Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * POWERNV cpufreq driver for the IBM POWER processors
4 *
5 * (C) Copyright IBM 2014
6 *
7 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
8 */
9
10#define pr_fmt(fmt) "powernv-cpufreq: " fmt
11
12#include <linux/kernel.h>
13#include <linux/sysfs.h>
14#include <linux/cpumask.h>
15#include <linux/module.h>
16#include <linux/cpufreq.h>
17#include <linux/smp.h>
18#include <linux/of.h>
19#include <linux/reboot.h>
20#include <linux/slab.h>
21#include <linux/cpu.h>
22#include <linux/hashtable.h>
23#include <trace/events/power.h>
24
25#include <asm/cputhreads.h>
26#include <asm/firmware.h>
27#include <asm/reg.h>
28#include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
29#include <asm/opal.h>
30#include <linux/timer.h>
31
32#define POWERNV_MAX_PSTATES_ORDER 8
33#define POWERNV_MAX_PSTATES (1UL << (POWERNV_MAX_PSTATES_ORDER))
34#define PMSR_PSAFE_ENABLE (1UL << 30)
35#define PMSR_SPR_EM_DISABLE (1UL << 31)
36#define MAX_PSTATE_SHIFT 32
37#define LPSTATE_SHIFT 48
38#define GPSTATE_SHIFT 56
39#define MAX_NR_CHIPS 32
40
41#define MAX_RAMP_DOWN_TIME 5120
42/*
43 * On an idle system we want the global pstate to ramp-down from max value to
44 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
45 * then ramp-down rapidly later on.
46 *
47 * This gives a percentage rampdown for time elapsed in milliseconds.
48 * ramp_down_percentage = ((ms * ms) >> 18)
49 * ~= 3.8 * (sec * sec)
50 *
51 * At 0 ms ramp_down_percent = 0
52 * At 5120 ms ramp_down_percent = 100
53 */
54#define ramp_down_percent(time) ((time * time) >> 18)
55
56/* Interval after which the timer is queued to bring down global pstate */
57#define GPSTATE_TIMER_INTERVAL 2000
58
59/**
60 * struct global_pstate_info - Per policy data structure to maintain history of
61 * global pstates
62 * @highest_lpstate_idx: The local pstate index from which we are
63 * ramping down
64 * @elapsed_time: Time in ms spent in ramping down from
65 * highest_lpstate_idx
66 * @last_sampled_time: Time from boot in ms when global pstates were
67 * last set
68 * @last_lpstate_idx: Last set value of local pstate and global
69 * @last_gpstate_idx: pstate in terms of cpufreq table index
70 * @timer: Is used for ramping down if cpu goes idle for
71 * a long time with global pstate held high
72 * @gpstate_lock: A spinlock to maintain synchronization between
73 * routines called by the timer handler and
74 * governer's target_index calls
75 * @policy: Associated CPUFreq policy
76 */
77struct global_pstate_info {
78 int highest_lpstate_idx;
79 unsigned int elapsed_time;
80 unsigned int last_sampled_time;
81 int last_lpstate_idx;
82 int last_gpstate_idx;
83 spinlock_t gpstate_lock;
84 struct timer_list timer;
85 struct cpufreq_policy *policy;
86};
87
88static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
89
90static DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
91/**
92 * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
93 * indexed by a function of pstate id.
94 *
95 * @pstate_id: pstate id for this entry.
96 *
97 * @cpufreq_table_idx: Index into the powernv_freqs
98 * cpufreq_frequency_table for frequency
99 * corresponding to pstate_id.
100 *
101 * @hentry: hlist_node that hooks this entry into the pstate_revmap
102 * hashtable
103 */
104struct pstate_idx_revmap_data {
105 u8 pstate_id;
106 unsigned int cpufreq_table_idx;
107 struct hlist_node hentry;
108};
109
110static bool rebooting, throttled, occ_reset;
111
112static const char * const throttle_reason[] = {
113 "No throttling",
114 "Power Cap",
115 "Processor Over Temperature",
116 "Power Supply Failure",
117 "Over Current",
118 "OCC Reset"
119};
120
121enum throttle_reason_type {
122 NO_THROTTLE = 0,
123 POWERCAP,
124 CPU_OVERTEMP,
125 POWER_SUPPLY_FAILURE,
126 OVERCURRENT,
127 OCC_RESET_THROTTLE,
128 OCC_MAX_REASON
129};
130
131static struct chip {
132 unsigned int id;
133 bool throttled;
134 bool restore;
135 u8 throttle_reason;
136 cpumask_t mask;
137 struct work_struct throttle;
138 int throttle_turbo;
139 int throttle_sub_turbo;
140 int reason[OCC_MAX_REASON];
141} *chips;
142
143static int nr_chips;
144static DEFINE_PER_CPU(struct chip *, chip_info);
145
146/*
147 * Note:
148 * The set of pstates consists of contiguous integers.
149 * powernv_pstate_info stores the index of the frequency table for
150 * max, min and nominal frequencies. It also stores number of
151 * available frequencies.
152 *
153 * powernv_pstate_info.nominal indicates the index to the highest
154 * non-turbo frequency.
155 */
156static struct powernv_pstate_info {
157 unsigned int min;
158 unsigned int max;
159 unsigned int nominal;
160 unsigned int nr_pstates;
161 bool wof_enabled;
162} powernv_pstate_info;
163
164static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
165{
166 return ((pmsr_val >> shift) & 0xFF);
167}
168
169#define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
170#define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
171#define extract_max_pstate(x) extract_pstate(x, MAX_PSTATE_SHIFT)
172
173/* Use following functions for conversions between pstate_id and index */
174
175/*
176 * idx_to_pstate : Returns the pstate id corresponding to the
177 * frequency in the cpufreq frequency table
178 * powernv_freqs indexed by @i.
179 *
180 * If @i is out of bound, this will return the pstate
181 * corresponding to the nominal frequency.
182 */
183static inline u8 idx_to_pstate(unsigned int i)
184{
185 if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
186 pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
187 return powernv_freqs[powernv_pstate_info.nominal].driver_data;
188 }
189
190 return powernv_freqs[i].driver_data;
191}
192
193/*
194 * pstate_to_idx : Returns the index in the cpufreq frequencytable
195 * powernv_freqs for the frequency whose corresponding
196 * pstate id is @pstate.
197 *
198 * If no frequency corresponding to @pstate is found,
199 * this will return the index of the nominal
200 * frequency.
201 */
202static unsigned int pstate_to_idx(u8 pstate)
203{
204 unsigned int key = pstate % POWERNV_MAX_PSTATES;
205 struct pstate_idx_revmap_data *revmap_data;
206
207 hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
208 if (revmap_data->pstate_id == pstate)
209 return revmap_data->cpufreq_table_idx;
210 }
211
212 pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
213 return powernv_pstate_info.nominal;
214}
215
216static inline void reset_gpstates(struct cpufreq_policy *policy)
217{
218 struct global_pstate_info *gpstates = policy->driver_data;
219
220 gpstates->highest_lpstate_idx = 0;
221 gpstates->elapsed_time = 0;
222 gpstates->last_sampled_time = 0;
223 gpstates->last_lpstate_idx = 0;
224 gpstates->last_gpstate_idx = 0;
225}
226
227/*
228 * Initialize the freq table based on data obtained
229 * from the firmware passed via device-tree
230 */
231static int init_powernv_pstates(void)
232{
233 struct device_node *power_mgt;
234 int i, nr_pstates = 0;
235 const __be32 *pstate_ids, *pstate_freqs;
236 u32 len_ids, len_freqs;
237 u32 pstate_min, pstate_max, pstate_nominal;
238 u32 pstate_turbo, pstate_ultra_turbo;
239 int rc = -ENODEV;
240
241 power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
242 if (!power_mgt) {
243 pr_warn("power-mgt node not found\n");
244 return -ENODEV;
245 }
246
247 if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
248 pr_warn("ibm,pstate-min node not found\n");
249 goto out;
250 }
251
252 if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
253 pr_warn("ibm,pstate-max node not found\n");
254 goto out;
255 }
256
257 if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
258 &pstate_nominal)) {
259 pr_warn("ibm,pstate-nominal not found\n");
260 goto out;
261 }
262
263 if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
264 &pstate_ultra_turbo)) {
265 powernv_pstate_info.wof_enabled = false;
266 goto next;
267 }
268
269 if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
270 &pstate_turbo)) {
271 powernv_pstate_info.wof_enabled = false;
272 goto next;
273 }
274
275 if (pstate_turbo == pstate_ultra_turbo)
276 powernv_pstate_info.wof_enabled = false;
277 else
278 powernv_pstate_info.wof_enabled = true;
279
280next:
281 pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
282 pstate_nominal, pstate_max);
283 pr_info("Workload Optimized Frequency is %s in the platform\n",
284 (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
285
286 pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
287 if (!pstate_ids) {
288 pr_warn("ibm,pstate-ids not found\n");
289 goto out;
290 }
291
292 pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
293 &len_freqs);
294 if (!pstate_freqs) {
295 pr_warn("ibm,pstate-frequencies-mhz not found\n");
296 goto out;
297 }
298
299 if (len_ids != len_freqs) {
300 pr_warn("Entries in ibm,pstate-ids and "
301 "ibm,pstate-frequencies-mhz does not match\n");
302 }
303
304 nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
305 if (!nr_pstates) {
306 pr_warn("No PStates found\n");
307 goto out;
308 }
309
310 powernv_pstate_info.nr_pstates = nr_pstates;
311 pr_debug("NR PStates %d\n", nr_pstates);
312
313 for (i = 0; i < nr_pstates; i++) {
314 u32 id = be32_to_cpu(pstate_ids[i]);
315 u32 freq = be32_to_cpu(pstate_freqs[i]);
316 struct pstate_idx_revmap_data *revmap_data;
317 unsigned int key;
318
319 pr_debug("PState id %d freq %d MHz\n", id, freq);
320 powernv_freqs[i].frequency = freq * 1000; /* kHz */
321 powernv_freqs[i].driver_data = id & 0xFF;
322
323 revmap_data = kmalloc(sizeof(*revmap_data), GFP_KERNEL);
324 if (!revmap_data) {
325 rc = -ENOMEM;
326 goto out;
327 }
328
329 revmap_data->pstate_id = id & 0xFF;
330 revmap_data->cpufreq_table_idx = i;
331 key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
332 hash_add(pstate_revmap, &revmap_data->hentry, key);
333
334 if (id == pstate_max)
335 powernv_pstate_info.max = i;
336 if (id == pstate_nominal)
337 powernv_pstate_info.nominal = i;
338 if (id == pstate_min)
339 powernv_pstate_info.min = i;
340
341 if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
342 int j;
343
344 for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
345 powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
346 }
347 }
348
349 /* End of list marker entry */
350 powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
351
352 of_node_put(power_mgt);
353 return 0;
354out:
355 of_node_put(power_mgt);
356 return rc;
357}
358
359/* Returns the CPU frequency corresponding to the pstate_id. */
360static unsigned int pstate_id_to_freq(u8 pstate_id)
361{
362 int i;
363
364 i = pstate_to_idx(pstate_id);
365 if (i >= powernv_pstate_info.nr_pstates || i < 0) {
366 pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
367 pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
368 i = powernv_pstate_info.nominal;
369 }
370
371 return powernv_freqs[i].frequency;
372}
373
374/*
375 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
376 * the firmware
377 */
378static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
379 char *buf)
380{
381 return sprintf(buf, "%u\n",
382 powernv_freqs[powernv_pstate_info.nominal].frequency);
383}
384
385static struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
386 __ATTR_RO(cpuinfo_nominal_freq);
387
388#define SCALING_BOOST_FREQS_ATTR_INDEX 2
389
390static struct freq_attr *powernv_cpu_freq_attr[] = {
391 &cpufreq_freq_attr_scaling_available_freqs,
392 &cpufreq_freq_attr_cpuinfo_nominal_freq,
393 &cpufreq_freq_attr_scaling_boost_freqs,
394 NULL,
395};
396
397#define throttle_attr(name, member) \
398static ssize_t name##_show(struct cpufreq_policy *policy, char *buf) \
399{ \
400 struct chip *chip = per_cpu(chip_info, policy->cpu); \
401 \
402 return sprintf(buf, "%u\n", chip->member); \
403} \
404 \
405static struct freq_attr throttle_attr_##name = __ATTR_RO(name) \
406
407throttle_attr(unthrottle, reason[NO_THROTTLE]);
408throttle_attr(powercap, reason[POWERCAP]);
409throttle_attr(overtemp, reason[CPU_OVERTEMP]);
410throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
411throttle_attr(overcurrent, reason[OVERCURRENT]);
412throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
413throttle_attr(turbo_stat, throttle_turbo);
414throttle_attr(sub_turbo_stat, throttle_sub_turbo);
415
416static struct attribute *throttle_attrs[] = {
417 &throttle_attr_unthrottle.attr,
418 &throttle_attr_powercap.attr,
419 &throttle_attr_overtemp.attr,
420 &throttle_attr_supply_fault.attr,
421 &throttle_attr_overcurrent.attr,
422 &throttle_attr_occ_reset.attr,
423 &throttle_attr_turbo_stat.attr,
424 &throttle_attr_sub_turbo_stat.attr,
425 NULL,
426};
427
428static const struct attribute_group throttle_attr_grp = {
429 .name = "throttle_stats",
430 .attrs = throttle_attrs,
431};
432
433/* Helper routines */
434
435/* Access helpers to power mgt SPR */
436
437static inline unsigned long get_pmspr(unsigned long sprn)
438{
439 switch (sprn) {
440 case SPRN_PMCR:
441 return mfspr(SPRN_PMCR);
442
443 case SPRN_PMICR:
444 return mfspr(SPRN_PMICR);
445
446 case SPRN_PMSR:
447 return mfspr(SPRN_PMSR);
448 }
449 BUG();
450}
451
452static inline void set_pmspr(unsigned long sprn, unsigned long val)
453{
454 switch (sprn) {
455 case SPRN_PMCR:
456 mtspr(SPRN_PMCR, val);
457 return;
458
459 case SPRN_PMICR:
460 mtspr(SPRN_PMICR, val);
461 return;
462 }
463 BUG();
464}
465
466/*
467 * Use objects of this type to query/update
468 * pstates on a remote CPU via smp_call_function.
469 */
470struct powernv_smp_call_data {
471 unsigned int freq;
472 u8 pstate_id;
473 u8 gpstate_id;
474};
475
476/*
477 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
478 *
479 * Called via smp_call_function.
480 *
481 * Note: The caller of the smp_call_function should pass an argument of
482 * the type 'struct powernv_smp_call_data *' along with this function.
483 *
484 * The current frequency on this CPU will be returned via
485 * ((struct powernv_smp_call_data *)arg)->freq;
486 */
487static void powernv_read_cpu_freq(void *arg)
488{
489 unsigned long pmspr_val;
490 struct powernv_smp_call_data *freq_data = arg;
491
492 pmspr_val = get_pmspr(SPRN_PMSR);
493 freq_data->pstate_id = extract_local_pstate(pmspr_val);
494 freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
495
496 pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
497 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
498 freq_data->freq);
499}
500
501/*
502 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
503 * firmware for CPU 'cpu'. This value is reported through the sysfs
504 * file cpuinfo_cur_freq.
505 */
506static unsigned int powernv_cpufreq_get(unsigned int cpu)
507{
508 struct powernv_smp_call_data freq_data;
509
510 smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
511 &freq_data, 1);
512
513 return freq_data.freq;
514}
515
516/*
517 * set_pstate: Sets the pstate on this CPU.
518 *
519 * This is called via an smp_call_function.
520 *
521 * The caller must ensure that freq_data is of the type
522 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
523 * on this CPU should be present in freq_data->pstate_id.
524 */
525static void set_pstate(void *data)
526{
527 unsigned long val;
528 struct powernv_smp_call_data *freq_data = data;
529 unsigned long pstate_ul = freq_data->pstate_id;
530 unsigned long gpstate_ul = freq_data->gpstate_id;
531
532 val = get_pmspr(SPRN_PMCR);
533 val = val & 0x0000FFFFFFFFFFFFULL;
534
535 pstate_ul = pstate_ul & 0xFF;
536 gpstate_ul = gpstate_ul & 0xFF;
537
538 /* Set both global(bits 56..63) and local(bits 48..55) PStates */
539 val = val | (gpstate_ul << 56) | (pstate_ul << 48);
540
541 pr_debug("Setting cpu %d pmcr to %016lX\n",
542 raw_smp_processor_id(), val);
543 set_pmspr(SPRN_PMCR, val);
544}
545
546/*
547 * get_nominal_index: Returns the index corresponding to the nominal
548 * pstate in the cpufreq table
549 */
550static inline unsigned int get_nominal_index(void)
551{
552 return powernv_pstate_info.nominal;
553}
554
555static void powernv_cpufreq_throttle_check(void *data)
556{
557 struct chip *chip;
558 unsigned int cpu = smp_processor_id();
559 unsigned long pmsr;
560 u8 pmsr_pmax;
561 unsigned int pmsr_pmax_idx;
562
563 pmsr = get_pmspr(SPRN_PMSR);
564 chip = this_cpu_read(chip_info);
565
566 /* Check for Pmax Capping */
567 pmsr_pmax = extract_max_pstate(pmsr);
568 pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
569 if (pmsr_pmax_idx != powernv_pstate_info.max) {
570 if (chip->throttled)
571 goto next;
572 chip->throttled = true;
573 if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
574 pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
575 cpu, chip->id, pmsr_pmax,
576 idx_to_pstate(powernv_pstate_info.nominal));
577 chip->throttle_sub_turbo++;
578 } else {
579 chip->throttle_turbo++;
580 }
581 trace_powernv_throttle(chip->id,
582 throttle_reason[chip->throttle_reason],
583 pmsr_pmax);
584 } else if (chip->throttled) {
585 chip->throttled = false;
586 trace_powernv_throttle(chip->id,
587 throttle_reason[chip->throttle_reason],
588 pmsr_pmax);
589 }
590
591 /* Check if Psafe_mode_active is set in PMSR. */
592next:
593 if (pmsr & PMSR_PSAFE_ENABLE) {
594 throttled = true;
595 pr_info("Pstate set to safe frequency\n");
596 }
597
598 /* Check if SPR_EM_DISABLE is set in PMSR */
599 if (pmsr & PMSR_SPR_EM_DISABLE) {
600 throttled = true;
601 pr_info("Frequency Control disabled from OS\n");
602 }
603
604 if (throttled) {
605 pr_info("PMSR = %16lx\n", pmsr);
606 pr_warn("CPU Frequency could be throttled\n");
607 }
608}
609
610/**
611 * calc_global_pstate - Calculate global pstate
612 * @elapsed_time: Elapsed time in milliseconds
613 * @local_pstate_idx: New local pstate
614 * @highest_lpstate_idx: pstate from which its ramping down
615 *
616 * Finds the appropriate global pstate based on the pstate from which its
617 * ramping down and the time elapsed in ramping down. It follows a quadratic
618 * equation which ensures that it reaches ramping down to pmin in 5sec.
619 */
620static inline int calc_global_pstate(unsigned int elapsed_time,
621 int highest_lpstate_idx,
622 int local_pstate_idx)
623{
624 int index_diff;
625
626 /*
627 * Using ramp_down_percent we get the percentage of rampdown
628 * that we are expecting to be dropping. Difference between
629 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
630 * number of how many pstates we will drop eventually by the end of
631 * 5 seconds, then just scale it get the number pstates to be dropped.
632 */
633 index_diff = ((int)ramp_down_percent(elapsed_time) *
634 (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
635
636 /* Ensure that global pstate is >= to local pstate */
637 if (highest_lpstate_idx + index_diff >= local_pstate_idx)
638 return local_pstate_idx;
639 else
640 return highest_lpstate_idx + index_diff;
641}
642
643static inline void queue_gpstate_timer(struct global_pstate_info *gpstates)
644{
645 unsigned int timer_interval;
646
647 /*
648 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
649 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
650 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
651 * seconds of ramp down time.
652 */
653 if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
654 > MAX_RAMP_DOWN_TIME)
655 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
656 else
657 timer_interval = GPSTATE_TIMER_INTERVAL;
658
659 mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
660}
661
662/**
663 * gpstate_timer_handler
664 *
665 * @t: Timer context used to fetch global pstate info struct
666 *
667 * This handler brings down the global pstate closer to the local pstate
668 * according quadratic equation. Queues a new timer if it is still not equal
669 * to local pstate
670 */
671static void gpstate_timer_handler(struct timer_list *t)
672{
673 struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
674 struct cpufreq_policy *policy = gpstates->policy;
675 int gpstate_idx, lpstate_idx;
676 unsigned long val;
677 unsigned int time_diff = jiffies_to_msecs(jiffies)
678 - gpstates->last_sampled_time;
679 struct powernv_smp_call_data freq_data;
680
681 if (!spin_trylock(&gpstates->gpstate_lock))
682 return;
683 /*
684 * If the timer has migrated to the different cpu then bring
685 * it back to one of the policy->cpus
686 */
687 if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
688 gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
689 add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
690 spin_unlock(&gpstates->gpstate_lock);
691 return;
692 }
693
694 /*
695 * If PMCR was last updated was using fast_swtich then
696 * We may have wrong in gpstate->last_lpstate_idx
697 * value. Hence, read from PMCR to get correct data.
698 */
699 val = get_pmspr(SPRN_PMCR);
700 freq_data.gpstate_id = extract_global_pstate(val);
701 freq_data.pstate_id = extract_local_pstate(val);
702 if (freq_data.gpstate_id == freq_data.pstate_id) {
703 reset_gpstates(policy);
704 spin_unlock(&gpstates->gpstate_lock);
705 return;
706 }
707
708 gpstates->last_sampled_time += time_diff;
709 gpstates->elapsed_time += time_diff;
710
711 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
712 gpstate_idx = pstate_to_idx(freq_data.pstate_id);
713 lpstate_idx = gpstate_idx;
714 reset_gpstates(policy);
715 gpstates->highest_lpstate_idx = gpstate_idx;
716 } else {
717 lpstate_idx = pstate_to_idx(freq_data.pstate_id);
718 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
719 gpstates->highest_lpstate_idx,
720 lpstate_idx);
721 }
722 freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
723 gpstates->last_gpstate_idx = gpstate_idx;
724 gpstates->last_lpstate_idx = lpstate_idx;
725 /*
726 * If local pstate is equal to global pstate, rampdown is over
727 * So timer is not required to be queued.
728 */
729 if (gpstate_idx != gpstates->last_lpstate_idx)
730 queue_gpstate_timer(gpstates);
731
732 set_pstate(&freq_data);
733 spin_unlock(&gpstates->gpstate_lock);
734}
735
736/*
737 * powernv_cpufreq_target_index: Sets the frequency corresponding to
738 * the cpufreq table entry indexed by new_index on the cpus in the
739 * mask policy->cpus
740 */
741static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
742 unsigned int new_index)
743{
744 struct powernv_smp_call_data freq_data;
745 unsigned int cur_msec, gpstate_idx;
746 struct global_pstate_info *gpstates = policy->driver_data;
747
748 if (unlikely(rebooting) && new_index != get_nominal_index())
749 return 0;
750
751 if (!throttled) {
752 /* we don't want to be preempted while
753 * checking if the CPU frequency has been throttled
754 */
755 preempt_disable();
756 powernv_cpufreq_throttle_check(NULL);
757 preempt_enable();
758 }
759
760 cur_msec = jiffies_to_msecs(get_jiffies_64());
761
762 freq_data.pstate_id = idx_to_pstate(new_index);
763 if (!gpstates) {
764 freq_data.gpstate_id = freq_data.pstate_id;
765 goto no_gpstate;
766 }
767
768 spin_lock(&gpstates->gpstate_lock);
769
770 if (!gpstates->last_sampled_time) {
771 gpstate_idx = new_index;
772 gpstates->highest_lpstate_idx = new_index;
773 goto gpstates_done;
774 }
775
776 if (gpstates->last_gpstate_idx < new_index) {
777 gpstates->elapsed_time += cur_msec -
778 gpstates->last_sampled_time;
779
780 /*
781 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
782 * we should be resetting all global pstate related data. Set it
783 * equal to local pstate to start fresh.
784 */
785 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
786 reset_gpstates(policy);
787 gpstates->highest_lpstate_idx = new_index;
788 gpstate_idx = new_index;
789 } else {
790 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
791 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
792 gpstates->highest_lpstate_idx,
793 new_index);
794 }
795 } else {
796 reset_gpstates(policy);
797 gpstates->highest_lpstate_idx = new_index;
798 gpstate_idx = new_index;
799 }
800
801 /*
802 * If local pstate is equal to global pstate, rampdown is over
803 * So timer is not required to be queued.
804 */
805 if (gpstate_idx != new_index)
806 queue_gpstate_timer(gpstates);
807 else
808 del_timer_sync(&gpstates->timer);
809
810gpstates_done:
811 freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
812 gpstates->last_sampled_time = cur_msec;
813 gpstates->last_gpstate_idx = gpstate_idx;
814 gpstates->last_lpstate_idx = new_index;
815
816 spin_unlock(&gpstates->gpstate_lock);
817
818no_gpstate:
819 /*
820 * Use smp_call_function to send IPI and execute the
821 * mtspr on target CPU. We could do that without IPI
822 * if current CPU is within policy->cpus (core)
823 */
824 smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
825 return 0;
826}
827
828static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
829{
830 int base, i;
831 struct kernfs_node *kn;
832 struct global_pstate_info *gpstates;
833
834 base = cpu_first_thread_sibling(policy->cpu);
835
836 for (i = 0; i < threads_per_core; i++)
837 cpumask_set_cpu(base + i, policy->cpus);
838
839 kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
840 if (!kn) {
841 int ret;
842
843 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
844 if (ret) {
845 pr_info("Failed to create throttle stats directory for cpu %d\n",
846 policy->cpu);
847 return ret;
848 }
849 } else {
850 kernfs_put(kn);
851 }
852
853 policy->freq_table = powernv_freqs;
854 policy->fast_switch_possible = true;
855
856 if (pvr_version_is(PVR_POWER9))
857 return 0;
858
859 /* Initialise Gpstate ramp-down timer only on POWER8 */
860 gpstates = kzalloc(sizeof(*gpstates), GFP_KERNEL);
861 if (!gpstates)
862 return -ENOMEM;
863
864 policy->driver_data = gpstates;
865
866 /* initialize timer */
867 gpstates->policy = policy;
868 timer_setup(&gpstates->timer, gpstate_timer_handler,
869 TIMER_PINNED | TIMER_DEFERRABLE);
870 gpstates->timer.expires = jiffies +
871 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
872 spin_lock_init(&gpstates->gpstate_lock);
873
874 return 0;
875}
876
877static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
878{
879 struct powernv_smp_call_data freq_data;
880 struct global_pstate_info *gpstates = policy->driver_data;
881
882 freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
883 freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
884 smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
885 if (gpstates)
886 del_timer_sync(&gpstates->timer);
887
888 kfree(policy->driver_data);
889
890 return 0;
891}
892
893static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
894 unsigned long action, void *unused)
895{
896 int cpu;
897 struct cpufreq_policy *cpu_policy;
898
899 rebooting = true;
900 for_each_online_cpu(cpu) {
901 cpu_policy = cpufreq_cpu_get(cpu);
902 if (!cpu_policy)
903 continue;
904 powernv_cpufreq_target_index(cpu_policy, get_nominal_index());
905 cpufreq_cpu_put(cpu_policy);
906 }
907
908 return NOTIFY_DONE;
909}
910
911static struct notifier_block powernv_cpufreq_reboot_nb = {
912 .notifier_call = powernv_cpufreq_reboot_notifier,
913};
914
915static void powernv_cpufreq_work_fn(struct work_struct *work)
916{
917 struct chip *chip = container_of(work, struct chip, throttle);
918 struct cpufreq_policy *policy;
919 unsigned int cpu;
920 cpumask_t mask;
921
922 cpus_read_lock();
923 cpumask_and(&mask, &chip->mask, cpu_online_mask);
924 smp_call_function_any(&mask,
925 powernv_cpufreq_throttle_check, NULL, 0);
926
927 if (!chip->restore)
928 goto out;
929
930 chip->restore = false;
931 for_each_cpu(cpu, &mask) {
932 int index;
933
934 policy = cpufreq_cpu_get(cpu);
935 if (!policy)
936 continue;
937 index = cpufreq_table_find_index_c(policy, policy->cur, false);
938 powernv_cpufreq_target_index(policy, index);
939 cpumask_andnot(&mask, &mask, policy->cpus);
940 cpufreq_cpu_put(policy);
941 }
942out:
943 cpus_read_unlock();
944}
945
946static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
947 unsigned long msg_type, void *_msg)
948{
949 struct opal_msg *msg = _msg;
950 struct opal_occ_msg omsg;
951 int i;
952
953 if (msg_type != OPAL_MSG_OCC)
954 return 0;
955
956 omsg.type = be64_to_cpu(msg->params[0]);
957
958 switch (omsg.type) {
959 case OCC_RESET:
960 occ_reset = true;
961 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
962 /*
963 * powernv_cpufreq_throttle_check() is called in
964 * target() callback which can detect the throttle state
965 * for governors like ondemand.
966 * But static governors will not call target() often thus
967 * report throttling here.
968 */
969 if (!throttled) {
970 throttled = true;
971 pr_warn("CPU frequency is throttled for duration\n");
972 }
973
974 break;
975 case OCC_LOAD:
976 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
977 break;
978 case OCC_THROTTLE:
979 omsg.chip = be64_to_cpu(msg->params[1]);
980 omsg.throttle_status = be64_to_cpu(msg->params[2]);
981
982 if (occ_reset) {
983 occ_reset = false;
984 throttled = false;
985 pr_info("OCC Active, CPU frequency is no longer throttled\n");
986
987 for (i = 0; i < nr_chips; i++) {
988 chips[i].restore = true;
989 schedule_work(&chips[i].throttle);
990 }
991
992 return 0;
993 }
994
995 for (i = 0; i < nr_chips; i++)
996 if (chips[i].id == omsg.chip)
997 break;
998
999 if (omsg.throttle_status >= 0 &&
1000 omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
1001 chips[i].throttle_reason = omsg.throttle_status;
1002 chips[i].reason[omsg.throttle_status]++;
1003 }
1004
1005 if (!omsg.throttle_status)
1006 chips[i].restore = true;
1007
1008 schedule_work(&chips[i].throttle);
1009 }
1010 return 0;
1011}
1012
1013static struct notifier_block powernv_cpufreq_opal_nb = {
1014 .notifier_call = powernv_cpufreq_occ_msg,
1015 .next = NULL,
1016 .priority = 0,
1017};
1018
1019static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1020 unsigned int target_freq)
1021{
1022 int index;
1023 struct powernv_smp_call_data freq_data;
1024
1025 index = cpufreq_table_find_index_dl(policy, target_freq, false);
1026 freq_data.pstate_id = powernv_freqs[index].driver_data;
1027 freq_data.gpstate_id = powernv_freqs[index].driver_data;
1028 set_pstate(&freq_data);
1029
1030 return powernv_freqs[index].frequency;
1031}
1032
1033static struct cpufreq_driver powernv_cpufreq_driver = {
1034 .name = "powernv-cpufreq",
1035 .flags = CPUFREQ_CONST_LOOPS,
1036 .init = powernv_cpufreq_cpu_init,
1037 .exit = powernv_cpufreq_cpu_exit,
1038 .verify = cpufreq_generic_frequency_table_verify,
1039 .target_index = powernv_cpufreq_target_index,
1040 .fast_switch = powernv_fast_switch,
1041 .get = powernv_cpufreq_get,
1042 .attr = powernv_cpu_freq_attr,
1043};
1044
1045static int init_chip_info(void)
1046{
1047 unsigned int *chip;
1048 unsigned int cpu, i;
1049 unsigned int prev_chip_id = UINT_MAX;
1050 cpumask_t *chip_cpu_mask;
1051 int ret = 0;
1052
1053 chip = kcalloc(num_possible_cpus(), sizeof(*chip), GFP_KERNEL);
1054 if (!chip)
1055 return -ENOMEM;
1056
1057 /* Allocate a chip cpu mask large enough to fit mask for all chips */
1058 chip_cpu_mask = kcalloc(MAX_NR_CHIPS, sizeof(cpumask_t), GFP_KERNEL);
1059 if (!chip_cpu_mask) {
1060 ret = -ENOMEM;
1061 goto free_and_return;
1062 }
1063
1064 for_each_possible_cpu(cpu) {
1065 unsigned int id = cpu_to_chip_id(cpu);
1066
1067 if (prev_chip_id != id) {
1068 prev_chip_id = id;
1069 chip[nr_chips++] = id;
1070 }
1071 cpumask_set_cpu(cpu, &chip_cpu_mask[nr_chips-1]);
1072 }
1073
1074 chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1075 if (!chips) {
1076 ret = -ENOMEM;
1077 goto out_free_chip_cpu_mask;
1078 }
1079
1080 for (i = 0; i < nr_chips; i++) {
1081 chips[i].id = chip[i];
1082 cpumask_copy(&chips[i].mask, &chip_cpu_mask[i]);
1083 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1084 for_each_cpu(cpu, &chips[i].mask)
1085 per_cpu(chip_info, cpu) = &chips[i];
1086 }
1087
1088out_free_chip_cpu_mask:
1089 kfree(chip_cpu_mask);
1090free_and_return:
1091 kfree(chip);
1092 return ret;
1093}
1094
1095static inline void clean_chip_info(void)
1096{
1097 int i;
1098
1099 /* flush any pending work items */
1100 if (chips)
1101 for (i = 0; i < nr_chips; i++)
1102 cancel_work_sync(&chips[i].throttle);
1103 kfree(chips);
1104}
1105
1106static inline void unregister_all_notifiers(void)
1107{
1108 opal_message_notifier_unregister(OPAL_MSG_OCC,
1109 &powernv_cpufreq_opal_nb);
1110 unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1111}
1112
1113static int __init powernv_cpufreq_init(void)
1114{
1115 int rc = 0;
1116
1117 /* Don't probe on pseries (guest) platforms */
1118 if (!firmware_has_feature(FW_FEATURE_OPAL))
1119 return -ENODEV;
1120
1121 /* Discover pstates from device tree and init */
1122 rc = init_powernv_pstates();
1123 if (rc)
1124 goto out;
1125
1126 /* Populate chip info */
1127 rc = init_chip_info();
1128 if (rc)
1129 goto out;
1130
1131 if (powernv_pstate_info.wof_enabled)
1132 powernv_cpufreq_driver.boost_enabled = true;
1133 else
1134 powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1135
1136 rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1137 if (rc) {
1138 pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1139 goto cleanup;
1140 }
1141
1142 if (powernv_pstate_info.wof_enabled)
1143 cpufreq_enable_boost_support();
1144
1145 register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1146 opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1147
1148 return 0;
1149cleanup:
1150 clean_chip_info();
1151out:
1152 pr_info("Platform driver disabled. System does not support PState control\n");
1153 return rc;
1154}
1155module_init(powernv_cpufreq_init);
1156
1157static void __exit powernv_cpufreq_exit(void)
1158{
1159 cpufreq_unregister_driver(&powernv_cpufreq_driver);
1160 unregister_all_notifiers();
1161 clean_chip_info();
1162}
1163module_exit(powernv_cpufreq_exit);
1164
1165MODULE_LICENSE("GPL");
1166MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * POWERNV cpufreq driver for the IBM POWER processors
4 *
5 * (C) Copyright IBM 2014
6 *
7 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
8 */
9
10#define pr_fmt(fmt) "powernv-cpufreq: " fmt
11
12#include <linux/kernel.h>
13#include <linux/sysfs.h>
14#include <linux/cpumask.h>
15#include <linux/module.h>
16#include <linux/cpufreq.h>
17#include <linux/smp.h>
18#include <linux/of.h>
19#include <linux/reboot.h>
20#include <linux/slab.h>
21#include <linux/cpu.h>
22#include <linux/hashtable.h>
23#include <trace/events/power.h>
24
25#include <asm/cputhreads.h>
26#include <asm/firmware.h>
27#include <asm/reg.h>
28#include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
29#include <asm/opal.h>
30#include <linux/timer.h>
31
32#define POWERNV_MAX_PSTATES_ORDER 8
33#define POWERNV_MAX_PSTATES (1UL << (POWERNV_MAX_PSTATES_ORDER))
34#define PMSR_PSAFE_ENABLE (1UL << 30)
35#define PMSR_SPR_EM_DISABLE (1UL << 31)
36#define MAX_PSTATE_SHIFT 32
37#define LPSTATE_SHIFT 48
38#define GPSTATE_SHIFT 56
39
40#define MAX_RAMP_DOWN_TIME 5120
41/*
42 * On an idle system we want the global pstate to ramp-down from max value to
43 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
44 * then ramp-down rapidly later on.
45 *
46 * This gives a percentage rampdown for time elapsed in milliseconds.
47 * ramp_down_percentage = ((ms * ms) >> 18)
48 * ~= 3.8 * (sec * sec)
49 *
50 * At 0 ms ramp_down_percent = 0
51 * At 5120 ms ramp_down_percent = 100
52 */
53#define ramp_down_percent(time) ((time * time) >> 18)
54
55/* Interval after which the timer is queued to bring down global pstate */
56#define GPSTATE_TIMER_INTERVAL 2000
57
58/**
59 * struct global_pstate_info - Per policy data structure to maintain history of
60 * global pstates
61 * @highest_lpstate_idx: The local pstate index from which we are
62 * ramping down
63 * @elapsed_time: Time in ms spent in ramping down from
64 * highest_lpstate_idx
65 * @last_sampled_time: Time from boot in ms when global pstates were
66 * last set
67 * @last_lpstate_idx, Last set value of local pstate and global
68 * last_gpstate_idx pstate in terms of cpufreq table index
69 * @timer: Is used for ramping down if cpu goes idle for
70 * a long time with global pstate held high
71 * @gpstate_lock: A spinlock to maintain synchronization between
72 * routines called by the timer handler and
73 * governer's target_index calls
74 */
75struct global_pstate_info {
76 int highest_lpstate_idx;
77 unsigned int elapsed_time;
78 unsigned int last_sampled_time;
79 int last_lpstate_idx;
80 int last_gpstate_idx;
81 spinlock_t gpstate_lock;
82 struct timer_list timer;
83 struct cpufreq_policy *policy;
84};
85
86static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
87
88DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
89/**
90 * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
91 * indexed by a function of pstate id.
92 *
93 * @pstate_id: pstate id for this entry.
94 *
95 * @cpufreq_table_idx: Index into the powernv_freqs
96 * cpufreq_frequency_table for frequency
97 * corresponding to pstate_id.
98 *
99 * @hentry: hlist_node that hooks this entry into the pstate_revmap
100 * hashtable
101 */
102struct pstate_idx_revmap_data {
103 u8 pstate_id;
104 unsigned int cpufreq_table_idx;
105 struct hlist_node hentry;
106};
107
108static bool rebooting, throttled, occ_reset;
109
110static const char * const throttle_reason[] = {
111 "No throttling",
112 "Power Cap",
113 "Processor Over Temperature",
114 "Power Supply Failure",
115 "Over Current",
116 "OCC Reset"
117};
118
119enum throttle_reason_type {
120 NO_THROTTLE = 0,
121 POWERCAP,
122 CPU_OVERTEMP,
123 POWER_SUPPLY_FAILURE,
124 OVERCURRENT,
125 OCC_RESET_THROTTLE,
126 OCC_MAX_REASON
127};
128
129static struct chip {
130 unsigned int id;
131 bool throttled;
132 bool restore;
133 u8 throttle_reason;
134 cpumask_t mask;
135 struct work_struct throttle;
136 int throttle_turbo;
137 int throttle_sub_turbo;
138 int reason[OCC_MAX_REASON];
139} *chips;
140
141static int nr_chips;
142static DEFINE_PER_CPU(struct chip *, chip_info);
143
144/*
145 * Note:
146 * The set of pstates consists of contiguous integers.
147 * powernv_pstate_info stores the index of the frequency table for
148 * max, min and nominal frequencies. It also stores number of
149 * available frequencies.
150 *
151 * powernv_pstate_info.nominal indicates the index to the highest
152 * non-turbo frequency.
153 */
154static struct powernv_pstate_info {
155 unsigned int min;
156 unsigned int max;
157 unsigned int nominal;
158 unsigned int nr_pstates;
159 bool wof_enabled;
160} powernv_pstate_info;
161
162static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
163{
164 return ((pmsr_val >> shift) & 0xFF);
165}
166
167#define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
168#define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
169#define extract_max_pstate(x) extract_pstate(x, MAX_PSTATE_SHIFT)
170
171/* Use following functions for conversions between pstate_id and index */
172
173/**
174 * idx_to_pstate : Returns the pstate id corresponding to the
175 * frequency in the cpufreq frequency table
176 * powernv_freqs indexed by @i.
177 *
178 * If @i is out of bound, this will return the pstate
179 * corresponding to the nominal frequency.
180 */
181static inline u8 idx_to_pstate(unsigned int i)
182{
183 if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
184 pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
185 return powernv_freqs[powernv_pstate_info.nominal].driver_data;
186 }
187
188 return powernv_freqs[i].driver_data;
189}
190
191/**
192 * pstate_to_idx : Returns the index in the cpufreq frequencytable
193 * powernv_freqs for the frequency whose corresponding
194 * pstate id is @pstate.
195 *
196 * If no frequency corresponding to @pstate is found,
197 * this will return the index of the nominal
198 * frequency.
199 */
200static unsigned int pstate_to_idx(u8 pstate)
201{
202 unsigned int key = pstate % POWERNV_MAX_PSTATES;
203 struct pstate_idx_revmap_data *revmap_data;
204
205 hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
206 if (revmap_data->pstate_id == pstate)
207 return revmap_data->cpufreq_table_idx;
208 }
209
210 pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
211 return powernv_pstate_info.nominal;
212}
213
214static inline void reset_gpstates(struct cpufreq_policy *policy)
215{
216 struct global_pstate_info *gpstates = policy->driver_data;
217
218 gpstates->highest_lpstate_idx = 0;
219 gpstates->elapsed_time = 0;
220 gpstates->last_sampled_time = 0;
221 gpstates->last_lpstate_idx = 0;
222 gpstates->last_gpstate_idx = 0;
223}
224
225/*
226 * Initialize the freq table based on data obtained
227 * from the firmware passed via device-tree
228 */
229static int init_powernv_pstates(void)
230{
231 struct device_node *power_mgt;
232 int i, nr_pstates = 0;
233 const __be32 *pstate_ids, *pstate_freqs;
234 u32 len_ids, len_freqs;
235 u32 pstate_min, pstate_max, pstate_nominal;
236 u32 pstate_turbo, pstate_ultra_turbo;
237 int rc = -ENODEV;
238
239 power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
240 if (!power_mgt) {
241 pr_warn("power-mgt node not found\n");
242 return -ENODEV;
243 }
244
245 if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
246 pr_warn("ibm,pstate-min node not found\n");
247 goto out;
248 }
249
250 if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
251 pr_warn("ibm,pstate-max node not found\n");
252 goto out;
253 }
254
255 if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
256 &pstate_nominal)) {
257 pr_warn("ibm,pstate-nominal not found\n");
258 goto out;
259 }
260
261 if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
262 &pstate_ultra_turbo)) {
263 powernv_pstate_info.wof_enabled = false;
264 goto next;
265 }
266
267 if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
268 &pstate_turbo)) {
269 powernv_pstate_info.wof_enabled = false;
270 goto next;
271 }
272
273 if (pstate_turbo == pstate_ultra_turbo)
274 powernv_pstate_info.wof_enabled = false;
275 else
276 powernv_pstate_info.wof_enabled = true;
277
278next:
279 pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
280 pstate_nominal, pstate_max);
281 pr_info("Workload Optimized Frequency is %s in the platform\n",
282 (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
283
284 pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
285 if (!pstate_ids) {
286 pr_warn("ibm,pstate-ids not found\n");
287 goto out;
288 }
289
290 pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
291 &len_freqs);
292 if (!pstate_freqs) {
293 pr_warn("ibm,pstate-frequencies-mhz not found\n");
294 goto out;
295 }
296
297 if (len_ids != len_freqs) {
298 pr_warn("Entries in ibm,pstate-ids and "
299 "ibm,pstate-frequencies-mhz does not match\n");
300 }
301
302 nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
303 if (!nr_pstates) {
304 pr_warn("No PStates found\n");
305 goto out;
306 }
307
308 powernv_pstate_info.nr_pstates = nr_pstates;
309 pr_debug("NR PStates %d\n", nr_pstates);
310
311 for (i = 0; i < nr_pstates; i++) {
312 u32 id = be32_to_cpu(pstate_ids[i]);
313 u32 freq = be32_to_cpu(pstate_freqs[i]);
314 struct pstate_idx_revmap_data *revmap_data;
315 unsigned int key;
316
317 pr_debug("PState id %d freq %d MHz\n", id, freq);
318 powernv_freqs[i].frequency = freq * 1000; /* kHz */
319 powernv_freqs[i].driver_data = id & 0xFF;
320
321 revmap_data = kmalloc(sizeof(*revmap_data), GFP_KERNEL);
322 if (!revmap_data) {
323 rc = -ENOMEM;
324 goto out;
325 }
326
327 revmap_data->pstate_id = id & 0xFF;
328 revmap_data->cpufreq_table_idx = i;
329 key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
330 hash_add(pstate_revmap, &revmap_data->hentry, key);
331
332 if (id == pstate_max)
333 powernv_pstate_info.max = i;
334 if (id == pstate_nominal)
335 powernv_pstate_info.nominal = i;
336 if (id == pstate_min)
337 powernv_pstate_info.min = i;
338
339 if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
340 int j;
341
342 for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
343 powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
344 }
345 }
346
347 /* End of list marker entry */
348 powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
349
350 of_node_put(power_mgt);
351 return 0;
352out:
353 of_node_put(power_mgt);
354 return rc;
355}
356
357/* Returns the CPU frequency corresponding to the pstate_id. */
358static unsigned int pstate_id_to_freq(u8 pstate_id)
359{
360 int i;
361
362 i = pstate_to_idx(pstate_id);
363 if (i >= powernv_pstate_info.nr_pstates || i < 0) {
364 pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
365 pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
366 i = powernv_pstate_info.nominal;
367 }
368
369 return powernv_freqs[i].frequency;
370}
371
372/*
373 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
374 * the firmware
375 */
376static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
377 char *buf)
378{
379 return sprintf(buf, "%u\n",
380 powernv_freqs[powernv_pstate_info.nominal].frequency);
381}
382
383struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
384 __ATTR_RO(cpuinfo_nominal_freq);
385
386#define SCALING_BOOST_FREQS_ATTR_INDEX 2
387
388static struct freq_attr *powernv_cpu_freq_attr[] = {
389 &cpufreq_freq_attr_scaling_available_freqs,
390 &cpufreq_freq_attr_cpuinfo_nominal_freq,
391 &cpufreq_freq_attr_scaling_boost_freqs,
392 NULL,
393};
394
395#define throttle_attr(name, member) \
396static ssize_t name##_show(struct cpufreq_policy *policy, char *buf) \
397{ \
398 struct chip *chip = per_cpu(chip_info, policy->cpu); \
399 \
400 return sprintf(buf, "%u\n", chip->member); \
401} \
402 \
403static struct freq_attr throttle_attr_##name = __ATTR_RO(name) \
404
405throttle_attr(unthrottle, reason[NO_THROTTLE]);
406throttle_attr(powercap, reason[POWERCAP]);
407throttle_attr(overtemp, reason[CPU_OVERTEMP]);
408throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
409throttle_attr(overcurrent, reason[OVERCURRENT]);
410throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
411throttle_attr(turbo_stat, throttle_turbo);
412throttle_attr(sub_turbo_stat, throttle_sub_turbo);
413
414static struct attribute *throttle_attrs[] = {
415 &throttle_attr_unthrottle.attr,
416 &throttle_attr_powercap.attr,
417 &throttle_attr_overtemp.attr,
418 &throttle_attr_supply_fault.attr,
419 &throttle_attr_overcurrent.attr,
420 &throttle_attr_occ_reset.attr,
421 &throttle_attr_turbo_stat.attr,
422 &throttle_attr_sub_turbo_stat.attr,
423 NULL,
424};
425
426static const struct attribute_group throttle_attr_grp = {
427 .name = "throttle_stats",
428 .attrs = throttle_attrs,
429};
430
431/* Helper routines */
432
433/* Access helpers to power mgt SPR */
434
435static inline unsigned long get_pmspr(unsigned long sprn)
436{
437 switch (sprn) {
438 case SPRN_PMCR:
439 return mfspr(SPRN_PMCR);
440
441 case SPRN_PMICR:
442 return mfspr(SPRN_PMICR);
443
444 case SPRN_PMSR:
445 return mfspr(SPRN_PMSR);
446 }
447 BUG();
448}
449
450static inline void set_pmspr(unsigned long sprn, unsigned long val)
451{
452 switch (sprn) {
453 case SPRN_PMCR:
454 mtspr(SPRN_PMCR, val);
455 return;
456
457 case SPRN_PMICR:
458 mtspr(SPRN_PMICR, val);
459 return;
460 }
461 BUG();
462}
463
464/*
465 * Use objects of this type to query/update
466 * pstates on a remote CPU via smp_call_function.
467 */
468struct powernv_smp_call_data {
469 unsigned int freq;
470 u8 pstate_id;
471 u8 gpstate_id;
472};
473
474/*
475 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
476 *
477 * Called via smp_call_function.
478 *
479 * Note: The caller of the smp_call_function should pass an argument of
480 * the type 'struct powernv_smp_call_data *' along with this function.
481 *
482 * The current frequency on this CPU will be returned via
483 * ((struct powernv_smp_call_data *)arg)->freq;
484 */
485static void powernv_read_cpu_freq(void *arg)
486{
487 unsigned long pmspr_val;
488 struct powernv_smp_call_data *freq_data = arg;
489
490 pmspr_val = get_pmspr(SPRN_PMSR);
491 freq_data->pstate_id = extract_local_pstate(pmspr_val);
492 freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
493
494 pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
495 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
496 freq_data->freq);
497}
498
499/*
500 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
501 * firmware for CPU 'cpu'. This value is reported through the sysfs
502 * file cpuinfo_cur_freq.
503 */
504static unsigned int powernv_cpufreq_get(unsigned int cpu)
505{
506 struct powernv_smp_call_data freq_data;
507
508 smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
509 &freq_data, 1);
510
511 return freq_data.freq;
512}
513
514/*
515 * set_pstate: Sets the pstate on this CPU.
516 *
517 * This is called via an smp_call_function.
518 *
519 * The caller must ensure that freq_data is of the type
520 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
521 * on this CPU should be present in freq_data->pstate_id.
522 */
523static void set_pstate(void *data)
524{
525 unsigned long val;
526 struct powernv_smp_call_data *freq_data = data;
527 unsigned long pstate_ul = freq_data->pstate_id;
528 unsigned long gpstate_ul = freq_data->gpstate_id;
529
530 val = get_pmspr(SPRN_PMCR);
531 val = val & 0x0000FFFFFFFFFFFFULL;
532
533 pstate_ul = pstate_ul & 0xFF;
534 gpstate_ul = gpstate_ul & 0xFF;
535
536 /* Set both global(bits 56..63) and local(bits 48..55) PStates */
537 val = val | (gpstate_ul << 56) | (pstate_ul << 48);
538
539 pr_debug("Setting cpu %d pmcr to %016lX\n",
540 raw_smp_processor_id(), val);
541 set_pmspr(SPRN_PMCR, val);
542}
543
544/*
545 * get_nominal_index: Returns the index corresponding to the nominal
546 * pstate in the cpufreq table
547 */
548static inline unsigned int get_nominal_index(void)
549{
550 return powernv_pstate_info.nominal;
551}
552
553static void powernv_cpufreq_throttle_check(void *data)
554{
555 struct chip *chip;
556 unsigned int cpu = smp_processor_id();
557 unsigned long pmsr;
558 u8 pmsr_pmax;
559 unsigned int pmsr_pmax_idx;
560
561 pmsr = get_pmspr(SPRN_PMSR);
562 chip = this_cpu_read(chip_info);
563
564 /* Check for Pmax Capping */
565 pmsr_pmax = extract_max_pstate(pmsr);
566 pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
567 if (pmsr_pmax_idx != powernv_pstate_info.max) {
568 if (chip->throttled)
569 goto next;
570 chip->throttled = true;
571 if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
572 pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
573 cpu, chip->id, pmsr_pmax,
574 idx_to_pstate(powernv_pstate_info.nominal));
575 chip->throttle_sub_turbo++;
576 } else {
577 chip->throttle_turbo++;
578 }
579 trace_powernv_throttle(chip->id,
580 throttle_reason[chip->throttle_reason],
581 pmsr_pmax);
582 } else if (chip->throttled) {
583 chip->throttled = false;
584 trace_powernv_throttle(chip->id,
585 throttle_reason[chip->throttle_reason],
586 pmsr_pmax);
587 }
588
589 /* Check if Psafe_mode_active is set in PMSR. */
590next:
591 if (pmsr & PMSR_PSAFE_ENABLE) {
592 throttled = true;
593 pr_info("Pstate set to safe frequency\n");
594 }
595
596 /* Check if SPR_EM_DISABLE is set in PMSR */
597 if (pmsr & PMSR_SPR_EM_DISABLE) {
598 throttled = true;
599 pr_info("Frequency Control disabled from OS\n");
600 }
601
602 if (throttled) {
603 pr_info("PMSR = %16lx\n", pmsr);
604 pr_warn("CPU Frequency could be throttled\n");
605 }
606}
607
608/**
609 * calc_global_pstate - Calculate global pstate
610 * @elapsed_time: Elapsed time in milliseconds
611 * @local_pstate_idx: New local pstate
612 * @highest_lpstate_idx: pstate from which its ramping down
613 *
614 * Finds the appropriate global pstate based on the pstate from which its
615 * ramping down and the time elapsed in ramping down. It follows a quadratic
616 * equation which ensures that it reaches ramping down to pmin in 5sec.
617 */
618static inline int calc_global_pstate(unsigned int elapsed_time,
619 int highest_lpstate_idx,
620 int local_pstate_idx)
621{
622 int index_diff;
623
624 /*
625 * Using ramp_down_percent we get the percentage of rampdown
626 * that we are expecting to be dropping. Difference between
627 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
628 * number of how many pstates we will drop eventually by the end of
629 * 5 seconds, then just scale it get the number pstates to be dropped.
630 */
631 index_diff = ((int)ramp_down_percent(elapsed_time) *
632 (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
633
634 /* Ensure that global pstate is >= to local pstate */
635 if (highest_lpstate_idx + index_diff >= local_pstate_idx)
636 return local_pstate_idx;
637 else
638 return highest_lpstate_idx + index_diff;
639}
640
641static inline void queue_gpstate_timer(struct global_pstate_info *gpstates)
642{
643 unsigned int timer_interval;
644
645 /*
646 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
647 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
648 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
649 * seconds of ramp down time.
650 */
651 if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
652 > MAX_RAMP_DOWN_TIME)
653 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
654 else
655 timer_interval = GPSTATE_TIMER_INTERVAL;
656
657 mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
658}
659
660/**
661 * gpstate_timer_handler
662 *
663 * @data: pointer to cpufreq_policy on which timer was queued
664 *
665 * This handler brings down the global pstate closer to the local pstate
666 * according quadratic equation. Queues a new timer if it is still not equal
667 * to local pstate
668 */
669void gpstate_timer_handler(struct timer_list *t)
670{
671 struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
672 struct cpufreq_policy *policy = gpstates->policy;
673 int gpstate_idx, lpstate_idx;
674 unsigned long val;
675 unsigned int time_diff = jiffies_to_msecs(jiffies)
676 - gpstates->last_sampled_time;
677 struct powernv_smp_call_data freq_data;
678
679 if (!spin_trylock(&gpstates->gpstate_lock))
680 return;
681 /*
682 * If the timer has migrated to the different cpu then bring
683 * it back to one of the policy->cpus
684 */
685 if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
686 gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
687 add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
688 spin_unlock(&gpstates->gpstate_lock);
689 return;
690 }
691
692 /*
693 * If PMCR was last updated was using fast_swtich then
694 * We may have wrong in gpstate->last_lpstate_idx
695 * value. Hence, read from PMCR to get correct data.
696 */
697 val = get_pmspr(SPRN_PMCR);
698 freq_data.gpstate_id = extract_global_pstate(val);
699 freq_data.pstate_id = extract_local_pstate(val);
700 if (freq_data.gpstate_id == freq_data.pstate_id) {
701 reset_gpstates(policy);
702 spin_unlock(&gpstates->gpstate_lock);
703 return;
704 }
705
706 gpstates->last_sampled_time += time_diff;
707 gpstates->elapsed_time += time_diff;
708
709 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
710 gpstate_idx = pstate_to_idx(freq_data.pstate_id);
711 lpstate_idx = gpstate_idx;
712 reset_gpstates(policy);
713 gpstates->highest_lpstate_idx = gpstate_idx;
714 } else {
715 lpstate_idx = pstate_to_idx(freq_data.pstate_id);
716 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
717 gpstates->highest_lpstate_idx,
718 lpstate_idx);
719 }
720 freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
721 gpstates->last_gpstate_idx = gpstate_idx;
722 gpstates->last_lpstate_idx = lpstate_idx;
723 /*
724 * If local pstate is equal to global pstate, rampdown is over
725 * So timer is not required to be queued.
726 */
727 if (gpstate_idx != gpstates->last_lpstate_idx)
728 queue_gpstate_timer(gpstates);
729
730 set_pstate(&freq_data);
731 spin_unlock(&gpstates->gpstate_lock);
732}
733
734/*
735 * powernv_cpufreq_target_index: Sets the frequency corresponding to
736 * the cpufreq table entry indexed by new_index on the cpus in the
737 * mask policy->cpus
738 */
739static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
740 unsigned int new_index)
741{
742 struct powernv_smp_call_data freq_data;
743 unsigned int cur_msec, gpstate_idx;
744 struct global_pstate_info *gpstates = policy->driver_data;
745
746 if (unlikely(rebooting) && new_index != get_nominal_index())
747 return 0;
748
749 if (!throttled) {
750 /* we don't want to be preempted while
751 * checking if the CPU frequency has been throttled
752 */
753 preempt_disable();
754 powernv_cpufreq_throttle_check(NULL);
755 preempt_enable();
756 }
757
758 cur_msec = jiffies_to_msecs(get_jiffies_64());
759
760 freq_data.pstate_id = idx_to_pstate(new_index);
761 if (!gpstates) {
762 freq_data.gpstate_id = freq_data.pstate_id;
763 goto no_gpstate;
764 }
765
766 spin_lock(&gpstates->gpstate_lock);
767
768 if (!gpstates->last_sampled_time) {
769 gpstate_idx = new_index;
770 gpstates->highest_lpstate_idx = new_index;
771 goto gpstates_done;
772 }
773
774 if (gpstates->last_gpstate_idx < new_index) {
775 gpstates->elapsed_time += cur_msec -
776 gpstates->last_sampled_time;
777
778 /*
779 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
780 * we should be resetting all global pstate related data. Set it
781 * equal to local pstate to start fresh.
782 */
783 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
784 reset_gpstates(policy);
785 gpstates->highest_lpstate_idx = new_index;
786 gpstate_idx = new_index;
787 } else {
788 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
789 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
790 gpstates->highest_lpstate_idx,
791 new_index);
792 }
793 } else {
794 reset_gpstates(policy);
795 gpstates->highest_lpstate_idx = new_index;
796 gpstate_idx = new_index;
797 }
798
799 /*
800 * If local pstate is equal to global pstate, rampdown is over
801 * So timer is not required to be queued.
802 */
803 if (gpstate_idx != new_index)
804 queue_gpstate_timer(gpstates);
805 else
806 del_timer_sync(&gpstates->timer);
807
808gpstates_done:
809 freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
810 gpstates->last_sampled_time = cur_msec;
811 gpstates->last_gpstate_idx = gpstate_idx;
812 gpstates->last_lpstate_idx = new_index;
813
814 spin_unlock(&gpstates->gpstate_lock);
815
816no_gpstate:
817 /*
818 * Use smp_call_function to send IPI and execute the
819 * mtspr on target CPU. We could do that without IPI
820 * if current CPU is within policy->cpus (core)
821 */
822 smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
823 return 0;
824}
825
826static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
827{
828 int base, i;
829 struct kernfs_node *kn;
830 struct global_pstate_info *gpstates;
831
832 base = cpu_first_thread_sibling(policy->cpu);
833
834 for (i = 0; i < threads_per_core; i++)
835 cpumask_set_cpu(base + i, policy->cpus);
836
837 kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
838 if (!kn) {
839 int ret;
840
841 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
842 if (ret) {
843 pr_info("Failed to create throttle stats directory for cpu %d\n",
844 policy->cpu);
845 return ret;
846 }
847 } else {
848 kernfs_put(kn);
849 }
850
851 policy->freq_table = powernv_freqs;
852 policy->fast_switch_possible = true;
853
854 if (pvr_version_is(PVR_POWER9))
855 return 0;
856
857 /* Initialise Gpstate ramp-down timer only on POWER8 */
858 gpstates = kzalloc(sizeof(*gpstates), GFP_KERNEL);
859 if (!gpstates)
860 return -ENOMEM;
861
862 policy->driver_data = gpstates;
863
864 /* initialize timer */
865 gpstates->policy = policy;
866 timer_setup(&gpstates->timer, gpstate_timer_handler,
867 TIMER_PINNED | TIMER_DEFERRABLE);
868 gpstates->timer.expires = jiffies +
869 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
870 spin_lock_init(&gpstates->gpstate_lock);
871
872 return 0;
873}
874
875static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
876{
877 /* timer is deleted in cpufreq_cpu_stop() */
878 kfree(policy->driver_data);
879
880 return 0;
881}
882
883static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
884 unsigned long action, void *unused)
885{
886 int cpu;
887 struct cpufreq_policy cpu_policy;
888
889 rebooting = true;
890 for_each_online_cpu(cpu) {
891 cpufreq_get_policy(&cpu_policy, cpu);
892 powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
893 }
894
895 return NOTIFY_DONE;
896}
897
898static struct notifier_block powernv_cpufreq_reboot_nb = {
899 .notifier_call = powernv_cpufreq_reboot_notifier,
900};
901
902void powernv_cpufreq_work_fn(struct work_struct *work)
903{
904 struct chip *chip = container_of(work, struct chip, throttle);
905 unsigned int cpu;
906 cpumask_t mask;
907
908 get_online_cpus();
909 cpumask_and(&mask, &chip->mask, cpu_online_mask);
910 smp_call_function_any(&mask,
911 powernv_cpufreq_throttle_check, NULL, 0);
912
913 if (!chip->restore)
914 goto out;
915
916 chip->restore = false;
917 for_each_cpu(cpu, &mask) {
918 int index;
919 struct cpufreq_policy policy;
920
921 cpufreq_get_policy(&policy, cpu);
922 index = cpufreq_table_find_index_c(&policy, policy.cur);
923 powernv_cpufreq_target_index(&policy, index);
924 cpumask_andnot(&mask, &mask, policy.cpus);
925 }
926out:
927 put_online_cpus();
928}
929
930static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
931 unsigned long msg_type, void *_msg)
932{
933 struct opal_msg *msg = _msg;
934 struct opal_occ_msg omsg;
935 int i;
936
937 if (msg_type != OPAL_MSG_OCC)
938 return 0;
939
940 omsg.type = be64_to_cpu(msg->params[0]);
941
942 switch (omsg.type) {
943 case OCC_RESET:
944 occ_reset = true;
945 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
946 /*
947 * powernv_cpufreq_throttle_check() is called in
948 * target() callback which can detect the throttle state
949 * for governors like ondemand.
950 * But static governors will not call target() often thus
951 * report throttling here.
952 */
953 if (!throttled) {
954 throttled = true;
955 pr_warn("CPU frequency is throttled for duration\n");
956 }
957
958 break;
959 case OCC_LOAD:
960 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
961 break;
962 case OCC_THROTTLE:
963 omsg.chip = be64_to_cpu(msg->params[1]);
964 omsg.throttle_status = be64_to_cpu(msg->params[2]);
965
966 if (occ_reset) {
967 occ_reset = false;
968 throttled = false;
969 pr_info("OCC Active, CPU frequency is no longer throttled\n");
970
971 for (i = 0; i < nr_chips; i++) {
972 chips[i].restore = true;
973 schedule_work(&chips[i].throttle);
974 }
975
976 return 0;
977 }
978
979 for (i = 0; i < nr_chips; i++)
980 if (chips[i].id == omsg.chip)
981 break;
982
983 if (omsg.throttle_status >= 0 &&
984 omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
985 chips[i].throttle_reason = omsg.throttle_status;
986 chips[i].reason[omsg.throttle_status]++;
987 }
988
989 if (!omsg.throttle_status)
990 chips[i].restore = true;
991
992 schedule_work(&chips[i].throttle);
993 }
994 return 0;
995}
996
997static struct notifier_block powernv_cpufreq_opal_nb = {
998 .notifier_call = powernv_cpufreq_occ_msg,
999 .next = NULL,
1000 .priority = 0,
1001};
1002
1003static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1004{
1005 struct powernv_smp_call_data freq_data;
1006 struct global_pstate_info *gpstates = policy->driver_data;
1007
1008 freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
1009 freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
1010 smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
1011 if (gpstates)
1012 del_timer_sync(&gpstates->timer);
1013}
1014
1015static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1016 unsigned int target_freq)
1017{
1018 int index;
1019 struct powernv_smp_call_data freq_data;
1020
1021 index = cpufreq_table_find_index_dl(policy, target_freq);
1022 freq_data.pstate_id = powernv_freqs[index].driver_data;
1023 freq_data.gpstate_id = powernv_freqs[index].driver_data;
1024 set_pstate(&freq_data);
1025
1026 return powernv_freqs[index].frequency;
1027}
1028
1029static struct cpufreq_driver powernv_cpufreq_driver = {
1030 .name = "powernv-cpufreq",
1031 .flags = CPUFREQ_CONST_LOOPS,
1032 .init = powernv_cpufreq_cpu_init,
1033 .exit = powernv_cpufreq_cpu_exit,
1034 .verify = cpufreq_generic_frequency_table_verify,
1035 .target_index = powernv_cpufreq_target_index,
1036 .fast_switch = powernv_fast_switch,
1037 .get = powernv_cpufreq_get,
1038 .stop_cpu = powernv_cpufreq_stop_cpu,
1039 .attr = powernv_cpu_freq_attr,
1040};
1041
1042static int init_chip_info(void)
1043{
1044 unsigned int chip[256];
1045 unsigned int cpu, i;
1046 unsigned int prev_chip_id = UINT_MAX;
1047
1048 for_each_possible_cpu(cpu) {
1049 unsigned int id = cpu_to_chip_id(cpu);
1050
1051 if (prev_chip_id != id) {
1052 prev_chip_id = id;
1053 chip[nr_chips++] = id;
1054 }
1055 }
1056
1057 chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1058 if (!chips)
1059 return -ENOMEM;
1060
1061 for (i = 0; i < nr_chips; i++) {
1062 chips[i].id = chip[i];
1063 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
1064 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1065 for_each_cpu(cpu, &chips[i].mask)
1066 per_cpu(chip_info, cpu) = &chips[i];
1067 }
1068
1069 return 0;
1070}
1071
1072static inline void clean_chip_info(void)
1073{
1074 kfree(chips);
1075}
1076
1077static inline void unregister_all_notifiers(void)
1078{
1079 opal_message_notifier_unregister(OPAL_MSG_OCC,
1080 &powernv_cpufreq_opal_nb);
1081 unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1082}
1083
1084static int __init powernv_cpufreq_init(void)
1085{
1086 int rc = 0;
1087
1088 /* Don't probe on pseries (guest) platforms */
1089 if (!firmware_has_feature(FW_FEATURE_OPAL))
1090 return -ENODEV;
1091
1092 /* Discover pstates from device tree and init */
1093 rc = init_powernv_pstates();
1094 if (rc)
1095 goto out;
1096
1097 /* Populate chip info */
1098 rc = init_chip_info();
1099 if (rc)
1100 goto out;
1101
1102 register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1103 opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1104
1105 if (powernv_pstate_info.wof_enabled)
1106 powernv_cpufreq_driver.boost_enabled = true;
1107 else
1108 powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1109
1110 rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1111 if (rc) {
1112 pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1113 goto cleanup_notifiers;
1114 }
1115
1116 if (powernv_pstate_info.wof_enabled)
1117 cpufreq_enable_boost_support();
1118
1119 return 0;
1120cleanup_notifiers:
1121 unregister_all_notifiers();
1122 clean_chip_info();
1123out:
1124 pr_info("Platform driver disabled. System does not support PState control\n");
1125 return rc;
1126}
1127module_init(powernv_cpufreq_init);
1128
1129static void __exit powernv_cpufreq_exit(void)
1130{
1131 cpufreq_unregister_driver(&powernv_cpufreq_driver);
1132 unregister_all_notifiers();
1133 clean_chip_info();
1134}
1135module_exit(powernv_cpufreq_exit);
1136
1137MODULE_LICENSE("GPL");
1138MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");