Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright(c) 2020 Cornelis Networks, Inc.
   4 * Copyright(c) 2015-2020 Intel Corporation.
   5 */
   6
   7#include <linux/poll.h>
   8#include <linux/cdev.h>
   9#include <linux/vmalloc.h>
  10#include <linux/io.h>
  11#include <linux/sched/mm.h>
  12#include <linux/bitmap.h>
  13
  14#include <rdma/ib.h>
  15
  16#include "hfi.h"
  17#include "pio.h"
  18#include "device.h"
  19#include "common.h"
  20#include "trace.h"
  21#include "mmu_rb.h"
  22#include "user_sdma.h"
  23#include "user_exp_rcv.h"
  24#include "aspm.h"
  25
  26#undef pr_fmt
  27#define pr_fmt(fmt) DRIVER_NAME ": " fmt
  28
  29#define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
  30
  31/*
  32 * File operation functions
  33 */
  34static int hfi1_file_open(struct inode *inode, struct file *fp);
  35static int hfi1_file_close(struct inode *inode, struct file *fp);
  36static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
  37static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
  38static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
  39
  40static u64 kvirt_to_phys(void *addr);
  41static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
  42static void init_subctxts(struct hfi1_ctxtdata *uctxt,
  43			  const struct hfi1_user_info *uinfo);
  44static int init_user_ctxt(struct hfi1_filedata *fd,
  45			  struct hfi1_ctxtdata *uctxt);
  46static void user_init(struct hfi1_ctxtdata *uctxt);
  47static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
  48static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
  49static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
  50			      u32 len);
  51static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
  52			      u32 len);
  53static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
  54				u32 len);
  55static int setup_base_ctxt(struct hfi1_filedata *fd,
  56			   struct hfi1_ctxtdata *uctxt);
  57static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
  58
  59static int find_sub_ctxt(struct hfi1_filedata *fd,
  60			 const struct hfi1_user_info *uinfo);
  61static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
  62			 struct hfi1_user_info *uinfo,
  63			 struct hfi1_ctxtdata **cd);
  64static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
  65static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
  66static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
  67static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
  68			  unsigned long arg);
  69static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
  70static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
  71static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
  72		       unsigned long arg);
  73static vm_fault_t vma_fault(struct vm_fault *vmf);
  74static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
  75			    unsigned long arg);
  76
  77static const struct file_operations hfi1_file_ops = {
  78	.owner = THIS_MODULE,
  79	.write_iter = hfi1_write_iter,
  80	.open = hfi1_file_open,
  81	.release = hfi1_file_close,
  82	.unlocked_ioctl = hfi1_file_ioctl,
  83	.poll = hfi1_poll,
  84	.mmap = hfi1_file_mmap,
  85	.llseek = noop_llseek,
  86};
  87
  88static const struct vm_operations_struct vm_ops = {
  89	.fault = vma_fault,
  90};
  91
  92/*
  93 * Types of memories mapped into user processes' space
  94 */
  95enum mmap_types {
  96	PIO_BUFS = 1,
  97	PIO_BUFS_SOP,
  98	PIO_CRED,
  99	RCV_HDRQ,
 100	RCV_EGRBUF,
 101	UREGS,
 102	EVENTS,
 103	STATUS,
 104	RTAIL,
 105	SUBCTXT_UREGS,
 106	SUBCTXT_RCV_HDRQ,
 107	SUBCTXT_EGRBUF,
 108	SDMA_COMP
 109};
 110
 111/*
 112 * Masks and offsets defining the mmap tokens
 113 */
 114#define HFI1_MMAP_OFFSET_MASK   0xfffULL
 115#define HFI1_MMAP_OFFSET_SHIFT  0
 116#define HFI1_MMAP_SUBCTXT_MASK  0xfULL
 117#define HFI1_MMAP_SUBCTXT_SHIFT 12
 118#define HFI1_MMAP_CTXT_MASK     0xffULL
 119#define HFI1_MMAP_CTXT_SHIFT    16
 120#define HFI1_MMAP_TYPE_MASK     0xfULL
 121#define HFI1_MMAP_TYPE_SHIFT    24
 122#define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
 123#define HFI1_MMAP_MAGIC_SHIFT   32
 124
 125#define HFI1_MMAP_MAGIC         0xdabbad00
 126
 127#define HFI1_MMAP_TOKEN_SET(field, val)	\
 128	(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
 129#define HFI1_MMAP_TOKEN_GET(field, token) \
 130	(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
 131#define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
 132	(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
 133	HFI1_MMAP_TOKEN_SET(TYPE, type) | \
 134	HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
 135	HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
 136	HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
 137
 138#define dbg(fmt, ...)				\
 139	pr_info(fmt, ##__VA_ARGS__)
 140
 141static inline int is_valid_mmap(u64 token)
 142{
 143	return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
 144}
 145
 146static int hfi1_file_open(struct inode *inode, struct file *fp)
 147{
 148	struct hfi1_filedata *fd;
 149	struct hfi1_devdata *dd = container_of(inode->i_cdev,
 150					       struct hfi1_devdata,
 151					       user_cdev);
 152
 153	if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
 154		return -EINVAL;
 155
 156	if (!refcount_inc_not_zero(&dd->user_refcount))
 157		return -ENXIO;
 158
 159	/* The real work is performed later in assign_ctxt() */
 160
 161	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
 162
 163	if (!fd || init_srcu_struct(&fd->pq_srcu))
 164		goto nomem;
 165	spin_lock_init(&fd->pq_rcu_lock);
 166	spin_lock_init(&fd->tid_lock);
 167	spin_lock_init(&fd->invalid_lock);
 168	fd->rec_cpu_num = -1; /* no cpu affinity by default */
 169	fd->dd = dd;
 170	fp->private_data = fd;
 171	return 0;
 172nomem:
 173	kfree(fd);
 174	fp->private_data = NULL;
 175	if (refcount_dec_and_test(&dd->user_refcount))
 176		complete(&dd->user_comp);
 177	return -ENOMEM;
 178}
 179
 180static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
 181			    unsigned long arg)
 182{
 183	struct hfi1_filedata *fd = fp->private_data;
 184	struct hfi1_ctxtdata *uctxt = fd->uctxt;
 185	int ret = 0;
 186	int uval = 0;
 187
 188	hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
 189	if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
 190	    cmd != HFI1_IOCTL_GET_VERS &&
 191	    !uctxt)
 192		return -EINVAL;
 193
 194	switch (cmd) {
 195	case HFI1_IOCTL_ASSIGN_CTXT:
 196		ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
 197		break;
 198
 199	case HFI1_IOCTL_CTXT_INFO:
 200		ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
 201		break;
 202
 203	case HFI1_IOCTL_USER_INFO:
 204		ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
 205		break;
 206
 207	case HFI1_IOCTL_CREDIT_UPD:
 208		if (uctxt)
 209			sc_return_credits(uctxt->sc);
 210		break;
 211
 212	case HFI1_IOCTL_TID_UPDATE:
 213		ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
 214		break;
 215
 216	case HFI1_IOCTL_TID_FREE:
 217		ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
 218		break;
 219
 220	case HFI1_IOCTL_TID_INVAL_READ:
 221		ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
 222		break;
 223
 224	case HFI1_IOCTL_RECV_CTRL:
 225		ret = manage_rcvq(uctxt, fd->subctxt, arg);
 226		break;
 227
 228	case HFI1_IOCTL_POLL_TYPE:
 229		if (get_user(uval, (int __user *)arg))
 230			return -EFAULT;
 231		uctxt->poll_type = (typeof(uctxt->poll_type))uval;
 232		break;
 233
 234	case HFI1_IOCTL_ACK_EVENT:
 235		ret = user_event_ack(uctxt, fd->subctxt, arg);
 236		break;
 237
 238	case HFI1_IOCTL_SET_PKEY:
 239		ret = set_ctxt_pkey(uctxt, arg);
 240		break;
 241
 242	case HFI1_IOCTL_CTXT_RESET:
 243		ret = ctxt_reset(uctxt);
 244		break;
 245
 246	case HFI1_IOCTL_GET_VERS:
 247		uval = HFI1_USER_SWVERSION;
 248		if (put_user(uval, (int __user *)arg))
 249			return -EFAULT;
 250		break;
 251
 252	default:
 253		return -EINVAL;
 254	}
 255
 256	return ret;
 257}
 258
 259static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
 260{
 261	struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
 262	struct hfi1_user_sdma_pkt_q *pq;
 263	struct hfi1_user_sdma_comp_q *cq = fd->cq;
 264	int done = 0, reqs = 0;
 265	unsigned long dim = from->nr_segs;
 266	int idx;
 267
 268	if (!HFI1_CAP_IS_KSET(SDMA))
 269		return -EINVAL;
 270	if (!user_backed_iter(from))
 271		return -EINVAL;
 272	idx = srcu_read_lock(&fd->pq_srcu);
 273	pq = srcu_dereference(fd->pq, &fd->pq_srcu);
 274	if (!cq || !pq) {
 275		srcu_read_unlock(&fd->pq_srcu, idx);
 276		return -EIO;
 277	}
 278
 
 
 
 
 
 279	trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
 280
 281	if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
 282		srcu_read_unlock(&fd->pq_srcu, idx);
 283		return -ENOSPC;
 284	}
 285
 286	while (dim) {
 287		const struct iovec *iov = iter_iov(from);
 288		int ret;
 289		unsigned long count = 0;
 290
 291		ret = hfi1_user_sdma_process_request(
 292			fd, (struct iovec *)(iov + done),
 293			dim, &count);
 294		if (ret) {
 295			reqs = ret;
 296			break;
 297		}
 298		dim -= count;
 299		done += count;
 300		reqs++;
 301	}
 302
 303	srcu_read_unlock(&fd->pq_srcu, idx);
 304	return reqs;
 305}
 306
 307static inline void mmap_cdbg(u16 ctxt, u8 subctxt, u8 type, u8 mapio, u8 vmf,
 308			     u64 memaddr, void *memvirt, dma_addr_t memdma,
 309			     ssize_t memlen, struct vm_area_struct *vma)
 310{
 311	hfi1_cdbg(PROC,
 312		  "%u:%u type:%u io/vf/dma:%d/%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx",
 313		  ctxt, subctxt, type, mapio, vmf, !!memdma,
 314		  memaddr ?: (u64)memvirt, memlen,
 315		  vma->vm_end - vma->vm_start, vma->vm_flags);
 316}
 317
 318static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
 319{
 320	struct hfi1_filedata *fd = fp->private_data;
 321	struct hfi1_ctxtdata *uctxt = fd->uctxt;
 322	struct hfi1_devdata *dd;
 323	unsigned long flags;
 324	u64 token = vma->vm_pgoff << PAGE_SHIFT,
 325		memaddr = 0;
 326	void *memvirt = NULL;
 327	dma_addr_t memdma = 0;
 328	u8 subctxt, mapio = 0, vmf = 0, type;
 329	ssize_t memlen = 0;
 330	int ret = 0;
 331	u16 ctxt;
 332
 333	if (!is_valid_mmap(token) || !uctxt ||
 334	    !(vma->vm_flags & VM_SHARED)) {
 335		ret = -EINVAL;
 336		goto done;
 337	}
 338	dd = uctxt->dd;
 339	ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
 340	subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
 341	type = HFI1_MMAP_TOKEN_GET(TYPE, token);
 342	if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
 343		ret = -EINVAL;
 344		goto done;
 345	}
 346
 347	/*
 348	 * vm_pgoff is used as a buffer selector cookie.  Always mmap from
 349	 * the beginning.
 350	 */ 
 351	vma->vm_pgoff = 0;
 352	flags = vma->vm_flags;
 353
 354	switch (type) {
 355	case PIO_BUFS:
 356	case PIO_BUFS_SOP:
 357		memaddr = ((dd->physaddr + TXE_PIO_SEND) +
 358				/* chip pio base */
 359			   (uctxt->sc->hw_context * BIT(16))) +
 360				/* 64K PIO space / ctxt */
 361			(type == PIO_BUFS_SOP ?
 362				(TXE_PIO_SIZE / 2) : 0); /* sop? */
 363		/*
 364		 * Map only the amount allocated to the context, not the
 365		 * entire available context's PIO space.
 366		 */
 367		memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
 368		flags &= ~VM_MAYREAD;
 369		flags |= VM_DONTCOPY | VM_DONTEXPAND;
 370		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
 371		mapio = 1;
 372		break;
 373	case PIO_CRED: {
 374		u64 cr_page_offset;
 375		if (flags & VM_WRITE) {
 376			ret = -EPERM;
 377			goto done;
 378		}
 379		/*
 380		 * The credit return location for this context could be on the
 381		 * second or third page allocated for credit returns (if number
 382		 * of enabled contexts > 64 and 128 respectively).
 383		 */
 384		cr_page_offset = ((u64)uctxt->sc->hw_free -
 385			  	     (u64)dd->cr_base[uctxt->numa_id].va) &
 386				   PAGE_MASK;
 387		memvirt = dd->cr_base[uctxt->numa_id].va + cr_page_offset;
 388		memdma = dd->cr_base[uctxt->numa_id].dma + cr_page_offset;
 389		memlen = PAGE_SIZE;
 390		flags &= ~VM_MAYWRITE;
 391		flags |= VM_DONTCOPY | VM_DONTEXPAND;
 392		/*
 393		 * The driver has already allocated memory for credit
 394		 * returns and programmed it into the chip. Has that
 395		 * memory been flagged as non-cached?
 396		 */
 397		/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
 
 398		break;
 399	}
 400	case RCV_HDRQ:
 401		memlen = rcvhdrq_size(uctxt);
 402		memvirt = uctxt->rcvhdrq;
 403		memdma = uctxt->rcvhdrq_dma;
 404		break;
 405	case RCV_EGRBUF: {
 406		unsigned long vm_start_save;
 407		unsigned long vm_end_save;
 408		int i;
 409		/*
 410		 * The RcvEgr buffer need to be handled differently
 411		 * as multiple non-contiguous pages need to be mapped
 412		 * into the user process.
 413		 */
 414		memlen = uctxt->egrbufs.size;
 415		if ((vma->vm_end - vma->vm_start) != memlen) {
 416			dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
 417				   (vma->vm_end - vma->vm_start), memlen);
 418			ret = -EINVAL;
 419			goto done;
 420		}
 421		if (vma->vm_flags & VM_WRITE) {
 422			ret = -EPERM;
 423			goto done;
 424		}
 425		vm_flags_clear(vma, VM_MAYWRITE);
 426		/*
 427		 * Mmap multiple separate allocations into a single vma.  From
 428		 * here, dma_mmap_coherent() calls dma_direct_mmap(), which
 429		 * requires the mmap to exactly fill the vma starting at
 430		 * vma_start.  Adjust the vma start and end for each eager
 431		 * buffer segment mapped.  Restore the originals when done.
 432		 */
 433		vm_start_save = vma->vm_start;
 434		vm_end_save = vma->vm_end;
 435		vma->vm_end = vma->vm_start;
 436		for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
 437			memlen = uctxt->egrbufs.buffers[i].len;
 438			memvirt = uctxt->egrbufs.buffers[i].addr;
 439			memdma = uctxt->egrbufs.buffers[i].dma;
 440			vma->vm_end += memlen;
 441			mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr,
 442				  memvirt, memdma, memlen, vma);
 443			ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
 444						memvirt, memdma, memlen);
 445			if (ret < 0) {
 446				vma->vm_start = vm_start_save;
 447				vma->vm_end = vm_end_save;
 
 
 448				goto done;
 449			}
 450			vma->vm_start += memlen;
 451		}
 452		vma->vm_start = vm_start_save;
 453		vma->vm_end = vm_end_save;
 454		ret = 0;
 455		goto done;
 456	}
 457	case UREGS:
 458		/*
 459		 * Map only the page that contains this context's user
 460		 * registers.
 461		 */
 462		memaddr = (unsigned long)
 463			(dd->physaddr + RXE_PER_CONTEXT_USER)
 464			+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
 465		/*
 466		 * TidFlow table is on the same page as the rest of the
 467		 * user registers.
 468		 */
 469		memlen = PAGE_SIZE;
 470		flags |= VM_DONTCOPY | VM_DONTEXPAND;
 471		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 472		mapio = 1;
 473		break;
 474	case EVENTS:
 475		/*
 476		 * Use the page where this context's flags are. User level
 477		 * knows where it's own bitmap is within the page.
 478		 */
 479		memaddr = (unsigned long)
 480			(dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
 481		memlen = PAGE_SIZE;
 482		/*
 483		 * v3.7 removes VM_RESERVED but the effect is kept by
 484		 * using VM_IO.
 485		 */
 486		flags |= VM_IO | VM_DONTEXPAND;
 487		vmf = 1;
 488		break;
 489	case STATUS:
 490		if (flags & VM_WRITE) {
 491			ret = -EPERM;
 492			goto done;
 493		}
 494		memaddr = kvirt_to_phys((void *)dd->status);
 495		memlen = PAGE_SIZE;
 496		flags |= VM_IO | VM_DONTEXPAND;
 497		break;
 498	case RTAIL:
 499		if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
 500			/*
 501			 * If the memory allocation failed, the context alloc
 502			 * also would have failed, so we would never get here
 503			 */
 504			ret = -EINVAL;
 505			goto done;
 506		}
 507		if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
 508			ret = -EPERM;
 509			goto done;
 510		}
 511		memlen = PAGE_SIZE;
 512		memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
 513		memdma = uctxt->rcvhdrqtailaddr_dma;
 514		flags &= ~VM_MAYWRITE;
 515		break;
 516	case SUBCTXT_UREGS:
 517		memaddr = (u64)uctxt->subctxt_uregbase;
 518		memlen = PAGE_SIZE;
 519		flags |= VM_IO | VM_DONTEXPAND;
 520		vmf = 1;
 521		break;
 522	case SUBCTXT_RCV_HDRQ:
 523		memaddr = (u64)uctxt->subctxt_rcvhdr_base;
 524		memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
 525		flags |= VM_IO | VM_DONTEXPAND;
 526		vmf = 1;
 527		break;
 528	case SUBCTXT_EGRBUF:
 529		memaddr = (u64)uctxt->subctxt_rcvegrbuf;
 530		memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
 531		flags |= VM_IO | VM_DONTEXPAND;
 532		flags &= ~VM_MAYWRITE;
 533		vmf = 1;
 534		break;
 535	case SDMA_COMP: {
 536		struct hfi1_user_sdma_comp_q *cq = fd->cq;
 537
 538		if (!cq) {
 539			ret = -EFAULT;
 540			goto done;
 541		}
 542		memaddr = (u64)cq->comps;
 543		memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
 544		flags |= VM_IO | VM_DONTEXPAND;
 545		vmf = 1;
 546		break;
 547	}
 548	default:
 549		ret = -EINVAL;
 550		break;
 551	}
 552
 553	if ((vma->vm_end - vma->vm_start) != memlen) {
 554		hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
 555			  uctxt->ctxt, fd->subctxt,
 556			  (vma->vm_end - vma->vm_start), memlen);
 557		ret = -EINVAL;
 558		goto done;
 559	}
 560
 561	vm_flags_reset(vma, flags);
 562	mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr, memvirt, memdma, 
 563		  memlen, vma);
 
 
 564	if (vmf) {
 565		vma->vm_pgoff = PFN_DOWN(memaddr);
 566		vma->vm_ops = &vm_ops;
 567		ret = 0;
 568	} else if (memdma) {
 569		ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
 570					memvirt, memdma, memlen);
 571	} else if (mapio) {
 572		ret = io_remap_pfn_range(vma, vma->vm_start,
 573					 PFN_DOWN(memaddr),
 574					 memlen,
 575					 vma->vm_page_prot);
 576	} else if (memvirt) {
 577		ret = remap_pfn_range(vma, vma->vm_start,
 578				      PFN_DOWN(__pa(memvirt)),
 579				      memlen,
 580				      vma->vm_page_prot);
 581	} else {
 582		ret = remap_pfn_range(vma, vma->vm_start,
 583				      PFN_DOWN(memaddr),
 584				      memlen,
 585				      vma->vm_page_prot);
 586	}
 587done:
 588	return ret;
 589}
 590
 591/*
 592 * Local (non-chip) user memory is not mapped right away but as it is
 593 * accessed by the user-level code.
 594 */
 595static vm_fault_t vma_fault(struct vm_fault *vmf)
 596{
 597	struct page *page;
 598
 599	page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
 600	if (!page)
 601		return VM_FAULT_SIGBUS;
 602
 603	get_page(page);
 604	vmf->page = page;
 605
 606	return 0;
 607}
 608
 609static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
 610{
 611	struct hfi1_ctxtdata *uctxt;
 612	__poll_t pollflag;
 613
 614	uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
 615	if (!uctxt)
 616		pollflag = EPOLLERR;
 617	else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
 618		pollflag = poll_urgent(fp, pt);
 619	else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
 620		pollflag = poll_next(fp, pt);
 621	else /* invalid */
 622		pollflag = EPOLLERR;
 623
 624	return pollflag;
 625}
 626
 627static int hfi1_file_close(struct inode *inode, struct file *fp)
 628{
 629	struct hfi1_filedata *fdata = fp->private_data;
 630	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
 631	struct hfi1_devdata *dd = container_of(inode->i_cdev,
 632					       struct hfi1_devdata,
 633					       user_cdev);
 634	unsigned long flags, *ev;
 635
 636	fp->private_data = NULL;
 637
 638	if (!uctxt)
 639		goto done;
 640
 641	hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
 642
 643	flush_wc();
 644	/* drain user sdma queue */
 645	hfi1_user_sdma_free_queues(fdata, uctxt);
 646
 647	/* release the cpu */
 648	hfi1_put_proc_affinity(fdata->rec_cpu_num);
 649
 650	/* clean up rcv side */
 651	hfi1_user_exp_rcv_free(fdata);
 652
 653	/*
 654	 * fdata->uctxt is used in the above cleanup.  It is not ready to be
 655	 * removed until here.
 656	 */
 657	fdata->uctxt = NULL;
 658	hfi1_rcd_put(uctxt);
 659
 660	/*
 661	 * Clear any left over, unhandled events so the next process that
 662	 * gets this context doesn't get confused.
 663	 */
 664	ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
 665	*ev = 0;
 666
 667	spin_lock_irqsave(&dd->uctxt_lock, flags);
 668	__clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
 669	if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
 670		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 671		goto done;
 672	}
 673	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 674
 675	/*
 676	 * Disable receive context and interrupt available, reset all
 677	 * RcvCtxtCtrl bits to default values.
 678	 */
 679	hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
 680		     HFI1_RCVCTRL_TIDFLOW_DIS |
 681		     HFI1_RCVCTRL_INTRAVAIL_DIS |
 682		     HFI1_RCVCTRL_TAILUPD_DIS |
 683		     HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
 684		     HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
 685		     HFI1_RCVCTRL_NO_EGR_DROP_DIS |
 686		     HFI1_RCVCTRL_URGENT_DIS, uctxt);
 687	/* Clear the context's J_KEY */
 688	hfi1_clear_ctxt_jkey(dd, uctxt);
 689	/*
 690	 * If a send context is allocated, reset context integrity
 691	 * checks to default and disable the send context.
 692	 */
 693	if (uctxt->sc) {
 694		sc_disable(uctxt->sc);
 695		set_pio_integrity(uctxt->sc);
 696	}
 697
 698	hfi1_free_ctxt_rcv_groups(uctxt);
 699	hfi1_clear_ctxt_pkey(dd, uctxt);
 700
 701	uctxt->event_flags = 0;
 702
 703	deallocate_ctxt(uctxt);
 704done:
 705
 706	if (refcount_dec_and_test(&dd->user_refcount))
 707		complete(&dd->user_comp);
 708
 709	cleanup_srcu_struct(&fdata->pq_srcu);
 710	kfree(fdata);
 711	return 0;
 712}
 713
 714/*
 715 * Convert kernel *virtual* addresses to physical addresses.
 716 * This is used to vmalloc'ed addresses.
 717 */
 718static u64 kvirt_to_phys(void *addr)
 719{
 720	struct page *page;
 721	u64 paddr = 0;
 722
 723	page = vmalloc_to_page(addr);
 724	if (page)
 725		paddr = page_to_pfn(page) << PAGE_SHIFT;
 726
 727	return paddr;
 728}
 729
 730/**
 731 * complete_subctxt - complete sub-context info
 732 * @fd: valid filedata pointer
 733 *
 734 * Sub-context info can only be set up after the base context
 735 * has been completed.  This is indicated by the clearing of the
 736 * HFI1_CTXT_BASE_UINIT bit.
 737 *
 738 * Wait for the bit to be cleared, and then complete the subcontext
 739 * initialization.
 740 *
 741 */
 742static int complete_subctxt(struct hfi1_filedata *fd)
 743{
 744	int ret;
 745	unsigned long flags;
 746
 747	/*
 748	 * sub-context info can only be set up after the base context
 749	 * has been completed.
 750	 */
 751	ret = wait_event_interruptible(
 752		fd->uctxt->wait,
 753		!test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
 754
 755	if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
 756		ret = -ENOMEM;
 757
 758	/* Finish the sub-context init */
 759	if (!ret) {
 760		fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
 761		ret = init_user_ctxt(fd, fd->uctxt);
 762	}
 763
 764	if (ret) {
 765		spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
 766		__clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
 767		spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
 768		hfi1_rcd_put(fd->uctxt);
 769		fd->uctxt = NULL;
 770	}
 771
 772	return ret;
 773}
 774
 775static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
 776{
 777	int ret;
 778	unsigned int swmajor;
 779	struct hfi1_ctxtdata *uctxt = NULL;
 780	struct hfi1_user_info uinfo;
 781
 782	if (fd->uctxt)
 783		return -EINVAL;
 784
 785	if (sizeof(uinfo) != len)
 786		return -EINVAL;
 787
 788	if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
 789		return -EFAULT;
 790
 791	swmajor = uinfo.userversion >> 16;
 792	if (swmajor != HFI1_USER_SWMAJOR)
 793		return -ENODEV;
 794
 795	if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
 796		return -EINVAL;
 797
 798	/*
 799	 * Acquire the mutex to protect against multiple creations of what
 800	 * could be a shared base context.
 801	 */
 802	mutex_lock(&hfi1_mutex);
 803	/*
 804	 * Get a sub context if available  (fd->uctxt will be set).
 805	 * ret < 0 error, 0 no context, 1 sub-context found
 806	 */
 807	ret = find_sub_ctxt(fd, &uinfo);
 808
 809	/*
 810	 * Allocate a base context if context sharing is not required or a
 811	 * sub context wasn't found.
 812	 */
 813	if (!ret)
 814		ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
 815
 816	mutex_unlock(&hfi1_mutex);
 817
 818	/* Depending on the context type, finish the appropriate init */
 819	switch (ret) {
 820	case 0:
 821		ret = setup_base_ctxt(fd, uctxt);
 822		if (ret)
 823			deallocate_ctxt(uctxt);
 824		break;
 825	case 1:
 826		ret = complete_subctxt(fd);
 827		break;
 828	default:
 829		break;
 830	}
 831
 832	return ret;
 833}
 834
 835/**
 836 * match_ctxt - match context
 837 * @fd: valid filedata pointer
 838 * @uinfo: user info to compare base context with
 839 * @uctxt: context to compare uinfo to.
 840 *
 841 * Compare the given context with the given information to see if it
 842 * can be used for a sub context.
 843 */
 844static int match_ctxt(struct hfi1_filedata *fd,
 845		      const struct hfi1_user_info *uinfo,
 846		      struct hfi1_ctxtdata *uctxt)
 847{
 848	struct hfi1_devdata *dd = fd->dd;
 849	unsigned long flags;
 850	u16 subctxt;
 851
 852	/* Skip dynamically allocated kernel contexts */
 853	if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
 854		return 0;
 855
 856	/* Skip ctxt if it doesn't match the requested one */
 857	if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
 858	    uctxt->jkey != generate_jkey(current_uid()) ||
 859	    uctxt->subctxt_id != uinfo->subctxt_id ||
 860	    uctxt->subctxt_cnt != uinfo->subctxt_cnt)
 861		return 0;
 862
 863	/* Verify the sharing process matches the base */
 864	if (uctxt->userversion != uinfo->userversion)
 865		return -EINVAL;
 866
 867	/* Find an unused sub context */
 868	spin_lock_irqsave(&dd->uctxt_lock, flags);
 869	if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
 870		/* context is being closed, do not use */
 871		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 872		return 0;
 873	}
 874
 875	subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
 876				      HFI1_MAX_SHARED_CTXTS);
 877	if (subctxt >= uctxt->subctxt_cnt) {
 878		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 879		return -EBUSY;
 880	}
 881
 882	fd->subctxt = subctxt;
 883	__set_bit(fd->subctxt, uctxt->in_use_ctxts);
 884	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 885
 886	fd->uctxt = uctxt;
 887	hfi1_rcd_get(uctxt);
 888
 889	return 1;
 890}
 891
 892/**
 893 * find_sub_ctxt - fund sub-context
 894 * @fd: valid filedata pointer
 895 * @uinfo: matching info to use to find a possible context to share.
 896 *
 897 * The hfi1_mutex must be held when this function is called.  It is
 898 * necessary to ensure serialized creation of shared contexts.
 899 *
 900 * Return:
 901 *    0      No sub-context found
 902 *    1      Subcontext found and allocated
 903 *    errno  EINVAL (incorrect parameters)
 904 *           EBUSY (all sub contexts in use)
 905 */
 906static int find_sub_ctxt(struct hfi1_filedata *fd,
 907			 const struct hfi1_user_info *uinfo)
 908{
 909	struct hfi1_ctxtdata *uctxt;
 910	struct hfi1_devdata *dd = fd->dd;
 911	u16 i;
 912	int ret;
 913
 914	if (!uinfo->subctxt_cnt)
 915		return 0;
 916
 917	for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
 918		uctxt = hfi1_rcd_get_by_index(dd, i);
 919		if (uctxt) {
 920			ret = match_ctxt(fd, uinfo, uctxt);
 921			hfi1_rcd_put(uctxt);
 922			/* value of != 0 will return */
 923			if (ret)
 924				return ret;
 925		}
 926	}
 927
 928	return 0;
 929}
 930
 931static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
 932			 struct hfi1_user_info *uinfo,
 933			 struct hfi1_ctxtdata **rcd)
 934{
 935	struct hfi1_ctxtdata *uctxt;
 936	int ret, numa;
 937
 938	if (dd->flags & HFI1_FROZEN) {
 939		/*
 940		 * Pick an error that is unique from all other errors
 941		 * that are returned so the user process knows that
 942		 * it tried to allocate while the SPC was frozen.  It
 943		 * it should be able to retry with success in a short
 944		 * while.
 945		 */
 946		return -EIO;
 947	}
 948
 949	if (!dd->freectxts)
 950		return -EBUSY;
 951
 952	/*
 953	 * If we don't have a NUMA node requested, preference is towards
 954	 * device NUMA node.
 955	 */
 956	fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
 957	if (fd->rec_cpu_num != -1)
 958		numa = cpu_to_node(fd->rec_cpu_num);
 959	else
 960		numa = numa_node_id();
 961	ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
 962	if (ret < 0) {
 963		dd_dev_err(dd, "user ctxtdata allocation failed\n");
 964		return ret;
 965	}
 966	hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
 967		  uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
 968		  uctxt->numa_id);
 969
 970	/*
 971	 * Allocate and enable a PIO send context.
 972	 */
 973	uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
 974	if (!uctxt->sc) {
 975		ret = -ENOMEM;
 976		goto ctxdata_free;
 977	}
 978	hfi1_cdbg(PROC, "allocated send context %u(%u)", uctxt->sc->sw_index,
 979		  uctxt->sc->hw_context);
 980	ret = sc_enable(uctxt->sc);
 981	if (ret)
 982		goto ctxdata_free;
 983
 984	/*
 985	 * Setup sub context information if the user-level has requested
 986	 * sub contexts.
 987	 * This has to be done here so the rest of the sub-contexts find the
 988	 * proper base context.
 989	 * NOTE: _set_bit() can be used here because the context creation is
 990	 * protected by the mutex (rather than the spin_lock), and will be the
 991	 * very first instance of this context.
 992	 */
 993	__set_bit(0, uctxt->in_use_ctxts);
 994	if (uinfo->subctxt_cnt)
 995		init_subctxts(uctxt, uinfo);
 996	uctxt->userversion = uinfo->userversion;
 997	uctxt->flags = hfi1_cap_mask; /* save current flag state */
 998	init_waitqueue_head(&uctxt->wait);
 999	strscpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1000	memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1001	uctxt->jkey = generate_jkey(current_uid());
1002	hfi1_stats.sps_ctxts++;
1003	/*
1004	 * Disable ASPM when there are open user/PSM contexts to avoid
1005	 * issues with ASPM L1 exit latency
1006	 */
1007	if (dd->freectxts-- == dd->num_user_contexts)
1008		aspm_disable_all(dd);
1009
1010	*rcd = uctxt;
1011
1012	return 0;
1013
1014ctxdata_free:
1015	hfi1_free_ctxt(uctxt);
1016	return ret;
1017}
1018
1019static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1020{
1021	mutex_lock(&hfi1_mutex);
1022	hfi1_stats.sps_ctxts--;
1023	if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1024		aspm_enable_all(uctxt->dd);
1025	mutex_unlock(&hfi1_mutex);
1026
1027	hfi1_free_ctxt(uctxt);
1028}
1029
1030static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1031			  const struct hfi1_user_info *uinfo)
1032{
1033	uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1034	uctxt->subctxt_id = uinfo->subctxt_id;
1035	set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1036}
1037
1038static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1039{
1040	int ret = 0;
1041	u16 num_subctxts = uctxt->subctxt_cnt;
1042
1043	uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1044	if (!uctxt->subctxt_uregbase)
1045		return -ENOMEM;
1046
1047	/* We can take the size of the RcvHdr Queue from the master */
1048	uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1049						  num_subctxts);
1050	if (!uctxt->subctxt_rcvhdr_base) {
1051		ret = -ENOMEM;
1052		goto bail_ureg;
1053	}
1054
1055	uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1056						num_subctxts);
1057	if (!uctxt->subctxt_rcvegrbuf) {
1058		ret = -ENOMEM;
1059		goto bail_rhdr;
1060	}
1061
1062	return 0;
1063
1064bail_rhdr:
1065	vfree(uctxt->subctxt_rcvhdr_base);
1066	uctxt->subctxt_rcvhdr_base = NULL;
1067bail_ureg:
1068	vfree(uctxt->subctxt_uregbase);
1069	uctxt->subctxt_uregbase = NULL;
1070
1071	return ret;
1072}
1073
1074static void user_init(struct hfi1_ctxtdata *uctxt)
1075{
1076	unsigned int rcvctrl_ops = 0;
1077
1078	/* initialize poll variables... */
1079	uctxt->urgent = 0;
1080	uctxt->urgent_poll = 0;
1081
1082	/*
1083	 * Now enable the ctxt for receive.
1084	 * For chips that are set to DMA the tail register to memory
1085	 * when they change (and when the update bit transitions from
1086	 * 0 to 1.  So for those chips, we turn it off and then back on.
1087	 * This will (very briefly) affect any other open ctxts, but the
1088	 * duration is very short, and therefore isn't an issue.  We
1089	 * explicitly set the in-memory tail copy to 0 beforehand, so we
1090	 * don't have to wait to be sure the DMA update has happened
1091	 * (chip resets head/tail to 0 on transition to enable).
1092	 */
1093	if (hfi1_rcvhdrtail_kvaddr(uctxt))
1094		clear_rcvhdrtail(uctxt);
1095
1096	/* Setup J_KEY before enabling the context */
1097	hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1098
1099	rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1100	rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1101	if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1102		rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1103	/*
1104	 * Ignore the bit in the flags for now until proper
1105	 * support for multiple packet per rcv array entry is
1106	 * added.
1107	 */
1108	if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1109		rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1110	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1111		rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1112	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1113		rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1114	/*
1115	 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1116	 * We can't rely on the correct value to be set from prior
1117	 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1118	 * for both cases.
1119	 */
1120	if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1121		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1122	else
1123		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1124	hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1125}
1126
1127static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1128{
1129	struct hfi1_ctxt_info cinfo;
1130	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1131
1132	if (sizeof(cinfo) != len)
1133		return -EINVAL;
1134
1135	memset(&cinfo, 0, sizeof(cinfo));
1136	cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1137				HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1138			HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1139			HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1140	/* adjust flag if this fd is not able to cache */
1141	if (!fd->use_mn)
1142		cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1143
1144	cinfo.num_active = hfi1_count_active_units();
1145	cinfo.unit = uctxt->dd->unit;
1146	cinfo.ctxt = uctxt->ctxt;
1147	cinfo.subctxt = fd->subctxt;
1148	cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1149				uctxt->dd->rcv_entries.group_size) +
1150		uctxt->expected_count;
1151	cinfo.credits = uctxt->sc->credits;
1152	cinfo.numa_node = uctxt->numa_id;
1153	cinfo.rec_cpu = fd->rec_cpu_num;
1154	cinfo.send_ctxt = uctxt->sc->hw_context;
1155
1156	cinfo.egrtids = uctxt->egrbufs.alloced;
1157	cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1158	cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1159	cinfo.sdma_ring_size = fd->cq->nentries;
1160	cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1161
1162	trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1163	if (copy_to_user((void __user *)arg, &cinfo, len))
1164		return -EFAULT;
1165
1166	return 0;
1167}
1168
1169static int init_user_ctxt(struct hfi1_filedata *fd,
1170			  struct hfi1_ctxtdata *uctxt)
1171{
1172	int ret;
1173
1174	ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1175	if (ret)
1176		return ret;
1177
1178	ret = hfi1_user_exp_rcv_init(fd, uctxt);
1179	if (ret)
1180		hfi1_user_sdma_free_queues(fd, uctxt);
1181
1182	return ret;
1183}
1184
1185static int setup_base_ctxt(struct hfi1_filedata *fd,
1186			   struct hfi1_ctxtdata *uctxt)
1187{
1188	struct hfi1_devdata *dd = uctxt->dd;
1189	int ret = 0;
1190
1191	hfi1_init_ctxt(uctxt->sc);
1192
1193	/* Now allocate the RcvHdr queue and eager buffers. */
1194	ret = hfi1_create_rcvhdrq(dd, uctxt);
1195	if (ret)
1196		goto done;
1197
1198	ret = hfi1_setup_eagerbufs(uctxt);
1199	if (ret)
1200		goto done;
1201
1202	/* If sub-contexts are enabled, do the appropriate setup */
1203	if (uctxt->subctxt_cnt)
1204		ret = setup_subctxt(uctxt);
1205	if (ret)
1206		goto done;
1207
1208	ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1209	if (ret)
1210		goto done;
1211
1212	ret = init_user_ctxt(fd, uctxt);
1213	if (ret) {
1214		hfi1_free_ctxt_rcv_groups(uctxt);
1215		goto done;
1216	}
1217
1218	user_init(uctxt);
1219
1220	/* Now that the context is set up, the fd can get a reference. */
1221	fd->uctxt = uctxt;
1222	hfi1_rcd_get(uctxt);
1223
1224done:
1225	if (uctxt->subctxt_cnt) {
1226		/*
1227		 * On error, set the failed bit so sub-contexts will clean up
1228		 * correctly.
1229		 */
1230		if (ret)
1231			set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1232
1233		/*
1234		 * Base context is done (successfully or not), notify anybody
1235		 * using a sub-context that is waiting for this completion.
1236		 */
1237		clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1238		wake_up(&uctxt->wait);
1239	}
1240
1241	return ret;
1242}
1243
1244static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1245{
1246	struct hfi1_base_info binfo;
1247	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1248	struct hfi1_devdata *dd = uctxt->dd;
1249	unsigned offset;
1250
1251	trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1252
1253	if (sizeof(binfo) != len)
1254		return -EINVAL;
1255
1256	memset(&binfo, 0, sizeof(binfo));
1257	binfo.hw_version = dd->revision;
1258	binfo.sw_version = HFI1_USER_SWVERSION;
1259	binfo.bthqp = RVT_KDETH_QP_PREFIX;
1260	binfo.jkey = uctxt->jkey;
1261	/*
1262	 * If more than 64 contexts are enabled the allocated credit
1263	 * return will span two or three contiguous pages. Since we only
1264	 * map the page containing the context's credit return address,
1265	 * we need to calculate the offset in the proper page.
1266	 */
1267	offset = ((u64)uctxt->sc->hw_free -
1268		  (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1269	binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1270						fd->subctxt, offset);
1271	binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1272					    fd->subctxt,
1273					    uctxt->sc->base_addr);
1274	binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1275						uctxt->ctxt,
1276						fd->subctxt,
1277						uctxt->sc->base_addr);
1278	binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1279					       fd->subctxt,
1280					       uctxt->rcvhdrq);
1281	binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1282					       fd->subctxt,
1283					       uctxt->egrbufs.rcvtids[0].dma);
1284	binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1285						  fd->subctxt, 0);
1286	/*
1287	 * user regs are at
1288	 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1289	 */
1290	binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1291					     fd->subctxt, 0);
1292	offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1293				sizeof(*dd->events));
1294	binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1295					       fd->subctxt,
1296					       offset);
1297	binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1298					       fd->subctxt,
1299					       dd->status);
1300	if (HFI1_CAP_IS_USET(DMA_RTAIL))
1301		binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1302							fd->subctxt, 0);
1303	if (uctxt->subctxt_cnt) {
1304		binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1305							 uctxt->ctxt,
1306							 fd->subctxt, 0);
1307		binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1308							  uctxt->ctxt,
1309							  fd->subctxt, 0);
1310		binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1311							  uctxt->ctxt,
1312							  fd->subctxt, 0);
1313	}
1314
1315	if (copy_to_user((void __user *)arg, &binfo, len))
1316		return -EFAULT;
1317
1318	return 0;
1319}
1320
1321/**
1322 * user_exp_rcv_setup - Set up the given tid rcv list
1323 * @fd: file data of the current driver instance
1324 * @arg: ioctl argumnent for user space information
1325 * @len: length of data structure associated with ioctl command
1326 *
1327 * Wrapper to validate ioctl information before doing _rcv_setup.
1328 *
1329 */
1330static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1331			      u32 len)
1332{
1333	int ret;
1334	unsigned long addr;
1335	struct hfi1_tid_info tinfo;
1336
1337	if (sizeof(tinfo) != len)
1338		return -EINVAL;
1339
1340	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1341		return -EFAULT;
1342
1343	ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1344	if (!ret) {
1345		/*
1346		 * Copy the number of tidlist entries we used
1347		 * and the length of the buffer we registered.
1348		 */
1349		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1350		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1351				 sizeof(tinfo.tidcnt)))
1352			ret = -EFAULT;
1353
1354		addr = arg + offsetof(struct hfi1_tid_info, length);
1355		if (!ret && copy_to_user((void __user *)addr, &tinfo.length,
1356				 sizeof(tinfo.length)))
1357			ret = -EFAULT;
1358
1359		if (ret)
1360			hfi1_user_exp_rcv_invalid(fd, &tinfo);
1361	}
1362
1363	return ret;
1364}
1365
1366/**
1367 * user_exp_rcv_clear - Clear the given tid rcv list
1368 * @fd: file data of the current driver instance
1369 * @arg: ioctl argumnent for user space information
1370 * @len: length of data structure associated with ioctl command
1371 *
1372 * The hfi1_user_exp_rcv_clear() can be called from the error path.  Because
1373 * of this, we need to use this wrapper to copy the user space information
1374 * before doing the clear.
1375 */
1376static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1377			      u32 len)
1378{
1379	int ret;
1380	unsigned long addr;
1381	struct hfi1_tid_info tinfo;
1382
1383	if (sizeof(tinfo) != len)
1384		return -EINVAL;
1385
1386	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1387		return -EFAULT;
1388
1389	ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1390	if (!ret) {
1391		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1392		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1393				 sizeof(tinfo.tidcnt)))
1394			return -EFAULT;
1395	}
1396
1397	return ret;
1398}
1399
1400/**
1401 * user_exp_rcv_invalid - Invalidate the given tid rcv list
1402 * @fd: file data of the current driver instance
1403 * @arg: ioctl argumnent for user space information
1404 * @len: length of data structure associated with ioctl command
1405 *
1406 * Wrapper to validate ioctl information before doing _rcv_invalid.
1407 *
1408 */
1409static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1410				u32 len)
1411{
1412	int ret;
1413	unsigned long addr;
1414	struct hfi1_tid_info tinfo;
1415
1416	if (sizeof(tinfo) != len)
1417		return -EINVAL;
1418
1419	if (!fd->invalid_tids)
1420		return -EINVAL;
1421
1422	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1423		return -EFAULT;
1424
1425	ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1426	if (ret)
1427		return ret;
1428
1429	addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1430	if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1431			 sizeof(tinfo.tidcnt)))
1432		ret = -EFAULT;
1433
1434	return ret;
1435}
1436
1437static __poll_t poll_urgent(struct file *fp,
1438				struct poll_table_struct *pt)
1439{
1440	struct hfi1_filedata *fd = fp->private_data;
1441	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1442	struct hfi1_devdata *dd = uctxt->dd;
1443	__poll_t pollflag;
1444
1445	poll_wait(fp, &uctxt->wait, pt);
1446
1447	spin_lock_irq(&dd->uctxt_lock);
1448	if (uctxt->urgent != uctxt->urgent_poll) {
1449		pollflag = EPOLLIN | EPOLLRDNORM;
1450		uctxt->urgent_poll = uctxt->urgent;
1451	} else {
1452		pollflag = 0;
1453		set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1454	}
1455	spin_unlock_irq(&dd->uctxt_lock);
1456
1457	return pollflag;
1458}
1459
1460static __poll_t poll_next(struct file *fp,
1461			      struct poll_table_struct *pt)
1462{
1463	struct hfi1_filedata *fd = fp->private_data;
1464	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1465	struct hfi1_devdata *dd = uctxt->dd;
1466	__poll_t pollflag;
1467
1468	poll_wait(fp, &uctxt->wait, pt);
1469
1470	spin_lock_irq(&dd->uctxt_lock);
1471	if (hdrqempty(uctxt)) {
1472		set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1473		hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1474		pollflag = 0;
1475	} else {
1476		pollflag = EPOLLIN | EPOLLRDNORM;
1477	}
1478	spin_unlock_irq(&dd->uctxt_lock);
1479
1480	return pollflag;
1481}
1482
1483/*
1484 * Find all user contexts in use, and set the specified bit in their
1485 * event mask.
1486 * See also find_ctxt() for a similar use, that is specific to send buffers.
1487 */
1488int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1489{
1490	struct hfi1_ctxtdata *uctxt;
1491	struct hfi1_devdata *dd = ppd->dd;
1492	u16 ctxt;
1493
1494	if (!dd->events)
1495		return -EINVAL;
1496
1497	for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1498	     ctxt++) {
1499		uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1500		if (uctxt) {
1501			unsigned long *evs;
1502			int i;
1503			/*
1504			 * subctxt_cnt is 0 if not shared, so do base
1505			 * separately, first, then remaining subctxt, if any
1506			 */
1507			evs = dd->events + uctxt_offset(uctxt);
1508			set_bit(evtbit, evs);
1509			for (i = 1; i < uctxt->subctxt_cnt; i++)
1510				set_bit(evtbit, evs + i);
1511			hfi1_rcd_put(uctxt);
1512		}
1513	}
1514
1515	return 0;
1516}
1517
1518/**
1519 * manage_rcvq - manage a context's receive queue
1520 * @uctxt: the context
1521 * @subctxt: the sub-context
1522 * @arg: start/stop action to carry out
1523 *
1524 * start_stop == 0 disables receive on the context, for use in queue
1525 * overflow conditions.  start_stop==1 re-enables, to be used to
1526 * re-init the software copy of the head register
1527 */
1528static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1529		       unsigned long arg)
1530{
1531	struct hfi1_devdata *dd = uctxt->dd;
1532	unsigned int rcvctrl_op;
1533	int start_stop;
1534
1535	if (subctxt)
1536		return 0;
1537
1538	if (get_user(start_stop, (int __user *)arg))
1539		return -EFAULT;
1540
1541	/* atomically clear receive enable ctxt. */
1542	if (start_stop) {
1543		/*
1544		 * On enable, force in-memory copy of the tail register to
1545		 * 0, so that protocol code doesn't have to worry about
1546		 * whether or not the chip has yet updated the in-memory
1547		 * copy or not on return from the system call. The chip
1548		 * always resets it's tail register back to 0 on a
1549		 * transition from disabled to enabled.
1550		 */
1551		if (hfi1_rcvhdrtail_kvaddr(uctxt))
1552			clear_rcvhdrtail(uctxt);
1553		rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1554	} else {
1555		rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1556	}
1557	hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1558	/* always; new head should be equal to new tail; see above */
1559
1560	return 0;
1561}
1562
1563/*
1564 * clear the event notifier events for this context.
1565 * User process then performs actions appropriate to bit having been
1566 * set, if desired, and checks again in future.
1567 */
1568static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1569			  unsigned long arg)
1570{
1571	int i;
1572	struct hfi1_devdata *dd = uctxt->dd;
1573	unsigned long *evs;
1574	unsigned long events;
1575
1576	if (!dd->events)
1577		return 0;
1578
1579	if (get_user(events, (unsigned long __user *)arg))
1580		return -EFAULT;
1581
1582	evs = dd->events + uctxt_offset(uctxt) + subctxt;
1583
1584	for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1585		if (!test_bit(i, &events))
1586			continue;
1587		clear_bit(i, evs);
1588	}
1589	return 0;
1590}
1591
1592static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1593{
1594	int i;
1595	struct hfi1_pportdata *ppd = uctxt->ppd;
1596	struct hfi1_devdata *dd = uctxt->dd;
1597	u16 pkey;
1598
1599	if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1600		return -EPERM;
1601
1602	if (get_user(pkey, (u16 __user *)arg))
1603		return -EFAULT;
1604
1605	if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1606		return -EINVAL;
1607
1608	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1609		if (pkey == ppd->pkeys[i])
1610			return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1611
1612	return -ENOENT;
1613}
1614
1615/**
1616 * ctxt_reset - Reset the user context
1617 * @uctxt: valid user context
1618 */
1619static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1620{
1621	struct send_context *sc;
1622	struct hfi1_devdata *dd;
1623	int ret = 0;
1624
1625	if (!uctxt || !uctxt->dd || !uctxt->sc)
1626		return -EINVAL;
1627
1628	/*
1629	 * There is no protection here. User level has to guarantee that
1630	 * no one will be writing to the send context while it is being
1631	 * re-initialized.  If user level breaks that guarantee, it will
1632	 * break it's own context and no one else's.
1633	 */
1634	dd = uctxt->dd;
1635	sc = uctxt->sc;
1636
1637	/*
1638	 * Wait until the interrupt handler has marked the context as
1639	 * halted or frozen. Report error if we time out.
1640	 */
1641	wait_event_interruptible_timeout(
1642		sc->halt_wait, (sc->flags & SCF_HALTED),
1643		msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1644	if (!(sc->flags & SCF_HALTED))
1645		return -ENOLCK;
1646
1647	/*
1648	 * If the send context was halted due to a Freeze, wait until the
1649	 * device has been "unfrozen" before resetting the context.
1650	 */
1651	if (sc->flags & SCF_FROZEN) {
1652		wait_event_interruptible_timeout(
1653			dd->event_queue,
1654			!(READ_ONCE(dd->flags) & HFI1_FROZEN),
1655			msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1656		if (dd->flags & HFI1_FROZEN)
1657			return -ENOLCK;
1658
1659		if (dd->flags & HFI1_FORCED_FREEZE)
1660			/*
1661			 * Don't allow context reset if we are into
1662			 * forced freeze
1663			 */
1664			return -ENODEV;
1665
1666		sc_disable(sc);
1667		ret = sc_enable(sc);
1668		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1669	} else {
1670		ret = sc_restart(sc);
1671	}
1672	if (!ret)
1673		sc_return_credits(sc);
1674
1675	return ret;
1676}
1677
1678static void user_remove(struct hfi1_devdata *dd)
1679{
1680
1681	hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1682}
1683
1684static int user_add(struct hfi1_devdata *dd)
1685{
1686	char name[10];
1687	int ret;
1688
1689	snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1690	ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1691			     &dd->user_cdev, &dd->user_device,
1692			     true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1693	if (ret)
1694		user_remove(dd);
1695
1696	return ret;
1697}
1698
1699/*
1700 * Create per-unit files in /dev
1701 */
1702int hfi1_device_create(struct hfi1_devdata *dd)
1703{
1704	return user_add(dd);
1705}
1706
1707/*
1708 * Remove per-unit files in /dev
1709 * void, core kernel returns no errors for this stuff
1710 */
1711void hfi1_device_remove(struct hfi1_devdata *dd)
1712{
1713	user_remove(dd);
1714}
v6.2
   1// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
   2/*
   3 * Copyright(c) 2020 Cornelis Networks, Inc.
   4 * Copyright(c) 2015-2020 Intel Corporation.
   5 */
   6
   7#include <linux/poll.h>
   8#include <linux/cdev.h>
   9#include <linux/vmalloc.h>
  10#include <linux/io.h>
  11#include <linux/sched/mm.h>
  12#include <linux/bitmap.h>
  13
  14#include <rdma/ib.h>
  15
  16#include "hfi.h"
  17#include "pio.h"
  18#include "device.h"
  19#include "common.h"
  20#include "trace.h"
  21#include "mmu_rb.h"
  22#include "user_sdma.h"
  23#include "user_exp_rcv.h"
  24#include "aspm.h"
  25
  26#undef pr_fmt
  27#define pr_fmt(fmt) DRIVER_NAME ": " fmt
  28
  29#define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
  30
  31/*
  32 * File operation functions
  33 */
  34static int hfi1_file_open(struct inode *inode, struct file *fp);
  35static int hfi1_file_close(struct inode *inode, struct file *fp);
  36static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
  37static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
  38static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
  39
  40static u64 kvirt_to_phys(void *addr);
  41static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
  42static void init_subctxts(struct hfi1_ctxtdata *uctxt,
  43			  const struct hfi1_user_info *uinfo);
  44static int init_user_ctxt(struct hfi1_filedata *fd,
  45			  struct hfi1_ctxtdata *uctxt);
  46static void user_init(struct hfi1_ctxtdata *uctxt);
  47static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
  48static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
  49static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
  50			      u32 len);
  51static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
  52			      u32 len);
  53static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
  54				u32 len);
  55static int setup_base_ctxt(struct hfi1_filedata *fd,
  56			   struct hfi1_ctxtdata *uctxt);
  57static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
  58
  59static int find_sub_ctxt(struct hfi1_filedata *fd,
  60			 const struct hfi1_user_info *uinfo);
  61static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
  62			 struct hfi1_user_info *uinfo,
  63			 struct hfi1_ctxtdata **cd);
  64static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
  65static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
  66static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
  67static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
  68			  unsigned long arg);
  69static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
  70static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
  71static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
  72		       unsigned long arg);
  73static vm_fault_t vma_fault(struct vm_fault *vmf);
  74static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
  75			    unsigned long arg);
  76
  77static const struct file_operations hfi1_file_ops = {
  78	.owner = THIS_MODULE,
  79	.write_iter = hfi1_write_iter,
  80	.open = hfi1_file_open,
  81	.release = hfi1_file_close,
  82	.unlocked_ioctl = hfi1_file_ioctl,
  83	.poll = hfi1_poll,
  84	.mmap = hfi1_file_mmap,
  85	.llseek = noop_llseek,
  86};
  87
  88static const struct vm_operations_struct vm_ops = {
  89	.fault = vma_fault,
  90};
  91
  92/*
  93 * Types of memories mapped into user processes' space
  94 */
  95enum mmap_types {
  96	PIO_BUFS = 1,
  97	PIO_BUFS_SOP,
  98	PIO_CRED,
  99	RCV_HDRQ,
 100	RCV_EGRBUF,
 101	UREGS,
 102	EVENTS,
 103	STATUS,
 104	RTAIL,
 105	SUBCTXT_UREGS,
 106	SUBCTXT_RCV_HDRQ,
 107	SUBCTXT_EGRBUF,
 108	SDMA_COMP
 109};
 110
 111/*
 112 * Masks and offsets defining the mmap tokens
 113 */
 114#define HFI1_MMAP_OFFSET_MASK   0xfffULL
 115#define HFI1_MMAP_OFFSET_SHIFT  0
 116#define HFI1_MMAP_SUBCTXT_MASK  0xfULL
 117#define HFI1_MMAP_SUBCTXT_SHIFT 12
 118#define HFI1_MMAP_CTXT_MASK     0xffULL
 119#define HFI1_MMAP_CTXT_SHIFT    16
 120#define HFI1_MMAP_TYPE_MASK     0xfULL
 121#define HFI1_MMAP_TYPE_SHIFT    24
 122#define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
 123#define HFI1_MMAP_MAGIC_SHIFT   32
 124
 125#define HFI1_MMAP_MAGIC         0xdabbad00
 126
 127#define HFI1_MMAP_TOKEN_SET(field, val)	\
 128	(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
 129#define HFI1_MMAP_TOKEN_GET(field, token) \
 130	(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
 131#define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
 132	(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
 133	HFI1_MMAP_TOKEN_SET(TYPE, type) | \
 134	HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
 135	HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
 136	HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
 137
 138#define dbg(fmt, ...)				\
 139	pr_info(fmt, ##__VA_ARGS__)
 140
 141static inline int is_valid_mmap(u64 token)
 142{
 143	return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
 144}
 145
 146static int hfi1_file_open(struct inode *inode, struct file *fp)
 147{
 148	struct hfi1_filedata *fd;
 149	struct hfi1_devdata *dd = container_of(inode->i_cdev,
 150					       struct hfi1_devdata,
 151					       user_cdev);
 152
 153	if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
 154		return -EINVAL;
 155
 156	if (!refcount_inc_not_zero(&dd->user_refcount))
 157		return -ENXIO;
 158
 159	/* The real work is performed later in assign_ctxt() */
 160
 161	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
 162
 163	if (!fd || init_srcu_struct(&fd->pq_srcu))
 164		goto nomem;
 165	spin_lock_init(&fd->pq_rcu_lock);
 166	spin_lock_init(&fd->tid_lock);
 167	spin_lock_init(&fd->invalid_lock);
 168	fd->rec_cpu_num = -1; /* no cpu affinity by default */
 169	fd->dd = dd;
 170	fp->private_data = fd;
 171	return 0;
 172nomem:
 173	kfree(fd);
 174	fp->private_data = NULL;
 175	if (refcount_dec_and_test(&dd->user_refcount))
 176		complete(&dd->user_comp);
 177	return -ENOMEM;
 178}
 179
 180static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
 181			    unsigned long arg)
 182{
 183	struct hfi1_filedata *fd = fp->private_data;
 184	struct hfi1_ctxtdata *uctxt = fd->uctxt;
 185	int ret = 0;
 186	int uval = 0;
 187
 188	hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
 189	if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
 190	    cmd != HFI1_IOCTL_GET_VERS &&
 191	    !uctxt)
 192		return -EINVAL;
 193
 194	switch (cmd) {
 195	case HFI1_IOCTL_ASSIGN_CTXT:
 196		ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
 197		break;
 198
 199	case HFI1_IOCTL_CTXT_INFO:
 200		ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
 201		break;
 202
 203	case HFI1_IOCTL_USER_INFO:
 204		ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
 205		break;
 206
 207	case HFI1_IOCTL_CREDIT_UPD:
 208		if (uctxt)
 209			sc_return_credits(uctxt->sc);
 210		break;
 211
 212	case HFI1_IOCTL_TID_UPDATE:
 213		ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
 214		break;
 215
 216	case HFI1_IOCTL_TID_FREE:
 217		ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
 218		break;
 219
 220	case HFI1_IOCTL_TID_INVAL_READ:
 221		ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
 222		break;
 223
 224	case HFI1_IOCTL_RECV_CTRL:
 225		ret = manage_rcvq(uctxt, fd->subctxt, arg);
 226		break;
 227
 228	case HFI1_IOCTL_POLL_TYPE:
 229		if (get_user(uval, (int __user *)arg))
 230			return -EFAULT;
 231		uctxt->poll_type = (typeof(uctxt->poll_type))uval;
 232		break;
 233
 234	case HFI1_IOCTL_ACK_EVENT:
 235		ret = user_event_ack(uctxt, fd->subctxt, arg);
 236		break;
 237
 238	case HFI1_IOCTL_SET_PKEY:
 239		ret = set_ctxt_pkey(uctxt, arg);
 240		break;
 241
 242	case HFI1_IOCTL_CTXT_RESET:
 243		ret = ctxt_reset(uctxt);
 244		break;
 245
 246	case HFI1_IOCTL_GET_VERS:
 247		uval = HFI1_USER_SWVERSION;
 248		if (put_user(uval, (int __user *)arg))
 249			return -EFAULT;
 250		break;
 251
 252	default:
 253		return -EINVAL;
 254	}
 255
 256	return ret;
 257}
 258
 259static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
 260{
 261	struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
 262	struct hfi1_user_sdma_pkt_q *pq;
 263	struct hfi1_user_sdma_comp_q *cq = fd->cq;
 264	int done = 0, reqs = 0;
 265	unsigned long dim = from->nr_segs;
 266	int idx;
 267
 268	if (!HFI1_CAP_IS_KSET(SDMA))
 269		return -EINVAL;
 
 
 270	idx = srcu_read_lock(&fd->pq_srcu);
 271	pq = srcu_dereference(fd->pq, &fd->pq_srcu);
 272	if (!cq || !pq) {
 273		srcu_read_unlock(&fd->pq_srcu, idx);
 274		return -EIO;
 275	}
 276
 277	if (!iter_is_iovec(from) || !dim) {
 278		srcu_read_unlock(&fd->pq_srcu, idx);
 279		return -EINVAL;
 280	}
 281
 282	trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
 283
 284	if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
 285		srcu_read_unlock(&fd->pq_srcu, idx);
 286		return -ENOSPC;
 287	}
 288
 289	while (dim) {
 
 290		int ret;
 291		unsigned long count = 0;
 292
 293		ret = hfi1_user_sdma_process_request(
 294			fd, (struct iovec *)(from->iov + done),
 295			dim, &count);
 296		if (ret) {
 297			reqs = ret;
 298			break;
 299		}
 300		dim -= count;
 301		done += count;
 302		reqs++;
 303	}
 304
 305	srcu_read_unlock(&fd->pq_srcu, idx);
 306	return reqs;
 307}
 308
 
 
 
 
 
 
 
 
 
 
 
 309static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
 310{
 311	struct hfi1_filedata *fd = fp->private_data;
 312	struct hfi1_ctxtdata *uctxt = fd->uctxt;
 313	struct hfi1_devdata *dd;
 314	unsigned long flags;
 315	u64 token = vma->vm_pgoff << PAGE_SHIFT,
 316		memaddr = 0;
 317	void *memvirt = NULL;
 
 318	u8 subctxt, mapio = 0, vmf = 0, type;
 319	ssize_t memlen = 0;
 320	int ret = 0;
 321	u16 ctxt;
 322
 323	if (!is_valid_mmap(token) || !uctxt ||
 324	    !(vma->vm_flags & VM_SHARED)) {
 325		ret = -EINVAL;
 326		goto done;
 327	}
 328	dd = uctxt->dd;
 329	ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
 330	subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
 331	type = HFI1_MMAP_TOKEN_GET(TYPE, token);
 332	if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
 333		ret = -EINVAL;
 334		goto done;
 335	}
 336
 
 
 
 
 
 337	flags = vma->vm_flags;
 338
 339	switch (type) {
 340	case PIO_BUFS:
 341	case PIO_BUFS_SOP:
 342		memaddr = ((dd->physaddr + TXE_PIO_SEND) +
 343				/* chip pio base */
 344			   (uctxt->sc->hw_context * BIT(16))) +
 345				/* 64K PIO space / ctxt */
 346			(type == PIO_BUFS_SOP ?
 347				(TXE_PIO_SIZE / 2) : 0); /* sop? */
 348		/*
 349		 * Map only the amount allocated to the context, not the
 350		 * entire available context's PIO space.
 351		 */
 352		memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
 353		flags &= ~VM_MAYREAD;
 354		flags |= VM_DONTCOPY | VM_DONTEXPAND;
 355		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
 356		mapio = 1;
 357		break;
 358	case PIO_CRED:
 
 359		if (flags & VM_WRITE) {
 360			ret = -EPERM;
 361			goto done;
 362		}
 363		/*
 364		 * The credit return location for this context could be on the
 365		 * second or third page allocated for credit returns (if number
 366		 * of enabled contexts > 64 and 128 respectively).
 367		 */
 368		memvirt = dd->cr_base[uctxt->numa_id].va;
 369		memaddr = virt_to_phys(memvirt) +
 370			(((u64)uctxt->sc->hw_free -
 371			  (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
 
 372		memlen = PAGE_SIZE;
 373		flags &= ~VM_MAYWRITE;
 374		flags |= VM_DONTCOPY | VM_DONTEXPAND;
 375		/*
 376		 * The driver has already allocated memory for credit
 377		 * returns and programmed it into the chip. Has that
 378		 * memory been flagged as non-cached?
 379		 */
 380		/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
 381		mapio = 1;
 382		break;
 
 383	case RCV_HDRQ:
 384		memlen = rcvhdrq_size(uctxt);
 385		memvirt = uctxt->rcvhdrq;
 
 386		break;
 387	case RCV_EGRBUF: {
 388		unsigned long addr;
 
 389		int i;
 390		/*
 391		 * The RcvEgr buffer need to be handled differently
 392		 * as multiple non-contiguous pages need to be mapped
 393		 * into the user process.
 394		 */
 395		memlen = uctxt->egrbufs.size;
 396		if ((vma->vm_end - vma->vm_start) != memlen) {
 397			dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
 398				   (vma->vm_end - vma->vm_start), memlen);
 399			ret = -EINVAL;
 400			goto done;
 401		}
 402		if (vma->vm_flags & VM_WRITE) {
 403			ret = -EPERM;
 404			goto done;
 405		}
 406		vma->vm_flags &= ~VM_MAYWRITE;
 407		addr = vma->vm_start;
 
 
 
 
 
 
 
 
 
 408		for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
 409			memlen = uctxt->egrbufs.buffers[i].len;
 410			memvirt = uctxt->egrbufs.buffers[i].addr;
 411			ret = remap_pfn_range(
 412				vma, addr,
 413				/*
 414				 * virt_to_pfn() does the same, but
 415				 * it's not available on x86_64
 416				 * when CONFIG_MMU is enabled.
 417				 */
 418				PFN_DOWN(__pa(memvirt)),
 419				memlen,
 420				vma->vm_page_prot);
 421			if (ret < 0)
 422				goto done;
 423			addr += memlen;
 
 424		}
 
 
 425		ret = 0;
 426		goto done;
 427	}
 428	case UREGS:
 429		/*
 430		 * Map only the page that contains this context's user
 431		 * registers.
 432		 */
 433		memaddr = (unsigned long)
 434			(dd->physaddr + RXE_PER_CONTEXT_USER)
 435			+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
 436		/*
 437		 * TidFlow table is on the same page as the rest of the
 438		 * user registers.
 439		 */
 440		memlen = PAGE_SIZE;
 441		flags |= VM_DONTCOPY | VM_DONTEXPAND;
 442		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 443		mapio = 1;
 444		break;
 445	case EVENTS:
 446		/*
 447		 * Use the page where this context's flags are. User level
 448		 * knows where it's own bitmap is within the page.
 449		 */
 450		memaddr = (unsigned long)
 451			(dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
 452		memlen = PAGE_SIZE;
 453		/*
 454		 * v3.7 removes VM_RESERVED but the effect is kept by
 455		 * using VM_IO.
 456		 */
 457		flags |= VM_IO | VM_DONTEXPAND;
 458		vmf = 1;
 459		break;
 460	case STATUS:
 461		if (flags & VM_WRITE) {
 462			ret = -EPERM;
 463			goto done;
 464		}
 465		memaddr = kvirt_to_phys((void *)dd->status);
 466		memlen = PAGE_SIZE;
 467		flags |= VM_IO | VM_DONTEXPAND;
 468		break;
 469	case RTAIL:
 470		if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
 471			/*
 472			 * If the memory allocation failed, the context alloc
 473			 * also would have failed, so we would never get here
 474			 */
 475			ret = -EINVAL;
 476			goto done;
 477		}
 478		if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
 479			ret = -EPERM;
 480			goto done;
 481		}
 482		memlen = PAGE_SIZE;
 483		memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
 
 484		flags &= ~VM_MAYWRITE;
 485		break;
 486	case SUBCTXT_UREGS:
 487		memaddr = (u64)uctxt->subctxt_uregbase;
 488		memlen = PAGE_SIZE;
 489		flags |= VM_IO | VM_DONTEXPAND;
 490		vmf = 1;
 491		break;
 492	case SUBCTXT_RCV_HDRQ:
 493		memaddr = (u64)uctxt->subctxt_rcvhdr_base;
 494		memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
 495		flags |= VM_IO | VM_DONTEXPAND;
 496		vmf = 1;
 497		break;
 498	case SUBCTXT_EGRBUF:
 499		memaddr = (u64)uctxt->subctxt_rcvegrbuf;
 500		memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
 501		flags |= VM_IO | VM_DONTEXPAND;
 502		flags &= ~VM_MAYWRITE;
 503		vmf = 1;
 504		break;
 505	case SDMA_COMP: {
 506		struct hfi1_user_sdma_comp_q *cq = fd->cq;
 507
 508		if (!cq) {
 509			ret = -EFAULT;
 510			goto done;
 511		}
 512		memaddr = (u64)cq->comps;
 513		memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
 514		flags |= VM_IO | VM_DONTEXPAND;
 515		vmf = 1;
 516		break;
 517	}
 518	default:
 519		ret = -EINVAL;
 520		break;
 521	}
 522
 523	if ((vma->vm_end - vma->vm_start) != memlen) {
 524		hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
 525			  uctxt->ctxt, fd->subctxt,
 526			  (vma->vm_end - vma->vm_start), memlen);
 527		ret = -EINVAL;
 528		goto done;
 529	}
 530
 531	vma->vm_flags = flags;
 532	hfi1_cdbg(PROC,
 533		  "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
 534		    ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
 535		    vma->vm_end - vma->vm_start, vma->vm_flags);
 536	if (vmf) {
 537		vma->vm_pgoff = PFN_DOWN(memaddr);
 538		vma->vm_ops = &vm_ops;
 539		ret = 0;
 
 
 
 540	} else if (mapio) {
 541		ret = io_remap_pfn_range(vma, vma->vm_start,
 542					 PFN_DOWN(memaddr),
 543					 memlen,
 544					 vma->vm_page_prot);
 545	} else if (memvirt) {
 546		ret = remap_pfn_range(vma, vma->vm_start,
 547				      PFN_DOWN(__pa(memvirt)),
 548				      memlen,
 549				      vma->vm_page_prot);
 550	} else {
 551		ret = remap_pfn_range(vma, vma->vm_start,
 552				      PFN_DOWN(memaddr),
 553				      memlen,
 554				      vma->vm_page_prot);
 555	}
 556done:
 557	return ret;
 558}
 559
 560/*
 561 * Local (non-chip) user memory is not mapped right away but as it is
 562 * accessed by the user-level code.
 563 */
 564static vm_fault_t vma_fault(struct vm_fault *vmf)
 565{
 566	struct page *page;
 567
 568	page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
 569	if (!page)
 570		return VM_FAULT_SIGBUS;
 571
 572	get_page(page);
 573	vmf->page = page;
 574
 575	return 0;
 576}
 577
 578static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
 579{
 580	struct hfi1_ctxtdata *uctxt;
 581	__poll_t pollflag;
 582
 583	uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
 584	if (!uctxt)
 585		pollflag = EPOLLERR;
 586	else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
 587		pollflag = poll_urgent(fp, pt);
 588	else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
 589		pollflag = poll_next(fp, pt);
 590	else /* invalid */
 591		pollflag = EPOLLERR;
 592
 593	return pollflag;
 594}
 595
 596static int hfi1_file_close(struct inode *inode, struct file *fp)
 597{
 598	struct hfi1_filedata *fdata = fp->private_data;
 599	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
 600	struct hfi1_devdata *dd = container_of(inode->i_cdev,
 601					       struct hfi1_devdata,
 602					       user_cdev);
 603	unsigned long flags, *ev;
 604
 605	fp->private_data = NULL;
 606
 607	if (!uctxt)
 608		goto done;
 609
 610	hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
 611
 612	flush_wc();
 613	/* drain user sdma queue */
 614	hfi1_user_sdma_free_queues(fdata, uctxt);
 615
 616	/* release the cpu */
 617	hfi1_put_proc_affinity(fdata->rec_cpu_num);
 618
 619	/* clean up rcv side */
 620	hfi1_user_exp_rcv_free(fdata);
 621
 622	/*
 623	 * fdata->uctxt is used in the above cleanup.  It is not ready to be
 624	 * removed until here.
 625	 */
 626	fdata->uctxt = NULL;
 627	hfi1_rcd_put(uctxt);
 628
 629	/*
 630	 * Clear any left over, unhandled events so the next process that
 631	 * gets this context doesn't get confused.
 632	 */
 633	ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
 634	*ev = 0;
 635
 636	spin_lock_irqsave(&dd->uctxt_lock, flags);
 637	__clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
 638	if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
 639		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 640		goto done;
 641	}
 642	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 643
 644	/*
 645	 * Disable receive context and interrupt available, reset all
 646	 * RcvCtxtCtrl bits to default values.
 647	 */
 648	hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
 649		     HFI1_RCVCTRL_TIDFLOW_DIS |
 650		     HFI1_RCVCTRL_INTRAVAIL_DIS |
 651		     HFI1_RCVCTRL_TAILUPD_DIS |
 652		     HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
 653		     HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
 654		     HFI1_RCVCTRL_NO_EGR_DROP_DIS |
 655		     HFI1_RCVCTRL_URGENT_DIS, uctxt);
 656	/* Clear the context's J_KEY */
 657	hfi1_clear_ctxt_jkey(dd, uctxt);
 658	/*
 659	 * If a send context is allocated, reset context integrity
 660	 * checks to default and disable the send context.
 661	 */
 662	if (uctxt->sc) {
 663		sc_disable(uctxt->sc);
 664		set_pio_integrity(uctxt->sc);
 665	}
 666
 667	hfi1_free_ctxt_rcv_groups(uctxt);
 668	hfi1_clear_ctxt_pkey(dd, uctxt);
 669
 670	uctxt->event_flags = 0;
 671
 672	deallocate_ctxt(uctxt);
 673done:
 674
 675	if (refcount_dec_and_test(&dd->user_refcount))
 676		complete(&dd->user_comp);
 677
 678	cleanup_srcu_struct(&fdata->pq_srcu);
 679	kfree(fdata);
 680	return 0;
 681}
 682
 683/*
 684 * Convert kernel *virtual* addresses to physical addresses.
 685 * This is used to vmalloc'ed addresses.
 686 */
 687static u64 kvirt_to_phys(void *addr)
 688{
 689	struct page *page;
 690	u64 paddr = 0;
 691
 692	page = vmalloc_to_page(addr);
 693	if (page)
 694		paddr = page_to_pfn(page) << PAGE_SHIFT;
 695
 696	return paddr;
 697}
 698
 699/**
 700 * complete_subctxt - complete sub-context info
 701 * @fd: valid filedata pointer
 702 *
 703 * Sub-context info can only be set up after the base context
 704 * has been completed.  This is indicated by the clearing of the
 705 * HFI1_CTXT_BASE_UINIT bit.
 706 *
 707 * Wait for the bit to be cleared, and then complete the subcontext
 708 * initialization.
 709 *
 710 */
 711static int complete_subctxt(struct hfi1_filedata *fd)
 712{
 713	int ret;
 714	unsigned long flags;
 715
 716	/*
 717	 * sub-context info can only be set up after the base context
 718	 * has been completed.
 719	 */
 720	ret = wait_event_interruptible(
 721		fd->uctxt->wait,
 722		!test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
 723
 724	if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
 725		ret = -ENOMEM;
 726
 727	/* Finish the sub-context init */
 728	if (!ret) {
 729		fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
 730		ret = init_user_ctxt(fd, fd->uctxt);
 731	}
 732
 733	if (ret) {
 734		spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
 735		__clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
 736		spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
 737		hfi1_rcd_put(fd->uctxt);
 738		fd->uctxt = NULL;
 739	}
 740
 741	return ret;
 742}
 743
 744static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
 745{
 746	int ret;
 747	unsigned int swmajor;
 748	struct hfi1_ctxtdata *uctxt = NULL;
 749	struct hfi1_user_info uinfo;
 750
 751	if (fd->uctxt)
 752		return -EINVAL;
 753
 754	if (sizeof(uinfo) != len)
 755		return -EINVAL;
 756
 757	if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
 758		return -EFAULT;
 759
 760	swmajor = uinfo.userversion >> 16;
 761	if (swmajor != HFI1_USER_SWMAJOR)
 762		return -ENODEV;
 763
 764	if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
 765		return -EINVAL;
 766
 767	/*
 768	 * Acquire the mutex to protect against multiple creations of what
 769	 * could be a shared base context.
 770	 */
 771	mutex_lock(&hfi1_mutex);
 772	/*
 773	 * Get a sub context if available  (fd->uctxt will be set).
 774	 * ret < 0 error, 0 no context, 1 sub-context found
 775	 */
 776	ret = find_sub_ctxt(fd, &uinfo);
 777
 778	/*
 779	 * Allocate a base context if context sharing is not required or a
 780	 * sub context wasn't found.
 781	 */
 782	if (!ret)
 783		ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
 784
 785	mutex_unlock(&hfi1_mutex);
 786
 787	/* Depending on the context type, finish the appropriate init */
 788	switch (ret) {
 789	case 0:
 790		ret = setup_base_ctxt(fd, uctxt);
 791		if (ret)
 792			deallocate_ctxt(uctxt);
 793		break;
 794	case 1:
 795		ret = complete_subctxt(fd);
 796		break;
 797	default:
 798		break;
 799	}
 800
 801	return ret;
 802}
 803
 804/**
 805 * match_ctxt - match context
 806 * @fd: valid filedata pointer
 807 * @uinfo: user info to compare base context with
 808 * @uctxt: context to compare uinfo to.
 809 *
 810 * Compare the given context with the given information to see if it
 811 * can be used for a sub context.
 812 */
 813static int match_ctxt(struct hfi1_filedata *fd,
 814		      const struct hfi1_user_info *uinfo,
 815		      struct hfi1_ctxtdata *uctxt)
 816{
 817	struct hfi1_devdata *dd = fd->dd;
 818	unsigned long flags;
 819	u16 subctxt;
 820
 821	/* Skip dynamically allocated kernel contexts */
 822	if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
 823		return 0;
 824
 825	/* Skip ctxt if it doesn't match the requested one */
 826	if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
 827	    uctxt->jkey != generate_jkey(current_uid()) ||
 828	    uctxt->subctxt_id != uinfo->subctxt_id ||
 829	    uctxt->subctxt_cnt != uinfo->subctxt_cnt)
 830		return 0;
 831
 832	/* Verify the sharing process matches the base */
 833	if (uctxt->userversion != uinfo->userversion)
 834		return -EINVAL;
 835
 836	/* Find an unused sub context */
 837	spin_lock_irqsave(&dd->uctxt_lock, flags);
 838	if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
 839		/* context is being closed, do not use */
 840		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 841		return 0;
 842	}
 843
 844	subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
 845				      HFI1_MAX_SHARED_CTXTS);
 846	if (subctxt >= uctxt->subctxt_cnt) {
 847		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 848		return -EBUSY;
 849	}
 850
 851	fd->subctxt = subctxt;
 852	__set_bit(fd->subctxt, uctxt->in_use_ctxts);
 853	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
 854
 855	fd->uctxt = uctxt;
 856	hfi1_rcd_get(uctxt);
 857
 858	return 1;
 859}
 860
 861/**
 862 * find_sub_ctxt - fund sub-context
 863 * @fd: valid filedata pointer
 864 * @uinfo: matching info to use to find a possible context to share.
 865 *
 866 * The hfi1_mutex must be held when this function is called.  It is
 867 * necessary to ensure serialized creation of shared contexts.
 868 *
 869 * Return:
 870 *    0      No sub-context found
 871 *    1      Subcontext found and allocated
 872 *    errno  EINVAL (incorrect parameters)
 873 *           EBUSY (all sub contexts in use)
 874 */
 875static int find_sub_ctxt(struct hfi1_filedata *fd,
 876			 const struct hfi1_user_info *uinfo)
 877{
 878	struct hfi1_ctxtdata *uctxt;
 879	struct hfi1_devdata *dd = fd->dd;
 880	u16 i;
 881	int ret;
 882
 883	if (!uinfo->subctxt_cnt)
 884		return 0;
 885
 886	for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
 887		uctxt = hfi1_rcd_get_by_index(dd, i);
 888		if (uctxt) {
 889			ret = match_ctxt(fd, uinfo, uctxt);
 890			hfi1_rcd_put(uctxt);
 891			/* value of != 0 will return */
 892			if (ret)
 893				return ret;
 894		}
 895	}
 896
 897	return 0;
 898}
 899
 900static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
 901			 struct hfi1_user_info *uinfo,
 902			 struct hfi1_ctxtdata **rcd)
 903{
 904	struct hfi1_ctxtdata *uctxt;
 905	int ret, numa;
 906
 907	if (dd->flags & HFI1_FROZEN) {
 908		/*
 909		 * Pick an error that is unique from all other errors
 910		 * that are returned so the user process knows that
 911		 * it tried to allocate while the SPC was frozen.  It
 912		 * it should be able to retry with success in a short
 913		 * while.
 914		 */
 915		return -EIO;
 916	}
 917
 918	if (!dd->freectxts)
 919		return -EBUSY;
 920
 921	/*
 922	 * If we don't have a NUMA node requested, preference is towards
 923	 * device NUMA node.
 924	 */
 925	fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
 926	if (fd->rec_cpu_num != -1)
 927		numa = cpu_to_node(fd->rec_cpu_num);
 928	else
 929		numa = numa_node_id();
 930	ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
 931	if (ret < 0) {
 932		dd_dev_err(dd, "user ctxtdata allocation failed\n");
 933		return ret;
 934	}
 935	hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
 936		  uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
 937		  uctxt->numa_id);
 938
 939	/*
 940	 * Allocate and enable a PIO send context.
 941	 */
 942	uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
 943	if (!uctxt->sc) {
 944		ret = -ENOMEM;
 945		goto ctxdata_free;
 946	}
 947	hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
 948		  uctxt->sc->hw_context);
 949	ret = sc_enable(uctxt->sc);
 950	if (ret)
 951		goto ctxdata_free;
 952
 953	/*
 954	 * Setup sub context information if the user-level has requested
 955	 * sub contexts.
 956	 * This has to be done here so the rest of the sub-contexts find the
 957	 * proper base context.
 958	 * NOTE: _set_bit() can be used here because the context creation is
 959	 * protected by the mutex (rather than the spin_lock), and will be the
 960	 * very first instance of this context.
 961	 */
 962	__set_bit(0, uctxt->in_use_ctxts);
 963	if (uinfo->subctxt_cnt)
 964		init_subctxts(uctxt, uinfo);
 965	uctxt->userversion = uinfo->userversion;
 966	uctxt->flags = hfi1_cap_mask; /* save current flag state */
 967	init_waitqueue_head(&uctxt->wait);
 968	strscpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
 969	memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
 970	uctxt->jkey = generate_jkey(current_uid());
 971	hfi1_stats.sps_ctxts++;
 972	/*
 973	 * Disable ASPM when there are open user/PSM contexts to avoid
 974	 * issues with ASPM L1 exit latency
 975	 */
 976	if (dd->freectxts-- == dd->num_user_contexts)
 977		aspm_disable_all(dd);
 978
 979	*rcd = uctxt;
 980
 981	return 0;
 982
 983ctxdata_free:
 984	hfi1_free_ctxt(uctxt);
 985	return ret;
 986}
 987
 988static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
 989{
 990	mutex_lock(&hfi1_mutex);
 991	hfi1_stats.sps_ctxts--;
 992	if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
 993		aspm_enable_all(uctxt->dd);
 994	mutex_unlock(&hfi1_mutex);
 995
 996	hfi1_free_ctxt(uctxt);
 997}
 998
 999static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1000			  const struct hfi1_user_info *uinfo)
1001{
1002	uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1003	uctxt->subctxt_id = uinfo->subctxt_id;
1004	set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1005}
1006
1007static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1008{
1009	int ret = 0;
1010	u16 num_subctxts = uctxt->subctxt_cnt;
1011
1012	uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1013	if (!uctxt->subctxt_uregbase)
1014		return -ENOMEM;
1015
1016	/* We can take the size of the RcvHdr Queue from the master */
1017	uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1018						  num_subctxts);
1019	if (!uctxt->subctxt_rcvhdr_base) {
1020		ret = -ENOMEM;
1021		goto bail_ureg;
1022	}
1023
1024	uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1025						num_subctxts);
1026	if (!uctxt->subctxt_rcvegrbuf) {
1027		ret = -ENOMEM;
1028		goto bail_rhdr;
1029	}
1030
1031	return 0;
1032
1033bail_rhdr:
1034	vfree(uctxt->subctxt_rcvhdr_base);
1035	uctxt->subctxt_rcvhdr_base = NULL;
1036bail_ureg:
1037	vfree(uctxt->subctxt_uregbase);
1038	uctxt->subctxt_uregbase = NULL;
1039
1040	return ret;
1041}
1042
1043static void user_init(struct hfi1_ctxtdata *uctxt)
1044{
1045	unsigned int rcvctrl_ops = 0;
1046
1047	/* initialize poll variables... */
1048	uctxt->urgent = 0;
1049	uctxt->urgent_poll = 0;
1050
1051	/*
1052	 * Now enable the ctxt for receive.
1053	 * For chips that are set to DMA the tail register to memory
1054	 * when they change (and when the update bit transitions from
1055	 * 0 to 1.  So for those chips, we turn it off and then back on.
1056	 * This will (very briefly) affect any other open ctxts, but the
1057	 * duration is very short, and therefore isn't an issue.  We
1058	 * explicitly set the in-memory tail copy to 0 beforehand, so we
1059	 * don't have to wait to be sure the DMA update has happened
1060	 * (chip resets head/tail to 0 on transition to enable).
1061	 */
1062	if (hfi1_rcvhdrtail_kvaddr(uctxt))
1063		clear_rcvhdrtail(uctxt);
1064
1065	/* Setup J_KEY before enabling the context */
1066	hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1067
1068	rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1069	rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1070	if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1071		rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1072	/*
1073	 * Ignore the bit in the flags for now until proper
1074	 * support for multiple packet per rcv array entry is
1075	 * added.
1076	 */
1077	if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1078		rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1079	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1080		rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1081	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1082		rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1083	/*
1084	 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1085	 * We can't rely on the correct value to be set from prior
1086	 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1087	 * for both cases.
1088	 */
1089	if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1090		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1091	else
1092		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1093	hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1094}
1095
1096static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1097{
1098	struct hfi1_ctxt_info cinfo;
1099	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1100
1101	if (sizeof(cinfo) != len)
1102		return -EINVAL;
1103
1104	memset(&cinfo, 0, sizeof(cinfo));
1105	cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1106				HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1107			HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1108			HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1109	/* adjust flag if this fd is not able to cache */
1110	if (!fd->use_mn)
1111		cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1112
1113	cinfo.num_active = hfi1_count_active_units();
1114	cinfo.unit = uctxt->dd->unit;
1115	cinfo.ctxt = uctxt->ctxt;
1116	cinfo.subctxt = fd->subctxt;
1117	cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1118				uctxt->dd->rcv_entries.group_size) +
1119		uctxt->expected_count;
1120	cinfo.credits = uctxt->sc->credits;
1121	cinfo.numa_node = uctxt->numa_id;
1122	cinfo.rec_cpu = fd->rec_cpu_num;
1123	cinfo.send_ctxt = uctxt->sc->hw_context;
1124
1125	cinfo.egrtids = uctxt->egrbufs.alloced;
1126	cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1127	cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1128	cinfo.sdma_ring_size = fd->cq->nentries;
1129	cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1130
1131	trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1132	if (copy_to_user((void __user *)arg, &cinfo, len))
1133		return -EFAULT;
1134
1135	return 0;
1136}
1137
1138static int init_user_ctxt(struct hfi1_filedata *fd,
1139			  struct hfi1_ctxtdata *uctxt)
1140{
1141	int ret;
1142
1143	ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1144	if (ret)
1145		return ret;
1146
1147	ret = hfi1_user_exp_rcv_init(fd, uctxt);
1148	if (ret)
1149		hfi1_user_sdma_free_queues(fd, uctxt);
1150
1151	return ret;
1152}
1153
1154static int setup_base_ctxt(struct hfi1_filedata *fd,
1155			   struct hfi1_ctxtdata *uctxt)
1156{
1157	struct hfi1_devdata *dd = uctxt->dd;
1158	int ret = 0;
1159
1160	hfi1_init_ctxt(uctxt->sc);
1161
1162	/* Now allocate the RcvHdr queue and eager buffers. */
1163	ret = hfi1_create_rcvhdrq(dd, uctxt);
1164	if (ret)
1165		goto done;
1166
1167	ret = hfi1_setup_eagerbufs(uctxt);
1168	if (ret)
1169		goto done;
1170
1171	/* If sub-contexts are enabled, do the appropriate setup */
1172	if (uctxt->subctxt_cnt)
1173		ret = setup_subctxt(uctxt);
1174	if (ret)
1175		goto done;
1176
1177	ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1178	if (ret)
1179		goto done;
1180
1181	ret = init_user_ctxt(fd, uctxt);
1182	if (ret) {
1183		hfi1_free_ctxt_rcv_groups(uctxt);
1184		goto done;
1185	}
1186
1187	user_init(uctxt);
1188
1189	/* Now that the context is set up, the fd can get a reference. */
1190	fd->uctxt = uctxt;
1191	hfi1_rcd_get(uctxt);
1192
1193done:
1194	if (uctxt->subctxt_cnt) {
1195		/*
1196		 * On error, set the failed bit so sub-contexts will clean up
1197		 * correctly.
1198		 */
1199		if (ret)
1200			set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1201
1202		/*
1203		 * Base context is done (successfully or not), notify anybody
1204		 * using a sub-context that is waiting for this completion.
1205		 */
1206		clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1207		wake_up(&uctxt->wait);
1208	}
1209
1210	return ret;
1211}
1212
1213static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1214{
1215	struct hfi1_base_info binfo;
1216	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1217	struct hfi1_devdata *dd = uctxt->dd;
1218	unsigned offset;
1219
1220	trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1221
1222	if (sizeof(binfo) != len)
1223		return -EINVAL;
1224
1225	memset(&binfo, 0, sizeof(binfo));
1226	binfo.hw_version = dd->revision;
1227	binfo.sw_version = HFI1_USER_SWVERSION;
1228	binfo.bthqp = RVT_KDETH_QP_PREFIX;
1229	binfo.jkey = uctxt->jkey;
1230	/*
1231	 * If more than 64 contexts are enabled the allocated credit
1232	 * return will span two or three contiguous pages. Since we only
1233	 * map the page containing the context's credit return address,
1234	 * we need to calculate the offset in the proper page.
1235	 */
1236	offset = ((u64)uctxt->sc->hw_free -
1237		  (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1238	binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1239						fd->subctxt, offset);
1240	binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1241					    fd->subctxt,
1242					    uctxt->sc->base_addr);
1243	binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1244						uctxt->ctxt,
1245						fd->subctxt,
1246						uctxt->sc->base_addr);
1247	binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1248					       fd->subctxt,
1249					       uctxt->rcvhdrq);
1250	binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1251					       fd->subctxt,
1252					       uctxt->egrbufs.rcvtids[0].dma);
1253	binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1254						  fd->subctxt, 0);
1255	/*
1256	 * user regs are at
1257	 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1258	 */
1259	binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1260					     fd->subctxt, 0);
1261	offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1262				sizeof(*dd->events));
1263	binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1264					       fd->subctxt,
1265					       offset);
1266	binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1267					       fd->subctxt,
1268					       dd->status);
1269	if (HFI1_CAP_IS_USET(DMA_RTAIL))
1270		binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1271							fd->subctxt, 0);
1272	if (uctxt->subctxt_cnt) {
1273		binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1274							 uctxt->ctxt,
1275							 fd->subctxt, 0);
1276		binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1277							  uctxt->ctxt,
1278							  fd->subctxt, 0);
1279		binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1280							  uctxt->ctxt,
1281							  fd->subctxt, 0);
1282	}
1283
1284	if (copy_to_user((void __user *)arg, &binfo, len))
1285		return -EFAULT;
1286
1287	return 0;
1288}
1289
1290/**
1291 * user_exp_rcv_setup - Set up the given tid rcv list
1292 * @fd: file data of the current driver instance
1293 * @arg: ioctl argumnent for user space information
1294 * @len: length of data structure associated with ioctl command
1295 *
1296 * Wrapper to validate ioctl information before doing _rcv_setup.
1297 *
1298 */
1299static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1300			      u32 len)
1301{
1302	int ret;
1303	unsigned long addr;
1304	struct hfi1_tid_info tinfo;
1305
1306	if (sizeof(tinfo) != len)
1307		return -EINVAL;
1308
1309	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1310		return -EFAULT;
1311
1312	ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1313	if (!ret) {
1314		/*
1315		 * Copy the number of tidlist entries we used
1316		 * and the length of the buffer we registered.
1317		 */
1318		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1319		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1320				 sizeof(tinfo.tidcnt)))
1321			ret = -EFAULT;
1322
1323		addr = arg + offsetof(struct hfi1_tid_info, length);
1324		if (!ret && copy_to_user((void __user *)addr, &tinfo.length,
1325				 sizeof(tinfo.length)))
1326			ret = -EFAULT;
1327
1328		if (ret)
1329			hfi1_user_exp_rcv_invalid(fd, &tinfo);
1330	}
1331
1332	return ret;
1333}
1334
1335/**
1336 * user_exp_rcv_clear - Clear the given tid rcv list
1337 * @fd: file data of the current driver instance
1338 * @arg: ioctl argumnent for user space information
1339 * @len: length of data structure associated with ioctl command
1340 *
1341 * The hfi1_user_exp_rcv_clear() can be called from the error path.  Because
1342 * of this, we need to use this wrapper to copy the user space information
1343 * before doing the clear.
1344 */
1345static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1346			      u32 len)
1347{
1348	int ret;
1349	unsigned long addr;
1350	struct hfi1_tid_info tinfo;
1351
1352	if (sizeof(tinfo) != len)
1353		return -EINVAL;
1354
1355	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1356		return -EFAULT;
1357
1358	ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1359	if (!ret) {
1360		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1361		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1362				 sizeof(tinfo.tidcnt)))
1363			return -EFAULT;
1364	}
1365
1366	return ret;
1367}
1368
1369/**
1370 * user_exp_rcv_invalid - Invalidate the given tid rcv list
1371 * @fd: file data of the current driver instance
1372 * @arg: ioctl argumnent for user space information
1373 * @len: length of data structure associated with ioctl command
1374 *
1375 * Wrapper to validate ioctl information before doing _rcv_invalid.
1376 *
1377 */
1378static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1379				u32 len)
1380{
1381	int ret;
1382	unsigned long addr;
1383	struct hfi1_tid_info tinfo;
1384
1385	if (sizeof(tinfo) != len)
1386		return -EINVAL;
1387
1388	if (!fd->invalid_tids)
1389		return -EINVAL;
1390
1391	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1392		return -EFAULT;
1393
1394	ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1395	if (ret)
1396		return ret;
1397
1398	addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1399	if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1400			 sizeof(tinfo.tidcnt)))
1401		ret = -EFAULT;
1402
1403	return ret;
1404}
1405
1406static __poll_t poll_urgent(struct file *fp,
1407				struct poll_table_struct *pt)
1408{
1409	struct hfi1_filedata *fd = fp->private_data;
1410	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1411	struct hfi1_devdata *dd = uctxt->dd;
1412	__poll_t pollflag;
1413
1414	poll_wait(fp, &uctxt->wait, pt);
1415
1416	spin_lock_irq(&dd->uctxt_lock);
1417	if (uctxt->urgent != uctxt->urgent_poll) {
1418		pollflag = EPOLLIN | EPOLLRDNORM;
1419		uctxt->urgent_poll = uctxt->urgent;
1420	} else {
1421		pollflag = 0;
1422		set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1423	}
1424	spin_unlock_irq(&dd->uctxt_lock);
1425
1426	return pollflag;
1427}
1428
1429static __poll_t poll_next(struct file *fp,
1430			      struct poll_table_struct *pt)
1431{
1432	struct hfi1_filedata *fd = fp->private_data;
1433	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1434	struct hfi1_devdata *dd = uctxt->dd;
1435	__poll_t pollflag;
1436
1437	poll_wait(fp, &uctxt->wait, pt);
1438
1439	spin_lock_irq(&dd->uctxt_lock);
1440	if (hdrqempty(uctxt)) {
1441		set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1442		hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1443		pollflag = 0;
1444	} else {
1445		pollflag = EPOLLIN | EPOLLRDNORM;
1446	}
1447	spin_unlock_irq(&dd->uctxt_lock);
1448
1449	return pollflag;
1450}
1451
1452/*
1453 * Find all user contexts in use, and set the specified bit in their
1454 * event mask.
1455 * See also find_ctxt() for a similar use, that is specific to send buffers.
1456 */
1457int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1458{
1459	struct hfi1_ctxtdata *uctxt;
1460	struct hfi1_devdata *dd = ppd->dd;
1461	u16 ctxt;
1462
1463	if (!dd->events)
1464		return -EINVAL;
1465
1466	for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1467	     ctxt++) {
1468		uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1469		if (uctxt) {
1470			unsigned long *evs;
1471			int i;
1472			/*
1473			 * subctxt_cnt is 0 if not shared, so do base
1474			 * separately, first, then remaining subctxt, if any
1475			 */
1476			evs = dd->events + uctxt_offset(uctxt);
1477			set_bit(evtbit, evs);
1478			for (i = 1; i < uctxt->subctxt_cnt; i++)
1479				set_bit(evtbit, evs + i);
1480			hfi1_rcd_put(uctxt);
1481		}
1482	}
1483
1484	return 0;
1485}
1486
1487/**
1488 * manage_rcvq - manage a context's receive queue
1489 * @uctxt: the context
1490 * @subctxt: the sub-context
1491 * @arg: start/stop action to carry out
1492 *
1493 * start_stop == 0 disables receive on the context, for use in queue
1494 * overflow conditions.  start_stop==1 re-enables, to be used to
1495 * re-init the software copy of the head register
1496 */
1497static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1498		       unsigned long arg)
1499{
1500	struct hfi1_devdata *dd = uctxt->dd;
1501	unsigned int rcvctrl_op;
1502	int start_stop;
1503
1504	if (subctxt)
1505		return 0;
1506
1507	if (get_user(start_stop, (int __user *)arg))
1508		return -EFAULT;
1509
1510	/* atomically clear receive enable ctxt. */
1511	if (start_stop) {
1512		/*
1513		 * On enable, force in-memory copy of the tail register to
1514		 * 0, so that protocol code doesn't have to worry about
1515		 * whether or not the chip has yet updated the in-memory
1516		 * copy or not on return from the system call. The chip
1517		 * always resets it's tail register back to 0 on a
1518		 * transition from disabled to enabled.
1519		 */
1520		if (hfi1_rcvhdrtail_kvaddr(uctxt))
1521			clear_rcvhdrtail(uctxt);
1522		rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1523	} else {
1524		rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1525	}
1526	hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1527	/* always; new head should be equal to new tail; see above */
1528
1529	return 0;
1530}
1531
1532/*
1533 * clear the event notifier events for this context.
1534 * User process then performs actions appropriate to bit having been
1535 * set, if desired, and checks again in future.
1536 */
1537static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1538			  unsigned long arg)
1539{
1540	int i;
1541	struct hfi1_devdata *dd = uctxt->dd;
1542	unsigned long *evs;
1543	unsigned long events;
1544
1545	if (!dd->events)
1546		return 0;
1547
1548	if (get_user(events, (unsigned long __user *)arg))
1549		return -EFAULT;
1550
1551	evs = dd->events + uctxt_offset(uctxt) + subctxt;
1552
1553	for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1554		if (!test_bit(i, &events))
1555			continue;
1556		clear_bit(i, evs);
1557	}
1558	return 0;
1559}
1560
1561static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1562{
1563	int i;
1564	struct hfi1_pportdata *ppd = uctxt->ppd;
1565	struct hfi1_devdata *dd = uctxt->dd;
1566	u16 pkey;
1567
1568	if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1569		return -EPERM;
1570
1571	if (get_user(pkey, (u16 __user *)arg))
1572		return -EFAULT;
1573
1574	if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1575		return -EINVAL;
1576
1577	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1578		if (pkey == ppd->pkeys[i])
1579			return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1580
1581	return -ENOENT;
1582}
1583
1584/**
1585 * ctxt_reset - Reset the user context
1586 * @uctxt: valid user context
1587 */
1588static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1589{
1590	struct send_context *sc;
1591	struct hfi1_devdata *dd;
1592	int ret = 0;
1593
1594	if (!uctxt || !uctxt->dd || !uctxt->sc)
1595		return -EINVAL;
1596
1597	/*
1598	 * There is no protection here. User level has to guarantee that
1599	 * no one will be writing to the send context while it is being
1600	 * re-initialized.  If user level breaks that guarantee, it will
1601	 * break it's own context and no one else's.
1602	 */
1603	dd = uctxt->dd;
1604	sc = uctxt->sc;
1605
1606	/*
1607	 * Wait until the interrupt handler has marked the context as
1608	 * halted or frozen. Report error if we time out.
1609	 */
1610	wait_event_interruptible_timeout(
1611		sc->halt_wait, (sc->flags & SCF_HALTED),
1612		msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1613	if (!(sc->flags & SCF_HALTED))
1614		return -ENOLCK;
1615
1616	/*
1617	 * If the send context was halted due to a Freeze, wait until the
1618	 * device has been "unfrozen" before resetting the context.
1619	 */
1620	if (sc->flags & SCF_FROZEN) {
1621		wait_event_interruptible_timeout(
1622			dd->event_queue,
1623			!(READ_ONCE(dd->flags) & HFI1_FROZEN),
1624			msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1625		if (dd->flags & HFI1_FROZEN)
1626			return -ENOLCK;
1627
1628		if (dd->flags & HFI1_FORCED_FREEZE)
1629			/*
1630			 * Don't allow context reset if we are into
1631			 * forced freeze
1632			 */
1633			return -ENODEV;
1634
1635		sc_disable(sc);
1636		ret = sc_enable(sc);
1637		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1638	} else {
1639		ret = sc_restart(sc);
1640	}
1641	if (!ret)
1642		sc_return_credits(sc);
1643
1644	return ret;
1645}
1646
1647static void user_remove(struct hfi1_devdata *dd)
1648{
1649
1650	hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1651}
1652
1653static int user_add(struct hfi1_devdata *dd)
1654{
1655	char name[10];
1656	int ret;
1657
1658	snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1659	ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1660			     &dd->user_cdev, &dd->user_device,
1661			     true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1662	if (ret)
1663		user_remove(dd);
1664
1665	return ret;
1666}
1667
1668/*
1669 * Create per-unit files in /dev
1670 */
1671int hfi1_device_create(struct hfi1_devdata *dd)
1672{
1673	return user_add(dd);
1674}
1675
1676/*
1677 * Remove per-unit files in /dev
1678 * void, core kernel returns no errors for this stuff
1679 */
1680void hfi1_device_remove(struct hfi1_devdata *dd)
1681{
1682	user_remove(dd);
1683}