Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* 
  3 * Cryptographic API.
  4 *
  5 * Support for VIA PadLock hardware crypto engine.
  6 *
  7 * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
  8 *
  9 */
 10
 11#include <crypto/algapi.h>
 12#include <crypto/aes.h>
 13#include <crypto/internal/skcipher.h>
 14#include <crypto/padlock.h>
 15#include <linux/module.h>
 16#include <linux/init.h>
 17#include <linux/types.h>
 18#include <linux/errno.h>
 19#include <linux/interrupt.h>
 20#include <linux/kernel.h>
 21#include <linux/mm.h>
 22#include <linux/percpu.h>
 23#include <linux/smp.h>
 24#include <linux/slab.h>
 25#include <asm/cpu_device_id.h>
 26#include <asm/byteorder.h>
 27#include <asm/processor.h>
 28#include <asm/fpu/api.h>
 29
 30/*
 31 * Number of data blocks actually fetched for each xcrypt insn.
 32 * Processors with prefetch errata will fetch extra blocks.
 33 */
 34static unsigned int ecb_fetch_blocks = 2;
 35#define MAX_ECB_FETCH_BLOCKS (8)
 36#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
 37
 38static unsigned int cbc_fetch_blocks = 1;
 39#define MAX_CBC_FETCH_BLOCKS (4)
 40#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
 41
 42/* Control word. */
 43struct cword {
 44	unsigned int __attribute__ ((__packed__))
 45		rounds:4,
 46		algo:3,
 47		keygen:1,
 48		interm:1,
 49		encdec:1,
 50		ksize:2;
 51} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 52
 53/* Whenever making any changes to the following
 54 * structure *make sure* you keep E, d_data
 55 * and cword aligned on 16 Bytes boundaries and
 56 * the Hardware can access 16 * 16 bytes of E and d_data
 57 * (only the first 15 * 16 bytes matter but the HW reads
 58 * more).
 59 */
 60struct aes_ctx {
 61	u32 E[AES_MAX_KEYLENGTH_U32]
 62		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 63	u32 d_data[AES_MAX_KEYLENGTH_U32]
 64		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 65	struct {
 66		struct cword encrypt;
 67		struct cword decrypt;
 68	} cword;
 69	u32 *D;
 70};
 71
 72static DEFINE_PER_CPU(struct cword *, paes_last_cword);
 73
 74/* Tells whether the ACE is capable to generate
 75   the extended key for a given key_len. */
 76static inline int
 77aes_hw_extkey_available(uint8_t key_len)
 78{
 79	/* TODO: We should check the actual CPU model/stepping
 80	         as it's possible that the capability will be
 81	         added in the next CPU revisions. */
 82	if (key_len == 16)
 83		return 1;
 84	return 0;
 85}
 86
 87static inline struct aes_ctx *aes_ctx_common(void *ctx)
 88{
 89	unsigned long addr = (unsigned long)ctx;
 90	unsigned long align = PADLOCK_ALIGNMENT;
 91
 92	if (align <= crypto_tfm_ctx_alignment())
 93		align = 1;
 94	return (struct aes_ctx *)ALIGN(addr, align);
 95}
 96
 97static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
 98{
 99	return aes_ctx_common(crypto_tfm_ctx(tfm));
100}
101
102static inline struct aes_ctx *skcipher_aes_ctx(struct crypto_skcipher *tfm)
103{
104	return aes_ctx_common(crypto_skcipher_ctx(tfm));
105}
106
107static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
108		       unsigned int key_len)
109{
110	struct aes_ctx *ctx = aes_ctx(tfm);
111	const __le32 *key = (const __le32 *)in_key;
112	struct crypto_aes_ctx gen_aes;
113	int cpu;
114
115	if (key_len % 8)
116		return -EINVAL;
117
118	/*
119	 * If the hardware is capable of generating the extended key
120	 * itself we must supply the plain key for both encryption
121	 * and decryption.
122	 */
123	ctx->D = ctx->E;
124
125	ctx->E[0] = le32_to_cpu(key[0]);
126	ctx->E[1] = le32_to_cpu(key[1]);
127	ctx->E[2] = le32_to_cpu(key[2]);
128	ctx->E[3] = le32_to_cpu(key[3]);
129
130	/* Prepare control words. */
131	memset(&ctx->cword, 0, sizeof(ctx->cword));
132
133	ctx->cword.decrypt.encdec = 1;
134	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
135	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
136	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
137	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
138
139	/* Don't generate extended keys if the hardware can do it. */
140	if (aes_hw_extkey_available(key_len))
141		goto ok;
142
143	ctx->D = ctx->d_data;
144	ctx->cword.encrypt.keygen = 1;
145	ctx->cword.decrypt.keygen = 1;
146
147	if (aes_expandkey(&gen_aes, in_key, key_len))
148		return -EINVAL;
149
150	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
151	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
152
153ok:
154	for_each_online_cpu(cpu)
155		if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
156		    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
157			per_cpu(paes_last_cword, cpu) = NULL;
158
159	return 0;
160}
161
162static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key,
163				unsigned int key_len)
164{
165	return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len);
166}
167
168/* ====== Encryption/decryption routines ====== */
169
170/* These are the real call to PadLock. */
171static inline void padlock_reset_key(struct cword *cword)
172{
173	int cpu = raw_smp_processor_id();
174
175	if (cword != per_cpu(paes_last_cword, cpu))
176#ifndef CONFIG_X86_64
177		asm volatile ("pushfl; popfl");
178#else
179		asm volatile ("pushfq; popfq");
180#endif
181}
182
183static inline void padlock_store_cword(struct cword *cword)
184{
185	per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
186}
187
188/*
189 * While the padlock instructions don't use FP/SSE registers, they
190 * generate a spurious DNA fault when CR0.TS is '1'.  Fortunately,
191 * the kernel doesn't use CR0.TS.
192 */
193
194static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
195				  struct cword *control_word, int count)
196{
197	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
198		      : "+S"(input), "+D"(output)
199		      : "d"(control_word), "b"(key), "c"(count));
200}
201
202static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
203				 u8 *iv, struct cword *control_word, int count)
204{
205	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
206		      : "+S" (input), "+D" (output), "+a" (iv)
207		      : "d" (control_word), "b" (key), "c" (count));
208	return iv;
209}
210
211static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
212			   struct cword *cword, int count)
213{
214	/*
215	 * Padlock prefetches extra data so we must provide mapped input buffers.
216	 * Assume there are at least 16 bytes of stack already in use.
217	 */
218	u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
219	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
220
221	memcpy(tmp, in, count * AES_BLOCK_SIZE);
222	rep_xcrypt_ecb(tmp, out, key, cword, count);
223}
224
225static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
226			   u8 *iv, struct cword *cword, int count)
227{
228	/*
229	 * Padlock prefetches extra data so we must provide mapped input buffers.
230	 * Assume there are at least 16 bytes of stack already in use.
231	 */
232	u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
233	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
234
235	memcpy(tmp, in, count * AES_BLOCK_SIZE);
236	return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
237}
238
239static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
240			     struct cword *cword, int count)
241{
242	/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
243	 * We could avoid some copying here but it's probably not worth it.
244	 */
245	if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
246		ecb_crypt_copy(in, out, key, cword, count);
247		return;
248	}
249
250	rep_xcrypt_ecb(in, out, key, cword, count);
251}
252
253static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
254			    u8 *iv, struct cword *cword, int count)
255{
256	/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
257	if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
258		return cbc_crypt_copy(in, out, key, iv, cword, count);
259
260	return rep_xcrypt_cbc(in, out, key, iv, cword, count);
261}
262
263static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
264				      void *control_word, u32 count)
265{
266	u32 initial = count & (ecb_fetch_blocks - 1);
267
268	if (count < ecb_fetch_blocks) {
269		ecb_crypt(input, output, key, control_word, count);
270		return;
271	}
272
273	count -= initial;
274
275	if (initial)
276		asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
277			      : "+S"(input), "+D"(output)
278			      : "d"(control_word), "b"(key), "c"(initial));
279
280	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
281		      : "+S"(input), "+D"(output)
282		      : "d"(control_word), "b"(key), "c"(count));
283}
284
285static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
286				     u8 *iv, void *control_word, u32 count)
287{
288	u32 initial = count & (cbc_fetch_blocks - 1);
289
290	if (count < cbc_fetch_blocks)
291		return cbc_crypt(input, output, key, iv, control_word, count);
292
293	count -= initial;
294
295	if (initial)
296		asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
297			      : "+S" (input), "+D" (output), "+a" (iv)
298			      : "d" (control_word), "b" (key), "c" (initial));
299
300	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
301		      : "+S" (input), "+D" (output), "+a" (iv)
302		      : "d" (control_word), "b" (key), "c" (count));
303	return iv;
304}
305
306static void padlock_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
307{
308	struct aes_ctx *ctx = aes_ctx(tfm);
309
310	padlock_reset_key(&ctx->cword.encrypt);
311	ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
312	padlock_store_cword(&ctx->cword.encrypt);
313}
314
315static void padlock_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
316{
317	struct aes_ctx *ctx = aes_ctx(tfm);
318
319	padlock_reset_key(&ctx->cword.encrypt);
320	ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
321	padlock_store_cword(&ctx->cword.encrypt);
322}
323
324static struct crypto_alg aes_alg = {
325	.cra_name		=	"aes",
326	.cra_driver_name	=	"aes-padlock",
327	.cra_priority		=	PADLOCK_CRA_PRIORITY,
328	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
329	.cra_blocksize		=	AES_BLOCK_SIZE,
330	.cra_ctxsize		=	sizeof(struct aes_ctx),
331	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
332	.cra_module		=	THIS_MODULE,
333	.cra_u			=	{
334		.cipher = {
335			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
336			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
337			.cia_setkey	   	= 	aes_set_key,
338			.cia_encrypt	 	=	padlock_aes_encrypt,
339			.cia_decrypt	  	=	padlock_aes_decrypt,
340		}
341	}
342};
343
344static int ecb_aes_encrypt(struct skcipher_request *req)
345{
346	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
347	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
348	struct skcipher_walk walk;
349	unsigned int nbytes;
350	int err;
351
352	padlock_reset_key(&ctx->cword.encrypt);
353
354	err = skcipher_walk_virt(&walk, req, false);
355
356	while ((nbytes = walk.nbytes) != 0) {
357		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
358				   ctx->E, &ctx->cword.encrypt,
359				   nbytes / AES_BLOCK_SIZE);
360		nbytes &= AES_BLOCK_SIZE - 1;
361		err = skcipher_walk_done(&walk, nbytes);
362	}
363
364	padlock_store_cword(&ctx->cword.encrypt);
365
366	return err;
367}
368
369static int ecb_aes_decrypt(struct skcipher_request *req)
370{
371	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
372	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
373	struct skcipher_walk walk;
374	unsigned int nbytes;
375	int err;
376
377	padlock_reset_key(&ctx->cword.decrypt);
378
379	err = skcipher_walk_virt(&walk, req, false);
380
381	while ((nbytes = walk.nbytes) != 0) {
382		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
383				   ctx->D, &ctx->cword.decrypt,
384				   nbytes / AES_BLOCK_SIZE);
385		nbytes &= AES_BLOCK_SIZE - 1;
386		err = skcipher_walk_done(&walk, nbytes);
387	}
388
389	padlock_store_cword(&ctx->cword.encrypt);
390
391	return err;
392}
393
394static struct skcipher_alg ecb_aes_alg = {
395	.base.cra_name		=	"ecb(aes)",
396	.base.cra_driver_name	=	"ecb-aes-padlock",
397	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
398	.base.cra_blocksize	=	AES_BLOCK_SIZE,
399	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
400	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
401	.base.cra_module	=	THIS_MODULE,
402	.min_keysize		=	AES_MIN_KEY_SIZE,
403	.max_keysize		=	AES_MAX_KEY_SIZE,
404	.setkey			=	aes_set_key_skcipher,
405	.encrypt		=	ecb_aes_encrypt,
406	.decrypt		=	ecb_aes_decrypt,
407};
408
409static int cbc_aes_encrypt(struct skcipher_request *req)
410{
411	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
412	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
413	struct skcipher_walk walk;
414	unsigned int nbytes;
415	int err;
416
417	padlock_reset_key(&ctx->cword.encrypt);
418
419	err = skcipher_walk_virt(&walk, req, false);
420
421	while ((nbytes = walk.nbytes) != 0) {
422		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
423					    walk.dst.virt.addr, ctx->E,
424					    walk.iv, &ctx->cword.encrypt,
425					    nbytes / AES_BLOCK_SIZE);
426		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
427		nbytes &= AES_BLOCK_SIZE - 1;
428		err = skcipher_walk_done(&walk, nbytes);
429	}
430
431	padlock_store_cword(&ctx->cword.decrypt);
432
433	return err;
434}
435
436static int cbc_aes_decrypt(struct skcipher_request *req)
437{
438	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
439	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
440	struct skcipher_walk walk;
441	unsigned int nbytes;
442	int err;
443
444	padlock_reset_key(&ctx->cword.encrypt);
445
446	err = skcipher_walk_virt(&walk, req, false);
447
448	while ((nbytes = walk.nbytes) != 0) {
449		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
450				   ctx->D, walk.iv, &ctx->cword.decrypt,
451				   nbytes / AES_BLOCK_SIZE);
452		nbytes &= AES_BLOCK_SIZE - 1;
453		err = skcipher_walk_done(&walk, nbytes);
454	}
455
456	padlock_store_cword(&ctx->cword.encrypt);
457
458	return err;
459}
460
461static struct skcipher_alg cbc_aes_alg = {
462	.base.cra_name		=	"cbc(aes)",
463	.base.cra_driver_name	=	"cbc-aes-padlock",
464	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
465	.base.cra_blocksize	=	AES_BLOCK_SIZE,
466	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
467	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
468	.base.cra_module	=	THIS_MODULE,
469	.min_keysize		=	AES_MIN_KEY_SIZE,
470	.max_keysize		=	AES_MAX_KEY_SIZE,
471	.ivsize			=	AES_BLOCK_SIZE,
472	.setkey			=	aes_set_key_skcipher,
473	.encrypt		=	cbc_aes_encrypt,
474	.decrypt		=	cbc_aes_decrypt,
475};
476
477static const struct x86_cpu_id padlock_cpu_id[] = {
478	X86_MATCH_FEATURE(X86_FEATURE_XCRYPT, NULL),
479	{}
480};
481MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
482
483static int __init padlock_init(void)
484{
485	int ret;
486	struct cpuinfo_x86 *c = &cpu_data(0);
487
488	if (!x86_match_cpu(padlock_cpu_id))
489		return -ENODEV;
490
491	if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
492		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
493		return -ENODEV;
494	}
495
496	if ((ret = crypto_register_alg(&aes_alg)) != 0)
497		goto aes_err;
498
499	if ((ret = crypto_register_skcipher(&ecb_aes_alg)) != 0)
500		goto ecb_aes_err;
501
502	if ((ret = crypto_register_skcipher(&cbc_aes_alg)) != 0)
503		goto cbc_aes_err;
504
505	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
506
507	if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
508		ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
509		cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
510		printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
511	}
512
513out:
514	return ret;
515
516cbc_aes_err:
517	crypto_unregister_skcipher(&ecb_aes_alg);
518ecb_aes_err:
519	crypto_unregister_alg(&aes_alg);
520aes_err:
521	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
522	goto out;
523}
524
525static void __exit padlock_fini(void)
526{
527	crypto_unregister_skcipher(&cbc_aes_alg);
528	crypto_unregister_skcipher(&ecb_aes_alg);
529	crypto_unregister_alg(&aes_alg);
530}
531
532module_init(padlock_init);
533module_exit(padlock_fini);
534
535MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
536MODULE_LICENSE("GPL");
537MODULE_AUTHOR("Michal Ludvig");
538
539MODULE_ALIAS_CRYPTO("aes");
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* 
  3 * Cryptographic API.
  4 *
  5 * Support for VIA PadLock hardware crypto engine.
  6 *
  7 * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
  8 *
  9 */
 10
 11#include <crypto/algapi.h>
 12#include <crypto/aes.h>
 13#include <crypto/internal/skcipher.h>
 14#include <crypto/padlock.h>
 15#include <linux/module.h>
 16#include <linux/init.h>
 17#include <linux/types.h>
 18#include <linux/errno.h>
 19#include <linux/interrupt.h>
 20#include <linux/kernel.h>
 
 21#include <linux/percpu.h>
 22#include <linux/smp.h>
 23#include <linux/slab.h>
 24#include <asm/cpu_device_id.h>
 25#include <asm/byteorder.h>
 26#include <asm/processor.h>
 27#include <asm/fpu/api.h>
 28
 29/*
 30 * Number of data blocks actually fetched for each xcrypt insn.
 31 * Processors with prefetch errata will fetch extra blocks.
 32 */
 33static unsigned int ecb_fetch_blocks = 2;
 34#define MAX_ECB_FETCH_BLOCKS (8)
 35#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
 36
 37static unsigned int cbc_fetch_blocks = 1;
 38#define MAX_CBC_FETCH_BLOCKS (4)
 39#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
 40
 41/* Control word. */
 42struct cword {
 43	unsigned int __attribute__ ((__packed__))
 44		rounds:4,
 45		algo:3,
 46		keygen:1,
 47		interm:1,
 48		encdec:1,
 49		ksize:2;
 50} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 51
 52/* Whenever making any changes to the following
 53 * structure *make sure* you keep E, d_data
 54 * and cword aligned on 16 Bytes boundaries and
 55 * the Hardware can access 16 * 16 bytes of E and d_data
 56 * (only the first 15 * 16 bytes matter but the HW reads
 57 * more).
 58 */
 59struct aes_ctx {
 60	u32 E[AES_MAX_KEYLENGTH_U32]
 61		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 62	u32 d_data[AES_MAX_KEYLENGTH_U32]
 63		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 64	struct {
 65		struct cword encrypt;
 66		struct cword decrypt;
 67	} cword;
 68	u32 *D;
 69};
 70
 71static DEFINE_PER_CPU(struct cword *, paes_last_cword);
 72
 73/* Tells whether the ACE is capable to generate
 74   the extended key for a given key_len. */
 75static inline int
 76aes_hw_extkey_available(uint8_t key_len)
 77{
 78	/* TODO: We should check the actual CPU model/stepping
 79	         as it's possible that the capability will be
 80	         added in the next CPU revisions. */
 81	if (key_len == 16)
 82		return 1;
 83	return 0;
 84}
 85
 86static inline struct aes_ctx *aes_ctx_common(void *ctx)
 87{
 88	unsigned long addr = (unsigned long)ctx;
 89	unsigned long align = PADLOCK_ALIGNMENT;
 90
 91	if (align <= crypto_tfm_ctx_alignment())
 92		align = 1;
 93	return (struct aes_ctx *)ALIGN(addr, align);
 94}
 95
 96static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
 97{
 98	return aes_ctx_common(crypto_tfm_ctx(tfm));
 99}
100
101static inline struct aes_ctx *skcipher_aes_ctx(struct crypto_skcipher *tfm)
102{
103	return aes_ctx_common(crypto_skcipher_ctx(tfm));
104}
105
106static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
107		       unsigned int key_len)
108{
109	struct aes_ctx *ctx = aes_ctx(tfm);
110	const __le32 *key = (const __le32 *)in_key;
111	struct crypto_aes_ctx gen_aes;
112	int cpu;
113
114	if (key_len % 8)
115		return -EINVAL;
116
117	/*
118	 * If the hardware is capable of generating the extended key
119	 * itself we must supply the plain key for both encryption
120	 * and decryption.
121	 */
122	ctx->D = ctx->E;
123
124	ctx->E[0] = le32_to_cpu(key[0]);
125	ctx->E[1] = le32_to_cpu(key[1]);
126	ctx->E[2] = le32_to_cpu(key[2]);
127	ctx->E[3] = le32_to_cpu(key[3]);
128
129	/* Prepare control words. */
130	memset(&ctx->cword, 0, sizeof(ctx->cword));
131
132	ctx->cword.decrypt.encdec = 1;
133	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
134	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
135	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
136	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
137
138	/* Don't generate extended keys if the hardware can do it. */
139	if (aes_hw_extkey_available(key_len))
140		goto ok;
141
142	ctx->D = ctx->d_data;
143	ctx->cword.encrypt.keygen = 1;
144	ctx->cword.decrypt.keygen = 1;
145
146	if (aes_expandkey(&gen_aes, in_key, key_len))
147		return -EINVAL;
148
149	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
150	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
151
152ok:
153	for_each_online_cpu(cpu)
154		if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
155		    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
156			per_cpu(paes_last_cword, cpu) = NULL;
157
158	return 0;
159}
160
161static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key,
162				unsigned int key_len)
163{
164	return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len);
165}
166
167/* ====== Encryption/decryption routines ====== */
168
169/* These are the real call to PadLock. */
170static inline void padlock_reset_key(struct cword *cword)
171{
172	int cpu = raw_smp_processor_id();
173
174	if (cword != per_cpu(paes_last_cword, cpu))
175#ifndef CONFIG_X86_64
176		asm volatile ("pushfl; popfl");
177#else
178		asm volatile ("pushfq; popfq");
179#endif
180}
181
182static inline void padlock_store_cword(struct cword *cword)
183{
184	per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
185}
186
187/*
188 * While the padlock instructions don't use FP/SSE registers, they
189 * generate a spurious DNA fault when CR0.TS is '1'.  Fortunately,
190 * the kernel doesn't use CR0.TS.
191 */
192
193static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
194				  struct cword *control_word, int count)
195{
196	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
197		      : "+S"(input), "+D"(output)
198		      : "d"(control_word), "b"(key), "c"(count));
199}
200
201static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
202				 u8 *iv, struct cword *control_word, int count)
203{
204	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
205		      : "+S" (input), "+D" (output), "+a" (iv)
206		      : "d" (control_word), "b" (key), "c" (count));
207	return iv;
208}
209
210static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
211			   struct cword *cword, int count)
212{
213	/*
214	 * Padlock prefetches extra data so we must provide mapped input buffers.
215	 * Assume there are at least 16 bytes of stack already in use.
216	 */
217	u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
218	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
219
220	memcpy(tmp, in, count * AES_BLOCK_SIZE);
221	rep_xcrypt_ecb(tmp, out, key, cword, count);
222}
223
224static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
225			   u8 *iv, struct cword *cword, int count)
226{
227	/*
228	 * Padlock prefetches extra data so we must provide mapped input buffers.
229	 * Assume there are at least 16 bytes of stack already in use.
230	 */
231	u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
232	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
233
234	memcpy(tmp, in, count * AES_BLOCK_SIZE);
235	return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
236}
237
238static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
239			     struct cword *cword, int count)
240{
241	/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
242	 * We could avoid some copying here but it's probably not worth it.
243	 */
244	if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
245		ecb_crypt_copy(in, out, key, cword, count);
246		return;
247	}
248
249	rep_xcrypt_ecb(in, out, key, cword, count);
250}
251
252static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
253			    u8 *iv, struct cword *cword, int count)
254{
255	/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
256	if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
257		return cbc_crypt_copy(in, out, key, iv, cword, count);
258
259	return rep_xcrypt_cbc(in, out, key, iv, cword, count);
260}
261
262static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
263				      void *control_word, u32 count)
264{
265	u32 initial = count & (ecb_fetch_blocks - 1);
266
267	if (count < ecb_fetch_blocks) {
268		ecb_crypt(input, output, key, control_word, count);
269		return;
270	}
271
272	count -= initial;
273
274	if (initial)
275		asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
276			      : "+S"(input), "+D"(output)
277			      : "d"(control_word), "b"(key), "c"(initial));
278
279	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
280		      : "+S"(input), "+D"(output)
281		      : "d"(control_word), "b"(key), "c"(count));
282}
283
284static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
285				     u8 *iv, void *control_word, u32 count)
286{
287	u32 initial = count & (cbc_fetch_blocks - 1);
288
289	if (count < cbc_fetch_blocks)
290		return cbc_crypt(input, output, key, iv, control_word, count);
291
292	count -= initial;
293
294	if (initial)
295		asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
296			      : "+S" (input), "+D" (output), "+a" (iv)
297			      : "d" (control_word), "b" (key), "c" (initial));
298
299	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
300		      : "+S" (input), "+D" (output), "+a" (iv)
301		      : "d" (control_word), "b" (key), "c" (count));
302	return iv;
303}
304
305static void padlock_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
306{
307	struct aes_ctx *ctx = aes_ctx(tfm);
308
309	padlock_reset_key(&ctx->cword.encrypt);
310	ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
311	padlock_store_cword(&ctx->cword.encrypt);
312}
313
314static void padlock_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
315{
316	struct aes_ctx *ctx = aes_ctx(tfm);
317
318	padlock_reset_key(&ctx->cword.encrypt);
319	ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
320	padlock_store_cword(&ctx->cword.encrypt);
321}
322
323static struct crypto_alg aes_alg = {
324	.cra_name		=	"aes",
325	.cra_driver_name	=	"aes-padlock",
326	.cra_priority		=	PADLOCK_CRA_PRIORITY,
327	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
328	.cra_blocksize		=	AES_BLOCK_SIZE,
329	.cra_ctxsize		=	sizeof(struct aes_ctx),
330	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
331	.cra_module		=	THIS_MODULE,
332	.cra_u			=	{
333		.cipher = {
334			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
335			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
336			.cia_setkey	   	= 	aes_set_key,
337			.cia_encrypt	 	=	padlock_aes_encrypt,
338			.cia_decrypt	  	=	padlock_aes_decrypt,
339		}
340	}
341};
342
343static int ecb_aes_encrypt(struct skcipher_request *req)
344{
345	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
346	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
347	struct skcipher_walk walk;
348	unsigned int nbytes;
349	int err;
350
351	padlock_reset_key(&ctx->cword.encrypt);
352
353	err = skcipher_walk_virt(&walk, req, false);
354
355	while ((nbytes = walk.nbytes) != 0) {
356		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
357				   ctx->E, &ctx->cword.encrypt,
358				   nbytes / AES_BLOCK_SIZE);
359		nbytes &= AES_BLOCK_SIZE - 1;
360		err = skcipher_walk_done(&walk, nbytes);
361	}
362
363	padlock_store_cword(&ctx->cword.encrypt);
364
365	return err;
366}
367
368static int ecb_aes_decrypt(struct skcipher_request *req)
369{
370	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
371	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
372	struct skcipher_walk walk;
373	unsigned int nbytes;
374	int err;
375
376	padlock_reset_key(&ctx->cword.decrypt);
377
378	err = skcipher_walk_virt(&walk, req, false);
379
380	while ((nbytes = walk.nbytes) != 0) {
381		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
382				   ctx->D, &ctx->cword.decrypt,
383				   nbytes / AES_BLOCK_SIZE);
384		nbytes &= AES_BLOCK_SIZE - 1;
385		err = skcipher_walk_done(&walk, nbytes);
386	}
387
388	padlock_store_cword(&ctx->cword.encrypt);
389
390	return err;
391}
392
393static struct skcipher_alg ecb_aes_alg = {
394	.base.cra_name		=	"ecb(aes)",
395	.base.cra_driver_name	=	"ecb-aes-padlock",
396	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
397	.base.cra_blocksize	=	AES_BLOCK_SIZE,
398	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
399	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
400	.base.cra_module	=	THIS_MODULE,
401	.min_keysize		=	AES_MIN_KEY_SIZE,
402	.max_keysize		=	AES_MAX_KEY_SIZE,
403	.setkey			=	aes_set_key_skcipher,
404	.encrypt		=	ecb_aes_encrypt,
405	.decrypt		=	ecb_aes_decrypt,
406};
407
408static int cbc_aes_encrypt(struct skcipher_request *req)
409{
410	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
411	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
412	struct skcipher_walk walk;
413	unsigned int nbytes;
414	int err;
415
416	padlock_reset_key(&ctx->cword.encrypt);
417
418	err = skcipher_walk_virt(&walk, req, false);
419
420	while ((nbytes = walk.nbytes) != 0) {
421		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
422					    walk.dst.virt.addr, ctx->E,
423					    walk.iv, &ctx->cword.encrypt,
424					    nbytes / AES_BLOCK_SIZE);
425		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
426		nbytes &= AES_BLOCK_SIZE - 1;
427		err = skcipher_walk_done(&walk, nbytes);
428	}
429
430	padlock_store_cword(&ctx->cword.decrypt);
431
432	return err;
433}
434
435static int cbc_aes_decrypt(struct skcipher_request *req)
436{
437	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
438	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
439	struct skcipher_walk walk;
440	unsigned int nbytes;
441	int err;
442
443	padlock_reset_key(&ctx->cword.encrypt);
444
445	err = skcipher_walk_virt(&walk, req, false);
446
447	while ((nbytes = walk.nbytes) != 0) {
448		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
449				   ctx->D, walk.iv, &ctx->cword.decrypt,
450				   nbytes / AES_BLOCK_SIZE);
451		nbytes &= AES_BLOCK_SIZE - 1;
452		err = skcipher_walk_done(&walk, nbytes);
453	}
454
455	padlock_store_cword(&ctx->cword.encrypt);
456
457	return err;
458}
459
460static struct skcipher_alg cbc_aes_alg = {
461	.base.cra_name		=	"cbc(aes)",
462	.base.cra_driver_name	=	"cbc-aes-padlock",
463	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
464	.base.cra_blocksize	=	AES_BLOCK_SIZE,
465	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
466	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
467	.base.cra_module	=	THIS_MODULE,
468	.min_keysize		=	AES_MIN_KEY_SIZE,
469	.max_keysize		=	AES_MAX_KEY_SIZE,
470	.ivsize			=	AES_BLOCK_SIZE,
471	.setkey			=	aes_set_key_skcipher,
472	.encrypt		=	cbc_aes_encrypt,
473	.decrypt		=	cbc_aes_decrypt,
474};
475
476static const struct x86_cpu_id padlock_cpu_id[] = {
477	X86_MATCH_FEATURE(X86_FEATURE_XCRYPT, NULL),
478	{}
479};
480MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
481
482static int __init padlock_init(void)
483{
484	int ret;
485	struct cpuinfo_x86 *c = &cpu_data(0);
486
487	if (!x86_match_cpu(padlock_cpu_id))
488		return -ENODEV;
489
490	if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
491		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
492		return -ENODEV;
493	}
494
495	if ((ret = crypto_register_alg(&aes_alg)) != 0)
496		goto aes_err;
497
498	if ((ret = crypto_register_skcipher(&ecb_aes_alg)) != 0)
499		goto ecb_aes_err;
500
501	if ((ret = crypto_register_skcipher(&cbc_aes_alg)) != 0)
502		goto cbc_aes_err;
503
504	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
505
506	if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
507		ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
508		cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
509		printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
510	}
511
512out:
513	return ret;
514
515cbc_aes_err:
516	crypto_unregister_skcipher(&ecb_aes_alg);
517ecb_aes_err:
518	crypto_unregister_alg(&aes_alg);
519aes_err:
520	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
521	goto out;
522}
523
524static void __exit padlock_fini(void)
525{
526	crypto_unregister_skcipher(&cbc_aes_alg);
527	crypto_unregister_skcipher(&ecb_aes_alg);
528	crypto_unregister_alg(&aes_alg);
529}
530
531module_init(padlock_init);
532module_exit(padlock_fini);
533
534MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
535MODULE_LICENSE("GPL");
536MODULE_AUTHOR("Michal Ludvig");
537
538MODULE_ALIAS_CRYPTO("aes");