Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Cryptographic API.
4 *
5 * Support for VIA PadLock hardware crypto engine.
6 *
7 * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
8 *
9 */
10
11#include <crypto/algapi.h>
12#include <crypto/aes.h>
13#include <crypto/internal/skcipher.h>
14#include <crypto/padlock.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/types.h>
18#include <linux/errno.h>
19#include <linux/interrupt.h>
20#include <linux/kernel.h>
21#include <linux/mm.h>
22#include <linux/percpu.h>
23#include <linux/smp.h>
24#include <linux/slab.h>
25#include <asm/cpu_device_id.h>
26#include <asm/byteorder.h>
27#include <asm/processor.h>
28#include <asm/fpu/api.h>
29
30/*
31 * Number of data blocks actually fetched for each xcrypt insn.
32 * Processors with prefetch errata will fetch extra blocks.
33 */
34static unsigned int ecb_fetch_blocks = 2;
35#define MAX_ECB_FETCH_BLOCKS (8)
36#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
37
38static unsigned int cbc_fetch_blocks = 1;
39#define MAX_CBC_FETCH_BLOCKS (4)
40#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
41
42/* Control word. */
43struct cword {
44 unsigned int __attribute__ ((__packed__))
45 rounds:4,
46 algo:3,
47 keygen:1,
48 interm:1,
49 encdec:1,
50 ksize:2;
51} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
52
53/* Whenever making any changes to the following
54 * structure *make sure* you keep E, d_data
55 * and cword aligned on 16 Bytes boundaries and
56 * the Hardware can access 16 * 16 bytes of E and d_data
57 * (only the first 15 * 16 bytes matter but the HW reads
58 * more).
59 */
60struct aes_ctx {
61 u32 E[AES_MAX_KEYLENGTH_U32]
62 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
63 u32 d_data[AES_MAX_KEYLENGTH_U32]
64 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
65 struct {
66 struct cword encrypt;
67 struct cword decrypt;
68 } cword;
69 u32 *D;
70};
71
72static DEFINE_PER_CPU(struct cword *, paes_last_cword);
73
74/* Tells whether the ACE is capable to generate
75 the extended key for a given key_len. */
76static inline int
77aes_hw_extkey_available(uint8_t key_len)
78{
79 /* TODO: We should check the actual CPU model/stepping
80 as it's possible that the capability will be
81 added in the next CPU revisions. */
82 if (key_len == 16)
83 return 1;
84 return 0;
85}
86
87static inline struct aes_ctx *aes_ctx_common(void *ctx)
88{
89 unsigned long addr = (unsigned long)ctx;
90 unsigned long align = PADLOCK_ALIGNMENT;
91
92 if (align <= crypto_tfm_ctx_alignment())
93 align = 1;
94 return (struct aes_ctx *)ALIGN(addr, align);
95}
96
97static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
98{
99 return aes_ctx_common(crypto_tfm_ctx(tfm));
100}
101
102static inline struct aes_ctx *skcipher_aes_ctx(struct crypto_skcipher *tfm)
103{
104 return aes_ctx_common(crypto_skcipher_ctx(tfm));
105}
106
107static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
108 unsigned int key_len)
109{
110 struct aes_ctx *ctx = aes_ctx(tfm);
111 const __le32 *key = (const __le32 *)in_key;
112 struct crypto_aes_ctx gen_aes;
113 int cpu;
114
115 if (key_len % 8)
116 return -EINVAL;
117
118 /*
119 * If the hardware is capable of generating the extended key
120 * itself we must supply the plain key for both encryption
121 * and decryption.
122 */
123 ctx->D = ctx->E;
124
125 ctx->E[0] = le32_to_cpu(key[0]);
126 ctx->E[1] = le32_to_cpu(key[1]);
127 ctx->E[2] = le32_to_cpu(key[2]);
128 ctx->E[3] = le32_to_cpu(key[3]);
129
130 /* Prepare control words. */
131 memset(&ctx->cword, 0, sizeof(ctx->cword));
132
133 ctx->cword.decrypt.encdec = 1;
134 ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
135 ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
136 ctx->cword.encrypt.ksize = (key_len - 16) / 8;
137 ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
138
139 /* Don't generate extended keys if the hardware can do it. */
140 if (aes_hw_extkey_available(key_len))
141 goto ok;
142
143 ctx->D = ctx->d_data;
144 ctx->cword.encrypt.keygen = 1;
145 ctx->cword.decrypt.keygen = 1;
146
147 if (aes_expandkey(&gen_aes, in_key, key_len))
148 return -EINVAL;
149
150 memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
151 memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
152
153ok:
154 for_each_online_cpu(cpu)
155 if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
156 &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
157 per_cpu(paes_last_cword, cpu) = NULL;
158
159 return 0;
160}
161
162static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key,
163 unsigned int key_len)
164{
165 return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len);
166}
167
168/* ====== Encryption/decryption routines ====== */
169
170/* These are the real call to PadLock. */
171static inline void padlock_reset_key(struct cword *cword)
172{
173 int cpu = raw_smp_processor_id();
174
175 if (cword != per_cpu(paes_last_cword, cpu))
176#ifndef CONFIG_X86_64
177 asm volatile ("pushfl; popfl");
178#else
179 asm volatile ("pushfq; popfq");
180#endif
181}
182
183static inline void padlock_store_cword(struct cword *cword)
184{
185 per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
186}
187
188/*
189 * While the padlock instructions don't use FP/SSE registers, they
190 * generate a spurious DNA fault when CR0.TS is '1'. Fortunately,
191 * the kernel doesn't use CR0.TS.
192 */
193
194static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
195 struct cword *control_word, int count)
196{
197 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
198 : "+S"(input), "+D"(output)
199 : "d"(control_word), "b"(key), "c"(count));
200}
201
202static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
203 u8 *iv, struct cword *control_word, int count)
204{
205 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
206 : "+S" (input), "+D" (output), "+a" (iv)
207 : "d" (control_word), "b" (key), "c" (count));
208 return iv;
209}
210
211static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
212 struct cword *cword, int count)
213{
214 /*
215 * Padlock prefetches extra data so we must provide mapped input buffers.
216 * Assume there are at least 16 bytes of stack already in use.
217 */
218 u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
219 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
220
221 memcpy(tmp, in, count * AES_BLOCK_SIZE);
222 rep_xcrypt_ecb(tmp, out, key, cword, count);
223}
224
225static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
226 u8 *iv, struct cword *cword, int count)
227{
228 /*
229 * Padlock prefetches extra data so we must provide mapped input buffers.
230 * Assume there are at least 16 bytes of stack already in use.
231 */
232 u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
233 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
234
235 memcpy(tmp, in, count * AES_BLOCK_SIZE);
236 return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
237}
238
239static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
240 struct cword *cword, int count)
241{
242 /* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
243 * We could avoid some copying here but it's probably not worth it.
244 */
245 if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
246 ecb_crypt_copy(in, out, key, cword, count);
247 return;
248 }
249
250 rep_xcrypt_ecb(in, out, key, cword, count);
251}
252
253static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
254 u8 *iv, struct cword *cword, int count)
255{
256 /* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
257 if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
258 return cbc_crypt_copy(in, out, key, iv, cword, count);
259
260 return rep_xcrypt_cbc(in, out, key, iv, cword, count);
261}
262
263static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
264 void *control_word, u32 count)
265{
266 u32 initial = count & (ecb_fetch_blocks - 1);
267
268 if (count < ecb_fetch_blocks) {
269 ecb_crypt(input, output, key, control_word, count);
270 return;
271 }
272
273 count -= initial;
274
275 if (initial)
276 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
277 : "+S"(input), "+D"(output)
278 : "d"(control_word), "b"(key), "c"(initial));
279
280 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
281 : "+S"(input), "+D"(output)
282 : "d"(control_word), "b"(key), "c"(count));
283}
284
285static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
286 u8 *iv, void *control_word, u32 count)
287{
288 u32 initial = count & (cbc_fetch_blocks - 1);
289
290 if (count < cbc_fetch_blocks)
291 return cbc_crypt(input, output, key, iv, control_word, count);
292
293 count -= initial;
294
295 if (initial)
296 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
297 : "+S" (input), "+D" (output), "+a" (iv)
298 : "d" (control_word), "b" (key), "c" (initial));
299
300 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
301 : "+S" (input), "+D" (output), "+a" (iv)
302 : "d" (control_word), "b" (key), "c" (count));
303 return iv;
304}
305
306static void padlock_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
307{
308 struct aes_ctx *ctx = aes_ctx(tfm);
309
310 padlock_reset_key(&ctx->cword.encrypt);
311 ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
312 padlock_store_cword(&ctx->cword.encrypt);
313}
314
315static void padlock_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
316{
317 struct aes_ctx *ctx = aes_ctx(tfm);
318
319 padlock_reset_key(&ctx->cword.encrypt);
320 ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
321 padlock_store_cword(&ctx->cword.encrypt);
322}
323
324static struct crypto_alg aes_alg = {
325 .cra_name = "aes",
326 .cra_driver_name = "aes-padlock",
327 .cra_priority = PADLOCK_CRA_PRIORITY,
328 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
329 .cra_blocksize = AES_BLOCK_SIZE,
330 .cra_ctxsize = sizeof(struct aes_ctx),
331 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
332 .cra_module = THIS_MODULE,
333 .cra_u = {
334 .cipher = {
335 .cia_min_keysize = AES_MIN_KEY_SIZE,
336 .cia_max_keysize = AES_MAX_KEY_SIZE,
337 .cia_setkey = aes_set_key,
338 .cia_encrypt = padlock_aes_encrypt,
339 .cia_decrypt = padlock_aes_decrypt,
340 }
341 }
342};
343
344static int ecb_aes_encrypt(struct skcipher_request *req)
345{
346 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
347 struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
348 struct skcipher_walk walk;
349 unsigned int nbytes;
350 int err;
351
352 padlock_reset_key(&ctx->cword.encrypt);
353
354 err = skcipher_walk_virt(&walk, req, false);
355
356 while ((nbytes = walk.nbytes) != 0) {
357 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
358 ctx->E, &ctx->cword.encrypt,
359 nbytes / AES_BLOCK_SIZE);
360 nbytes &= AES_BLOCK_SIZE - 1;
361 err = skcipher_walk_done(&walk, nbytes);
362 }
363
364 padlock_store_cword(&ctx->cword.encrypt);
365
366 return err;
367}
368
369static int ecb_aes_decrypt(struct skcipher_request *req)
370{
371 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
372 struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
373 struct skcipher_walk walk;
374 unsigned int nbytes;
375 int err;
376
377 padlock_reset_key(&ctx->cword.decrypt);
378
379 err = skcipher_walk_virt(&walk, req, false);
380
381 while ((nbytes = walk.nbytes) != 0) {
382 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
383 ctx->D, &ctx->cword.decrypt,
384 nbytes / AES_BLOCK_SIZE);
385 nbytes &= AES_BLOCK_SIZE - 1;
386 err = skcipher_walk_done(&walk, nbytes);
387 }
388
389 padlock_store_cword(&ctx->cword.encrypt);
390
391 return err;
392}
393
394static struct skcipher_alg ecb_aes_alg = {
395 .base.cra_name = "ecb(aes)",
396 .base.cra_driver_name = "ecb-aes-padlock",
397 .base.cra_priority = PADLOCK_COMPOSITE_PRIORITY,
398 .base.cra_blocksize = AES_BLOCK_SIZE,
399 .base.cra_ctxsize = sizeof(struct aes_ctx),
400 .base.cra_alignmask = PADLOCK_ALIGNMENT - 1,
401 .base.cra_module = THIS_MODULE,
402 .min_keysize = AES_MIN_KEY_SIZE,
403 .max_keysize = AES_MAX_KEY_SIZE,
404 .setkey = aes_set_key_skcipher,
405 .encrypt = ecb_aes_encrypt,
406 .decrypt = ecb_aes_decrypt,
407};
408
409static int cbc_aes_encrypt(struct skcipher_request *req)
410{
411 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
412 struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
413 struct skcipher_walk walk;
414 unsigned int nbytes;
415 int err;
416
417 padlock_reset_key(&ctx->cword.encrypt);
418
419 err = skcipher_walk_virt(&walk, req, false);
420
421 while ((nbytes = walk.nbytes) != 0) {
422 u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
423 walk.dst.virt.addr, ctx->E,
424 walk.iv, &ctx->cword.encrypt,
425 nbytes / AES_BLOCK_SIZE);
426 memcpy(walk.iv, iv, AES_BLOCK_SIZE);
427 nbytes &= AES_BLOCK_SIZE - 1;
428 err = skcipher_walk_done(&walk, nbytes);
429 }
430
431 padlock_store_cword(&ctx->cword.decrypt);
432
433 return err;
434}
435
436static int cbc_aes_decrypt(struct skcipher_request *req)
437{
438 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
439 struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
440 struct skcipher_walk walk;
441 unsigned int nbytes;
442 int err;
443
444 padlock_reset_key(&ctx->cword.encrypt);
445
446 err = skcipher_walk_virt(&walk, req, false);
447
448 while ((nbytes = walk.nbytes) != 0) {
449 padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
450 ctx->D, walk.iv, &ctx->cword.decrypt,
451 nbytes / AES_BLOCK_SIZE);
452 nbytes &= AES_BLOCK_SIZE - 1;
453 err = skcipher_walk_done(&walk, nbytes);
454 }
455
456 padlock_store_cword(&ctx->cword.encrypt);
457
458 return err;
459}
460
461static struct skcipher_alg cbc_aes_alg = {
462 .base.cra_name = "cbc(aes)",
463 .base.cra_driver_name = "cbc-aes-padlock",
464 .base.cra_priority = PADLOCK_COMPOSITE_PRIORITY,
465 .base.cra_blocksize = AES_BLOCK_SIZE,
466 .base.cra_ctxsize = sizeof(struct aes_ctx),
467 .base.cra_alignmask = PADLOCK_ALIGNMENT - 1,
468 .base.cra_module = THIS_MODULE,
469 .min_keysize = AES_MIN_KEY_SIZE,
470 .max_keysize = AES_MAX_KEY_SIZE,
471 .ivsize = AES_BLOCK_SIZE,
472 .setkey = aes_set_key_skcipher,
473 .encrypt = cbc_aes_encrypt,
474 .decrypt = cbc_aes_decrypt,
475};
476
477static const struct x86_cpu_id padlock_cpu_id[] = {
478 X86_MATCH_FEATURE(X86_FEATURE_XCRYPT, NULL),
479 {}
480};
481MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
482
483static int __init padlock_init(void)
484{
485 int ret;
486 struct cpuinfo_x86 *c = &cpu_data(0);
487
488 if (!x86_match_cpu(padlock_cpu_id))
489 return -ENODEV;
490
491 if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
492 printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
493 return -ENODEV;
494 }
495
496 if ((ret = crypto_register_alg(&aes_alg)) != 0)
497 goto aes_err;
498
499 if ((ret = crypto_register_skcipher(&ecb_aes_alg)) != 0)
500 goto ecb_aes_err;
501
502 if ((ret = crypto_register_skcipher(&cbc_aes_alg)) != 0)
503 goto cbc_aes_err;
504
505 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
506
507 if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
508 ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
509 cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
510 printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
511 }
512
513out:
514 return ret;
515
516cbc_aes_err:
517 crypto_unregister_skcipher(&ecb_aes_alg);
518ecb_aes_err:
519 crypto_unregister_alg(&aes_alg);
520aes_err:
521 printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
522 goto out;
523}
524
525static void __exit padlock_fini(void)
526{
527 crypto_unregister_skcipher(&cbc_aes_alg);
528 crypto_unregister_skcipher(&ecb_aes_alg);
529 crypto_unregister_alg(&aes_alg);
530}
531
532module_init(padlock_init);
533module_exit(padlock_fini);
534
535MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
536MODULE_LICENSE("GPL");
537MODULE_AUTHOR("Michal Ludvig");
538
539MODULE_ALIAS_CRYPTO("aes");
1/*
2 * Cryptographic API.
3 *
4 * Support for VIA PadLock hardware crypto engine.
5 *
6 * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
7 *
8 */
9
10#include <crypto/algapi.h>
11#include <crypto/aes.h>
12#include <crypto/padlock.h>
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/types.h>
16#include <linux/errno.h>
17#include <linux/interrupt.h>
18#include <linux/kernel.h>
19#include <linux/percpu.h>
20#include <linux/smp.h>
21#include <linux/slab.h>
22#include <asm/cpu_device_id.h>
23#include <asm/byteorder.h>
24#include <asm/processor.h>
25#include <asm/i387.h>
26
27/*
28 * Number of data blocks actually fetched for each xcrypt insn.
29 * Processors with prefetch errata will fetch extra blocks.
30 */
31static unsigned int ecb_fetch_blocks = 2;
32#define MAX_ECB_FETCH_BLOCKS (8)
33#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
34
35static unsigned int cbc_fetch_blocks = 1;
36#define MAX_CBC_FETCH_BLOCKS (4)
37#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
38
39/* Control word. */
40struct cword {
41 unsigned int __attribute__ ((__packed__))
42 rounds:4,
43 algo:3,
44 keygen:1,
45 interm:1,
46 encdec:1,
47 ksize:2;
48} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
49
50/* Whenever making any changes to the following
51 * structure *make sure* you keep E, d_data
52 * and cword aligned on 16 Bytes boundaries and
53 * the Hardware can access 16 * 16 bytes of E and d_data
54 * (only the first 15 * 16 bytes matter but the HW reads
55 * more).
56 */
57struct aes_ctx {
58 u32 E[AES_MAX_KEYLENGTH_U32]
59 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
60 u32 d_data[AES_MAX_KEYLENGTH_U32]
61 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
62 struct {
63 struct cword encrypt;
64 struct cword decrypt;
65 } cword;
66 u32 *D;
67};
68
69static DEFINE_PER_CPU(struct cword *, paes_last_cword);
70
71/* Tells whether the ACE is capable to generate
72 the extended key for a given key_len. */
73static inline int
74aes_hw_extkey_available(uint8_t key_len)
75{
76 /* TODO: We should check the actual CPU model/stepping
77 as it's possible that the capability will be
78 added in the next CPU revisions. */
79 if (key_len == 16)
80 return 1;
81 return 0;
82}
83
84static inline struct aes_ctx *aes_ctx_common(void *ctx)
85{
86 unsigned long addr = (unsigned long)ctx;
87 unsigned long align = PADLOCK_ALIGNMENT;
88
89 if (align <= crypto_tfm_ctx_alignment())
90 align = 1;
91 return (struct aes_ctx *)ALIGN(addr, align);
92}
93
94static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
95{
96 return aes_ctx_common(crypto_tfm_ctx(tfm));
97}
98
99static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
100{
101 return aes_ctx_common(crypto_blkcipher_ctx(tfm));
102}
103
104static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
105 unsigned int key_len)
106{
107 struct aes_ctx *ctx = aes_ctx(tfm);
108 const __le32 *key = (const __le32 *)in_key;
109 u32 *flags = &tfm->crt_flags;
110 struct crypto_aes_ctx gen_aes;
111 int cpu;
112
113 if (key_len % 8) {
114 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
115 return -EINVAL;
116 }
117
118 /*
119 * If the hardware is capable of generating the extended key
120 * itself we must supply the plain key for both encryption
121 * and decryption.
122 */
123 ctx->D = ctx->E;
124
125 ctx->E[0] = le32_to_cpu(key[0]);
126 ctx->E[1] = le32_to_cpu(key[1]);
127 ctx->E[2] = le32_to_cpu(key[2]);
128 ctx->E[3] = le32_to_cpu(key[3]);
129
130 /* Prepare control words. */
131 memset(&ctx->cword, 0, sizeof(ctx->cword));
132
133 ctx->cword.decrypt.encdec = 1;
134 ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
135 ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
136 ctx->cword.encrypt.ksize = (key_len - 16) / 8;
137 ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
138
139 /* Don't generate extended keys if the hardware can do it. */
140 if (aes_hw_extkey_available(key_len))
141 goto ok;
142
143 ctx->D = ctx->d_data;
144 ctx->cword.encrypt.keygen = 1;
145 ctx->cword.decrypt.keygen = 1;
146
147 if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
148 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
149 return -EINVAL;
150 }
151
152 memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
153 memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
154
155ok:
156 for_each_online_cpu(cpu)
157 if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
158 &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
159 per_cpu(paes_last_cword, cpu) = NULL;
160
161 return 0;
162}
163
164/* ====== Encryption/decryption routines ====== */
165
166/* These are the real call to PadLock. */
167static inline void padlock_reset_key(struct cword *cword)
168{
169 int cpu = raw_smp_processor_id();
170
171 if (cword != per_cpu(paes_last_cword, cpu))
172#ifndef CONFIG_X86_64
173 asm volatile ("pushfl; popfl");
174#else
175 asm volatile ("pushfq; popfq");
176#endif
177}
178
179static inline void padlock_store_cword(struct cword *cword)
180{
181 per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
182}
183
184/*
185 * While the padlock instructions don't use FP/SSE registers, they
186 * generate a spurious DNA fault when cr0.ts is '1'. These instructions
187 * should be used only inside the irq_ts_save/restore() context
188 */
189
190static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
191 struct cword *control_word, int count)
192{
193 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
194 : "+S"(input), "+D"(output)
195 : "d"(control_word), "b"(key), "c"(count));
196}
197
198static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
199 u8 *iv, struct cword *control_word, int count)
200{
201 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
202 : "+S" (input), "+D" (output), "+a" (iv)
203 : "d" (control_word), "b" (key), "c" (count));
204 return iv;
205}
206
207static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
208 struct cword *cword, int count)
209{
210 /*
211 * Padlock prefetches extra data so we must provide mapped input buffers.
212 * Assume there are at least 16 bytes of stack already in use.
213 */
214 u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
215 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
216
217 memcpy(tmp, in, count * AES_BLOCK_SIZE);
218 rep_xcrypt_ecb(tmp, out, key, cword, count);
219}
220
221static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
222 u8 *iv, struct cword *cword, int count)
223{
224 /*
225 * Padlock prefetches extra data so we must provide mapped input buffers.
226 * Assume there are at least 16 bytes of stack already in use.
227 */
228 u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
229 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
230
231 memcpy(tmp, in, count * AES_BLOCK_SIZE);
232 return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
233}
234
235static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
236 struct cword *cword, int count)
237{
238 /* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
239 * We could avoid some copying here but it's probably not worth it.
240 */
241 if (unlikely(((unsigned long)in & ~PAGE_MASK) + ecb_fetch_bytes > PAGE_SIZE)) {
242 ecb_crypt_copy(in, out, key, cword, count);
243 return;
244 }
245
246 rep_xcrypt_ecb(in, out, key, cword, count);
247}
248
249static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
250 u8 *iv, struct cword *cword, int count)
251{
252 /* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
253 if (unlikely(((unsigned long)in & ~PAGE_MASK) + cbc_fetch_bytes > PAGE_SIZE))
254 return cbc_crypt_copy(in, out, key, iv, cword, count);
255
256 return rep_xcrypt_cbc(in, out, key, iv, cword, count);
257}
258
259static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
260 void *control_word, u32 count)
261{
262 u32 initial = count & (ecb_fetch_blocks - 1);
263
264 if (count < ecb_fetch_blocks) {
265 ecb_crypt(input, output, key, control_word, count);
266 return;
267 }
268
269 if (initial)
270 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
271 : "+S"(input), "+D"(output)
272 : "d"(control_word), "b"(key), "c"(initial));
273
274 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
275 : "+S"(input), "+D"(output)
276 : "d"(control_word), "b"(key), "c"(count - initial));
277}
278
279static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
280 u8 *iv, void *control_word, u32 count)
281{
282 u32 initial = count & (cbc_fetch_blocks - 1);
283
284 if (count < cbc_fetch_blocks)
285 return cbc_crypt(input, output, key, iv, control_word, count);
286
287 if (initial)
288 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
289 : "+S" (input), "+D" (output), "+a" (iv)
290 : "d" (control_word), "b" (key), "c" (initial));
291
292 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
293 : "+S" (input), "+D" (output), "+a" (iv)
294 : "d" (control_word), "b" (key), "c" (count-initial));
295 return iv;
296}
297
298static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
299{
300 struct aes_ctx *ctx = aes_ctx(tfm);
301 int ts_state;
302
303 padlock_reset_key(&ctx->cword.encrypt);
304 ts_state = irq_ts_save();
305 ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
306 irq_ts_restore(ts_state);
307 padlock_store_cword(&ctx->cword.encrypt);
308}
309
310static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
311{
312 struct aes_ctx *ctx = aes_ctx(tfm);
313 int ts_state;
314
315 padlock_reset_key(&ctx->cword.encrypt);
316 ts_state = irq_ts_save();
317 ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
318 irq_ts_restore(ts_state);
319 padlock_store_cword(&ctx->cword.encrypt);
320}
321
322static struct crypto_alg aes_alg = {
323 .cra_name = "aes",
324 .cra_driver_name = "aes-padlock",
325 .cra_priority = PADLOCK_CRA_PRIORITY,
326 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
327 .cra_blocksize = AES_BLOCK_SIZE,
328 .cra_ctxsize = sizeof(struct aes_ctx),
329 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
330 .cra_module = THIS_MODULE,
331 .cra_u = {
332 .cipher = {
333 .cia_min_keysize = AES_MIN_KEY_SIZE,
334 .cia_max_keysize = AES_MAX_KEY_SIZE,
335 .cia_setkey = aes_set_key,
336 .cia_encrypt = aes_encrypt,
337 .cia_decrypt = aes_decrypt,
338 }
339 }
340};
341
342static int ecb_aes_encrypt(struct blkcipher_desc *desc,
343 struct scatterlist *dst, struct scatterlist *src,
344 unsigned int nbytes)
345{
346 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
347 struct blkcipher_walk walk;
348 int err;
349 int ts_state;
350
351 padlock_reset_key(&ctx->cword.encrypt);
352
353 blkcipher_walk_init(&walk, dst, src, nbytes);
354 err = blkcipher_walk_virt(desc, &walk);
355
356 ts_state = irq_ts_save();
357 while ((nbytes = walk.nbytes)) {
358 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
359 ctx->E, &ctx->cword.encrypt,
360 nbytes / AES_BLOCK_SIZE);
361 nbytes &= AES_BLOCK_SIZE - 1;
362 err = blkcipher_walk_done(desc, &walk, nbytes);
363 }
364 irq_ts_restore(ts_state);
365
366 padlock_store_cword(&ctx->cword.encrypt);
367
368 return err;
369}
370
371static int ecb_aes_decrypt(struct blkcipher_desc *desc,
372 struct scatterlist *dst, struct scatterlist *src,
373 unsigned int nbytes)
374{
375 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
376 struct blkcipher_walk walk;
377 int err;
378 int ts_state;
379
380 padlock_reset_key(&ctx->cword.decrypt);
381
382 blkcipher_walk_init(&walk, dst, src, nbytes);
383 err = blkcipher_walk_virt(desc, &walk);
384
385 ts_state = irq_ts_save();
386 while ((nbytes = walk.nbytes)) {
387 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
388 ctx->D, &ctx->cword.decrypt,
389 nbytes / AES_BLOCK_SIZE);
390 nbytes &= AES_BLOCK_SIZE - 1;
391 err = blkcipher_walk_done(desc, &walk, nbytes);
392 }
393 irq_ts_restore(ts_state);
394
395 padlock_store_cword(&ctx->cword.encrypt);
396
397 return err;
398}
399
400static struct crypto_alg ecb_aes_alg = {
401 .cra_name = "ecb(aes)",
402 .cra_driver_name = "ecb-aes-padlock",
403 .cra_priority = PADLOCK_COMPOSITE_PRIORITY,
404 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
405 .cra_blocksize = AES_BLOCK_SIZE,
406 .cra_ctxsize = sizeof(struct aes_ctx),
407 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
408 .cra_type = &crypto_blkcipher_type,
409 .cra_module = THIS_MODULE,
410 .cra_u = {
411 .blkcipher = {
412 .min_keysize = AES_MIN_KEY_SIZE,
413 .max_keysize = AES_MAX_KEY_SIZE,
414 .setkey = aes_set_key,
415 .encrypt = ecb_aes_encrypt,
416 .decrypt = ecb_aes_decrypt,
417 }
418 }
419};
420
421static int cbc_aes_encrypt(struct blkcipher_desc *desc,
422 struct scatterlist *dst, struct scatterlist *src,
423 unsigned int nbytes)
424{
425 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
426 struct blkcipher_walk walk;
427 int err;
428 int ts_state;
429
430 padlock_reset_key(&ctx->cword.encrypt);
431
432 blkcipher_walk_init(&walk, dst, src, nbytes);
433 err = blkcipher_walk_virt(desc, &walk);
434
435 ts_state = irq_ts_save();
436 while ((nbytes = walk.nbytes)) {
437 u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
438 walk.dst.virt.addr, ctx->E,
439 walk.iv, &ctx->cword.encrypt,
440 nbytes / AES_BLOCK_SIZE);
441 memcpy(walk.iv, iv, AES_BLOCK_SIZE);
442 nbytes &= AES_BLOCK_SIZE - 1;
443 err = blkcipher_walk_done(desc, &walk, nbytes);
444 }
445 irq_ts_restore(ts_state);
446
447 padlock_store_cword(&ctx->cword.decrypt);
448
449 return err;
450}
451
452static int cbc_aes_decrypt(struct blkcipher_desc *desc,
453 struct scatterlist *dst, struct scatterlist *src,
454 unsigned int nbytes)
455{
456 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
457 struct blkcipher_walk walk;
458 int err;
459 int ts_state;
460
461 padlock_reset_key(&ctx->cword.encrypt);
462
463 blkcipher_walk_init(&walk, dst, src, nbytes);
464 err = blkcipher_walk_virt(desc, &walk);
465
466 ts_state = irq_ts_save();
467 while ((nbytes = walk.nbytes)) {
468 padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
469 ctx->D, walk.iv, &ctx->cword.decrypt,
470 nbytes / AES_BLOCK_SIZE);
471 nbytes &= AES_BLOCK_SIZE - 1;
472 err = blkcipher_walk_done(desc, &walk, nbytes);
473 }
474
475 irq_ts_restore(ts_state);
476
477 padlock_store_cword(&ctx->cword.encrypt);
478
479 return err;
480}
481
482static struct crypto_alg cbc_aes_alg = {
483 .cra_name = "cbc(aes)",
484 .cra_driver_name = "cbc-aes-padlock",
485 .cra_priority = PADLOCK_COMPOSITE_PRIORITY,
486 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
487 .cra_blocksize = AES_BLOCK_SIZE,
488 .cra_ctxsize = sizeof(struct aes_ctx),
489 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
490 .cra_type = &crypto_blkcipher_type,
491 .cra_module = THIS_MODULE,
492 .cra_u = {
493 .blkcipher = {
494 .min_keysize = AES_MIN_KEY_SIZE,
495 .max_keysize = AES_MAX_KEY_SIZE,
496 .ivsize = AES_BLOCK_SIZE,
497 .setkey = aes_set_key,
498 .encrypt = cbc_aes_encrypt,
499 .decrypt = cbc_aes_decrypt,
500 }
501 }
502};
503
504static struct x86_cpu_id padlock_cpu_id[] = {
505 X86_FEATURE_MATCH(X86_FEATURE_XCRYPT),
506 {}
507};
508MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
509
510static int __init padlock_init(void)
511{
512 int ret;
513 struct cpuinfo_x86 *c = &cpu_data(0);
514
515 if (!x86_match_cpu(padlock_cpu_id))
516 return -ENODEV;
517
518 if (!cpu_has_xcrypt_enabled) {
519 printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
520 return -ENODEV;
521 }
522
523 if ((ret = crypto_register_alg(&aes_alg)))
524 goto aes_err;
525
526 if ((ret = crypto_register_alg(&ecb_aes_alg)))
527 goto ecb_aes_err;
528
529 if ((ret = crypto_register_alg(&cbc_aes_alg)))
530 goto cbc_aes_err;
531
532 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
533
534 if (c->x86 == 6 && c->x86_model == 15 && c->x86_mask == 2) {
535 ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
536 cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
537 printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
538 }
539
540out:
541 return ret;
542
543cbc_aes_err:
544 crypto_unregister_alg(&ecb_aes_alg);
545ecb_aes_err:
546 crypto_unregister_alg(&aes_alg);
547aes_err:
548 printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
549 goto out;
550}
551
552static void __exit padlock_fini(void)
553{
554 crypto_unregister_alg(&cbc_aes_alg);
555 crypto_unregister_alg(&ecb_aes_alg);
556 crypto_unregister_alg(&aes_alg);
557}
558
559module_init(padlock_init);
560module_exit(padlock_fini);
561
562MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
563MODULE_LICENSE("GPL");
564MODULE_AUTHOR("Michal Ludvig");
565
566MODULE_ALIAS("aes");