = -EINVAL;
 558		goto done;
 559	}
 560
 561	vm_flags_reset(vma, flags);
 562	mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr, memvirt, memdma, 
 563		  memlen, vma);
 
 
 564	if (vmf) {
 565		vma->vm_pgoff = PFN_DOWN(memaddr);
 566		vma->vm_ops = &vm_ops;
 567		ret = 0;
 568	} else if (memdma) {
 569		ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
 570					memvirt, memdma, memlen);
 571	} else if (mapio) {
 572		ret = io_remap_pfn_range(vma, vma->vm_start,
 573					 PFN_DOWN(memaddr),
 574					 memlen,
 575					 vma->vm_page_prot);
 576	} else if (memvirt) {
 577		ret = remap_pfn_range(vma, vma->vm_start,
 578				      PFN_DOWN(__pa(memvirt)),
 579				      memlen,
 580				      vma->vm_page_prot);
 581	} else {
 582		ret = remap_pfn_range(vma, vma->vm_start,
 583				      PFN_DOWN(memaddr),
 584				      memlen,
 585				      vma->vm_page_prot);
 586	}
 587done:
 588	return ret;
 589}
 590
 591/*
 592 * Local (non-chip) user memory is not mapped right away but as it is
 593 * accessed by the user-level code.
 594 */
 595static vm_fault_t vma_fault(struct vm_fault *vmf)
 596{
 597	struct page *page;
 598
 599	page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
 600	if (!page)
 601		return VM_FAULT_SIGBUS;
 602
 603	get_page(page);
 604	vmf->page = page;
 605
 606	return 0;
 607}
 608
 609static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
 610{
 611	struct hfi1_ctxtdata *uctxt;
 612	__poll_t pollflag;
 613
 614	uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
 615	if (!uctxt)
 616		pollflag = EPOLLERR;
 617	else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
 618		pollflag = poll_urgent(fp, pt);
 619	else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
 620		pollflag = poll_next(fp, pt);
 621	else /* invalid */
 622		pollflag = EPOLLERR;
 623
 624	return pollflag;
 625}
 626
 627static int hfi1_file_close(struct inode *inode, struct file *fp)
 628{
 629	struct hfi1_filedata *fdata = fp->private_data;
 630	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
 631	struct hfi1_devdata *dd = container_of(inode->i_cdev,
 632					       struct hfi1_devdata,
 633					       user_cdev);
 634	unsigned long flags, *ev;
 635
 636	fp->private_data = NULL;
 637
 638	if (!uctxt)
 639		goto done;
 640
 641	hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
 642
 643	flush_wc();
 644	/* drain user sdma queue */
 645	hfi1_user_sdma_free_queues(fdata, uctxt);
 646
 647	/* release the cpu */
 648	hfi1_put_proc_affinity(fdata->rec_cpu_num);
 649
 650	/* clean up rcv side */
 651	hfi1_user_exp_rcv_free(fdata);
 652
 653	/*
 654	 * fdata->uctxt is used in the above cleanup.  It is not ready to be
 655	 * removed until here.
 656	 */
 657	fdata->uctxt = NULL;
 658	hfi1_rcd_put(uctxt);
 659
 660	/*
 661	 * Clear any left over, unhandled events so the next process that
 662	 * gets this context doesn't get confused.
 663	 */
 664	ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
 665	*ev = 0;
 666
 667	spin_lock_irqsave(&dd->uctxt_lock, flags);
 668	__clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
 669	if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
 670		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 671		goto done;
 672	}
 673	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 674
 675	/*
 676	 * Disable receive context and interrupt available, reset all
 677	 * RcvCtxtCtrl bits to default values.
 678	 */
 679	hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
 680		     HFI1_RCVCTRL_TIDFLOW_DIS |
 681		     HFI1_RCVCTRL_INTRAVAIL_DIS |
 682		     HFI1_RCVCTRL_TAILUPD_DIS |
 683		     HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
 684		     HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
 685		     HFI1_RCVCTRL_NO_EGR_DROP_DIS |
 686		     HFI1_RCVCTRL_URGENT_DIS, uctxt);
 687	/* Clear the context's J_KEY */
 688	hfi1_clear_ctxt_jkey(dd, uctxt);
 689	/*
 690	 * If a send context is allocated, reset context integrity
 691	 * checks to default and disable the send context.
 692	 */
 693	if (uctxt->sc) {
 694		sc_disable(uctxt->sc);
 695		set_pio_integrity(uctxt->sc);
 696	}
 697
 698	hfi1_free_ctxt_rcv_groups(uctxt);
 699	hfi1_clear_ctxt_pkey(dd, uctxt);
 700
 701	uctxt->event_flags = 0;
 702
 703	deallocate_ctxt(uctxt);
 704done:
 
 705
 706	if (refcount_dec_and_test(&dd->user_refcount))
 707		complete(&dd->user_comp);
 708
 709	cleanup_srcu_struct(&fdata->pq_srcu);
 710	kfree(fdata);
 711	return 0;
 712}
 713
 714/*
 715 * Convert kernel *virtual* addresses to physical addresses.
 716 * This is used to vmalloc'ed addresses.
 717 */
 718static u64 kvirt_to_phys(void *addr)
 719{
 720	struct page *page;
 721	u64 paddr = 0;
 722
 723	page = vmalloc_to_page(addr);
 724	if (page)
 725		paddr = page_to_pfn(page) << PAGE_SHIFT;
 726
 727	return paddr;
 728}
 729
 730/**
 731 * complete_subctxt - complete sub-context info
 732 * @fd: valid filedata pointer
 733 *
 734 * Sub-context info can only be set up after the base context
 735 * has been completed.  This is indicated by the clearing of the
 736 * HFI1_CTXT_BASE_UINIT bit.
 737 *
 738 * Wait for the bit to be cleared, and then complete the subcontext
 739 * initialization.
 740 *
 741 */
 742static int complete_subctxt(struct hfi1_filedata *fd)
 743{
 744	int ret;
 745	unsigned long flags;
 746
 747	/*
 748	 * sub-context info can only be set up after the base context
 749	 * has been completed.
 750	 */
 751	ret = wait_event_interruptible(
 752		fd->uctxt->wait,
 753		!test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
 754
 755	if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
 756		ret = -ENOMEM;
 757
 758	/* Finish the sub-context init */
 759	if (!ret) {
 760		fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
 761		ret = init_user_ctxt(fd, fd->uctxt);
 762	}
 763
 764	if (ret) {
 765		spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
 766		__clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
 767		spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
 768		hfi1_rcd_put(fd->uctxt);
 769		fd->uctxt = NULL;
 770	}
 771
 772	return ret;
 773}
 774
 775static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
 776{
 777	int ret;
 778	unsigned int swmajor;
 779	struct hfi1_ctxtdata *uctxt = NULL;
 780	struct hfi1_user_info uinfo;
 781
 782	if (fd->uctxt)
 783		return -EINVAL;
 784
 785	if (sizeof(uinfo) != len)
 786		return -EINVAL;
 787
 788	if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
 789		return -EFAULT;
 790
 791	swmajor = uinfo.userversion >> 16;
 792	if (swmajor != HFI1_USER_SWMAJOR)
 793		return -ENODEV;
 794
 795	if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
 796		return -EINVAL;
 797
 798	/*
 799	 * Acquire the mutex to protect against multiple creations of what
 800	 * could be a shared base context.
 801	 */
 802	mutex_lock(&hfi1_mutex);
 803	/*
 804	 * Get a sub context if available  (fd->uctxt will be set).
 805	 * ret < 0 error, 0 no context, 1 sub-context found
 806	 */
 807	ret = find_sub_ctxt(fd, &uinfo);
 808
 809	/*
 810	 * Allocate a base context if context sharing is not required or a
 811	 * sub context wasn't found.
 812	 */
 813	if (!ret)
 814		ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
 815
 816	mutex_unlock(&hfi1_mutex);
 817
 818	/* Depending on the context type, finish the appropriate init */
 819	switch (ret) {
 820	case 0:
 821		ret = setup_base_ctxt(fd, uctxt);
 822		if (ret)
 823			deallocate_ctxt(uctxt);
 824		break;
 825	case 1:
 826		ret = complete_subctxt(fd);
 827		break;
 828	default:
 829		break;
 830	}
 831
 832	return ret;
 833}
 834
 835/**
 836 * match_ctxt - match context
 837 * @fd: valid filedata pointer
 838 * @uinfo: user info to compare base context with
 839 * @uctxt: context to compare uinfo to.
 840 *
 841 * Compare the given context with the given information to see if it
 842 * can be used for a sub context.
 843 */
 844static int match_ctxt(struct hfi1_filedata *fd,
 845		      const struct hfi1_user_info *uinfo,
 846		      struct hfi1_ctxtdata *uctxt)
 847{
 848	struct hfi1_devdata *dd = fd->dd;
 849	unsigned long flags;
 850	u16 subctxt;
 851
 852	/* Skip dynamically allocated kernel contexts */
 853	if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
 854		return 0;
 855
 856	/* Skip ctxt if it doesn't match the requested one */
 857	if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
 858	    uctxt->jkey != generate_jkey(current_uid()) ||
 859	    uctxt->subctxt_id != uinfo->subctxt_id ||
 860	    uctxt->subctxt_cnt != uinfo->subctxt_cnt)
 861		return 0;
 862
 863	/* Verify the sharing process matches the base */
 864	if (uctxt->userversion != uinfo->userversion)
 865		return -EINVAL;
 866
 867	/* Find an unused sub context */
 868	spin_lock_irqsave(&dd->uctxt_lock, flags);
 869	if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
 870		/* context is being closed, do not use */
 871		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 872		return 0;
 873	}
 874
 875	subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
 876				      HFI1_MAX_SHARED_CTXTS);
 877	if (subctxt >= uctxt->subctxt_cnt) {
 878		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 879		return -EBUSY;
 880	}
 881
 882	fd->subctxt = subctxt;
 883	__set_bit(fd->subctxt, uctxt->in_use_ctxts);
 884	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 885
 886	fd->uctxt = uctxt;
 887	hfi1_rcd_get(uctxt);
 888
 889	return 1;
 890}
 891
 892/**
 893 * find_sub_ctxt - fund sub-context
 894 * @fd: valid filedata pointer
 895 * @uinfo: matching info to use to find a possible context to share.
 896 *
 897 * The hfi1_mutex must be held when this function is called.  It is
 898 * necessary to ensure serialized creation of shared contexts.
 899 *
 900 * Return:
 901 *    0      No sub-context found
 902 *    1      Subcontext found and allocated
 903 *    errno  EINVAL (incorrect parameters)
 904 *           EBUSY (all sub contexts in use)
 905 */
 906static int find_sub_ctxt(struct hfi1_filedata *fd,
 907			 const struct hfi1_user_info *uinfo)
 908{
 909	struct hfi1_ctxtdata *uctxt;
 910	struct hfi1_devdata *dd = fd->dd;
 911	u16 i;
 912	int ret;
 913
 914	if (!uinfo->subctxt_cnt)
 915		return 0;
 916
 917	for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
 918		uctxt = hfi1_rcd_get_by_index(dd, i);
 919		if (uctxt) {
 920			ret = match_ctxt(fd, uinfo, uctxt);
 921			hfi1_rcd_put(uctxt);
 922			/* value of != 0 will return */
 923			if (ret)
 924				return ret;
 925		}
 926	}
 927
 928	return 0;
 929}
 930
 931static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
 932			 struct hfi1_user_info *uinfo,
 933			 struct hfi1_ctxtdata **rcd)
 934{
 935	struct hfi1_ctxtdata *uctxt;
 936	int ret, numa;
 937
 938	if (dd->flags & HFI1_FROZEN) {
 939		/*
 940		 * Pick an error that is unique from all other errors
 941		 * that are returned so the user process knows that
 942		 * it tried to allocate while the SPC was frozen.  It
 943		 * it should be able to retry with success in a short
 944		 * while.
 945		 */
 946		return -EIO;
 947	}
 948
 949	if (!dd->freectxts)
 950		return -EBUSY;
 951
 952	/*
 953	 * If we don't have a NUMA node requested, preference is towards
 954	 * device NUMA node.
 955	 */
 956	fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
 957	if (fd->rec_cpu_num != -1)
 958		numa = cpu_to_node(fd->rec_cpu_num);
 959	else
 960		numa = numa_node_id();
 961	ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
 962	if (ret < 0) {
 963		dd_dev_err(dd, "user ctxtdata allocation failed\n");
 964		return ret;
 965	}
 966	hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
 967		  uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
 968		  uctxt->numa_id);
 969
 970	/*
 971	 * Allocate and enable a PIO send context.
 972	 */
 973	uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
 974	if (!uctxt->sc) {
 975		ret = -ENOMEM;
 976		goto ctxdata_free;
 977	}
 978	hfi1_cdbg(PROC, "allocated send context %u(%u)", uctxt->sc->sw_index,
 979		  uctxt->sc->hw_context);
 980	ret = sc_enable(uctxt->sc);
 981	if (ret)
 982		goto ctxdata_free;
 983
 984	/*
 985	 * Setup sub context information if the user-level has requested
 986	 * sub contexts.
 987	 * This has to be done here so the rest of the sub-contexts find the
 988	 * proper base context.
 989	 * NOTE: _set_bit() can be used here because the context creation is
 990	 * protected by the mutex (rather than the spin_lock), and will be the
 991	 * very first instance of this context.
 992	 */
 993	__set_bit(0, uctxt->in_use_ctxts);
 994	if (uinfo->subctxt_cnt)
 995		init_subctxts(uctxt, uinfo);
 996	uctxt->userversion = uinfo->userversion;
 997	uctxt->flags = hfi1_cap_mask; /* save current flag state */
 998	init_waitqueue_head(&uctxt->wait);
 999	strscpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1000	memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1001	uctxt->jkey = generate_jkey(current_uid());
1002	hfi1_stats.sps_ctxts++;
1003	/*
1004	 * Disable ASPM when there are open user/PSM contexts to avoid
1005	 * issues with ASPM L1 exit latency
1006	 */
1007	if (dd->freectxts-- == dd->num_user_contexts)
1008		aspm_disable_all(dd);
1009
1010	*rcd = uctxt;
1011
1012	return 0;
1013
1014ctxdata_free:
1015	hfi1_free_ctxt(uctxt);
1016	return ret;
1017}
1018
1019static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1020{
1021	mutex_lock(&hfi1_mutex);
1022	hfi1_stats.sps_ctxts--;
1023	if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1024		aspm_enable_all(uctxt->dd);
1025	mutex_unlock(&hfi1_mutex);
1026
1027	hfi1_free_ctxt(uctxt);
1028}
1029
1030static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1031			  const struct hfi1_user_info *uinfo)
1032{
1033	uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1034	uctxt->subctxt_id = uinfo->subctxt_id;
1035	set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1036}
1037
1038static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1039{
1040	int ret = 0;
1041	u16 num_subctxts = uctxt->subctxt_cnt;
1042
1043	uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1044	if (!uctxt->subctxt_uregbase)
1045		return -ENOMEM;
1046
1047	/* We can take the size of the RcvHdr Queue from the master */
1048	uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1049						  num_subctxts);
1050	if (!uctxt->subctxt_rcvhdr_base) {
1051		ret = -ENOMEM;
1052		goto bail_ureg;
1053	}
1054
1055	uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1056						num_subctxts);
1057	if (!uctxt->subctxt_rcvegrbuf) {
1058		ret = -ENOMEM;
1059		goto bail_rhdr;
1060	}
1061
1062	return 0;
1063
1064bail_rhdr:
1065	vfree(uctxt->subctxt_rcvhdr_base);
1066	uctxt->subctxt_rcvhdr_base = NULL;
1067bail_ureg:
1068	vfree(uctxt->subctxt_uregbase);
1069	uctxt->subctxt_uregbase = NULL;
1070
1071	return ret;
1072}
1073
1074static void user_init(struct hfi1_ctxtdata *uctxt)
1075{
1076	unsigned int rcvctrl_ops = 0;
1077
1078	/* initialize poll variables... */
1079	uctxt->urgent = 0;
1080	uctxt->urgent_poll = 0;
1081
1082	/*
1083	 * Now enable the ctxt for receive.
1084	 * For chips that are set to DMA the tail register to memory
1085	 * when they change (and when the update bit transitions from
1086	 * 0 to 1.  So for those chips, we turn it off and then back on.
1087	 * This will (very briefly) affect any other open ctxts, but the
1088	 * duration is very short, and therefore isn't an issue.  We
1089	 * explicitly set the in-memory tail copy to 0 beforehand, so we
1090	 * don't have to wait to be sure the DMA update has happened
1091	 * (chip resets head/tail to 0 on transition to enable).
1092	 */
1093	if (hfi1_rcvhdrtail_kvaddr(uctxt))
1094		clear_rcvhdrtail(uctxt);
1095
1096	/* Setup J_KEY before enabling the context */
1097	hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1098
1099	rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1100	rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1101	if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1102		rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1103	/*
1104	 * Ignore the bit in the flags for now until proper
1105	 * support for multiple packet per rcv array entry is
1106	 * added.
1107	 */
1108	if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1109		rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1110	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1111		rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1112	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1113		rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1114	/*
1115	 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1116	 * We can't rely on the correct value to be set from prior
1117	 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1118	 * for both cases.
1119	 */
1120	if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1121		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1122	else
1123		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1124	hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1125}
1126
1127static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1128{
1129	struct hfi1_ctxt_info cinfo;
1130	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1131
1132	if (sizeof(cinfo) != len)
1133		return -EINVAL;
1134
1135	memset(&cinfo, 0, sizeof(cinfo));
1136	cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1137				HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1138			HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1139			HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1140	/* adjust flag if this fd is not able to cache */
1141	if (!fd->use_mn)
1142		cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1143
1144	cinfo.num_active = hfi1_count_active_units();
1145	cinfo.unit = uctxt->dd->unit;
1146	cinfo.ctxt = uctxt->ctxt;
1147	cinfo.subctxt = fd->subctxt;
1148	cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1149				uctxt->dd->rcv_entries.group_size) +
1150		uctxt->expected_count;
1151	cinfo.credits = uctxt->sc->credits;
1152	cinfo.numa_node = uctxt->numa_id;
1153	cinfo.rec_cpu = fd->rec_cpu_num;
1154	cinfo.send_ctxt = uctxt->sc->hw_context;
1155
1156	cinfo.egrtids = uctxt->egrbufs.alloced;
1157	cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1158	cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1159	cinfo.sdma_ring_size = fd->cq->nentries;
1160	cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1161
1162	trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1163	if (copy_to_user((void __user *)arg, &cinfo, len))
1164		return -EFAULT;
1165
1166	return 0;
1167}
1168
1169static int init_user_ctxt(struct hfi1_filedata *fd,
1170			  struct hfi1_ctxtdata *uctxt)
1171{
1172	int ret;
1173
1174	ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1175	if (ret)
1176		return ret;
1177
1178	ret = hfi1_user_exp_rcv_init(fd, uctxt);
1179	if (ret)
1180		hfi1_user_sdma_free_queues(fd, uctxt);
1181
1182	return ret;
1183}
1184
1185static int setup_base_ctxt(struct hfi1_filedata *fd,
1186			   struct hfi1_ctxtdata *uctxt)
1187{
1188	struct hfi1_devdata *dd = uctxt->dd;
1189	int ret = 0;
1190
1191	hfi1_init_ctxt(uctxt->sc);
1192
1193	/* Now allocate the RcvHdr queue and eager buffers. */
1194	ret = hfi1_create_rcvhdrq(dd, uctxt);
1195	if (ret)
1196		goto done;
1197
1198	ret = hfi1_setup_eagerbufs(uctxt);
1199	if (ret)
1200		goto done;
1201
1202	/* If sub-contexts are enabled, do the appropriate setup */
1203	if (uctxt->subctxt_cnt)
1204		ret = setup_subctxt(uctxt);
1205	if (ret)
1206		goto done;
1207
1208	ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1209	if (ret)
1210		goto done;
1211
1212	ret = init_user_ctxt(fd, uctxt);
1213	if (ret) {
1214		hfi1_free_ctxt_rcv_groups(uctxt);
1215		goto done;
1216	}
1217
1218	user_init(uctxt);
1219
1220	/* Now that the context is set up, the fd can get a reference. */
1221	fd->uctxt = uctxt;
1222	hfi1_rcd_get(uctxt);
1223
1224done:
1225	if (uctxt->subctxt_cnt) {
1226		/*
1227		 * On error, set the failed bit so sub-contexts will clean up
1228		 * correctly.
1229		 */
1230		if (ret)
1231			set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1232
1233		/*
1234		 * Base context is done (successfully or not), notify anybody
1235		 * using a sub-context that is waiting for this completion.
1236		 */
1237		clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1238		wake_up(&uctxt->wait);
1239	}
1240
1241	return ret;
1242}
1243
1244static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1245{
1246	struct hfi1_base_info binfo;
1247	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1248	struct hfi1_devdata *dd = uctxt->dd;
1249	unsigned offset;
1250
1251	trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1252
1253	if (sizeof(binfo) != len)
1254		return -EINVAL;
1255
1256	memset(&binfo, 0, sizeof(binfo));
1257	binfo.hw_version = dd->revision;
1258	binfo.sw_version = HFI1_USER_SWVERSION;
1259	binfo.bthqp = RVT_KDETH_QP_PREFIX;
1260	binfo.jkey = uctxt->jkey;
1261	/*
1262	 * If more than 64 contexts are enabled the allocated credit
1263	 * return will span two or three contiguous pages. Since we only
1264	 * map the page containing the context's credit return address,
1265	 * we need to calculate the offset in the proper page.
1266	 */
1267	offset = ((u64)uctxt->sc->hw_free -
1268		  (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1269	binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1270						fd->subctxt, offset);
1271	binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1272					    fd->subctxt,
1273					    uctxt->sc->base_addr);
1274	binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1275						uctxt->ctxt,
1276						fd->subctxt,
1277						uctxt->sc->base_addr);
1278	binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1279					       fd->subctxt,
1280					       uctxt->rcvhdrq);
1281	binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1282					       fd->subctxt,
1283					       uctxt->egrbufs.rcvtids[0].dma);
1284	binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1285						  fd->subctxt, 0);
1286	/*
1287	 * user regs are at
1288	 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1289	 */
1290	binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1291					     fd->subctxt, 0);
1292	offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1293				sizeof(*dd->events));
1294	binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1295					       fd->subctxt,
1296					       offset);
1297	binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1298					       fd->subctxt,
1299					       dd->status);
1300	if (HFI1_CAP_IS_USET(DMA_RTAIL))
1301		binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1302							fd->subctxt, 0);
1303	if (uctxt->subctxt_cnt) {
1304		binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1305							 uctxt->ctxt,
1306							 fd->subctxt, 0);
1307		binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1308							  uctxt->ctxt,
1309							  fd->subctxt, 0);
1310		binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1311							  uctxt->ctxt,
1312							  fd->subctxt, 0);
1313	}
1314
1315	if (copy_to_user((void __user *)arg, &binfo, len))
1316		return -EFAULT;
1317
1318	return 0;
1319}
1320
1321/**
1322 * user_exp_rcv_setup - Set up the given tid rcv list
1323 * @fd: file data of the current driver instance
1324 * @arg: ioctl argumnent for user space information
1325 * @len: length of data structure associated with ioctl command
1326 *
1327 * Wrapper to validate ioctl information before doing _rcv_setup.
1328 *
1329 */
1330static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1331			      u32 len)
1332{
1333	int ret;
1334	unsigned long addr;
1335	struct hfi1_tid_info tinfo;
1336
1337	if (sizeof(tinfo) != len)
1338		return -EINVAL;
1339
1340	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1341		return -EFAULT;
1342
1343	ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1344	if (!ret) {
1345		/*
1346		 * Copy the number of tidlist entries we used
1347		 * and the length of the buffer we registered.
1348		 */
1349		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1350		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1351				 sizeof(tinfo.tidcnt)))
1352			ret = -EFAULT;
1353
1354		addr = arg + offsetof(struct hfi1_tid_info, length);
1355		if (!ret && copy_to_user((void __user *)addr, &tinfo.length,
1356				 sizeof(tinfo.length)))
1357			ret = -EFAULT;
1358
1359		if (ret)
1360			hfi1_user_exp_rcv_invalid(fd, &tinfo);
1361	}
1362
1363	return ret;
1364}
1365
1366/**
1367 * user_exp_rcv_clear - Clear the given tid rcv list
1368 * @fd: file data of the current driver instance
1369 * @arg: ioctl argumnent for user space information
1370 * @len: length of data structure associated with ioctl command
1371 *
1372 * The hfi1_user_exp_rcv_clear() can be called from the error path.  Because
1373 * of this, we need to use this wrapper to copy the user space information
1374 * before doing the clear.
1375 */
1376static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1377			      u32 len)
1378{
1379	int ret;
1380	unsigned long addr;
1381	struct hfi1_tid_info tinfo;
1382
1383	if (sizeof(tinfo) != len)
1384		return -EINVAL;
1385
1386	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1387		return -EFAULT;
1388
1389	ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1390	if (!ret) {
1391		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1392		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1393				 sizeof(tinfo.tidcnt)))
1394			return -EFAULT;
1395	}
1396
1397	return ret;
1398}
1399
1400/**
1401 * user_exp_rcv_invalid - Invalidate the given tid rcv list
1402 * @fd: file data of the current driver instance
1403 * @arg: ioctl argumnent for user space information
1404 * @len: length of data structure associated with ioctl command
1405 *
1406 * Wrapper to validate ioctl information before doing _rcv_invalid.
1407 *
1408 */
1409static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1410				u32 len)
1411{
1412	int ret;
1413	unsigned long addr;
1414	struct hfi1_tid_info tinfo;
1415
1416	if (sizeof(tinfo) != len)
1417		return -EINVAL;
1418
1419	if (!fd->invalid_tids)
1420		return -EINVAL;
1421
1422	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1423		return -EFAULT;
1424
1425	ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1426	if (ret)
1427		return ret;
1428
1429	addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1430	if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1431			 sizeof(tinfo.tidcnt)))
1432		ret = -EFAULT;
1433
1434	return ret;
1435}
1436
1437static __poll_t poll_urgent(struct file *fp,
1438				struct poll_table_struct *pt)
1439{
1440	struct hfi1_filedata *fd = fp->private_data;
1441	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1442	struct hfi1_devdata *dd = uctxt->dd;
1443	__poll_t pollflag;
1444
1445	poll_wait(fp, &uctxt->wait, pt);
1446
1447	spin_lock_irq(&dd->uctxt_lock);
1448	if (uctxt->urgent != uctxt->urgent_poll) {
1449		pollflag = EPOLLIN | EPOLLRDNORM;
1450		uctxt->urgent_poll = uctxt->urgent;
1451	} else {
1452		pollflag = 0;
1453		set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1454	}
1455	spin_unlock_irq(&dd->uctxt_lock);
1456
1457	return pollflag;
1458}
1459
1460static __poll_t poll_next(struct file *fp,
1461			      struct poll_table_struct *pt)
1462{
1463	struct hfi1_filedata *fd = fp->private_data;
1464	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1465	struct hfi1_devdata *dd = uctxt->dd;
1466	__poll_t pollflag;
1467
1468	poll_wait(fp, &uctxt->wait, pt);
1469
1470	spin_lock_irq(&dd->uctxt_lock);
1471	if (hdrqempty(uctxt)) {
1472		set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1473		hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1474		pollflag = 0;
1475	} else {
1476		pollflag = EPOLLIN | EPOLLRDNORM;
1477	}
1478	spin_unlock_irq(&dd->uctxt_lock);
1479
1480	return pollflag;
1481}
1482
1483/*
1484 * Find all user contexts in use, and set the specified bit in their
1485 * event mask.
1486 * See also find_ctxt() for a similar use, that is specific to send buffers.
1487 */
1488int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1489{
1490	struct hfi1_ctxtdata *uctxt;
1491	struct hfi1_devdata *dd = ppd->dd;
1492	u16 ctxt;
1493
1494	if (!dd->events)
1495		return -EINVAL;
1496
1497	for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1498	     ctxt++) {
1499		uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1500		if (uctxt) {
1501			unsigned long *evs;
1502			int i;
1503			/*
1504			 * subctxt_cnt is 0 if not shared, so do base
1505			 * separately, first, then remaining subctxt, if any
1506			 */
1507			evs = dd->events + uctxt_offset(uctxt);
1508			set_bit(evtbit, evs);
1509			for (i = 1; i < uctxt->subctxt_cnt; i++)
1510				set_bit(evtbit, evs + i);
1511			hfi1_rcd_put(uctxt);
1512		}
1513	}
1514
1515	return 0;
1516}
1517
1518/**
1519 * manage_rcvq - manage a context's receive queue
1520 * @uctxt: the context
1521 * @subctxt: the sub-context
1522 * @arg: start/stop action to carry out
1523 *
1524 * start_stop == 0 disables receive on the context, for use in queue
1525 * overflow conditions.  start_stop==1 re-enables, to be used to
1526 * re-init the software copy of the head register
1527 */
1528static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1529		       unsigned long arg)
1530{
1531	struct hfi1_devdata *dd = uctxt->dd;
1532	unsigned int rcvctrl_op;
1533	int start_stop;
1534
1535	if (subctxt)
1536		return 0;
1537
1538	if (get_user(start_stop, (int __user *)arg))
1539		return -EFAULT;
1540
1541	/* atomically clear receive enable ctxt. */
1542	if (start_stop) {
1543		/*
1544		 * On enable, force in-memory copy of the tail register to
1545		 * 0, so that protocol code doesn't have to worry about
1546		 * whether or not the chip has yet updated the in-memory
1547		 * copy or not on return from the system call. The chip
1548		 * always resets it's tail register back to 0 on a
1549		 * transition from disabled to enabled.
1550		 */
1551		if (hfi1_rcvhdrtail_kvaddr(uctxt))
1552			clear_rcvhdrtail(uctxt);
1553		rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1554	} else {
1555		rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1556	}
1557	hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1558	/* always; new head should be equal to new tail; see above */
1559
1560	return 0;
1561}
1562
1563/*
1564 * clear the event notifier events for this context.
1565 * User process then performs actions appropriate to bit having been
1566 * set, if desired, and checks again in future.
1567 */
1568static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1569			  unsigned long arg)
1570{
1571	int i;
1572	struct hfi1_devdata *dd = uctxt->dd;
1573	unsigned long *evs;
1574	unsigned long events;
1575
1576	if (!dd->events)
1577		return 0;
1578
1579	if (get_user(events, (unsigned long __user *)arg))
1580		return -EFAULT;
1581
1582	evs = dd->events + uctxt_offset(uctxt) + subctxt;
1583
1584	for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1585		if (!test_bit(i, &events))
1586			continue;
1587		clear_bit(i, evs);
1588	}
1589	return 0;
1590}
1591
1592static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1593{
1594	int i;
1595	struct hfi1_pportdata *ppd = uctxt->ppd;
1596	struct hfi1_devdata *dd = uctxt->dd;
1597	u16 pkey;
1598
1599	if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1600		return -EPERM;
1601
1602	if (get_user(pkey, (u16 __user *)arg))
1603		return -EFAULT;
1604
1605	if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1606		return -EINVAL;
1607
1608	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1609		if (pkey == ppd->pkeys[i])
1610			return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1611
1612	return -ENOENT;
1613}
1614
1615/**
1616 * ctxt_reset - Reset the user context
1617 * @uctxt: valid user context
1618 */
1619static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1620{
1621	struct send_context *sc;
1622	struct hfi1_devdata *dd;
1623	int ret = 0;
1624
1625	if (!uctxt || !uctxt->dd || !uctxt->sc)
1626		return -EINVAL;
1627
1628	/*
1629	 * There is no protection here. User level has to guarantee that
1630	 * no one will be writing to the send context while it is being
1631	 * re-initialized.  If user level breaks that guarantee, it will
1632	 * break it's own context and no one else's.
1633	 */
1634	dd = uctxt->dd;
1635	sc = uctxt->sc;
1636
1637	/*
1638	 * Wait until the interrupt handler has marked the context as
1639	 * halted or frozen. Report error if we time out.
1640	 */
1641	wait_event_interruptible_timeout(
1642		sc->halt_wait, (sc->flags & SCF_HALTED),
1643		msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1644	if (!(sc->flags & SCF_HALTED))
1645		return -ENOLCK;
1646
1647	/*
1648	 * If the send context was halted due to a Freeze, wait until the
1649	 * device has been "unfrozen" before resetting the context.
1650	 */
1651	if (sc->flags & SCF_FROZEN) {
1652		wait_event_interruptible_timeout(
1653			dd->event_queue,
1654			!(READ_ONCE(dd->flags) & HFI1_FROZEN),
1655			msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1656		if (dd->flags & HFI1_FROZEN)
1657			return -ENOLCK;
1658
1659		if (dd->flags & HFI1_FORCED_FREEZE)
1660			/*
1661			 * Don't allow context reset if we are into
1662			 * forced freeze
1663			 */
1664			return -ENODEV;
1665
1666		sc_disable(sc);
1667		ret = sc_enable(sc);
1668		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1669	} else {
1670		ret = sc_restart(sc);
1671	}
1672	if (!ret)
1673		sc_return_credits(sc);
1674
1675	return ret;
1676}
1677
1678static void user_remove(struct hfi1_devdata *dd)
1679{
1680
1681	hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1682}
1683
1684static int user_add(struct hfi1_devdata *dd)
1685{
1686	char name[10];
1687	int ret;
1688
1689	snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1690	ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1691			     &dd->user_cdev, &dd->user_device,
1692			     true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1693	if (ret)
1694		user_remove(dd);
1695
1696	return ret;
1697}
1698
1699/*
1700 * Create per-unit files in /dev
1701 */
1702int hfi1_device_create(struct hfi1_devdata *dd)
1703{
1704	return user_add(dd);
1705}
1706
1707/*
1708 * Remove per-unit files in /dev
1709 * void, core kernel returns no errors for this stuff
1710 */
1711void hfi1_device_remove(struct hfi1_devdata *dd)
1712{
1713	user_remove(dd);
1714}
v5.9
 
   1/*
 
   2 * Copyright(c) 2015-2020 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
 
  47#include <linux/poll.h>
  48#include <linux/cdev.h>
  49#include <linux/vmalloc.h>
  50#include <linux/io.h>
  51#include <linux/sched/mm.h>
  52#include <linux/bitmap.h>
  53
  54#include <rdma/ib.h>
  55
  56#include "hfi.h"
  57#include "pio.h"
  58#include "device.h"
  59#include "common.h"
  60#include "trace.h"
  61#include "mmu_rb.h"
  62#include "user_sdma.h"
  63#include "user_exp_rcv.h"
  64#include "aspm.h"
  65
  66#undef pr_fmt
  67#define pr_fmt(fmt) DRIVER_NAME ": " fmt
  68
  69#define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
  70
  71/*
  72 * File operation functions
  73 */
  74static int hfi1_file_open(struct inode *inode, struct file *fp);
  75static int hfi1_file_close(struct inode *inode, struct file *fp);
  76static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
  77static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
  78static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
  79
  80static u64 kvirt_to_phys(void *addr);
  81static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
  82static void init_subctxts(struct hfi1_ctxtdata *uctxt,
  83			  const struct hfi1_user_info *uinfo);
  84static int init_user_ctxt(struct hfi1_filedata *fd,
  85			  struct hfi1_ctxtdata *uctxt);
  86static void user_init(struct hfi1_ctxtdata *uctxt);
  87static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
  88static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
  89static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
  90			      u32 len);
  91static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
  92			      u32 len);
  93static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
  94				u32 len);
  95static int setup_base_ctxt(struct hfi1_filedata *fd,
  96			   struct hfi1_ctxtdata *uctxt);
  97static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
  98
  99static int find_sub_ctxt(struct hfi1_filedata *fd,
 100			 const struct hfi1_user_info *uinfo);
 101static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
 102			 struct hfi1_user_info *uinfo,
 103			 struct hfi1_ctxtdata **cd);
 104static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
 105static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
 106static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
 107static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
 108			  unsigned long arg);
 109static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
 110static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
 111static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
 112		       unsigned long arg);
 113static vm_fault_t vma_fault(struct vm_fault *vmf);
 114static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
 115			    unsigned long arg);
 116
 117static const struct file_operations hfi1_file_ops = {
 118	.owner = THIS_MODULE,
 119	.write_iter = hfi1_write_iter,
 120	.open = hfi1_file_open,
 121	.release = hfi1_file_close,
 122	.unlocked_ioctl = hfi1_file_ioctl,
 123	.poll = hfi1_poll,
 124	.mmap = hfi1_file_mmap,
 125	.llseek = noop_llseek,
 126};
 127
 128static const struct vm_operations_struct vm_ops = {
 129	.fault = vma_fault,
 130};
 131
 132/*
 133 * Types of memories mapped into user processes' space
 134 */
 135enum mmap_types {
 136	PIO_BUFS = 1,
 137	PIO_BUFS_SOP,
 138	PIO_CRED,
 139	RCV_HDRQ,
 140	RCV_EGRBUF,
 141	UREGS,
 142	EVENTS,
 143	STATUS,
 144	RTAIL,
 145	SUBCTXT_UREGS,
 146	SUBCTXT_RCV_HDRQ,
 147	SUBCTXT_EGRBUF,
 148	SDMA_COMP
 149};
 150
 151/*
 152 * Masks and offsets defining the mmap tokens
 153 */
 154#define HFI1_MMAP_OFFSET_MASK   0xfffULL
 155#define HFI1_MMAP_OFFSET_SHIFT  0
 156#define HFI1_MMAP_SUBCTXT_MASK  0xfULL
 157#define HFI1_MMAP_SUBCTXT_SHIFT 12
 158#define HFI1_MMAP_CTXT_MASK     0xffULL
 159#define HFI1_MMAP_CTXT_SHIFT    16
 160#define HFI1_MMAP_TYPE_MASK     0xfULL
 161#define HFI1_MMAP_TYPE_SHIFT    24
 162#define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
 163#define HFI1_MMAP_MAGIC_SHIFT   32
 164
 165#define HFI1_MMAP_MAGIC         0xdabbad00
 166
 167#define HFI1_MMAP_TOKEN_SET(field, val)	\
 168	(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
 169#define HFI1_MMAP_TOKEN_GET(field, token) \
 170	(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
 171#define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
 172	(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
 173	HFI1_MMAP_TOKEN_SET(TYPE, type) | \
 174	HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
 175	HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
 176	HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
 177
 178#define dbg(fmt, ...)				\
 179	pr_info(fmt, ##__VA_ARGS__)
 180
 181static inline int is_valid_mmap(u64 token)
 182{
 183	return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
 184}
 185
 186static int hfi1_file_open(struct inode *inode, struct file *fp)
 187{
 188	struct hfi1_filedata *fd;
 189	struct hfi1_devdata *dd = container_of(inode->i_cdev,
 190					       struct hfi1_devdata,
 191					       user_cdev);
 192
 193	if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
 194		return -EINVAL;
 195
 196	if (!atomic_inc_not_zero(&dd->user_refcount))
 197		return -ENXIO;
 198
 199	/* The real work is performed later in assign_ctxt() */
 200
 201	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
 202
 203	if (!fd || init_srcu_struct(&fd->pq_srcu))
 204		goto nomem;
 205	spin_lock_init(&fd->pq_rcu_lock);
 206	spin_lock_init(&fd->tid_lock);
 207	spin_lock_init(&fd->invalid_lock);
 208	fd->rec_cpu_num = -1; /* no cpu affinity by default */
 209	fd->mm = current->mm;
 210	mmgrab(fd->mm);
 211	fd->dd = dd;
 212	fp->private_data = fd;
 213	return 0;
 214nomem:
 215	kfree(fd);
 216	fp->private_data = NULL;
 217	if (atomic_dec_and_test(&dd->user_refcount))
 218		complete(&dd->user_comp);
 219	return -ENOMEM;
 220}
 221
 222static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
 223			    unsigned long arg)
 224{
 225	struct hfi1_filedata *fd = fp->private_data;
 226	struct hfi1_ctxtdata *uctxt = fd->uctxt;
 227	int ret = 0;
 228	int uval = 0;
 229
 230	hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
 231	if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
 232	    cmd != HFI1_IOCTL_GET_VERS &&
 233	    !uctxt)
 234		return -EINVAL;
 235
 236	switch (cmd) {
 237	case HFI1_IOCTL_ASSIGN_CTXT:
 238		ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
 239		break;
 240
 241	case HFI1_IOCTL_CTXT_INFO:
 242		ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
 243		break;
 244
 245	case HFI1_IOCTL_USER_INFO:
 246		ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
 247		break;
 248
 249	case HFI1_IOCTL_CREDIT_UPD:
 250		if (uctxt)
 251			sc_return_credits(uctxt->sc);
 252		break;
 253
 254	case HFI1_IOCTL_TID_UPDATE:
 255		ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
 256		break;
 257
 258	case HFI1_IOCTL_TID_FREE:
 259		ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
 260		break;
 261
 262	case HFI1_IOCTL_TID_INVAL_READ:
 263		ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
 264		break;
 265
 266	case HFI1_IOCTL_RECV_CTRL:
 267		ret = manage_rcvq(uctxt, fd->subctxt, arg);
 268		break;
 269
 270	case HFI1_IOCTL_POLL_TYPE:
 271		if (get_user(uval, (int __user *)arg))
 272			return -EFAULT;
 273		uctxt->poll_type = (typeof(uctxt->poll_type))uval;
 274		break;
 275
 276	case HFI1_IOCTL_ACK_EVENT:
 277		ret = user_event_ack(uctxt, fd->subctxt, arg);
 278		break;
 279
 280	case HFI1_IOCTL_SET_PKEY:
 281		ret = set_ctxt_pkey(uctxt, arg);
 282		break;
 283
 284	case HFI1_IOCTL_CTXT_RESET:
 285		ret = ctxt_reset(uctxt);
 286		break;
 287
 288	case HFI1_IOCTL_GET_VERS:
 289		uval = HFI1_USER_SWVERSION;
 290		if (put_user(uval, (int __user *)arg))
 291			return -EFAULT;
 292		break;
 293
 294	default:
 295		return -EINVAL;
 296	}
 297
 298	return ret;
 299}
 300
 301static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
 302{
 303	struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
 304	struct hfi1_user_sdma_pkt_q *pq;
 305	struct hfi1_user_sdma_comp_q *cq = fd->cq;
 306	int done = 0, reqs = 0;
 307	unsigned long dim = from->nr_segs;
 308	int idx;
 309
 
 
 
 
 310	idx = srcu_read_lock(&fd->pq_srcu);
 311	pq = srcu_dereference(fd->pq, &fd->pq_srcu);
 312	if (!cq || !pq) {
 313		srcu_read_unlock(&fd->pq_srcu, idx);
 314		return -EIO;
 315	}
 316
 317	if (!iter_is_iovec(from) || !dim) {
 318		srcu_read_unlock(&fd->pq_srcu, idx);
 319		return -EINVAL;
 320	}
 321
 322	trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
 323
 324	if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
 325		srcu_read_unlock(&fd->pq_srcu, idx);
 326		return -ENOSPC;
 327	}
 328
 329	while (dim) {
 
 330		int ret;
 331		unsigned long count = 0;
 332
 333		ret = hfi1_user_sdma_process_request(
 334			fd, (struct iovec *)(from->iov + done),
 335			dim, &count);
 336		if (ret) {
 337			reqs = ret;
 338			break;
 339		}
 340		dim -= count;
 341		done += count;
 342		reqs++;
 343	}
 344
 345	srcu_read_unlock(&fd->pq_srcu, idx);
 346	return reqs;
 347}
 348
 
 
 
 
 
 
 
 
 
 
 
 349static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
 350{
 351	struct hfi1_filedata *fd = fp->private_data;
 352	struct hfi1_ctxtdata *uctxt = fd->uctxt;
 353	struct hfi1_devdata *dd;
 354	unsigned long flags;
 355	u64 token = vma->vm_pgoff << PAGE_SHIFT,
 356		memaddr = 0;
 357	void *memvirt = NULL;
 
 358	u8 subctxt, mapio = 0, vmf = 0, type;
 359	ssize_t memlen = 0;
 360	int ret = 0;
 361	u16 ctxt;
 362
 363	if (!is_valid_mmap(token) || !uctxt ||
 364	    !(vma->vm_flags & VM_SHARED)) {
 365		ret = -EINVAL;
 366		goto done;
 367	}
 368	dd = uctxt->dd;
 369	ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
 370	subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
 371	type = HFI1_MMAP_TOKEN_GET(TYPE, token);
 372	if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
 373		ret = -EINVAL;
 374		goto done;
 375	}
 376
 
 
 
 
 
 377	flags = vma->vm_flags;
 378
 379	switch (type) {
 380	case PIO_BUFS:
 381	case PIO_BUFS_SOP:
 382		memaddr = ((dd->physaddr + TXE_PIO_SEND) +
 383				/* chip pio base */
 384			   (uctxt->sc->hw_context * BIT(16))) +
 385				/* 64K PIO space / ctxt */
 386			(type == PIO_BUFS_SOP ?
 387				(TXE_PIO_SIZE / 2) : 0); /* sop? */
 388		/*
 389		 * Map only the amount allocated to the context, not the
 390		 * entire available context's PIO space.
 391		 */
 392		memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
 393		flags &= ~VM_MAYREAD;
 394		flags |= VM_DONTCOPY | VM_DONTEXPAND;
 395		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
 396		mapio = 1;
 397		break;
 398	case PIO_CRED:
 
 399		if (flags & VM_WRITE) {
 400			ret = -EPERM;
 401			goto done;
 402		}
 403		/*
 404		 * The credit return location for this context could be on the
 405		 * second or third page allocated for credit returns (if number
 406		 * of enabled contexts > 64 and 128 respectively).
 407		 */
 408		memvirt = dd->cr_base[uctxt->numa_id].va;
 409		memaddr = virt_to_phys(memvirt) +
 410			(((u64)uctxt->sc->hw_free -
 411			  (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
 
 412		memlen = PAGE_SIZE;
 413		flags &= ~VM_MAYWRITE;
 414		flags |= VM_DONTCOPY | VM_DONTEXPAND;
 415		/*
 416		 * The driver has already allocated memory for credit
 417		 * returns and programmed it into the chip. Has that
 418		 * memory been flagged as non-cached?
 419		 */
 420		/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
 421		mapio = 1;
 422		break;
 
 423	case RCV_HDRQ:
 424		memlen = rcvhdrq_size(uctxt);
 425		memvirt = uctxt->rcvhdrq;
 
 426		break;
 427	case RCV_EGRBUF: {
 428		unsigned long addr;
 
 429		int i;
 430		/*
 431		 * The RcvEgr buffer need to be handled differently
 432		 * as multiple non-contiguous pages need to be mapped
 433		 * into the user process.
 434		 */
 435		memlen = uctxt->egrbufs.size;
 436		if ((vma->vm_end - vma->vm_start) != memlen) {
 437			dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
 438				   (vma->vm_end - vma->vm_start), memlen);
 439			ret = -EINVAL;
 440			goto done;
 441		}
 442		if (vma->vm_flags & VM_WRITE) {
 443			ret = -EPERM;
 444			goto done;
 445		}
 446		vma->vm_flags &= ~VM_MAYWRITE;
 447		addr = vma->vm_start;
 
 
 
 
 
 
 
 
 
 448		for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
 449			memlen = uctxt->egrbufs.buffers[i].len;
 450			memvirt = uctxt->egrbufs.buffers[i].addr;
 451			ret = remap_pfn_range(
 452				vma, addr,
 453				/*
 454				 * virt_to_pfn() does the same, but
 455				 * it's not available on x86_64
 456				 * when CONFIG_MMU is enabled.
 457				 */
 458				PFN_DOWN(__pa(memvirt)),
 459				memlen,
 460				vma->vm_page_prot);
 461			if (ret < 0)
 462				goto done;
 463			addr += memlen;
 
 464		}
 
 
 465		ret = 0;
 466		goto done;
 467	}
 468	case UREGS:
 469		/*
 470		 * Map only the page that contains this context's user
 471		 * registers.
 472		 */
 473		memaddr = (unsigned long)
 474			(dd->physaddr + RXE_PER_CONTEXT_USER)
 475			+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
 476		/*
 477		 * TidFlow table is on the same page as the rest of the
 478		 * user registers.
 479		 */
 480		memlen = PAGE_SIZE;
 481		flags |= VM_DONTCOPY | VM_DONTEXPAND;
 482		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 483		mapio = 1;
 484		break;
 485	case EVENTS:
 486		/*
 487		 * Use the page where this context's flags are. User level
 488		 * knows where it's own bitmap is within the page.
 489		 */
 490		memaddr = (unsigned long)
 491			(dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
 492		memlen = PAGE_SIZE;
 493		/*
 494		 * v3.7 removes VM_RESERVED but the effect is kept by
 495		 * using VM_IO.
 496		 */
 497		flags |= VM_IO | VM_DONTEXPAND;
 498		vmf = 1;
 499		break;
 500	case STATUS:
 501		if (flags & VM_WRITE) {
 502			ret = -EPERM;
 503			goto done;
 504		}
 505		memaddr = kvirt_to_phys((void *)dd->status);
 506		memlen = PAGE_SIZE;
 507		flags |= VM_IO | VM_DONTEXPAND;
 508		break;
 509	case RTAIL:
 510		if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
 511			/*
 512			 * If the memory allocation failed, the context alloc
 513			 * also would have failed, so we would never get here
 514			 */
 515			ret = -EINVAL;
 516			goto done;
 517		}
 518		if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
 519			ret = -EPERM;
 520			goto done;
 521		}
 522		memlen = PAGE_SIZE;
 523		memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
 
 524		flags &= ~VM_MAYWRITE;
 525		break;
 526	case SUBCTXT_UREGS:
 527		memaddr = (u64)uctxt->subctxt_uregbase;
 528		memlen = PAGE_SIZE;
 529		flags |= VM_IO | VM_DONTEXPAND;
 530		vmf = 1;
 531		break;
 532	case SUBCTXT_RCV_HDRQ:
 533		memaddr = (u64)uctxt->subctxt_rcvhdr_base;
 534		memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
 535		flags |= VM_IO | VM_DONTEXPAND;
 536		vmf = 1;
 537		break;
 538	case SUBCTXT_EGRBUF:
 539		memaddr = (u64)uctxt->subctxt_rcvegrbuf;
 540		memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
 541		flags |= VM_IO | VM_DONTEXPAND;
 542		flags &= ~VM_MAYWRITE;
 543		vmf = 1;
 544		break;
 545	case SDMA_COMP: {
 546		struct hfi1_user_sdma_comp_q *cq = fd->cq;
 547
 548		if (!cq) {
 549			ret = -EFAULT;
 550			goto done;
 551		}
 552		memaddr = (u64)cq->comps;
 553		memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
 554		flags |= VM_IO | VM_DONTEXPAND;
 555		vmf = 1;
 556		break;
 557	}
 558	default:
 559		ret = -EINVAL;
 560		break;
 561	}
 562
 563	if ((vma->vm_end - vma->vm_start) != memlen) {
 564		hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
 565			  uctxt->ctxt, fd->subctxt,
 566			  (vma->vm_end - vma->vm_start), memlen);
 567		ret = -EINVAL;
 568		goto done;
 569	}
 570
 571	vma->vm_flags = flags;
 572	hfi1_cdbg(PROC,
 573		  "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
 574		    ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
 575		    vma->vm_end - vma->vm_start, vma->vm_flags);
 576	if (vmf) {
 577		vma->vm_pgoff = PFN_DOWN(memaddr);
 578		vma->vm_ops = &vm_ops;
 579		ret = 0;
 
 
 
 580	} else if (mapio) {
 581		ret = io_remap_pfn_range(vma, vma->vm_start,
 582					 PFN_DOWN(memaddr),
 583					 memlen,
 584					 vma->vm_page_prot);
 585	} else if (memvirt) {
 586		ret = remap_pfn_range(vma, vma->vm_start,
 587				      PFN_DOWN(__pa(memvirt)),
 588				      memlen,
 589				      vma->vm_page_prot);
 590	} else {
 591		ret = remap_pfn_range(vma, vma->vm_start,
 592				      PFN_DOWN(memaddr),
 593				      memlen,
 594				      vma->vm_page_prot);
 595	}
 596done:
 597	return ret;
 598}
 599
 600/*
 601 * Local (non-chip) user memory is not mapped right away but as it is
 602 * accessed by the user-level code.
 603 */
 604static vm_fault_t vma_fault(struct vm_fault *vmf)
 605{
 606	struct page *page;
 607
 608	page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
 609	if (!page)
 610		return VM_FAULT_SIGBUS;
 611
 612	get_page(page);
 613	vmf->page = page;
 614
 615	return 0;
 616}
 617
 618static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
 619{
 620	struct hfi1_ctxtdata *uctxt;
 621	__poll_t pollflag;
 622
 623	uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
 624	if (!uctxt)
 625		pollflag = EPOLLERR;
 626	else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
 627		pollflag = poll_urgent(fp, pt);
 628	else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
 629		pollflag = poll_next(fp, pt);
 630	else /* invalid */
 631		pollflag = EPOLLERR;
 632
 633	return pollflag;
 634}
 635
 636static int hfi1_file_close(struct inode *inode, struct file *fp)
 637{
 638	struct hfi1_filedata *fdata = fp->private_data;
 639	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
 640	struct hfi1_devdata *dd = container_of(inode->i_cdev,
 641					       struct hfi1_devdata,
 642					       user_cdev);
 643	unsigned long flags, *ev;
 644
 645	fp->private_data = NULL;
 646
 647	if (!uctxt)
 648		goto done;
 649
 650	hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
 651
 652	flush_wc();
 653	/* drain user sdma queue */
 654	hfi1_user_sdma_free_queues(fdata, uctxt);
 655
 656	/* release the cpu */
 657	hfi1_put_proc_affinity(fdata->rec_cpu_num);
 658
 659	/* clean up rcv side */
 660	hfi1_user_exp_rcv_free(fdata);
 661
 662	/*
 663	 * fdata->uctxt is used in the above cleanup.  It is not ready to be
 664	 * removed until here.
 665	 */
 666	fdata->uctxt = NULL;
 667	hfi1_rcd_put(uctxt);
 668
 669	/*
 670	 * Clear any left over, unhandled events so the next process that
 671	 * gets this context doesn't get confused.
 672	 */
 673	ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
 674	*ev = 0;
 675
 676	spin_lock_irqsave(&dd->uctxt_lock, flags);
 677	__clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
 678	if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
 679		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 680		goto done;
 681	}
 682	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 683
 684	/*
 685	 * Disable receive context and interrupt available, reset all
 686	 * RcvCtxtCtrl bits to default values.
 687	 */
 688	hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
 689		     HFI1_RCVCTRL_TIDFLOW_DIS |
 690		     HFI1_RCVCTRL_INTRAVAIL_DIS |
 691		     HFI1_RCVCTRL_TAILUPD_DIS |
 692		     HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
 693		     HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
 694		     HFI1_RCVCTRL_NO_EGR_DROP_DIS |
 695		     HFI1_RCVCTRL_URGENT_DIS, uctxt);
 696	/* Clear the context's J_KEY */
 697	hfi1_clear_ctxt_jkey(dd, uctxt);
 698	/*
 699	 * If a send context is allocated, reset context integrity
 700	 * checks to default and disable the send context.
 701	 */
 702	if (uctxt->sc) {
 703		sc_disable(uctxt->sc);
 704		set_pio_integrity(uctxt->sc);
 705	}
 706
 707	hfi1_free_ctxt_rcv_groups(uctxt);
 708	hfi1_clear_ctxt_pkey(dd, uctxt);
 709
 710	uctxt->event_flags = 0;
 711
 712	deallocate_ctxt(uctxt);
 713done:
 714	mmdrop(fdata->mm);
 715
 716	if (atomic_dec_and_test(&dd->user_refcount))
 717		complete(&dd->user_comp);
 718
 719	cleanup_srcu_struct(&fdata->pq_srcu);
 720	kfree(fdata);
 721	return 0;
 722}
 723
 724/*
 725 * Convert kernel *virtual* addresses to physical addresses.
 726 * This is used to vmalloc'ed addresses.
 727 */
 728static u64 kvirt_to_phys(void *addr)
 729{
 730	struct page *page;
 731	u64 paddr = 0;
 732
 733	page = vmalloc_to_page(addr);
 734	if (page)
 735		paddr = page_to_pfn(page) << PAGE_SHIFT;
 736
 737	return paddr;
 738}
 739
 740/**
 741 * complete_subctxt
 742 * @fd: valid filedata pointer
 743 *
 744 * Sub-context info can only be set up after the base context
 745 * has been completed.  This is indicated by the clearing of the
 746 * HFI1_CTXT_BASE_UINIT bit.
 747 *
 748 * Wait for the bit to be cleared, and then complete the subcontext
 749 * initialization.
 750 *
 751 */
 752static int complete_subctxt(struct hfi1_filedata *fd)
 753{
 754	int ret;
 755	unsigned long flags;
 756
 757	/*
 758	 * sub-context info can only be set up after the base context
 759	 * has been completed.
 760	 */
 761	ret = wait_event_interruptible(
 762		fd->uctxt->wait,
 763		!test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
 764
 765	if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
 766		ret = -ENOMEM;
 767
 768	/* Finish the sub-context init */
 769	if (!ret) {
 770		fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
 771		ret = init_user_ctxt(fd, fd->uctxt);
 772	}
 773
 774	if (ret) {
 775		spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
 776		__clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
 777		spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
 778		hfi1_rcd_put(fd->uctxt);
 779		fd->uctxt = NULL;
 780	}
 781
 782	return ret;
 783}
 784
 785static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
 786{
 787	int ret;
 788	unsigned int swmajor;
 789	struct hfi1_ctxtdata *uctxt = NULL;
 790	struct hfi1_user_info uinfo;
 791
 792	if (fd->uctxt)
 793		return -EINVAL;
 794
 795	if (sizeof(uinfo) != len)
 796		return -EINVAL;
 797
 798	if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
 799		return -EFAULT;
 800
 801	swmajor = uinfo.userversion >> 16;
 802	if (swmajor != HFI1_USER_SWMAJOR)
 803		return -ENODEV;
 804
 805	if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
 806		return -EINVAL;
 807
 808	/*
 809	 * Acquire the mutex to protect against multiple creations of what
 810	 * could be a shared base context.
 811	 */
 812	mutex_lock(&hfi1_mutex);
 813	/*
 814	 * Get a sub context if available  (fd->uctxt will be set).
 815	 * ret < 0 error, 0 no context, 1 sub-context found
 816	 */
 817	ret = find_sub_ctxt(fd, &uinfo);
 818
 819	/*
 820	 * Allocate a base context if context sharing is not required or a
 821	 * sub context wasn't found.
 822	 */
 823	if (!ret)
 824		ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
 825
 826	mutex_unlock(&hfi1_mutex);
 827
 828	/* Depending on the context type, finish the appropriate init */
 829	switch (ret) {
 830	case 0:
 831		ret = setup_base_ctxt(fd, uctxt);
 832		if (ret)
 833			deallocate_ctxt(uctxt);
 834		break;
 835	case 1:
 836		ret = complete_subctxt(fd);
 837		break;
 838	default:
 839		break;
 840	}
 841
 842	return ret;
 843}
 844
 845/**
 846 * match_ctxt
 847 * @fd: valid filedata pointer
 848 * @uinfo: user info to compare base context with
 849 * @uctxt: context to compare uinfo to.
 850 *
 851 * Compare the given context with the given information to see if it
 852 * can be used for a sub context.
 853 */
 854static int match_ctxt(struct hfi1_filedata *fd,
 855		      const struct hfi1_user_info *uinfo,
 856		      struct hfi1_ctxtdata *uctxt)
 857{
 858	struct hfi1_devdata *dd = fd->dd;
 859	unsigned long flags;
 860	u16 subctxt;
 861
 862	/* Skip dynamically allocated kernel contexts */
 863	if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
 864		return 0;
 865
 866	/* Skip ctxt if it doesn't match the requested one */
 867	if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
 868	    uctxt->jkey != generate_jkey(current_uid()) ||
 869	    uctxt->subctxt_id != uinfo->subctxt_id ||
 870	    uctxt->subctxt_cnt != uinfo->subctxt_cnt)
 871		return 0;
 872
 873	/* Verify the sharing process matches the base */
 874	if (uctxt->userversion != uinfo->userversion)
 875		return -EINVAL;
 876
 877	/* Find an unused sub context */
 878	spin_lock_irqsave(&dd->uctxt_lock, flags);
 879	if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
 880		/* context is being closed, do not use */
 881		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 882		return 0;
 883	}
 884
 885	subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
 886				      HFI1_MAX_SHARED_CTXTS);
 887	if (subctxt >= uctxt->subctxt_cnt) {
 888		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 889		return -EBUSY;
 890	}
 891
 892	fd->subctxt = subctxt;
 893	__set_bit(fd->subctxt, uctxt->in_use_ctxts);
 894	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 895
 896	fd->uctxt = uctxt;
 897	hfi1_rcd_get(uctxt);
 898
 899	return 1;
 900}
 901
 902/**
 903 * find_sub_ctxt
 904 * @fd: valid filedata pointer
 905 * @uinfo: matching info to use to find a possible context to share.
 906 *
 907 * The hfi1_mutex must be held when this function is called.  It is
 908 * necessary to ensure serialized creation of shared contexts.
 909 *
 910 * Return:
 911 *    0      No sub-context found
 912 *    1      Subcontext found and allocated
 913 *    errno  EINVAL (incorrect parameters)
 914 *           EBUSY (all sub contexts in use)
 915 */
 916static int find_sub_ctxt(struct hfi1_filedata *fd,
 917			 const struct hfi1_user_info *uinfo)
 918{
 919	struct hfi1_ctxtdata *uctxt;
 920	struct hfi1_devdata *dd = fd->dd;
 921	u16 i;
 922	int ret;
 923
 924	if (!uinfo->subctxt_cnt)
 925		return 0;
 926
 927	for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
 928		uctxt = hfi1_rcd_get_by_index(dd, i);
 929		if (uctxt) {
 930			ret = match_ctxt(fd, uinfo, uctxt);
 931			hfi1_rcd_put(uctxt);
 932			/* value of != 0 will return */
 933			if (ret)
 934				return ret;
 935		}
 936	}
 937
 938	return 0;
 939}
 940
 941static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
 942			 struct hfi1_user_info *uinfo,
 943			 struct hfi1_ctxtdata **rcd)
 944{
 945	struct hfi1_ctxtdata *uctxt;
 946	int ret, numa;
 947
 948	if (dd->flags & HFI1_FROZEN) {
 949		/*
 950		 * Pick an error that is unique from all other errors
 951		 * that are returned so the user process knows that
 952		 * it tried to allocate while the SPC was frozen.  It
 953		 * it should be able to retry with success in a short
 954		 * while.
 955		 */
 956		return -EIO;
 957	}
 958
 959	if (!dd->freectxts)
 960		return -EBUSY;
 961
 962	/*
 963	 * If we don't have a NUMA node requested, preference is towards
 964	 * device NUMA node.
 965	 */
 966	fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
 967	if (fd->rec_cpu_num != -1)
 968		numa = cpu_to_node(fd->rec_cpu_num);
 969	else
 970		numa = numa_node_id();
 971	ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
 972	if (ret < 0) {
 973		dd_dev_err(dd, "user ctxtdata allocation failed\n");
 974		return ret;
 975	}
 976	hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
 977		  uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
 978		  uctxt->numa_id);
 979
 980	/*
 981	 * Allocate and enable a PIO send context.
 982	 */
 983	uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
 984	if (!uctxt->sc) {
 985		ret = -ENOMEM;
 986		goto ctxdata_free;
 987	}
 988	hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
 989		  uctxt->sc->hw_context);
 990	ret = sc_enable(uctxt->sc);
 991	if (ret)
 992		goto ctxdata_free;
 993
 994	/*
 995	 * Setup sub context information if the user-level has requested
 996	 * sub contexts.
 997	 * This has to be done here so the rest of the sub-contexts find the
 998	 * proper base context.
 999	 * NOTE: _set_bit() can be used here because the context creation is
1000	 * protected by the mutex (rather than the spin_lock), and will be the
1001	 * very first instance of this context.
1002	 */
1003	__set_bit(0, uctxt->in_use_ctxts);
1004	if (uinfo->subctxt_cnt)
1005		init_subctxts(uctxt, uinfo);
1006	uctxt->userversion = uinfo->userversion;
1007	uctxt->flags = hfi1_cap_mask; /* save current flag state */
1008	init_waitqueue_head(&uctxt->wait);
1009	strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1010	memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1011	uctxt->jkey = generate_jkey(current_uid());
1012	hfi1_stats.sps_ctxts++;
1013	/*
1014	 * Disable ASPM when there are open user/PSM contexts to avoid
1015	 * issues with ASPM L1 exit latency
1016	 */
1017	if (dd->freectxts-- == dd->num_user_contexts)
1018		aspm_disable_all(dd);
1019
1020	*rcd = uctxt;
1021
1022	return 0;
1023
1024ctxdata_free:
1025	hfi1_free_ctxt(uctxt);
1026	return ret;
1027}
1028
1029static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1030{
1031	mutex_lock(&hfi1_mutex);
1032	hfi1_stats.sps_ctxts--;
1033	if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1034		aspm_enable_all(uctxt->dd);
1035	mutex_unlock(&hfi1_mutex);
1036
1037	hfi1_free_ctxt(uctxt);
1038}
1039
1040static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1041			  const struct hfi1_user_info *uinfo)
1042{
1043	uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1044	uctxt->subctxt_id = uinfo->subctxt_id;
1045	set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1046}
1047
1048static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1049{
1050	int ret = 0;
1051	u16 num_subctxts = uctxt->subctxt_cnt;
1052
1053	uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1054	if (!uctxt->subctxt_uregbase)
1055		return -ENOMEM;
1056
1057	/* We can take the size of the RcvHdr Queue from the master */
1058	uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1059						  num_subctxts);
1060	if (!uctxt->subctxt_rcvhdr_base) {
1061		ret = -ENOMEM;
1062		goto bail_ureg;
1063	}
1064
1065	uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1066						num_subctxts);
1067	if (!uctxt->subctxt_rcvegrbuf) {
1068		ret = -ENOMEM;
1069		goto bail_rhdr;
1070	}
1071
1072	return 0;
1073
1074bail_rhdr:
1075	vfree(uctxt->subctxt_rcvhdr_base);
1076	uctxt->subctxt_rcvhdr_base = NULL;
1077bail_ureg:
1078	vfree(uctxt->subctxt_uregbase);
1079	uctxt->subctxt_uregbase = NULL;
1080
1081	return ret;
1082}
1083
1084static void user_init(struct hfi1_ctxtdata *uctxt)
1085{
1086	unsigned int rcvctrl_ops = 0;
1087
1088	/* initialize poll variables... */
1089	uctxt->urgent = 0;
1090	uctxt->urgent_poll = 0;
1091
1092	/*
1093	 * Now enable the ctxt for receive.
1094	 * For chips that are set to DMA the tail register to memory
1095	 * when they change (and when the update bit transitions from
1096	 * 0 to 1.  So for those chips, we turn it off and then back on.
1097	 * This will (very briefly) affect any other open ctxts, but the
1098	 * duration is very short, and therefore isn't an issue.  We
1099	 * explicitly set the in-memory tail copy to 0 beforehand, so we
1100	 * don't have to wait to be sure the DMA update has happened
1101	 * (chip resets head/tail to 0 on transition to enable).
1102	 */
1103	if (hfi1_rcvhdrtail_kvaddr(uctxt))
1104		clear_rcvhdrtail(uctxt);
1105
1106	/* Setup J_KEY before enabling the context */
1107	hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1108
1109	rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1110	rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1111	if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1112		rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1113	/*
1114	 * Ignore the bit in the flags for now until proper
1115	 * support for multiple packet per rcv array entry is
1116	 * added.
1117	 */
1118	if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1119		rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1120	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1121		rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1122	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1123		rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1124	/*
1125	 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1126	 * We can't rely on the correct value to be set from prior
1127	 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1128	 * for both cases.
1129	 */
1130	if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1131		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1132	else
1133		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1134	hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1135}
1136
1137static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1138{
1139	struct hfi1_ctxt_info cinfo;
1140	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1141
1142	if (sizeof(cinfo) != len)
1143		return -EINVAL;
1144
1145	memset(&cinfo, 0, sizeof(cinfo));
1146	cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1147				HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1148			HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1149			HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1150	/* adjust flag if this fd is not able to cache */
1151	if (!fd->use_mn)
1152		cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1153
1154	cinfo.num_active = hfi1_count_active_units();
1155	cinfo.unit = uctxt->dd->unit;
1156	cinfo.ctxt = uctxt->ctxt;
1157	cinfo.subctxt = fd->subctxt;
1158	cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1159				uctxt->dd->rcv_entries.group_size) +
1160		uctxt->expected_count;
1161	cinfo.credits = uctxt->sc->credits;
1162	cinfo.numa_node = uctxt->numa_id;
1163	cinfo.rec_cpu = fd->rec_cpu_num;
1164	cinfo.send_ctxt = uctxt->sc->hw_context;
1165
1166	cinfo.egrtids = uctxt->egrbufs.alloced;
1167	cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1168	cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1169	cinfo.sdma_ring_size = fd->cq->nentries;
1170	cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1171
1172	trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1173	if (copy_to_user((void __user *)arg, &cinfo, len))
1174		return -EFAULT;
1175
1176	return 0;
1177}
1178
1179static int init_user_ctxt(struct hfi1_filedata *fd,
1180			  struct hfi1_ctxtdata *uctxt)
1181{
1182	int ret;
1183
1184	ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1185	if (ret)
1186		return ret;
1187
1188	ret = hfi1_user_exp_rcv_init(fd, uctxt);
1189	if (ret)
1190		hfi1_user_sdma_free_queues(fd, uctxt);
1191
1192	return ret;
1193}
1194
1195static int setup_base_ctxt(struct hfi1_filedata *fd,
1196			   struct hfi1_ctxtdata *uctxt)
1197{
1198	struct hfi1_devdata *dd = uctxt->dd;
1199	int ret = 0;
1200
1201	hfi1_init_ctxt(uctxt->sc);
1202
1203	/* Now allocate the RcvHdr queue and eager buffers. */
1204	ret = hfi1_create_rcvhdrq(dd, uctxt);
1205	if (ret)
1206		goto done;
1207
1208	ret = hfi1_setup_eagerbufs(uctxt);
1209	if (ret)
1210		goto done;
1211
1212	/* If sub-contexts are enabled, do the appropriate setup */
1213	if (uctxt->subctxt_cnt)
1214		ret = setup_subctxt(uctxt);
1215	if (ret)
1216		goto done;
1217
1218	ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1219	if (ret)
1220		goto done;
1221
1222	ret = init_user_ctxt(fd, uctxt);
1223	if (ret)
 
1224		goto done;
 
1225
1226	user_init(uctxt);
1227
1228	/* Now that the context is set up, the fd can get a reference. */
1229	fd->uctxt = uctxt;
1230	hfi1_rcd_get(uctxt);
1231
1232done:
1233	if (uctxt->subctxt_cnt) {
1234		/*
1235		 * On error, set the failed bit so sub-contexts will clean up
1236		 * correctly.
1237		 */
1238		if (ret)
1239			set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1240
1241		/*
1242		 * Base context is done (successfully or not), notify anybody
1243		 * using a sub-context that is waiting for this completion.
1244		 */
1245		clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1246		wake_up(&uctxt->wait);
1247	}
1248
1249	return ret;
1250}
1251
1252static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1253{
1254	struct hfi1_base_info binfo;
1255	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1256	struct hfi1_devdata *dd = uctxt->dd;
1257	unsigned offset;
1258
1259	trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1260
1261	if (sizeof(binfo) != len)
1262		return -EINVAL;
1263
1264	memset(&binfo, 0, sizeof(binfo));
1265	binfo.hw_version = dd->revision;
1266	binfo.sw_version = HFI1_KERN_SWVERSION;
1267	binfo.bthqp = RVT_KDETH_QP_PREFIX;
1268	binfo.jkey = uctxt->jkey;
1269	/*
1270	 * If more than 64 contexts are enabled the allocated credit
1271	 * return will span two or three contiguous pages. Since we only
1272	 * map the page containing the context's credit return address,
1273	 * we need to calculate the offset in the proper page.
1274	 */
1275	offset = ((u64)uctxt->sc->hw_free -
1276		  (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1277	binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1278						fd->subctxt, offset);
1279	binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1280					    fd->subctxt,
1281					    uctxt->sc->base_addr);
1282	binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1283						uctxt->ctxt,
1284						fd->subctxt,
1285						uctxt->sc->base_addr);
1286	binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1287					       fd->subctxt,
1288					       uctxt->rcvhdrq);
1289	binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1290					       fd->subctxt,
1291					       uctxt->egrbufs.rcvtids[0].dma);
1292	binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1293						  fd->subctxt, 0);
1294	/*
1295	 * user regs are at
1296	 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1297	 */
1298	binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1299					     fd->subctxt, 0);
1300	offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1301				sizeof(*dd->events));
1302	binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1303					       fd->subctxt,
1304					       offset);
1305	binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1306					       fd->subctxt,
1307					       dd->status);
1308	if (HFI1_CAP_IS_USET(DMA_RTAIL))
1309		binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1310							fd->subctxt, 0);
1311	if (uctxt->subctxt_cnt) {
1312		binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1313							 uctxt->ctxt,
1314							 fd->subctxt, 0);
1315		binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1316							  uctxt->ctxt,
1317							  fd->subctxt, 0);
1318		binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1319							  uctxt->ctxt,
1320							  fd->subctxt, 0);
1321	}
1322
1323	if (copy_to_user((void __user *)arg, &binfo, len))
1324		return -EFAULT;
1325
1326	return 0;
1327}
1328
1329/**
1330 * user_exp_rcv_setup - Set up the given tid rcv list
1331 * @fd: file data of the current driver instance
1332 * @arg: ioctl argumnent for user space information
1333 * @len: length of data structure associated with ioctl command
1334 *
1335 * Wrapper to validate ioctl information before doing _rcv_setup.
1336 *
1337 */
1338static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1339			      u32 len)
1340{
1341	int ret;
1342	unsigned long addr;
1343	struct hfi1_tid_info tinfo;
1344
1345	if (sizeof(tinfo) != len)
1346		return -EINVAL;
1347
1348	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1349		return -EFAULT;
1350
1351	ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1352	if (!ret) {
1353		/*
1354		 * Copy the number of tidlist entries we used
1355		 * and the length of the buffer we registered.
1356		 */
1357		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1358		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1359				 sizeof(tinfo.tidcnt)))
1360			return -EFAULT;
1361
1362		addr = arg + offsetof(struct hfi1_tid_info, length);
1363		if (copy_to_user((void __user *)addr, &tinfo.length,
1364				 sizeof(tinfo.length)))
1365			ret = -EFAULT;
 
 
 
1366	}
1367
1368	return ret;
1369}
1370
1371/**
1372 * user_exp_rcv_clear - Clear the given tid rcv list
1373 * @fd: file data of the current driver instance
1374 * @arg: ioctl argumnent for user space information
1375 * @len: length of data structure associated with ioctl command
1376 *
1377 * The hfi1_user_exp_rcv_clear() can be called from the error path.  Because
1378 * of this, we need to use this wrapper to copy the user space information
1379 * before doing the clear.
1380 */
1381static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1382			      u32 len)
1383{
1384	int ret;
1385	unsigned long addr;
1386	struct hfi1_tid_info tinfo;
1387
1388	if (sizeof(tinfo) != len)
1389		return -EINVAL;
1390
1391	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1392		return -EFAULT;
1393
1394	ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1395	if (!ret) {
1396		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1397		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1398				 sizeof(tinfo.tidcnt)))
1399			return -EFAULT;
1400	}
1401
1402	return ret;
1403}
1404
1405/**
1406 * user_exp_rcv_invalid - Invalidate the given tid rcv list
1407 * @fd: file data of the current driver instance
1408 * @arg: ioctl argumnent for user space information
1409 * @len: length of data structure associated with ioctl command
1410 *
1411 * Wrapper to validate ioctl information before doing _rcv_invalid.
1412 *
1413 */
1414static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1415				u32 len)
1416{
1417	int ret;
1418	unsigned long addr;
1419	struct hfi1_tid_info tinfo;
1420
1421	if (sizeof(tinfo) != len)
1422		return -EINVAL;
1423
1424	if (!fd->invalid_tids)
1425		return -EINVAL;
1426
1427	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1428		return -EFAULT;
1429
1430	ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1431	if (ret)
1432		return ret;
1433
1434	addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1435	if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1436			 sizeof(tinfo.tidcnt)))
1437		ret = -EFAULT;
1438
1439	return ret;
1440}
1441
1442static __poll_t poll_urgent(struct file *fp,
1443				struct poll_table_struct *pt)
1444{
1445	struct hfi1_filedata *fd = fp->private_data;
1446	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1447	struct hfi1_devdata *dd = uctxt->dd;
1448	__poll_t pollflag;
1449
1450	poll_wait(fp, &uctxt->wait, pt);
1451
1452	spin_lock_irq(&dd->uctxt_lock);
1453	if (uctxt->urgent != uctxt->urgent_poll) {
1454		pollflag = EPOLLIN | EPOLLRDNORM;
1455		uctxt->urgent_poll = uctxt->urgent;
1456	} else {
1457		pollflag = 0;
1458		set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1459	}
1460	spin_unlock_irq(&dd->uctxt_lock);
1461
1462	return pollflag;
1463}
1464
1465static __poll_t poll_next(struct file *fp,
1466			      struct poll_table_struct *pt)
1467{
1468	struct hfi1_filedata *fd = fp->private_data;
1469	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1470	struct hfi1_devdata *dd = uctxt->dd;
1471	__poll_t pollflag;
1472
1473	poll_wait(fp, &uctxt->wait, pt);
1474
1475	spin_lock_irq(&dd->uctxt_lock);
1476	if (hdrqempty(uctxt)) {
1477		set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1478		hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1479		pollflag = 0;
1480	} else {
1481		pollflag = EPOLLIN | EPOLLRDNORM;
1482	}
1483	spin_unlock_irq(&dd->uctxt_lock);
1484
1485	return pollflag;
1486}
1487
1488/*
1489 * Find all user contexts in use, and set the specified bit in their
1490 * event mask.
1491 * See also find_ctxt() for a similar use, that is specific to send buffers.
1492 */
1493int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1494{
1495	struct hfi1_ctxtdata *uctxt;
1496	struct hfi1_devdata *dd = ppd->dd;
1497	u16 ctxt;
1498
1499	if (!dd->events)
1500		return -EINVAL;
1501
1502	for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1503	     ctxt++) {
1504		uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1505		if (uctxt) {
1506			unsigned long *evs;
1507			int i;
1508			/*
1509			 * subctxt_cnt is 0 if not shared, so do base
1510			 * separately, first, then remaining subctxt, if any
1511			 */
1512			evs = dd->events + uctxt_offset(uctxt);
1513			set_bit(evtbit, evs);
1514			for (i = 1; i < uctxt->subctxt_cnt; i++)
1515				set_bit(evtbit, evs + i);
1516			hfi1_rcd_put(uctxt);
1517		}
1518	}
1519
1520	return 0;
1521}
1522
1523/**
1524 * manage_rcvq - manage a context's receive queue
1525 * @uctxt: the context
1526 * @subctxt: the sub-context
1527 * @start_stop: action to carry out
1528 *
1529 * start_stop == 0 disables receive on the context, for use in queue
1530 * overflow conditions.  start_stop==1 re-enables, to be used to
1531 * re-init the software copy of the head register
1532 */
1533static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1534		       unsigned long arg)
1535{
1536	struct hfi1_devdata *dd = uctxt->dd;
1537	unsigned int rcvctrl_op;
1538	int start_stop;
1539
1540	if (subctxt)
1541		return 0;
1542
1543	if (get_user(start_stop, (int __user *)arg))
1544		return -EFAULT;
1545
1546	/* atomically clear receive enable ctxt. */
1547	if (start_stop) {
1548		/*
1549		 * On enable, force in-memory copy of the tail register to
1550		 * 0, so that protocol code doesn't have to worry about
1551		 * whether or not the chip has yet updated the in-memory
1552		 * copy or not on return from the system call. The chip
1553		 * always resets it's tail register back to 0 on a
1554		 * transition from disabled to enabled.
1555		 */
1556		if (hfi1_rcvhdrtail_kvaddr(uctxt))
1557			clear_rcvhdrtail(uctxt);
1558		rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1559	} else {
1560		rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1561	}
1562	hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1563	/* always; new head should be equal to new tail; see above */
1564
1565	return 0;
1566}
1567
1568/*
1569 * clear the event notifier events for this context.
1570 * User process then performs actions appropriate to bit having been
1571 * set, if desired, and checks again in future.
1572 */
1573static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1574			  unsigned long arg)
1575{
1576	int i;
1577	struct hfi1_devdata *dd = uctxt->dd;
1578	unsigned long *evs;
1579	unsigned long events;
1580
1581	if (!dd->events)
1582		return 0;
1583
1584	if (get_user(events, (unsigned long __user *)arg))
1585		return -EFAULT;
1586
1587	evs = dd->events + uctxt_offset(uctxt) + subctxt;
1588
1589	for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1590		if (!test_bit(i, &events))
1591			continue;
1592		clear_bit(i, evs);
1593	}
1594	return 0;
1595}
1596
1597static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1598{
1599	int i;
1600	struct hfi1_pportdata *ppd = uctxt->ppd;
1601	struct hfi1_devdata *dd = uctxt->dd;
1602	u16 pkey;
1603
1604	if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1605		return -EPERM;
1606
1607	if (get_user(pkey, (u16 __user *)arg))
1608		return -EFAULT;
1609
1610	if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1611		return -EINVAL;
1612
1613	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1614		if (pkey == ppd->pkeys[i])
1615			return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1616
1617	return -ENOENT;
1618}
1619
1620/**
1621 * ctxt_reset - Reset the user context
1622 * @uctxt: valid user context
1623 */
1624static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1625{
1626	struct send_context *sc;
1627	struct hfi1_devdata *dd;
1628	int ret = 0;
1629
1630	if (!uctxt || !uctxt->dd || !uctxt->sc)
1631		return -EINVAL;
1632
1633	/*
1634	 * There is no protection here. User level has to guarantee that
1635	 * no one will be writing to the send context while it is being
1636	 * re-initialized.  If user level breaks that guarantee, it will
1637	 * break it's own context and no one else's.
1638	 */
1639	dd = uctxt->dd;
1640	sc = uctxt->sc;
1641
1642	/*
1643	 * Wait until the interrupt handler has marked the context as
1644	 * halted or frozen. Report error if we time out.
1645	 */
1646	wait_event_interruptible_timeout(
1647		sc->halt_wait, (sc->flags & SCF_HALTED),
1648		msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1649	if (!(sc->flags & SCF_HALTED))
1650		return -ENOLCK;
1651
1652	/*
1653	 * If the send context was halted due to a Freeze, wait until the
1654	 * device has been "unfrozen" before resetting the context.
1655	 */
1656	if (sc->flags & SCF_FROZEN) {
1657		wait_event_interruptible_timeout(
1658			dd->event_queue,
1659			!(READ_ONCE(dd->flags) & HFI1_FROZEN),
1660			msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1661		if (dd->flags & HFI1_FROZEN)
1662			return -ENOLCK;
1663
1664		if (dd->flags & HFI1_FORCED_FREEZE)
1665			/*
1666			 * Don't allow context reset if we are into
1667			 * forced freeze
1668			 */
1669			return -ENODEV;
1670
1671		sc_disable(sc);
1672		ret = sc_enable(sc);
1673		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1674	} else {
1675		ret = sc_restart(sc);
1676	}
1677	if (!ret)
1678		sc_return_credits(sc);
1679
1680	return ret;
1681}
1682
1683static void user_remove(struct hfi1_devdata *dd)
1684{
1685
1686	hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1687}
1688
1689static int user_add(struct hfi1_devdata *dd)
1690{
1691	char name[10];
1692	int ret;
1693
1694	snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1695	ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1696			     &dd->user_cdev, &dd->user_device,
1697			     true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1698	if (ret)
1699		user_remove(dd);
1700
1701	return ret;
1702}
1703
1704/*
1705 * Create per-unit files in /dev
1706 */
1707int hfi1_device_create(struct hfi1_devdata *dd)
1708{
1709	return user_add(dd);
1710}
1711
1712/*
1713 * Remove per-unit files in /dev
1714 * void, core kernel returns no errors for this stuff
1715 */
1716void hfi1_device_remove(struct hfi1_devdata *dd)
1717{
1718	user_remove(dd);
1719}