Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * POWERNV cpufreq driver for the IBM POWER processors
   4 *
   5 * (C) Copyright IBM 2014
   6 *
   7 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
   8 */
   9
  10#define pr_fmt(fmt)	"powernv-cpufreq: " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/sysfs.h>
  14#include <linux/cpumask.h>
  15#include <linux/module.h>
  16#include <linux/cpufreq.h>
  17#include <linux/smp.h>
  18#include <linux/of.h>
  19#include <linux/reboot.h>
  20#include <linux/slab.h>
  21#include <linux/cpu.h>
  22#include <linux/hashtable.h>
  23#include <trace/events/power.h>
  24
  25#include <asm/cputhreads.h>
  26#include <asm/firmware.h>
  27#include <asm/reg.h>
  28#include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
  29#include <asm/opal.h>
  30#include <linux/timer.h>
  31
  32#define POWERNV_MAX_PSTATES_ORDER  8
  33#define POWERNV_MAX_PSTATES	(1UL << (POWERNV_MAX_PSTATES_ORDER))
  34#define PMSR_PSAFE_ENABLE	(1UL << 30)
  35#define PMSR_SPR_EM_DISABLE	(1UL << 31)
  36#define MAX_PSTATE_SHIFT	32
  37#define LPSTATE_SHIFT		48
  38#define GPSTATE_SHIFT		56
  39#define MAX_NR_CHIPS		32
  40
  41#define MAX_RAMP_DOWN_TIME				5120
  42/*
  43 * On an idle system we want the global pstate to ramp-down from max value to
  44 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
  45 * then ramp-down rapidly later on.
  46 *
  47 * This gives a percentage rampdown for time elapsed in milliseconds.
  48 * ramp_down_percentage = ((ms * ms) >> 18)
  49 *			~= 3.8 * (sec * sec)
  50 *
  51 * At 0 ms	ramp_down_percent = 0
  52 * At 5120 ms	ramp_down_percent = 100
  53 */
  54#define ramp_down_percent(time)		((time * time) >> 18)
  55
  56/* Interval after which the timer is queued to bring down global pstate */
  57#define GPSTATE_TIMER_INTERVAL				2000
  58
  59/**
  60 * struct global_pstate_info -	Per policy data structure to maintain history of
  61 *				global pstates
  62 * @highest_lpstate_idx:	The local pstate index from which we are
  63 *				ramping down
  64 * @elapsed_time:		Time in ms spent in ramping down from
  65 *				highest_lpstate_idx
  66 * @last_sampled_time:		Time from boot in ms when global pstates were
  67 *				last set
  68 * @last_lpstate_idx:		Last set value of local pstate and global
  69 * @last_gpstate_idx:		pstate in terms of cpufreq table index
  70 * @timer:			Is used for ramping down if cpu goes idle for
  71 *				a long time with global pstate held high
  72 * @gpstate_lock:		A spinlock to maintain synchronization between
  73 *				routines called by the timer handler and
  74 *				governer's target_index calls
  75 * @policy:			Associated CPUFreq policy
  76 */
  77struct global_pstate_info {
  78	int highest_lpstate_idx;
  79	unsigned int elapsed_time;
  80	unsigned int last_sampled_time;
  81	int last_lpstate_idx;
  82	int last_gpstate_idx;
  83	spinlock_t gpstate_lock;
  84	struct timer_list timer;
  85	struct cpufreq_policy *policy;
  86};
  87
  88static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
  89
  90static DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
  91/**
  92 * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
  93 *				  indexed by a function of pstate id.
  94 *
  95 * @pstate_id: pstate id for this entry.
  96 *
  97 * @cpufreq_table_idx: Index into the powernv_freqs
  98 *		       cpufreq_frequency_table for frequency
  99 *		       corresponding to pstate_id.
 100 *
 101 * @hentry: hlist_node that hooks this entry into the pstate_revmap
 102 *	    hashtable
 103 */
 104struct pstate_idx_revmap_data {
 105	u8 pstate_id;
 106	unsigned int cpufreq_table_idx;
 107	struct hlist_node hentry;
 108};
 109
 110static bool rebooting, throttled, occ_reset;
 111
 112static const char * const throttle_reason[] = {
 113	"No throttling",
 114	"Power Cap",
 115	"Processor Over Temperature",
 116	"Power Supply Failure",
 117	"Over Current",
 118	"OCC Reset"
 119};
 120
 121enum throttle_reason_type {
 122	NO_THROTTLE = 0,
 123	POWERCAP,
 124	CPU_OVERTEMP,
 125	POWER_SUPPLY_FAILURE,
 126	OVERCURRENT,
 127	OCC_RESET_THROTTLE,
 128	OCC_MAX_REASON
 129};
 130
 131static struct chip {
 132	unsigned int id;
 133	bool throttled;
 134	bool restore;
 135	u8 throttle_reason;
 136	cpumask_t mask;
 137	struct work_struct throttle;
 138	int throttle_turbo;
 139	int throttle_sub_turbo;
 140	int reason[OCC_MAX_REASON];
 141} *chips;
 142
 143static int nr_chips;
 144static DEFINE_PER_CPU(struct chip *, chip_info);
 145
 146/*
 147 * Note:
 148 * The set of pstates consists of contiguous integers.
 149 * powernv_pstate_info stores the index of the frequency table for
 150 * max, min and nominal frequencies. It also stores number of
 151 * available frequencies.
 152 *
 153 * powernv_pstate_info.nominal indicates the index to the highest
 154 * non-turbo frequency.
 155 */
 156static struct powernv_pstate_info {
 157	unsigned int min;
 158	unsigned int max;
 159	unsigned int nominal;
 160	unsigned int nr_pstates;
 161	bool wof_enabled;
 162} powernv_pstate_info;
 163
 164static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
 165{
 166	return ((pmsr_val >> shift) & 0xFF);
 167}
 168
 169#define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
 170#define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
 171#define extract_max_pstate(x)  extract_pstate(x, MAX_PSTATE_SHIFT)
 172
 173/* Use following functions for conversions between pstate_id and index */
 174
 175/*
 176 * idx_to_pstate : Returns the pstate id corresponding to the
 177 *		   frequency in the cpufreq frequency table
 178 *		   powernv_freqs indexed by @i.
 179 *
 180 *		   If @i is out of bound, this will return the pstate
 181 *		   corresponding to the nominal frequency.
 182 */
 183static inline u8 idx_to_pstate(unsigned int i)
 184{
 185	if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
 186		pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
 187		return powernv_freqs[powernv_pstate_info.nominal].driver_data;
 188	}
 189
 190	return powernv_freqs[i].driver_data;
 191}
 192
 193/*
 194 * pstate_to_idx : Returns the index in the cpufreq frequencytable
 195 *		   powernv_freqs for the frequency whose corresponding
 196 *		   pstate id is @pstate.
 197 *
 198 *		   If no frequency corresponding to @pstate is found,
 199 *		   this will return the index of the nominal
 200 *		   frequency.
 201 */
 202static unsigned int pstate_to_idx(u8 pstate)
 203{
 204	unsigned int key = pstate % POWERNV_MAX_PSTATES;
 205	struct pstate_idx_revmap_data *revmap_data;
 206
 207	hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
 208		if (revmap_data->pstate_id == pstate)
 209			return revmap_data->cpufreq_table_idx;
 210	}
 211
 212	pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
 213	return powernv_pstate_info.nominal;
 214}
 215
 216static inline void reset_gpstates(struct cpufreq_policy *policy)
 217{
 218	struct global_pstate_info *gpstates = policy->driver_data;
 219
 220	gpstates->highest_lpstate_idx = 0;
 221	gpstates->elapsed_time = 0;
 222	gpstates->last_sampled_time = 0;
 223	gpstates->last_lpstate_idx = 0;
 224	gpstates->last_gpstate_idx = 0;
 225}
 226
 227/*
 228 * Initialize the freq table based on data obtained
 229 * from the firmware passed via device-tree
 230 */
 231static int init_powernv_pstates(void)
 232{
 233	struct device_node *power_mgt;
 234	int i, nr_pstates = 0;
 235	const __be32 *pstate_ids, *pstate_freqs;
 236	u32 len_ids, len_freqs;
 237	u32 pstate_min, pstate_max, pstate_nominal;
 238	u32 pstate_turbo, pstate_ultra_turbo;
 239	int rc = -ENODEV;
 240
 241	power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
 242	if (!power_mgt) {
 243		pr_warn("power-mgt node not found\n");
 244		return -ENODEV;
 245	}
 246
 247	if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
 248		pr_warn("ibm,pstate-min node not found\n");
 249		goto out;
 250	}
 251
 252	if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
 253		pr_warn("ibm,pstate-max node not found\n");
 254		goto out;
 255	}
 256
 257	if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
 258				 &pstate_nominal)) {
 259		pr_warn("ibm,pstate-nominal not found\n");
 260		goto out;
 261	}
 262
 263	if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
 264				 &pstate_ultra_turbo)) {
 265		powernv_pstate_info.wof_enabled = false;
 266		goto next;
 267	}
 268
 269	if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
 270				 &pstate_turbo)) {
 271		powernv_pstate_info.wof_enabled = false;
 272		goto next;
 273	}
 274
 275	if (pstate_turbo == pstate_ultra_turbo)
 276		powernv_pstate_info.wof_enabled = false;
 277	else
 278		powernv_pstate_info.wof_enabled = true;
 279
 280next:
 281	pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
 282		pstate_nominal, pstate_max);
 283	pr_info("Workload Optimized Frequency is %s in the platform\n",
 284		(powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
 285
 286	pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
 287	if (!pstate_ids) {
 288		pr_warn("ibm,pstate-ids not found\n");
 289		goto out;
 290	}
 291
 292	pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
 293				      &len_freqs);
 294	if (!pstate_freqs) {
 295		pr_warn("ibm,pstate-frequencies-mhz not found\n");
 296		goto out;
 297	}
 298
 299	if (len_ids != len_freqs) {
 300		pr_warn("Entries in ibm,pstate-ids and "
 301			"ibm,pstate-frequencies-mhz does not match\n");
 302	}
 303
 304	nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
 305	if (!nr_pstates) {
 306		pr_warn("No PStates found\n");
 307		goto out;
 308	}
 309
 310	powernv_pstate_info.nr_pstates = nr_pstates;
 311	pr_debug("NR PStates %d\n", nr_pstates);
 312
 313	for (i = 0; i < nr_pstates; i++) {
 314		u32 id = be32_to_cpu(pstate_ids[i]);
 315		u32 freq = be32_to_cpu(pstate_freqs[i]);
 316		struct pstate_idx_revmap_data *revmap_data;
 317		unsigned int key;
 318
 319		pr_debug("PState id %d freq %d MHz\n", id, freq);
 320		powernv_freqs[i].frequency = freq * 1000; /* kHz */
 321		powernv_freqs[i].driver_data = id & 0xFF;
 322
 323		revmap_data = kmalloc(sizeof(*revmap_data), GFP_KERNEL);
 324		if (!revmap_data) {
 325			rc = -ENOMEM;
 326			goto out;
 327		}
 328
 329		revmap_data->pstate_id = id & 0xFF;
 330		revmap_data->cpufreq_table_idx = i;
 331		key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
 332		hash_add(pstate_revmap, &revmap_data->hentry, key);
 333
 334		if (id == pstate_max)
 335			powernv_pstate_info.max = i;
 336		if (id == pstate_nominal)
 337			powernv_pstate_info.nominal = i;
 338		if (id == pstate_min)
 339			powernv_pstate_info.min = i;
 340
 341		if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
 342			int j;
 343
 344			for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
 345				powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
 346		}
 347	}
 348
 349	/* End of list marker entry */
 350	powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
 351
 352	of_node_put(power_mgt);
 353	return 0;
 354out:
 355	of_node_put(power_mgt);
 356	return rc;
 357}
 358
 359/* Returns the CPU frequency corresponding to the pstate_id. */
 360static unsigned int pstate_id_to_freq(u8 pstate_id)
 361{
 362	int i;
 363
 364	i = pstate_to_idx(pstate_id);
 365	if (i >= powernv_pstate_info.nr_pstates || i < 0) {
 366		pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
 367			pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
 368		i = powernv_pstate_info.nominal;
 369	}
 370
 371	return powernv_freqs[i].frequency;
 372}
 373
 374/*
 375 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
 376 * the firmware
 377 */
 378static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
 379					char *buf)
 380{
 381	return sprintf(buf, "%u\n",
 382		powernv_freqs[powernv_pstate_info.nominal].frequency);
 383}
 384
 385static struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
 386	__ATTR_RO(cpuinfo_nominal_freq);
 387
 388#define SCALING_BOOST_FREQS_ATTR_INDEX		2
 389
 390static struct freq_attr *powernv_cpu_freq_attr[] = {
 391	&cpufreq_freq_attr_scaling_available_freqs,
 392	&cpufreq_freq_attr_cpuinfo_nominal_freq,
 393	&cpufreq_freq_attr_scaling_boost_freqs,
 394	NULL,
 395};
 396
 397#define throttle_attr(name, member)					\
 398static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)	\
 399{									\
 400	struct chip *chip = per_cpu(chip_info, policy->cpu);		\
 401									\
 402	return sprintf(buf, "%u\n", chip->member);			\
 403}									\
 404									\
 405static struct freq_attr throttle_attr_##name = __ATTR_RO(name)		\
 406
 407throttle_attr(unthrottle, reason[NO_THROTTLE]);
 408throttle_attr(powercap, reason[POWERCAP]);
 409throttle_attr(overtemp, reason[CPU_OVERTEMP]);
 410throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
 411throttle_attr(overcurrent, reason[OVERCURRENT]);
 412throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
 413throttle_attr(turbo_stat, throttle_turbo);
 414throttle_attr(sub_turbo_stat, throttle_sub_turbo);
 415
 416static struct attribute *throttle_attrs[] = {
 417	&throttle_attr_unthrottle.attr,
 418	&throttle_attr_powercap.attr,
 419	&throttle_attr_overtemp.attr,
 420	&throttle_attr_supply_fault.attr,
 421	&throttle_attr_overcurrent.attr,
 422	&throttle_attr_occ_reset.attr,
 423	&throttle_attr_turbo_stat.attr,
 424	&throttle_attr_sub_turbo_stat.attr,
 425	NULL,
 426};
 427
 428static const struct attribute_group throttle_attr_grp = {
 429	.name	= "throttle_stats",
 430	.attrs	= throttle_attrs,
 431};
 432
 433/* Helper routines */
 434
 435/* Access helpers to power mgt SPR */
 436
 437static inline unsigned long get_pmspr(unsigned long sprn)
 438{
 439	switch (sprn) {
 440	case SPRN_PMCR:
 441		return mfspr(SPRN_PMCR);
 442
 443	case SPRN_PMICR:
 444		return mfspr(SPRN_PMICR);
 445
 446	case SPRN_PMSR:
 447		return mfspr(SPRN_PMSR);
 448	}
 449	BUG();
 450}
 451
 452static inline void set_pmspr(unsigned long sprn, unsigned long val)
 453{
 454	switch (sprn) {
 455	case SPRN_PMCR:
 456		mtspr(SPRN_PMCR, val);
 457		return;
 458
 459	case SPRN_PMICR:
 460		mtspr(SPRN_PMICR, val);
 461		return;
 462	}
 463	BUG();
 464}
 465
 466/*
 467 * Use objects of this type to query/update
 468 * pstates on a remote CPU via smp_call_function.
 469 */
 470struct powernv_smp_call_data {
 471	unsigned int freq;
 472	u8 pstate_id;
 473	u8 gpstate_id;
 474};
 475
 476/*
 477 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
 478 *
 479 * Called via smp_call_function.
 480 *
 481 * Note: The caller of the smp_call_function should pass an argument of
 482 * the type 'struct powernv_smp_call_data *' along with this function.
 483 *
 484 * The current frequency on this CPU will be returned via
 485 * ((struct powernv_smp_call_data *)arg)->freq;
 486 */
 487static void powernv_read_cpu_freq(void *arg)
 488{
 489	unsigned long pmspr_val;
 490	struct powernv_smp_call_data *freq_data = arg;
 491
 492	pmspr_val = get_pmspr(SPRN_PMSR);
 493	freq_data->pstate_id = extract_local_pstate(pmspr_val);
 494	freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
 495
 496	pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
 497		 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
 498		 freq_data->freq);
 499}
 500
 501/*
 502 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
 503 * firmware for CPU 'cpu'. This value is reported through the sysfs
 504 * file cpuinfo_cur_freq.
 505 */
 506static unsigned int powernv_cpufreq_get(unsigned int cpu)
 507{
 508	struct powernv_smp_call_data freq_data;
 509
 510	smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
 511			&freq_data, 1);
 512
 513	return freq_data.freq;
 514}
 515
 516/*
 517 * set_pstate: Sets the pstate on this CPU.
 518 *
 519 * This is called via an smp_call_function.
 520 *
 521 * The caller must ensure that freq_data is of the type
 522 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
 523 * on this CPU should be present in freq_data->pstate_id.
 524 */
 525static void set_pstate(void *data)
 526{
 527	unsigned long val;
 528	struct powernv_smp_call_data *freq_data = data;
 529	unsigned long pstate_ul = freq_data->pstate_id;
 530	unsigned long gpstate_ul = freq_data->gpstate_id;
 531
 532	val = get_pmspr(SPRN_PMCR);
 533	val = val & 0x0000FFFFFFFFFFFFULL;
 534
 535	pstate_ul = pstate_ul & 0xFF;
 536	gpstate_ul = gpstate_ul & 0xFF;
 537
 538	/* Set both global(bits 56..63) and local(bits 48..55) PStates */
 539	val = val | (gpstate_ul << 56) | (pstate_ul << 48);
 540
 541	pr_debug("Setting cpu %d pmcr to %016lX\n",
 542			raw_smp_processor_id(), val);
 543	set_pmspr(SPRN_PMCR, val);
 544}
 545
 546/*
 547 * get_nominal_index: Returns the index corresponding to the nominal
 548 * pstate in the cpufreq table
 549 */
 550static inline unsigned int get_nominal_index(void)
 551{
 552	return powernv_pstate_info.nominal;
 553}
 554
 555static void powernv_cpufreq_throttle_check(void *data)
 556{
 557	struct chip *chip;
 558	unsigned int cpu = smp_processor_id();
 559	unsigned long pmsr;
 560	u8 pmsr_pmax;
 561	unsigned int pmsr_pmax_idx;
 562
 563	pmsr = get_pmspr(SPRN_PMSR);
 564	chip = this_cpu_read(chip_info);
 565
 566	/* Check for Pmax Capping */
 567	pmsr_pmax = extract_max_pstate(pmsr);
 568	pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
 569	if (pmsr_pmax_idx != powernv_pstate_info.max) {
 570		if (chip->throttled)
 571			goto next;
 572		chip->throttled = true;
 573		if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
 574			pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
 575				     cpu, chip->id, pmsr_pmax,
 576				     idx_to_pstate(powernv_pstate_info.nominal));
 577			chip->throttle_sub_turbo++;
 578		} else {
 579			chip->throttle_turbo++;
 580		}
 581		trace_powernv_throttle(chip->id,
 582				      throttle_reason[chip->throttle_reason],
 583				      pmsr_pmax);
 584	} else if (chip->throttled) {
 585		chip->throttled = false;
 586		trace_powernv_throttle(chip->id,
 587				      throttle_reason[chip->throttle_reason],
 588				      pmsr_pmax);
 589	}
 590
 591	/* Check if Psafe_mode_active is set in PMSR. */
 592next:
 593	if (pmsr & PMSR_PSAFE_ENABLE) {
 594		throttled = true;
 595		pr_info("Pstate set to safe frequency\n");
 596	}
 597
 598	/* Check if SPR_EM_DISABLE is set in PMSR */
 599	if (pmsr & PMSR_SPR_EM_DISABLE) {
 600		throttled = true;
 601		pr_info("Frequency Control disabled from OS\n");
 602	}
 603
 604	if (throttled) {
 605		pr_info("PMSR = %16lx\n", pmsr);
 606		pr_warn("CPU Frequency could be throttled\n");
 607	}
 608}
 609
 610/**
 611 * calc_global_pstate - Calculate global pstate
 612 * @elapsed_time:		Elapsed time in milliseconds
 613 * @local_pstate_idx:		New local pstate
 614 * @highest_lpstate_idx:	pstate from which its ramping down
 615 *
 616 * Finds the appropriate global pstate based on the pstate from which its
 617 * ramping down and the time elapsed in ramping down. It follows a quadratic
 618 * equation which ensures that it reaches ramping down to pmin in 5sec.
 619 */
 620static inline int calc_global_pstate(unsigned int elapsed_time,
 621				     int highest_lpstate_idx,
 622				     int local_pstate_idx)
 623{
 624	int index_diff;
 625
 626	/*
 627	 * Using ramp_down_percent we get the percentage of rampdown
 628	 * that we are expecting to be dropping. Difference between
 629	 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
 630	 * number of how many pstates we will drop eventually by the end of
 631	 * 5 seconds, then just scale it get the number pstates to be dropped.
 632	 */
 633	index_diff =  ((int)ramp_down_percent(elapsed_time) *
 634			(powernv_pstate_info.min - highest_lpstate_idx)) / 100;
 635
 636	/* Ensure that global pstate is >= to local pstate */
 637	if (highest_lpstate_idx + index_diff >= local_pstate_idx)
 638		return local_pstate_idx;
 639	else
 640		return highest_lpstate_idx + index_diff;
 641}
 642
 643static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
 644{
 645	unsigned int timer_interval;
 646
 647	/*
 648	 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
 649	 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
 650	 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
 651	 * seconds of ramp down time.
 652	 */
 653	if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
 654	     > MAX_RAMP_DOWN_TIME)
 655		timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
 656	else
 657		timer_interval = GPSTATE_TIMER_INTERVAL;
 658
 659	mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
 660}
 661
 662/**
 663 * gpstate_timer_handler
 664 *
 665 * @t: Timer context used to fetch global pstate info struct
 666 *
 667 * This handler brings down the global pstate closer to the local pstate
 668 * according quadratic equation. Queues a new timer if it is still not equal
 669 * to local pstate
 670 */
 671static void gpstate_timer_handler(struct timer_list *t)
 672{
 673	struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
 674	struct cpufreq_policy *policy = gpstates->policy;
 675	int gpstate_idx, lpstate_idx;
 676	unsigned long val;
 677	unsigned int time_diff = jiffies_to_msecs(jiffies)
 678					- gpstates->last_sampled_time;
 679	struct powernv_smp_call_data freq_data;
 680
 681	if (!spin_trylock(&gpstates->gpstate_lock))
 682		return;
 683	/*
 684	 * If the timer has migrated to the different cpu then bring
 685	 * it back to one of the policy->cpus
 686	 */
 687	if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
 688		gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
 689		add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
 690		spin_unlock(&gpstates->gpstate_lock);
 691		return;
 692	}
 693
 694	/*
 695	 * If PMCR was last updated was using fast_swtich then
 696	 * We may have wrong in gpstate->last_lpstate_idx
 697	 * value. Hence, read from PMCR to get correct data.
 698	 */
 699	val = get_pmspr(SPRN_PMCR);
 700	freq_data.gpstate_id = extract_global_pstate(val);
 701	freq_data.pstate_id = extract_local_pstate(val);
 702	if (freq_data.gpstate_id  == freq_data.pstate_id) {
 703		reset_gpstates(policy);
 704		spin_unlock(&gpstates->gpstate_lock);
 705		return;
 706	}
 707
 708	gpstates->last_sampled_time += time_diff;
 709	gpstates->elapsed_time += time_diff;
 710
 711	if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
 712		gpstate_idx = pstate_to_idx(freq_data.pstate_id);
 713		lpstate_idx = gpstate_idx;
 714		reset_gpstates(policy);
 715		gpstates->highest_lpstate_idx = gpstate_idx;
 716	} else {
 717		lpstate_idx = pstate_to_idx(freq_data.pstate_id);
 718		gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
 719						 gpstates->highest_lpstate_idx,
 720						 lpstate_idx);
 721	}
 722	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
 723	gpstates->last_gpstate_idx = gpstate_idx;
 724	gpstates->last_lpstate_idx = lpstate_idx;
 725	/*
 726	 * If local pstate is equal to global pstate, rampdown is over
 727	 * So timer is not required to be queued.
 728	 */
 729	if (gpstate_idx != gpstates->last_lpstate_idx)
 730		queue_gpstate_timer(gpstates);
 731
 732	set_pstate(&freq_data);
 733	spin_unlock(&gpstates->gpstate_lock);
 734}
 735
 736/*
 737 * powernv_cpufreq_target_index: Sets the frequency corresponding to
 738 * the cpufreq table entry indexed by new_index on the cpus in the
 739 * mask policy->cpus
 740 */
 741static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
 742					unsigned int new_index)
 743{
 744	struct powernv_smp_call_data freq_data;
 745	unsigned int cur_msec, gpstate_idx;
 746	struct global_pstate_info *gpstates = policy->driver_data;
 747
 748	if (unlikely(rebooting) && new_index != get_nominal_index())
 749		return 0;
 750
 751	if (!throttled) {
 752		/* we don't want to be preempted while
 753		 * checking if the CPU frequency has been throttled
 754		 */
 755		preempt_disable();
 756		powernv_cpufreq_throttle_check(NULL);
 757		preempt_enable();
 758	}
 759
 760	cur_msec = jiffies_to_msecs(get_jiffies_64());
 761
 762	freq_data.pstate_id = idx_to_pstate(new_index);
 763	if (!gpstates) {
 764		freq_data.gpstate_id = freq_data.pstate_id;
 765		goto no_gpstate;
 766	}
 767
 768	spin_lock(&gpstates->gpstate_lock);
 769
 770	if (!gpstates->last_sampled_time) {
 771		gpstate_idx = new_index;
 772		gpstates->highest_lpstate_idx = new_index;
 773		goto gpstates_done;
 774	}
 775
 776	if (gpstates->last_gpstate_idx < new_index) {
 777		gpstates->elapsed_time += cur_msec -
 778						 gpstates->last_sampled_time;
 779
 780		/*
 781		 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
 782		 * we should be resetting all global pstate related data. Set it
 783		 * equal to local pstate to start fresh.
 784		 */
 785		if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
 786			reset_gpstates(policy);
 787			gpstates->highest_lpstate_idx = new_index;
 788			gpstate_idx = new_index;
 789		} else {
 790		/* Elaspsed_time is less than 5 seconds, continue to rampdown */
 791			gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
 792							 gpstates->highest_lpstate_idx,
 793							 new_index);
 794		}
 795	} else {
 796		reset_gpstates(policy);
 797		gpstates->highest_lpstate_idx = new_index;
 798		gpstate_idx = new_index;
 799	}
 800
 801	/*
 802	 * If local pstate is equal to global pstate, rampdown is over
 803	 * So timer is not required to be queued.
 804	 */
 805	if (gpstate_idx != new_index)
 806		queue_gpstate_timer(gpstates);
 807	else
 808		del_timer_sync(&gpstates->timer);
 809
 810gpstates_done:
 811	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
 812	gpstates->last_sampled_time = cur_msec;
 813	gpstates->last_gpstate_idx = gpstate_idx;
 814	gpstates->last_lpstate_idx = new_index;
 815
 816	spin_unlock(&gpstates->gpstate_lock);
 817
 818no_gpstate:
 819	/*
 820	 * Use smp_call_function to send IPI and execute the
 821	 * mtspr on target CPU.  We could do that without IPI
 822	 * if current CPU is within policy->cpus (core)
 823	 */
 824	smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
 825	return 0;
 826}
 827
 828static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
 829{
 830	int base, i;
 831	struct kernfs_node *kn;
 832	struct global_pstate_info *gpstates;
 833
 834	base = cpu_first_thread_sibling(policy->cpu);
 835
 836	for (i = 0; i < threads_per_core; i++)
 837		cpumask_set_cpu(base + i, policy->cpus);
 838
 839	kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
 840	if (!kn) {
 841		int ret;
 842
 843		ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
 844		if (ret) {
 845			pr_info("Failed to create throttle stats directory for cpu %d\n",
 846				policy->cpu);
 847			return ret;
 848		}
 849	} else {
 850		kernfs_put(kn);
 851	}
 852
 853	policy->freq_table = powernv_freqs;
 854	policy->fast_switch_possible = true;
 855
 856	if (pvr_version_is(PVR_POWER9))
 857		return 0;
 858
 859	/* Initialise Gpstate ramp-down timer only on POWER8 */
 860	gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
 861	if (!gpstates)
 862		return -ENOMEM;
 863
 864	policy->driver_data = gpstates;
 865
 866	/* initialize timer */
 867	gpstates->policy = policy;
 868	timer_setup(&gpstates->timer, gpstate_timer_handler,
 869		    TIMER_PINNED | TIMER_DEFERRABLE);
 870	gpstates->timer.expires = jiffies +
 871				msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
 872	spin_lock_init(&gpstates->gpstate_lock);
 873
 874	return 0;
 875}
 876
 877static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
 878{
 879	struct powernv_smp_call_data freq_data;
 880	struct global_pstate_info *gpstates = policy->driver_data;
 881
 882	freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
 883	freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
 884	smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
 885	if (gpstates)
 886		del_timer_sync(&gpstates->timer);
 887
 888	kfree(policy->driver_data);
 889
 890	return 0;
 891}
 892
 893static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
 894				unsigned long action, void *unused)
 895{
 896	int cpu;
 897	struct cpufreq_policy *cpu_policy;
 898
 899	rebooting = true;
 900	for_each_online_cpu(cpu) {
 901		cpu_policy = cpufreq_cpu_get(cpu);
 902		if (!cpu_policy)
 903			continue;
 904		powernv_cpufreq_target_index(cpu_policy, get_nominal_index());
 905		cpufreq_cpu_put(cpu_policy);
 906	}
 907
 908	return NOTIFY_DONE;
 909}
 910
 911static struct notifier_block powernv_cpufreq_reboot_nb = {
 912	.notifier_call = powernv_cpufreq_reboot_notifier,
 913};
 914
 915static void powernv_cpufreq_work_fn(struct work_struct *work)
 916{
 917	struct chip *chip = container_of(work, struct chip, throttle);
 918	struct cpufreq_policy *policy;
 919	unsigned int cpu;
 920	cpumask_t mask;
 921
 922	cpus_read_lock();
 923	cpumask_and(&mask, &chip->mask, cpu_online_mask);
 924	smp_call_function_any(&mask,
 925			      powernv_cpufreq_throttle_check, NULL, 0);
 926
 927	if (!chip->restore)
 928		goto out;
 929
 930	chip->restore = false;
 931	for_each_cpu(cpu, &mask) {
 932		int index;
 933
 934		policy = cpufreq_cpu_get(cpu);
 935		if (!policy)
 936			continue;
 937		index = cpufreq_table_find_index_c(policy, policy->cur, false);
 938		powernv_cpufreq_target_index(policy, index);
 939		cpumask_andnot(&mask, &mask, policy->cpus);
 940		cpufreq_cpu_put(policy);
 941	}
 942out:
 943	cpus_read_unlock();
 944}
 945
 946static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
 947				   unsigned long msg_type, void *_msg)
 948{
 949	struct opal_msg *msg = _msg;
 950	struct opal_occ_msg omsg;
 951	int i;
 952
 953	if (msg_type != OPAL_MSG_OCC)
 954		return 0;
 955
 956	omsg.type = be64_to_cpu(msg->params[0]);
 957
 958	switch (omsg.type) {
 959	case OCC_RESET:
 960		occ_reset = true;
 961		pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
 962		/*
 963		 * powernv_cpufreq_throttle_check() is called in
 964		 * target() callback which can detect the throttle state
 965		 * for governors like ondemand.
 966		 * But static governors will not call target() often thus
 967		 * report throttling here.
 968		 */
 969		if (!throttled) {
 970			throttled = true;
 971			pr_warn("CPU frequency is throttled for duration\n");
 972		}
 973
 974		break;
 975	case OCC_LOAD:
 976		pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
 977		break;
 978	case OCC_THROTTLE:
 979		omsg.chip = be64_to_cpu(msg->params[1]);
 980		omsg.throttle_status = be64_to_cpu(msg->params[2]);
 981
 982		if (occ_reset) {
 983			occ_reset = false;
 984			throttled = false;
 985			pr_info("OCC Active, CPU frequency is no longer throttled\n");
 986
 987			for (i = 0; i < nr_chips; i++) {
 988				chips[i].restore = true;
 989				schedule_work(&chips[i].throttle);
 990			}
 991
 992			return 0;
 993		}
 994
 995		for (i = 0; i < nr_chips; i++)
 996			if (chips[i].id == omsg.chip)
 997				break;
 998
 999		if (omsg.throttle_status >= 0 &&
1000		    omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
1001			chips[i].throttle_reason = omsg.throttle_status;
1002			chips[i].reason[omsg.throttle_status]++;
1003		}
1004
1005		if (!omsg.throttle_status)
1006			chips[i].restore = true;
1007
1008		schedule_work(&chips[i].throttle);
1009	}
1010	return 0;
1011}
1012
1013static struct notifier_block powernv_cpufreq_opal_nb = {
1014	.notifier_call	= powernv_cpufreq_occ_msg,
1015	.next		= NULL,
1016	.priority	= 0,
1017};
1018
 
 
 
 
 
 
 
 
 
 
 
 
1019static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1020					unsigned int target_freq)
1021{
1022	int index;
1023	struct powernv_smp_call_data freq_data;
1024
1025	index = cpufreq_table_find_index_dl(policy, target_freq, false);
1026	freq_data.pstate_id = powernv_freqs[index].driver_data;
1027	freq_data.gpstate_id = powernv_freqs[index].driver_data;
1028	set_pstate(&freq_data);
1029
1030	return powernv_freqs[index].frequency;
1031}
1032
1033static struct cpufreq_driver powernv_cpufreq_driver = {
1034	.name		= "powernv-cpufreq",
1035	.flags		= CPUFREQ_CONST_LOOPS,
1036	.init		= powernv_cpufreq_cpu_init,
1037	.exit		= powernv_cpufreq_cpu_exit,
1038	.verify		= cpufreq_generic_frequency_table_verify,
1039	.target_index	= powernv_cpufreq_target_index,
1040	.fast_switch	= powernv_fast_switch,
1041	.get		= powernv_cpufreq_get,
 
1042	.attr		= powernv_cpu_freq_attr,
1043};
1044
1045static int init_chip_info(void)
1046{
1047	unsigned int *chip;
1048	unsigned int cpu, i;
1049	unsigned int prev_chip_id = UINT_MAX;
1050	cpumask_t *chip_cpu_mask;
1051	int ret = 0;
1052
1053	chip = kcalloc(num_possible_cpus(), sizeof(*chip), GFP_KERNEL);
1054	if (!chip)
1055		return -ENOMEM;
1056
1057	/* Allocate a chip cpu mask large enough to fit mask for all chips */
1058	chip_cpu_mask = kcalloc(MAX_NR_CHIPS, sizeof(cpumask_t), GFP_KERNEL);
1059	if (!chip_cpu_mask) {
1060		ret = -ENOMEM;
1061		goto free_and_return;
1062	}
1063
1064	for_each_possible_cpu(cpu) {
1065		unsigned int id = cpu_to_chip_id(cpu);
1066
1067		if (prev_chip_id != id) {
1068			prev_chip_id = id;
1069			chip[nr_chips++] = id;
1070		}
1071		cpumask_set_cpu(cpu, &chip_cpu_mask[nr_chips-1]);
1072	}
1073
1074	chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1075	if (!chips) {
1076		ret = -ENOMEM;
1077		goto out_free_chip_cpu_mask;
1078	}
1079
1080	for (i = 0; i < nr_chips; i++) {
1081		chips[i].id = chip[i];
1082		cpumask_copy(&chips[i].mask, &chip_cpu_mask[i]);
1083		INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1084		for_each_cpu(cpu, &chips[i].mask)
1085			per_cpu(chip_info, cpu) =  &chips[i];
1086	}
1087
1088out_free_chip_cpu_mask:
1089	kfree(chip_cpu_mask);
1090free_and_return:
1091	kfree(chip);
1092	return ret;
1093}
1094
1095static inline void clean_chip_info(void)
1096{
1097	int i;
1098
1099	/* flush any pending work items */
1100	if (chips)
1101		for (i = 0; i < nr_chips; i++)
1102			cancel_work_sync(&chips[i].throttle);
1103	kfree(chips);
1104}
1105
1106static inline void unregister_all_notifiers(void)
1107{
1108	opal_message_notifier_unregister(OPAL_MSG_OCC,
1109					 &powernv_cpufreq_opal_nb);
1110	unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1111}
1112
1113static int __init powernv_cpufreq_init(void)
1114{
1115	int rc = 0;
1116
1117	/* Don't probe on pseries (guest) platforms */
1118	if (!firmware_has_feature(FW_FEATURE_OPAL))
1119		return -ENODEV;
1120
1121	/* Discover pstates from device tree and init */
1122	rc = init_powernv_pstates();
1123	if (rc)
1124		goto out;
1125
1126	/* Populate chip info */
1127	rc = init_chip_info();
1128	if (rc)
1129		goto out;
1130
1131	if (powernv_pstate_info.wof_enabled)
1132		powernv_cpufreq_driver.boost_enabled = true;
1133	else
1134		powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1135
1136	rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1137	if (rc) {
1138		pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1139		goto cleanup;
1140	}
1141
1142	if (powernv_pstate_info.wof_enabled)
1143		cpufreq_enable_boost_support();
1144
1145	register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1146	opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1147
1148	return 0;
1149cleanup:
1150	clean_chip_info();
1151out:
1152	pr_info("Platform driver disabled. System does not support PState control\n");
1153	return rc;
1154}
1155module_init(powernv_cpufreq_init);
1156
1157static void __exit powernv_cpufreq_exit(void)
1158{
1159	cpufreq_unregister_driver(&powernv_cpufreq_driver);
1160	unregister_all_notifiers();
1161	clean_chip_info();
1162}
1163module_exit(powernv_cpufreq_exit);
1164
1165MODULE_LICENSE("GPL");
1166MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * POWERNV cpufreq driver for the IBM POWER processors
   4 *
   5 * (C) Copyright IBM 2014
   6 *
   7 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
   8 */
   9
  10#define pr_fmt(fmt)	"powernv-cpufreq: " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/sysfs.h>
  14#include <linux/cpumask.h>
  15#include <linux/module.h>
  16#include <linux/cpufreq.h>
  17#include <linux/smp.h>
  18#include <linux/of.h>
  19#include <linux/reboot.h>
  20#include <linux/slab.h>
  21#include <linux/cpu.h>
  22#include <linux/hashtable.h>
  23#include <trace/events/power.h>
  24
  25#include <asm/cputhreads.h>
  26#include <asm/firmware.h>
  27#include <asm/reg.h>
  28#include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
  29#include <asm/opal.h>
  30#include <linux/timer.h>
  31
  32#define POWERNV_MAX_PSTATES_ORDER  8
  33#define POWERNV_MAX_PSTATES	(1UL << (POWERNV_MAX_PSTATES_ORDER))
  34#define PMSR_PSAFE_ENABLE	(1UL << 30)
  35#define PMSR_SPR_EM_DISABLE	(1UL << 31)
  36#define MAX_PSTATE_SHIFT	32
  37#define LPSTATE_SHIFT		48
  38#define GPSTATE_SHIFT		56
 
  39
  40#define MAX_RAMP_DOWN_TIME				5120
  41/*
  42 * On an idle system we want the global pstate to ramp-down from max value to
  43 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
  44 * then ramp-down rapidly later on.
  45 *
  46 * This gives a percentage rampdown for time elapsed in milliseconds.
  47 * ramp_down_percentage = ((ms * ms) >> 18)
  48 *			~= 3.8 * (sec * sec)
  49 *
  50 * At 0 ms	ramp_down_percent = 0
  51 * At 5120 ms	ramp_down_percent = 100
  52 */
  53#define ramp_down_percent(time)		((time * time) >> 18)
  54
  55/* Interval after which the timer is queued to bring down global pstate */
  56#define GPSTATE_TIMER_INTERVAL				2000
  57
  58/**
  59 * struct global_pstate_info -	Per policy data structure to maintain history of
  60 *				global pstates
  61 * @highest_lpstate_idx:	The local pstate index from which we are
  62 *				ramping down
  63 * @elapsed_time:		Time in ms spent in ramping down from
  64 *				highest_lpstate_idx
  65 * @last_sampled_time:		Time from boot in ms when global pstates were
  66 *				last set
  67 * @last_lpstate_idx:		Last set value of local pstate and global
  68 * @last_gpstate_idx:		pstate in terms of cpufreq table index
  69 * @timer:			Is used for ramping down if cpu goes idle for
  70 *				a long time with global pstate held high
  71 * @gpstate_lock:		A spinlock to maintain synchronization between
  72 *				routines called by the timer handler and
  73 *				governer's target_index calls
  74 * @policy:			Associated CPUFreq policy
  75 */
  76struct global_pstate_info {
  77	int highest_lpstate_idx;
  78	unsigned int elapsed_time;
  79	unsigned int last_sampled_time;
  80	int last_lpstate_idx;
  81	int last_gpstate_idx;
  82	spinlock_t gpstate_lock;
  83	struct timer_list timer;
  84	struct cpufreq_policy *policy;
  85};
  86
  87static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
  88
  89static DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
  90/**
  91 * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
  92 *				  indexed by a function of pstate id.
  93 *
  94 * @pstate_id: pstate id for this entry.
  95 *
  96 * @cpufreq_table_idx: Index into the powernv_freqs
  97 *		       cpufreq_frequency_table for frequency
  98 *		       corresponding to pstate_id.
  99 *
 100 * @hentry: hlist_node that hooks this entry into the pstate_revmap
 101 *	    hashtable
 102 */
 103struct pstate_idx_revmap_data {
 104	u8 pstate_id;
 105	unsigned int cpufreq_table_idx;
 106	struct hlist_node hentry;
 107};
 108
 109static bool rebooting, throttled, occ_reset;
 110
 111static const char * const throttle_reason[] = {
 112	"No throttling",
 113	"Power Cap",
 114	"Processor Over Temperature",
 115	"Power Supply Failure",
 116	"Over Current",
 117	"OCC Reset"
 118};
 119
 120enum throttle_reason_type {
 121	NO_THROTTLE = 0,
 122	POWERCAP,
 123	CPU_OVERTEMP,
 124	POWER_SUPPLY_FAILURE,
 125	OVERCURRENT,
 126	OCC_RESET_THROTTLE,
 127	OCC_MAX_REASON
 128};
 129
 130static struct chip {
 131	unsigned int id;
 132	bool throttled;
 133	bool restore;
 134	u8 throttle_reason;
 135	cpumask_t mask;
 136	struct work_struct throttle;
 137	int throttle_turbo;
 138	int throttle_sub_turbo;
 139	int reason[OCC_MAX_REASON];
 140} *chips;
 141
 142static int nr_chips;
 143static DEFINE_PER_CPU(struct chip *, chip_info);
 144
 145/*
 146 * Note:
 147 * The set of pstates consists of contiguous integers.
 148 * powernv_pstate_info stores the index of the frequency table for
 149 * max, min and nominal frequencies. It also stores number of
 150 * available frequencies.
 151 *
 152 * powernv_pstate_info.nominal indicates the index to the highest
 153 * non-turbo frequency.
 154 */
 155static struct powernv_pstate_info {
 156	unsigned int min;
 157	unsigned int max;
 158	unsigned int nominal;
 159	unsigned int nr_pstates;
 160	bool wof_enabled;
 161} powernv_pstate_info;
 162
 163static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
 164{
 165	return ((pmsr_val >> shift) & 0xFF);
 166}
 167
 168#define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
 169#define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
 170#define extract_max_pstate(x)  extract_pstate(x, MAX_PSTATE_SHIFT)
 171
 172/* Use following functions for conversions between pstate_id and index */
 173
 174/*
 175 * idx_to_pstate : Returns the pstate id corresponding to the
 176 *		   frequency in the cpufreq frequency table
 177 *		   powernv_freqs indexed by @i.
 178 *
 179 *		   If @i is out of bound, this will return the pstate
 180 *		   corresponding to the nominal frequency.
 181 */
 182static inline u8 idx_to_pstate(unsigned int i)
 183{
 184	if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
 185		pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
 186		return powernv_freqs[powernv_pstate_info.nominal].driver_data;
 187	}
 188
 189	return powernv_freqs[i].driver_data;
 190}
 191
 192/*
 193 * pstate_to_idx : Returns the index in the cpufreq frequencytable
 194 *		   powernv_freqs for the frequency whose corresponding
 195 *		   pstate id is @pstate.
 196 *
 197 *		   If no frequency corresponding to @pstate is found,
 198 *		   this will return the index of the nominal
 199 *		   frequency.
 200 */
 201static unsigned int pstate_to_idx(u8 pstate)
 202{
 203	unsigned int key = pstate % POWERNV_MAX_PSTATES;
 204	struct pstate_idx_revmap_data *revmap_data;
 205
 206	hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
 207		if (revmap_data->pstate_id == pstate)
 208			return revmap_data->cpufreq_table_idx;
 209	}
 210
 211	pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
 212	return powernv_pstate_info.nominal;
 213}
 214
 215static inline void reset_gpstates(struct cpufreq_policy *policy)
 216{
 217	struct global_pstate_info *gpstates = policy->driver_data;
 218
 219	gpstates->highest_lpstate_idx = 0;
 220	gpstates->elapsed_time = 0;
 221	gpstates->last_sampled_time = 0;
 222	gpstates->last_lpstate_idx = 0;
 223	gpstates->last_gpstate_idx = 0;
 224}
 225
 226/*
 227 * Initialize the freq table based on data obtained
 228 * from the firmware passed via device-tree
 229 */
 230static int init_powernv_pstates(void)
 231{
 232	struct device_node *power_mgt;
 233	int i, nr_pstates = 0;
 234	const __be32 *pstate_ids, *pstate_freqs;
 235	u32 len_ids, len_freqs;
 236	u32 pstate_min, pstate_max, pstate_nominal;
 237	u32 pstate_turbo, pstate_ultra_turbo;
 238	int rc = -ENODEV;
 239
 240	power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
 241	if (!power_mgt) {
 242		pr_warn("power-mgt node not found\n");
 243		return -ENODEV;
 244	}
 245
 246	if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
 247		pr_warn("ibm,pstate-min node not found\n");
 248		goto out;
 249	}
 250
 251	if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
 252		pr_warn("ibm,pstate-max node not found\n");
 253		goto out;
 254	}
 255
 256	if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
 257				 &pstate_nominal)) {
 258		pr_warn("ibm,pstate-nominal not found\n");
 259		goto out;
 260	}
 261
 262	if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
 263				 &pstate_ultra_turbo)) {
 264		powernv_pstate_info.wof_enabled = false;
 265		goto next;
 266	}
 267
 268	if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
 269				 &pstate_turbo)) {
 270		powernv_pstate_info.wof_enabled = false;
 271		goto next;
 272	}
 273
 274	if (pstate_turbo == pstate_ultra_turbo)
 275		powernv_pstate_info.wof_enabled = false;
 276	else
 277		powernv_pstate_info.wof_enabled = true;
 278
 279next:
 280	pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
 281		pstate_nominal, pstate_max);
 282	pr_info("Workload Optimized Frequency is %s in the platform\n",
 283		(powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
 284
 285	pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
 286	if (!pstate_ids) {
 287		pr_warn("ibm,pstate-ids not found\n");
 288		goto out;
 289	}
 290
 291	pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
 292				      &len_freqs);
 293	if (!pstate_freqs) {
 294		pr_warn("ibm,pstate-frequencies-mhz not found\n");
 295		goto out;
 296	}
 297
 298	if (len_ids != len_freqs) {
 299		pr_warn("Entries in ibm,pstate-ids and "
 300			"ibm,pstate-frequencies-mhz does not match\n");
 301	}
 302
 303	nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
 304	if (!nr_pstates) {
 305		pr_warn("No PStates found\n");
 306		goto out;
 307	}
 308
 309	powernv_pstate_info.nr_pstates = nr_pstates;
 310	pr_debug("NR PStates %d\n", nr_pstates);
 311
 312	for (i = 0; i < nr_pstates; i++) {
 313		u32 id = be32_to_cpu(pstate_ids[i]);
 314		u32 freq = be32_to_cpu(pstate_freqs[i]);
 315		struct pstate_idx_revmap_data *revmap_data;
 316		unsigned int key;
 317
 318		pr_debug("PState id %d freq %d MHz\n", id, freq);
 319		powernv_freqs[i].frequency = freq * 1000; /* kHz */
 320		powernv_freqs[i].driver_data = id & 0xFF;
 321
 322		revmap_data = kmalloc(sizeof(*revmap_data), GFP_KERNEL);
 323		if (!revmap_data) {
 324			rc = -ENOMEM;
 325			goto out;
 326		}
 327
 328		revmap_data->pstate_id = id & 0xFF;
 329		revmap_data->cpufreq_table_idx = i;
 330		key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
 331		hash_add(pstate_revmap, &revmap_data->hentry, key);
 332
 333		if (id == pstate_max)
 334			powernv_pstate_info.max = i;
 335		if (id == pstate_nominal)
 336			powernv_pstate_info.nominal = i;
 337		if (id == pstate_min)
 338			powernv_pstate_info.min = i;
 339
 340		if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
 341			int j;
 342
 343			for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
 344				powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
 345		}
 346	}
 347
 348	/* End of list marker entry */
 349	powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
 350
 351	of_node_put(power_mgt);
 352	return 0;
 353out:
 354	of_node_put(power_mgt);
 355	return rc;
 356}
 357
 358/* Returns the CPU frequency corresponding to the pstate_id. */
 359static unsigned int pstate_id_to_freq(u8 pstate_id)
 360{
 361	int i;
 362
 363	i = pstate_to_idx(pstate_id);
 364	if (i >= powernv_pstate_info.nr_pstates || i < 0) {
 365		pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
 366			pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
 367		i = powernv_pstate_info.nominal;
 368	}
 369
 370	return powernv_freqs[i].frequency;
 371}
 372
 373/*
 374 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
 375 * the firmware
 376 */
 377static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
 378					char *buf)
 379{
 380	return sprintf(buf, "%u\n",
 381		powernv_freqs[powernv_pstate_info.nominal].frequency);
 382}
 383
 384static struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
 385	__ATTR_RO(cpuinfo_nominal_freq);
 386
 387#define SCALING_BOOST_FREQS_ATTR_INDEX		2
 388
 389static struct freq_attr *powernv_cpu_freq_attr[] = {
 390	&cpufreq_freq_attr_scaling_available_freqs,
 391	&cpufreq_freq_attr_cpuinfo_nominal_freq,
 392	&cpufreq_freq_attr_scaling_boost_freqs,
 393	NULL,
 394};
 395
 396#define throttle_attr(name, member)					\
 397static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)	\
 398{									\
 399	struct chip *chip = per_cpu(chip_info, policy->cpu);		\
 400									\
 401	return sprintf(buf, "%u\n", chip->member);			\
 402}									\
 403									\
 404static struct freq_attr throttle_attr_##name = __ATTR_RO(name)		\
 405
 406throttle_attr(unthrottle, reason[NO_THROTTLE]);
 407throttle_attr(powercap, reason[POWERCAP]);
 408throttle_attr(overtemp, reason[CPU_OVERTEMP]);
 409throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
 410throttle_attr(overcurrent, reason[OVERCURRENT]);
 411throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
 412throttle_attr(turbo_stat, throttle_turbo);
 413throttle_attr(sub_turbo_stat, throttle_sub_turbo);
 414
 415static struct attribute *throttle_attrs[] = {
 416	&throttle_attr_unthrottle.attr,
 417	&throttle_attr_powercap.attr,
 418	&throttle_attr_overtemp.attr,
 419	&throttle_attr_supply_fault.attr,
 420	&throttle_attr_overcurrent.attr,
 421	&throttle_attr_occ_reset.attr,
 422	&throttle_attr_turbo_stat.attr,
 423	&throttle_attr_sub_turbo_stat.attr,
 424	NULL,
 425};
 426
 427static const struct attribute_group throttle_attr_grp = {
 428	.name	= "throttle_stats",
 429	.attrs	= throttle_attrs,
 430};
 431
 432/* Helper routines */
 433
 434/* Access helpers to power mgt SPR */
 435
 436static inline unsigned long get_pmspr(unsigned long sprn)
 437{
 438	switch (sprn) {
 439	case SPRN_PMCR:
 440		return mfspr(SPRN_PMCR);
 441
 442	case SPRN_PMICR:
 443		return mfspr(SPRN_PMICR);
 444
 445	case SPRN_PMSR:
 446		return mfspr(SPRN_PMSR);
 447	}
 448	BUG();
 449}
 450
 451static inline void set_pmspr(unsigned long sprn, unsigned long val)
 452{
 453	switch (sprn) {
 454	case SPRN_PMCR:
 455		mtspr(SPRN_PMCR, val);
 456		return;
 457
 458	case SPRN_PMICR:
 459		mtspr(SPRN_PMICR, val);
 460		return;
 461	}
 462	BUG();
 463}
 464
 465/*
 466 * Use objects of this type to query/update
 467 * pstates on a remote CPU via smp_call_function.
 468 */
 469struct powernv_smp_call_data {
 470	unsigned int freq;
 471	u8 pstate_id;
 472	u8 gpstate_id;
 473};
 474
 475/*
 476 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
 477 *
 478 * Called via smp_call_function.
 479 *
 480 * Note: The caller of the smp_call_function should pass an argument of
 481 * the type 'struct powernv_smp_call_data *' along with this function.
 482 *
 483 * The current frequency on this CPU will be returned via
 484 * ((struct powernv_smp_call_data *)arg)->freq;
 485 */
 486static void powernv_read_cpu_freq(void *arg)
 487{
 488	unsigned long pmspr_val;
 489	struct powernv_smp_call_data *freq_data = arg;
 490
 491	pmspr_val = get_pmspr(SPRN_PMSR);
 492	freq_data->pstate_id = extract_local_pstate(pmspr_val);
 493	freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
 494
 495	pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
 496		 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
 497		 freq_data->freq);
 498}
 499
 500/*
 501 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
 502 * firmware for CPU 'cpu'. This value is reported through the sysfs
 503 * file cpuinfo_cur_freq.
 504 */
 505static unsigned int powernv_cpufreq_get(unsigned int cpu)
 506{
 507	struct powernv_smp_call_data freq_data;
 508
 509	smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
 510			&freq_data, 1);
 511
 512	return freq_data.freq;
 513}
 514
 515/*
 516 * set_pstate: Sets the pstate on this CPU.
 517 *
 518 * This is called via an smp_call_function.
 519 *
 520 * The caller must ensure that freq_data is of the type
 521 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
 522 * on this CPU should be present in freq_data->pstate_id.
 523 */
 524static void set_pstate(void *data)
 525{
 526	unsigned long val;
 527	struct powernv_smp_call_data *freq_data = data;
 528	unsigned long pstate_ul = freq_data->pstate_id;
 529	unsigned long gpstate_ul = freq_data->gpstate_id;
 530
 531	val = get_pmspr(SPRN_PMCR);
 532	val = val & 0x0000FFFFFFFFFFFFULL;
 533
 534	pstate_ul = pstate_ul & 0xFF;
 535	gpstate_ul = gpstate_ul & 0xFF;
 536
 537	/* Set both global(bits 56..63) and local(bits 48..55) PStates */
 538	val = val | (gpstate_ul << 56) | (pstate_ul << 48);
 539
 540	pr_debug("Setting cpu %d pmcr to %016lX\n",
 541			raw_smp_processor_id(), val);
 542	set_pmspr(SPRN_PMCR, val);
 543}
 544
 545/*
 546 * get_nominal_index: Returns the index corresponding to the nominal
 547 * pstate in the cpufreq table
 548 */
 549static inline unsigned int get_nominal_index(void)
 550{
 551	return powernv_pstate_info.nominal;
 552}
 553
 554static void powernv_cpufreq_throttle_check(void *data)
 555{
 556	struct chip *chip;
 557	unsigned int cpu = smp_processor_id();
 558	unsigned long pmsr;
 559	u8 pmsr_pmax;
 560	unsigned int pmsr_pmax_idx;
 561
 562	pmsr = get_pmspr(SPRN_PMSR);
 563	chip = this_cpu_read(chip_info);
 564
 565	/* Check for Pmax Capping */
 566	pmsr_pmax = extract_max_pstate(pmsr);
 567	pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
 568	if (pmsr_pmax_idx != powernv_pstate_info.max) {
 569		if (chip->throttled)
 570			goto next;
 571		chip->throttled = true;
 572		if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
 573			pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
 574				     cpu, chip->id, pmsr_pmax,
 575				     idx_to_pstate(powernv_pstate_info.nominal));
 576			chip->throttle_sub_turbo++;
 577		} else {
 578			chip->throttle_turbo++;
 579		}
 580		trace_powernv_throttle(chip->id,
 581				      throttle_reason[chip->throttle_reason],
 582				      pmsr_pmax);
 583	} else if (chip->throttled) {
 584		chip->throttled = false;
 585		trace_powernv_throttle(chip->id,
 586				      throttle_reason[chip->throttle_reason],
 587				      pmsr_pmax);
 588	}
 589
 590	/* Check if Psafe_mode_active is set in PMSR. */
 591next:
 592	if (pmsr & PMSR_PSAFE_ENABLE) {
 593		throttled = true;
 594		pr_info("Pstate set to safe frequency\n");
 595	}
 596
 597	/* Check if SPR_EM_DISABLE is set in PMSR */
 598	if (pmsr & PMSR_SPR_EM_DISABLE) {
 599		throttled = true;
 600		pr_info("Frequency Control disabled from OS\n");
 601	}
 602
 603	if (throttled) {
 604		pr_info("PMSR = %16lx\n", pmsr);
 605		pr_warn("CPU Frequency could be throttled\n");
 606	}
 607}
 608
 609/**
 610 * calc_global_pstate - Calculate global pstate
 611 * @elapsed_time:		Elapsed time in milliseconds
 612 * @local_pstate_idx:		New local pstate
 613 * @highest_lpstate_idx:	pstate from which its ramping down
 614 *
 615 * Finds the appropriate global pstate based on the pstate from which its
 616 * ramping down and the time elapsed in ramping down. It follows a quadratic
 617 * equation which ensures that it reaches ramping down to pmin in 5sec.
 618 */
 619static inline int calc_global_pstate(unsigned int elapsed_time,
 620				     int highest_lpstate_idx,
 621				     int local_pstate_idx)
 622{
 623	int index_diff;
 624
 625	/*
 626	 * Using ramp_down_percent we get the percentage of rampdown
 627	 * that we are expecting to be dropping. Difference between
 628	 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
 629	 * number of how many pstates we will drop eventually by the end of
 630	 * 5 seconds, then just scale it get the number pstates to be dropped.
 631	 */
 632	index_diff =  ((int)ramp_down_percent(elapsed_time) *
 633			(powernv_pstate_info.min - highest_lpstate_idx)) / 100;
 634
 635	/* Ensure that global pstate is >= to local pstate */
 636	if (highest_lpstate_idx + index_diff >= local_pstate_idx)
 637		return local_pstate_idx;
 638	else
 639		return highest_lpstate_idx + index_diff;
 640}
 641
 642static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
 643{
 644	unsigned int timer_interval;
 645
 646	/*
 647	 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
 648	 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
 649	 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
 650	 * seconds of ramp down time.
 651	 */
 652	if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
 653	     > MAX_RAMP_DOWN_TIME)
 654		timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
 655	else
 656		timer_interval = GPSTATE_TIMER_INTERVAL;
 657
 658	mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
 659}
 660
 661/**
 662 * gpstate_timer_handler
 663 *
 664 * @t: Timer context used to fetch global pstate info struct
 665 *
 666 * This handler brings down the global pstate closer to the local pstate
 667 * according quadratic equation. Queues a new timer if it is still not equal
 668 * to local pstate
 669 */
 670static void gpstate_timer_handler(struct timer_list *t)
 671{
 672	struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
 673	struct cpufreq_policy *policy = gpstates->policy;
 674	int gpstate_idx, lpstate_idx;
 675	unsigned long val;
 676	unsigned int time_diff = jiffies_to_msecs(jiffies)
 677					- gpstates->last_sampled_time;
 678	struct powernv_smp_call_data freq_data;
 679
 680	if (!spin_trylock(&gpstates->gpstate_lock))
 681		return;
 682	/*
 683	 * If the timer has migrated to the different cpu then bring
 684	 * it back to one of the policy->cpus
 685	 */
 686	if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
 687		gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
 688		add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
 689		spin_unlock(&gpstates->gpstate_lock);
 690		return;
 691	}
 692
 693	/*
 694	 * If PMCR was last updated was using fast_swtich then
 695	 * We may have wrong in gpstate->last_lpstate_idx
 696	 * value. Hence, read from PMCR to get correct data.
 697	 */
 698	val = get_pmspr(SPRN_PMCR);
 699	freq_data.gpstate_id = extract_global_pstate(val);
 700	freq_data.pstate_id = extract_local_pstate(val);
 701	if (freq_data.gpstate_id  == freq_data.pstate_id) {
 702		reset_gpstates(policy);
 703		spin_unlock(&gpstates->gpstate_lock);
 704		return;
 705	}
 706
 707	gpstates->last_sampled_time += time_diff;
 708	gpstates->elapsed_time += time_diff;
 709
 710	if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
 711		gpstate_idx = pstate_to_idx(freq_data.pstate_id);
 712		lpstate_idx = gpstate_idx;
 713		reset_gpstates(policy);
 714		gpstates->highest_lpstate_idx = gpstate_idx;
 715	} else {
 716		lpstate_idx = pstate_to_idx(freq_data.pstate_id);
 717		gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
 718						 gpstates->highest_lpstate_idx,
 719						 lpstate_idx);
 720	}
 721	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
 722	gpstates->last_gpstate_idx = gpstate_idx;
 723	gpstates->last_lpstate_idx = lpstate_idx;
 724	/*
 725	 * If local pstate is equal to global pstate, rampdown is over
 726	 * So timer is not required to be queued.
 727	 */
 728	if (gpstate_idx != gpstates->last_lpstate_idx)
 729		queue_gpstate_timer(gpstates);
 730
 731	set_pstate(&freq_data);
 732	spin_unlock(&gpstates->gpstate_lock);
 733}
 734
 735/*
 736 * powernv_cpufreq_target_index: Sets the frequency corresponding to
 737 * the cpufreq table entry indexed by new_index on the cpus in the
 738 * mask policy->cpus
 739 */
 740static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
 741					unsigned int new_index)
 742{
 743	struct powernv_smp_call_data freq_data;
 744	unsigned int cur_msec, gpstate_idx;
 745	struct global_pstate_info *gpstates = policy->driver_data;
 746
 747	if (unlikely(rebooting) && new_index != get_nominal_index())
 748		return 0;
 749
 750	if (!throttled) {
 751		/* we don't want to be preempted while
 752		 * checking if the CPU frequency has been throttled
 753		 */
 754		preempt_disable();
 755		powernv_cpufreq_throttle_check(NULL);
 756		preempt_enable();
 757	}
 758
 759	cur_msec = jiffies_to_msecs(get_jiffies_64());
 760
 761	freq_data.pstate_id = idx_to_pstate(new_index);
 762	if (!gpstates) {
 763		freq_data.gpstate_id = freq_data.pstate_id;
 764		goto no_gpstate;
 765	}
 766
 767	spin_lock(&gpstates->gpstate_lock);
 768
 769	if (!gpstates->last_sampled_time) {
 770		gpstate_idx = new_index;
 771		gpstates->highest_lpstate_idx = new_index;
 772		goto gpstates_done;
 773	}
 774
 775	if (gpstates->last_gpstate_idx < new_index) {
 776		gpstates->elapsed_time += cur_msec -
 777						 gpstates->last_sampled_time;
 778
 779		/*
 780		 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
 781		 * we should be resetting all global pstate related data. Set it
 782		 * equal to local pstate to start fresh.
 783		 */
 784		if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
 785			reset_gpstates(policy);
 786			gpstates->highest_lpstate_idx = new_index;
 787			gpstate_idx = new_index;
 788		} else {
 789		/* Elaspsed_time is less than 5 seconds, continue to rampdown */
 790			gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
 791							 gpstates->highest_lpstate_idx,
 792							 new_index);
 793		}
 794	} else {
 795		reset_gpstates(policy);
 796		gpstates->highest_lpstate_idx = new_index;
 797		gpstate_idx = new_index;
 798	}
 799
 800	/*
 801	 * If local pstate is equal to global pstate, rampdown is over
 802	 * So timer is not required to be queued.
 803	 */
 804	if (gpstate_idx != new_index)
 805		queue_gpstate_timer(gpstates);
 806	else
 807		del_timer_sync(&gpstates->timer);
 808
 809gpstates_done:
 810	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
 811	gpstates->last_sampled_time = cur_msec;
 812	gpstates->last_gpstate_idx = gpstate_idx;
 813	gpstates->last_lpstate_idx = new_index;
 814
 815	spin_unlock(&gpstates->gpstate_lock);
 816
 817no_gpstate:
 818	/*
 819	 * Use smp_call_function to send IPI and execute the
 820	 * mtspr on target CPU.  We could do that without IPI
 821	 * if current CPU is within policy->cpus (core)
 822	 */
 823	smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
 824	return 0;
 825}
 826
 827static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
 828{
 829	int base, i;
 830	struct kernfs_node *kn;
 831	struct global_pstate_info *gpstates;
 832
 833	base = cpu_first_thread_sibling(policy->cpu);
 834
 835	for (i = 0; i < threads_per_core; i++)
 836		cpumask_set_cpu(base + i, policy->cpus);
 837
 838	kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
 839	if (!kn) {
 840		int ret;
 841
 842		ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
 843		if (ret) {
 844			pr_info("Failed to create throttle stats directory for cpu %d\n",
 845				policy->cpu);
 846			return ret;
 847		}
 848	} else {
 849		kernfs_put(kn);
 850	}
 851
 852	policy->freq_table = powernv_freqs;
 853	policy->fast_switch_possible = true;
 854
 855	if (pvr_version_is(PVR_POWER9))
 856		return 0;
 857
 858	/* Initialise Gpstate ramp-down timer only on POWER8 */
 859	gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
 860	if (!gpstates)
 861		return -ENOMEM;
 862
 863	policy->driver_data = gpstates;
 864
 865	/* initialize timer */
 866	gpstates->policy = policy;
 867	timer_setup(&gpstates->timer, gpstate_timer_handler,
 868		    TIMER_PINNED | TIMER_DEFERRABLE);
 869	gpstates->timer.expires = jiffies +
 870				msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
 871	spin_lock_init(&gpstates->gpstate_lock);
 872
 873	return 0;
 874}
 875
 876static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
 877{
 878	/* timer is deleted in cpufreq_cpu_stop() */
 
 
 
 
 
 
 
 
 879	kfree(policy->driver_data);
 880
 881	return 0;
 882}
 883
 884static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
 885				unsigned long action, void *unused)
 886{
 887	int cpu;
 888	struct cpufreq_policy cpu_policy;
 889
 890	rebooting = true;
 891	for_each_online_cpu(cpu) {
 892		cpufreq_get_policy(&cpu_policy, cpu);
 893		powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
 
 
 
 894	}
 895
 896	return NOTIFY_DONE;
 897}
 898
 899static struct notifier_block powernv_cpufreq_reboot_nb = {
 900	.notifier_call = powernv_cpufreq_reboot_notifier,
 901};
 902
 903static void powernv_cpufreq_work_fn(struct work_struct *work)
 904{
 905	struct chip *chip = container_of(work, struct chip, throttle);
 906	struct cpufreq_policy *policy;
 907	unsigned int cpu;
 908	cpumask_t mask;
 909
 910	get_online_cpus();
 911	cpumask_and(&mask, &chip->mask, cpu_online_mask);
 912	smp_call_function_any(&mask,
 913			      powernv_cpufreq_throttle_check, NULL, 0);
 914
 915	if (!chip->restore)
 916		goto out;
 917
 918	chip->restore = false;
 919	for_each_cpu(cpu, &mask) {
 920		int index;
 921
 922		policy = cpufreq_cpu_get(cpu);
 923		if (!policy)
 924			continue;
 925		index = cpufreq_table_find_index_c(policy, policy->cur);
 926		powernv_cpufreq_target_index(policy, index);
 927		cpumask_andnot(&mask, &mask, policy->cpus);
 928		cpufreq_cpu_put(policy);
 929	}
 930out:
 931	put_online_cpus();
 932}
 933
 934static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
 935				   unsigned long msg_type, void *_msg)
 936{
 937	struct opal_msg *msg = _msg;
 938	struct opal_occ_msg omsg;
 939	int i;
 940
 941	if (msg_type != OPAL_MSG_OCC)
 942		return 0;
 943
 944	omsg.type = be64_to_cpu(msg->params[0]);
 945
 946	switch (omsg.type) {
 947	case OCC_RESET:
 948		occ_reset = true;
 949		pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
 950		/*
 951		 * powernv_cpufreq_throttle_check() is called in
 952		 * target() callback which can detect the throttle state
 953		 * for governors like ondemand.
 954		 * But static governors will not call target() often thus
 955		 * report throttling here.
 956		 */
 957		if (!throttled) {
 958			throttled = true;
 959			pr_warn("CPU frequency is throttled for duration\n");
 960		}
 961
 962		break;
 963	case OCC_LOAD:
 964		pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
 965		break;
 966	case OCC_THROTTLE:
 967		omsg.chip = be64_to_cpu(msg->params[1]);
 968		omsg.throttle_status = be64_to_cpu(msg->params[2]);
 969
 970		if (occ_reset) {
 971			occ_reset = false;
 972			throttled = false;
 973			pr_info("OCC Active, CPU frequency is no longer throttled\n");
 974
 975			for (i = 0; i < nr_chips; i++) {
 976				chips[i].restore = true;
 977				schedule_work(&chips[i].throttle);
 978			}
 979
 980			return 0;
 981		}
 982
 983		for (i = 0; i < nr_chips; i++)
 984			if (chips[i].id == omsg.chip)
 985				break;
 986
 987		if (omsg.throttle_status >= 0 &&
 988		    omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
 989			chips[i].throttle_reason = omsg.throttle_status;
 990			chips[i].reason[omsg.throttle_status]++;
 991		}
 992
 993		if (!omsg.throttle_status)
 994			chips[i].restore = true;
 995
 996		schedule_work(&chips[i].throttle);
 997	}
 998	return 0;
 999}
1000
1001static struct notifier_block powernv_cpufreq_opal_nb = {
1002	.notifier_call	= powernv_cpufreq_occ_msg,
1003	.next		= NULL,
1004	.priority	= 0,
1005};
1006
1007static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1008{
1009	struct powernv_smp_call_data freq_data;
1010	struct global_pstate_info *gpstates = policy->driver_data;
1011
1012	freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
1013	freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
1014	smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
1015	if (gpstates)
1016		del_timer_sync(&gpstates->timer);
1017}
1018
1019static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1020					unsigned int target_freq)
1021{
1022	int index;
1023	struct powernv_smp_call_data freq_data;
1024
1025	index = cpufreq_table_find_index_dl(policy, target_freq);
1026	freq_data.pstate_id = powernv_freqs[index].driver_data;
1027	freq_data.gpstate_id = powernv_freqs[index].driver_data;
1028	set_pstate(&freq_data);
1029
1030	return powernv_freqs[index].frequency;
1031}
1032
1033static struct cpufreq_driver powernv_cpufreq_driver = {
1034	.name		= "powernv-cpufreq",
1035	.flags		= CPUFREQ_CONST_LOOPS,
1036	.init		= powernv_cpufreq_cpu_init,
1037	.exit		= powernv_cpufreq_cpu_exit,
1038	.verify		= cpufreq_generic_frequency_table_verify,
1039	.target_index	= powernv_cpufreq_target_index,
1040	.fast_switch	= powernv_fast_switch,
1041	.get		= powernv_cpufreq_get,
1042	.stop_cpu	= powernv_cpufreq_stop_cpu,
1043	.attr		= powernv_cpu_freq_attr,
1044};
1045
1046static int init_chip_info(void)
1047{
1048	unsigned int *chip;
1049	unsigned int cpu, i;
1050	unsigned int prev_chip_id = UINT_MAX;
 
1051	int ret = 0;
1052
1053	chip = kcalloc(num_possible_cpus(), sizeof(*chip), GFP_KERNEL);
1054	if (!chip)
1055		return -ENOMEM;
1056
 
 
 
 
 
 
 
1057	for_each_possible_cpu(cpu) {
1058		unsigned int id = cpu_to_chip_id(cpu);
1059
1060		if (prev_chip_id != id) {
1061			prev_chip_id = id;
1062			chip[nr_chips++] = id;
1063		}
 
1064	}
1065
1066	chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1067	if (!chips) {
1068		ret = -ENOMEM;
1069		goto free_and_return;
1070	}
1071
1072	for (i = 0; i < nr_chips; i++) {
1073		chips[i].id = chip[i];
1074		cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
1075		INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1076		for_each_cpu(cpu, &chips[i].mask)
1077			per_cpu(chip_info, cpu) =  &chips[i];
1078	}
1079
 
 
1080free_and_return:
1081	kfree(chip);
1082	return ret;
1083}
1084
1085static inline void clean_chip_info(void)
1086{
1087	int i;
1088
1089	/* flush any pending work items */
1090	if (chips)
1091		for (i = 0; i < nr_chips; i++)
1092			cancel_work_sync(&chips[i].throttle);
1093	kfree(chips);
1094}
1095
1096static inline void unregister_all_notifiers(void)
1097{
1098	opal_message_notifier_unregister(OPAL_MSG_OCC,
1099					 &powernv_cpufreq_opal_nb);
1100	unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1101}
1102
1103static int __init powernv_cpufreq_init(void)
1104{
1105	int rc = 0;
1106
1107	/* Don't probe on pseries (guest) platforms */
1108	if (!firmware_has_feature(FW_FEATURE_OPAL))
1109		return -ENODEV;
1110
1111	/* Discover pstates from device tree and init */
1112	rc = init_powernv_pstates();
1113	if (rc)
1114		goto out;
1115
1116	/* Populate chip info */
1117	rc = init_chip_info();
1118	if (rc)
1119		goto out;
1120
1121	if (powernv_pstate_info.wof_enabled)
1122		powernv_cpufreq_driver.boost_enabled = true;
1123	else
1124		powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1125
1126	rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1127	if (rc) {
1128		pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1129		goto cleanup;
1130	}
1131
1132	if (powernv_pstate_info.wof_enabled)
1133		cpufreq_enable_boost_support();
1134
1135	register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1136	opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1137
1138	return 0;
1139cleanup:
1140	clean_chip_info();
1141out:
1142	pr_info("Platform driver disabled. System does not support PState control\n");
1143	return rc;
1144}
1145module_init(powernv_cpufreq_init);
1146
1147static void __exit powernv_cpufreq_exit(void)
1148{
1149	cpufreq_unregister_driver(&powernv_cpufreq_driver);
1150	unregister_all_notifiers();
1151	clean_chip_info();
1152}
1153module_exit(powernv_cpufreq_exit);
1154
1155MODULE_LICENSE("GPL");
1156MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");