Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* 
  3 * Cryptographic API.
  4 *
  5 * Support for VIA PadLock hardware crypto engine.
  6 *
  7 * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
  8 *
  9 */
 10
 11#include <crypto/algapi.h>
 12#include <crypto/aes.h>
 13#include <crypto/internal/skcipher.h>
 14#include <crypto/padlock.h>
 15#include <linux/module.h>
 16#include <linux/init.h>
 17#include <linux/types.h>
 18#include <linux/errno.h>
 19#include <linux/interrupt.h>
 20#include <linux/kernel.h>
 21#include <linux/mm.h>
 22#include <linux/percpu.h>
 23#include <linux/smp.h>
 24#include <linux/slab.h>
 25#include <asm/cpu_device_id.h>
 26#include <asm/byteorder.h>
 27#include <asm/processor.h>
 28#include <asm/fpu/api.h>
 29
 30/*
 31 * Number of data blocks actually fetched for each xcrypt insn.
 32 * Processors with prefetch errata will fetch extra blocks.
 33 */
 34static unsigned int ecb_fetch_blocks = 2;
 35#define MAX_ECB_FETCH_BLOCKS (8)
 36#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
 37
 38static unsigned int cbc_fetch_blocks = 1;
 39#define MAX_CBC_FETCH_BLOCKS (4)
 40#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
 41
 42/* Control word. */
 43struct cword {
 44	unsigned int __attribute__ ((__packed__))
 45		rounds:4,
 46		algo:3,
 47		keygen:1,
 48		interm:1,
 49		encdec:1,
 50		ksize:2;
 51} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 52
 53/* Whenever making any changes to the following
 54 * structure *make sure* you keep E, d_data
 55 * and cword aligned on 16 Bytes boundaries and
 56 * the Hardware can access 16 * 16 bytes of E and d_data
 57 * (only the first 15 * 16 bytes matter but the HW reads
 58 * more).
 59 */
 60struct aes_ctx {
 61	u32 E[AES_MAX_KEYLENGTH_U32]
 62		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 63	u32 d_data[AES_MAX_KEYLENGTH_U32]
 64		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 65	struct {
 66		struct cword encrypt;
 67		struct cword decrypt;
 68	} cword;
 69	u32 *D;
 70};
 71
 72static DEFINE_PER_CPU(struct cword *, paes_last_cword);
 73
 74/* Tells whether the ACE is capable to generate
 75   the extended key for a given key_len. */
 76static inline int
 77aes_hw_extkey_available(uint8_t key_len)
 78{
 79	/* TODO: We should check the actual CPU model/stepping
 80	         as it's possible that the capability will be
 81	         added in the next CPU revisions. */
 82	if (key_len == 16)
 83		return 1;
 84	return 0;
 85}
 86
 87static inline struct aes_ctx *aes_ctx_common(void *ctx)
 88{
 89	unsigned long addr = (unsigned long)ctx;
 90	unsigned long align = PADLOCK_ALIGNMENT;
 91
 92	if (align <= crypto_tfm_ctx_alignment())
 93		align = 1;
 94	return (struct aes_ctx *)ALIGN(addr, align);
 95}
 96
 97static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
 98{
 99	return aes_ctx_common(crypto_tfm_ctx(tfm));
100}
101
102static inline struct aes_ctx *skcipher_aes_ctx(struct crypto_skcipher *tfm)
103{
104	return aes_ctx_common(crypto_skcipher_ctx(tfm));
105}
106
107static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
108		       unsigned int key_len)
109{
110	struct aes_ctx *ctx = aes_ctx(tfm);
111	const __le32 *key = (const __le32 *)in_key;
 
112	struct crypto_aes_ctx gen_aes;
113	int cpu;
114
115	if (key_len % 8)
 
116		return -EINVAL;
 
117
118	/*
119	 * If the hardware is capable of generating the extended key
120	 * itself we must supply the plain key for both encryption
121	 * and decryption.
122	 */
123	ctx->D = ctx->E;
124
125	ctx->E[0] = le32_to_cpu(key[0]);
126	ctx->E[1] = le32_to_cpu(key[1]);
127	ctx->E[2] = le32_to_cpu(key[2]);
128	ctx->E[3] = le32_to_cpu(key[3]);
129
130	/* Prepare control words. */
131	memset(&ctx->cword, 0, sizeof(ctx->cword));
132
133	ctx->cword.decrypt.encdec = 1;
134	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
135	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
136	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
137	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
138
139	/* Don't generate extended keys if the hardware can do it. */
140	if (aes_hw_extkey_available(key_len))
141		goto ok;
142
143	ctx->D = ctx->d_data;
144	ctx->cword.encrypt.keygen = 1;
145	ctx->cword.decrypt.keygen = 1;
146
147	if (aes_expandkey(&gen_aes, in_key, key_len))
 
148		return -EINVAL;
 
149
150	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
151	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
152
153ok:
154	for_each_online_cpu(cpu)
155		if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
156		    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
157			per_cpu(paes_last_cword, cpu) = NULL;
158
159	return 0;
160}
161
162static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key,
163				unsigned int key_len)
164{
165	return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len);
166}
167
168/* ====== Encryption/decryption routines ====== */
169
170/* These are the real call to PadLock. */
171static inline void padlock_reset_key(struct cword *cword)
172{
173	int cpu = raw_smp_processor_id();
174
175	if (cword != per_cpu(paes_last_cword, cpu))
176#ifndef CONFIG_X86_64
177		asm volatile ("pushfl; popfl");
178#else
179		asm volatile ("pushfq; popfq");
180#endif
181}
182
183static inline void padlock_store_cword(struct cword *cword)
184{
185	per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
186}
187
188/*
189 * While the padlock instructions don't use FP/SSE registers, they
190 * generate a spurious DNA fault when CR0.TS is '1'.  Fortunately,
191 * the kernel doesn't use CR0.TS.
192 */
193
194static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
195				  struct cword *control_word, int count)
196{
197	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
198		      : "+S"(input), "+D"(output)
199		      : "d"(control_word), "b"(key), "c"(count));
200}
201
202static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
203				 u8 *iv, struct cword *control_word, int count)
204{
205	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
206		      : "+S" (input), "+D" (output), "+a" (iv)
207		      : "d" (control_word), "b" (key), "c" (count));
208	return iv;
209}
210
211static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
212			   struct cword *cword, int count)
213{
214	/*
215	 * Padlock prefetches extra data so we must provide mapped input buffers.
216	 * Assume there are at least 16 bytes of stack already in use.
217	 */
218	u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
219	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
220
221	memcpy(tmp, in, count * AES_BLOCK_SIZE);
222	rep_xcrypt_ecb(tmp, out, key, cword, count);
223}
224
225static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
226			   u8 *iv, struct cword *cword, int count)
227{
228	/*
229	 * Padlock prefetches extra data so we must provide mapped input buffers.
230	 * Assume there are at least 16 bytes of stack already in use.
231	 */
232	u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
233	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
234
235	memcpy(tmp, in, count * AES_BLOCK_SIZE);
236	return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
237}
238
239static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
240			     struct cword *cword, int count)
241{
242	/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
243	 * We could avoid some copying here but it's probably not worth it.
244	 */
245	if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
246		ecb_crypt_copy(in, out, key, cword, count);
247		return;
248	}
249
250	rep_xcrypt_ecb(in, out, key, cword, count);
251}
252
253static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
254			    u8 *iv, struct cword *cword, int count)
255{
256	/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
257	if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
258		return cbc_crypt_copy(in, out, key, iv, cword, count);
259
260	return rep_xcrypt_cbc(in, out, key, iv, cword, count);
261}
262
263static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
264				      void *control_word, u32 count)
265{
266	u32 initial = count & (ecb_fetch_blocks - 1);
267
268	if (count < ecb_fetch_blocks) {
269		ecb_crypt(input, output, key, control_word, count);
270		return;
271	}
272
273	count -= initial;
274
275	if (initial)
276		asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
277			      : "+S"(input), "+D"(output)
278			      : "d"(control_word), "b"(key), "c"(initial));
279
280	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
281		      : "+S"(input), "+D"(output)
282		      : "d"(control_word), "b"(key), "c"(count));
283}
284
285static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
286				     u8 *iv, void *control_word, u32 count)
287{
288	u32 initial = count & (cbc_fetch_blocks - 1);
289
290	if (count < cbc_fetch_blocks)
291		return cbc_crypt(input, output, key, iv, control_word, count);
292
293	count -= initial;
294
295	if (initial)
296		asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
297			      : "+S" (input), "+D" (output), "+a" (iv)
298			      : "d" (control_word), "b" (key), "c" (initial));
299
300	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
301		      : "+S" (input), "+D" (output), "+a" (iv)
302		      : "d" (control_word), "b" (key), "c" (count));
303	return iv;
304}
305
306static void padlock_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
307{
308	struct aes_ctx *ctx = aes_ctx(tfm);
 
309
310	padlock_reset_key(&ctx->cword.encrypt);
 
311	ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
 
312	padlock_store_cword(&ctx->cword.encrypt);
313}
314
315static void padlock_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
316{
317	struct aes_ctx *ctx = aes_ctx(tfm);
 
318
319	padlock_reset_key(&ctx->cword.encrypt);
 
320	ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
 
321	padlock_store_cword(&ctx->cword.encrypt);
322}
323
324static struct crypto_alg aes_alg = {
325	.cra_name		=	"aes",
326	.cra_driver_name	=	"aes-padlock",
327	.cra_priority		=	PADLOCK_CRA_PRIORITY,
328	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
329	.cra_blocksize		=	AES_BLOCK_SIZE,
330	.cra_ctxsize		=	sizeof(struct aes_ctx),
331	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
332	.cra_module		=	THIS_MODULE,
333	.cra_u			=	{
334		.cipher = {
335			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
336			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
337			.cia_setkey	   	= 	aes_set_key,
338			.cia_encrypt	 	=	padlock_aes_encrypt,
339			.cia_decrypt	  	=	padlock_aes_decrypt,
340		}
341	}
342};
343
344static int ecb_aes_encrypt(struct skcipher_request *req)
 
 
345{
346	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
347	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
348	struct skcipher_walk walk;
349	unsigned int nbytes;
350	int err;
 
351
352	padlock_reset_key(&ctx->cword.encrypt);
353
354	err = skcipher_walk_virt(&walk, req, false);
 
355
356	while ((nbytes = walk.nbytes) != 0) {
 
357		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
358				   ctx->E, &ctx->cword.encrypt,
359				   nbytes / AES_BLOCK_SIZE);
360		nbytes &= AES_BLOCK_SIZE - 1;
361		err = skcipher_walk_done(&walk, nbytes);
362	}
 
363
364	padlock_store_cword(&ctx->cword.encrypt);
365
366	return err;
367}
368
369static int ecb_aes_decrypt(struct skcipher_request *req)
 
 
370{
371	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
372	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
373	struct skcipher_walk walk;
374	unsigned int nbytes;
375	int err;
 
376
377	padlock_reset_key(&ctx->cword.decrypt);
378
379	err = skcipher_walk_virt(&walk, req, false);
 
380
381	while ((nbytes = walk.nbytes) != 0) {
 
382		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
383				   ctx->D, &ctx->cword.decrypt,
384				   nbytes / AES_BLOCK_SIZE);
385		nbytes &= AES_BLOCK_SIZE - 1;
386		err = skcipher_walk_done(&walk, nbytes);
387	}
 
388
389	padlock_store_cword(&ctx->cword.encrypt);
390
391	return err;
392}
393
394static struct skcipher_alg ecb_aes_alg = {
395	.base.cra_name		=	"ecb(aes)",
396	.base.cra_driver_name	=	"ecb-aes-padlock",
397	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
398	.base.cra_blocksize	=	AES_BLOCK_SIZE,
399	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
400	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
401	.base.cra_module	=	THIS_MODULE,
402	.min_keysize		=	AES_MIN_KEY_SIZE,
403	.max_keysize		=	AES_MAX_KEY_SIZE,
404	.setkey			=	aes_set_key_skcipher,
405	.encrypt		=	ecb_aes_encrypt,
406	.decrypt		=	ecb_aes_decrypt,
 
 
 
 
 
 
407};
408
409static int cbc_aes_encrypt(struct skcipher_request *req)
 
 
410{
411	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
412	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
413	struct skcipher_walk walk;
414	unsigned int nbytes;
415	int err;
 
416
417	padlock_reset_key(&ctx->cword.encrypt);
418
419	err = skcipher_walk_virt(&walk, req, false);
 
420
421	while ((nbytes = walk.nbytes) != 0) {
 
422		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
423					    walk.dst.virt.addr, ctx->E,
424					    walk.iv, &ctx->cword.encrypt,
425					    nbytes / AES_BLOCK_SIZE);
426		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
427		nbytes &= AES_BLOCK_SIZE - 1;
428		err = skcipher_walk_done(&walk, nbytes);
429	}
 
430
431	padlock_store_cword(&ctx->cword.decrypt);
432
433	return err;
434}
435
436static int cbc_aes_decrypt(struct skcipher_request *req)
 
 
437{
438	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
439	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
440	struct skcipher_walk walk;
441	unsigned int nbytes;
442	int err;
 
443
444	padlock_reset_key(&ctx->cword.encrypt);
445
446	err = skcipher_walk_virt(&walk, req, false);
 
447
448	while ((nbytes = walk.nbytes) != 0) {
 
449		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
450				   ctx->D, walk.iv, &ctx->cword.decrypt,
451				   nbytes / AES_BLOCK_SIZE);
452		nbytes &= AES_BLOCK_SIZE - 1;
453		err = skcipher_walk_done(&walk, nbytes);
454	}
455
 
 
456	padlock_store_cword(&ctx->cword.encrypt);
457
458	return err;
459}
460
461static struct skcipher_alg cbc_aes_alg = {
462	.base.cra_name		=	"cbc(aes)",
463	.base.cra_driver_name	=	"cbc-aes-padlock",
464	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
465	.base.cra_blocksize	=	AES_BLOCK_SIZE,
466	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
467	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
468	.base.cra_module	=	THIS_MODULE,
469	.min_keysize		=	AES_MIN_KEY_SIZE,
470	.max_keysize		=	AES_MAX_KEY_SIZE,
471	.ivsize			=	AES_BLOCK_SIZE,
472	.setkey			=	aes_set_key_skcipher,
473	.encrypt		=	cbc_aes_encrypt,
474	.decrypt		=	cbc_aes_decrypt,
 
 
 
 
 
 
475};
476
477static const struct x86_cpu_id padlock_cpu_id[] = {
478	X86_MATCH_FEATURE(X86_FEATURE_XCRYPT, NULL),
479	{}
480};
481MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
482
483static int __init padlock_init(void)
484{
485	int ret;
486	struct cpuinfo_x86 *c = &cpu_data(0);
487
488	if (!x86_match_cpu(padlock_cpu_id))
489		return -ENODEV;
490
491	if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
492		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
493		return -ENODEV;
494	}
495
496	if ((ret = crypto_register_alg(&aes_alg)) != 0)
497		goto aes_err;
498
499	if ((ret = crypto_register_skcipher(&ecb_aes_alg)) != 0)
500		goto ecb_aes_err;
501
502	if ((ret = crypto_register_skcipher(&cbc_aes_alg)) != 0)
503		goto cbc_aes_err;
504
505	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
506
507	if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
508		ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
509		cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
510		printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
511	}
512
513out:
514	return ret;
515
516cbc_aes_err:
517	crypto_unregister_skcipher(&ecb_aes_alg);
518ecb_aes_err:
519	crypto_unregister_alg(&aes_alg);
520aes_err:
521	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
522	goto out;
523}
524
525static void __exit padlock_fini(void)
526{
527	crypto_unregister_skcipher(&cbc_aes_alg);
528	crypto_unregister_skcipher(&ecb_aes_alg);
529	crypto_unregister_alg(&aes_alg);
530}
531
532module_init(padlock_init);
533module_exit(padlock_fini);
534
535MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
536MODULE_LICENSE("GPL");
537MODULE_AUTHOR("Michal Ludvig");
538
539MODULE_ALIAS_CRYPTO("aes");
v3.15
 
  1/* 
  2 * Cryptographic API.
  3 *
  4 * Support for VIA PadLock hardware crypto engine.
  5 *
  6 * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
  7 *
  8 */
  9
 10#include <crypto/algapi.h>
 11#include <crypto/aes.h>
 
 12#include <crypto/padlock.h>
 13#include <linux/module.h>
 14#include <linux/init.h>
 15#include <linux/types.h>
 16#include <linux/errno.h>
 17#include <linux/interrupt.h>
 18#include <linux/kernel.h>
 
 19#include <linux/percpu.h>
 20#include <linux/smp.h>
 21#include <linux/slab.h>
 22#include <asm/cpu_device_id.h>
 23#include <asm/byteorder.h>
 24#include <asm/processor.h>
 25#include <asm/i387.h>
 26
 27/*
 28 * Number of data blocks actually fetched for each xcrypt insn.
 29 * Processors with prefetch errata will fetch extra blocks.
 30 */
 31static unsigned int ecb_fetch_blocks = 2;
 32#define MAX_ECB_FETCH_BLOCKS (8)
 33#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
 34
 35static unsigned int cbc_fetch_blocks = 1;
 36#define MAX_CBC_FETCH_BLOCKS (4)
 37#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
 38
 39/* Control word. */
 40struct cword {
 41	unsigned int __attribute__ ((__packed__))
 42		rounds:4,
 43		algo:3,
 44		keygen:1,
 45		interm:1,
 46		encdec:1,
 47		ksize:2;
 48} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 49
 50/* Whenever making any changes to the following
 51 * structure *make sure* you keep E, d_data
 52 * and cword aligned on 16 Bytes boundaries and
 53 * the Hardware can access 16 * 16 bytes of E and d_data
 54 * (only the first 15 * 16 bytes matter but the HW reads
 55 * more).
 56 */
 57struct aes_ctx {
 58	u32 E[AES_MAX_KEYLENGTH_U32]
 59		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 60	u32 d_data[AES_MAX_KEYLENGTH_U32]
 61		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 62	struct {
 63		struct cword encrypt;
 64		struct cword decrypt;
 65	} cword;
 66	u32 *D;
 67};
 68
 69static DEFINE_PER_CPU(struct cword *, paes_last_cword);
 70
 71/* Tells whether the ACE is capable to generate
 72   the extended key for a given key_len. */
 73static inline int
 74aes_hw_extkey_available(uint8_t key_len)
 75{
 76	/* TODO: We should check the actual CPU model/stepping
 77	         as it's possible that the capability will be
 78	         added in the next CPU revisions. */
 79	if (key_len == 16)
 80		return 1;
 81	return 0;
 82}
 83
 84static inline struct aes_ctx *aes_ctx_common(void *ctx)
 85{
 86	unsigned long addr = (unsigned long)ctx;
 87	unsigned long align = PADLOCK_ALIGNMENT;
 88
 89	if (align <= crypto_tfm_ctx_alignment())
 90		align = 1;
 91	return (struct aes_ctx *)ALIGN(addr, align);
 92}
 93
 94static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
 95{
 96	return aes_ctx_common(crypto_tfm_ctx(tfm));
 97}
 98
 99static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
100{
101	return aes_ctx_common(crypto_blkcipher_ctx(tfm));
102}
103
104static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
105		       unsigned int key_len)
106{
107	struct aes_ctx *ctx = aes_ctx(tfm);
108	const __le32 *key = (const __le32 *)in_key;
109	u32 *flags = &tfm->crt_flags;
110	struct crypto_aes_ctx gen_aes;
111	int cpu;
112
113	if (key_len % 8) {
114		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
115		return -EINVAL;
116	}
117
118	/*
119	 * If the hardware is capable of generating the extended key
120	 * itself we must supply the plain key for both encryption
121	 * and decryption.
122	 */
123	ctx->D = ctx->E;
124
125	ctx->E[0] = le32_to_cpu(key[0]);
126	ctx->E[1] = le32_to_cpu(key[1]);
127	ctx->E[2] = le32_to_cpu(key[2]);
128	ctx->E[3] = le32_to_cpu(key[3]);
129
130	/* Prepare control words. */
131	memset(&ctx->cword, 0, sizeof(ctx->cword));
132
133	ctx->cword.decrypt.encdec = 1;
134	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
135	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
136	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
137	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
138
139	/* Don't generate extended keys if the hardware can do it. */
140	if (aes_hw_extkey_available(key_len))
141		goto ok;
142
143	ctx->D = ctx->d_data;
144	ctx->cword.encrypt.keygen = 1;
145	ctx->cword.decrypt.keygen = 1;
146
147	if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
148		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
149		return -EINVAL;
150	}
151
152	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
153	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
154
155ok:
156	for_each_online_cpu(cpu)
157		if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
158		    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
159			per_cpu(paes_last_cword, cpu) = NULL;
160
161	return 0;
162}
163
 
 
 
 
 
 
164/* ====== Encryption/decryption routines ====== */
165
166/* These are the real call to PadLock. */
167static inline void padlock_reset_key(struct cword *cword)
168{
169	int cpu = raw_smp_processor_id();
170
171	if (cword != per_cpu(paes_last_cword, cpu))
172#ifndef CONFIG_X86_64
173		asm volatile ("pushfl; popfl");
174#else
175		asm volatile ("pushfq; popfq");
176#endif
177}
178
179static inline void padlock_store_cword(struct cword *cword)
180{
181	per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
182}
183
184/*
185 * While the padlock instructions don't use FP/SSE registers, they
186 * generate a spurious DNA fault when cr0.ts is '1'. These instructions
187 * should be used only inside the irq_ts_save/restore() context
188 */
189
190static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
191				  struct cword *control_word, int count)
192{
193	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
194		      : "+S"(input), "+D"(output)
195		      : "d"(control_word), "b"(key), "c"(count));
196}
197
198static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
199				 u8 *iv, struct cword *control_word, int count)
200{
201	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
202		      : "+S" (input), "+D" (output), "+a" (iv)
203		      : "d" (control_word), "b" (key), "c" (count));
204	return iv;
205}
206
207static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
208			   struct cword *cword, int count)
209{
210	/*
211	 * Padlock prefetches extra data so we must provide mapped input buffers.
212	 * Assume there are at least 16 bytes of stack already in use.
213	 */
214	u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
215	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
216
217	memcpy(tmp, in, count * AES_BLOCK_SIZE);
218	rep_xcrypt_ecb(tmp, out, key, cword, count);
219}
220
221static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
222			   u8 *iv, struct cword *cword, int count)
223{
224	/*
225	 * Padlock prefetches extra data so we must provide mapped input buffers.
226	 * Assume there are at least 16 bytes of stack already in use.
227	 */
228	u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
229	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
230
231	memcpy(tmp, in, count * AES_BLOCK_SIZE);
232	return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
233}
234
235static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
236			     struct cword *cword, int count)
237{
238	/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
239	 * We could avoid some copying here but it's probably not worth it.
240	 */
241	if (unlikely(((unsigned long)in & ~PAGE_MASK) + ecb_fetch_bytes > PAGE_SIZE)) {
242		ecb_crypt_copy(in, out, key, cword, count);
243		return;
244	}
245
246	rep_xcrypt_ecb(in, out, key, cword, count);
247}
248
249static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
250			    u8 *iv, struct cword *cword, int count)
251{
252	/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
253	if (unlikely(((unsigned long)in & ~PAGE_MASK) + cbc_fetch_bytes > PAGE_SIZE))
254		return cbc_crypt_copy(in, out, key, iv, cword, count);
255
256	return rep_xcrypt_cbc(in, out, key, iv, cword, count);
257}
258
259static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
260				      void *control_word, u32 count)
261{
262	u32 initial = count & (ecb_fetch_blocks - 1);
263
264	if (count < ecb_fetch_blocks) {
265		ecb_crypt(input, output, key, control_word, count);
266		return;
267	}
268
 
 
269	if (initial)
270		asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
271			      : "+S"(input), "+D"(output)
272			      : "d"(control_word), "b"(key), "c"(initial));
273
274	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
275		      : "+S"(input), "+D"(output)
276		      : "d"(control_word), "b"(key), "c"(count - initial));
277}
278
279static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
280				     u8 *iv, void *control_word, u32 count)
281{
282	u32 initial = count & (cbc_fetch_blocks - 1);
283
284	if (count < cbc_fetch_blocks)
285		return cbc_crypt(input, output, key, iv, control_word, count);
286
 
 
287	if (initial)
288		asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
289			      : "+S" (input), "+D" (output), "+a" (iv)
290			      : "d" (control_word), "b" (key), "c" (initial));
291
292	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
293		      : "+S" (input), "+D" (output), "+a" (iv)
294		      : "d" (control_word), "b" (key), "c" (count-initial));
295	return iv;
296}
297
298static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
299{
300	struct aes_ctx *ctx = aes_ctx(tfm);
301	int ts_state;
302
303	padlock_reset_key(&ctx->cword.encrypt);
304	ts_state = irq_ts_save();
305	ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
306	irq_ts_restore(ts_state);
307	padlock_store_cword(&ctx->cword.encrypt);
308}
309
310static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
311{
312	struct aes_ctx *ctx = aes_ctx(tfm);
313	int ts_state;
314
315	padlock_reset_key(&ctx->cword.encrypt);
316	ts_state = irq_ts_save();
317	ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
318	irq_ts_restore(ts_state);
319	padlock_store_cword(&ctx->cword.encrypt);
320}
321
322static struct crypto_alg aes_alg = {
323	.cra_name		=	"aes",
324	.cra_driver_name	=	"aes-padlock",
325	.cra_priority		=	PADLOCK_CRA_PRIORITY,
326	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
327	.cra_blocksize		=	AES_BLOCK_SIZE,
328	.cra_ctxsize		=	sizeof(struct aes_ctx),
329	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
330	.cra_module		=	THIS_MODULE,
331	.cra_u			=	{
332		.cipher = {
333			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
334			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
335			.cia_setkey	   	= 	aes_set_key,
336			.cia_encrypt	 	=	aes_encrypt,
337			.cia_decrypt	  	=	aes_decrypt,
338		}
339	}
340};
341
342static int ecb_aes_encrypt(struct blkcipher_desc *desc,
343			   struct scatterlist *dst, struct scatterlist *src,
344			   unsigned int nbytes)
345{
346	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
347	struct blkcipher_walk walk;
 
 
348	int err;
349	int ts_state;
350
351	padlock_reset_key(&ctx->cword.encrypt);
352
353	blkcipher_walk_init(&walk, dst, src, nbytes);
354	err = blkcipher_walk_virt(desc, &walk);
355
356	ts_state = irq_ts_save();
357	while ((nbytes = walk.nbytes)) {
358		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
359				   ctx->E, &ctx->cword.encrypt,
360				   nbytes / AES_BLOCK_SIZE);
361		nbytes &= AES_BLOCK_SIZE - 1;
362		err = blkcipher_walk_done(desc, &walk, nbytes);
363	}
364	irq_ts_restore(ts_state);
365
366	padlock_store_cword(&ctx->cword.encrypt);
367
368	return err;
369}
370
371static int ecb_aes_decrypt(struct blkcipher_desc *desc,
372			   struct scatterlist *dst, struct scatterlist *src,
373			   unsigned int nbytes)
374{
375	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
376	struct blkcipher_walk walk;
 
 
377	int err;
378	int ts_state;
379
380	padlock_reset_key(&ctx->cword.decrypt);
381
382	blkcipher_walk_init(&walk, dst, src, nbytes);
383	err = blkcipher_walk_virt(desc, &walk);
384
385	ts_state = irq_ts_save();
386	while ((nbytes = walk.nbytes)) {
387		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
388				   ctx->D, &ctx->cword.decrypt,
389				   nbytes / AES_BLOCK_SIZE);
390		nbytes &= AES_BLOCK_SIZE - 1;
391		err = blkcipher_walk_done(desc, &walk, nbytes);
392	}
393	irq_ts_restore(ts_state);
394
395	padlock_store_cword(&ctx->cword.encrypt);
396
397	return err;
398}
399
400static struct crypto_alg ecb_aes_alg = {
401	.cra_name		=	"ecb(aes)",
402	.cra_driver_name	=	"ecb-aes-padlock",
403	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
404	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
405	.cra_blocksize		=	AES_BLOCK_SIZE,
406	.cra_ctxsize		=	sizeof(struct aes_ctx),
407	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
408	.cra_type		=	&crypto_blkcipher_type,
409	.cra_module		=	THIS_MODULE,
410	.cra_u			=	{
411		.blkcipher = {
412			.min_keysize		=	AES_MIN_KEY_SIZE,
413			.max_keysize		=	AES_MAX_KEY_SIZE,
414			.setkey	   		= 	aes_set_key,
415			.encrypt		=	ecb_aes_encrypt,
416			.decrypt		=	ecb_aes_decrypt,
417		}
418	}
419};
420
421static int cbc_aes_encrypt(struct blkcipher_desc *desc,
422			   struct scatterlist *dst, struct scatterlist *src,
423			   unsigned int nbytes)
424{
425	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
426	struct blkcipher_walk walk;
 
 
427	int err;
428	int ts_state;
429
430	padlock_reset_key(&ctx->cword.encrypt);
431
432	blkcipher_walk_init(&walk, dst, src, nbytes);
433	err = blkcipher_walk_virt(desc, &walk);
434
435	ts_state = irq_ts_save();
436	while ((nbytes = walk.nbytes)) {
437		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
438					    walk.dst.virt.addr, ctx->E,
439					    walk.iv, &ctx->cword.encrypt,
440					    nbytes / AES_BLOCK_SIZE);
441		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
442		nbytes &= AES_BLOCK_SIZE - 1;
443		err = blkcipher_walk_done(desc, &walk, nbytes);
444	}
445	irq_ts_restore(ts_state);
446
447	padlock_store_cword(&ctx->cword.decrypt);
448
449	return err;
450}
451
452static int cbc_aes_decrypt(struct blkcipher_desc *desc,
453			   struct scatterlist *dst, struct scatterlist *src,
454			   unsigned int nbytes)
455{
456	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
457	struct blkcipher_walk walk;
 
 
458	int err;
459	int ts_state;
460
461	padlock_reset_key(&ctx->cword.encrypt);
462
463	blkcipher_walk_init(&walk, dst, src, nbytes);
464	err = blkcipher_walk_virt(desc, &walk);
465
466	ts_state = irq_ts_save();
467	while ((nbytes = walk.nbytes)) {
468		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
469				   ctx->D, walk.iv, &ctx->cword.decrypt,
470				   nbytes / AES_BLOCK_SIZE);
471		nbytes &= AES_BLOCK_SIZE - 1;
472		err = blkcipher_walk_done(desc, &walk, nbytes);
473	}
474
475	irq_ts_restore(ts_state);
476
477	padlock_store_cword(&ctx->cword.encrypt);
478
479	return err;
480}
481
482static struct crypto_alg cbc_aes_alg = {
483	.cra_name		=	"cbc(aes)",
484	.cra_driver_name	=	"cbc-aes-padlock",
485	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
486	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
487	.cra_blocksize		=	AES_BLOCK_SIZE,
488	.cra_ctxsize		=	sizeof(struct aes_ctx),
489	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
490	.cra_type		=	&crypto_blkcipher_type,
491	.cra_module		=	THIS_MODULE,
492	.cra_u			=	{
493		.blkcipher = {
494			.min_keysize		=	AES_MIN_KEY_SIZE,
495			.max_keysize		=	AES_MAX_KEY_SIZE,
496			.ivsize			=	AES_BLOCK_SIZE,
497			.setkey	   		= 	aes_set_key,
498			.encrypt		=	cbc_aes_encrypt,
499			.decrypt		=	cbc_aes_decrypt,
500		}
501	}
502};
503
504static struct x86_cpu_id padlock_cpu_id[] = {
505	X86_FEATURE_MATCH(X86_FEATURE_XCRYPT),
506	{}
507};
508MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
509
510static int __init padlock_init(void)
511{
512	int ret;
513	struct cpuinfo_x86 *c = &cpu_data(0);
514
515	if (!x86_match_cpu(padlock_cpu_id))
516		return -ENODEV;
517
518	if (!cpu_has_xcrypt_enabled) {
519		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
520		return -ENODEV;
521	}
522
523	if ((ret = crypto_register_alg(&aes_alg)))
524		goto aes_err;
525
526	if ((ret = crypto_register_alg(&ecb_aes_alg)))
527		goto ecb_aes_err;
528
529	if ((ret = crypto_register_alg(&cbc_aes_alg)))
530		goto cbc_aes_err;
531
532	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
533
534	if (c->x86 == 6 && c->x86_model == 15 && c->x86_mask == 2) {
535		ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
536		cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
537		printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
538	}
539
540out:
541	return ret;
542
543cbc_aes_err:
544	crypto_unregister_alg(&ecb_aes_alg);
545ecb_aes_err:
546	crypto_unregister_alg(&aes_alg);
547aes_err:
548	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
549	goto out;
550}
551
552static void __exit padlock_fini(void)
553{
554	crypto_unregister_alg(&cbc_aes_alg);
555	crypto_unregister_alg(&ecb_aes_alg);
556	crypto_unregister_alg(&aes_alg);
557}
558
559module_init(padlock_init);
560module_exit(padlock_fini);
561
562MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
563MODULE_LICENSE("GPL");
564MODULE_AUTHOR("Michal Ludvig");
565
566MODULE_ALIAS("aes");