Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28#include <linux/export.h>
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
39#include <linux/hardirq.h>
40#include <linux/mempolicy.h>
41#include <linux/freezer.h>
42#include <linux/debug_locks.h>
43#include <linux/lockdep.h>
44#include <linux/idr.h>
45#include <linux/jhash.h>
46#include <linux/hashtable.h>
47#include <linux/rculist.h>
48#include <linux/nodemask.h>
49#include <linux/moduleparam.h>
50#include <linux/uaccess.h>
51#include <linux/sched/isolation.h>
52#include <linux/sched/debug.h>
53#include <linux/nmi.h>
54#include <linux/kvm_para.h>
55#include <linux/delay.h>
56
57#include "workqueue_internal.h"
58
59enum {
60 /*
61 * worker_pool flags
62 *
63 * A bound pool is either associated or disassociated with its CPU.
64 * While associated (!DISASSOCIATED), all workers are bound to the
65 * CPU and none has %WORKER_UNBOUND set and concurrency management
66 * is in effect.
67 *
68 * While DISASSOCIATED, the cpu may be offline and all workers have
69 * %WORKER_UNBOUND set and concurrency management disabled, and may
70 * be executing on any CPU. The pool behaves as an unbound one.
71 *
72 * Note that DISASSOCIATED should be flipped only while holding
73 * wq_pool_attach_mutex to avoid changing binding state while
74 * worker_attach_to_pool() is in progress.
75 */
76 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
77 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
78
79 /* worker flags */
80 WORKER_DIE = 1 << 1, /* die die die */
81 WORKER_IDLE = 1 << 2, /* is idle */
82 WORKER_PREP = 1 << 3, /* preparing to run works */
83 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
84 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
85 WORKER_REBOUND = 1 << 8, /* worker was rebound */
86
87 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
88 WORKER_UNBOUND | WORKER_REBOUND,
89
90 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
91
92 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
93 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
94
95 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
96 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
97
98 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
99 /* call for help after 10ms
100 (min two ticks) */
101 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
102 CREATE_COOLDOWN = HZ, /* time to breath after fail */
103
104 /*
105 * Rescue workers are used only on emergencies and shared by
106 * all cpus. Give MIN_NICE.
107 */
108 RESCUER_NICE_LEVEL = MIN_NICE,
109 HIGHPRI_NICE_LEVEL = MIN_NICE,
110
111 WQ_NAME_LEN = 24,
112};
113
114/*
115 * Structure fields follow one of the following exclusion rules.
116 *
117 * I: Modifiable by initialization/destruction paths and read-only for
118 * everyone else.
119 *
120 * P: Preemption protected. Disabling preemption is enough and should
121 * only be modified and accessed from the local cpu.
122 *
123 * L: pool->lock protected. Access with pool->lock held.
124 *
125 * K: Only modified by worker while holding pool->lock. Can be safely read by
126 * self, while holding pool->lock or from IRQ context if %current is the
127 * kworker.
128 *
129 * S: Only modified by worker self.
130 *
131 * A: wq_pool_attach_mutex protected.
132 *
133 * PL: wq_pool_mutex protected.
134 *
135 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
136 *
137 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
138 *
139 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
140 * RCU for reads.
141 *
142 * WQ: wq->mutex protected.
143 *
144 * WR: wq->mutex protected for writes. RCU protected for reads.
145 *
146 * MD: wq_mayday_lock protected.
147 *
148 * WD: Used internally by the watchdog.
149 */
150
151/* struct worker is defined in workqueue_internal.h */
152
153struct worker_pool {
154 raw_spinlock_t lock; /* the pool lock */
155 int cpu; /* I: the associated cpu */
156 int node; /* I: the associated node ID */
157 int id; /* I: pool ID */
158 unsigned int flags; /* L: flags */
159
160 unsigned long watchdog_ts; /* L: watchdog timestamp */
161 bool cpu_stall; /* WD: stalled cpu bound pool */
162
163 /*
164 * The counter is incremented in a process context on the associated CPU
165 * w/ preemption disabled, and decremented or reset in the same context
166 * but w/ pool->lock held. The readers grab pool->lock and are
167 * guaranteed to see if the counter reached zero.
168 */
169 int nr_running;
170
171 struct list_head worklist; /* L: list of pending works */
172
173 int nr_workers; /* L: total number of workers */
174 int nr_idle; /* L: currently idle workers */
175
176 struct list_head idle_list; /* L: list of idle workers */
177 struct timer_list idle_timer; /* L: worker idle timeout */
178 struct work_struct idle_cull_work; /* L: worker idle cleanup */
179
180 struct timer_list mayday_timer; /* L: SOS timer for workers */
181
182 /* a workers is either on busy_hash or idle_list, or the manager */
183 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
184 /* L: hash of busy workers */
185
186 struct worker *manager; /* L: purely informational */
187 struct list_head workers; /* A: attached workers */
188 struct list_head dying_workers; /* A: workers about to die */
189 struct completion *detach_completion; /* all workers detached */
190
191 struct ida worker_ida; /* worker IDs for task name */
192
193 struct workqueue_attrs *attrs; /* I: worker attributes */
194 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
195 int refcnt; /* PL: refcnt for unbound pools */
196
197 /*
198 * Destruction of pool is RCU protected to allow dereferences
199 * from get_work_pool().
200 */
201 struct rcu_head rcu;
202};
203
204/*
205 * Per-pool_workqueue statistics. These can be monitored using
206 * tools/workqueue/wq_monitor.py.
207 */
208enum pool_workqueue_stats {
209 PWQ_STAT_STARTED, /* work items started execution */
210 PWQ_STAT_COMPLETED, /* work items completed execution */
211 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
212 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
213 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
214 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
215 PWQ_STAT_MAYDAY, /* maydays to rescuer */
216 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
217
218 PWQ_NR_STATS,
219};
220
221/*
222 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
223 * of work_struct->data are used for flags and the remaining high bits
224 * point to the pwq; thus, pwqs need to be aligned at two's power of the
225 * number of flag bits.
226 */
227struct pool_workqueue {
228 struct worker_pool *pool; /* I: the associated pool */
229 struct workqueue_struct *wq; /* I: the owning workqueue */
230 int work_color; /* L: current color */
231 int flush_color; /* L: flushing color */
232 int refcnt; /* L: reference count */
233 int nr_in_flight[WORK_NR_COLORS];
234 /* L: nr of in_flight works */
235
236 /*
237 * nr_active management and WORK_STRUCT_INACTIVE:
238 *
239 * When pwq->nr_active >= max_active, new work item is queued to
240 * pwq->inactive_works instead of pool->worklist and marked with
241 * WORK_STRUCT_INACTIVE.
242 *
243 * All work items marked with WORK_STRUCT_INACTIVE do not participate
244 * in pwq->nr_active and all work items in pwq->inactive_works are
245 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
246 * work items are in pwq->inactive_works. Some of them are ready to
247 * run in pool->worklist or worker->scheduled. Those work itmes are
248 * only struct wq_barrier which is used for flush_work() and should
249 * not participate in pwq->nr_active. For non-barrier work item, it
250 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
251 */
252 int nr_active; /* L: nr of active works */
253 int max_active; /* L: max active works */
254 struct list_head inactive_works; /* L: inactive works */
255 struct list_head pwqs_node; /* WR: node on wq->pwqs */
256 struct list_head mayday_node; /* MD: node on wq->maydays */
257
258 u64 stats[PWQ_NR_STATS];
259
260 /*
261 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
262 * and pwq_release_workfn() for details. pool_workqueue itself is also
263 * RCU protected so that the first pwq can be determined without
264 * grabbing wq->mutex.
265 */
266 struct kthread_work release_work;
267 struct rcu_head rcu;
268} __aligned(1 << WORK_STRUCT_FLAG_BITS);
269
270/*
271 * Structure used to wait for workqueue flush.
272 */
273struct wq_flusher {
274 struct list_head list; /* WQ: list of flushers */
275 int flush_color; /* WQ: flush color waiting for */
276 struct completion done; /* flush completion */
277};
278
279struct wq_device;
280
281/*
282 * The externally visible workqueue. It relays the issued work items to
283 * the appropriate worker_pool through its pool_workqueues.
284 */
285struct workqueue_struct {
286 struct list_head pwqs; /* WR: all pwqs of this wq */
287 struct list_head list; /* PR: list of all workqueues */
288
289 struct mutex mutex; /* protects this wq */
290 int work_color; /* WQ: current work color */
291 int flush_color; /* WQ: current flush color */
292 atomic_t nr_pwqs_to_flush; /* flush in progress */
293 struct wq_flusher *first_flusher; /* WQ: first flusher */
294 struct list_head flusher_queue; /* WQ: flush waiters */
295 struct list_head flusher_overflow; /* WQ: flush overflow list */
296
297 struct list_head maydays; /* MD: pwqs requesting rescue */
298 struct worker *rescuer; /* MD: rescue worker */
299
300 int nr_drainers; /* WQ: drain in progress */
301 int saved_max_active; /* WQ: saved pwq max_active */
302
303 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
304 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
305
306#ifdef CONFIG_SYSFS
307 struct wq_device *wq_dev; /* I: for sysfs interface */
308#endif
309#ifdef CONFIG_LOCKDEP
310 char *lock_name;
311 struct lock_class_key key;
312 struct lockdep_map lockdep_map;
313#endif
314 char name[WQ_NAME_LEN]; /* I: workqueue name */
315
316 /*
317 * Destruction of workqueue_struct is RCU protected to allow walking
318 * the workqueues list without grabbing wq_pool_mutex.
319 * This is used to dump all workqueues from sysrq.
320 */
321 struct rcu_head rcu;
322
323 /* hot fields used during command issue, aligned to cacheline */
324 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
325 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
326};
327
328static struct kmem_cache *pwq_cache;
329
330/*
331 * Each pod type describes how CPUs should be grouped for unbound workqueues.
332 * See the comment above workqueue_attrs->affn_scope.
333 */
334struct wq_pod_type {
335 int nr_pods; /* number of pods */
336 cpumask_var_t *pod_cpus; /* pod -> cpus */
337 int *pod_node; /* pod -> node */
338 int *cpu_pod; /* cpu -> pod */
339};
340
341static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
342static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
343
344static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
345 [WQ_AFFN_DFL] = "default",
346 [WQ_AFFN_CPU] = "cpu",
347 [WQ_AFFN_SMT] = "smt",
348 [WQ_AFFN_CACHE] = "cache",
349 [WQ_AFFN_NUMA] = "numa",
350 [WQ_AFFN_SYSTEM] = "system",
351};
352
353/*
354 * Per-cpu work items which run for longer than the following threshold are
355 * automatically considered CPU intensive and excluded from concurrency
356 * management to prevent them from noticeably delaying other per-cpu work items.
357 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
358 * The actual value is initialized in wq_cpu_intensive_thresh_init().
359 */
360static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
361module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
362
363/* see the comment above the definition of WQ_POWER_EFFICIENT */
364static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
365module_param_named(power_efficient, wq_power_efficient, bool, 0444);
366
367static bool wq_online; /* can kworkers be created yet? */
368
369/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
370static struct workqueue_attrs *wq_update_pod_attrs_buf;
371
372static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
373static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
374static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
375/* wait for manager to go away */
376static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
377
378static LIST_HEAD(workqueues); /* PR: list of all workqueues */
379static bool workqueue_freezing; /* PL: have wqs started freezing? */
380
381/* PL&A: allowable cpus for unbound wqs and work items */
382static cpumask_var_t wq_unbound_cpumask;
383
384/* PL: user requested unbound cpumask via sysfs */
385static cpumask_var_t wq_requested_unbound_cpumask;
386
387/* PL: isolated cpumask to be excluded from unbound cpumask */
388static cpumask_var_t wq_isolated_cpumask;
389
390/* for further constrain wq_unbound_cpumask by cmdline parameter*/
391static struct cpumask wq_cmdline_cpumask __initdata;
392
393/* CPU where unbound work was last round robin scheduled from this CPU */
394static DEFINE_PER_CPU(int, wq_rr_cpu_last);
395
396/*
397 * Local execution of unbound work items is no longer guaranteed. The
398 * following always forces round-robin CPU selection on unbound work items
399 * to uncover usages which depend on it.
400 */
401#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
402static bool wq_debug_force_rr_cpu = true;
403#else
404static bool wq_debug_force_rr_cpu = false;
405#endif
406module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
407
408/* the per-cpu worker pools */
409static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
410
411static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
412
413/* PL: hash of all unbound pools keyed by pool->attrs */
414static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
415
416/* I: attributes used when instantiating standard unbound pools on demand */
417static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
418
419/* I: attributes used when instantiating ordered pools on demand */
420static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
421
422/*
423 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
424 * process context while holding a pool lock. Bounce to a dedicated kthread
425 * worker to avoid A-A deadlocks.
426 */
427static struct kthread_worker *pwq_release_worker __ro_after_init;
428
429struct workqueue_struct *system_wq __ro_after_init;
430EXPORT_SYMBOL(system_wq);
431struct workqueue_struct *system_highpri_wq __ro_after_init;
432EXPORT_SYMBOL_GPL(system_highpri_wq);
433struct workqueue_struct *system_long_wq __ro_after_init;
434EXPORT_SYMBOL_GPL(system_long_wq);
435struct workqueue_struct *system_unbound_wq __ro_after_init;
436EXPORT_SYMBOL_GPL(system_unbound_wq);
437struct workqueue_struct *system_freezable_wq __ro_after_init;
438EXPORT_SYMBOL_GPL(system_freezable_wq);
439struct workqueue_struct *system_power_efficient_wq __ro_after_init;
440EXPORT_SYMBOL_GPL(system_power_efficient_wq);
441struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
442EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
443
444static int worker_thread(void *__worker);
445static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
446static void show_pwq(struct pool_workqueue *pwq);
447static void show_one_worker_pool(struct worker_pool *pool);
448
449#define CREATE_TRACE_POINTS
450#include <trace/events/workqueue.h>
451
452#define assert_rcu_or_pool_mutex() \
453 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
454 !lockdep_is_held(&wq_pool_mutex), \
455 "RCU or wq_pool_mutex should be held")
456
457#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
458 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
459 !lockdep_is_held(&wq->mutex) && \
460 !lockdep_is_held(&wq_pool_mutex), \
461 "RCU, wq->mutex or wq_pool_mutex should be held")
462
463#define for_each_cpu_worker_pool(pool, cpu) \
464 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
465 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
466 (pool)++)
467
468/**
469 * for_each_pool - iterate through all worker_pools in the system
470 * @pool: iteration cursor
471 * @pi: integer used for iteration
472 *
473 * This must be called either with wq_pool_mutex held or RCU read
474 * locked. If the pool needs to be used beyond the locking in effect, the
475 * caller is responsible for guaranteeing that the pool stays online.
476 *
477 * The if/else clause exists only for the lockdep assertion and can be
478 * ignored.
479 */
480#define for_each_pool(pool, pi) \
481 idr_for_each_entry(&worker_pool_idr, pool, pi) \
482 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
483 else
484
485/**
486 * for_each_pool_worker - iterate through all workers of a worker_pool
487 * @worker: iteration cursor
488 * @pool: worker_pool to iterate workers of
489 *
490 * This must be called with wq_pool_attach_mutex.
491 *
492 * The if/else clause exists only for the lockdep assertion and can be
493 * ignored.
494 */
495#define for_each_pool_worker(worker, pool) \
496 list_for_each_entry((worker), &(pool)->workers, node) \
497 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
498 else
499
500/**
501 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
502 * @pwq: iteration cursor
503 * @wq: the target workqueue
504 *
505 * This must be called either with wq->mutex held or RCU read locked.
506 * If the pwq needs to be used beyond the locking in effect, the caller is
507 * responsible for guaranteeing that the pwq stays online.
508 *
509 * The if/else clause exists only for the lockdep assertion and can be
510 * ignored.
511 */
512#define for_each_pwq(pwq, wq) \
513 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
514 lockdep_is_held(&(wq->mutex)))
515
516#ifdef CONFIG_DEBUG_OBJECTS_WORK
517
518static const struct debug_obj_descr work_debug_descr;
519
520static void *work_debug_hint(void *addr)
521{
522 return ((struct work_struct *) addr)->func;
523}
524
525static bool work_is_static_object(void *addr)
526{
527 struct work_struct *work = addr;
528
529 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
530}
531
532/*
533 * fixup_init is called when:
534 * - an active object is initialized
535 */
536static bool work_fixup_init(void *addr, enum debug_obj_state state)
537{
538 struct work_struct *work = addr;
539
540 switch (state) {
541 case ODEBUG_STATE_ACTIVE:
542 cancel_work_sync(work);
543 debug_object_init(work, &work_debug_descr);
544 return true;
545 default:
546 return false;
547 }
548}
549
550/*
551 * fixup_free is called when:
552 * - an active object is freed
553 */
554static bool work_fixup_free(void *addr, enum debug_obj_state state)
555{
556 struct work_struct *work = addr;
557
558 switch (state) {
559 case ODEBUG_STATE_ACTIVE:
560 cancel_work_sync(work);
561 debug_object_free(work, &work_debug_descr);
562 return true;
563 default:
564 return false;
565 }
566}
567
568static const struct debug_obj_descr work_debug_descr = {
569 .name = "work_struct",
570 .debug_hint = work_debug_hint,
571 .is_static_object = work_is_static_object,
572 .fixup_init = work_fixup_init,
573 .fixup_free = work_fixup_free,
574};
575
576static inline void debug_work_activate(struct work_struct *work)
577{
578 debug_object_activate(work, &work_debug_descr);
579}
580
581static inline void debug_work_deactivate(struct work_struct *work)
582{
583 debug_object_deactivate(work, &work_debug_descr);
584}
585
586void __init_work(struct work_struct *work, int onstack)
587{
588 if (onstack)
589 debug_object_init_on_stack(work, &work_debug_descr);
590 else
591 debug_object_init(work, &work_debug_descr);
592}
593EXPORT_SYMBOL_GPL(__init_work);
594
595void destroy_work_on_stack(struct work_struct *work)
596{
597 debug_object_free(work, &work_debug_descr);
598}
599EXPORT_SYMBOL_GPL(destroy_work_on_stack);
600
601void destroy_delayed_work_on_stack(struct delayed_work *work)
602{
603 destroy_timer_on_stack(&work->timer);
604 debug_object_free(&work->work, &work_debug_descr);
605}
606EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
607
608#else
609static inline void debug_work_activate(struct work_struct *work) { }
610static inline void debug_work_deactivate(struct work_struct *work) { }
611#endif
612
613/**
614 * worker_pool_assign_id - allocate ID and assign it to @pool
615 * @pool: the pool pointer of interest
616 *
617 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
618 * successfully, -errno on failure.
619 */
620static int worker_pool_assign_id(struct worker_pool *pool)
621{
622 int ret;
623
624 lockdep_assert_held(&wq_pool_mutex);
625
626 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
627 GFP_KERNEL);
628 if (ret >= 0) {
629 pool->id = ret;
630 return 0;
631 }
632 return ret;
633}
634
635static unsigned int work_color_to_flags(int color)
636{
637 return color << WORK_STRUCT_COLOR_SHIFT;
638}
639
640static int get_work_color(unsigned long work_data)
641{
642 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
643 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
644}
645
646static int work_next_color(int color)
647{
648 return (color + 1) % WORK_NR_COLORS;
649}
650
651/*
652 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
653 * contain the pointer to the queued pwq. Once execution starts, the flag
654 * is cleared and the high bits contain OFFQ flags and pool ID.
655 *
656 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
657 * and clear_work_data() can be used to set the pwq, pool or clear
658 * work->data. These functions should only be called while the work is
659 * owned - ie. while the PENDING bit is set.
660 *
661 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
662 * corresponding to a work. Pool is available once the work has been
663 * queued anywhere after initialization until it is sync canceled. pwq is
664 * available only while the work item is queued.
665 *
666 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
667 * canceled. While being canceled, a work item may have its PENDING set
668 * but stay off timer and worklist for arbitrarily long and nobody should
669 * try to steal the PENDING bit.
670 */
671static inline void set_work_data(struct work_struct *work, unsigned long data,
672 unsigned long flags)
673{
674 WARN_ON_ONCE(!work_pending(work));
675 atomic_long_set(&work->data, data | flags | work_static(work));
676}
677
678static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
679 unsigned long extra_flags)
680{
681 set_work_data(work, (unsigned long)pwq,
682 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
683}
684
685static void set_work_pool_and_keep_pending(struct work_struct *work,
686 int pool_id)
687{
688 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
689 WORK_STRUCT_PENDING);
690}
691
692static void set_work_pool_and_clear_pending(struct work_struct *work,
693 int pool_id)
694{
695 /*
696 * The following wmb is paired with the implied mb in
697 * test_and_set_bit(PENDING) and ensures all updates to @work made
698 * here are visible to and precede any updates by the next PENDING
699 * owner.
700 */
701 smp_wmb();
702 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
703 /*
704 * The following mb guarantees that previous clear of a PENDING bit
705 * will not be reordered with any speculative LOADS or STORES from
706 * work->current_func, which is executed afterwards. This possible
707 * reordering can lead to a missed execution on attempt to queue
708 * the same @work. E.g. consider this case:
709 *
710 * CPU#0 CPU#1
711 * ---------------------------- --------------------------------
712 *
713 * 1 STORE event_indicated
714 * 2 queue_work_on() {
715 * 3 test_and_set_bit(PENDING)
716 * 4 } set_..._and_clear_pending() {
717 * 5 set_work_data() # clear bit
718 * 6 smp_mb()
719 * 7 work->current_func() {
720 * 8 LOAD event_indicated
721 * }
722 *
723 * Without an explicit full barrier speculative LOAD on line 8 can
724 * be executed before CPU#0 does STORE on line 1. If that happens,
725 * CPU#0 observes the PENDING bit is still set and new execution of
726 * a @work is not queued in a hope, that CPU#1 will eventually
727 * finish the queued @work. Meanwhile CPU#1 does not see
728 * event_indicated is set, because speculative LOAD was executed
729 * before actual STORE.
730 */
731 smp_mb();
732}
733
734static void clear_work_data(struct work_struct *work)
735{
736 smp_wmb(); /* see set_work_pool_and_clear_pending() */
737 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
738}
739
740static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
741{
742 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
743}
744
745static struct pool_workqueue *get_work_pwq(struct work_struct *work)
746{
747 unsigned long data = atomic_long_read(&work->data);
748
749 if (data & WORK_STRUCT_PWQ)
750 return work_struct_pwq(data);
751 else
752 return NULL;
753}
754
755/**
756 * get_work_pool - return the worker_pool a given work was associated with
757 * @work: the work item of interest
758 *
759 * Pools are created and destroyed under wq_pool_mutex, and allows read
760 * access under RCU read lock. As such, this function should be
761 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
762 *
763 * All fields of the returned pool are accessible as long as the above
764 * mentioned locking is in effect. If the returned pool needs to be used
765 * beyond the critical section, the caller is responsible for ensuring the
766 * returned pool is and stays online.
767 *
768 * Return: The worker_pool @work was last associated with. %NULL if none.
769 */
770static struct worker_pool *get_work_pool(struct work_struct *work)
771{
772 unsigned long data = atomic_long_read(&work->data);
773 int pool_id;
774
775 assert_rcu_or_pool_mutex();
776
777 if (data & WORK_STRUCT_PWQ)
778 return work_struct_pwq(data)->pool;
779
780 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
781 if (pool_id == WORK_OFFQ_POOL_NONE)
782 return NULL;
783
784 return idr_find(&worker_pool_idr, pool_id);
785}
786
787/**
788 * get_work_pool_id - return the worker pool ID a given work is associated with
789 * @work: the work item of interest
790 *
791 * Return: The worker_pool ID @work was last associated with.
792 * %WORK_OFFQ_POOL_NONE if none.
793 */
794static int get_work_pool_id(struct work_struct *work)
795{
796 unsigned long data = atomic_long_read(&work->data);
797
798 if (data & WORK_STRUCT_PWQ)
799 return work_struct_pwq(data)->pool->id;
800
801 return data >> WORK_OFFQ_POOL_SHIFT;
802}
803
804static void mark_work_canceling(struct work_struct *work)
805{
806 unsigned long pool_id = get_work_pool_id(work);
807
808 pool_id <<= WORK_OFFQ_POOL_SHIFT;
809 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
810}
811
812static bool work_is_canceling(struct work_struct *work)
813{
814 unsigned long data = atomic_long_read(&work->data);
815
816 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
817}
818
819/*
820 * Policy functions. These define the policies on how the global worker
821 * pools are managed. Unless noted otherwise, these functions assume that
822 * they're being called with pool->lock held.
823 */
824
825/*
826 * Need to wake up a worker? Called from anything but currently
827 * running workers.
828 *
829 * Note that, because unbound workers never contribute to nr_running, this
830 * function will always return %true for unbound pools as long as the
831 * worklist isn't empty.
832 */
833static bool need_more_worker(struct worker_pool *pool)
834{
835 return !list_empty(&pool->worklist) && !pool->nr_running;
836}
837
838/* Can I start working? Called from busy but !running workers. */
839static bool may_start_working(struct worker_pool *pool)
840{
841 return pool->nr_idle;
842}
843
844/* Do I need to keep working? Called from currently running workers. */
845static bool keep_working(struct worker_pool *pool)
846{
847 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
848}
849
850/* Do we need a new worker? Called from manager. */
851static bool need_to_create_worker(struct worker_pool *pool)
852{
853 return need_more_worker(pool) && !may_start_working(pool);
854}
855
856/* Do we have too many workers and should some go away? */
857static bool too_many_workers(struct worker_pool *pool)
858{
859 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
860 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
861 int nr_busy = pool->nr_workers - nr_idle;
862
863 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
864}
865
866/**
867 * worker_set_flags - set worker flags and adjust nr_running accordingly
868 * @worker: self
869 * @flags: flags to set
870 *
871 * Set @flags in @worker->flags and adjust nr_running accordingly.
872 */
873static inline void worker_set_flags(struct worker *worker, unsigned int flags)
874{
875 struct worker_pool *pool = worker->pool;
876
877 lockdep_assert_held(&pool->lock);
878
879 /* If transitioning into NOT_RUNNING, adjust nr_running. */
880 if ((flags & WORKER_NOT_RUNNING) &&
881 !(worker->flags & WORKER_NOT_RUNNING)) {
882 pool->nr_running--;
883 }
884
885 worker->flags |= flags;
886}
887
888/**
889 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
890 * @worker: self
891 * @flags: flags to clear
892 *
893 * Clear @flags in @worker->flags and adjust nr_running accordingly.
894 */
895static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
896{
897 struct worker_pool *pool = worker->pool;
898 unsigned int oflags = worker->flags;
899
900 lockdep_assert_held(&pool->lock);
901
902 worker->flags &= ~flags;
903
904 /*
905 * If transitioning out of NOT_RUNNING, increment nr_running. Note
906 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
907 * of multiple flags, not a single flag.
908 */
909 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
910 if (!(worker->flags & WORKER_NOT_RUNNING))
911 pool->nr_running++;
912}
913
914/* Return the first idle worker. Called with pool->lock held. */
915static struct worker *first_idle_worker(struct worker_pool *pool)
916{
917 if (unlikely(list_empty(&pool->idle_list)))
918 return NULL;
919
920 return list_first_entry(&pool->idle_list, struct worker, entry);
921}
922
923/**
924 * worker_enter_idle - enter idle state
925 * @worker: worker which is entering idle state
926 *
927 * @worker is entering idle state. Update stats and idle timer if
928 * necessary.
929 *
930 * LOCKING:
931 * raw_spin_lock_irq(pool->lock).
932 */
933static void worker_enter_idle(struct worker *worker)
934{
935 struct worker_pool *pool = worker->pool;
936
937 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
938 WARN_ON_ONCE(!list_empty(&worker->entry) &&
939 (worker->hentry.next || worker->hentry.pprev)))
940 return;
941
942 /* can't use worker_set_flags(), also called from create_worker() */
943 worker->flags |= WORKER_IDLE;
944 pool->nr_idle++;
945 worker->last_active = jiffies;
946
947 /* idle_list is LIFO */
948 list_add(&worker->entry, &pool->idle_list);
949
950 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
951 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
952
953 /* Sanity check nr_running. */
954 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
955}
956
957/**
958 * worker_leave_idle - leave idle state
959 * @worker: worker which is leaving idle state
960 *
961 * @worker is leaving idle state. Update stats.
962 *
963 * LOCKING:
964 * raw_spin_lock_irq(pool->lock).
965 */
966static void worker_leave_idle(struct worker *worker)
967{
968 struct worker_pool *pool = worker->pool;
969
970 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
971 return;
972 worker_clr_flags(worker, WORKER_IDLE);
973 pool->nr_idle--;
974 list_del_init(&worker->entry);
975}
976
977/**
978 * find_worker_executing_work - find worker which is executing a work
979 * @pool: pool of interest
980 * @work: work to find worker for
981 *
982 * Find a worker which is executing @work on @pool by searching
983 * @pool->busy_hash which is keyed by the address of @work. For a worker
984 * to match, its current execution should match the address of @work and
985 * its work function. This is to avoid unwanted dependency between
986 * unrelated work executions through a work item being recycled while still
987 * being executed.
988 *
989 * This is a bit tricky. A work item may be freed once its execution
990 * starts and nothing prevents the freed area from being recycled for
991 * another work item. If the same work item address ends up being reused
992 * before the original execution finishes, workqueue will identify the
993 * recycled work item as currently executing and make it wait until the
994 * current execution finishes, introducing an unwanted dependency.
995 *
996 * This function checks the work item address and work function to avoid
997 * false positives. Note that this isn't complete as one may construct a
998 * work function which can introduce dependency onto itself through a
999 * recycled work item. Well, if somebody wants to shoot oneself in the
1000 * foot that badly, there's only so much we can do, and if such deadlock
1001 * actually occurs, it should be easy to locate the culprit work function.
1002 *
1003 * CONTEXT:
1004 * raw_spin_lock_irq(pool->lock).
1005 *
1006 * Return:
1007 * Pointer to worker which is executing @work if found, %NULL
1008 * otherwise.
1009 */
1010static struct worker *find_worker_executing_work(struct worker_pool *pool,
1011 struct work_struct *work)
1012{
1013 struct worker *worker;
1014
1015 hash_for_each_possible(pool->busy_hash, worker, hentry,
1016 (unsigned long)work)
1017 if (worker->current_work == work &&
1018 worker->current_func == work->func)
1019 return worker;
1020
1021 return NULL;
1022}
1023
1024/**
1025 * move_linked_works - move linked works to a list
1026 * @work: start of series of works to be scheduled
1027 * @head: target list to append @work to
1028 * @nextp: out parameter for nested worklist walking
1029 *
1030 * Schedule linked works starting from @work to @head. Work series to be
1031 * scheduled starts at @work and includes any consecutive work with
1032 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1033 * @nextp.
1034 *
1035 * CONTEXT:
1036 * raw_spin_lock_irq(pool->lock).
1037 */
1038static void move_linked_works(struct work_struct *work, struct list_head *head,
1039 struct work_struct **nextp)
1040{
1041 struct work_struct *n;
1042
1043 /*
1044 * Linked worklist will always end before the end of the list,
1045 * use NULL for list head.
1046 */
1047 list_for_each_entry_safe_from(work, n, NULL, entry) {
1048 list_move_tail(&work->entry, head);
1049 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1050 break;
1051 }
1052
1053 /*
1054 * If we're already inside safe list traversal and have moved
1055 * multiple works to the scheduled queue, the next position
1056 * needs to be updated.
1057 */
1058 if (nextp)
1059 *nextp = n;
1060}
1061
1062/**
1063 * assign_work - assign a work item and its linked work items to a worker
1064 * @work: work to assign
1065 * @worker: worker to assign to
1066 * @nextp: out parameter for nested worklist walking
1067 *
1068 * Assign @work and its linked work items to @worker. If @work is already being
1069 * executed by another worker in the same pool, it'll be punted there.
1070 *
1071 * If @nextp is not NULL, it's updated to point to the next work of the last
1072 * scheduled work. This allows assign_work() to be nested inside
1073 * list_for_each_entry_safe().
1074 *
1075 * Returns %true if @work was successfully assigned to @worker. %false if @work
1076 * was punted to another worker already executing it.
1077 */
1078static bool assign_work(struct work_struct *work, struct worker *worker,
1079 struct work_struct **nextp)
1080{
1081 struct worker_pool *pool = worker->pool;
1082 struct worker *collision;
1083
1084 lockdep_assert_held(&pool->lock);
1085
1086 /*
1087 * A single work shouldn't be executed concurrently by multiple workers.
1088 * __queue_work() ensures that @work doesn't jump to a different pool
1089 * while still running in the previous pool. Here, we should ensure that
1090 * @work is not executed concurrently by multiple workers from the same
1091 * pool. Check whether anyone is already processing the work. If so,
1092 * defer the work to the currently executing one.
1093 */
1094 collision = find_worker_executing_work(pool, work);
1095 if (unlikely(collision)) {
1096 move_linked_works(work, &collision->scheduled, nextp);
1097 return false;
1098 }
1099
1100 move_linked_works(work, &worker->scheduled, nextp);
1101 return true;
1102}
1103
1104/**
1105 * kick_pool - wake up an idle worker if necessary
1106 * @pool: pool to kick
1107 *
1108 * @pool may have pending work items. Wake up worker if necessary. Returns
1109 * whether a worker was woken up.
1110 */
1111static bool kick_pool(struct worker_pool *pool)
1112{
1113 struct worker *worker = first_idle_worker(pool);
1114 struct task_struct *p;
1115
1116 lockdep_assert_held(&pool->lock);
1117
1118 if (!need_more_worker(pool) || !worker)
1119 return false;
1120
1121 p = worker->task;
1122
1123#ifdef CONFIG_SMP
1124 /*
1125 * Idle @worker is about to execute @work and waking up provides an
1126 * opportunity to migrate @worker at a lower cost by setting the task's
1127 * wake_cpu field. Let's see if we want to move @worker to improve
1128 * execution locality.
1129 *
1130 * We're waking the worker that went idle the latest and there's some
1131 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1132 * so, setting the wake_cpu won't do anything. As this is a best-effort
1133 * optimization and the race window is narrow, let's leave as-is for
1134 * now. If this becomes pronounced, we can skip over workers which are
1135 * still on cpu when picking an idle worker.
1136 *
1137 * If @pool has non-strict affinity, @worker might have ended up outside
1138 * its affinity scope. Repatriate.
1139 */
1140 if (!pool->attrs->affn_strict &&
1141 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1142 struct work_struct *work = list_first_entry(&pool->worklist,
1143 struct work_struct, entry);
1144 p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1145 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1146 }
1147#endif
1148 wake_up_process(p);
1149 return true;
1150}
1151
1152#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1153
1154/*
1155 * Concurrency-managed per-cpu work items that hog CPU for longer than
1156 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1157 * which prevents them from stalling other concurrency-managed work items. If a
1158 * work function keeps triggering this mechanism, it's likely that the work item
1159 * should be using an unbound workqueue instead.
1160 *
1161 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1162 * and report them so that they can be examined and converted to use unbound
1163 * workqueues as appropriate. To avoid flooding the console, each violating work
1164 * function is tracked and reported with exponential backoff.
1165 */
1166#define WCI_MAX_ENTS 128
1167
1168struct wci_ent {
1169 work_func_t func;
1170 atomic64_t cnt;
1171 struct hlist_node hash_node;
1172};
1173
1174static struct wci_ent wci_ents[WCI_MAX_ENTS];
1175static int wci_nr_ents;
1176static DEFINE_RAW_SPINLOCK(wci_lock);
1177static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1178
1179static struct wci_ent *wci_find_ent(work_func_t func)
1180{
1181 struct wci_ent *ent;
1182
1183 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1184 (unsigned long)func) {
1185 if (ent->func == func)
1186 return ent;
1187 }
1188 return NULL;
1189}
1190
1191static void wq_cpu_intensive_report(work_func_t func)
1192{
1193 struct wci_ent *ent;
1194
1195restart:
1196 ent = wci_find_ent(func);
1197 if (ent) {
1198 u64 cnt;
1199
1200 /*
1201 * Start reporting from the fourth time and back off
1202 * exponentially.
1203 */
1204 cnt = atomic64_inc_return_relaxed(&ent->cnt);
1205 if (cnt >= 4 && is_power_of_2(cnt))
1206 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1207 ent->func, wq_cpu_intensive_thresh_us,
1208 atomic64_read(&ent->cnt));
1209 return;
1210 }
1211
1212 /*
1213 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1214 * is exhausted, something went really wrong and we probably made enough
1215 * noise already.
1216 */
1217 if (wci_nr_ents >= WCI_MAX_ENTS)
1218 return;
1219
1220 raw_spin_lock(&wci_lock);
1221
1222 if (wci_nr_ents >= WCI_MAX_ENTS) {
1223 raw_spin_unlock(&wci_lock);
1224 return;
1225 }
1226
1227 if (wci_find_ent(func)) {
1228 raw_spin_unlock(&wci_lock);
1229 goto restart;
1230 }
1231
1232 ent = &wci_ents[wci_nr_ents++];
1233 ent->func = func;
1234 atomic64_set(&ent->cnt, 1);
1235 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1236
1237 raw_spin_unlock(&wci_lock);
1238}
1239
1240#else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1241static void wq_cpu_intensive_report(work_func_t func) {}
1242#endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1243
1244/**
1245 * wq_worker_running - a worker is running again
1246 * @task: task waking up
1247 *
1248 * This function is called when a worker returns from schedule()
1249 */
1250void wq_worker_running(struct task_struct *task)
1251{
1252 struct worker *worker = kthread_data(task);
1253
1254 if (!READ_ONCE(worker->sleeping))
1255 return;
1256
1257 /*
1258 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1259 * and the nr_running increment below, we may ruin the nr_running reset
1260 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1261 * pool. Protect against such race.
1262 */
1263 preempt_disable();
1264 if (!(worker->flags & WORKER_NOT_RUNNING))
1265 worker->pool->nr_running++;
1266 preempt_enable();
1267
1268 /*
1269 * CPU intensive auto-detection cares about how long a work item hogged
1270 * CPU without sleeping. Reset the starting timestamp on wakeup.
1271 */
1272 worker->current_at = worker->task->se.sum_exec_runtime;
1273
1274 WRITE_ONCE(worker->sleeping, 0);
1275}
1276
1277/**
1278 * wq_worker_sleeping - a worker is going to sleep
1279 * @task: task going to sleep
1280 *
1281 * This function is called from schedule() when a busy worker is
1282 * going to sleep.
1283 */
1284void wq_worker_sleeping(struct task_struct *task)
1285{
1286 struct worker *worker = kthread_data(task);
1287 struct worker_pool *pool;
1288
1289 /*
1290 * Rescuers, which may not have all the fields set up like normal
1291 * workers, also reach here, let's not access anything before
1292 * checking NOT_RUNNING.
1293 */
1294 if (worker->flags & WORKER_NOT_RUNNING)
1295 return;
1296
1297 pool = worker->pool;
1298
1299 /* Return if preempted before wq_worker_running() was reached */
1300 if (READ_ONCE(worker->sleeping))
1301 return;
1302
1303 WRITE_ONCE(worker->sleeping, 1);
1304 raw_spin_lock_irq(&pool->lock);
1305
1306 /*
1307 * Recheck in case unbind_workers() preempted us. We don't
1308 * want to decrement nr_running after the worker is unbound
1309 * and nr_running has been reset.
1310 */
1311 if (worker->flags & WORKER_NOT_RUNNING) {
1312 raw_spin_unlock_irq(&pool->lock);
1313 return;
1314 }
1315
1316 pool->nr_running--;
1317 if (kick_pool(pool))
1318 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1319
1320 raw_spin_unlock_irq(&pool->lock);
1321}
1322
1323/**
1324 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1325 * @task: task currently running
1326 *
1327 * Called from scheduler_tick(). We're in the IRQ context and the current
1328 * worker's fields which follow the 'K' locking rule can be accessed safely.
1329 */
1330void wq_worker_tick(struct task_struct *task)
1331{
1332 struct worker *worker = kthread_data(task);
1333 struct pool_workqueue *pwq = worker->current_pwq;
1334 struct worker_pool *pool = worker->pool;
1335
1336 if (!pwq)
1337 return;
1338
1339 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1340
1341 if (!wq_cpu_intensive_thresh_us)
1342 return;
1343
1344 /*
1345 * If the current worker is concurrency managed and hogged the CPU for
1346 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1347 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1348 *
1349 * Set @worker->sleeping means that @worker is in the process of
1350 * switching out voluntarily and won't be contributing to
1351 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1352 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1353 * double decrements. The task is releasing the CPU anyway. Let's skip.
1354 * We probably want to make this prettier in the future.
1355 */
1356 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1357 worker->task->se.sum_exec_runtime - worker->current_at <
1358 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1359 return;
1360
1361 raw_spin_lock(&pool->lock);
1362
1363 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1364 wq_cpu_intensive_report(worker->current_func);
1365 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1366
1367 if (kick_pool(pool))
1368 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1369
1370 raw_spin_unlock(&pool->lock);
1371}
1372
1373/**
1374 * wq_worker_last_func - retrieve worker's last work function
1375 * @task: Task to retrieve last work function of.
1376 *
1377 * Determine the last function a worker executed. This is called from
1378 * the scheduler to get a worker's last known identity.
1379 *
1380 * CONTEXT:
1381 * raw_spin_lock_irq(rq->lock)
1382 *
1383 * This function is called during schedule() when a kworker is going
1384 * to sleep. It's used by psi to identify aggregation workers during
1385 * dequeuing, to allow periodic aggregation to shut-off when that
1386 * worker is the last task in the system or cgroup to go to sleep.
1387 *
1388 * As this function doesn't involve any workqueue-related locking, it
1389 * only returns stable values when called from inside the scheduler's
1390 * queuing and dequeuing paths, when @task, which must be a kworker,
1391 * is guaranteed to not be processing any works.
1392 *
1393 * Return:
1394 * The last work function %current executed as a worker, NULL if it
1395 * hasn't executed any work yet.
1396 */
1397work_func_t wq_worker_last_func(struct task_struct *task)
1398{
1399 struct worker *worker = kthread_data(task);
1400
1401 return worker->last_func;
1402}
1403
1404/**
1405 * get_pwq - get an extra reference on the specified pool_workqueue
1406 * @pwq: pool_workqueue to get
1407 *
1408 * Obtain an extra reference on @pwq. The caller should guarantee that
1409 * @pwq has positive refcnt and be holding the matching pool->lock.
1410 */
1411static void get_pwq(struct pool_workqueue *pwq)
1412{
1413 lockdep_assert_held(&pwq->pool->lock);
1414 WARN_ON_ONCE(pwq->refcnt <= 0);
1415 pwq->refcnt++;
1416}
1417
1418/**
1419 * put_pwq - put a pool_workqueue reference
1420 * @pwq: pool_workqueue to put
1421 *
1422 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1423 * destruction. The caller should be holding the matching pool->lock.
1424 */
1425static void put_pwq(struct pool_workqueue *pwq)
1426{
1427 lockdep_assert_held(&pwq->pool->lock);
1428 if (likely(--pwq->refcnt))
1429 return;
1430 /*
1431 * @pwq can't be released under pool->lock, bounce to a dedicated
1432 * kthread_worker to avoid A-A deadlocks.
1433 */
1434 kthread_queue_work(pwq_release_worker, &pwq->release_work);
1435}
1436
1437/**
1438 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1439 * @pwq: pool_workqueue to put (can be %NULL)
1440 *
1441 * put_pwq() with locking. This function also allows %NULL @pwq.
1442 */
1443static void put_pwq_unlocked(struct pool_workqueue *pwq)
1444{
1445 if (pwq) {
1446 /*
1447 * As both pwqs and pools are RCU protected, the
1448 * following lock operations are safe.
1449 */
1450 raw_spin_lock_irq(&pwq->pool->lock);
1451 put_pwq(pwq);
1452 raw_spin_unlock_irq(&pwq->pool->lock);
1453 }
1454}
1455
1456static void pwq_activate_inactive_work(struct work_struct *work)
1457{
1458 struct pool_workqueue *pwq = get_work_pwq(work);
1459
1460 trace_workqueue_activate_work(work);
1461 if (list_empty(&pwq->pool->worklist))
1462 pwq->pool->watchdog_ts = jiffies;
1463 move_linked_works(work, &pwq->pool->worklist, NULL);
1464 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1465 pwq->nr_active++;
1466}
1467
1468static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1469{
1470 struct work_struct *work = list_first_entry(&pwq->inactive_works,
1471 struct work_struct, entry);
1472
1473 pwq_activate_inactive_work(work);
1474}
1475
1476/**
1477 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1478 * @pwq: pwq of interest
1479 * @work_data: work_data of work which left the queue
1480 *
1481 * A work either has completed or is removed from pending queue,
1482 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1483 *
1484 * CONTEXT:
1485 * raw_spin_lock_irq(pool->lock).
1486 */
1487static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1488{
1489 int color = get_work_color(work_data);
1490
1491 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1492 pwq->nr_active--;
1493 if (!list_empty(&pwq->inactive_works)) {
1494 /* one down, submit an inactive one */
1495 if (pwq->nr_active < pwq->max_active)
1496 pwq_activate_first_inactive(pwq);
1497 }
1498 }
1499
1500 pwq->nr_in_flight[color]--;
1501
1502 /* is flush in progress and are we at the flushing tip? */
1503 if (likely(pwq->flush_color != color))
1504 goto out_put;
1505
1506 /* are there still in-flight works? */
1507 if (pwq->nr_in_flight[color])
1508 goto out_put;
1509
1510 /* this pwq is done, clear flush_color */
1511 pwq->flush_color = -1;
1512
1513 /*
1514 * If this was the last pwq, wake up the first flusher. It
1515 * will handle the rest.
1516 */
1517 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1518 complete(&pwq->wq->first_flusher->done);
1519out_put:
1520 put_pwq(pwq);
1521}
1522
1523/**
1524 * try_to_grab_pending - steal work item from worklist and disable irq
1525 * @work: work item to steal
1526 * @is_dwork: @work is a delayed_work
1527 * @flags: place to store irq state
1528 *
1529 * Try to grab PENDING bit of @work. This function can handle @work in any
1530 * stable state - idle, on timer or on worklist.
1531 *
1532 * Return:
1533 *
1534 * ======== ================================================================
1535 * 1 if @work was pending and we successfully stole PENDING
1536 * 0 if @work was idle and we claimed PENDING
1537 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1538 * -ENOENT if someone else is canceling @work, this state may persist
1539 * for arbitrarily long
1540 * ======== ================================================================
1541 *
1542 * Note:
1543 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1544 * interrupted while holding PENDING and @work off queue, irq must be
1545 * disabled on entry. This, combined with delayed_work->timer being
1546 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1547 *
1548 * On successful return, >= 0, irq is disabled and the caller is
1549 * responsible for releasing it using local_irq_restore(*@flags).
1550 *
1551 * This function is safe to call from any context including IRQ handler.
1552 */
1553static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1554 unsigned long *flags)
1555{
1556 struct worker_pool *pool;
1557 struct pool_workqueue *pwq;
1558
1559 local_irq_save(*flags);
1560
1561 /* try to steal the timer if it exists */
1562 if (is_dwork) {
1563 struct delayed_work *dwork = to_delayed_work(work);
1564
1565 /*
1566 * dwork->timer is irqsafe. If del_timer() fails, it's
1567 * guaranteed that the timer is not queued anywhere and not
1568 * running on the local CPU.
1569 */
1570 if (likely(del_timer(&dwork->timer)))
1571 return 1;
1572 }
1573
1574 /* try to claim PENDING the normal way */
1575 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1576 return 0;
1577
1578 rcu_read_lock();
1579 /*
1580 * The queueing is in progress, or it is already queued. Try to
1581 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1582 */
1583 pool = get_work_pool(work);
1584 if (!pool)
1585 goto fail;
1586
1587 raw_spin_lock(&pool->lock);
1588 /*
1589 * work->data is guaranteed to point to pwq only while the work
1590 * item is queued on pwq->wq, and both updating work->data to point
1591 * to pwq on queueing and to pool on dequeueing are done under
1592 * pwq->pool->lock. This in turn guarantees that, if work->data
1593 * points to pwq which is associated with a locked pool, the work
1594 * item is currently queued on that pool.
1595 */
1596 pwq = get_work_pwq(work);
1597 if (pwq && pwq->pool == pool) {
1598 debug_work_deactivate(work);
1599
1600 /*
1601 * A cancelable inactive work item must be in the
1602 * pwq->inactive_works since a queued barrier can't be
1603 * canceled (see the comments in insert_wq_barrier()).
1604 *
1605 * An inactive work item cannot be grabbed directly because
1606 * it might have linked barrier work items which, if left
1607 * on the inactive_works list, will confuse pwq->nr_active
1608 * management later on and cause stall. Make sure the work
1609 * item is activated before grabbing.
1610 */
1611 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1612 pwq_activate_inactive_work(work);
1613
1614 list_del_init(&work->entry);
1615 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1616
1617 /* work->data points to pwq iff queued, point to pool */
1618 set_work_pool_and_keep_pending(work, pool->id);
1619
1620 raw_spin_unlock(&pool->lock);
1621 rcu_read_unlock();
1622 return 1;
1623 }
1624 raw_spin_unlock(&pool->lock);
1625fail:
1626 rcu_read_unlock();
1627 local_irq_restore(*flags);
1628 if (work_is_canceling(work))
1629 return -ENOENT;
1630 cpu_relax();
1631 return -EAGAIN;
1632}
1633
1634/**
1635 * insert_work - insert a work into a pool
1636 * @pwq: pwq @work belongs to
1637 * @work: work to insert
1638 * @head: insertion point
1639 * @extra_flags: extra WORK_STRUCT_* flags to set
1640 *
1641 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1642 * work_struct flags.
1643 *
1644 * CONTEXT:
1645 * raw_spin_lock_irq(pool->lock).
1646 */
1647static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1648 struct list_head *head, unsigned int extra_flags)
1649{
1650 debug_work_activate(work);
1651
1652 /* record the work call stack in order to print it in KASAN reports */
1653 kasan_record_aux_stack_noalloc(work);
1654
1655 /* we own @work, set data and link */
1656 set_work_pwq(work, pwq, extra_flags);
1657 list_add_tail(&work->entry, head);
1658 get_pwq(pwq);
1659}
1660
1661/*
1662 * Test whether @work is being queued from another work executing on the
1663 * same workqueue.
1664 */
1665static bool is_chained_work(struct workqueue_struct *wq)
1666{
1667 struct worker *worker;
1668
1669 worker = current_wq_worker();
1670 /*
1671 * Return %true iff I'm a worker executing a work item on @wq. If
1672 * I'm @worker, it's safe to dereference it without locking.
1673 */
1674 return worker && worker->current_pwq->wq == wq;
1675}
1676
1677/*
1678 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1679 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1680 * avoid perturbing sensitive tasks.
1681 */
1682static int wq_select_unbound_cpu(int cpu)
1683{
1684 int new_cpu;
1685
1686 if (likely(!wq_debug_force_rr_cpu)) {
1687 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1688 return cpu;
1689 } else {
1690 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
1691 }
1692
1693 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1694 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1695 if (unlikely(new_cpu >= nr_cpu_ids)) {
1696 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1697 if (unlikely(new_cpu >= nr_cpu_ids))
1698 return cpu;
1699 }
1700 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1701
1702 return new_cpu;
1703}
1704
1705static void __queue_work(int cpu, struct workqueue_struct *wq,
1706 struct work_struct *work)
1707{
1708 struct pool_workqueue *pwq;
1709 struct worker_pool *last_pool, *pool;
1710 unsigned int work_flags;
1711 unsigned int req_cpu = cpu;
1712
1713 /*
1714 * While a work item is PENDING && off queue, a task trying to
1715 * steal the PENDING will busy-loop waiting for it to either get
1716 * queued or lose PENDING. Grabbing PENDING and queueing should
1717 * happen with IRQ disabled.
1718 */
1719 lockdep_assert_irqs_disabled();
1720
1721
1722 /*
1723 * For a draining wq, only works from the same workqueue are
1724 * allowed. The __WQ_DESTROYING helps to spot the issue that
1725 * queues a new work item to a wq after destroy_workqueue(wq).
1726 */
1727 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1728 WARN_ON_ONCE(!is_chained_work(wq))))
1729 return;
1730 rcu_read_lock();
1731retry:
1732 /* pwq which will be used unless @work is executing elsewhere */
1733 if (req_cpu == WORK_CPU_UNBOUND) {
1734 if (wq->flags & WQ_UNBOUND)
1735 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1736 else
1737 cpu = raw_smp_processor_id();
1738 }
1739
1740 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
1741 pool = pwq->pool;
1742
1743 /*
1744 * If @work was previously on a different pool, it might still be
1745 * running there, in which case the work needs to be queued on that
1746 * pool to guarantee non-reentrancy.
1747 */
1748 last_pool = get_work_pool(work);
1749 if (last_pool && last_pool != pool) {
1750 struct worker *worker;
1751
1752 raw_spin_lock(&last_pool->lock);
1753
1754 worker = find_worker_executing_work(last_pool, work);
1755
1756 if (worker && worker->current_pwq->wq == wq) {
1757 pwq = worker->current_pwq;
1758 pool = pwq->pool;
1759 WARN_ON_ONCE(pool != last_pool);
1760 } else {
1761 /* meh... not running there, queue here */
1762 raw_spin_unlock(&last_pool->lock);
1763 raw_spin_lock(&pool->lock);
1764 }
1765 } else {
1766 raw_spin_lock(&pool->lock);
1767 }
1768
1769 /*
1770 * pwq is determined and locked. For unbound pools, we could have raced
1771 * with pwq release and it could already be dead. If its refcnt is zero,
1772 * repeat pwq selection. Note that unbound pwqs never die without
1773 * another pwq replacing it in cpu_pwq or while work items are executing
1774 * on it, so the retrying is guaranteed to make forward-progress.
1775 */
1776 if (unlikely(!pwq->refcnt)) {
1777 if (wq->flags & WQ_UNBOUND) {
1778 raw_spin_unlock(&pool->lock);
1779 cpu_relax();
1780 goto retry;
1781 }
1782 /* oops */
1783 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1784 wq->name, cpu);
1785 }
1786
1787 /* pwq determined, queue */
1788 trace_workqueue_queue_work(req_cpu, pwq, work);
1789
1790 if (WARN_ON(!list_empty(&work->entry)))
1791 goto out;
1792
1793 pwq->nr_in_flight[pwq->work_color]++;
1794 work_flags = work_color_to_flags(pwq->work_color);
1795
1796 if (likely(pwq->nr_active < pwq->max_active)) {
1797 if (list_empty(&pool->worklist))
1798 pool->watchdog_ts = jiffies;
1799
1800 trace_workqueue_activate_work(work);
1801 pwq->nr_active++;
1802 insert_work(pwq, work, &pool->worklist, work_flags);
1803 kick_pool(pool);
1804 } else {
1805 work_flags |= WORK_STRUCT_INACTIVE;
1806 insert_work(pwq, work, &pwq->inactive_works, work_flags);
1807 }
1808
1809out:
1810 raw_spin_unlock(&pool->lock);
1811 rcu_read_unlock();
1812}
1813
1814/**
1815 * queue_work_on - queue work on specific cpu
1816 * @cpu: CPU number to execute work on
1817 * @wq: workqueue to use
1818 * @work: work to queue
1819 *
1820 * We queue the work to a specific CPU, the caller must ensure it
1821 * can't go away. Callers that fail to ensure that the specified
1822 * CPU cannot go away will execute on a randomly chosen CPU.
1823 * But note well that callers specifying a CPU that never has been
1824 * online will get a splat.
1825 *
1826 * Return: %false if @work was already on a queue, %true otherwise.
1827 */
1828bool queue_work_on(int cpu, struct workqueue_struct *wq,
1829 struct work_struct *work)
1830{
1831 bool ret = false;
1832 unsigned long flags;
1833
1834 local_irq_save(flags);
1835
1836 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1837 __queue_work(cpu, wq, work);
1838 ret = true;
1839 }
1840
1841 local_irq_restore(flags);
1842 return ret;
1843}
1844EXPORT_SYMBOL(queue_work_on);
1845
1846/**
1847 * select_numa_node_cpu - Select a CPU based on NUMA node
1848 * @node: NUMA node ID that we want to select a CPU from
1849 *
1850 * This function will attempt to find a "random" cpu available on a given
1851 * node. If there are no CPUs available on the given node it will return
1852 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1853 * available CPU if we need to schedule this work.
1854 */
1855static int select_numa_node_cpu(int node)
1856{
1857 int cpu;
1858
1859 /* Delay binding to CPU if node is not valid or online */
1860 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1861 return WORK_CPU_UNBOUND;
1862
1863 /* Use local node/cpu if we are already there */
1864 cpu = raw_smp_processor_id();
1865 if (node == cpu_to_node(cpu))
1866 return cpu;
1867
1868 /* Use "random" otherwise know as "first" online CPU of node */
1869 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1870
1871 /* If CPU is valid return that, otherwise just defer */
1872 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1873}
1874
1875/**
1876 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1877 * @node: NUMA node that we are targeting the work for
1878 * @wq: workqueue to use
1879 * @work: work to queue
1880 *
1881 * We queue the work to a "random" CPU within a given NUMA node. The basic
1882 * idea here is to provide a way to somehow associate work with a given
1883 * NUMA node.
1884 *
1885 * This function will only make a best effort attempt at getting this onto
1886 * the right NUMA node. If no node is requested or the requested node is
1887 * offline then we just fall back to standard queue_work behavior.
1888 *
1889 * Currently the "random" CPU ends up being the first available CPU in the
1890 * intersection of cpu_online_mask and the cpumask of the node, unless we
1891 * are running on the node. In that case we just use the current CPU.
1892 *
1893 * Return: %false if @work was already on a queue, %true otherwise.
1894 */
1895bool queue_work_node(int node, struct workqueue_struct *wq,
1896 struct work_struct *work)
1897{
1898 unsigned long flags;
1899 bool ret = false;
1900
1901 /*
1902 * This current implementation is specific to unbound workqueues.
1903 * Specifically we only return the first available CPU for a given
1904 * node instead of cycling through individual CPUs within the node.
1905 *
1906 * If this is used with a per-cpu workqueue then the logic in
1907 * workqueue_select_cpu_near would need to be updated to allow for
1908 * some round robin type logic.
1909 */
1910 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1911
1912 local_irq_save(flags);
1913
1914 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1915 int cpu = select_numa_node_cpu(node);
1916
1917 __queue_work(cpu, wq, work);
1918 ret = true;
1919 }
1920
1921 local_irq_restore(flags);
1922 return ret;
1923}
1924EXPORT_SYMBOL_GPL(queue_work_node);
1925
1926void delayed_work_timer_fn(struct timer_list *t)
1927{
1928 struct delayed_work *dwork = from_timer(dwork, t, timer);
1929
1930 /* should have been called from irqsafe timer with irq already off */
1931 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1932}
1933EXPORT_SYMBOL(delayed_work_timer_fn);
1934
1935static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1936 struct delayed_work *dwork, unsigned long delay)
1937{
1938 struct timer_list *timer = &dwork->timer;
1939 struct work_struct *work = &dwork->work;
1940
1941 WARN_ON_ONCE(!wq);
1942 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1943 WARN_ON_ONCE(timer_pending(timer));
1944 WARN_ON_ONCE(!list_empty(&work->entry));
1945
1946 /*
1947 * If @delay is 0, queue @dwork->work immediately. This is for
1948 * both optimization and correctness. The earliest @timer can
1949 * expire is on the closest next tick and delayed_work users depend
1950 * on that there's no such delay when @delay is 0.
1951 */
1952 if (!delay) {
1953 __queue_work(cpu, wq, &dwork->work);
1954 return;
1955 }
1956
1957 dwork->wq = wq;
1958 dwork->cpu = cpu;
1959 timer->expires = jiffies + delay;
1960
1961 if (unlikely(cpu != WORK_CPU_UNBOUND))
1962 add_timer_on(timer, cpu);
1963 else
1964 add_timer(timer);
1965}
1966
1967/**
1968 * queue_delayed_work_on - queue work on specific CPU after delay
1969 * @cpu: CPU number to execute work on
1970 * @wq: workqueue to use
1971 * @dwork: work to queue
1972 * @delay: number of jiffies to wait before queueing
1973 *
1974 * Return: %false if @work was already on a queue, %true otherwise. If
1975 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1976 * execution.
1977 */
1978bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1979 struct delayed_work *dwork, unsigned long delay)
1980{
1981 struct work_struct *work = &dwork->work;
1982 bool ret = false;
1983 unsigned long flags;
1984
1985 /* read the comment in __queue_work() */
1986 local_irq_save(flags);
1987
1988 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1989 __queue_delayed_work(cpu, wq, dwork, delay);
1990 ret = true;
1991 }
1992
1993 local_irq_restore(flags);
1994 return ret;
1995}
1996EXPORT_SYMBOL(queue_delayed_work_on);
1997
1998/**
1999 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2000 * @cpu: CPU number to execute work on
2001 * @wq: workqueue to use
2002 * @dwork: work to queue
2003 * @delay: number of jiffies to wait before queueing
2004 *
2005 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2006 * modify @dwork's timer so that it expires after @delay. If @delay is
2007 * zero, @work is guaranteed to be scheduled immediately regardless of its
2008 * current state.
2009 *
2010 * Return: %false if @dwork was idle and queued, %true if @dwork was
2011 * pending and its timer was modified.
2012 *
2013 * This function is safe to call from any context including IRQ handler.
2014 * See try_to_grab_pending() for details.
2015 */
2016bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2017 struct delayed_work *dwork, unsigned long delay)
2018{
2019 unsigned long flags;
2020 int ret;
2021
2022 do {
2023 ret = try_to_grab_pending(&dwork->work, true, &flags);
2024 } while (unlikely(ret == -EAGAIN));
2025
2026 if (likely(ret >= 0)) {
2027 __queue_delayed_work(cpu, wq, dwork, delay);
2028 local_irq_restore(flags);
2029 }
2030
2031 /* -ENOENT from try_to_grab_pending() becomes %true */
2032 return ret;
2033}
2034EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2035
2036static void rcu_work_rcufn(struct rcu_head *rcu)
2037{
2038 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2039
2040 /* read the comment in __queue_work() */
2041 local_irq_disable();
2042 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2043 local_irq_enable();
2044}
2045
2046/**
2047 * queue_rcu_work - queue work after a RCU grace period
2048 * @wq: workqueue to use
2049 * @rwork: work to queue
2050 *
2051 * Return: %false if @rwork was already pending, %true otherwise. Note
2052 * that a full RCU grace period is guaranteed only after a %true return.
2053 * While @rwork is guaranteed to be executed after a %false return, the
2054 * execution may happen before a full RCU grace period has passed.
2055 */
2056bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2057{
2058 struct work_struct *work = &rwork->work;
2059
2060 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2061 rwork->wq = wq;
2062 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2063 return true;
2064 }
2065
2066 return false;
2067}
2068EXPORT_SYMBOL(queue_rcu_work);
2069
2070static struct worker *alloc_worker(int node)
2071{
2072 struct worker *worker;
2073
2074 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2075 if (worker) {
2076 INIT_LIST_HEAD(&worker->entry);
2077 INIT_LIST_HEAD(&worker->scheduled);
2078 INIT_LIST_HEAD(&worker->node);
2079 /* on creation a worker is in !idle && prep state */
2080 worker->flags = WORKER_PREP;
2081 }
2082 return worker;
2083}
2084
2085static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2086{
2087 if (pool->cpu < 0 && pool->attrs->affn_strict)
2088 return pool->attrs->__pod_cpumask;
2089 else
2090 return pool->attrs->cpumask;
2091}
2092
2093/**
2094 * worker_attach_to_pool() - attach a worker to a pool
2095 * @worker: worker to be attached
2096 * @pool: the target pool
2097 *
2098 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2099 * cpu-binding of @worker are kept coordinated with the pool across
2100 * cpu-[un]hotplugs.
2101 */
2102static void worker_attach_to_pool(struct worker *worker,
2103 struct worker_pool *pool)
2104{
2105 mutex_lock(&wq_pool_attach_mutex);
2106
2107 /*
2108 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
2109 * stable across this function. See the comments above the flag
2110 * definition for details.
2111 */
2112 if (pool->flags & POOL_DISASSOCIATED)
2113 worker->flags |= WORKER_UNBOUND;
2114 else
2115 kthread_set_per_cpu(worker->task, pool->cpu);
2116
2117 if (worker->rescue_wq)
2118 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2119
2120 list_add_tail(&worker->node, &pool->workers);
2121 worker->pool = pool;
2122
2123 mutex_unlock(&wq_pool_attach_mutex);
2124}
2125
2126/**
2127 * worker_detach_from_pool() - detach a worker from its pool
2128 * @worker: worker which is attached to its pool
2129 *
2130 * Undo the attaching which had been done in worker_attach_to_pool(). The
2131 * caller worker shouldn't access to the pool after detached except it has
2132 * other reference to the pool.
2133 */
2134static void worker_detach_from_pool(struct worker *worker)
2135{
2136 struct worker_pool *pool = worker->pool;
2137 struct completion *detach_completion = NULL;
2138
2139 mutex_lock(&wq_pool_attach_mutex);
2140
2141 kthread_set_per_cpu(worker->task, -1);
2142 list_del(&worker->node);
2143 worker->pool = NULL;
2144
2145 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2146 detach_completion = pool->detach_completion;
2147 mutex_unlock(&wq_pool_attach_mutex);
2148
2149 /* clear leftover flags without pool->lock after it is detached */
2150 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2151
2152 if (detach_completion)
2153 complete(detach_completion);
2154}
2155
2156/**
2157 * create_worker - create a new workqueue worker
2158 * @pool: pool the new worker will belong to
2159 *
2160 * Create and start a new worker which is attached to @pool.
2161 *
2162 * CONTEXT:
2163 * Might sleep. Does GFP_KERNEL allocations.
2164 *
2165 * Return:
2166 * Pointer to the newly created worker.
2167 */
2168static struct worker *create_worker(struct worker_pool *pool)
2169{
2170 struct worker *worker;
2171 int id;
2172 char id_buf[23];
2173
2174 /* ID is needed to determine kthread name */
2175 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2176 if (id < 0) {
2177 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2178 ERR_PTR(id));
2179 return NULL;
2180 }
2181
2182 worker = alloc_worker(pool->node);
2183 if (!worker) {
2184 pr_err_once("workqueue: Failed to allocate a worker\n");
2185 goto fail;
2186 }
2187
2188 worker->id = id;
2189
2190 if (pool->cpu >= 0)
2191 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2192 pool->attrs->nice < 0 ? "H" : "");
2193 else
2194 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2195
2196 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
2197 "kworker/%s", id_buf);
2198 if (IS_ERR(worker->task)) {
2199 if (PTR_ERR(worker->task) == -EINTR) {
2200 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2201 id_buf);
2202 } else {
2203 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2204 worker->task);
2205 }
2206 goto fail;
2207 }
2208
2209 set_user_nice(worker->task, pool->attrs->nice);
2210 kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2211
2212 /* successful, attach the worker to the pool */
2213 worker_attach_to_pool(worker, pool);
2214
2215 /* start the newly created worker */
2216 raw_spin_lock_irq(&pool->lock);
2217
2218 worker->pool->nr_workers++;
2219 worker_enter_idle(worker);
2220 kick_pool(pool);
2221
2222 /*
2223 * @worker is waiting on a completion in kthread() and will trigger hung
2224 * check if not woken up soon. As kick_pool() might not have waken it
2225 * up, wake it up explicitly once more.
2226 */
2227 wake_up_process(worker->task);
2228
2229 raw_spin_unlock_irq(&pool->lock);
2230
2231 return worker;
2232
2233fail:
2234 ida_free(&pool->worker_ida, id);
2235 kfree(worker);
2236 return NULL;
2237}
2238
2239static void unbind_worker(struct worker *worker)
2240{
2241 lockdep_assert_held(&wq_pool_attach_mutex);
2242
2243 kthread_set_per_cpu(worker->task, -1);
2244 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2245 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2246 else
2247 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2248}
2249
2250static void wake_dying_workers(struct list_head *cull_list)
2251{
2252 struct worker *worker, *tmp;
2253
2254 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2255 list_del_init(&worker->entry);
2256 unbind_worker(worker);
2257 /*
2258 * If the worker was somehow already running, then it had to be
2259 * in pool->idle_list when set_worker_dying() happened or we
2260 * wouldn't have gotten here.
2261 *
2262 * Thus, the worker must either have observed the WORKER_DIE
2263 * flag, or have set its state to TASK_IDLE. Either way, the
2264 * below will be observed by the worker and is safe to do
2265 * outside of pool->lock.
2266 */
2267 wake_up_process(worker->task);
2268 }
2269}
2270
2271/**
2272 * set_worker_dying - Tag a worker for destruction
2273 * @worker: worker to be destroyed
2274 * @list: transfer worker away from its pool->idle_list and into list
2275 *
2276 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2277 * should be idle.
2278 *
2279 * CONTEXT:
2280 * raw_spin_lock_irq(pool->lock).
2281 */
2282static void set_worker_dying(struct worker *worker, struct list_head *list)
2283{
2284 struct worker_pool *pool = worker->pool;
2285
2286 lockdep_assert_held(&pool->lock);
2287 lockdep_assert_held(&wq_pool_attach_mutex);
2288
2289 /* sanity check frenzy */
2290 if (WARN_ON(worker->current_work) ||
2291 WARN_ON(!list_empty(&worker->scheduled)) ||
2292 WARN_ON(!(worker->flags & WORKER_IDLE)))
2293 return;
2294
2295 pool->nr_workers--;
2296 pool->nr_idle--;
2297
2298 worker->flags |= WORKER_DIE;
2299
2300 list_move(&worker->entry, list);
2301 list_move(&worker->node, &pool->dying_workers);
2302}
2303
2304/**
2305 * idle_worker_timeout - check if some idle workers can now be deleted.
2306 * @t: The pool's idle_timer that just expired
2307 *
2308 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2309 * worker_leave_idle(), as a worker flicking between idle and active while its
2310 * pool is at the too_many_workers() tipping point would cause too much timer
2311 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2312 * it expire and re-evaluate things from there.
2313 */
2314static void idle_worker_timeout(struct timer_list *t)
2315{
2316 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2317 bool do_cull = false;
2318
2319 if (work_pending(&pool->idle_cull_work))
2320 return;
2321
2322 raw_spin_lock_irq(&pool->lock);
2323
2324 if (too_many_workers(pool)) {
2325 struct worker *worker;
2326 unsigned long expires;
2327
2328 /* idle_list is kept in LIFO order, check the last one */
2329 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2330 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2331 do_cull = !time_before(jiffies, expires);
2332
2333 if (!do_cull)
2334 mod_timer(&pool->idle_timer, expires);
2335 }
2336 raw_spin_unlock_irq(&pool->lock);
2337
2338 if (do_cull)
2339 queue_work(system_unbound_wq, &pool->idle_cull_work);
2340}
2341
2342/**
2343 * idle_cull_fn - cull workers that have been idle for too long.
2344 * @work: the pool's work for handling these idle workers
2345 *
2346 * This goes through a pool's idle workers and gets rid of those that have been
2347 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2348 *
2349 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2350 * culled, so this also resets worker affinity. This requires a sleepable
2351 * context, hence the split between timer callback and work item.
2352 */
2353static void idle_cull_fn(struct work_struct *work)
2354{
2355 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2356 LIST_HEAD(cull_list);
2357
2358 /*
2359 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2360 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2361 * path. This is required as a previously-preempted worker could run after
2362 * set_worker_dying() has happened but before wake_dying_workers() did.
2363 */
2364 mutex_lock(&wq_pool_attach_mutex);
2365 raw_spin_lock_irq(&pool->lock);
2366
2367 while (too_many_workers(pool)) {
2368 struct worker *worker;
2369 unsigned long expires;
2370
2371 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2372 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2373
2374 if (time_before(jiffies, expires)) {
2375 mod_timer(&pool->idle_timer, expires);
2376 break;
2377 }
2378
2379 set_worker_dying(worker, &cull_list);
2380 }
2381
2382 raw_spin_unlock_irq(&pool->lock);
2383 wake_dying_workers(&cull_list);
2384 mutex_unlock(&wq_pool_attach_mutex);
2385}
2386
2387static void send_mayday(struct work_struct *work)
2388{
2389 struct pool_workqueue *pwq = get_work_pwq(work);
2390 struct workqueue_struct *wq = pwq->wq;
2391
2392 lockdep_assert_held(&wq_mayday_lock);
2393
2394 if (!wq->rescuer)
2395 return;
2396
2397 /* mayday mayday mayday */
2398 if (list_empty(&pwq->mayday_node)) {
2399 /*
2400 * If @pwq is for an unbound wq, its base ref may be put at
2401 * any time due to an attribute change. Pin @pwq until the
2402 * rescuer is done with it.
2403 */
2404 get_pwq(pwq);
2405 list_add_tail(&pwq->mayday_node, &wq->maydays);
2406 wake_up_process(wq->rescuer->task);
2407 pwq->stats[PWQ_STAT_MAYDAY]++;
2408 }
2409}
2410
2411static void pool_mayday_timeout(struct timer_list *t)
2412{
2413 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2414 struct work_struct *work;
2415
2416 raw_spin_lock_irq(&pool->lock);
2417 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2418
2419 if (need_to_create_worker(pool)) {
2420 /*
2421 * We've been trying to create a new worker but
2422 * haven't been successful. We might be hitting an
2423 * allocation deadlock. Send distress signals to
2424 * rescuers.
2425 */
2426 list_for_each_entry(work, &pool->worklist, entry)
2427 send_mayday(work);
2428 }
2429
2430 raw_spin_unlock(&wq_mayday_lock);
2431 raw_spin_unlock_irq(&pool->lock);
2432
2433 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2434}
2435
2436/**
2437 * maybe_create_worker - create a new worker if necessary
2438 * @pool: pool to create a new worker for
2439 *
2440 * Create a new worker for @pool if necessary. @pool is guaranteed to
2441 * have at least one idle worker on return from this function. If
2442 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2443 * sent to all rescuers with works scheduled on @pool to resolve
2444 * possible allocation deadlock.
2445 *
2446 * On return, need_to_create_worker() is guaranteed to be %false and
2447 * may_start_working() %true.
2448 *
2449 * LOCKING:
2450 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2451 * multiple times. Does GFP_KERNEL allocations. Called only from
2452 * manager.
2453 */
2454static void maybe_create_worker(struct worker_pool *pool)
2455__releases(&pool->lock)
2456__acquires(&pool->lock)
2457{
2458restart:
2459 raw_spin_unlock_irq(&pool->lock);
2460
2461 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2462 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2463
2464 while (true) {
2465 if (create_worker(pool) || !need_to_create_worker(pool))
2466 break;
2467
2468 schedule_timeout_interruptible(CREATE_COOLDOWN);
2469
2470 if (!need_to_create_worker(pool))
2471 break;
2472 }
2473
2474 del_timer_sync(&pool->mayday_timer);
2475 raw_spin_lock_irq(&pool->lock);
2476 /*
2477 * This is necessary even after a new worker was just successfully
2478 * created as @pool->lock was dropped and the new worker might have
2479 * already become busy.
2480 */
2481 if (need_to_create_worker(pool))
2482 goto restart;
2483}
2484
2485/**
2486 * manage_workers - manage worker pool
2487 * @worker: self
2488 *
2489 * Assume the manager role and manage the worker pool @worker belongs
2490 * to. At any given time, there can be only zero or one manager per
2491 * pool. The exclusion is handled automatically by this function.
2492 *
2493 * The caller can safely start processing works on false return. On
2494 * true return, it's guaranteed that need_to_create_worker() is false
2495 * and may_start_working() is true.
2496 *
2497 * CONTEXT:
2498 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2499 * multiple times. Does GFP_KERNEL allocations.
2500 *
2501 * Return:
2502 * %false if the pool doesn't need management and the caller can safely
2503 * start processing works, %true if management function was performed and
2504 * the conditions that the caller verified before calling the function may
2505 * no longer be true.
2506 */
2507static bool manage_workers(struct worker *worker)
2508{
2509 struct worker_pool *pool = worker->pool;
2510
2511 if (pool->flags & POOL_MANAGER_ACTIVE)
2512 return false;
2513
2514 pool->flags |= POOL_MANAGER_ACTIVE;
2515 pool->manager = worker;
2516
2517 maybe_create_worker(pool);
2518
2519 pool->manager = NULL;
2520 pool->flags &= ~POOL_MANAGER_ACTIVE;
2521 rcuwait_wake_up(&manager_wait);
2522 return true;
2523}
2524
2525/**
2526 * process_one_work - process single work
2527 * @worker: self
2528 * @work: work to process
2529 *
2530 * Process @work. This function contains all the logics necessary to
2531 * process a single work including synchronization against and
2532 * interaction with other workers on the same cpu, queueing and
2533 * flushing. As long as context requirement is met, any worker can
2534 * call this function to process a work.
2535 *
2536 * CONTEXT:
2537 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2538 */
2539static void process_one_work(struct worker *worker, struct work_struct *work)
2540__releases(&pool->lock)
2541__acquires(&pool->lock)
2542{
2543 struct pool_workqueue *pwq = get_work_pwq(work);
2544 struct worker_pool *pool = worker->pool;
2545 unsigned long work_data;
2546#ifdef CONFIG_LOCKDEP
2547 /*
2548 * It is permissible to free the struct work_struct from
2549 * inside the function that is called from it, this we need to
2550 * take into account for lockdep too. To avoid bogus "held
2551 * lock freed" warnings as well as problems when looking into
2552 * work->lockdep_map, make a copy and use that here.
2553 */
2554 struct lockdep_map lockdep_map;
2555
2556 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2557#endif
2558 /* ensure we're on the correct CPU */
2559 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2560 raw_smp_processor_id() != pool->cpu);
2561
2562 /* claim and dequeue */
2563 debug_work_deactivate(work);
2564 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2565 worker->current_work = work;
2566 worker->current_func = work->func;
2567 worker->current_pwq = pwq;
2568 worker->current_at = worker->task->se.sum_exec_runtime;
2569 work_data = *work_data_bits(work);
2570 worker->current_color = get_work_color(work_data);
2571
2572 /*
2573 * Record wq name for cmdline and debug reporting, may get
2574 * overridden through set_worker_desc().
2575 */
2576 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2577
2578 list_del_init(&work->entry);
2579
2580 /*
2581 * CPU intensive works don't participate in concurrency management.
2582 * They're the scheduler's responsibility. This takes @worker out
2583 * of concurrency management and the next code block will chain
2584 * execution of the pending work items.
2585 */
2586 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
2587 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2588
2589 /*
2590 * Kick @pool if necessary. It's always noop for per-cpu worker pools
2591 * since nr_running would always be >= 1 at this point. This is used to
2592 * chain execution of the pending work items for WORKER_NOT_RUNNING
2593 * workers such as the UNBOUND and CPU_INTENSIVE ones.
2594 */
2595 kick_pool(pool);
2596
2597 /*
2598 * Record the last pool and clear PENDING which should be the last
2599 * update to @work. Also, do this inside @pool->lock so that
2600 * PENDING and queued state changes happen together while IRQ is
2601 * disabled.
2602 */
2603 set_work_pool_and_clear_pending(work, pool->id);
2604
2605 pwq->stats[PWQ_STAT_STARTED]++;
2606 raw_spin_unlock_irq(&pool->lock);
2607
2608 lock_map_acquire(&pwq->wq->lockdep_map);
2609 lock_map_acquire(&lockdep_map);
2610 /*
2611 * Strictly speaking we should mark the invariant state without holding
2612 * any locks, that is, before these two lock_map_acquire()'s.
2613 *
2614 * However, that would result in:
2615 *
2616 * A(W1)
2617 * WFC(C)
2618 * A(W1)
2619 * C(C)
2620 *
2621 * Which would create W1->C->W1 dependencies, even though there is no
2622 * actual deadlock possible. There are two solutions, using a
2623 * read-recursive acquire on the work(queue) 'locks', but this will then
2624 * hit the lockdep limitation on recursive locks, or simply discard
2625 * these locks.
2626 *
2627 * AFAICT there is no possible deadlock scenario between the
2628 * flush_work() and complete() primitives (except for single-threaded
2629 * workqueues), so hiding them isn't a problem.
2630 */
2631 lockdep_invariant_state(true);
2632 trace_workqueue_execute_start(work);
2633 worker->current_func(work);
2634 /*
2635 * While we must be careful to not use "work" after this, the trace
2636 * point will only record its address.
2637 */
2638 trace_workqueue_execute_end(work, worker->current_func);
2639 pwq->stats[PWQ_STAT_COMPLETED]++;
2640 lock_map_release(&lockdep_map);
2641 lock_map_release(&pwq->wq->lockdep_map);
2642
2643 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2644 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2645 " last function: %ps\n",
2646 current->comm, preempt_count(), task_pid_nr(current),
2647 worker->current_func);
2648 debug_show_held_locks(current);
2649 dump_stack();
2650 }
2651
2652 /*
2653 * The following prevents a kworker from hogging CPU on !PREEMPTION
2654 * kernels, where a requeueing work item waiting for something to
2655 * happen could deadlock with stop_machine as such work item could
2656 * indefinitely requeue itself while all other CPUs are trapped in
2657 * stop_machine. At the same time, report a quiescent RCU state so
2658 * the same condition doesn't freeze RCU.
2659 */
2660 cond_resched();
2661
2662 raw_spin_lock_irq(&pool->lock);
2663
2664 /*
2665 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
2666 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
2667 * wq_cpu_intensive_thresh_us. Clear it.
2668 */
2669 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2670
2671 /* tag the worker for identification in schedule() */
2672 worker->last_func = worker->current_func;
2673
2674 /* we're done with it, release */
2675 hash_del(&worker->hentry);
2676 worker->current_work = NULL;
2677 worker->current_func = NULL;
2678 worker->current_pwq = NULL;
2679 worker->current_color = INT_MAX;
2680 pwq_dec_nr_in_flight(pwq, work_data);
2681}
2682
2683/**
2684 * process_scheduled_works - process scheduled works
2685 * @worker: self
2686 *
2687 * Process all scheduled works. Please note that the scheduled list
2688 * may change while processing a work, so this function repeatedly
2689 * fetches a work from the top and executes it.
2690 *
2691 * CONTEXT:
2692 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2693 * multiple times.
2694 */
2695static void process_scheduled_works(struct worker *worker)
2696{
2697 struct work_struct *work;
2698 bool first = true;
2699
2700 while ((work = list_first_entry_or_null(&worker->scheduled,
2701 struct work_struct, entry))) {
2702 if (first) {
2703 worker->pool->watchdog_ts = jiffies;
2704 first = false;
2705 }
2706 process_one_work(worker, work);
2707 }
2708}
2709
2710static void set_pf_worker(bool val)
2711{
2712 mutex_lock(&wq_pool_attach_mutex);
2713 if (val)
2714 current->flags |= PF_WQ_WORKER;
2715 else
2716 current->flags &= ~PF_WQ_WORKER;
2717 mutex_unlock(&wq_pool_attach_mutex);
2718}
2719
2720/**
2721 * worker_thread - the worker thread function
2722 * @__worker: self
2723 *
2724 * The worker thread function. All workers belong to a worker_pool -
2725 * either a per-cpu one or dynamic unbound one. These workers process all
2726 * work items regardless of their specific target workqueue. The only
2727 * exception is work items which belong to workqueues with a rescuer which
2728 * will be explained in rescuer_thread().
2729 *
2730 * Return: 0
2731 */
2732static int worker_thread(void *__worker)
2733{
2734 struct worker *worker = __worker;
2735 struct worker_pool *pool = worker->pool;
2736
2737 /* tell the scheduler that this is a workqueue worker */
2738 set_pf_worker(true);
2739woke_up:
2740 raw_spin_lock_irq(&pool->lock);
2741
2742 /* am I supposed to die? */
2743 if (unlikely(worker->flags & WORKER_DIE)) {
2744 raw_spin_unlock_irq(&pool->lock);
2745 set_pf_worker(false);
2746
2747 set_task_comm(worker->task, "kworker/dying");
2748 ida_free(&pool->worker_ida, worker->id);
2749 worker_detach_from_pool(worker);
2750 WARN_ON_ONCE(!list_empty(&worker->entry));
2751 kfree(worker);
2752 return 0;
2753 }
2754
2755 worker_leave_idle(worker);
2756recheck:
2757 /* no more worker necessary? */
2758 if (!need_more_worker(pool))
2759 goto sleep;
2760
2761 /* do we need to manage? */
2762 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2763 goto recheck;
2764
2765 /*
2766 * ->scheduled list can only be filled while a worker is
2767 * preparing to process a work or actually processing it.
2768 * Make sure nobody diddled with it while I was sleeping.
2769 */
2770 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2771
2772 /*
2773 * Finish PREP stage. We're guaranteed to have at least one idle
2774 * worker or that someone else has already assumed the manager
2775 * role. This is where @worker starts participating in concurrency
2776 * management if applicable and concurrency management is restored
2777 * after being rebound. See rebind_workers() for details.
2778 */
2779 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2780
2781 do {
2782 struct work_struct *work =
2783 list_first_entry(&pool->worklist,
2784 struct work_struct, entry);
2785
2786 if (assign_work(work, worker, NULL))
2787 process_scheduled_works(worker);
2788 } while (keep_working(pool));
2789
2790 worker_set_flags(worker, WORKER_PREP);
2791sleep:
2792 /*
2793 * pool->lock is held and there's no work to process and no need to
2794 * manage, sleep. Workers are woken up only while holding
2795 * pool->lock or from local cpu, so setting the current state
2796 * before releasing pool->lock is enough to prevent losing any
2797 * event.
2798 */
2799 worker_enter_idle(worker);
2800 __set_current_state(TASK_IDLE);
2801 raw_spin_unlock_irq(&pool->lock);
2802 schedule();
2803 goto woke_up;
2804}
2805
2806/**
2807 * rescuer_thread - the rescuer thread function
2808 * @__rescuer: self
2809 *
2810 * Workqueue rescuer thread function. There's one rescuer for each
2811 * workqueue which has WQ_MEM_RECLAIM set.
2812 *
2813 * Regular work processing on a pool may block trying to create a new
2814 * worker which uses GFP_KERNEL allocation which has slight chance of
2815 * developing into deadlock if some works currently on the same queue
2816 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2817 * the problem rescuer solves.
2818 *
2819 * When such condition is possible, the pool summons rescuers of all
2820 * workqueues which have works queued on the pool and let them process
2821 * those works so that forward progress can be guaranteed.
2822 *
2823 * This should happen rarely.
2824 *
2825 * Return: 0
2826 */
2827static int rescuer_thread(void *__rescuer)
2828{
2829 struct worker *rescuer = __rescuer;
2830 struct workqueue_struct *wq = rescuer->rescue_wq;
2831 bool should_stop;
2832
2833 set_user_nice(current, RESCUER_NICE_LEVEL);
2834
2835 /*
2836 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2837 * doesn't participate in concurrency management.
2838 */
2839 set_pf_worker(true);
2840repeat:
2841 set_current_state(TASK_IDLE);
2842
2843 /*
2844 * By the time the rescuer is requested to stop, the workqueue
2845 * shouldn't have any work pending, but @wq->maydays may still have
2846 * pwq(s) queued. This can happen by non-rescuer workers consuming
2847 * all the work items before the rescuer got to them. Go through
2848 * @wq->maydays processing before acting on should_stop so that the
2849 * list is always empty on exit.
2850 */
2851 should_stop = kthread_should_stop();
2852
2853 /* see whether any pwq is asking for help */
2854 raw_spin_lock_irq(&wq_mayday_lock);
2855
2856 while (!list_empty(&wq->maydays)) {
2857 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2858 struct pool_workqueue, mayday_node);
2859 struct worker_pool *pool = pwq->pool;
2860 struct work_struct *work, *n;
2861
2862 __set_current_state(TASK_RUNNING);
2863 list_del_init(&pwq->mayday_node);
2864
2865 raw_spin_unlock_irq(&wq_mayday_lock);
2866
2867 worker_attach_to_pool(rescuer, pool);
2868
2869 raw_spin_lock_irq(&pool->lock);
2870
2871 /*
2872 * Slurp in all works issued via this workqueue and
2873 * process'em.
2874 */
2875 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2876 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2877 if (get_work_pwq(work) == pwq &&
2878 assign_work(work, rescuer, &n))
2879 pwq->stats[PWQ_STAT_RESCUED]++;
2880 }
2881
2882 if (!list_empty(&rescuer->scheduled)) {
2883 process_scheduled_works(rescuer);
2884
2885 /*
2886 * The above execution of rescued work items could
2887 * have created more to rescue through
2888 * pwq_activate_first_inactive() or chained
2889 * queueing. Let's put @pwq back on mayday list so
2890 * that such back-to-back work items, which may be
2891 * being used to relieve memory pressure, don't
2892 * incur MAYDAY_INTERVAL delay inbetween.
2893 */
2894 if (pwq->nr_active && need_to_create_worker(pool)) {
2895 raw_spin_lock(&wq_mayday_lock);
2896 /*
2897 * Queue iff we aren't racing destruction
2898 * and somebody else hasn't queued it already.
2899 */
2900 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2901 get_pwq(pwq);
2902 list_add_tail(&pwq->mayday_node, &wq->maydays);
2903 }
2904 raw_spin_unlock(&wq_mayday_lock);
2905 }
2906 }
2907
2908 /*
2909 * Put the reference grabbed by send_mayday(). @pool won't
2910 * go away while we're still attached to it.
2911 */
2912 put_pwq(pwq);
2913
2914 /*
2915 * Leave this pool. Notify regular workers; otherwise, we end up
2916 * with 0 concurrency and stalling the execution.
2917 */
2918 kick_pool(pool);
2919
2920 raw_spin_unlock_irq(&pool->lock);
2921
2922 worker_detach_from_pool(rescuer);
2923
2924 raw_spin_lock_irq(&wq_mayday_lock);
2925 }
2926
2927 raw_spin_unlock_irq(&wq_mayday_lock);
2928
2929 if (should_stop) {
2930 __set_current_state(TASK_RUNNING);
2931 set_pf_worker(false);
2932 return 0;
2933 }
2934
2935 /* rescuers should never participate in concurrency management */
2936 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2937 schedule();
2938 goto repeat;
2939}
2940
2941/**
2942 * check_flush_dependency - check for flush dependency sanity
2943 * @target_wq: workqueue being flushed
2944 * @target_work: work item being flushed (NULL for workqueue flushes)
2945 *
2946 * %current is trying to flush the whole @target_wq or @target_work on it.
2947 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2948 * reclaiming memory or running on a workqueue which doesn't have
2949 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2950 * a deadlock.
2951 */
2952static void check_flush_dependency(struct workqueue_struct *target_wq,
2953 struct work_struct *target_work)
2954{
2955 work_func_t target_func = target_work ? target_work->func : NULL;
2956 struct worker *worker;
2957
2958 if (target_wq->flags & WQ_MEM_RECLAIM)
2959 return;
2960
2961 worker = current_wq_worker();
2962
2963 WARN_ONCE(current->flags & PF_MEMALLOC,
2964 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2965 current->pid, current->comm, target_wq->name, target_func);
2966 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2967 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2968 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2969 worker->current_pwq->wq->name, worker->current_func,
2970 target_wq->name, target_func);
2971}
2972
2973struct wq_barrier {
2974 struct work_struct work;
2975 struct completion done;
2976 struct task_struct *task; /* purely informational */
2977};
2978
2979static void wq_barrier_func(struct work_struct *work)
2980{
2981 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2982 complete(&barr->done);
2983}
2984
2985/**
2986 * insert_wq_barrier - insert a barrier work
2987 * @pwq: pwq to insert barrier into
2988 * @barr: wq_barrier to insert
2989 * @target: target work to attach @barr to
2990 * @worker: worker currently executing @target, NULL if @target is not executing
2991 *
2992 * @barr is linked to @target such that @barr is completed only after
2993 * @target finishes execution. Please note that the ordering
2994 * guarantee is observed only with respect to @target and on the local
2995 * cpu.
2996 *
2997 * Currently, a queued barrier can't be canceled. This is because
2998 * try_to_grab_pending() can't determine whether the work to be
2999 * grabbed is at the head of the queue and thus can't clear LINKED
3000 * flag of the previous work while there must be a valid next work
3001 * after a work with LINKED flag set.
3002 *
3003 * Note that when @worker is non-NULL, @target may be modified
3004 * underneath us, so we can't reliably determine pwq from @target.
3005 *
3006 * CONTEXT:
3007 * raw_spin_lock_irq(pool->lock).
3008 */
3009static void insert_wq_barrier(struct pool_workqueue *pwq,
3010 struct wq_barrier *barr,
3011 struct work_struct *target, struct worker *worker)
3012{
3013 unsigned int work_flags = 0;
3014 unsigned int work_color;
3015 struct list_head *head;
3016
3017 /*
3018 * debugobject calls are safe here even with pool->lock locked
3019 * as we know for sure that this will not trigger any of the
3020 * checks and call back into the fixup functions where we
3021 * might deadlock.
3022 */
3023 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
3024 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3025
3026 init_completion_map(&barr->done, &target->lockdep_map);
3027
3028 barr->task = current;
3029
3030 /* The barrier work item does not participate in pwq->nr_active. */
3031 work_flags |= WORK_STRUCT_INACTIVE;
3032
3033 /*
3034 * If @target is currently being executed, schedule the
3035 * barrier to the worker; otherwise, put it after @target.
3036 */
3037 if (worker) {
3038 head = worker->scheduled.next;
3039 work_color = worker->current_color;
3040 } else {
3041 unsigned long *bits = work_data_bits(target);
3042
3043 head = target->entry.next;
3044 /* there can already be other linked works, inherit and set */
3045 work_flags |= *bits & WORK_STRUCT_LINKED;
3046 work_color = get_work_color(*bits);
3047 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3048 }
3049
3050 pwq->nr_in_flight[work_color]++;
3051 work_flags |= work_color_to_flags(work_color);
3052
3053 insert_work(pwq, &barr->work, head, work_flags);
3054}
3055
3056/**
3057 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3058 * @wq: workqueue being flushed
3059 * @flush_color: new flush color, < 0 for no-op
3060 * @work_color: new work color, < 0 for no-op
3061 *
3062 * Prepare pwqs for workqueue flushing.
3063 *
3064 * If @flush_color is non-negative, flush_color on all pwqs should be
3065 * -1. If no pwq has in-flight commands at the specified color, all
3066 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3067 * has in flight commands, its pwq->flush_color is set to
3068 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3069 * wakeup logic is armed and %true is returned.
3070 *
3071 * The caller should have initialized @wq->first_flusher prior to
3072 * calling this function with non-negative @flush_color. If
3073 * @flush_color is negative, no flush color update is done and %false
3074 * is returned.
3075 *
3076 * If @work_color is non-negative, all pwqs should have the same
3077 * work_color which is previous to @work_color and all will be
3078 * advanced to @work_color.
3079 *
3080 * CONTEXT:
3081 * mutex_lock(wq->mutex).
3082 *
3083 * Return:
3084 * %true if @flush_color >= 0 and there's something to flush. %false
3085 * otherwise.
3086 */
3087static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3088 int flush_color, int work_color)
3089{
3090 bool wait = false;
3091 struct pool_workqueue *pwq;
3092
3093 if (flush_color >= 0) {
3094 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3095 atomic_set(&wq->nr_pwqs_to_flush, 1);
3096 }
3097
3098 for_each_pwq(pwq, wq) {
3099 struct worker_pool *pool = pwq->pool;
3100
3101 raw_spin_lock_irq(&pool->lock);
3102
3103 if (flush_color >= 0) {
3104 WARN_ON_ONCE(pwq->flush_color != -1);
3105
3106 if (pwq->nr_in_flight[flush_color]) {
3107 pwq->flush_color = flush_color;
3108 atomic_inc(&wq->nr_pwqs_to_flush);
3109 wait = true;
3110 }
3111 }
3112
3113 if (work_color >= 0) {
3114 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3115 pwq->work_color = work_color;
3116 }
3117
3118 raw_spin_unlock_irq(&pool->lock);
3119 }
3120
3121 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3122 complete(&wq->first_flusher->done);
3123
3124 return wait;
3125}
3126
3127/**
3128 * __flush_workqueue - ensure that any scheduled work has run to completion.
3129 * @wq: workqueue to flush
3130 *
3131 * This function sleeps until all work items which were queued on entry
3132 * have finished execution, but it is not livelocked by new incoming ones.
3133 */
3134void __flush_workqueue(struct workqueue_struct *wq)
3135{
3136 struct wq_flusher this_flusher = {
3137 .list = LIST_HEAD_INIT(this_flusher.list),
3138 .flush_color = -1,
3139 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3140 };
3141 int next_color;
3142
3143 if (WARN_ON(!wq_online))
3144 return;
3145
3146 lock_map_acquire(&wq->lockdep_map);
3147 lock_map_release(&wq->lockdep_map);
3148
3149 mutex_lock(&wq->mutex);
3150
3151 /*
3152 * Start-to-wait phase
3153 */
3154 next_color = work_next_color(wq->work_color);
3155
3156 if (next_color != wq->flush_color) {
3157 /*
3158 * Color space is not full. The current work_color
3159 * becomes our flush_color and work_color is advanced
3160 * by one.
3161 */
3162 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3163 this_flusher.flush_color = wq->work_color;
3164 wq->work_color = next_color;
3165
3166 if (!wq->first_flusher) {
3167 /* no flush in progress, become the first flusher */
3168 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3169
3170 wq->first_flusher = &this_flusher;
3171
3172 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3173 wq->work_color)) {
3174 /* nothing to flush, done */
3175 wq->flush_color = next_color;
3176 wq->first_flusher = NULL;
3177 goto out_unlock;
3178 }
3179 } else {
3180 /* wait in queue */
3181 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3182 list_add_tail(&this_flusher.list, &wq->flusher_queue);
3183 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3184 }
3185 } else {
3186 /*
3187 * Oops, color space is full, wait on overflow queue.
3188 * The next flush completion will assign us
3189 * flush_color and transfer to flusher_queue.
3190 */
3191 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3192 }
3193
3194 check_flush_dependency(wq, NULL);
3195
3196 mutex_unlock(&wq->mutex);
3197
3198 wait_for_completion(&this_flusher.done);
3199
3200 /*
3201 * Wake-up-and-cascade phase
3202 *
3203 * First flushers are responsible for cascading flushes and
3204 * handling overflow. Non-first flushers can simply return.
3205 */
3206 if (READ_ONCE(wq->first_flusher) != &this_flusher)
3207 return;
3208
3209 mutex_lock(&wq->mutex);
3210
3211 /* we might have raced, check again with mutex held */
3212 if (wq->first_flusher != &this_flusher)
3213 goto out_unlock;
3214
3215 WRITE_ONCE(wq->first_flusher, NULL);
3216
3217 WARN_ON_ONCE(!list_empty(&this_flusher.list));
3218 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3219
3220 while (true) {
3221 struct wq_flusher *next, *tmp;
3222
3223 /* complete all the flushers sharing the current flush color */
3224 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3225 if (next->flush_color != wq->flush_color)
3226 break;
3227 list_del_init(&next->list);
3228 complete(&next->done);
3229 }
3230
3231 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3232 wq->flush_color != work_next_color(wq->work_color));
3233
3234 /* this flush_color is finished, advance by one */
3235 wq->flush_color = work_next_color(wq->flush_color);
3236
3237 /* one color has been freed, handle overflow queue */
3238 if (!list_empty(&wq->flusher_overflow)) {
3239 /*
3240 * Assign the same color to all overflowed
3241 * flushers, advance work_color and append to
3242 * flusher_queue. This is the start-to-wait
3243 * phase for these overflowed flushers.
3244 */
3245 list_for_each_entry(tmp, &wq->flusher_overflow, list)
3246 tmp->flush_color = wq->work_color;
3247
3248 wq->work_color = work_next_color(wq->work_color);
3249
3250 list_splice_tail_init(&wq->flusher_overflow,
3251 &wq->flusher_queue);
3252 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3253 }
3254
3255 if (list_empty(&wq->flusher_queue)) {
3256 WARN_ON_ONCE(wq->flush_color != wq->work_color);
3257 break;
3258 }
3259
3260 /*
3261 * Need to flush more colors. Make the next flusher
3262 * the new first flusher and arm pwqs.
3263 */
3264 WARN_ON_ONCE(wq->flush_color == wq->work_color);
3265 WARN_ON_ONCE(wq->flush_color != next->flush_color);
3266
3267 list_del_init(&next->list);
3268 wq->first_flusher = next;
3269
3270 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3271 break;
3272
3273 /*
3274 * Meh... this color is already done, clear first
3275 * flusher and repeat cascading.
3276 */
3277 wq->first_flusher = NULL;
3278 }
3279
3280out_unlock:
3281 mutex_unlock(&wq->mutex);
3282}
3283EXPORT_SYMBOL(__flush_workqueue);
3284
3285/**
3286 * drain_workqueue - drain a workqueue
3287 * @wq: workqueue to drain
3288 *
3289 * Wait until the workqueue becomes empty. While draining is in progress,
3290 * only chain queueing is allowed. IOW, only currently pending or running
3291 * work items on @wq can queue further work items on it. @wq is flushed
3292 * repeatedly until it becomes empty. The number of flushing is determined
3293 * by the depth of chaining and should be relatively short. Whine if it
3294 * takes too long.
3295 */
3296void drain_workqueue(struct workqueue_struct *wq)
3297{
3298 unsigned int flush_cnt = 0;
3299 struct pool_workqueue *pwq;
3300
3301 /*
3302 * __queue_work() needs to test whether there are drainers, is much
3303 * hotter than drain_workqueue() and already looks at @wq->flags.
3304 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3305 */
3306 mutex_lock(&wq->mutex);
3307 if (!wq->nr_drainers++)
3308 wq->flags |= __WQ_DRAINING;
3309 mutex_unlock(&wq->mutex);
3310reflush:
3311 __flush_workqueue(wq);
3312
3313 mutex_lock(&wq->mutex);
3314
3315 for_each_pwq(pwq, wq) {
3316 bool drained;
3317
3318 raw_spin_lock_irq(&pwq->pool->lock);
3319 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3320 raw_spin_unlock_irq(&pwq->pool->lock);
3321
3322 if (drained)
3323 continue;
3324
3325 if (++flush_cnt == 10 ||
3326 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3327 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3328 wq->name, __func__, flush_cnt);
3329
3330 mutex_unlock(&wq->mutex);
3331 goto reflush;
3332 }
3333
3334 if (!--wq->nr_drainers)
3335 wq->flags &= ~__WQ_DRAINING;
3336 mutex_unlock(&wq->mutex);
3337}
3338EXPORT_SYMBOL_GPL(drain_workqueue);
3339
3340static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3341 bool from_cancel)
3342{
3343 struct worker *worker = NULL;
3344 struct worker_pool *pool;
3345 struct pool_workqueue *pwq;
3346
3347 might_sleep();
3348
3349 rcu_read_lock();
3350 pool = get_work_pool(work);
3351 if (!pool) {
3352 rcu_read_unlock();
3353 return false;
3354 }
3355
3356 raw_spin_lock_irq(&pool->lock);
3357 /* see the comment in try_to_grab_pending() with the same code */
3358 pwq = get_work_pwq(work);
3359 if (pwq) {
3360 if (unlikely(pwq->pool != pool))
3361 goto already_gone;
3362 } else {
3363 worker = find_worker_executing_work(pool, work);
3364 if (!worker)
3365 goto already_gone;
3366 pwq = worker->current_pwq;
3367 }
3368
3369 check_flush_dependency(pwq->wq, work);
3370
3371 insert_wq_barrier(pwq, barr, work, worker);
3372 raw_spin_unlock_irq(&pool->lock);
3373
3374 /*
3375 * Force a lock recursion deadlock when using flush_work() inside a
3376 * single-threaded or rescuer equipped workqueue.
3377 *
3378 * For single threaded workqueues the deadlock happens when the work
3379 * is after the work issuing the flush_work(). For rescuer equipped
3380 * workqueues the deadlock happens when the rescuer stalls, blocking
3381 * forward progress.
3382 */
3383 if (!from_cancel &&
3384 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3385 lock_map_acquire(&pwq->wq->lockdep_map);
3386 lock_map_release(&pwq->wq->lockdep_map);
3387 }
3388 rcu_read_unlock();
3389 return true;
3390already_gone:
3391 raw_spin_unlock_irq(&pool->lock);
3392 rcu_read_unlock();
3393 return false;
3394}
3395
3396static bool __flush_work(struct work_struct *work, bool from_cancel)
3397{
3398 struct wq_barrier barr;
3399
3400 if (WARN_ON(!wq_online))
3401 return false;
3402
3403 if (WARN_ON(!work->func))
3404 return false;
3405
3406 lock_map_acquire(&work->lockdep_map);
3407 lock_map_release(&work->lockdep_map);
3408
3409 if (start_flush_work(work, &barr, from_cancel)) {
3410 wait_for_completion(&barr.done);
3411 destroy_work_on_stack(&barr.work);
3412 return true;
3413 } else {
3414 return false;
3415 }
3416}
3417
3418/**
3419 * flush_work - wait for a work to finish executing the last queueing instance
3420 * @work: the work to flush
3421 *
3422 * Wait until @work has finished execution. @work is guaranteed to be idle
3423 * on return if it hasn't been requeued since flush started.
3424 *
3425 * Return:
3426 * %true if flush_work() waited for the work to finish execution,
3427 * %false if it was already idle.
3428 */
3429bool flush_work(struct work_struct *work)
3430{
3431 return __flush_work(work, false);
3432}
3433EXPORT_SYMBOL_GPL(flush_work);
3434
3435struct cwt_wait {
3436 wait_queue_entry_t wait;
3437 struct work_struct *work;
3438};
3439
3440static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3441{
3442 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3443
3444 if (cwait->work != key)
3445 return 0;
3446 return autoremove_wake_function(wait, mode, sync, key);
3447}
3448
3449static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3450{
3451 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3452 unsigned long flags;
3453 int ret;
3454
3455 do {
3456 ret = try_to_grab_pending(work, is_dwork, &flags);
3457 /*
3458 * If someone else is already canceling, wait for it to
3459 * finish. flush_work() doesn't work for PREEMPT_NONE
3460 * because we may get scheduled between @work's completion
3461 * and the other canceling task resuming and clearing
3462 * CANCELING - flush_work() will return false immediately
3463 * as @work is no longer busy, try_to_grab_pending() will
3464 * return -ENOENT as @work is still being canceled and the
3465 * other canceling task won't be able to clear CANCELING as
3466 * we're hogging the CPU.
3467 *
3468 * Let's wait for completion using a waitqueue. As this
3469 * may lead to the thundering herd problem, use a custom
3470 * wake function which matches @work along with exclusive
3471 * wait and wakeup.
3472 */
3473 if (unlikely(ret == -ENOENT)) {
3474 struct cwt_wait cwait;
3475
3476 init_wait(&cwait.wait);
3477 cwait.wait.func = cwt_wakefn;
3478 cwait.work = work;
3479
3480 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3481 TASK_UNINTERRUPTIBLE);
3482 if (work_is_canceling(work))
3483 schedule();
3484 finish_wait(&cancel_waitq, &cwait.wait);
3485 }
3486 } while (unlikely(ret < 0));
3487
3488 /* tell other tasks trying to grab @work to back off */
3489 mark_work_canceling(work);
3490 local_irq_restore(flags);
3491
3492 /*
3493 * This allows canceling during early boot. We know that @work
3494 * isn't executing.
3495 */
3496 if (wq_online)
3497 __flush_work(work, true);
3498
3499 clear_work_data(work);
3500
3501 /*
3502 * Paired with prepare_to_wait() above so that either
3503 * waitqueue_active() is visible here or !work_is_canceling() is
3504 * visible there.
3505 */
3506 smp_mb();
3507 if (waitqueue_active(&cancel_waitq))
3508 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3509
3510 return ret;
3511}
3512
3513/**
3514 * cancel_work_sync - cancel a work and wait for it to finish
3515 * @work: the work to cancel
3516 *
3517 * Cancel @work and wait for its execution to finish. This function
3518 * can be used even if the work re-queues itself or migrates to
3519 * another workqueue. On return from this function, @work is
3520 * guaranteed to be not pending or executing on any CPU.
3521 *
3522 * cancel_work_sync(&delayed_work->work) must not be used for
3523 * delayed_work's. Use cancel_delayed_work_sync() instead.
3524 *
3525 * The caller must ensure that the workqueue on which @work was last
3526 * queued can't be destroyed before this function returns.
3527 *
3528 * Return:
3529 * %true if @work was pending, %false otherwise.
3530 */
3531bool cancel_work_sync(struct work_struct *work)
3532{
3533 return __cancel_work_timer(work, false);
3534}
3535EXPORT_SYMBOL_GPL(cancel_work_sync);
3536
3537/**
3538 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3539 * @dwork: the delayed work to flush
3540 *
3541 * Delayed timer is cancelled and the pending work is queued for
3542 * immediate execution. Like flush_work(), this function only
3543 * considers the last queueing instance of @dwork.
3544 *
3545 * Return:
3546 * %true if flush_work() waited for the work to finish execution,
3547 * %false if it was already idle.
3548 */
3549bool flush_delayed_work(struct delayed_work *dwork)
3550{
3551 local_irq_disable();
3552 if (del_timer_sync(&dwork->timer))
3553 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3554 local_irq_enable();
3555 return flush_work(&dwork->work);
3556}
3557EXPORT_SYMBOL(flush_delayed_work);
3558
3559/**
3560 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3561 * @rwork: the rcu work to flush
3562 *
3563 * Return:
3564 * %true if flush_rcu_work() waited for the work to finish execution,
3565 * %false if it was already idle.
3566 */
3567bool flush_rcu_work(struct rcu_work *rwork)
3568{
3569 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3570 rcu_barrier();
3571 flush_work(&rwork->work);
3572 return true;
3573 } else {
3574 return flush_work(&rwork->work);
3575 }
3576}
3577EXPORT_SYMBOL(flush_rcu_work);
3578
3579static bool __cancel_work(struct work_struct *work, bool is_dwork)
3580{
3581 unsigned long flags;
3582 int ret;
3583
3584 do {
3585 ret = try_to_grab_pending(work, is_dwork, &flags);
3586 } while (unlikely(ret == -EAGAIN));
3587
3588 if (unlikely(ret < 0))
3589 return false;
3590
3591 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3592 local_irq_restore(flags);
3593 return ret;
3594}
3595
3596/*
3597 * See cancel_delayed_work()
3598 */
3599bool cancel_work(struct work_struct *work)
3600{
3601 return __cancel_work(work, false);
3602}
3603EXPORT_SYMBOL(cancel_work);
3604
3605/**
3606 * cancel_delayed_work - cancel a delayed work
3607 * @dwork: delayed_work to cancel
3608 *
3609 * Kill off a pending delayed_work.
3610 *
3611 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3612 * pending.
3613 *
3614 * Note:
3615 * The work callback function may still be running on return, unless
3616 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3617 * use cancel_delayed_work_sync() to wait on it.
3618 *
3619 * This function is safe to call from any context including IRQ handler.
3620 */
3621bool cancel_delayed_work(struct delayed_work *dwork)
3622{
3623 return __cancel_work(&dwork->work, true);
3624}
3625EXPORT_SYMBOL(cancel_delayed_work);
3626
3627/**
3628 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3629 * @dwork: the delayed work cancel
3630 *
3631 * This is cancel_work_sync() for delayed works.
3632 *
3633 * Return:
3634 * %true if @dwork was pending, %false otherwise.
3635 */
3636bool cancel_delayed_work_sync(struct delayed_work *dwork)
3637{
3638 return __cancel_work_timer(&dwork->work, true);
3639}
3640EXPORT_SYMBOL(cancel_delayed_work_sync);
3641
3642/**
3643 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3644 * @func: the function to call
3645 *
3646 * schedule_on_each_cpu() executes @func on each online CPU using the
3647 * system workqueue and blocks until all CPUs have completed.
3648 * schedule_on_each_cpu() is very slow.
3649 *
3650 * Return:
3651 * 0 on success, -errno on failure.
3652 */
3653int schedule_on_each_cpu(work_func_t func)
3654{
3655 int cpu;
3656 struct work_struct __percpu *works;
3657
3658 works = alloc_percpu(struct work_struct);
3659 if (!works)
3660 return -ENOMEM;
3661
3662 cpus_read_lock();
3663
3664 for_each_online_cpu(cpu) {
3665 struct work_struct *work = per_cpu_ptr(works, cpu);
3666
3667 INIT_WORK(work, func);
3668 schedule_work_on(cpu, work);
3669 }
3670
3671 for_each_online_cpu(cpu)
3672 flush_work(per_cpu_ptr(works, cpu));
3673
3674 cpus_read_unlock();
3675 free_percpu(works);
3676 return 0;
3677}
3678
3679/**
3680 * execute_in_process_context - reliably execute the routine with user context
3681 * @fn: the function to execute
3682 * @ew: guaranteed storage for the execute work structure (must
3683 * be available when the work executes)
3684 *
3685 * Executes the function immediately if process context is available,
3686 * otherwise schedules the function for delayed execution.
3687 *
3688 * Return: 0 - function was executed
3689 * 1 - function was scheduled for execution
3690 */
3691int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3692{
3693 if (!in_interrupt()) {
3694 fn(&ew->work);
3695 return 0;
3696 }
3697
3698 INIT_WORK(&ew->work, fn);
3699 schedule_work(&ew->work);
3700
3701 return 1;
3702}
3703EXPORT_SYMBOL_GPL(execute_in_process_context);
3704
3705/**
3706 * free_workqueue_attrs - free a workqueue_attrs
3707 * @attrs: workqueue_attrs to free
3708 *
3709 * Undo alloc_workqueue_attrs().
3710 */
3711void free_workqueue_attrs(struct workqueue_attrs *attrs)
3712{
3713 if (attrs) {
3714 free_cpumask_var(attrs->cpumask);
3715 free_cpumask_var(attrs->__pod_cpumask);
3716 kfree(attrs);
3717 }
3718}
3719
3720/**
3721 * alloc_workqueue_attrs - allocate a workqueue_attrs
3722 *
3723 * Allocate a new workqueue_attrs, initialize with default settings and
3724 * return it.
3725 *
3726 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3727 */
3728struct workqueue_attrs *alloc_workqueue_attrs(void)
3729{
3730 struct workqueue_attrs *attrs;
3731
3732 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3733 if (!attrs)
3734 goto fail;
3735 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3736 goto fail;
3737 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
3738 goto fail;
3739
3740 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3741 attrs->affn_scope = WQ_AFFN_DFL;
3742 return attrs;
3743fail:
3744 free_workqueue_attrs(attrs);
3745 return NULL;
3746}
3747
3748static void copy_workqueue_attrs(struct workqueue_attrs *to,
3749 const struct workqueue_attrs *from)
3750{
3751 to->nice = from->nice;
3752 cpumask_copy(to->cpumask, from->cpumask);
3753 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
3754 to->affn_strict = from->affn_strict;
3755
3756 /*
3757 * Unlike hash and equality test, copying shouldn't ignore wq-only
3758 * fields as copying is used for both pool and wq attrs. Instead,
3759 * get_unbound_pool() explicitly clears the fields.
3760 */
3761 to->affn_scope = from->affn_scope;
3762 to->ordered = from->ordered;
3763}
3764
3765/*
3766 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
3767 * comments in 'struct workqueue_attrs' definition.
3768 */
3769static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
3770{
3771 attrs->affn_scope = WQ_AFFN_NR_TYPES;
3772 attrs->ordered = false;
3773}
3774
3775/* hash value of the content of @attr */
3776static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3777{
3778 u32 hash = 0;
3779
3780 hash = jhash_1word(attrs->nice, hash);
3781 hash = jhash(cpumask_bits(attrs->cpumask),
3782 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3783 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
3784 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3785 hash = jhash_1word(attrs->affn_strict, hash);
3786 return hash;
3787}
3788
3789/* content equality test */
3790static bool wqattrs_equal(const struct workqueue_attrs *a,
3791 const struct workqueue_attrs *b)
3792{
3793 if (a->nice != b->nice)
3794 return false;
3795 if (!cpumask_equal(a->cpumask, b->cpumask))
3796 return false;
3797 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
3798 return false;
3799 if (a->affn_strict != b->affn_strict)
3800 return false;
3801 return true;
3802}
3803
3804/* Update @attrs with actually available CPUs */
3805static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
3806 const cpumask_t *unbound_cpumask)
3807{
3808 /*
3809 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
3810 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
3811 * @unbound_cpumask.
3812 */
3813 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
3814 if (unlikely(cpumask_empty(attrs->cpumask)))
3815 cpumask_copy(attrs->cpumask, unbound_cpumask);
3816}
3817
3818/* find wq_pod_type to use for @attrs */
3819static const struct wq_pod_type *
3820wqattrs_pod_type(const struct workqueue_attrs *attrs)
3821{
3822 enum wq_affn_scope scope;
3823 struct wq_pod_type *pt;
3824
3825 /* to synchronize access to wq_affn_dfl */
3826 lockdep_assert_held(&wq_pool_mutex);
3827
3828 if (attrs->affn_scope == WQ_AFFN_DFL)
3829 scope = wq_affn_dfl;
3830 else
3831 scope = attrs->affn_scope;
3832
3833 pt = &wq_pod_types[scope];
3834
3835 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
3836 likely(pt->nr_pods))
3837 return pt;
3838
3839 /*
3840 * Before workqueue_init_topology(), only SYSTEM is available which is
3841 * initialized in workqueue_init_early().
3842 */
3843 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
3844 BUG_ON(!pt->nr_pods);
3845 return pt;
3846}
3847
3848/**
3849 * init_worker_pool - initialize a newly zalloc'd worker_pool
3850 * @pool: worker_pool to initialize
3851 *
3852 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3853 *
3854 * Return: 0 on success, -errno on failure. Even on failure, all fields
3855 * inside @pool proper are initialized and put_unbound_pool() can be called
3856 * on @pool safely to release it.
3857 */
3858static int init_worker_pool(struct worker_pool *pool)
3859{
3860 raw_spin_lock_init(&pool->lock);
3861 pool->id = -1;
3862 pool->cpu = -1;
3863 pool->node = NUMA_NO_NODE;
3864 pool->flags |= POOL_DISASSOCIATED;
3865 pool->watchdog_ts = jiffies;
3866 INIT_LIST_HEAD(&pool->worklist);
3867 INIT_LIST_HEAD(&pool->idle_list);
3868 hash_init(pool->busy_hash);
3869
3870 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3871 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
3872
3873 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3874
3875 INIT_LIST_HEAD(&pool->workers);
3876 INIT_LIST_HEAD(&pool->dying_workers);
3877
3878 ida_init(&pool->worker_ida);
3879 INIT_HLIST_NODE(&pool->hash_node);
3880 pool->refcnt = 1;
3881
3882 /* shouldn't fail above this point */
3883 pool->attrs = alloc_workqueue_attrs();
3884 if (!pool->attrs)
3885 return -ENOMEM;
3886
3887 wqattrs_clear_for_pool(pool->attrs);
3888
3889 return 0;
3890}
3891
3892#ifdef CONFIG_LOCKDEP
3893static void wq_init_lockdep(struct workqueue_struct *wq)
3894{
3895 char *lock_name;
3896
3897 lockdep_register_key(&wq->key);
3898 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3899 if (!lock_name)
3900 lock_name = wq->name;
3901
3902 wq->lock_name = lock_name;
3903 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3904}
3905
3906static void wq_unregister_lockdep(struct workqueue_struct *wq)
3907{
3908 lockdep_unregister_key(&wq->key);
3909}
3910
3911static void wq_free_lockdep(struct workqueue_struct *wq)
3912{
3913 if (wq->lock_name != wq->name)
3914 kfree(wq->lock_name);
3915}
3916#else
3917static void wq_init_lockdep(struct workqueue_struct *wq)
3918{
3919}
3920
3921static void wq_unregister_lockdep(struct workqueue_struct *wq)
3922{
3923}
3924
3925static void wq_free_lockdep(struct workqueue_struct *wq)
3926{
3927}
3928#endif
3929
3930static void rcu_free_wq(struct rcu_head *rcu)
3931{
3932 struct workqueue_struct *wq =
3933 container_of(rcu, struct workqueue_struct, rcu);
3934
3935 wq_free_lockdep(wq);
3936 free_percpu(wq->cpu_pwq);
3937 free_workqueue_attrs(wq->unbound_attrs);
3938 kfree(wq);
3939}
3940
3941static void rcu_free_pool(struct rcu_head *rcu)
3942{
3943 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3944
3945 ida_destroy(&pool->worker_ida);
3946 free_workqueue_attrs(pool->attrs);
3947 kfree(pool);
3948}
3949
3950/**
3951 * put_unbound_pool - put a worker_pool
3952 * @pool: worker_pool to put
3953 *
3954 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3955 * safe manner. get_unbound_pool() calls this function on its failure path
3956 * and this function should be able to release pools which went through,
3957 * successfully or not, init_worker_pool().
3958 *
3959 * Should be called with wq_pool_mutex held.
3960 */
3961static void put_unbound_pool(struct worker_pool *pool)
3962{
3963 DECLARE_COMPLETION_ONSTACK(detach_completion);
3964 struct worker *worker;
3965 LIST_HEAD(cull_list);
3966
3967 lockdep_assert_held(&wq_pool_mutex);
3968
3969 if (--pool->refcnt)
3970 return;
3971
3972 /* sanity checks */
3973 if (WARN_ON(!(pool->cpu < 0)) ||
3974 WARN_ON(!list_empty(&pool->worklist)))
3975 return;
3976
3977 /* release id and unhash */
3978 if (pool->id >= 0)
3979 idr_remove(&worker_pool_idr, pool->id);
3980 hash_del(&pool->hash_node);
3981
3982 /*
3983 * Become the manager and destroy all workers. This prevents
3984 * @pool's workers from blocking on attach_mutex. We're the last
3985 * manager and @pool gets freed with the flag set.
3986 *
3987 * Having a concurrent manager is quite unlikely to happen as we can
3988 * only get here with
3989 * pwq->refcnt == pool->refcnt == 0
3990 * which implies no work queued to the pool, which implies no worker can
3991 * become the manager. However a worker could have taken the role of
3992 * manager before the refcnts dropped to 0, since maybe_create_worker()
3993 * drops pool->lock
3994 */
3995 while (true) {
3996 rcuwait_wait_event(&manager_wait,
3997 !(pool->flags & POOL_MANAGER_ACTIVE),
3998 TASK_UNINTERRUPTIBLE);
3999
4000 mutex_lock(&wq_pool_attach_mutex);
4001 raw_spin_lock_irq(&pool->lock);
4002 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4003 pool->flags |= POOL_MANAGER_ACTIVE;
4004 break;
4005 }
4006 raw_spin_unlock_irq(&pool->lock);
4007 mutex_unlock(&wq_pool_attach_mutex);
4008 }
4009
4010 while ((worker = first_idle_worker(pool)))
4011 set_worker_dying(worker, &cull_list);
4012 WARN_ON(pool->nr_workers || pool->nr_idle);
4013 raw_spin_unlock_irq(&pool->lock);
4014
4015 wake_dying_workers(&cull_list);
4016
4017 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4018 pool->detach_completion = &detach_completion;
4019 mutex_unlock(&wq_pool_attach_mutex);
4020
4021 if (pool->detach_completion)
4022 wait_for_completion(pool->detach_completion);
4023
4024 /* shut down the timers */
4025 del_timer_sync(&pool->idle_timer);
4026 cancel_work_sync(&pool->idle_cull_work);
4027 del_timer_sync(&pool->mayday_timer);
4028
4029 /* RCU protected to allow dereferences from get_work_pool() */
4030 call_rcu(&pool->rcu, rcu_free_pool);
4031}
4032
4033/**
4034 * get_unbound_pool - get a worker_pool with the specified attributes
4035 * @attrs: the attributes of the worker_pool to get
4036 *
4037 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4038 * reference count and return it. If there already is a matching
4039 * worker_pool, it will be used; otherwise, this function attempts to
4040 * create a new one.
4041 *
4042 * Should be called with wq_pool_mutex held.
4043 *
4044 * Return: On success, a worker_pool with the same attributes as @attrs.
4045 * On failure, %NULL.
4046 */
4047static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4048{
4049 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4050 u32 hash = wqattrs_hash(attrs);
4051 struct worker_pool *pool;
4052 int pod, node = NUMA_NO_NODE;
4053
4054 lockdep_assert_held(&wq_pool_mutex);
4055
4056 /* do we already have a matching pool? */
4057 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4058 if (wqattrs_equal(pool->attrs, attrs)) {
4059 pool->refcnt++;
4060 return pool;
4061 }
4062 }
4063
4064 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4065 for (pod = 0; pod < pt->nr_pods; pod++) {
4066 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4067 node = pt->pod_node[pod];
4068 break;
4069 }
4070 }
4071
4072 /* nope, create a new one */
4073 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4074 if (!pool || init_worker_pool(pool) < 0)
4075 goto fail;
4076
4077 pool->node = node;
4078 copy_workqueue_attrs(pool->attrs, attrs);
4079 wqattrs_clear_for_pool(pool->attrs);
4080
4081 if (worker_pool_assign_id(pool) < 0)
4082 goto fail;
4083
4084 /* create and start the initial worker */
4085 if (wq_online && !create_worker(pool))
4086 goto fail;
4087
4088 /* install */
4089 hash_add(unbound_pool_hash, &pool->hash_node, hash);
4090
4091 return pool;
4092fail:
4093 if (pool)
4094 put_unbound_pool(pool);
4095 return NULL;
4096}
4097
4098static void rcu_free_pwq(struct rcu_head *rcu)
4099{
4100 kmem_cache_free(pwq_cache,
4101 container_of(rcu, struct pool_workqueue, rcu));
4102}
4103
4104/*
4105 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4106 * refcnt and needs to be destroyed.
4107 */
4108static void pwq_release_workfn(struct kthread_work *work)
4109{
4110 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4111 release_work);
4112 struct workqueue_struct *wq = pwq->wq;
4113 struct worker_pool *pool = pwq->pool;
4114 bool is_last = false;
4115
4116 /*
4117 * When @pwq is not linked, it doesn't hold any reference to the
4118 * @wq, and @wq is invalid to access.
4119 */
4120 if (!list_empty(&pwq->pwqs_node)) {
4121 mutex_lock(&wq->mutex);
4122 list_del_rcu(&pwq->pwqs_node);
4123 is_last = list_empty(&wq->pwqs);
4124 mutex_unlock(&wq->mutex);
4125 }
4126
4127 if (wq->flags & WQ_UNBOUND) {
4128 mutex_lock(&wq_pool_mutex);
4129 put_unbound_pool(pool);
4130 mutex_unlock(&wq_pool_mutex);
4131 }
4132
4133 call_rcu(&pwq->rcu, rcu_free_pwq);
4134
4135 /*
4136 * If we're the last pwq going away, @wq is already dead and no one
4137 * is gonna access it anymore. Schedule RCU free.
4138 */
4139 if (is_last) {
4140 wq_unregister_lockdep(wq);
4141 call_rcu(&wq->rcu, rcu_free_wq);
4142 }
4143}
4144
4145/**
4146 * pwq_adjust_max_active - update a pwq's max_active to the current setting
4147 * @pwq: target pool_workqueue
4148 *
4149 * If @pwq isn't freezing, set @pwq->max_active to the associated
4150 * workqueue's saved_max_active and activate inactive work items
4151 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
4152 */
4153static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4154{
4155 struct workqueue_struct *wq = pwq->wq;
4156 bool freezable = wq->flags & WQ_FREEZABLE;
4157 unsigned long flags;
4158
4159 /* for @wq->saved_max_active */
4160 lockdep_assert_held(&wq->mutex);
4161
4162 /* fast exit for non-freezable wqs */
4163 if (!freezable && pwq->max_active == wq->saved_max_active)
4164 return;
4165
4166 /* this function can be called during early boot w/ irq disabled */
4167 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4168
4169 /*
4170 * During [un]freezing, the caller is responsible for ensuring that
4171 * this function is called at least once after @workqueue_freezing
4172 * is updated and visible.
4173 */
4174 if (!freezable || !workqueue_freezing) {
4175 pwq->max_active = wq->saved_max_active;
4176
4177 while (!list_empty(&pwq->inactive_works) &&
4178 pwq->nr_active < pwq->max_active)
4179 pwq_activate_first_inactive(pwq);
4180
4181 kick_pool(pwq->pool);
4182 } else {
4183 pwq->max_active = 0;
4184 }
4185
4186 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4187}
4188
4189/* initialize newly allocated @pwq which is associated with @wq and @pool */
4190static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4191 struct worker_pool *pool)
4192{
4193 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
4194
4195 memset(pwq, 0, sizeof(*pwq));
4196
4197 pwq->pool = pool;
4198 pwq->wq = wq;
4199 pwq->flush_color = -1;
4200 pwq->refcnt = 1;
4201 INIT_LIST_HEAD(&pwq->inactive_works);
4202 INIT_LIST_HEAD(&pwq->pwqs_node);
4203 INIT_LIST_HEAD(&pwq->mayday_node);
4204 kthread_init_work(&pwq->release_work, pwq_release_workfn);
4205}
4206
4207/* sync @pwq with the current state of its associated wq and link it */
4208static void link_pwq(struct pool_workqueue *pwq)
4209{
4210 struct workqueue_struct *wq = pwq->wq;
4211
4212 lockdep_assert_held(&wq->mutex);
4213
4214 /* may be called multiple times, ignore if already linked */
4215 if (!list_empty(&pwq->pwqs_node))
4216 return;
4217
4218 /* set the matching work_color */
4219 pwq->work_color = wq->work_color;
4220
4221 /* sync max_active to the current setting */
4222 pwq_adjust_max_active(pwq);
4223
4224 /* link in @pwq */
4225 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4226}
4227
4228/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4229static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4230 const struct workqueue_attrs *attrs)
4231{
4232 struct worker_pool *pool;
4233 struct pool_workqueue *pwq;
4234
4235 lockdep_assert_held(&wq_pool_mutex);
4236
4237 pool = get_unbound_pool(attrs);
4238 if (!pool)
4239 return NULL;
4240
4241 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4242 if (!pwq) {
4243 put_unbound_pool(pool);
4244 return NULL;
4245 }
4246
4247 init_pwq(pwq, wq, pool);
4248 return pwq;
4249}
4250
4251/**
4252 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
4253 * @attrs: the wq_attrs of the default pwq of the target workqueue
4254 * @cpu: the target CPU
4255 * @cpu_going_down: if >= 0, the CPU to consider as offline
4256 *
4257 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4258 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
4259 * The result is stored in @attrs->__pod_cpumask.
4260 *
4261 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4262 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4263 * intersection of the possible CPUs of @pod and @attrs->cpumask.
4264 *
4265 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
4266 */
4267static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4268 int cpu_going_down)
4269{
4270 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4271 int pod = pt->cpu_pod[cpu];
4272
4273 /* does @pod have any online CPUs @attrs wants? */
4274 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
4275 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
4276 if (cpu_going_down >= 0)
4277 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
4278
4279 if (cpumask_empty(attrs->__pod_cpumask)) {
4280 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
4281 return;
4282 }
4283
4284 /* yeap, return possible CPUs in @pod that @attrs wants */
4285 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
4286
4287 if (cpumask_empty(attrs->__pod_cpumask))
4288 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4289 "possible intersect\n");
4290}
4291
4292/* install @pwq into @wq's cpu_pwq and return the old pwq */
4293static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4294 int cpu, struct pool_workqueue *pwq)
4295{
4296 struct pool_workqueue *old_pwq;
4297
4298 lockdep_assert_held(&wq_pool_mutex);
4299 lockdep_assert_held(&wq->mutex);
4300
4301 /* link_pwq() can handle duplicate calls */
4302 link_pwq(pwq);
4303
4304 old_pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4305 rcu_assign_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu), pwq);
4306 return old_pwq;
4307}
4308
4309/* context to store the prepared attrs & pwqs before applying */
4310struct apply_wqattrs_ctx {
4311 struct workqueue_struct *wq; /* target workqueue */
4312 struct workqueue_attrs *attrs; /* attrs to apply */
4313 struct list_head list; /* queued for batching commit */
4314 struct pool_workqueue *dfl_pwq;
4315 struct pool_workqueue *pwq_tbl[];
4316};
4317
4318/* free the resources after success or abort */
4319static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4320{
4321 if (ctx) {
4322 int cpu;
4323
4324 for_each_possible_cpu(cpu)
4325 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
4326 put_pwq_unlocked(ctx->dfl_pwq);
4327
4328 free_workqueue_attrs(ctx->attrs);
4329
4330 kfree(ctx);
4331 }
4332}
4333
4334/* allocate the attrs and pwqs for later installation */
4335static struct apply_wqattrs_ctx *
4336apply_wqattrs_prepare(struct workqueue_struct *wq,
4337 const struct workqueue_attrs *attrs,
4338 const cpumask_var_t unbound_cpumask)
4339{
4340 struct apply_wqattrs_ctx *ctx;
4341 struct workqueue_attrs *new_attrs;
4342 int cpu;
4343
4344 lockdep_assert_held(&wq_pool_mutex);
4345
4346 if (WARN_ON(attrs->affn_scope < 0 ||
4347 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4348 return ERR_PTR(-EINVAL);
4349
4350 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
4351
4352 new_attrs = alloc_workqueue_attrs();
4353 if (!ctx || !new_attrs)
4354 goto out_free;
4355
4356 /*
4357 * If something goes wrong during CPU up/down, we'll fall back to
4358 * the default pwq covering whole @attrs->cpumask. Always create
4359 * it even if we don't use it immediately.
4360 */
4361 copy_workqueue_attrs(new_attrs, attrs);
4362 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
4363 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4364 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4365 if (!ctx->dfl_pwq)
4366 goto out_free;
4367
4368 for_each_possible_cpu(cpu) {
4369 if (new_attrs->ordered) {
4370 ctx->dfl_pwq->refcnt++;
4371 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4372 } else {
4373 wq_calc_pod_cpumask(new_attrs, cpu, -1);
4374 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
4375 if (!ctx->pwq_tbl[cpu])
4376 goto out_free;
4377 }
4378 }
4379
4380 /* save the user configured attrs and sanitize it. */
4381 copy_workqueue_attrs(new_attrs, attrs);
4382 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4383 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4384 ctx->attrs = new_attrs;
4385
4386 ctx->wq = wq;
4387 return ctx;
4388
4389out_free:
4390 free_workqueue_attrs(new_attrs);
4391 apply_wqattrs_cleanup(ctx);
4392 return ERR_PTR(-ENOMEM);
4393}
4394
4395/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4396static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4397{
4398 int cpu;
4399
4400 /* all pwqs have been created successfully, let's install'em */
4401 mutex_lock(&ctx->wq->mutex);
4402
4403 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4404
4405 /* save the previous pwq and install the new one */
4406 for_each_possible_cpu(cpu)
4407 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
4408 ctx->pwq_tbl[cpu]);
4409
4410 /* @dfl_pwq might not have been used, ensure it's linked */
4411 link_pwq(ctx->dfl_pwq);
4412 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4413
4414 mutex_unlock(&ctx->wq->mutex);
4415}
4416
4417static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4418 const struct workqueue_attrs *attrs)
4419{
4420 struct apply_wqattrs_ctx *ctx;
4421
4422 /* only unbound workqueues can change attributes */
4423 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4424 return -EINVAL;
4425
4426 /* creating multiple pwqs breaks ordering guarantee */
4427 if (!list_empty(&wq->pwqs)) {
4428 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4429 return -EINVAL;
4430
4431 wq->flags &= ~__WQ_ORDERED;
4432 }
4433
4434 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4435 if (IS_ERR(ctx))
4436 return PTR_ERR(ctx);
4437
4438 /* the ctx has been prepared successfully, let's commit it */
4439 apply_wqattrs_commit(ctx);
4440 apply_wqattrs_cleanup(ctx);
4441
4442 return 0;
4443}
4444
4445/**
4446 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4447 * @wq: the target workqueue
4448 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4449 *
4450 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
4451 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
4452 * work items are affine to the pod it was issued on. Older pwqs are released as
4453 * in-flight work items finish. Note that a work item which repeatedly requeues
4454 * itself back-to-back will stay on its current pwq.
4455 *
4456 * Performs GFP_KERNEL allocations.
4457 *
4458 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4459 *
4460 * Return: 0 on success and -errno on failure.
4461 */
4462int apply_workqueue_attrs(struct workqueue_struct *wq,
4463 const struct workqueue_attrs *attrs)
4464{
4465 int ret;
4466
4467 lockdep_assert_cpus_held();
4468
4469 mutex_lock(&wq_pool_mutex);
4470 ret = apply_workqueue_attrs_locked(wq, attrs);
4471 mutex_unlock(&wq_pool_mutex);
4472
4473 return ret;
4474}
4475
4476/**
4477 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4478 * @wq: the target workqueue
4479 * @cpu: the CPU to update pool association for
4480 * @hotplug_cpu: the CPU coming up or going down
4481 * @online: whether @cpu is coming up or going down
4482 *
4483 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4484 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of
4485 * @wq accordingly.
4486 *
4487 *
4488 * If pod affinity can't be adjusted due to memory allocation failure, it falls
4489 * back to @wq->dfl_pwq which may not be optimal but is always correct.
4490 *
4491 * Note that when the last allowed CPU of a pod goes offline for a workqueue
4492 * with a cpumask spanning multiple pods, the workers which were already
4493 * executing the work items for the workqueue will lose their CPU affinity and
4494 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
4495 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
4496 * responsibility to flush the work item from CPU_DOWN_PREPARE.
4497 */
4498static void wq_update_pod(struct workqueue_struct *wq, int cpu,
4499 int hotplug_cpu, bool online)
4500{
4501 int off_cpu = online ? -1 : hotplug_cpu;
4502 struct pool_workqueue *old_pwq = NULL, *pwq;
4503 struct workqueue_attrs *target_attrs;
4504
4505 lockdep_assert_held(&wq_pool_mutex);
4506
4507 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4508 return;
4509
4510 /*
4511 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4512 * Let's use a preallocated one. The following buf is protected by
4513 * CPU hotplug exclusion.
4514 */
4515 target_attrs = wq_update_pod_attrs_buf;
4516
4517 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4518 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4519
4520 /* nothing to do if the target cpumask matches the current pwq */
4521 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
4522 pwq = rcu_dereference_protected(*per_cpu_ptr(wq->cpu_pwq, cpu),
4523 lockdep_is_held(&wq_pool_mutex));
4524 if (wqattrs_equal(target_attrs, pwq->pool->attrs))
4525 return;
4526
4527 /* create a new pwq */
4528 pwq = alloc_unbound_pwq(wq, target_attrs);
4529 if (!pwq) {
4530 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
4531 wq->name);
4532 goto use_dfl_pwq;
4533 }
4534
4535 /* Install the new pwq. */
4536 mutex_lock(&wq->mutex);
4537 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4538 goto out_unlock;
4539
4540use_dfl_pwq:
4541 mutex_lock(&wq->mutex);
4542 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4543 get_pwq(wq->dfl_pwq);
4544 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4545 old_pwq = install_unbound_pwq(wq, cpu, wq->dfl_pwq);
4546out_unlock:
4547 mutex_unlock(&wq->mutex);
4548 put_pwq_unlocked(old_pwq);
4549}
4550
4551static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4552{
4553 bool highpri = wq->flags & WQ_HIGHPRI;
4554 int cpu, ret;
4555
4556 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
4557 if (!wq->cpu_pwq)
4558 goto enomem;
4559
4560 if (!(wq->flags & WQ_UNBOUND)) {
4561 for_each_possible_cpu(cpu) {
4562 struct pool_workqueue **pwq_p =
4563 per_cpu_ptr(wq->cpu_pwq, cpu);
4564 struct worker_pool *pool =
4565 &(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]);
4566
4567 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
4568 pool->node);
4569 if (!*pwq_p)
4570 goto enomem;
4571
4572 init_pwq(*pwq_p, wq, pool);
4573
4574 mutex_lock(&wq->mutex);
4575 link_pwq(*pwq_p);
4576 mutex_unlock(&wq->mutex);
4577 }
4578 return 0;
4579 }
4580
4581 cpus_read_lock();
4582 if (wq->flags & __WQ_ORDERED) {
4583 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4584 /* there should only be single pwq for ordering guarantee */
4585 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4586 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4587 "ordering guarantee broken for workqueue %s\n", wq->name);
4588 } else {
4589 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4590 }
4591 cpus_read_unlock();
4592
4593 /* for unbound pwq, flush the pwq_release_worker ensures that the
4594 * pwq_release_workfn() completes before calling kfree(wq).
4595 */
4596 if (ret)
4597 kthread_flush_worker(pwq_release_worker);
4598
4599 return ret;
4600
4601enomem:
4602 if (wq->cpu_pwq) {
4603 for_each_possible_cpu(cpu) {
4604 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4605
4606 if (pwq)
4607 kmem_cache_free(pwq_cache, pwq);
4608 }
4609 free_percpu(wq->cpu_pwq);
4610 wq->cpu_pwq = NULL;
4611 }
4612 return -ENOMEM;
4613}
4614
4615static int wq_clamp_max_active(int max_active, unsigned int flags,
4616 const char *name)
4617{
4618 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
4619 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4620 max_active, name, 1, WQ_MAX_ACTIVE);
4621
4622 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
4623}
4624
4625/*
4626 * Workqueues which may be used during memory reclaim should have a rescuer
4627 * to guarantee forward progress.
4628 */
4629static int init_rescuer(struct workqueue_struct *wq)
4630{
4631 struct worker *rescuer;
4632 int ret;
4633
4634 if (!(wq->flags & WQ_MEM_RECLAIM))
4635 return 0;
4636
4637 rescuer = alloc_worker(NUMA_NO_NODE);
4638 if (!rescuer) {
4639 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
4640 wq->name);
4641 return -ENOMEM;
4642 }
4643
4644 rescuer->rescue_wq = wq;
4645 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
4646 if (IS_ERR(rescuer->task)) {
4647 ret = PTR_ERR(rescuer->task);
4648 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
4649 wq->name, ERR_PTR(ret));
4650 kfree(rescuer);
4651 return ret;
4652 }
4653
4654 wq->rescuer = rescuer;
4655 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4656 wake_up_process(rescuer->task);
4657
4658 return 0;
4659}
4660
4661__printf(1, 4)
4662struct workqueue_struct *alloc_workqueue(const char *fmt,
4663 unsigned int flags,
4664 int max_active, ...)
4665{
4666 va_list args;
4667 struct workqueue_struct *wq;
4668 struct pool_workqueue *pwq;
4669
4670 /*
4671 * Unbound && max_active == 1 used to imply ordered, which is no longer
4672 * the case on many machines due to per-pod pools. While
4673 * alloc_ordered_workqueue() is the right way to create an ordered
4674 * workqueue, keep the previous behavior to avoid subtle breakages.
4675 */
4676 if ((flags & WQ_UNBOUND) && max_active == 1)
4677 flags |= __WQ_ORDERED;
4678
4679 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4680 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4681 flags |= WQ_UNBOUND;
4682
4683 /* allocate wq and format name */
4684 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
4685 if (!wq)
4686 return NULL;
4687
4688 if (flags & WQ_UNBOUND) {
4689 wq->unbound_attrs = alloc_workqueue_attrs();
4690 if (!wq->unbound_attrs)
4691 goto err_free_wq;
4692 }
4693
4694 va_start(args, max_active);
4695 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4696 va_end(args);
4697
4698 max_active = max_active ?: WQ_DFL_ACTIVE;
4699 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4700
4701 /* init wq */
4702 wq->flags = flags;
4703 wq->saved_max_active = max_active;
4704 mutex_init(&wq->mutex);
4705 atomic_set(&wq->nr_pwqs_to_flush, 0);
4706 INIT_LIST_HEAD(&wq->pwqs);
4707 INIT_LIST_HEAD(&wq->flusher_queue);
4708 INIT_LIST_HEAD(&wq->flusher_overflow);
4709 INIT_LIST_HEAD(&wq->maydays);
4710
4711 wq_init_lockdep(wq);
4712 INIT_LIST_HEAD(&wq->list);
4713
4714 if (alloc_and_link_pwqs(wq) < 0)
4715 goto err_unreg_lockdep;
4716
4717 if (wq_online && init_rescuer(wq) < 0)
4718 goto err_destroy;
4719
4720 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4721 goto err_destroy;
4722
4723 /*
4724 * wq_pool_mutex protects global freeze state and workqueues list.
4725 * Grab it, adjust max_active and add the new @wq to workqueues
4726 * list.
4727 */
4728 mutex_lock(&wq_pool_mutex);
4729
4730 mutex_lock(&wq->mutex);
4731 for_each_pwq(pwq, wq)
4732 pwq_adjust_max_active(pwq);
4733 mutex_unlock(&wq->mutex);
4734
4735 list_add_tail_rcu(&wq->list, &workqueues);
4736
4737 mutex_unlock(&wq_pool_mutex);
4738
4739 return wq;
4740
4741err_unreg_lockdep:
4742 wq_unregister_lockdep(wq);
4743 wq_free_lockdep(wq);
4744err_free_wq:
4745 free_workqueue_attrs(wq->unbound_attrs);
4746 kfree(wq);
4747 return NULL;
4748err_destroy:
4749 destroy_workqueue(wq);
4750 return NULL;
4751}
4752EXPORT_SYMBOL_GPL(alloc_workqueue);
4753
4754static bool pwq_busy(struct pool_workqueue *pwq)
4755{
4756 int i;
4757
4758 for (i = 0; i < WORK_NR_COLORS; i++)
4759 if (pwq->nr_in_flight[i])
4760 return true;
4761
4762 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4763 return true;
4764 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4765 return true;
4766
4767 return false;
4768}
4769
4770/**
4771 * destroy_workqueue - safely terminate a workqueue
4772 * @wq: target workqueue
4773 *
4774 * Safely destroy a workqueue. All work currently pending will be done first.
4775 */
4776void destroy_workqueue(struct workqueue_struct *wq)
4777{
4778 struct pool_workqueue *pwq;
4779 int cpu;
4780
4781 /*
4782 * Remove it from sysfs first so that sanity check failure doesn't
4783 * lead to sysfs name conflicts.
4784 */
4785 workqueue_sysfs_unregister(wq);
4786
4787 /* mark the workqueue destruction is in progress */
4788 mutex_lock(&wq->mutex);
4789 wq->flags |= __WQ_DESTROYING;
4790 mutex_unlock(&wq->mutex);
4791
4792 /* drain it before proceeding with destruction */
4793 drain_workqueue(wq);
4794
4795 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4796 if (wq->rescuer) {
4797 struct worker *rescuer = wq->rescuer;
4798
4799 /* this prevents new queueing */
4800 raw_spin_lock_irq(&wq_mayday_lock);
4801 wq->rescuer = NULL;
4802 raw_spin_unlock_irq(&wq_mayday_lock);
4803
4804 /* rescuer will empty maydays list before exiting */
4805 kthread_stop(rescuer->task);
4806 kfree(rescuer);
4807 }
4808
4809 /*
4810 * Sanity checks - grab all the locks so that we wait for all
4811 * in-flight operations which may do put_pwq().
4812 */
4813 mutex_lock(&wq_pool_mutex);
4814 mutex_lock(&wq->mutex);
4815 for_each_pwq(pwq, wq) {
4816 raw_spin_lock_irq(&pwq->pool->lock);
4817 if (WARN_ON(pwq_busy(pwq))) {
4818 pr_warn("%s: %s has the following busy pwq\n",
4819 __func__, wq->name);
4820 show_pwq(pwq);
4821 raw_spin_unlock_irq(&pwq->pool->lock);
4822 mutex_unlock(&wq->mutex);
4823 mutex_unlock(&wq_pool_mutex);
4824 show_one_workqueue(wq);
4825 return;
4826 }
4827 raw_spin_unlock_irq(&pwq->pool->lock);
4828 }
4829 mutex_unlock(&wq->mutex);
4830
4831 /*
4832 * wq list is used to freeze wq, remove from list after
4833 * flushing is complete in case freeze races us.
4834 */
4835 list_del_rcu(&wq->list);
4836 mutex_unlock(&wq_pool_mutex);
4837
4838 /*
4839 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
4840 * to put the base refs. @wq will be auto-destroyed from the last
4841 * pwq_put. RCU read lock prevents @wq from going away from under us.
4842 */
4843 rcu_read_lock();
4844
4845 for_each_possible_cpu(cpu) {
4846 pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4847 RCU_INIT_POINTER(*per_cpu_ptr(wq->cpu_pwq, cpu), NULL);
4848 put_pwq_unlocked(pwq);
4849 }
4850
4851 put_pwq_unlocked(wq->dfl_pwq);
4852 wq->dfl_pwq = NULL;
4853
4854 rcu_read_unlock();
4855}
4856EXPORT_SYMBOL_GPL(destroy_workqueue);
4857
4858/**
4859 * workqueue_set_max_active - adjust max_active of a workqueue
4860 * @wq: target workqueue
4861 * @max_active: new max_active value.
4862 *
4863 * Set max_active of @wq to @max_active.
4864 *
4865 * CONTEXT:
4866 * Don't call from IRQ context.
4867 */
4868void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4869{
4870 struct pool_workqueue *pwq;
4871
4872 /* disallow meddling with max_active for ordered workqueues */
4873 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4874 return;
4875
4876 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4877
4878 mutex_lock(&wq->mutex);
4879
4880 wq->flags &= ~__WQ_ORDERED;
4881 wq->saved_max_active = max_active;
4882
4883 for_each_pwq(pwq, wq)
4884 pwq_adjust_max_active(pwq);
4885
4886 mutex_unlock(&wq->mutex);
4887}
4888EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4889
4890/**
4891 * current_work - retrieve %current task's work struct
4892 *
4893 * Determine if %current task is a workqueue worker and what it's working on.
4894 * Useful to find out the context that the %current task is running in.
4895 *
4896 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4897 */
4898struct work_struct *current_work(void)
4899{
4900 struct worker *worker = current_wq_worker();
4901
4902 return worker ? worker->current_work : NULL;
4903}
4904EXPORT_SYMBOL(current_work);
4905
4906/**
4907 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4908 *
4909 * Determine whether %current is a workqueue rescuer. Can be used from
4910 * work functions to determine whether it's being run off the rescuer task.
4911 *
4912 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4913 */
4914bool current_is_workqueue_rescuer(void)
4915{
4916 struct worker *worker = current_wq_worker();
4917
4918 return worker && worker->rescue_wq;
4919}
4920
4921/**
4922 * workqueue_congested - test whether a workqueue is congested
4923 * @cpu: CPU in question
4924 * @wq: target workqueue
4925 *
4926 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4927 * no synchronization around this function and the test result is
4928 * unreliable and only useful as advisory hints or for debugging.
4929 *
4930 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4931 *
4932 * With the exception of ordered workqueues, all workqueues have per-cpu
4933 * pool_workqueues, each with its own congested state. A workqueue being
4934 * congested on one CPU doesn't mean that the workqueue is contested on any
4935 * other CPUs.
4936 *
4937 * Return:
4938 * %true if congested, %false otherwise.
4939 */
4940bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4941{
4942 struct pool_workqueue *pwq;
4943 bool ret;
4944
4945 rcu_read_lock();
4946 preempt_disable();
4947
4948 if (cpu == WORK_CPU_UNBOUND)
4949 cpu = smp_processor_id();
4950
4951 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4952 ret = !list_empty(&pwq->inactive_works);
4953
4954 preempt_enable();
4955 rcu_read_unlock();
4956
4957 return ret;
4958}
4959EXPORT_SYMBOL_GPL(workqueue_congested);
4960
4961/**
4962 * work_busy - test whether a work is currently pending or running
4963 * @work: the work to be tested
4964 *
4965 * Test whether @work is currently pending or running. There is no
4966 * synchronization around this function and the test result is
4967 * unreliable and only useful as advisory hints or for debugging.
4968 *
4969 * Return:
4970 * OR'd bitmask of WORK_BUSY_* bits.
4971 */
4972unsigned int work_busy(struct work_struct *work)
4973{
4974 struct worker_pool *pool;
4975 unsigned long flags;
4976 unsigned int ret = 0;
4977
4978 if (work_pending(work))
4979 ret |= WORK_BUSY_PENDING;
4980
4981 rcu_read_lock();
4982 pool = get_work_pool(work);
4983 if (pool) {
4984 raw_spin_lock_irqsave(&pool->lock, flags);
4985 if (find_worker_executing_work(pool, work))
4986 ret |= WORK_BUSY_RUNNING;
4987 raw_spin_unlock_irqrestore(&pool->lock, flags);
4988 }
4989 rcu_read_unlock();
4990
4991 return ret;
4992}
4993EXPORT_SYMBOL_GPL(work_busy);
4994
4995/**
4996 * set_worker_desc - set description for the current work item
4997 * @fmt: printf-style format string
4998 * @...: arguments for the format string
4999 *
5000 * This function can be called by a running work function to describe what
5001 * the work item is about. If the worker task gets dumped, this
5002 * information will be printed out together to help debugging. The
5003 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5004 */
5005void set_worker_desc(const char *fmt, ...)
5006{
5007 struct worker *worker = current_wq_worker();
5008 va_list args;
5009
5010 if (worker) {
5011 va_start(args, fmt);
5012 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5013 va_end(args);
5014 }
5015}
5016EXPORT_SYMBOL_GPL(set_worker_desc);
5017
5018/**
5019 * print_worker_info - print out worker information and description
5020 * @log_lvl: the log level to use when printing
5021 * @task: target task
5022 *
5023 * If @task is a worker and currently executing a work item, print out the
5024 * name of the workqueue being serviced and worker description set with
5025 * set_worker_desc() by the currently executing work item.
5026 *
5027 * This function can be safely called on any task as long as the
5028 * task_struct itself is accessible. While safe, this function isn't
5029 * synchronized and may print out mixups or garbages of limited length.
5030 */
5031void print_worker_info(const char *log_lvl, struct task_struct *task)
5032{
5033 work_func_t *fn = NULL;
5034 char name[WQ_NAME_LEN] = { };
5035 char desc[WORKER_DESC_LEN] = { };
5036 struct pool_workqueue *pwq = NULL;
5037 struct workqueue_struct *wq = NULL;
5038 struct worker *worker;
5039
5040 if (!(task->flags & PF_WQ_WORKER))
5041 return;
5042
5043 /*
5044 * This function is called without any synchronization and @task
5045 * could be in any state. Be careful with dereferences.
5046 */
5047 worker = kthread_probe_data(task);
5048
5049 /*
5050 * Carefully copy the associated workqueue's workfn, name and desc.
5051 * Keep the original last '\0' in case the original is garbage.
5052 */
5053 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5054 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5055 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5056 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5057 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5058
5059 if (fn || name[0] || desc[0]) {
5060 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5061 if (strcmp(name, desc))
5062 pr_cont(" (%s)", desc);
5063 pr_cont("\n");
5064 }
5065}
5066
5067static void pr_cont_pool_info(struct worker_pool *pool)
5068{
5069 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5070 if (pool->node != NUMA_NO_NODE)
5071 pr_cont(" node=%d", pool->node);
5072 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
5073}
5074
5075struct pr_cont_work_struct {
5076 bool comma;
5077 work_func_t func;
5078 long ctr;
5079};
5080
5081static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5082{
5083 if (!pcwsp->ctr)
5084 goto out_record;
5085 if (func == pcwsp->func) {
5086 pcwsp->ctr++;
5087 return;
5088 }
5089 if (pcwsp->ctr == 1)
5090 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5091 else
5092 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5093 pcwsp->ctr = 0;
5094out_record:
5095 if ((long)func == -1L)
5096 return;
5097 pcwsp->comma = comma;
5098 pcwsp->func = func;
5099 pcwsp->ctr = 1;
5100}
5101
5102static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
5103{
5104 if (work->func == wq_barrier_func) {
5105 struct wq_barrier *barr;
5106
5107 barr = container_of(work, struct wq_barrier, work);
5108
5109 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5110 pr_cont("%s BAR(%d)", comma ? "," : "",
5111 task_pid_nr(barr->task));
5112 } else {
5113 if (!comma)
5114 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5115 pr_cont_work_flush(comma, work->func, pcwsp);
5116 }
5117}
5118
5119static void show_pwq(struct pool_workqueue *pwq)
5120{
5121 struct pr_cont_work_struct pcws = { .ctr = 0, };
5122 struct worker_pool *pool = pwq->pool;
5123 struct work_struct *work;
5124 struct worker *worker;
5125 bool has_in_flight = false, has_pending = false;
5126 int bkt;
5127
5128 pr_info(" pwq %d:", pool->id);
5129 pr_cont_pool_info(pool);
5130
5131 pr_cont(" active=%d/%d refcnt=%d%s\n",
5132 pwq->nr_active, pwq->max_active, pwq->refcnt,
5133 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5134
5135 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5136 if (worker->current_pwq == pwq) {
5137 has_in_flight = true;
5138 break;
5139 }
5140 }
5141 if (has_in_flight) {
5142 bool comma = false;
5143
5144 pr_info(" in-flight:");
5145 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5146 if (worker->current_pwq != pwq)
5147 continue;
5148
5149 pr_cont("%s %d%s:%ps", comma ? "," : "",
5150 task_pid_nr(worker->task),
5151 worker->rescue_wq ? "(RESCUER)" : "",
5152 worker->current_func);
5153 list_for_each_entry(work, &worker->scheduled, entry)
5154 pr_cont_work(false, work, &pcws);
5155 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5156 comma = true;
5157 }
5158 pr_cont("\n");
5159 }
5160
5161 list_for_each_entry(work, &pool->worklist, entry) {
5162 if (get_work_pwq(work) == pwq) {
5163 has_pending = true;
5164 break;
5165 }
5166 }
5167 if (has_pending) {
5168 bool comma = false;
5169
5170 pr_info(" pending:");
5171 list_for_each_entry(work, &pool->worklist, entry) {
5172 if (get_work_pwq(work) != pwq)
5173 continue;
5174
5175 pr_cont_work(comma, work, &pcws);
5176 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5177 }
5178 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5179 pr_cont("\n");
5180 }
5181
5182 if (!list_empty(&pwq->inactive_works)) {
5183 bool comma = false;
5184
5185 pr_info(" inactive:");
5186 list_for_each_entry(work, &pwq->inactive_works, entry) {
5187 pr_cont_work(comma, work, &pcws);
5188 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5189 }
5190 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5191 pr_cont("\n");
5192 }
5193}
5194
5195/**
5196 * show_one_workqueue - dump state of specified workqueue
5197 * @wq: workqueue whose state will be printed
5198 */
5199void show_one_workqueue(struct workqueue_struct *wq)
5200{
5201 struct pool_workqueue *pwq;
5202 bool idle = true;
5203 unsigned long flags;
5204
5205 for_each_pwq(pwq, wq) {
5206 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5207 idle = false;
5208 break;
5209 }
5210 }
5211 if (idle) /* Nothing to print for idle workqueue */
5212 return;
5213
5214 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
5215
5216 for_each_pwq(pwq, wq) {
5217 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5218 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5219 /*
5220 * Defer printing to avoid deadlocks in console
5221 * drivers that queue work while holding locks
5222 * also taken in their write paths.
5223 */
5224 printk_deferred_enter();
5225 show_pwq(pwq);
5226 printk_deferred_exit();
5227 }
5228 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5229 /*
5230 * We could be printing a lot from atomic context, e.g.
5231 * sysrq-t -> show_all_workqueues(). Avoid triggering
5232 * hard lockup.
5233 */
5234 touch_nmi_watchdog();
5235 }
5236
5237}
5238
5239/**
5240 * show_one_worker_pool - dump state of specified worker pool
5241 * @pool: worker pool whose state will be printed
5242 */
5243static void show_one_worker_pool(struct worker_pool *pool)
5244{
5245 struct worker *worker;
5246 bool first = true;
5247 unsigned long flags;
5248 unsigned long hung = 0;
5249
5250 raw_spin_lock_irqsave(&pool->lock, flags);
5251 if (pool->nr_workers == pool->nr_idle)
5252 goto next_pool;
5253
5254 /* How long the first pending work is waiting for a worker. */
5255 if (!list_empty(&pool->worklist))
5256 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5257
5258 /*
5259 * Defer printing to avoid deadlocks in console drivers that
5260 * queue work while holding locks also taken in their write
5261 * paths.
5262 */
5263 printk_deferred_enter();
5264 pr_info("pool %d:", pool->id);
5265 pr_cont_pool_info(pool);
5266 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
5267 if (pool->manager)
5268 pr_cont(" manager: %d",
5269 task_pid_nr(pool->manager->task));
5270 list_for_each_entry(worker, &pool->idle_list, entry) {
5271 pr_cont(" %s%d", first ? "idle: " : "",
5272 task_pid_nr(worker->task));
5273 first = false;
5274 }
5275 pr_cont("\n");
5276 printk_deferred_exit();
5277next_pool:
5278 raw_spin_unlock_irqrestore(&pool->lock, flags);
5279 /*
5280 * We could be printing a lot from atomic context, e.g.
5281 * sysrq-t -> show_all_workqueues(). Avoid triggering
5282 * hard lockup.
5283 */
5284 touch_nmi_watchdog();
5285
5286}
5287
5288/**
5289 * show_all_workqueues - dump workqueue state
5290 *
5291 * Called from a sysrq handler and prints out all busy workqueues and pools.
5292 */
5293void show_all_workqueues(void)
5294{
5295 struct workqueue_struct *wq;
5296 struct worker_pool *pool;
5297 int pi;
5298
5299 rcu_read_lock();
5300
5301 pr_info("Showing busy workqueues and worker pools:\n");
5302
5303 list_for_each_entry_rcu(wq, &workqueues, list)
5304 show_one_workqueue(wq);
5305
5306 for_each_pool(pool, pi)
5307 show_one_worker_pool(pool);
5308
5309 rcu_read_unlock();
5310}
5311
5312/**
5313 * show_freezable_workqueues - dump freezable workqueue state
5314 *
5315 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5316 * still busy.
5317 */
5318void show_freezable_workqueues(void)
5319{
5320 struct workqueue_struct *wq;
5321
5322 rcu_read_lock();
5323
5324 pr_info("Showing freezable workqueues that are still busy:\n");
5325
5326 list_for_each_entry_rcu(wq, &workqueues, list) {
5327 if (!(wq->flags & WQ_FREEZABLE))
5328 continue;
5329 show_one_workqueue(wq);
5330 }
5331
5332 rcu_read_unlock();
5333}
5334
5335/* used to show worker information through /proc/PID/{comm,stat,status} */
5336void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5337{
5338 int off;
5339
5340 /* always show the actual comm */
5341 off = strscpy(buf, task->comm, size);
5342 if (off < 0)
5343 return;
5344
5345 /* stabilize PF_WQ_WORKER and worker pool association */
5346 mutex_lock(&wq_pool_attach_mutex);
5347
5348 if (task->flags & PF_WQ_WORKER) {
5349 struct worker *worker = kthread_data(task);
5350 struct worker_pool *pool = worker->pool;
5351
5352 if (pool) {
5353 raw_spin_lock_irq(&pool->lock);
5354 /*
5355 * ->desc tracks information (wq name or
5356 * set_worker_desc()) for the latest execution. If
5357 * current, prepend '+', otherwise '-'.
5358 */
5359 if (worker->desc[0] != '\0') {
5360 if (worker->current_work)
5361 scnprintf(buf + off, size - off, "+%s",
5362 worker->desc);
5363 else
5364 scnprintf(buf + off, size - off, "-%s",
5365 worker->desc);
5366 }
5367 raw_spin_unlock_irq(&pool->lock);
5368 }
5369 }
5370
5371 mutex_unlock(&wq_pool_attach_mutex);
5372}
5373
5374#ifdef CONFIG_SMP
5375
5376/*
5377 * CPU hotplug.
5378 *
5379 * There are two challenges in supporting CPU hotplug. Firstly, there
5380 * are a lot of assumptions on strong associations among work, pwq and
5381 * pool which make migrating pending and scheduled works very
5382 * difficult to implement without impacting hot paths. Secondly,
5383 * worker pools serve mix of short, long and very long running works making
5384 * blocked draining impractical.
5385 *
5386 * This is solved by allowing the pools to be disassociated from the CPU
5387 * running as an unbound one and allowing it to be reattached later if the
5388 * cpu comes back online.
5389 */
5390
5391static void unbind_workers(int cpu)
5392{
5393 struct worker_pool *pool;
5394 struct worker *worker;
5395
5396 for_each_cpu_worker_pool(pool, cpu) {
5397 mutex_lock(&wq_pool_attach_mutex);
5398 raw_spin_lock_irq(&pool->lock);
5399
5400 /*
5401 * We've blocked all attach/detach operations. Make all workers
5402 * unbound and set DISASSOCIATED. Before this, all workers
5403 * must be on the cpu. After this, they may become diasporas.
5404 * And the preemption disabled section in their sched callbacks
5405 * are guaranteed to see WORKER_UNBOUND since the code here
5406 * is on the same cpu.
5407 */
5408 for_each_pool_worker(worker, pool)
5409 worker->flags |= WORKER_UNBOUND;
5410
5411 pool->flags |= POOL_DISASSOCIATED;
5412
5413 /*
5414 * The handling of nr_running in sched callbacks are disabled
5415 * now. Zap nr_running. After this, nr_running stays zero and
5416 * need_more_worker() and keep_working() are always true as
5417 * long as the worklist is not empty. This pool now behaves as
5418 * an unbound (in terms of concurrency management) pool which
5419 * are served by workers tied to the pool.
5420 */
5421 pool->nr_running = 0;
5422
5423 /*
5424 * With concurrency management just turned off, a busy
5425 * worker blocking could lead to lengthy stalls. Kick off
5426 * unbound chain execution of currently pending work items.
5427 */
5428 kick_pool(pool);
5429
5430 raw_spin_unlock_irq(&pool->lock);
5431
5432 for_each_pool_worker(worker, pool)
5433 unbind_worker(worker);
5434
5435 mutex_unlock(&wq_pool_attach_mutex);
5436 }
5437}
5438
5439/**
5440 * rebind_workers - rebind all workers of a pool to the associated CPU
5441 * @pool: pool of interest
5442 *
5443 * @pool->cpu is coming online. Rebind all workers to the CPU.
5444 */
5445static void rebind_workers(struct worker_pool *pool)
5446{
5447 struct worker *worker;
5448
5449 lockdep_assert_held(&wq_pool_attach_mutex);
5450
5451 /*
5452 * Restore CPU affinity of all workers. As all idle workers should
5453 * be on the run-queue of the associated CPU before any local
5454 * wake-ups for concurrency management happen, restore CPU affinity
5455 * of all workers first and then clear UNBOUND. As we're called
5456 * from CPU_ONLINE, the following shouldn't fail.
5457 */
5458 for_each_pool_worker(worker, pool) {
5459 kthread_set_per_cpu(worker->task, pool->cpu);
5460 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5461 pool_allowed_cpus(pool)) < 0);
5462 }
5463
5464 raw_spin_lock_irq(&pool->lock);
5465
5466 pool->flags &= ~POOL_DISASSOCIATED;
5467
5468 for_each_pool_worker(worker, pool) {
5469 unsigned int worker_flags = worker->flags;
5470
5471 /*
5472 * We want to clear UNBOUND but can't directly call
5473 * worker_clr_flags() or adjust nr_running. Atomically
5474 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5475 * @worker will clear REBOUND using worker_clr_flags() when
5476 * it initiates the next execution cycle thus restoring
5477 * concurrency management. Note that when or whether
5478 * @worker clears REBOUND doesn't affect correctness.
5479 *
5480 * WRITE_ONCE() is necessary because @worker->flags may be
5481 * tested without holding any lock in
5482 * wq_worker_running(). Without it, NOT_RUNNING test may
5483 * fail incorrectly leading to premature concurrency
5484 * management operations.
5485 */
5486 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5487 worker_flags |= WORKER_REBOUND;
5488 worker_flags &= ~WORKER_UNBOUND;
5489 WRITE_ONCE(worker->flags, worker_flags);
5490 }
5491
5492 raw_spin_unlock_irq(&pool->lock);
5493}
5494
5495/**
5496 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5497 * @pool: unbound pool of interest
5498 * @cpu: the CPU which is coming up
5499 *
5500 * An unbound pool may end up with a cpumask which doesn't have any online
5501 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5502 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5503 * online CPU before, cpus_allowed of all its workers should be restored.
5504 */
5505static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5506{
5507 static cpumask_t cpumask;
5508 struct worker *worker;
5509
5510 lockdep_assert_held(&wq_pool_attach_mutex);
5511
5512 /* is @cpu allowed for @pool? */
5513 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5514 return;
5515
5516 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5517
5518 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5519 for_each_pool_worker(worker, pool)
5520 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5521}
5522
5523int workqueue_prepare_cpu(unsigned int cpu)
5524{
5525 struct worker_pool *pool;
5526
5527 for_each_cpu_worker_pool(pool, cpu) {
5528 if (pool->nr_workers)
5529 continue;
5530 if (!create_worker(pool))
5531 return -ENOMEM;
5532 }
5533 return 0;
5534}
5535
5536int workqueue_online_cpu(unsigned int cpu)
5537{
5538 struct worker_pool *pool;
5539 struct workqueue_struct *wq;
5540 int pi;
5541
5542 mutex_lock(&wq_pool_mutex);
5543
5544 for_each_pool(pool, pi) {
5545 mutex_lock(&wq_pool_attach_mutex);
5546
5547 if (pool->cpu == cpu)
5548 rebind_workers(pool);
5549 else if (pool->cpu < 0)
5550 restore_unbound_workers_cpumask(pool, cpu);
5551
5552 mutex_unlock(&wq_pool_attach_mutex);
5553 }
5554
5555 /* update pod affinity of unbound workqueues */
5556 list_for_each_entry(wq, &workqueues, list) {
5557 struct workqueue_attrs *attrs = wq->unbound_attrs;
5558
5559 if (attrs) {
5560 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5561 int tcpu;
5562
5563 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5564 wq_update_pod(wq, tcpu, cpu, true);
5565 }
5566 }
5567
5568 mutex_unlock(&wq_pool_mutex);
5569 return 0;
5570}
5571
5572int workqueue_offline_cpu(unsigned int cpu)
5573{
5574 struct workqueue_struct *wq;
5575
5576 /* unbinding per-cpu workers should happen on the local CPU */
5577 if (WARN_ON(cpu != smp_processor_id()))
5578 return -1;
5579
5580 unbind_workers(cpu);
5581
5582 /* update pod affinity of unbound workqueues */
5583 mutex_lock(&wq_pool_mutex);
5584 list_for_each_entry(wq, &workqueues, list) {
5585 struct workqueue_attrs *attrs = wq->unbound_attrs;
5586
5587 if (attrs) {
5588 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5589 int tcpu;
5590
5591 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5592 wq_update_pod(wq, tcpu, cpu, false);
5593 }
5594 }
5595 mutex_unlock(&wq_pool_mutex);
5596
5597 return 0;
5598}
5599
5600struct work_for_cpu {
5601 struct work_struct work;
5602 long (*fn)(void *);
5603 void *arg;
5604 long ret;
5605};
5606
5607static void work_for_cpu_fn(struct work_struct *work)
5608{
5609 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5610
5611 wfc->ret = wfc->fn(wfc->arg);
5612}
5613
5614/**
5615 * work_on_cpu_key - run a function in thread context on a particular cpu
5616 * @cpu: the cpu to run on
5617 * @fn: the function to run
5618 * @arg: the function arg
5619 * @key: The lock class key for lock debugging purposes
5620 *
5621 * It is up to the caller to ensure that the cpu doesn't go offline.
5622 * The caller must not hold any locks which would prevent @fn from completing.
5623 *
5624 * Return: The value @fn returns.
5625 */
5626long work_on_cpu_key(int cpu, long (*fn)(void *),
5627 void *arg, struct lock_class_key *key)
5628{
5629 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5630
5631 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
5632 schedule_work_on(cpu, &wfc.work);
5633 flush_work(&wfc.work);
5634 destroy_work_on_stack(&wfc.work);
5635 return wfc.ret;
5636}
5637EXPORT_SYMBOL_GPL(work_on_cpu_key);
5638
5639/**
5640 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
5641 * @cpu: the cpu to run on
5642 * @fn: the function to run
5643 * @arg: the function argument
5644 * @key: The lock class key for lock debugging purposes
5645 *
5646 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5647 * any locks which would prevent @fn from completing.
5648 *
5649 * Return: The value @fn returns.
5650 */
5651long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
5652 void *arg, struct lock_class_key *key)
5653{
5654 long ret = -ENODEV;
5655
5656 cpus_read_lock();
5657 if (cpu_online(cpu))
5658 ret = work_on_cpu_key(cpu, fn, arg, key);
5659 cpus_read_unlock();
5660 return ret;
5661}
5662EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
5663#endif /* CONFIG_SMP */
5664
5665#ifdef CONFIG_FREEZER
5666
5667/**
5668 * freeze_workqueues_begin - begin freezing workqueues
5669 *
5670 * Start freezing workqueues. After this function returns, all freezable
5671 * workqueues will queue new works to their inactive_works list instead of
5672 * pool->worklist.
5673 *
5674 * CONTEXT:
5675 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5676 */
5677void freeze_workqueues_begin(void)
5678{
5679 struct workqueue_struct *wq;
5680 struct pool_workqueue *pwq;
5681
5682 mutex_lock(&wq_pool_mutex);
5683
5684 WARN_ON_ONCE(workqueue_freezing);
5685 workqueue_freezing = true;
5686
5687 list_for_each_entry(wq, &workqueues, list) {
5688 mutex_lock(&wq->mutex);
5689 for_each_pwq(pwq, wq)
5690 pwq_adjust_max_active(pwq);
5691 mutex_unlock(&wq->mutex);
5692 }
5693
5694 mutex_unlock(&wq_pool_mutex);
5695}
5696
5697/**
5698 * freeze_workqueues_busy - are freezable workqueues still busy?
5699 *
5700 * Check whether freezing is complete. This function must be called
5701 * between freeze_workqueues_begin() and thaw_workqueues().
5702 *
5703 * CONTEXT:
5704 * Grabs and releases wq_pool_mutex.
5705 *
5706 * Return:
5707 * %true if some freezable workqueues are still busy. %false if freezing
5708 * is complete.
5709 */
5710bool freeze_workqueues_busy(void)
5711{
5712 bool busy = false;
5713 struct workqueue_struct *wq;
5714 struct pool_workqueue *pwq;
5715
5716 mutex_lock(&wq_pool_mutex);
5717
5718 WARN_ON_ONCE(!workqueue_freezing);
5719
5720 list_for_each_entry(wq, &workqueues, list) {
5721 if (!(wq->flags & WQ_FREEZABLE))
5722 continue;
5723 /*
5724 * nr_active is monotonically decreasing. It's safe
5725 * to peek without lock.
5726 */
5727 rcu_read_lock();
5728 for_each_pwq(pwq, wq) {
5729 WARN_ON_ONCE(pwq->nr_active < 0);
5730 if (pwq->nr_active) {
5731 busy = true;
5732 rcu_read_unlock();
5733 goto out_unlock;
5734 }
5735 }
5736 rcu_read_unlock();
5737 }
5738out_unlock:
5739 mutex_unlock(&wq_pool_mutex);
5740 return busy;
5741}
5742
5743/**
5744 * thaw_workqueues - thaw workqueues
5745 *
5746 * Thaw workqueues. Normal queueing is restored and all collected
5747 * frozen works are transferred to their respective pool worklists.
5748 *
5749 * CONTEXT:
5750 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5751 */
5752void thaw_workqueues(void)
5753{
5754 struct workqueue_struct *wq;
5755 struct pool_workqueue *pwq;
5756
5757 mutex_lock(&wq_pool_mutex);
5758
5759 if (!workqueue_freezing)
5760 goto out_unlock;
5761
5762 workqueue_freezing = false;
5763
5764 /* restore max_active and repopulate worklist */
5765 list_for_each_entry(wq, &workqueues, list) {
5766 mutex_lock(&wq->mutex);
5767 for_each_pwq(pwq, wq)
5768 pwq_adjust_max_active(pwq);
5769 mutex_unlock(&wq->mutex);
5770 }
5771
5772out_unlock:
5773 mutex_unlock(&wq_pool_mutex);
5774}
5775#endif /* CONFIG_FREEZER */
5776
5777static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5778{
5779 LIST_HEAD(ctxs);
5780 int ret = 0;
5781 struct workqueue_struct *wq;
5782 struct apply_wqattrs_ctx *ctx, *n;
5783
5784 lockdep_assert_held(&wq_pool_mutex);
5785
5786 list_for_each_entry(wq, &workqueues, list) {
5787 if (!(wq->flags & WQ_UNBOUND))
5788 continue;
5789 /* creating multiple pwqs breaks ordering guarantee */
5790 if (wq->flags & __WQ_ORDERED)
5791 continue;
5792
5793 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5794 if (IS_ERR(ctx)) {
5795 ret = PTR_ERR(ctx);
5796 break;
5797 }
5798
5799 list_add_tail(&ctx->list, &ctxs);
5800 }
5801
5802 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5803 if (!ret)
5804 apply_wqattrs_commit(ctx);
5805 apply_wqattrs_cleanup(ctx);
5806 }
5807
5808 if (!ret) {
5809 mutex_lock(&wq_pool_attach_mutex);
5810 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5811 mutex_unlock(&wq_pool_attach_mutex);
5812 }
5813 return ret;
5814}
5815
5816/**
5817 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
5818 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
5819 *
5820 * This function can be called from cpuset code to provide a set of isolated
5821 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
5822 * either cpus_read_lock or cpus_write_lock.
5823 */
5824int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
5825{
5826 cpumask_var_t cpumask;
5827 int ret = 0;
5828
5829 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5830 return -ENOMEM;
5831
5832 lockdep_assert_cpus_held();
5833 mutex_lock(&wq_pool_mutex);
5834
5835 /* Save the current isolated cpumask & export it via sysfs */
5836 cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
5837
5838 /*
5839 * If the operation fails, it will fall back to
5840 * wq_requested_unbound_cpumask which is initially set to
5841 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
5842 * by any subsequent write to workqueue/cpumask sysfs file.
5843 */
5844 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
5845 cpumask_copy(cpumask, wq_requested_unbound_cpumask);
5846 if (!cpumask_equal(cpumask, wq_unbound_cpumask))
5847 ret = workqueue_apply_unbound_cpumask(cpumask);
5848
5849 mutex_unlock(&wq_pool_mutex);
5850 free_cpumask_var(cpumask);
5851 return ret;
5852}
5853
5854static int parse_affn_scope(const char *val)
5855{
5856 int i;
5857
5858 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
5859 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
5860 return i;
5861 }
5862 return -EINVAL;
5863}
5864
5865static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
5866{
5867 struct workqueue_struct *wq;
5868 int affn, cpu;
5869
5870 affn = parse_affn_scope(val);
5871 if (affn < 0)
5872 return affn;
5873 if (affn == WQ_AFFN_DFL)
5874 return -EINVAL;
5875
5876 cpus_read_lock();
5877 mutex_lock(&wq_pool_mutex);
5878
5879 wq_affn_dfl = affn;
5880
5881 list_for_each_entry(wq, &workqueues, list) {
5882 for_each_online_cpu(cpu) {
5883 wq_update_pod(wq, cpu, cpu, true);
5884 }
5885 }
5886
5887 mutex_unlock(&wq_pool_mutex);
5888 cpus_read_unlock();
5889
5890 return 0;
5891}
5892
5893static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
5894{
5895 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
5896}
5897
5898static const struct kernel_param_ops wq_affn_dfl_ops = {
5899 .set = wq_affn_dfl_set,
5900 .get = wq_affn_dfl_get,
5901};
5902
5903module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
5904
5905#ifdef CONFIG_SYSFS
5906/*
5907 * Workqueues with WQ_SYSFS flag set is visible to userland via
5908 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5909 * following attributes.
5910 *
5911 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5912 * max_active RW int : maximum number of in-flight work items
5913 *
5914 * Unbound workqueues have the following extra attributes.
5915 *
5916 * nice RW int : nice value of the workers
5917 * cpumask RW mask : bitmask of allowed CPUs for the workers
5918 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
5919 * affinity_strict RW bool : worker CPU affinity is strict
5920 */
5921struct wq_device {
5922 struct workqueue_struct *wq;
5923 struct device dev;
5924};
5925
5926static struct workqueue_struct *dev_to_wq(struct device *dev)
5927{
5928 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5929
5930 return wq_dev->wq;
5931}
5932
5933static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5934 char *buf)
5935{
5936 struct workqueue_struct *wq = dev_to_wq(dev);
5937
5938 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5939}
5940static DEVICE_ATTR_RO(per_cpu);
5941
5942static ssize_t max_active_show(struct device *dev,
5943 struct device_attribute *attr, char *buf)
5944{
5945 struct workqueue_struct *wq = dev_to_wq(dev);
5946
5947 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5948}
5949
5950static ssize_t max_active_store(struct device *dev,
5951 struct device_attribute *attr, const char *buf,
5952 size_t count)
5953{
5954 struct workqueue_struct *wq = dev_to_wq(dev);
5955 int val;
5956
5957 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5958 return -EINVAL;
5959
5960 workqueue_set_max_active(wq, val);
5961 return count;
5962}
5963static DEVICE_ATTR_RW(max_active);
5964
5965static struct attribute *wq_sysfs_attrs[] = {
5966 &dev_attr_per_cpu.attr,
5967 &dev_attr_max_active.attr,
5968 NULL,
5969};
5970ATTRIBUTE_GROUPS(wq_sysfs);
5971
5972static void apply_wqattrs_lock(void)
5973{
5974 /* CPUs should stay stable across pwq creations and installations */
5975 cpus_read_lock();
5976 mutex_lock(&wq_pool_mutex);
5977}
5978
5979static void apply_wqattrs_unlock(void)
5980{
5981 mutex_unlock(&wq_pool_mutex);
5982 cpus_read_unlock();
5983}
5984
5985static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5986 char *buf)
5987{
5988 struct workqueue_struct *wq = dev_to_wq(dev);
5989 int written;
5990
5991 mutex_lock(&wq->mutex);
5992 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5993 mutex_unlock(&wq->mutex);
5994
5995 return written;
5996}
5997
5998/* prepare workqueue_attrs for sysfs store operations */
5999static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6000{
6001 struct workqueue_attrs *attrs;
6002
6003 lockdep_assert_held(&wq_pool_mutex);
6004
6005 attrs = alloc_workqueue_attrs();
6006 if (!attrs)
6007 return NULL;
6008
6009 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6010 return attrs;
6011}
6012
6013static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6014 const char *buf, size_t count)
6015{
6016 struct workqueue_struct *wq = dev_to_wq(dev);
6017 struct workqueue_attrs *attrs;
6018 int ret = -ENOMEM;
6019
6020 apply_wqattrs_lock();
6021
6022 attrs = wq_sysfs_prep_attrs(wq);
6023 if (!attrs)
6024 goto out_unlock;
6025
6026 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6027 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6028 ret = apply_workqueue_attrs_locked(wq, attrs);
6029 else
6030 ret = -EINVAL;
6031
6032out_unlock:
6033 apply_wqattrs_unlock();
6034 free_workqueue_attrs(attrs);
6035 return ret ?: count;
6036}
6037
6038static ssize_t wq_cpumask_show(struct device *dev,
6039 struct device_attribute *attr, char *buf)
6040{
6041 struct workqueue_struct *wq = dev_to_wq(dev);
6042 int written;
6043
6044 mutex_lock(&wq->mutex);
6045 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6046 cpumask_pr_args(wq->unbound_attrs->cpumask));
6047 mutex_unlock(&wq->mutex);
6048 return written;
6049}
6050
6051static ssize_t wq_cpumask_store(struct device *dev,
6052 struct device_attribute *attr,
6053 const char *buf, size_t count)
6054{
6055 struct workqueue_struct *wq = dev_to_wq(dev);
6056 struct workqueue_attrs *attrs;
6057 int ret = -ENOMEM;
6058
6059 apply_wqattrs_lock();
6060
6061 attrs = wq_sysfs_prep_attrs(wq);
6062 if (!attrs)
6063 goto out_unlock;
6064
6065 ret = cpumask_parse(buf, attrs->cpumask);
6066 if (!ret)
6067 ret = apply_workqueue_attrs_locked(wq, attrs);
6068
6069out_unlock:
6070 apply_wqattrs_unlock();
6071 free_workqueue_attrs(attrs);
6072 return ret ?: count;
6073}
6074
6075static ssize_t wq_affn_scope_show(struct device *dev,
6076 struct device_attribute *attr, char *buf)
6077{
6078 struct workqueue_struct *wq = dev_to_wq(dev);
6079 int written;
6080
6081 mutex_lock(&wq->mutex);
6082 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6083 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
6084 wq_affn_names[WQ_AFFN_DFL],
6085 wq_affn_names[wq_affn_dfl]);
6086 else
6087 written = scnprintf(buf, PAGE_SIZE, "%s\n",
6088 wq_affn_names[wq->unbound_attrs->affn_scope]);
6089 mutex_unlock(&wq->mutex);
6090
6091 return written;
6092}
6093
6094static ssize_t wq_affn_scope_store(struct device *dev,
6095 struct device_attribute *attr,
6096 const char *buf, size_t count)
6097{
6098 struct workqueue_struct *wq = dev_to_wq(dev);
6099 struct workqueue_attrs *attrs;
6100 int affn, ret = -ENOMEM;
6101
6102 affn = parse_affn_scope(buf);
6103 if (affn < 0)
6104 return affn;
6105
6106 apply_wqattrs_lock();
6107 attrs = wq_sysfs_prep_attrs(wq);
6108 if (attrs) {
6109 attrs->affn_scope = affn;
6110 ret = apply_workqueue_attrs_locked(wq, attrs);
6111 }
6112 apply_wqattrs_unlock();
6113 free_workqueue_attrs(attrs);
6114 return ret ?: count;
6115}
6116
6117static ssize_t wq_affinity_strict_show(struct device *dev,
6118 struct device_attribute *attr, char *buf)
6119{
6120 struct workqueue_struct *wq = dev_to_wq(dev);
6121
6122 return scnprintf(buf, PAGE_SIZE, "%d\n",
6123 wq->unbound_attrs->affn_strict);
6124}
6125
6126static ssize_t wq_affinity_strict_store(struct device *dev,
6127 struct device_attribute *attr,
6128 const char *buf, size_t count)
6129{
6130 struct workqueue_struct *wq = dev_to_wq(dev);
6131 struct workqueue_attrs *attrs;
6132 int v, ret = -ENOMEM;
6133
6134 if (sscanf(buf, "%d", &v) != 1)
6135 return -EINVAL;
6136
6137 apply_wqattrs_lock();
6138 attrs = wq_sysfs_prep_attrs(wq);
6139 if (attrs) {
6140 attrs->affn_strict = (bool)v;
6141 ret = apply_workqueue_attrs_locked(wq, attrs);
6142 }
6143 apply_wqattrs_unlock();
6144 free_workqueue_attrs(attrs);
6145 return ret ?: count;
6146}
6147
6148static struct device_attribute wq_sysfs_unbound_attrs[] = {
6149 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6150 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
6151 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
6152 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6153 __ATTR_NULL,
6154};
6155
6156static struct bus_type wq_subsys = {
6157 .name = "workqueue",
6158 .dev_groups = wq_sysfs_groups,
6159};
6160
6161/**
6162 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
6163 * @cpumask: the cpumask to set
6164 *
6165 * The low-level workqueues cpumask is a global cpumask that limits
6166 * the affinity of all unbound workqueues. This function check the @cpumask
6167 * and apply it to all unbound workqueues and updates all pwqs of them.
6168 *
6169 * Return: 0 - Success
6170 * -EINVAL - Invalid @cpumask
6171 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
6172 */
6173static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
6174{
6175 int ret = -EINVAL;
6176
6177 /*
6178 * Not excluding isolated cpus on purpose.
6179 * If the user wishes to include them, we allow that.
6180 */
6181 cpumask_and(cpumask, cpumask, cpu_possible_mask);
6182 if (!cpumask_empty(cpumask)) {
6183 apply_wqattrs_lock();
6184 cpumask_copy(wq_requested_unbound_cpumask, cpumask);
6185 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
6186 ret = 0;
6187 goto out_unlock;
6188 }
6189
6190 ret = workqueue_apply_unbound_cpumask(cpumask);
6191
6192out_unlock:
6193 apply_wqattrs_unlock();
6194 }
6195
6196 return ret;
6197}
6198
6199static ssize_t __wq_cpumask_show(struct device *dev,
6200 struct device_attribute *attr, char *buf, cpumask_var_t mask)
6201{
6202 int written;
6203
6204 mutex_lock(&wq_pool_mutex);
6205 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
6206 mutex_unlock(&wq_pool_mutex);
6207
6208 return written;
6209}
6210
6211static ssize_t wq_unbound_cpumask_show(struct device *dev,
6212 struct device_attribute *attr, char *buf)
6213{
6214 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
6215}
6216
6217static ssize_t wq_requested_cpumask_show(struct device *dev,
6218 struct device_attribute *attr, char *buf)
6219{
6220 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
6221}
6222
6223static ssize_t wq_isolated_cpumask_show(struct device *dev,
6224 struct device_attribute *attr, char *buf)
6225{
6226 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
6227}
6228
6229static ssize_t wq_unbound_cpumask_store(struct device *dev,
6230 struct device_attribute *attr, const char *buf, size_t count)
6231{
6232 cpumask_var_t cpumask;
6233 int ret;
6234
6235 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6236 return -ENOMEM;
6237
6238 ret = cpumask_parse(buf, cpumask);
6239 if (!ret)
6240 ret = workqueue_set_unbound_cpumask(cpumask);
6241
6242 free_cpumask_var(cpumask);
6243 return ret ? ret : count;
6244}
6245
6246static struct device_attribute wq_sysfs_cpumask_attrs[] = {
6247 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
6248 wq_unbound_cpumask_store),
6249 __ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
6250 __ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
6251 __ATTR_NULL,
6252};
6253
6254static int __init wq_sysfs_init(void)
6255{
6256 struct device *dev_root;
6257 int err;
6258
6259 err = subsys_virtual_register(&wq_subsys, NULL);
6260 if (err)
6261 return err;
6262
6263 dev_root = bus_get_dev_root(&wq_subsys);
6264 if (dev_root) {
6265 struct device_attribute *attr;
6266
6267 for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
6268 err = device_create_file(dev_root, attr);
6269 if (err)
6270 break;
6271 }
6272 put_device(dev_root);
6273 }
6274 return err;
6275}
6276core_initcall(wq_sysfs_init);
6277
6278static void wq_device_release(struct device *dev)
6279{
6280 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6281
6282 kfree(wq_dev);
6283}
6284
6285/**
6286 * workqueue_sysfs_register - make a workqueue visible in sysfs
6287 * @wq: the workqueue to register
6288 *
6289 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
6290 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
6291 * which is the preferred method.
6292 *
6293 * Workqueue user should use this function directly iff it wants to apply
6294 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
6295 * apply_workqueue_attrs() may race against userland updating the
6296 * attributes.
6297 *
6298 * Return: 0 on success, -errno on failure.
6299 */
6300int workqueue_sysfs_register(struct workqueue_struct *wq)
6301{
6302 struct wq_device *wq_dev;
6303 int ret;
6304
6305 /*
6306 * Adjusting max_active or creating new pwqs by applying
6307 * attributes breaks ordering guarantee. Disallow exposing ordered
6308 * workqueues.
6309 */
6310 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6311 return -EINVAL;
6312
6313 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
6314 if (!wq_dev)
6315 return -ENOMEM;
6316
6317 wq_dev->wq = wq;
6318 wq_dev->dev.bus = &wq_subsys;
6319 wq_dev->dev.release = wq_device_release;
6320 dev_set_name(&wq_dev->dev, "%s", wq->name);
6321
6322 /*
6323 * unbound_attrs are created separately. Suppress uevent until
6324 * everything is ready.
6325 */
6326 dev_set_uevent_suppress(&wq_dev->dev, true);
6327
6328 ret = device_register(&wq_dev->dev);
6329 if (ret) {
6330 put_device(&wq_dev->dev);
6331 wq->wq_dev = NULL;
6332 return ret;
6333 }
6334
6335 if (wq->flags & WQ_UNBOUND) {
6336 struct device_attribute *attr;
6337
6338 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6339 ret = device_create_file(&wq_dev->dev, attr);
6340 if (ret) {
6341 device_unregister(&wq_dev->dev);
6342 wq->wq_dev = NULL;
6343 return ret;
6344 }
6345 }
6346 }
6347
6348 dev_set_uevent_suppress(&wq_dev->dev, false);
6349 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
6350 return 0;
6351}
6352
6353/**
6354 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6355 * @wq: the workqueue to unregister
6356 *
6357 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
6358 */
6359static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
6360{
6361 struct wq_device *wq_dev = wq->wq_dev;
6362
6363 if (!wq->wq_dev)
6364 return;
6365
6366 wq->wq_dev = NULL;
6367 device_unregister(&wq_dev->dev);
6368}
6369#else /* CONFIG_SYSFS */
6370static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
6371#endif /* CONFIG_SYSFS */
6372
6373/*
6374 * Workqueue watchdog.
6375 *
6376 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6377 * flush dependency, a concurrency managed work item which stays RUNNING
6378 * indefinitely. Workqueue stalls can be very difficult to debug as the
6379 * usual warning mechanisms don't trigger and internal workqueue state is
6380 * largely opaque.
6381 *
6382 * Workqueue watchdog monitors all worker pools periodically and dumps
6383 * state if some pools failed to make forward progress for a while where
6384 * forward progress is defined as the first item on ->worklist changing.
6385 *
6386 * This mechanism is controlled through the kernel parameter
6387 * "workqueue.watchdog_thresh" which can be updated at runtime through the
6388 * corresponding sysfs parameter file.
6389 */
6390#ifdef CONFIG_WQ_WATCHDOG
6391
6392static unsigned long wq_watchdog_thresh = 30;
6393static struct timer_list wq_watchdog_timer;
6394
6395static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6396static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6397
6398/*
6399 * Show workers that might prevent the processing of pending work items.
6400 * The only candidates are CPU-bound workers in the running state.
6401 * Pending work items should be handled by another idle worker
6402 * in all other situations.
6403 */
6404static void show_cpu_pool_hog(struct worker_pool *pool)
6405{
6406 struct worker *worker;
6407 unsigned long flags;
6408 int bkt;
6409
6410 raw_spin_lock_irqsave(&pool->lock, flags);
6411
6412 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6413 if (task_is_running(worker->task)) {
6414 /*
6415 * Defer printing to avoid deadlocks in console
6416 * drivers that queue work while holding locks
6417 * also taken in their write paths.
6418 */
6419 printk_deferred_enter();
6420
6421 pr_info("pool %d:\n", pool->id);
6422 sched_show_task(worker->task);
6423
6424 printk_deferred_exit();
6425 }
6426 }
6427
6428 raw_spin_unlock_irqrestore(&pool->lock, flags);
6429}
6430
6431static void show_cpu_pools_hogs(void)
6432{
6433 struct worker_pool *pool;
6434 int pi;
6435
6436 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6437
6438 rcu_read_lock();
6439
6440 for_each_pool(pool, pi) {
6441 if (pool->cpu_stall)
6442 show_cpu_pool_hog(pool);
6443
6444 }
6445
6446 rcu_read_unlock();
6447}
6448
6449static void wq_watchdog_reset_touched(void)
6450{
6451 int cpu;
6452
6453 wq_watchdog_touched = jiffies;
6454 for_each_possible_cpu(cpu)
6455 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6456}
6457
6458static void wq_watchdog_timer_fn(struct timer_list *unused)
6459{
6460 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6461 bool lockup_detected = false;
6462 bool cpu_pool_stall = false;
6463 unsigned long now = jiffies;
6464 struct worker_pool *pool;
6465 int pi;
6466
6467 if (!thresh)
6468 return;
6469
6470 rcu_read_lock();
6471
6472 for_each_pool(pool, pi) {
6473 unsigned long pool_ts, touched, ts;
6474
6475 pool->cpu_stall = false;
6476 if (list_empty(&pool->worklist))
6477 continue;
6478
6479 /*
6480 * If a virtual machine is stopped by the host it can look to
6481 * the watchdog like a stall.
6482 */
6483 kvm_check_and_clear_guest_paused();
6484
6485 /* get the latest of pool and touched timestamps */
6486 if (pool->cpu >= 0)
6487 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6488 else
6489 touched = READ_ONCE(wq_watchdog_touched);
6490 pool_ts = READ_ONCE(pool->watchdog_ts);
6491
6492 if (time_after(pool_ts, touched))
6493 ts = pool_ts;
6494 else
6495 ts = touched;
6496
6497 /* did we stall? */
6498 if (time_after(now, ts + thresh)) {
6499 lockup_detected = true;
6500 if (pool->cpu >= 0) {
6501 pool->cpu_stall = true;
6502 cpu_pool_stall = true;
6503 }
6504 pr_emerg("BUG: workqueue lockup - pool");
6505 pr_cont_pool_info(pool);
6506 pr_cont(" stuck for %us!\n",
6507 jiffies_to_msecs(now - pool_ts) / 1000);
6508 }
6509
6510
6511 }
6512
6513 rcu_read_unlock();
6514
6515 if (lockup_detected)
6516 show_all_workqueues();
6517
6518 if (cpu_pool_stall)
6519 show_cpu_pools_hogs();
6520
6521 wq_watchdog_reset_touched();
6522 mod_timer(&wq_watchdog_timer, jiffies + thresh);
6523}
6524
6525notrace void wq_watchdog_touch(int cpu)
6526{
6527 if (cpu >= 0)
6528 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6529
6530 wq_watchdog_touched = jiffies;
6531}
6532
6533static void wq_watchdog_set_thresh(unsigned long thresh)
6534{
6535 wq_watchdog_thresh = 0;
6536 del_timer_sync(&wq_watchdog_timer);
6537
6538 if (thresh) {
6539 wq_watchdog_thresh = thresh;
6540 wq_watchdog_reset_touched();
6541 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6542 }
6543}
6544
6545static int wq_watchdog_param_set_thresh(const char *val,
6546 const struct kernel_param *kp)
6547{
6548 unsigned long thresh;
6549 int ret;
6550
6551 ret = kstrtoul(val, 0, &thresh);
6552 if (ret)
6553 return ret;
6554
6555 if (system_wq)
6556 wq_watchdog_set_thresh(thresh);
6557 else
6558 wq_watchdog_thresh = thresh;
6559
6560 return 0;
6561}
6562
6563static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6564 .set = wq_watchdog_param_set_thresh,
6565 .get = param_get_ulong,
6566};
6567
6568module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6569 0644);
6570
6571static void wq_watchdog_init(void)
6572{
6573 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
6574 wq_watchdog_set_thresh(wq_watchdog_thresh);
6575}
6576
6577#else /* CONFIG_WQ_WATCHDOG */
6578
6579static inline void wq_watchdog_init(void) { }
6580
6581#endif /* CONFIG_WQ_WATCHDOG */
6582
6583static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
6584{
6585 if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
6586 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
6587 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
6588 return;
6589 }
6590
6591 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
6592}
6593
6594/**
6595 * workqueue_init_early - early init for workqueue subsystem
6596 *
6597 * This is the first step of three-staged workqueue subsystem initialization and
6598 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
6599 * up. It sets up all the data structures and system workqueues and allows early
6600 * boot code to create workqueues and queue/cancel work items. Actual work item
6601 * execution starts only after kthreads can be created and scheduled right
6602 * before early initcalls.
6603 */
6604void __init workqueue_init_early(void)
6605{
6606 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
6607 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6608 int i, cpu;
6609
6610 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6611
6612 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6613 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
6614 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
6615
6616 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
6617 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
6618 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
6619 if (!cpumask_empty(&wq_cmdline_cpumask))
6620 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
6621
6622 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
6623
6624 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6625
6626 wq_update_pod_attrs_buf = alloc_workqueue_attrs();
6627 BUG_ON(!wq_update_pod_attrs_buf);
6628
6629 /* initialize WQ_AFFN_SYSTEM pods */
6630 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6631 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
6632 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6633 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
6634
6635 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
6636
6637 pt->nr_pods = 1;
6638 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
6639 pt->pod_node[0] = NUMA_NO_NODE;
6640 pt->cpu_pod[0] = 0;
6641
6642 /* initialize CPU pools */
6643 for_each_possible_cpu(cpu) {
6644 struct worker_pool *pool;
6645
6646 i = 0;
6647 for_each_cpu_worker_pool(pool, cpu) {
6648 BUG_ON(init_worker_pool(pool));
6649 pool->cpu = cpu;
6650 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6651 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
6652 pool->attrs->nice = std_nice[i++];
6653 pool->attrs->affn_strict = true;
6654 pool->node = cpu_to_node(cpu);
6655
6656 /* alloc pool ID */
6657 mutex_lock(&wq_pool_mutex);
6658 BUG_ON(worker_pool_assign_id(pool));
6659 mutex_unlock(&wq_pool_mutex);
6660 }
6661 }
6662
6663 /* create default unbound and ordered wq attrs */
6664 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6665 struct workqueue_attrs *attrs;
6666
6667 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6668 attrs->nice = std_nice[i];
6669 unbound_std_wq_attrs[i] = attrs;
6670
6671 /*
6672 * An ordered wq should have only one pwq as ordering is
6673 * guaranteed by max_active which is enforced by pwqs.
6674 */
6675 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6676 attrs->nice = std_nice[i];
6677 attrs->ordered = true;
6678 ordered_wq_attrs[i] = attrs;
6679 }
6680
6681 system_wq = alloc_workqueue("events", 0, 0);
6682 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6683 system_long_wq = alloc_workqueue("events_long", 0, 0);
6684 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6685 WQ_MAX_ACTIVE);
6686 system_freezable_wq = alloc_workqueue("events_freezable",
6687 WQ_FREEZABLE, 0);
6688 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6689 WQ_POWER_EFFICIENT, 0);
6690 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6691 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6692 0);
6693 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6694 !system_unbound_wq || !system_freezable_wq ||
6695 !system_power_efficient_wq ||
6696 !system_freezable_power_efficient_wq);
6697}
6698
6699static void __init wq_cpu_intensive_thresh_init(void)
6700{
6701 unsigned long thresh;
6702 unsigned long bogo;
6703
6704 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
6705 BUG_ON(IS_ERR(pwq_release_worker));
6706
6707 /* if the user set it to a specific value, keep it */
6708 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
6709 return;
6710
6711 /*
6712 * The default of 10ms is derived from the fact that most modern (as of
6713 * 2023) processors can do a lot in 10ms and that it's just below what
6714 * most consider human-perceivable. However, the kernel also runs on a
6715 * lot slower CPUs including microcontrollers where the threshold is way
6716 * too low.
6717 *
6718 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
6719 * This is by no means accurate but it doesn't have to be. The mechanism
6720 * is still useful even when the threshold is fully scaled up. Also, as
6721 * the reports would usually be applicable to everyone, some machines
6722 * operating on longer thresholds won't significantly diminish their
6723 * usefulness.
6724 */
6725 thresh = 10 * USEC_PER_MSEC;
6726
6727 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
6728 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
6729 if (bogo < 4000)
6730 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
6731
6732 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
6733 loops_per_jiffy, bogo, thresh);
6734
6735 wq_cpu_intensive_thresh_us = thresh;
6736}
6737
6738/**
6739 * workqueue_init - bring workqueue subsystem fully online
6740 *
6741 * This is the second step of three-staged workqueue subsystem initialization
6742 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
6743 * been created and work items queued on them, but there are no kworkers
6744 * executing the work items yet. Populate the worker pools with the initial
6745 * workers and enable future kworker creations.
6746 */
6747void __init workqueue_init(void)
6748{
6749 struct workqueue_struct *wq;
6750 struct worker_pool *pool;
6751 int cpu, bkt;
6752
6753 wq_cpu_intensive_thresh_init();
6754
6755 mutex_lock(&wq_pool_mutex);
6756
6757 /*
6758 * Per-cpu pools created earlier could be missing node hint. Fix them
6759 * up. Also, create a rescuer for workqueues that requested it.
6760 */
6761 for_each_possible_cpu(cpu) {
6762 for_each_cpu_worker_pool(pool, cpu) {
6763 pool->node = cpu_to_node(cpu);
6764 }
6765 }
6766
6767 list_for_each_entry(wq, &workqueues, list) {
6768 WARN(init_rescuer(wq),
6769 "workqueue: failed to create early rescuer for %s",
6770 wq->name);
6771 }
6772
6773 mutex_unlock(&wq_pool_mutex);
6774
6775 /* create the initial workers */
6776 for_each_online_cpu(cpu) {
6777 for_each_cpu_worker_pool(pool, cpu) {
6778 pool->flags &= ~POOL_DISASSOCIATED;
6779 BUG_ON(!create_worker(pool));
6780 }
6781 }
6782
6783 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6784 BUG_ON(!create_worker(pool));
6785
6786 wq_online = true;
6787 wq_watchdog_init();
6788}
6789
6790/*
6791 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
6792 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
6793 * and consecutive pod ID. The rest of @pt is initialized accordingly.
6794 */
6795static void __init init_pod_type(struct wq_pod_type *pt,
6796 bool (*cpus_share_pod)(int, int))
6797{
6798 int cur, pre, cpu, pod;
6799
6800 pt->nr_pods = 0;
6801
6802 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
6803 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6804 BUG_ON(!pt->cpu_pod);
6805
6806 for_each_possible_cpu(cur) {
6807 for_each_possible_cpu(pre) {
6808 if (pre >= cur) {
6809 pt->cpu_pod[cur] = pt->nr_pods++;
6810 break;
6811 }
6812 if (cpus_share_pod(cur, pre)) {
6813 pt->cpu_pod[cur] = pt->cpu_pod[pre];
6814 break;
6815 }
6816 }
6817 }
6818
6819 /* init the rest to match @pt->cpu_pod[] */
6820 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6821 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
6822 BUG_ON(!pt->pod_cpus || !pt->pod_node);
6823
6824 for (pod = 0; pod < pt->nr_pods; pod++)
6825 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
6826
6827 for_each_possible_cpu(cpu) {
6828 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
6829 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
6830 }
6831}
6832
6833static bool __init cpus_dont_share(int cpu0, int cpu1)
6834{
6835 return false;
6836}
6837
6838static bool __init cpus_share_smt(int cpu0, int cpu1)
6839{
6840#ifdef CONFIG_SCHED_SMT
6841 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
6842#else
6843 return false;
6844#endif
6845}
6846
6847static bool __init cpus_share_numa(int cpu0, int cpu1)
6848{
6849 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
6850}
6851
6852/**
6853 * workqueue_init_topology - initialize CPU pods for unbound workqueues
6854 *
6855 * This is the third step of there-staged workqueue subsystem initialization and
6856 * invoked after SMP and topology information are fully initialized. It
6857 * initializes the unbound CPU pods accordingly.
6858 */
6859void __init workqueue_init_topology(void)
6860{
6861 struct workqueue_struct *wq;
6862 int cpu;
6863
6864 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
6865 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
6866 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
6867 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
6868
6869 mutex_lock(&wq_pool_mutex);
6870
6871 /*
6872 * Workqueues allocated earlier would have all CPUs sharing the default
6873 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
6874 * combinations to apply per-pod sharing.
6875 */
6876 list_for_each_entry(wq, &workqueues, list) {
6877 for_each_online_cpu(cpu) {
6878 wq_update_pod(wq, cpu, cpu, true);
6879 }
6880 }
6881
6882 mutex_unlock(&wq_pool_mutex);
6883}
6884
6885void __warn_flushing_systemwide_wq(void)
6886{
6887 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
6888 dump_stack();
6889}
6890EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6891
6892static int __init workqueue_unbound_cpus_setup(char *str)
6893{
6894 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
6895 cpumask_clear(&wq_cmdline_cpumask);
6896 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
6897 }
6898
6899 return 1;
6900}
6901__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28#include <linux/export.h>
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
39#include <linux/hardirq.h>
40#include <linux/mempolicy.h>
41#include <linux/freezer.h>
42#include <linux/debug_locks.h>
43#include <linux/lockdep.h>
44#include <linux/idr.h>
45#include <linux/jhash.h>
46#include <linux/hashtable.h>
47#include <linux/rculist.h>
48#include <linux/nodemask.h>
49#include <linux/moduleparam.h>
50#include <linux/uaccess.h>
51#include <linux/sched/isolation.h>
52#include <linux/nmi.h>
53
54#include "workqueue_internal.h"
55
56enum {
57 /*
58 * worker_pool flags
59 *
60 * A bound pool is either associated or disassociated with its CPU.
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 * be executing on any CPU. The pool behaves as an unbound one.
68 *
69 * Note that DISASSOCIATED should be flipped only while holding
70 * wq_pool_attach_mutex to avoid changing binding state while
71 * worker_attach_to_pool() is in progress.
72 */
73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
75
76 /* worker flags */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
79 WORKER_PREP = 1 << 3, /* preparing to run works */
80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
83
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
86
87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
88
89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
91
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give MIN_NICE.
104 */
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
107
108 WQ_NAME_LEN = 24,
109};
110
111/*
112 * Structure fields follow one of the following exclusion rules.
113 *
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
116 *
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
120 * L: pool->lock protected. Access with pool->lock held.
121 *
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
126 *
127 * A: wq_pool_attach_mutex protected.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
132 *
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
136 * RCU for reads.
137 *
138 * WQ: wq->mutex protected.
139 *
140 * WR: wq->mutex protected for writes. RCU protected for reads.
141 *
142 * MD: wq_mayday_lock protected.
143 */
144
145/* struct worker is defined in workqueue_internal.h */
146
147struct worker_pool {
148 raw_spinlock_t lock; /* the pool lock */
149 int cpu; /* I: the associated cpu */
150 int node; /* I: the associated node ID */
151 int id; /* I: pool ID */
152 unsigned int flags; /* X: flags */
153
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
156 struct list_head worklist; /* L: list of pending works */
157
158 int nr_workers; /* L: total number of workers */
159 int nr_idle; /* L: currently idle workers */
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
165 /* a workers is either on busy_hash or idle_list, or the manager */
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
169 struct worker *manager; /* L: purely informational */
170 struct list_head workers; /* A: attached workers */
171 struct completion *detach_completion; /* all workers detached */
172
173 struct ida worker_ida; /* worker IDs for task name */
174
175 struct workqueue_attrs *attrs; /* I: worker attributes */
176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
177 int refcnt; /* PL: refcnt for unbound pools */
178
179 /*
180 * The current concurrency level. As it's likely to be accessed
181 * from other CPUs during try_to_wake_up(), put it in a separate
182 * cacheline.
183 */
184 atomic_t nr_running ____cacheline_aligned_in_smp;
185
186 /*
187 * Destruction of pool is RCU protected to allow dereferences
188 * from get_work_pool().
189 */
190 struct rcu_head rcu;
191} ____cacheline_aligned_in_smp;
192
193/*
194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
195 * of work_struct->data are used for flags and the remaining high bits
196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
197 * number of flag bits.
198 */
199struct pool_workqueue {
200 struct worker_pool *pool; /* I: the associated pool */
201 struct workqueue_struct *wq; /* I: the owning workqueue */
202 int work_color; /* L: current color */
203 int flush_color; /* L: flushing color */
204 int refcnt; /* L: reference count */
205 int nr_in_flight[WORK_NR_COLORS];
206 /* L: nr of in_flight works */
207 int nr_active; /* L: nr of active works */
208 int max_active; /* L: max active works */
209 struct list_head delayed_works; /* L: delayed works */
210 struct list_head pwqs_node; /* WR: node on wq->pwqs */
211 struct list_head mayday_node; /* MD: node on wq->maydays */
212
213 /*
214 * Release of unbound pwq is punted to system_wq. See put_pwq()
215 * and pwq_unbound_release_workfn() for details. pool_workqueue
216 * itself is also RCU protected so that the first pwq can be
217 * determined without grabbing wq->mutex.
218 */
219 struct work_struct unbound_release_work;
220 struct rcu_head rcu;
221} __aligned(1 << WORK_STRUCT_FLAG_BITS);
222
223/*
224 * Structure used to wait for workqueue flush.
225 */
226struct wq_flusher {
227 struct list_head list; /* WQ: list of flushers */
228 int flush_color; /* WQ: flush color waiting for */
229 struct completion done; /* flush completion */
230};
231
232struct wq_device;
233
234/*
235 * The externally visible workqueue. It relays the issued work items to
236 * the appropriate worker_pool through its pool_workqueues.
237 */
238struct workqueue_struct {
239 struct list_head pwqs; /* WR: all pwqs of this wq */
240 struct list_head list; /* PR: list of all workqueues */
241
242 struct mutex mutex; /* protects this wq */
243 int work_color; /* WQ: current work color */
244 int flush_color; /* WQ: current flush color */
245 atomic_t nr_pwqs_to_flush; /* flush in progress */
246 struct wq_flusher *first_flusher; /* WQ: first flusher */
247 struct list_head flusher_queue; /* WQ: flush waiters */
248 struct list_head flusher_overflow; /* WQ: flush overflow list */
249
250 struct list_head maydays; /* MD: pwqs requesting rescue */
251 struct worker *rescuer; /* MD: rescue worker */
252
253 int nr_drainers; /* WQ: drain in progress */
254 int saved_max_active; /* WQ: saved pwq max_active */
255
256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
258
259#ifdef CONFIG_SYSFS
260 struct wq_device *wq_dev; /* I: for sysfs interface */
261#endif
262#ifdef CONFIG_LOCKDEP
263 char *lock_name;
264 struct lock_class_key key;
265 struct lockdep_map lockdep_map;
266#endif
267 char name[WQ_NAME_LEN]; /* I: workqueue name */
268
269 /*
270 * Destruction of workqueue_struct is RCU protected to allow walking
271 * the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280};
281
282static struct kmem_cache *pwq_cache;
283
284static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
287static bool wq_disable_numa;
288module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
290/* see the comment above the definition of WQ_POWER_EFFICIENT */
291static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
294static bool wq_online; /* can kworkers be created yet? */
295
296static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
298/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
301static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
302static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
304/* wait for manager to go away */
305static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
306
307static LIST_HEAD(workqueues); /* PR: list of all workqueues */
308static bool workqueue_freezing; /* PL: have wqs started freezing? */
309
310/* PL: allowable cpus for unbound wqs and work items */
311static cpumask_var_t wq_unbound_cpumask;
312
313/* CPU where unbound work was last round robin scheduled from this CPU */
314static DEFINE_PER_CPU(int, wq_rr_cpu_last);
315
316/*
317 * Local execution of unbound work items is no longer guaranteed. The
318 * following always forces round-robin CPU selection on unbound work items
319 * to uncover usages which depend on it.
320 */
321#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
322static bool wq_debug_force_rr_cpu = true;
323#else
324static bool wq_debug_force_rr_cpu = false;
325#endif
326module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
327
328/* the per-cpu worker pools */
329static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
330
331static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
332
333/* PL: hash of all unbound pools keyed by pool->attrs */
334static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
335
336/* I: attributes used when instantiating standard unbound pools on demand */
337static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
338
339/* I: attributes used when instantiating ordered pools on demand */
340static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
341
342struct workqueue_struct *system_wq __read_mostly;
343EXPORT_SYMBOL(system_wq);
344struct workqueue_struct *system_highpri_wq __read_mostly;
345EXPORT_SYMBOL_GPL(system_highpri_wq);
346struct workqueue_struct *system_long_wq __read_mostly;
347EXPORT_SYMBOL_GPL(system_long_wq);
348struct workqueue_struct *system_unbound_wq __read_mostly;
349EXPORT_SYMBOL_GPL(system_unbound_wq);
350struct workqueue_struct *system_freezable_wq __read_mostly;
351EXPORT_SYMBOL_GPL(system_freezable_wq);
352struct workqueue_struct *system_power_efficient_wq __read_mostly;
353EXPORT_SYMBOL_GPL(system_power_efficient_wq);
354struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
355EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
356
357static int worker_thread(void *__worker);
358static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
359static void show_pwq(struct pool_workqueue *pwq);
360
361#define CREATE_TRACE_POINTS
362#include <trace/events/workqueue.h>
363
364#define assert_rcu_or_pool_mutex() \
365 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
366 !lockdep_is_held(&wq_pool_mutex), \
367 "RCU or wq_pool_mutex should be held")
368
369#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
370 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
371 !lockdep_is_held(&wq->mutex) && \
372 !lockdep_is_held(&wq_pool_mutex), \
373 "RCU, wq->mutex or wq_pool_mutex should be held")
374
375#define for_each_cpu_worker_pool(pool, cpu) \
376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378 (pool)++)
379
380/**
381 * for_each_pool - iterate through all worker_pools in the system
382 * @pool: iteration cursor
383 * @pi: integer used for iteration
384 *
385 * This must be called either with wq_pool_mutex held or RCU read
386 * locked. If the pool needs to be used beyond the locking in effect, the
387 * caller is responsible for guaranteeing that the pool stays online.
388 *
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
391 */
392#define for_each_pool(pool, pi) \
393 idr_for_each_entry(&worker_pool_idr, pool, pi) \
394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
395 else
396
397/**
398 * for_each_pool_worker - iterate through all workers of a worker_pool
399 * @worker: iteration cursor
400 * @pool: worker_pool to iterate workers of
401 *
402 * This must be called with wq_pool_attach_mutex.
403 *
404 * The if/else clause exists only for the lockdep assertion and can be
405 * ignored.
406 */
407#define for_each_pool_worker(worker, pool) \
408 list_for_each_entry((worker), &(pool)->workers, node) \
409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
410 else
411
412/**
413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414 * @pwq: iteration cursor
415 * @wq: the target workqueue
416 *
417 * This must be called either with wq->mutex held or RCU read locked.
418 * If the pwq needs to be used beyond the locking in effect, the caller is
419 * responsible for guaranteeing that the pwq stays online.
420 *
421 * The if/else clause exists only for the lockdep assertion and can be
422 * ignored.
423 */
424#define for_each_pwq(pwq, wq) \
425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
426 lockdep_is_held(&(wq->mutex)))
427
428#ifdef CONFIG_DEBUG_OBJECTS_WORK
429
430static struct debug_obj_descr work_debug_descr;
431
432static void *work_debug_hint(void *addr)
433{
434 return ((struct work_struct *) addr)->func;
435}
436
437static bool work_is_static_object(void *addr)
438{
439 struct work_struct *work = addr;
440
441 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
442}
443
444/*
445 * fixup_init is called when:
446 * - an active object is initialized
447 */
448static bool work_fixup_init(void *addr, enum debug_obj_state state)
449{
450 struct work_struct *work = addr;
451
452 switch (state) {
453 case ODEBUG_STATE_ACTIVE:
454 cancel_work_sync(work);
455 debug_object_init(work, &work_debug_descr);
456 return true;
457 default:
458 return false;
459 }
460}
461
462/*
463 * fixup_free is called when:
464 * - an active object is freed
465 */
466static bool work_fixup_free(void *addr, enum debug_obj_state state)
467{
468 struct work_struct *work = addr;
469
470 switch (state) {
471 case ODEBUG_STATE_ACTIVE:
472 cancel_work_sync(work);
473 debug_object_free(work, &work_debug_descr);
474 return true;
475 default:
476 return false;
477 }
478}
479
480static struct debug_obj_descr work_debug_descr = {
481 .name = "work_struct",
482 .debug_hint = work_debug_hint,
483 .is_static_object = work_is_static_object,
484 .fixup_init = work_fixup_init,
485 .fixup_free = work_fixup_free,
486};
487
488static inline void debug_work_activate(struct work_struct *work)
489{
490 debug_object_activate(work, &work_debug_descr);
491}
492
493static inline void debug_work_deactivate(struct work_struct *work)
494{
495 debug_object_deactivate(work, &work_debug_descr);
496}
497
498void __init_work(struct work_struct *work, int onstack)
499{
500 if (onstack)
501 debug_object_init_on_stack(work, &work_debug_descr);
502 else
503 debug_object_init(work, &work_debug_descr);
504}
505EXPORT_SYMBOL_GPL(__init_work);
506
507void destroy_work_on_stack(struct work_struct *work)
508{
509 debug_object_free(work, &work_debug_descr);
510}
511EXPORT_SYMBOL_GPL(destroy_work_on_stack);
512
513void destroy_delayed_work_on_stack(struct delayed_work *work)
514{
515 destroy_timer_on_stack(&work->timer);
516 debug_object_free(&work->work, &work_debug_descr);
517}
518EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
519
520#else
521static inline void debug_work_activate(struct work_struct *work) { }
522static inline void debug_work_deactivate(struct work_struct *work) { }
523#endif
524
525/**
526 * worker_pool_assign_id - allocate ID and assing it to @pool
527 * @pool: the pool pointer of interest
528 *
529 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
530 * successfully, -errno on failure.
531 */
532static int worker_pool_assign_id(struct worker_pool *pool)
533{
534 int ret;
535
536 lockdep_assert_held(&wq_pool_mutex);
537
538 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
539 GFP_KERNEL);
540 if (ret >= 0) {
541 pool->id = ret;
542 return 0;
543 }
544 return ret;
545}
546
547/**
548 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
549 * @wq: the target workqueue
550 * @node: the node ID
551 *
552 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
553 * read locked.
554 * If the pwq needs to be used beyond the locking in effect, the caller is
555 * responsible for guaranteeing that the pwq stays online.
556 *
557 * Return: The unbound pool_workqueue for @node.
558 */
559static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
560 int node)
561{
562 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
563
564 /*
565 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
566 * delayed item is pending. The plan is to keep CPU -> NODE
567 * mapping valid and stable across CPU on/offlines. Once that
568 * happens, this workaround can be removed.
569 */
570 if (unlikely(node == NUMA_NO_NODE))
571 return wq->dfl_pwq;
572
573 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
574}
575
576static unsigned int work_color_to_flags(int color)
577{
578 return color << WORK_STRUCT_COLOR_SHIFT;
579}
580
581static int get_work_color(struct work_struct *work)
582{
583 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
584 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
585}
586
587static int work_next_color(int color)
588{
589 return (color + 1) % WORK_NR_COLORS;
590}
591
592/*
593 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
594 * contain the pointer to the queued pwq. Once execution starts, the flag
595 * is cleared and the high bits contain OFFQ flags and pool ID.
596 *
597 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
598 * and clear_work_data() can be used to set the pwq, pool or clear
599 * work->data. These functions should only be called while the work is
600 * owned - ie. while the PENDING bit is set.
601 *
602 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
603 * corresponding to a work. Pool is available once the work has been
604 * queued anywhere after initialization until it is sync canceled. pwq is
605 * available only while the work item is queued.
606 *
607 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
608 * canceled. While being canceled, a work item may have its PENDING set
609 * but stay off timer and worklist for arbitrarily long and nobody should
610 * try to steal the PENDING bit.
611 */
612static inline void set_work_data(struct work_struct *work, unsigned long data,
613 unsigned long flags)
614{
615 WARN_ON_ONCE(!work_pending(work));
616 atomic_long_set(&work->data, data | flags | work_static(work));
617}
618
619static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
620 unsigned long extra_flags)
621{
622 set_work_data(work, (unsigned long)pwq,
623 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
624}
625
626static void set_work_pool_and_keep_pending(struct work_struct *work,
627 int pool_id)
628{
629 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
630 WORK_STRUCT_PENDING);
631}
632
633static void set_work_pool_and_clear_pending(struct work_struct *work,
634 int pool_id)
635{
636 /*
637 * The following wmb is paired with the implied mb in
638 * test_and_set_bit(PENDING) and ensures all updates to @work made
639 * here are visible to and precede any updates by the next PENDING
640 * owner.
641 */
642 smp_wmb();
643 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
644 /*
645 * The following mb guarantees that previous clear of a PENDING bit
646 * will not be reordered with any speculative LOADS or STORES from
647 * work->current_func, which is executed afterwards. This possible
648 * reordering can lead to a missed execution on attempt to queue
649 * the same @work. E.g. consider this case:
650 *
651 * CPU#0 CPU#1
652 * ---------------------------- --------------------------------
653 *
654 * 1 STORE event_indicated
655 * 2 queue_work_on() {
656 * 3 test_and_set_bit(PENDING)
657 * 4 } set_..._and_clear_pending() {
658 * 5 set_work_data() # clear bit
659 * 6 smp_mb()
660 * 7 work->current_func() {
661 * 8 LOAD event_indicated
662 * }
663 *
664 * Without an explicit full barrier speculative LOAD on line 8 can
665 * be executed before CPU#0 does STORE on line 1. If that happens,
666 * CPU#0 observes the PENDING bit is still set and new execution of
667 * a @work is not queued in a hope, that CPU#1 will eventually
668 * finish the queued @work. Meanwhile CPU#1 does not see
669 * event_indicated is set, because speculative LOAD was executed
670 * before actual STORE.
671 */
672 smp_mb();
673}
674
675static void clear_work_data(struct work_struct *work)
676{
677 smp_wmb(); /* see set_work_pool_and_clear_pending() */
678 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
679}
680
681static struct pool_workqueue *get_work_pwq(struct work_struct *work)
682{
683 unsigned long data = atomic_long_read(&work->data);
684
685 if (data & WORK_STRUCT_PWQ)
686 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
687 else
688 return NULL;
689}
690
691/**
692 * get_work_pool - return the worker_pool a given work was associated with
693 * @work: the work item of interest
694 *
695 * Pools are created and destroyed under wq_pool_mutex, and allows read
696 * access under RCU read lock. As such, this function should be
697 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
698 *
699 * All fields of the returned pool are accessible as long as the above
700 * mentioned locking is in effect. If the returned pool needs to be used
701 * beyond the critical section, the caller is responsible for ensuring the
702 * returned pool is and stays online.
703 *
704 * Return: The worker_pool @work was last associated with. %NULL if none.
705 */
706static struct worker_pool *get_work_pool(struct work_struct *work)
707{
708 unsigned long data = atomic_long_read(&work->data);
709 int pool_id;
710
711 assert_rcu_or_pool_mutex();
712
713 if (data & WORK_STRUCT_PWQ)
714 return ((struct pool_workqueue *)
715 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
716
717 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
718 if (pool_id == WORK_OFFQ_POOL_NONE)
719 return NULL;
720
721 return idr_find(&worker_pool_idr, pool_id);
722}
723
724/**
725 * get_work_pool_id - return the worker pool ID a given work is associated with
726 * @work: the work item of interest
727 *
728 * Return: The worker_pool ID @work was last associated with.
729 * %WORK_OFFQ_POOL_NONE if none.
730 */
731static int get_work_pool_id(struct work_struct *work)
732{
733 unsigned long data = atomic_long_read(&work->data);
734
735 if (data & WORK_STRUCT_PWQ)
736 return ((struct pool_workqueue *)
737 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
738
739 return data >> WORK_OFFQ_POOL_SHIFT;
740}
741
742static void mark_work_canceling(struct work_struct *work)
743{
744 unsigned long pool_id = get_work_pool_id(work);
745
746 pool_id <<= WORK_OFFQ_POOL_SHIFT;
747 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
748}
749
750static bool work_is_canceling(struct work_struct *work)
751{
752 unsigned long data = atomic_long_read(&work->data);
753
754 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
755}
756
757/*
758 * Policy functions. These define the policies on how the global worker
759 * pools are managed. Unless noted otherwise, these functions assume that
760 * they're being called with pool->lock held.
761 */
762
763static bool __need_more_worker(struct worker_pool *pool)
764{
765 return !atomic_read(&pool->nr_running);
766}
767
768/*
769 * Need to wake up a worker? Called from anything but currently
770 * running workers.
771 *
772 * Note that, because unbound workers never contribute to nr_running, this
773 * function will always return %true for unbound pools as long as the
774 * worklist isn't empty.
775 */
776static bool need_more_worker(struct worker_pool *pool)
777{
778 return !list_empty(&pool->worklist) && __need_more_worker(pool);
779}
780
781/* Can I start working? Called from busy but !running workers. */
782static bool may_start_working(struct worker_pool *pool)
783{
784 return pool->nr_idle;
785}
786
787/* Do I need to keep working? Called from currently running workers. */
788static bool keep_working(struct worker_pool *pool)
789{
790 return !list_empty(&pool->worklist) &&
791 atomic_read(&pool->nr_running) <= 1;
792}
793
794/* Do we need a new worker? Called from manager. */
795static bool need_to_create_worker(struct worker_pool *pool)
796{
797 return need_more_worker(pool) && !may_start_working(pool);
798}
799
800/* Do we have too many workers and should some go away? */
801static bool too_many_workers(struct worker_pool *pool)
802{
803 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
804 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
805 int nr_busy = pool->nr_workers - nr_idle;
806
807 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
808}
809
810/*
811 * Wake up functions.
812 */
813
814/* Return the first idle worker. Safe with preemption disabled */
815static struct worker *first_idle_worker(struct worker_pool *pool)
816{
817 if (unlikely(list_empty(&pool->idle_list)))
818 return NULL;
819
820 return list_first_entry(&pool->idle_list, struct worker, entry);
821}
822
823/**
824 * wake_up_worker - wake up an idle worker
825 * @pool: worker pool to wake worker from
826 *
827 * Wake up the first idle worker of @pool.
828 *
829 * CONTEXT:
830 * raw_spin_lock_irq(pool->lock).
831 */
832static void wake_up_worker(struct worker_pool *pool)
833{
834 struct worker *worker = first_idle_worker(pool);
835
836 if (likely(worker))
837 wake_up_process(worker->task);
838}
839
840/**
841 * wq_worker_running - a worker is running again
842 * @task: task waking up
843 *
844 * This function is called when a worker returns from schedule()
845 */
846void wq_worker_running(struct task_struct *task)
847{
848 struct worker *worker = kthread_data(task);
849
850 if (!worker->sleeping)
851 return;
852 if (!(worker->flags & WORKER_NOT_RUNNING))
853 atomic_inc(&worker->pool->nr_running);
854 worker->sleeping = 0;
855}
856
857/**
858 * wq_worker_sleeping - a worker is going to sleep
859 * @task: task going to sleep
860 *
861 * This function is called from schedule() when a busy worker is
862 * going to sleep. Preemption needs to be disabled to protect ->sleeping
863 * assignment.
864 */
865void wq_worker_sleeping(struct task_struct *task)
866{
867 struct worker *next, *worker = kthread_data(task);
868 struct worker_pool *pool;
869
870 /*
871 * Rescuers, which may not have all the fields set up like normal
872 * workers, also reach here, let's not access anything before
873 * checking NOT_RUNNING.
874 */
875 if (worker->flags & WORKER_NOT_RUNNING)
876 return;
877
878 pool = worker->pool;
879
880 /* Return if preempted before wq_worker_running() was reached */
881 if (worker->sleeping)
882 return;
883
884 worker->sleeping = 1;
885 raw_spin_lock_irq(&pool->lock);
886
887 /*
888 * The counterpart of the following dec_and_test, implied mb,
889 * worklist not empty test sequence is in insert_work().
890 * Please read comment there.
891 *
892 * NOT_RUNNING is clear. This means that we're bound to and
893 * running on the local cpu w/ rq lock held and preemption
894 * disabled, which in turn means that none else could be
895 * manipulating idle_list, so dereferencing idle_list without pool
896 * lock is safe.
897 */
898 if (atomic_dec_and_test(&pool->nr_running) &&
899 !list_empty(&pool->worklist)) {
900 next = first_idle_worker(pool);
901 if (next)
902 wake_up_process(next->task);
903 }
904 raw_spin_unlock_irq(&pool->lock);
905}
906
907/**
908 * wq_worker_last_func - retrieve worker's last work function
909 * @task: Task to retrieve last work function of.
910 *
911 * Determine the last function a worker executed. This is called from
912 * the scheduler to get a worker's last known identity.
913 *
914 * CONTEXT:
915 * raw_spin_lock_irq(rq->lock)
916 *
917 * This function is called during schedule() when a kworker is going
918 * to sleep. It's used by psi to identify aggregation workers during
919 * dequeuing, to allow periodic aggregation to shut-off when that
920 * worker is the last task in the system or cgroup to go to sleep.
921 *
922 * As this function doesn't involve any workqueue-related locking, it
923 * only returns stable values when called from inside the scheduler's
924 * queuing and dequeuing paths, when @task, which must be a kworker,
925 * is guaranteed to not be processing any works.
926 *
927 * Return:
928 * The last work function %current executed as a worker, NULL if it
929 * hasn't executed any work yet.
930 */
931work_func_t wq_worker_last_func(struct task_struct *task)
932{
933 struct worker *worker = kthread_data(task);
934
935 return worker->last_func;
936}
937
938/**
939 * worker_set_flags - set worker flags and adjust nr_running accordingly
940 * @worker: self
941 * @flags: flags to set
942 *
943 * Set @flags in @worker->flags and adjust nr_running accordingly.
944 *
945 * CONTEXT:
946 * raw_spin_lock_irq(pool->lock)
947 */
948static inline void worker_set_flags(struct worker *worker, unsigned int flags)
949{
950 struct worker_pool *pool = worker->pool;
951
952 WARN_ON_ONCE(worker->task != current);
953
954 /* If transitioning into NOT_RUNNING, adjust nr_running. */
955 if ((flags & WORKER_NOT_RUNNING) &&
956 !(worker->flags & WORKER_NOT_RUNNING)) {
957 atomic_dec(&pool->nr_running);
958 }
959
960 worker->flags |= flags;
961}
962
963/**
964 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
965 * @worker: self
966 * @flags: flags to clear
967 *
968 * Clear @flags in @worker->flags and adjust nr_running accordingly.
969 *
970 * CONTEXT:
971 * raw_spin_lock_irq(pool->lock)
972 */
973static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
974{
975 struct worker_pool *pool = worker->pool;
976 unsigned int oflags = worker->flags;
977
978 WARN_ON_ONCE(worker->task != current);
979
980 worker->flags &= ~flags;
981
982 /*
983 * If transitioning out of NOT_RUNNING, increment nr_running. Note
984 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
985 * of multiple flags, not a single flag.
986 */
987 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
988 if (!(worker->flags & WORKER_NOT_RUNNING))
989 atomic_inc(&pool->nr_running);
990}
991
992/**
993 * find_worker_executing_work - find worker which is executing a work
994 * @pool: pool of interest
995 * @work: work to find worker for
996 *
997 * Find a worker which is executing @work on @pool by searching
998 * @pool->busy_hash which is keyed by the address of @work. For a worker
999 * to match, its current execution should match the address of @work and
1000 * its work function. This is to avoid unwanted dependency between
1001 * unrelated work executions through a work item being recycled while still
1002 * being executed.
1003 *
1004 * This is a bit tricky. A work item may be freed once its execution
1005 * starts and nothing prevents the freed area from being recycled for
1006 * another work item. If the same work item address ends up being reused
1007 * before the original execution finishes, workqueue will identify the
1008 * recycled work item as currently executing and make it wait until the
1009 * current execution finishes, introducing an unwanted dependency.
1010 *
1011 * This function checks the work item address and work function to avoid
1012 * false positives. Note that this isn't complete as one may construct a
1013 * work function which can introduce dependency onto itself through a
1014 * recycled work item. Well, if somebody wants to shoot oneself in the
1015 * foot that badly, there's only so much we can do, and if such deadlock
1016 * actually occurs, it should be easy to locate the culprit work function.
1017 *
1018 * CONTEXT:
1019 * raw_spin_lock_irq(pool->lock).
1020 *
1021 * Return:
1022 * Pointer to worker which is executing @work if found, %NULL
1023 * otherwise.
1024 */
1025static struct worker *find_worker_executing_work(struct worker_pool *pool,
1026 struct work_struct *work)
1027{
1028 struct worker *worker;
1029
1030 hash_for_each_possible(pool->busy_hash, worker, hentry,
1031 (unsigned long)work)
1032 if (worker->current_work == work &&
1033 worker->current_func == work->func)
1034 return worker;
1035
1036 return NULL;
1037}
1038
1039/**
1040 * move_linked_works - move linked works to a list
1041 * @work: start of series of works to be scheduled
1042 * @head: target list to append @work to
1043 * @nextp: out parameter for nested worklist walking
1044 *
1045 * Schedule linked works starting from @work to @head. Work series to
1046 * be scheduled starts at @work and includes any consecutive work with
1047 * WORK_STRUCT_LINKED set in its predecessor.
1048 *
1049 * If @nextp is not NULL, it's updated to point to the next work of
1050 * the last scheduled work. This allows move_linked_works() to be
1051 * nested inside outer list_for_each_entry_safe().
1052 *
1053 * CONTEXT:
1054 * raw_spin_lock_irq(pool->lock).
1055 */
1056static void move_linked_works(struct work_struct *work, struct list_head *head,
1057 struct work_struct **nextp)
1058{
1059 struct work_struct *n;
1060
1061 /*
1062 * Linked worklist will always end before the end of the list,
1063 * use NULL for list head.
1064 */
1065 list_for_each_entry_safe_from(work, n, NULL, entry) {
1066 list_move_tail(&work->entry, head);
1067 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1068 break;
1069 }
1070
1071 /*
1072 * If we're already inside safe list traversal and have moved
1073 * multiple works to the scheduled queue, the next position
1074 * needs to be updated.
1075 */
1076 if (nextp)
1077 *nextp = n;
1078}
1079
1080/**
1081 * get_pwq - get an extra reference on the specified pool_workqueue
1082 * @pwq: pool_workqueue to get
1083 *
1084 * Obtain an extra reference on @pwq. The caller should guarantee that
1085 * @pwq has positive refcnt and be holding the matching pool->lock.
1086 */
1087static void get_pwq(struct pool_workqueue *pwq)
1088{
1089 lockdep_assert_held(&pwq->pool->lock);
1090 WARN_ON_ONCE(pwq->refcnt <= 0);
1091 pwq->refcnt++;
1092}
1093
1094/**
1095 * put_pwq - put a pool_workqueue reference
1096 * @pwq: pool_workqueue to put
1097 *
1098 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1099 * destruction. The caller should be holding the matching pool->lock.
1100 */
1101static void put_pwq(struct pool_workqueue *pwq)
1102{
1103 lockdep_assert_held(&pwq->pool->lock);
1104 if (likely(--pwq->refcnt))
1105 return;
1106 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1107 return;
1108 /*
1109 * @pwq can't be released under pool->lock, bounce to
1110 * pwq_unbound_release_workfn(). This never recurses on the same
1111 * pool->lock as this path is taken only for unbound workqueues and
1112 * the release work item is scheduled on a per-cpu workqueue. To
1113 * avoid lockdep warning, unbound pool->locks are given lockdep
1114 * subclass of 1 in get_unbound_pool().
1115 */
1116 schedule_work(&pwq->unbound_release_work);
1117}
1118
1119/**
1120 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1121 * @pwq: pool_workqueue to put (can be %NULL)
1122 *
1123 * put_pwq() with locking. This function also allows %NULL @pwq.
1124 */
1125static void put_pwq_unlocked(struct pool_workqueue *pwq)
1126{
1127 if (pwq) {
1128 /*
1129 * As both pwqs and pools are RCU protected, the
1130 * following lock operations are safe.
1131 */
1132 raw_spin_lock_irq(&pwq->pool->lock);
1133 put_pwq(pwq);
1134 raw_spin_unlock_irq(&pwq->pool->lock);
1135 }
1136}
1137
1138static void pwq_activate_delayed_work(struct work_struct *work)
1139{
1140 struct pool_workqueue *pwq = get_work_pwq(work);
1141
1142 trace_workqueue_activate_work(work);
1143 if (list_empty(&pwq->pool->worklist))
1144 pwq->pool->watchdog_ts = jiffies;
1145 move_linked_works(work, &pwq->pool->worklist, NULL);
1146 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1147 pwq->nr_active++;
1148}
1149
1150static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1151{
1152 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1153 struct work_struct, entry);
1154
1155 pwq_activate_delayed_work(work);
1156}
1157
1158/**
1159 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1160 * @pwq: pwq of interest
1161 * @color: color of work which left the queue
1162 *
1163 * A work either has completed or is removed from pending queue,
1164 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1165 *
1166 * CONTEXT:
1167 * raw_spin_lock_irq(pool->lock).
1168 */
1169static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1170{
1171 /* uncolored work items don't participate in flushing or nr_active */
1172 if (color == WORK_NO_COLOR)
1173 goto out_put;
1174
1175 pwq->nr_in_flight[color]--;
1176
1177 pwq->nr_active--;
1178 if (!list_empty(&pwq->delayed_works)) {
1179 /* one down, submit a delayed one */
1180 if (pwq->nr_active < pwq->max_active)
1181 pwq_activate_first_delayed(pwq);
1182 }
1183
1184 /* is flush in progress and are we at the flushing tip? */
1185 if (likely(pwq->flush_color != color))
1186 goto out_put;
1187
1188 /* are there still in-flight works? */
1189 if (pwq->nr_in_flight[color])
1190 goto out_put;
1191
1192 /* this pwq is done, clear flush_color */
1193 pwq->flush_color = -1;
1194
1195 /*
1196 * If this was the last pwq, wake up the first flusher. It
1197 * will handle the rest.
1198 */
1199 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1200 complete(&pwq->wq->first_flusher->done);
1201out_put:
1202 put_pwq(pwq);
1203}
1204
1205/**
1206 * try_to_grab_pending - steal work item from worklist and disable irq
1207 * @work: work item to steal
1208 * @is_dwork: @work is a delayed_work
1209 * @flags: place to store irq state
1210 *
1211 * Try to grab PENDING bit of @work. This function can handle @work in any
1212 * stable state - idle, on timer or on worklist.
1213 *
1214 * Return:
1215 * 1 if @work was pending and we successfully stole PENDING
1216 * 0 if @work was idle and we claimed PENDING
1217 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1218 * -ENOENT if someone else is canceling @work, this state may persist
1219 * for arbitrarily long
1220 *
1221 * Note:
1222 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1223 * interrupted while holding PENDING and @work off queue, irq must be
1224 * disabled on entry. This, combined with delayed_work->timer being
1225 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1226 *
1227 * On successful return, >= 0, irq is disabled and the caller is
1228 * responsible for releasing it using local_irq_restore(*@flags).
1229 *
1230 * This function is safe to call from any context including IRQ handler.
1231 */
1232static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1233 unsigned long *flags)
1234{
1235 struct worker_pool *pool;
1236 struct pool_workqueue *pwq;
1237
1238 local_irq_save(*flags);
1239
1240 /* try to steal the timer if it exists */
1241 if (is_dwork) {
1242 struct delayed_work *dwork = to_delayed_work(work);
1243
1244 /*
1245 * dwork->timer is irqsafe. If del_timer() fails, it's
1246 * guaranteed that the timer is not queued anywhere and not
1247 * running on the local CPU.
1248 */
1249 if (likely(del_timer(&dwork->timer)))
1250 return 1;
1251 }
1252
1253 /* try to claim PENDING the normal way */
1254 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1255 return 0;
1256
1257 rcu_read_lock();
1258 /*
1259 * The queueing is in progress, or it is already queued. Try to
1260 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1261 */
1262 pool = get_work_pool(work);
1263 if (!pool)
1264 goto fail;
1265
1266 raw_spin_lock(&pool->lock);
1267 /*
1268 * work->data is guaranteed to point to pwq only while the work
1269 * item is queued on pwq->wq, and both updating work->data to point
1270 * to pwq on queueing and to pool on dequeueing are done under
1271 * pwq->pool->lock. This in turn guarantees that, if work->data
1272 * points to pwq which is associated with a locked pool, the work
1273 * item is currently queued on that pool.
1274 */
1275 pwq = get_work_pwq(work);
1276 if (pwq && pwq->pool == pool) {
1277 debug_work_deactivate(work);
1278
1279 /*
1280 * A delayed work item cannot be grabbed directly because
1281 * it might have linked NO_COLOR work items which, if left
1282 * on the delayed_list, will confuse pwq->nr_active
1283 * management later on and cause stall. Make sure the work
1284 * item is activated before grabbing.
1285 */
1286 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1287 pwq_activate_delayed_work(work);
1288
1289 list_del_init(&work->entry);
1290 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1291
1292 /* work->data points to pwq iff queued, point to pool */
1293 set_work_pool_and_keep_pending(work, pool->id);
1294
1295 raw_spin_unlock(&pool->lock);
1296 rcu_read_unlock();
1297 return 1;
1298 }
1299 raw_spin_unlock(&pool->lock);
1300fail:
1301 rcu_read_unlock();
1302 local_irq_restore(*flags);
1303 if (work_is_canceling(work))
1304 return -ENOENT;
1305 cpu_relax();
1306 return -EAGAIN;
1307}
1308
1309/**
1310 * insert_work - insert a work into a pool
1311 * @pwq: pwq @work belongs to
1312 * @work: work to insert
1313 * @head: insertion point
1314 * @extra_flags: extra WORK_STRUCT_* flags to set
1315 *
1316 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1317 * work_struct flags.
1318 *
1319 * CONTEXT:
1320 * raw_spin_lock_irq(pool->lock).
1321 */
1322static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1323 struct list_head *head, unsigned int extra_flags)
1324{
1325 struct worker_pool *pool = pwq->pool;
1326
1327 /* we own @work, set data and link */
1328 set_work_pwq(work, pwq, extra_flags);
1329 list_add_tail(&work->entry, head);
1330 get_pwq(pwq);
1331
1332 /*
1333 * Ensure either wq_worker_sleeping() sees the above
1334 * list_add_tail() or we see zero nr_running to avoid workers lying
1335 * around lazily while there are works to be processed.
1336 */
1337 smp_mb();
1338
1339 if (__need_more_worker(pool))
1340 wake_up_worker(pool);
1341}
1342
1343/*
1344 * Test whether @work is being queued from another work executing on the
1345 * same workqueue.
1346 */
1347static bool is_chained_work(struct workqueue_struct *wq)
1348{
1349 struct worker *worker;
1350
1351 worker = current_wq_worker();
1352 /*
1353 * Return %true iff I'm a worker executing a work item on @wq. If
1354 * I'm @worker, it's safe to dereference it without locking.
1355 */
1356 return worker && worker->current_pwq->wq == wq;
1357}
1358
1359/*
1360 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1361 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1362 * avoid perturbing sensitive tasks.
1363 */
1364static int wq_select_unbound_cpu(int cpu)
1365{
1366 static bool printed_dbg_warning;
1367 int new_cpu;
1368
1369 if (likely(!wq_debug_force_rr_cpu)) {
1370 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1371 return cpu;
1372 } else if (!printed_dbg_warning) {
1373 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1374 printed_dbg_warning = true;
1375 }
1376
1377 if (cpumask_empty(wq_unbound_cpumask))
1378 return cpu;
1379
1380 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1381 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1382 if (unlikely(new_cpu >= nr_cpu_ids)) {
1383 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1384 if (unlikely(new_cpu >= nr_cpu_ids))
1385 return cpu;
1386 }
1387 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1388
1389 return new_cpu;
1390}
1391
1392static void __queue_work(int cpu, struct workqueue_struct *wq,
1393 struct work_struct *work)
1394{
1395 struct pool_workqueue *pwq;
1396 struct worker_pool *last_pool;
1397 struct list_head *worklist;
1398 unsigned int work_flags;
1399 unsigned int req_cpu = cpu;
1400
1401 /*
1402 * While a work item is PENDING && off queue, a task trying to
1403 * steal the PENDING will busy-loop waiting for it to either get
1404 * queued or lose PENDING. Grabbing PENDING and queueing should
1405 * happen with IRQ disabled.
1406 */
1407 lockdep_assert_irqs_disabled();
1408
1409 debug_work_activate(work);
1410
1411 /* if draining, only works from the same workqueue are allowed */
1412 if (unlikely(wq->flags & __WQ_DRAINING) &&
1413 WARN_ON_ONCE(!is_chained_work(wq)))
1414 return;
1415 rcu_read_lock();
1416retry:
1417 /* pwq which will be used unless @work is executing elsewhere */
1418 if (wq->flags & WQ_UNBOUND) {
1419 if (req_cpu == WORK_CPU_UNBOUND)
1420 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1421 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1422 } else {
1423 if (req_cpu == WORK_CPU_UNBOUND)
1424 cpu = raw_smp_processor_id();
1425 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1426 }
1427
1428 /*
1429 * If @work was previously on a different pool, it might still be
1430 * running there, in which case the work needs to be queued on that
1431 * pool to guarantee non-reentrancy.
1432 */
1433 last_pool = get_work_pool(work);
1434 if (last_pool && last_pool != pwq->pool) {
1435 struct worker *worker;
1436
1437 raw_spin_lock(&last_pool->lock);
1438
1439 worker = find_worker_executing_work(last_pool, work);
1440
1441 if (worker && worker->current_pwq->wq == wq) {
1442 pwq = worker->current_pwq;
1443 } else {
1444 /* meh... not running there, queue here */
1445 raw_spin_unlock(&last_pool->lock);
1446 raw_spin_lock(&pwq->pool->lock);
1447 }
1448 } else {
1449 raw_spin_lock(&pwq->pool->lock);
1450 }
1451
1452 /*
1453 * pwq is determined and locked. For unbound pools, we could have
1454 * raced with pwq release and it could already be dead. If its
1455 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1456 * without another pwq replacing it in the numa_pwq_tbl or while
1457 * work items are executing on it, so the retrying is guaranteed to
1458 * make forward-progress.
1459 */
1460 if (unlikely(!pwq->refcnt)) {
1461 if (wq->flags & WQ_UNBOUND) {
1462 raw_spin_unlock(&pwq->pool->lock);
1463 cpu_relax();
1464 goto retry;
1465 }
1466 /* oops */
1467 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1468 wq->name, cpu);
1469 }
1470
1471 /* pwq determined, queue */
1472 trace_workqueue_queue_work(req_cpu, pwq, work);
1473
1474 if (WARN_ON(!list_empty(&work->entry)))
1475 goto out;
1476
1477 pwq->nr_in_flight[pwq->work_color]++;
1478 work_flags = work_color_to_flags(pwq->work_color);
1479
1480 if (likely(pwq->nr_active < pwq->max_active)) {
1481 trace_workqueue_activate_work(work);
1482 pwq->nr_active++;
1483 worklist = &pwq->pool->worklist;
1484 if (list_empty(worklist))
1485 pwq->pool->watchdog_ts = jiffies;
1486 } else {
1487 work_flags |= WORK_STRUCT_DELAYED;
1488 worklist = &pwq->delayed_works;
1489 }
1490
1491 insert_work(pwq, work, worklist, work_flags);
1492
1493out:
1494 raw_spin_unlock(&pwq->pool->lock);
1495 rcu_read_unlock();
1496}
1497
1498/**
1499 * queue_work_on - queue work on specific cpu
1500 * @cpu: CPU number to execute work on
1501 * @wq: workqueue to use
1502 * @work: work to queue
1503 *
1504 * We queue the work to a specific CPU, the caller must ensure it
1505 * can't go away.
1506 *
1507 * Return: %false if @work was already on a queue, %true otherwise.
1508 */
1509bool queue_work_on(int cpu, struct workqueue_struct *wq,
1510 struct work_struct *work)
1511{
1512 bool ret = false;
1513 unsigned long flags;
1514
1515 local_irq_save(flags);
1516
1517 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1518 __queue_work(cpu, wq, work);
1519 ret = true;
1520 }
1521
1522 local_irq_restore(flags);
1523 return ret;
1524}
1525EXPORT_SYMBOL(queue_work_on);
1526
1527/**
1528 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1529 * @node: NUMA node ID that we want to select a CPU from
1530 *
1531 * This function will attempt to find a "random" cpu available on a given
1532 * node. If there are no CPUs available on the given node it will return
1533 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1534 * available CPU if we need to schedule this work.
1535 */
1536static int workqueue_select_cpu_near(int node)
1537{
1538 int cpu;
1539
1540 /* No point in doing this if NUMA isn't enabled for workqueues */
1541 if (!wq_numa_enabled)
1542 return WORK_CPU_UNBOUND;
1543
1544 /* Delay binding to CPU if node is not valid or online */
1545 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1546 return WORK_CPU_UNBOUND;
1547
1548 /* Use local node/cpu if we are already there */
1549 cpu = raw_smp_processor_id();
1550 if (node == cpu_to_node(cpu))
1551 return cpu;
1552
1553 /* Use "random" otherwise know as "first" online CPU of node */
1554 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1555
1556 /* If CPU is valid return that, otherwise just defer */
1557 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1558}
1559
1560/**
1561 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1562 * @node: NUMA node that we are targeting the work for
1563 * @wq: workqueue to use
1564 * @work: work to queue
1565 *
1566 * We queue the work to a "random" CPU within a given NUMA node. The basic
1567 * idea here is to provide a way to somehow associate work with a given
1568 * NUMA node.
1569 *
1570 * This function will only make a best effort attempt at getting this onto
1571 * the right NUMA node. If no node is requested or the requested node is
1572 * offline then we just fall back to standard queue_work behavior.
1573 *
1574 * Currently the "random" CPU ends up being the first available CPU in the
1575 * intersection of cpu_online_mask and the cpumask of the node, unless we
1576 * are running on the node. In that case we just use the current CPU.
1577 *
1578 * Return: %false if @work was already on a queue, %true otherwise.
1579 */
1580bool queue_work_node(int node, struct workqueue_struct *wq,
1581 struct work_struct *work)
1582{
1583 unsigned long flags;
1584 bool ret = false;
1585
1586 /*
1587 * This current implementation is specific to unbound workqueues.
1588 * Specifically we only return the first available CPU for a given
1589 * node instead of cycling through individual CPUs within the node.
1590 *
1591 * If this is used with a per-cpu workqueue then the logic in
1592 * workqueue_select_cpu_near would need to be updated to allow for
1593 * some round robin type logic.
1594 */
1595 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1596
1597 local_irq_save(flags);
1598
1599 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1600 int cpu = workqueue_select_cpu_near(node);
1601
1602 __queue_work(cpu, wq, work);
1603 ret = true;
1604 }
1605
1606 local_irq_restore(flags);
1607 return ret;
1608}
1609EXPORT_SYMBOL_GPL(queue_work_node);
1610
1611void delayed_work_timer_fn(struct timer_list *t)
1612{
1613 struct delayed_work *dwork = from_timer(dwork, t, timer);
1614
1615 /* should have been called from irqsafe timer with irq already off */
1616 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1617}
1618EXPORT_SYMBOL(delayed_work_timer_fn);
1619
1620static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1621 struct delayed_work *dwork, unsigned long delay)
1622{
1623 struct timer_list *timer = &dwork->timer;
1624 struct work_struct *work = &dwork->work;
1625
1626 WARN_ON_ONCE(!wq);
1627 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1628 WARN_ON_ONCE(timer_pending(timer));
1629 WARN_ON_ONCE(!list_empty(&work->entry));
1630
1631 /*
1632 * If @delay is 0, queue @dwork->work immediately. This is for
1633 * both optimization and correctness. The earliest @timer can
1634 * expire is on the closest next tick and delayed_work users depend
1635 * on that there's no such delay when @delay is 0.
1636 */
1637 if (!delay) {
1638 __queue_work(cpu, wq, &dwork->work);
1639 return;
1640 }
1641
1642 dwork->wq = wq;
1643 dwork->cpu = cpu;
1644 timer->expires = jiffies + delay;
1645
1646 if (unlikely(cpu != WORK_CPU_UNBOUND))
1647 add_timer_on(timer, cpu);
1648 else
1649 add_timer(timer);
1650}
1651
1652/**
1653 * queue_delayed_work_on - queue work on specific CPU after delay
1654 * @cpu: CPU number to execute work on
1655 * @wq: workqueue to use
1656 * @dwork: work to queue
1657 * @delay: number of jiffies to wait before queueing
1658 *
1659 * Return: %false if @work was already on a queue, %true otherwise. If
1660 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1661 * execution.
1662 */
1663bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1664 struct delayed_work *dwork, unsigned long delay)
1665{
1666 struct work_struct *work = &dwork->work;
1667 bool ret = false;
1668 unsigned long flags;
1669
1670 /* read the comment in __queue_work() */
1671 local_irq_save(flags);
1672
1673 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1674 __queue_delayed_work(cpu, wq, dwork, delay);
1675 ret = true;
1676 }
1677
1678 local_irq_restore(flags);
1679 return ret;
1680}
1681EXPORT_SYMBOL(queue_delayed_work_on);
1682
1683/**
1684 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1685 * @cpu: CPU number to execute work on
1686 * @wq: workqueue to use
1687 * @dwork: work to queue
1688 * @delay: number of jiffies to wait before queueing
1689 *
1690 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1691 * modify @dwork's timer so that it expires after @delay. If @delay is
1692 * zero, @work is guaranteed to be scheduled immediately regardless of its
1693 * current state.
1694 *
1695 * Return: %false if @dwork was idle and queued, %true if @dwork was
1696 * pending and its timer was modified.
1697 *
1698 * This function is safe to call from any context including IRQ handler.
1699 * See try_to_grab_pending() for details.
1700 */
1701bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1702 struct delayed_work *dwork, unsigned long delay)
1703{
1704 unsigned long flags;
1705 int ret;
1706
1707 do {
1708 ret = try_to_grab_pending(&dwork->work, true, &flags);
1709 } while (unlikely(ret == -EAGAIN));
1710
1711 if (likely(ret >= 0)) {
1712 __queue_delayed_work(cpu, wq, dwork, delay);
1713 local_irq_restore(flags);
1714 }
1715
1716 /* -ENOENT from try_to_grab_pending() becomes %true */
1717 return ret;
1718}
1719EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1720
1721static void rcu_work_rcufn(struct rcu_head *rcu)
1722{
1723 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1724
1725 /* read the comment in __queue_work() */
1726 local_irq_disable();
1727 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1728 local_irq_enable();
1729}
1730
1731/**
1732 * queue_rcu_work - queue work after a RCU grace period
1733 * @wq: workqueue to use
1734 * @rwork: work to queue
1735 *
1736 * Return: %false if @rwork was already pending, %true otherwise. Note
1737 * that a full RCU grace period is guaranteed only after a %true return.
1738 * While @rwork is guaranteed to be executed after a %false return, the
1739 * execution may happen before a full RCU grace period has passed.
1740 */
1741bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1742{
1743 struct work_struct *work = &rwork->work;
1744
1745 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1746 rwork->wq = wq;
1747 call_rcu(&rwork->rcu, rcu_work_rcufn);
1748 return true;
1749 }
1750
1751 return false;
1752}
1753EXPORT_SYMBOL(queue_rcu_work);
1754
1755/**
1756 * worker_enter_idle - enter idle state
1757 * @worker: worker which is entering idle state
1758 *
1759 * @worker is entering idle state. Update stats and idle timer if
1760 * necessary.
1761 *
1762 * LOCKING:
1763 * raw_spin_lock_irq(pool->lock).
1764 */
1765static void worker_enter_idle(struct worker *worker)
1766{
1767 struct worker_pool *pool = worker->pool;
1768
1769 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1770 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1771 (worker->hentry.next || worker->hentry.pprev)))
1772 return;
1773
1774 /* can't use worker_set_flags(), also called from create_worker() */
1775 worker->flags |= WORKER_IDLE;
1776 pool->nr_idle++;
1777 worker->last_active = jiffies;
1778
1779 /* idle_list is LIFO */
1780 list_add(&worker->entry, &pool->idle_list);
1781
1782 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1783 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1784
1785 /*
1786 * Sanity check nr_running. Because unbind_workers() releases
1787 * pool->lock between setting %WORKER_UNBOUND and zapping
1788 * nr_running, the warning may trigger spuriously. Check iff
1789 * unbind is not in progress.
1790 */
1791 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1792 pool->nr_workers == pool->nr_idle &&
1793 atomic_read(&pool->nr_running));
1794}
1795
1796/**
1797 * worker_leave_idle - leave idle state
1798 * @worker: worker which is leaving idle state
1799 *
1800 * @worker is leaving idle state. Update stats.
1801 *
1802 * LOCKING:
1803 * raw_spin_lock_irq(pool->lock).
1804 */
1805static void worker_leave_idle(struct worker *worker)
1806{
1807 struct worker_pool *pool = worker->pool;
1808
1809 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1810 return;
1811 worker_clr_flags(worker, WORKER_IDLE);
1812 pool->nr_idle--;
1813 list_del_init(&worker->entry);
1814}
1815
1816static struct worker *alloc_worker(int node)
1817{
1818 struct worker *worker;
1819
1820 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1821 if (worker) {
1822 INIT_LIST_HEAD(&worker->entry);
1823 INIT_LIST_HEAD(&worker->scheduled);
1824 INIT_LIST_HEAD(&worker->node);
1825 /* on creation a worker is in !idle && prep state */
1826 worker->flags = WORKER_PREP;
1827 }
1828 return worker;
1829}
1830
1831/**
1832 * worker_attach_to_pool() - attach a worker to a pool
1833 * @worker: worker to be attached
1834 * @pool: the target pool
1835 *
1836 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1837 * cpu-binding of @worker are kept coordinated with the pool across
1838 * cpu-[un]hotplugs.
1839 */
1840static void worker_attach_to_pool(struct worker *worker,
1841 struct worker_pool *pool)
1842{
1843 mutex_lock(&wq_pool_attach_mutex);
1844
1845 /*
1846 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1847 * online CPUs. It'll be re-applied when any of the CPUs come up.
1848 */
1849 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1850
1851 /*
1852 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1853 * stable across this function. See the comments above the flag
1854 * definition for details.
1855 */
1856 if (pool->flags & POOL_DISASSOCIATED)
1857 worker->flags |= WORKER_UNBOUND;
1858
1859 list_add_tail(&worker->node, &pool->workers);
1860 worker->pool = pool;
1861
1862 mutex_unlock(&wq_pool_attach_mutex);
1863}
1864
1865/**
1866 * worker_detach_from_pool() - detach a worker from its pool
1867 * @worker: worker which is attached to its pool
1868 *
1869 * Undo the attaching which had been done in worker_attach_to_pool(). The
1870 * caller worker shouldn't access to the pool after detached except it has
1871 * other reference to the pool.
1872 */
1873static void worker_detach_from_pool(struct worker *worker)
1874{
1875 struct worker_pool *pool = worker->pool;
1876 struct completion *detach_completion = NULL;
1877
1878 mutex_lock(&wq_pool_attach_mutex);
1879
1880 list_del(&worker->node);
1881 worker->pool = NULL;
1882
1883 if (list_empty(&pool->workers))
1884 detach_completion = pool->detach_completion;
1885 mutex_unlock(&wq_pool_attach_mutex);
1886
1887 /* clear leftover flags without pool->lock after it is detached */
1888 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1889
1890 if (detach_completion)
1891 complete(detach_completion);
1892}
1893
1894/**
1895 * create_worker - create a new workqueue worker
1896 * @pool: pool the new worker will belong to
1897 *
1898 * Create and start a new worker which is attached to @pool.
1899 *
1900 * CONTEXT:
1901 * Might sleep. Does GFP_KERNEL allocations.
1902 *
1903 * Return:
1904 * Pointer to the newly created worker.
1905 */
1906static struct worker *create_worker(struct worker_pool *pool)
1907{
1908 struct worker *worker = NULL;
1909 int id = -1;
1910 char id_buf[16];
1911
1912 /* ID is needed to determine kthread name */
1913 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1914 if (id < 0)
1915 goto fail;
1916
1917 worker = alloc_worker(pool->node);
1918 if (!worker)
1919 goto fail;
1920
1921 worker->id = id;
1922
1923 if (pool->cpu >= 0)
1924 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1925 pool->attrs->nice < 0 ? "H" : "");
1926 else
1927 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1928
1929 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1930 "kworker/%s", id_buf);
1931 if (IS_ERR(worker->task))
1932 goto fail;
1933
1934 set_user_nice(worker->task, pool->attrs->nice);
1935 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1936
1937 /* successful, attach the worker to the pool */
1938 worker_attach_to_pool(worker, pool);
1939
1940 /* start the newly created worker */
1941 raw_spin_lock_irq(&pool->lock);
1942 worker->pool->nr_workers++;
1943 worker_enter_idle(worker);
1944 wake_up_process(worker->task);
1945 raw_spin_unlock_irq(&pool->lock);
1946
1947 return worker;
1948
1949fail:
1950 if (id >= 0)
1951 ida_simple_remove(&pool->worker_ida, id);
1952 kfree(worker);
1953 return NULL;
1954}
1955
1956/**
1957 * destroy_worker - destroy a workqueue worker
1958 * @worker: worker to be destroyed
1959 *
1960 * Destroy @worker and adjust @pool stats accordingly. The worker should
1961 * be idle.
1962 *
1963 * CONTEXT:
1964 * raw_spin_lock_irq(pool->lock).
1965 */
1966static void destroy_worker(struct worker *worker)
1967{
1968 struct worker_pool *pool = worker->pool;
1969
1970 lockdep_assert_held(&pool->lock);
1971
1972 /* sanity check frenzy */
1973 if (WARN_ON(worker->current_work) ||
1974 WARN_ON(!list_empty(&worker->scheduled)) ||
1975 WARN_ON(!(worker->flags & WORKER_IDLE)))
1976 return;
1977
1978 pool->nr_workers--;
1979 pool->nr_idle--;
1980
1981 list_del_init(&worker->entry);
1982 worker->flags |= WORKER_DIE;
1983 wake_up_process(worker->task);
1984}
1985
1986static void idle_worker_timeout(struct timer_list *t)
1987{
1988 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1989
1990 raw_spin_lock_irq(&pool->lock);
1991
1992 while (too_many_workers(pool)) {
1993 struct worker *worker;
1994 unsigned long expires;
1995
1996 /* idle_list is kept in LIFO order, check the last one */
1997 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1998 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1999
2000 if (time_before(jiffies, expires)) {
2001 mod_timer(&pool->idle_timer, expires);
2002 break;
2003 }
2004
2005 destroy_worker(worker);
2006 }
2007
2008 raw_spin_unlock_irq(&pool->lock);
2009}
2010
2011static void send_mayday(struct work_struct *work)
2012{
2013 struct pool_workqueue *pwq = get_work_pwq(work);
2014 struct workqueue_struct *wq = pwq->wq;
2015
2016 lockdep_assert_held(&wq_mayday_lock);
2017
2018 if (!wq->rescuer)
2019 return;
2020
2021 /* mayday mayday mayday */
2022 if (list_empty(&pwq->mayday_node)) {
2023 /*
2024 * If @pwq is for an unbound wq, its base ref may be put at
2025 * any time due to an attribute change. Pin @pwq until the
2026 * rescuer is done with it.
2027 */
2028 get_pwq(pwq);
2029 list_add_tail(&pwq->mayday_node, &wq->maydays);
2030 wake_up_process(wq->rescuer->task);
2031 }
2032}
2033
2034static void pool_mayday_timeout(struct timer_list *t)
2035{
2036 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2037 struct work_struct *work;
2038
2039 raw_spin_lock_irq(&pool->lock);
2040 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2041
2042 if (need_to_create_worker(pool)) {
2043 /*
2044 * We've been trying to create a new worker but
2045 * haven't been successful. We might be hitting an
2046 * allocation deadlock. Send distress signals to
2047 * rescuers.
2048 */
2049 list_for_each_entry(work, &pool->worklist, entry)
2050 send_mayday(work);
2051 }
2052
2053 raw_spin_unlock(&wq_mayday_lock);
2054 raw_spin_unlock_irq(&pool->lock);
2055
2056 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2057}
2058
2059/**
2060 * maybe_create_worker - create a new worker if necessary
2061 * @pool: pool to create a new worker for
2062 *
2063 * Create a new worker for @pool if necessary. @pool is guaranteed to
2064 * have at least one idle worker on return from this function. If
2065 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2066 * sent to all rescuers with works scheduled on @pool to resolve
2067 * possible allocation deadlock.
2068 *
2069 * On return, need_to_create_worker() is guaranteed to be %false and
2070 * may_start_working() %true.
2071 *
2072 * LOCKING:
2073 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2074 * multiple times. Does GFP_KERNEL allocations. Called only from
2075 * manager.
2076 */
2077static void maybe_create_worker(struct worker_pool *pool)
2078__releases(&pool->lock)
2079__acquires(&pool->lock)
2080{
2081restart:
2082 raw_spin_unlock_irq(&pool->lock);
2083
2084 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2085 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2086
2087 while (true) {
2088 if (create_worker(pool) || !need_to_create_worker(pool))
2089 break;
2090
2091 schedule_timeout_interruptible(CREATE_COOLDOWN);
2092
2093 if (!need_to_create_worker(pool))
2094 break;
2095 }
2096
2097 del_timer_sync(&pool->mayday_timer);
2098 raw_spin_lock_irq(&pool->lock);
2099 /*
2100 * This is necessary even after a new worker was just successfully
2101 * created as @pool->lock was dropped and the new worker might have
2102 * already become busy.
2103 */
2104 if (need_to_create_worker(pool))
2105 goto restart;
2106}
2107
2108/**
2109 * manage_workers - manage worker pool
2110 * @worker: self
2111 *
2112 * Assume the manager role and manage the worker pool @worker belongs
2113 * to. At any given time, there can be only zero or one manager per
2114 * pool. The exclusion is handled automatically by this function.
2115 *
2116 * The caller can safely start processing works on false return. On
2117 * true return, it's guaranteed that need_to_create_worker() is false
2118 * and may_start_working() is true.
2119 *
2120 * CONTEXT:
2121 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2122 * multiple times. Does GFP_KERNEL allocations.
2123 *
2124 * Return:
2125 * %false if the pool doesn't need management and the caller can safely
2126 * start processing works, %true if management function was performed and
2127 * the conditions that the caller verified before calling the function may
2128 * no longer be true.
2129 */
2130static bool manage_workers(struct worker *worker)
2131{
2132 struct worker_pool *pool = worker->pool;
2133
2134 if (pool->flags & POOL_MANAGER_ACTIVE)
2135 return false;
2136
2137 pool->flags |= POOL_MANAGER_ACTIVE;
2138 pool->manager = worker;
2139
2140 maybe_create_worker(pool);
2141
2142 pool->manager = NULL;
2143 pool->flags &= ~POOL_MANAGER_ACTIVE;
2144 rcuwait_wake_up(&manager_wait);
2145 return true;
2146}
2147
2148/**
2149 * process_one_work - process single work
2150 * @worker: self
2151 * @work: work to process
2152 *
2153 * Process @work. This function contains all the logics necessary to
2154 * process a single work including synchronization against and
2155 * interaction with other workers on the same cpu, queueing and
2156 * flushing. As long as context requirement is met, any worker can
2157 * call this function to process a work.
2158 *
2159 * CONTEXT:
2160 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2161 */
2162static void process_one_work(struct worker *worker, struct work_struct *work)
2163__releases(&pool->lock)
2164__acquires(&pool->lock)
2165{
2166 struct pool_workqueue *pwq = get_work_pwq(work);
2167 struct worker_pool *pool = worker->pool;
2168 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2169 int work_color;
2170 struct worker *collision;
2171#ifdef CONFIG_LOCKDEP
2172 /*
2173 * It is permissible to free the struct work_struct from
2174 * inside the function that is called from it, this we need to
2175 * take into account for lockdep too. To avoid bogus "held
2176 * lock freed" warnings as well as problems when looking into
2177 * work->lockdep_map, make a copy and use that here.
2178 */
2179 struct lockdep_map lockdep_map;
2180
2181 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2182#endif
2183 /* ensure we're on the correct CPU */
2184 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2185 raw_smp_processor_id() != pool->cpu);
2186
2187 /*
2188 * A single work shouldn't be executed concurrently by
2189 * multiple workers on a single cpu. Check whether anyone is
2190 * already processing the work. If so, defer the work to the
2191 * currently executing one.
2192 */
2193 collision = find_worker_executing_work(pool, work);
2194 if (unlikely(collision)) {
2195 move_linked_works(work, &collision->scheduled, NULL);
2196 return;
2197 }
2198
2199 /* claim and dequeue */
2200 debug_work_deactivate(work);
2201 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2202 worker->current_work = work;
2203 worker->current_func = work->func;
2204 worker->current_pwq = pwq;
2205 work_color = get_work_color(work);
2206
2207 /*
2208 * Record wq name for cmdline and debug reporting, may get
2209 * overridden through set_worker_desc().
2210 */
2211 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2212
2213 list_del_init(&work->entry);
2214
2215 /*
2216 * CPU intensive works don't participate in concurrency management.
2217 * They're the scheduler's responsibility. This takes @worker out
2218 * of concurrency management and the next code block will chain
2219 * execution of the pending work items.
2220 */
2221 if (unlikely(cpu_intensive))
2222 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2223
2224 /*
2225 * Wake up another worker if necessary. The condition is always
2226 * false for normal per-cpu workers since nr_running would always
2227 * be >= 1 at this point. This is used to chain execution of the
2228 * pending work items for WORKER_NOT_RUNNING workers such as the
2229 * UNBOUND and CPU_INTENSIVE ones.
2230 */
2231 if (need_more_worker(pool))
2232 wake_up_worker(pool);
2233
2234 /*
2235 * Record the last pool and clear PENDING which should be the last
2236 * update to @work. Also, do this inside @pool->lock so that
2237 * PENDING and queued state changes happen together while IRQ is
2238 * disabled.
2239 */
2240 set_work_pool_and_clear_pending(work, pool->id);
2241
2242 raw_spin_unlock_irq(&pool->lock);
2243
2244 lock_map_acquire(&pwq->wq->lockdep_map);
2245 lock_map_acquire(&lockdep_map);
2246 /*
2247 * Strictly speaking we should mark the invariant state without holding
2248 * any locks, that is, before these two lock_map_acquire()'s.
2249 *
2250 * However, that would result in:
2251 *
2252 * A(W1)
2253 * WFC(C)
2254 * A(W1)
2255 * C(C)
2256 *
2257 * Which would create W1->C->W1 dependencies, even though there is no
2258 * actual deadlock possible. There are two solutions, using a
2259 * read-recursive acquire on the work(queue) 'locks', but this will then
2260 * hit the lockdep limitation on recursive locks, or simply discard
2261 * these locks.
2262 *
2263 * AFAICT there is no possible deadlock scenario between the
2264 * flush_work() and complete() primitives (except for single-threaded
2265 * workqueues), so hiding them isn't a problem.
2266 */
2267 lockdep_invariant_state(true);
2268 trace_workqueue_execute_start(work);
2269 worker->current_func(work);
2270 /*
2271 * While we must be careful to not use "work" after this, the trace
2272 * point will only record its address.
2273 */
2274 trace_workqueue_execute_end(work, worker->current_func);
2275 lock_map_release(&lockdep_map);
2276 lock_map_release(&pwq->wq->lockdep_map);
2277
2278 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2279 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2280 " last function: %ps\n",
2281 current->comm, preempt_count(), task_pid_nr(current),
2282 worker->current_func);
2283 debug_show_held_locks(current);
2284 dump_stack();
2285 }
2286
2287 /*
2288 * The following prevents a kworker from hogging CPU on !PREEMPTION
2289 * kernels, where a requeueing work item waiting for something to
2290 * happen could deadlock with stop_machine as such work item could
2291 * indefinitely requeue itself while all other CPUs are trapped in
2292 * stop_machine. At the same time, report a quiescent RCU state so
2293 * the same condition doesn't freeze RCU.
2294 */
2295 cond_resched();
2296
2297 raw_spin_lock_irq(&pool->lock);
2298
2299 /* clear cpu intensive status */
2300 if (unlikely(cpu_intensive))
2301 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2302
2303 /* tag the worker for identification in schedule() */
2304 worker->last_func = worker->current_func;
2305
2306 /* we're done with it, release */
2307 hash_del(&worker->hentry);
2308 worker->current_work = NULL;
2309 worker->current_func = NULL;
2310 worker->current_pwq = NULL;
2311 pwq_dec_nr_in_flight(pwq, work_color);
2312}
2313
2314/**
2315 * process_scheduled_works - process scheduled works
2316 * @worker: self
2317 *
2318 * Process all scheduled works. Please note that the scheduled list
2319 * may change while processing a work, so this function repeatedly
2320 * fetches a work from the top and executes it.
2321 *
2322 * CONTEXT:
2323 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2324 * multiple times.
2325 */
2326static void process_scheduled_works(struct worker *worker)
2327{
2328 while (!list_empty(&worker->scheduled)) {
2329 struct work_struct *work = list_first_entry(&worker->scheduled,
2330 struct work_struct, entry);
2331 process_one_work(worker, work);
2332 }
2333}
2334
2335static void set_pf_worker(bool val)
2336{
2337 mutex_lock(&wq_pool_attach_mutex);
2338 if (val)
2339 current->flags |= PF_WQ_WORKER;
2340 else
2341 current->flags &= ~PF_WQ_WORKER;
2342 mutex_unlock(&wq_pool_attach_mutex);
2343}
2344
2345/**
2346 * worker_thread - the worker thread function
2347 * @__worker: self
2348 *
2349 * The worker thread function. All workers belong to a worker_pool -
2350 * either a per-cpu one or dynamic unbound one. These workers process all
2351 * work items regardless of their specific target workqueue. The only
2352 * exception is work items which belong to workqueues with a rescuer which
2353 * will be explained in rescuer_thread().
2354 *
2355 * Return: 0
2356 */
2357static int worker_thread(void *__worker)
2358{
2359 struct worker *worker = __worker;
2360 struct worker_pool *pool = worker->pool;
2361
2362 /* tell the scheduler that this is a workqueue worker */
2363 set_pf_worker(true);
2364woke_up:
2365 raw_spin_lock_irq(&pool->lock);
2366
2367 /* am I supposed to die? */
2368 if (unlikely(worker->flags & WORKER_DIE)) {
2369 raw_spin_unlock_irq(&pool->lock);
2370 WARN_ON_ONCE(!list_empty(&worker->entry));
2371 set_pf_worker(false);
2372
2373 set_task_comm(worker->task, "kworker/dying");
2374 ida_simple_remove(&pool->worker_ida, worker->id);
2375 worker_detach_from_pool(worker);
2376 kfree(worker);
2377 return 0;
2378 }
2379
2380 worker_leave_idle(worker);
2381recheck:
2382 /* no more worker necessary? */
2383 if (!need_more_worker(pool))
2384 goto sleep;
2385
2386 /* do we need to manage? */
2387 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2388 goto recheck;
2389
2390 /*
2391 * ->scheduled list can only be filled while a worker is
2392 * preparing to process a work or actually processing it.
2393 * Make sure nobody diddled with it while I was sleeping.
2394 */
2395 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2396
2397 /*
2398 * Finish PREP stage. We're guaranteed to have at least one idle
2399 * worker or that someone else has already assumed the manager
2400 * role. This is where @worker starts participating in concurrency
2401 * management if applicable and concurrency management is restored
2402 * after being rebound. See rebind_workers() for details.
2403 */
2404 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2405
2406 do {
2407 struct work_struct *work =
2408 list_first_entry(&pool->worklist,
2409 struct work_struct, entry);
2410
2411 pool->watchdog_ts = jiffies;
2412
2413 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2414 /* optimization path, not strictly necessary */
2415 process_one_work(worker, work);
2416 if (unlikely(!list_empty(&worker->scheduled)))
2417 process_scheduled_works(worker);
2418 } else {
2419 move_linked_works(work, &worker->scheduled, NULL);
2420 process_scheduled_works(worker);
2421 }
2422 } while (keep_working(pool));
2423
2424 worker_set_flags(worker, WORKER_PREP);
2425sleep:
2426 /*
2427 * pool->lock is held and there's no work to process and no need to
2428 * manage, sleep. Workers are woken up only while holding
2429 * pool->lock or from local cpu, so setting the current state
2430 * before releasing pool->lock is enough to prevent losing any
2431 * event.
2432 */
2433 worker_enter_idle(worker);
2434 __set_current_state(TASK_IDLE);
2435 raw_spin_unlock_irq(&pool->lock);
2436 schedule();
2437 goto woke_up;
2438}
2439
2440/**
2441 * rescuer_thread - the rescuer thread function
2442 * @__rescuer: self
2443 *
2444 * Workqueue rescuer thread function. There's one rescuer for each
2445 * workqueue which has WQ_MEM_RECLAIM set.
2446 *
2447 * Regular work processing on a pool may block trying to create a new
2448 * worker which uses GFP_KERNEL allocation which has slight chance of
2449 * developing into deadlock if some works currently on the same queue
2450 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2451 * the problem rescuer solves.
2452 *
2453 * When such condition is possible, the pool summons rescuers of all
2454 * workqueues which have works queued on the pool and let them process
2455 * those works so that forward progress can be guaranteed.
2456 *
2457 * This should happen rarely.
2458 *
2459 * Return: 0
2460 */
2461static int rescuer_thread(void *__rescuer)
2462{
2463 struct worker *rescuer = __rescuer;
2464 struct workqueue_struct *wq = rescuer->rescue_wq;
2465 struct list_head *scheduled = &rescuer->scheduled;
2466 bool should_stop;
2467
2468 set_user_nice(current, RESCUER_NICE_LEVEL);
2469
2470 /*
2471 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2472 * doesn't participate in concurrency management.
2473 */
2474 set_pf_worker(true);
2475repeat:
2476 set_current_state(TASK_IDLE);
2477
2478 /*
2479 * By the time the rescuer is requested to stop, the workqueue
2480 * shouldn't have any work pending, but @wq->maydays may still have
2481 * pwq(s) queued. This can happen by non-rescuer workers consuming
2482 * all the work items before the rescuer got to them. Go through
2483 * @wq->maydays processing before acting on should_stop so that the
2484 * list is always empty on exit.
2485 */
2486 should_stop = kthread_should_stop();
2487
2488 /* see whether any pwq is asking for help */
2489 raw_spin_lock_irq(&wq_mayday_lock);
2490
2491 while (!list_empty(&wq->maydays)) {
2492 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2493 struct pool_workqueue, mayday_node);
2494 struct worker_pool *pool = pwq->pool;
2495 struct work_struct *work, *n;
2496 bool first = true;
2497
2498 __set_current_state(TASK_RUNNING);
2499 list_del_init(&pwq->mayday_node);
2500
2501 raw_spin_unlock_irq(&wq_mayday_lock);
2502
2503 worker_attach_to_pool(rescuer, pool);
2504
2505 raw_spin_lock_irq(&pool->lock);
2506
2507 /*
2508 * Slurp in all works issued via this workqueue and
2509 * process'em.
2510 */
2511 WARN_ON_ONCE(!list_empty(scheduled));
2512 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2513 if (get_work_pwq(work) == pwq) {
2514 if (first)
2515 pool->watchdog_ts = jiffies;
2516 move_linked_works(work, scheduled, &n);
2517 }
2518 first = false;
2519 }
2520
2521 if (!list_empty(scheduled)) {
2522 process_scheduled_works(rescuer);
2523
2524 /*
2525 * The above execution of rescued work items could
2526 * have created more to rescue through
2527 * pwq_activate_first_delayed() or chained
2528 * queueing. Let's put @pwq back on mayday list so
2529 * that such back-to-back work items, which may be
2530 * being used to relieve memory pressure, don't
2531 * incur MAYDAY_INTERVAL delay inbetween.
2532 */
2533 if (pwq->nr_active && need_to_create_worker(pool)) {
2534 raw_spin_lock(&wq_mayday_lock);
2535 /*
2536 * Queue iff we aren't racing destruction
2537 * and somebody else hasn't queued it already.
2538 */
2539 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2540 get_pwq(pwq);
2541 list_add_tail(&pwq->mayday_node, &wq->maydays);
2542 }
2543 raw_spin_unlock(&wq_mayday_lock);
2544 }
2545 }
2546
2547 /*
2548 * Put the reference grabbed by send_mayday(). @pool won't
2549 * go away while we're still attached to it.
2550 */
2551 put_pwq(pwq);
2552
2553 /*
2554 * Leave this pool. If need_more_worker() is %true, notify a
2555 * regular worker; otherwise, we end up with 0 concurrency
2556 * and stalling the execution.
2557 */
2558 if (need_more_worker(pool))
2559 wake_up_worker(pool);
2560
2561 raw_spin_unlock_irq(&pool->lock);
2562
2563 worker_detach_from_pool(rescuer);
2564
2565 raw_spin_lock_irq(&wq_mayday_lock);
2566 }
2567
2568 raw_spin_unlock_irq(&wq_mayday_lock);
2569
2570 if (should_stop) {
2571 __set_current_state(TASK_RUNNING);
2572 set_pf_worker(false);
2573 return 0;
2574 }
2575
2576 /* rescuers should never participate in concurrency management */
2577 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2578 schedule();
2579 goto repeat;
2580}
2581
2582/**
2583 * check_flush_dependency - check for flush dependency sanity
2584 * @target_wq: workqueue being flushed
2585 * @target_work: work item being flushed (NULL for workqueue flushes)
2586 *
2587 * %current is trying to flush the whole @target_wq or @target_work on it.
2588 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2589 * reclaiming memory or running on a workqueue which doesn't have
2590 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2591 * a deadlock.
2592 */
2593static void check_flush_dependency(struct workqueue_struct *target_wq,
2594 struct work_struct *target_work)
2595{
2596 work_func_t target_func = target_work ? target_work->func : NULL;
2597 struct worker *worker;
2598
2599 if (target_wq->flags & WQ_MEM_RECLAIM)
2600 return;
2601
2602 worker = current_wq_worker();
2603
2604 WARN_ONCE(current->flags & PF_MEMALLOC,
2605 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2606 current->pid, current->comm, target_wq->name, target_func);
2607 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2608 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2609 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2610 worker->current_pwq->wq->name, worker->current_func,
2611 target_wq->name, target_func);
2612}
2613
2614struct wq_barrier {
2615 struct work_struct work;
2616 struct completion done;
2617 struct task_struct *task; /* purely informational */
2618};
2619
2620static void wq_barrier_func(struct work_struct *work)
2621{
2622 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2623 complete(&barr->done);
2624}
2625
2626/**
2627 * insert_wq_barrier - insert a barrier work
2628 * @pwq: pwq to insert barrier into
2629 * @barr: wq_barrier to insert
2630 * @target: target work to attach @barr to
2631 * @worker: worker currently executing @target, NULL if @target is not executing
2632 *
2633 * @barr is linked to @target such that @barr is completed only after
2634 * @target finishes execution. Please note that the ordering
2635 * guarantee is observed only with respect to @target and on the local
2636 * cpu.
2637 *
2638 * Currently, a queued barrier can't be canceled. This is because
2639 * try_to_grab_pending() can't determine whether the work to be
2640 * grabbed is at the head of the queue and thus can't clear LINKED
2641 * flag of the previous work while there must be a valid next work
2642 * after a work with LINKED flag set.
2643 *
2644 * Note that when @worker is non-NULL, @target may be modified
2645 * underneath us, so we can't reliably determine pwq from @target.
2646 *
2647 * CONTEXT:
2648 * raw_spin_lock_irq(pool->lock).
2649 */
2650static void insert_wq_barrier(struct pool_workqueue *pwq,
2651 struct wq_barrier *barr,
2652 struct work_struct *target, struct worker *worker)
2653{
2654 struct list_head *head;
2655 unsigned int linked = 0;
2656
2657 /*
2658 * debugobject calls are safe here even with pool->lock locked
2659 * as we know for sure that this will not trigger any of the
2660 * checks and call back into the fixup functions where we
2661 * might deadlock.
2662 */
2663 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2664 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2665
2666 init_completion_map(&barr->done, &target->lockdep_map);
2667
2668 barr->task = current;
2669
2670 /*
2671 * If @target is currently being executed, schedule the
2672 * barrier to the worker; otherwise, put it after @target.
2673 */
2674 if (worker)
2675 head = worker->scheduled.next;
2676 else {
2677 unsigned long *bits = work_data_bits(target);
2678
2679 head = target->entry.next;
2680 /* there can already be other linked works, inherit and set */
2681 linked = *bits & WORK_STRUCT_LINKED;
2682 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2683 }
2684
2685 debug_work_activate(&barr->work);
2686 insert_work(pwq, &barr->work, head,
2687 work_color_to_flags(WORK_NO_COLOR) | linked);
2688}
2689
2690/**
2691 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2692 * @wq: workqueue being flushed
2693 * @flush_color: new flush color, < 0 for no-op
2694 * @work_color: new work color, < 0 for no-op
2695 *
2696 * Prepare pwqs for workqueue flushing.
2697 *
2698 * If @flush_color is non-negative, flush_color on all pwqs should be
2699 * -1. If no pwq has in-flight commands at the specified color, all
2700 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2701 * has in flight commands, its pwq->flush_color is set to
2702 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2703 * wakeup logic is armed and %true is returned.
2704 *
2705 * The caller should have initialized @wq->first_flusher prior to
2706 * calling this function with non-negative @flush_color. If
2707 * @flush_color is negative, no flush color update is done and %false
2708 * is returned.
2709 *
2710 * If @work_color is non-negative, all pwqs should have the same
2711 * work_color which is previous to @work_color and all will be
2712 * advanced to @work_color.
2713 *
2714 * CONTEXT:
2715 * mutex_lock(wq->mutex).
2716 *
2717 * Return:
2718 * %true if @flush_color >= 0 and there's something to flush. %false
2719 * otherwise.
2720 */
2721static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2722 int flush_color, int work_color)
2723{
2724 bool wait = false;
2725 struct pool_workqueue *pwq;
2726
2727 if (flush_color >= 0) {
2728 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2729 atomic_set(&wq->nr_pwqs_to_flush, 1);
2730 }
2731
2732 for_each_pwq(pwq, wq) {
2733 struct worker_pool *pool = pwq->pool;
2734
2735 raw_spin_lock_irq(&pool->lock);
2736
2737 if (flush_color >= 0) {
2738 WARN_ON_ONCE(pwq->flush_color != -1);
2739
2740 if (pwq->nr_in_flight[flush_color]) {
2741 pwq->flush_color = flush_color;
2742 atomic_inc(&wq->nr_pwqs_to_flush);
2743 wait = true;
2744 }
2745 }
2746
2747 if (work_color >= 0) {
2748 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2749 pwq->work_color = work_color;
2750 }
2751
2752 raw_spin_unlock_irq(&pool->lock);
2753 }
2754
2755 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2756 complete(&wq->first_flusher->done);
2757
2758 return wait;
2759}
2760
2761/**
2762 * flush_workqueue - ensure that any scheduled work has run to completion.
2763 * @wq: workqueue to flush
2764 *
2765 * This function sleeps until all work items which were queued on entry
2766 * have finished execution, but it is not livelocked by new incoming ones.
2767 */
2768void flush_workqueue(struct workqueue_struct *wq)
2769{
2770 struct wq_flusher this_flusher = {
2771 .list = LIST_HEAD_INIT(this_flusher.list),
2772 .flush_color = -1,
2773 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2774 };
2775 int next_color;
2776
2777 if (WARN_ON(!wq_online))
2778 return;
2779
2780 lock_map_acquire(&wq->lockdep_map);
2781 lock_map_release(&wq->lockdep_map);
2782
2783 mutex_lock(&wq->mutex);
2784
2785 /*
2786 * Start-to-wait phase
2787 */
2788 next_color = work_next_color(wq->work_color);
2789
2790 if (next_color != wq->flush_color) {
2791 /*
2792 * Color space is not full. The current work_color
2793 * becomes our flush_color and work_color is advanced
2794 * by one.
2795 */
2796 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2797 this_flusher.flush_color = wq->work_color;
2798 wq->work_color = next_color;
2799
2800 if (!wq->first_flusher) {
2801 /* no flush in progress, become the first flusher */
2802 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2803
2804 wq->first_flusher = &this_flusher;
2805
2806 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2807 wq->work_color)) {
2808 /* nothing to flush, done */
2809 wq->flush_color = next_color;
2810 wq->first_flusher = NULL;
2811 goto out_unlock;
2812 }
2813 } else {
2814 /* wait in queue */
2815 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2816 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2817 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2818 }
2819 } else {
2820 /*
2821 * Oops, color space is full, wait on overflow queue.
2822 * The next flush completion will assign us
2823 * flush_color and transfer to flusher_queue.
2824 */
2825 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2826 }
2827
2828 check_flush_dependency(wq, NULL);
2829
2830 mutex_unlock(&wq->mutex);
2831
2832 wait_for_completion(&this_flusher.done);
2833
2834 /*
2835 * Wake-up-and-cascade phase
2836 *
2837 * First flushers are responsible for cascading flushes and
2838 * handling overflow. Non-first flushers can simply return.
2839 */
2840 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2841 return;
2842
2843 mutex_lock(&wq->mutex);
2844
2845 /* we might have raced, check again with mutex held */
2846 if (wq->first_flusher != &this_flusher)
2847 goto out_unlock;
2848
2849 WRITE_ONCE(wq->first_flusher, NULL);
2850
2851 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2852 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2853
2854 while (true) {
2855 struct wq_flusher *next, *tmp;
2856
2857 /* complete all the flushers sharing the current flush color */
2858 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2859 if (next->flush_color != wq->flush_color)
2860 break;
2861 list_del_init(&next->list);
2862 complete(&next->done);
2863 }
2864
2865 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2866 wq->flush_color != work_next_color(wq->work_color));
2867
2868 /* this flush_color is finished, advance by one */
2869 wq->flush_color = work_next_color(wq->flush_color);
2870
2871 /* one color has been freed, handle overflow queue */
2872 if (!list_empty(&wq->flusher_overflow)) {
2873 /*
2874 * Assign the same color to all overflowed
2875 * flushers, advance work_color and append to
2876 * flusher_queue. This is the start-to-wait
2877 * phase for these overflowed flushers.
2878 */
2879 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2880 tmp->flush_color = wq->work_color;
2881
2882 wq->work_color = work_next_color(wq->work_color);
2883
2884 list_splice_tail_init(&wq->flusher_overflow,
2885 &wq->flusher_queue);
2886 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2887 }
2888
2889 if (list_empty(&wq->flusher_queue)) {
2890 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2891 break;
2892 }
2893
2894 /*
2895 * Need to flush more colors. Make the next flusher
2896 * the new first flusher and arm pwqs.
2897 */
2898 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2899 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2900
2901 list_del_init(&next->list);
2902 wq->first_flusher = next;
2903
2904 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2905 break;
2906
2907 /*
2908 * Meh... this color is already done, clear first
2909 * flusher and repeat cascading.
2910 */
2911 wq->first_flusher = NULL;
2912 }
2913
2914out_unlock:
2915 mutex_unlock(&wq->mutex);
2916}
2917EXPORT_SYMBOL(flush_workqueue);
2918
2919/**
2920 * drain_workqueue - drain a workqueue
2921 * @wq: workqueue to drain
2922 *
2923 * Wait until the workqueue becomes empty. While draining is in progress,
2924 * only chain queueing is allowed. IOW, only currently pending or running
2925 * work items on @wq can queue further work items on it. @wq is flushed
2926 * repeatedly until it becomes empty. The number of flushing is determined
2927 * by the depth of chaining and should be relatively short. Whine if it
2928 * takes too long.
2929 */
2930void drain_workqueue(struct workqueue_struct *wq)
2931{
2932 unsigned int flush_cnt = 0;
2933 struct pool_workqueue *pwq;
2934
2935 /*
2936 * __queue_work() needs to test whether there are drainers, is much
2937 * hotter than drain_workqueue() and already looks at @wq->flags.
2938 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2939 */
2940 mutex_lock(&wq->mutex);
2941 if (!wq->nr_drainers++)
2942 wq->flags |= __WQ_DRAINING;
2943 mutex_unlock(&wq->mutex);
2944reflush:
2945 flush_workqueue(wq);
2946
2947 mutex_lock(&wq->mutex);
2948
2949 for_each_pwq(pwq, wq) {
2950 bool drained;
2951
2952 raw_spin_lock_irq(&pwq->pool->lock);
2953 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2954 raw_spin_unlock_irq(&pwq->pool->lock);
2955
2956 if (drained)
2957 continue;
2958
2959 if (++flush_cnt == 10 ||
2960 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2961 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2962 wq->name, flush_cnt);
2963
2964 mutex_unlock(&wq->mutex);
2965 goto reflush;
2966 }
2967
2968 if (!--wq->nr_drainers)
2969 wq->flags &= ~__WQ_DRAINING;
2970 mutex_unlock(&wq->mutex);
2971}
2972EXPORT_SYMBOL_GPL(drain_workqueue);
2973
2974static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2975 bool from_cancel)
2976{
2977 struct worker *worker = NULL;
2978 struct worker_pool *pool;
2979 struct pool_workqueue *pwq;
2980
2981 might_sleep();
2982
2983 rcu_read_lock();
2984 pool = get_work_pool(work);
2985 if (!pool) {
2986 rcu_read_unlock();
2987 return false;
2988 }
2989
2990 raw_spin_lock_irq(&pool->lock);
2991 /* see the comment in try_to_grab_pending() with the same code */
2992 pwq = get_work_pwq(work);
2993 if (pwq) {
2994 if (unlikely(pwq->pool != pool))
2995 goto already_gone;
2996 } else {
2997 worker = find_worker_executing_work(pool, work);
2998 if (!worker)
2999 goto already_gone;
3000 pwq = worker->current_pwq;
3001 }
3002
3003 check_flush_dependency(pwq->wq, work);
3004
3005 insert_wq_barrier(pwq, barr, work, worker);
3006 raw_spin_unlock_irq(&pool->lock);
3007
3008 /*
3009 * Force a lock recursion deadlock when using flush_work() inside a
3010 * single-threaded or rescuer equipped workqueue.
3011 *
3012 * For single threaded workqueues the deadlock happens when the work
3013 * is after the work issuing the flush_work(). For rescuer equipped
3014 * workqueues the deadlock happens when the rescuer stalls, blocking
3015 * forward progress.
3016 */
3017 if (!from_cancel &&
3018 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3019 lock_map_acquire(&pwq->wq->lockdep_map);
3020 lock_map_release(&pwq->wq->lockdep_map);
3021 }
3022 rcu_read_unlock();
3023 return true;
3024already_gone:
3025 raw_spin_unlock_irq(&pool->lock);
3026 rcu_read_unlock();
3027 return false;
3028}
3029
3030static bool __flush_work(struct work_struct *work, bool from_cancel)
3031{
3032 struct wq_barrier barr;
3033
3034 if (WARN_ON(!wq_online))
3035 return false;
3036
3037 if (WARN_ON(!work->func))
3038 return false;
3039
3040 if (!from_cancel) {
3041 lock_map_acquire(&work->lockdep_map);
3042 lock_map_release(&work->lockdep_map);
3043 }
3044
3045 if (start_flush_work(work, &barr, from_cancel)) {
3046 wait_for_completion(&barr.done);
3047 destroy_work_on_stack(&barr.work);
3048 return true;
3049 } else {
3050 return false;
3051 }
3052}
3053
3054/**
3055 * flush_work - wait for a work to finish executing the last queueing instance
3056 * @work: the work to flush
3057 *
3058 * Wait until @work has finished execution. @work is guaranteed to be idle
3059 * on return if it hasn't been requeued since flush started.
3060 *
3061 * Return:
3062 * %true if flush_work() waited for the work to finish execution,
3063 * %false if it was already idle.
3064 */
3065bool flush_work(struct work_struct *work)
3066{
3067 return __flush_work(work, false);
3068}
3069EXPORT_SYMBOL_GPL(flush_work);
3070
3071struct cwt_wait {
3072 wait_queue_entry_t wait;
3073 struct work_struct *work;
3074};
3075
3076static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3077{
3078 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3079
3080 if (cwait->work != key)
3081 return 0;
3082 return autoremove_wake_function(wait, mode, sync, key);
3083}
3084
3085static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3086{
3087 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3088 unsigned long flags;
3089 int ret;
3090
3091 do {
3092 ret = try_to_grab_pending(work, is_dwork, &flags);
3093 /*
3094 * If someone else is already canceling, wait for it to
3095 * finish. flush_work() doesn't work for PREEMPT_NONE
3096 * because we may get scheduled between @work's completion
3097 * and the other canceling task resuming and clearing
3098 * CANCELING - flush_work() will return false immediately
3099 * as @work is no longer busy, try_to_grab_pending() will
3100 * return -ENOENT as @work is still being canceled and the
3101 * other canceling task won't be able to clear CANCELING as
3102 * we're hogging the CPU.
3103 *
3104 * Let's wait for completion using a waitqueue. As this
3105 * may lead to the thundering herd problem, use a custom
3106 * wake function which matches @work along with exclusive
3107 * wait and wakeup.
3108 */
3109 if (unlikely(ret == -ENOENT)) {
3110 struct cwt_wait cwait;
3111
3112 init_wait(&cwait.wait);
3113 cwait.wait.func = cwt_wakefn;
3114 cwait.work = work;
3115
3116 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3117 TASK_UNINTERRUPTIBLE);
3118 if (work_is_canceling(work))
3119 schedule();
3120 finish_wait(&cancel_waitq, &cwait.wait);
3121 }
3122 } while (unlikely(ret < 0));
3123
3124 /* tell other tasks trying to grab @work to back off */
3125 mark_work_canceling(work);
3126 local_irq_restore(flags);
3127
3128 /*
3129 * This allows canceling during early boot. We know that @work
3130 * isn't executing.
3131 */
3132 if (wq_online)
3133 __flush_work(work, true);
3134
3135 clear_work_data(work);
3136
3137 /*
3138 * Paired with prepare_to_wait() above so that either
3139 * waitqueue_active() is visible here or !work_is_canceling() is
3140 * visible there.
3141 */
3142 smp_mb();
3143 if (waitqueue_active(&cancel_waitq))
3144 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3145
3146 return ret;
3147}
3148
3149/**
3150 * cancel_work_sync - cancel a work and wait for it to finish
3151 * @work: the work to cancel
3152 *
3153 * Cancel @work and wait for its execution to finish. This function
3154 * can be used even if the work re-queues itself or migrates to
3155 * another workqueue. On return from this function, @work is
3156 * guaranteed to be not pending or executing on any CPU.
3157 *
3158 * cancel_work_sync(&delayed_work->work) must not be used for
3159 * delayed_work's. Use cancel_delayed_work_sync() instead.
3160 *
3161 * The caller must ensure that the workqueue on which @work was last
3162 * queued can't be destroyed before this function returns.
3163 *
3164 * Return:
3165 * %true if @work was pending, %false otherwise.
3166 */
3167bool cancel_work_sync(struct work_struct *work)
3168{
3169 return __cancel_work_timer(work, false);
3170}
3171EXPORT_SYMBOL_GPL(cancel_work_sync);
3172
3173/**
3174 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3175 * @dwork: the delayed work to flush
3176 *
3177 * Delayed timer is cancelled and the pending work is queued for
3178 * immediate execution. Like flush_work(), this function only
3179 * considers the last queueing instance of @dwork.
3180 *
3181 * Return:
3182 * %true if flush_work() waited for the work to finish execution,
3183 * %false if it was already idle.
3184 */
3185bool flush_delayed_work(struct delayed_work *dwork)
3186{
3187 local_irq_disable();
3188 if (del_timer_sync(&dwork->timer))
3189 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3190 local_irq_enable();
3191 return flush_work(&dwork->work);
3192}
3193EXPORT_SYMBOL(flush_delayed_work);
3194
3195/**
3196 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3197 * @rwork: the rcu work to flush
3198 *
3199 * Return:
3200 * %true if flush_rcu_work() waited for the work to finish execution,
3201 * %false if it was already idle.
3202 */
3203bool flush_rcu_work(struct rcu_work *rwork)
3204{
3205 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3206 rcu_barrier();
3207 flush_work(&rwork->work);
3208 return true;
3209 } else {
3210 return flush_work(&rwork->work);
3211 }
3212}
3213EXPORT_SYMBOL(flush_rcu_work);
3214
3215static bool __cancel_work(struct work_struct *work, bool is_dwork)
3216{
3217 unsigned long flags;
3218 int ret;
3219
3220 do {
3221 ret = try_to_grab_pending(work, is_dwork, &flags);
3222 } while (unlikely(ret == -EAGAIN));
3223
3224 if (unlikely(ret < 0))
3225 return false;
3226
3227 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3228 local_irq_restore(flags);
3229 return ret;
3230}
3231
3232/**
3233 * cancel_delayed_work - cancel a delayed work
3234 * @dwork: delayed_work to cancel
3235 *
3236 * Kill off a pending delayed_work.
3237 *
3238 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3239 * pending.
3240 *
3241 * Note:
3242 * The work callback function may still be running on return, unless
3243 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3244 * use cancel_delayed_work_sync() to wait on it.
3245 *
3246 * This function is safe to call from any context including IRQ handler.
3247 */
3248bool cancel_delayed_work(struct delayed_work *dwork)
3249{
3250 return __cancel_work(&dwork->work, true);
3251}
3252EXPORT_SYMBOL(cancel_delayed_work);
3253
3254/**
3255 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3256 * @dwork: the delayed work cancel
3257 *
3258 * This is cancel_work_sync() for delayed works.
3259 *
3260 * Return:
3261 * %true if @dwork was pending, %false otherwise.
3262 */
3263bool cancel_delayed_work_sync(struct delayed_work *dwork)
3264{
3265 return __cancel_work_timer(&dwork->work, true);
3266}
3267EXPORT_SYMBOL(cancel_delayed_work_sync);
3268
3269/**
3270 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3271 * @func: the function to call
3272 *
3273 * schedule_on_each_cpu() executes @func on each online CPU using the
3274 * system workqueue and blocks until all CPUs have completed.
3275 * schedule_on_each_cpu() is very slow.
3276 *
3277 * Return:
3278 * 0 on success, -errno on failure.
3279 */
3280int schedule_on_each_cpu(work_func_t func)
3281{
3282 int cpu;
3283 struct work_struct __percpu *works;
3284
3285 works = alloc_percpu(struct work_struct);
3286 if (!works)
3287 return -ENOMEM;
3288
3289 get_online_cpus();
3290
3291 for_each_online_cpu(cpu) {
3292 struct work_struct *work = per_cpu_ptr(works, cpu);
3293
3294 INIT_WORK(work, func);
3295 schedule_work_on(cpu, work);
3296 }
3297
3298 for_each_online_cpu(cpu)
3299 flush_work(per_cpu_ptr(works, cpu));
3300
3301 put_online_cpus();
3302 free_percpu(works);
3303 return 0;
3304}
3305
3306/**
3307 * execute_in_process_context - reliably execute the routine with user context
3308 * @fn: the function to execute
3309 * @ew: guaranteed storage for the execute work structure (must
3310 * be available when the work executes)
3311 *
3312 * Executes the function immediately if process context is available,
3313 * otherwise schedules the function for delayed execution.
3314 *
3315 * Return: 0 - function was executed
3316 * 1 - function was scheduled for execution
3317 */
3318int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3319{
3320 if (!in_interrupt()) {
3321 fn(&ew->work);
3322 return 0;
3323 }
3324
3325 INIT_WORK(&ew->work, fn);
3326 schedule_work(&ew->work);
3327
3328 return 1;
3329}
3330EXPORT_SYMBOL_GPL(execute_in_process_context);
3331
3332/**
3333 * free_workqueue_attrs - free a workqueue_attrs
3334 * @attrs: workqueue_attrs to free
3335 *
3336 * Undo alloc_workqueue_attrs().
3337 */
3338void free_workqueue_attrs(struct workqueue_attrs *attrs)
3339{
3340 if (attrs) {
3341 free_cpumask_var(attrs->cpumask);
3342 kfree(attrs);
3343 }
3344}
3345
3346/**
3347 * alloc_workqueue_attrs - allocate a workqueue_attrs
3348 *
3349 * Allocate a new workqueue_attrs, initialize with default settings and
3350 * return it.
3351 *
3352 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3353 */
3354struct workqueue_attrs *alloc_workqueue_attrs(void)
3355{
3356 struct workqueue_attrs *attrs;
3357
3358 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3359 if (!attrs)
3360 goto fail;
3361 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3362 goto fail;
3363
3364 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3365 return attrs;
3366fail:
3367 free_workqueue_attrs(attrs);
3368 return NULL;
3369}
3370
3371static void copy_workqueue_attrs(struct workqueue_attrs *to,
3372 const struct workqueue_attrs *from)
3373{
3374 to->nice = from->nice;
3375 cpumask_copy(to->cpumask, from->cpumask);
3376 /*
3377 * Unlike hash and equality test, this function doesn't ignore
3378 * ->no_numa as it is used for both pool and wq attrs. Instead,
3379 * get_unbound_pool() explicitly clears ->no_numa after copying.
3380 */
3381 to->no_numa = from->no_numa;
3382}
3383
3384/* hash value of the content of @attr */
3385static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3386{
3387 u32 hash = 0;
3388
3389 hash = jhash_1word(attrs->nice, hash);
3390 hash = jhash(cpumask_bits(attrs->cpumask),
3391 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3392 return hash;
3393}
3394
3395/* content equality test */
3396static bool wqattrs_equal(const struct workqueue_attrs *a,
3397 const struct workqueue_attrs *b)
3398{
3399 if (a->nice != b->nice)
3400 return false;
3401 if (!cpumask_equal(a->cpumask, b->cpumask))
3402 return false;
3403 return true;
3404}
3405
3406/**
3407 * init_worker_pool - initialize a newly zalloc'd worker_pool
3408 * @pool: worker_pool to initialize
3409 *
3410 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3411 *
3412 * Return: 0 on success, -errno on failure. Even on failure, all fields
3413 * inside @pool proper are initialized and put_unbound_pool() can be called
3414 * on @pool safely to release it.
3415 */
3416static int init_worker_pool(struct worker_pool *pool)
3417{
3418 raw_spin_lock_init(&pool->lock);
3419 pool->id = -1;
3420 pool->cpu = -1;
3421 pool->node = NUMA_NO_NODE;
3422 pool->flags |= POOL_DISASSOCIATED;
3423 pool->watchdog_ts = jiffies;
3424 INIT_LIST_HEAD(&pool->worklist);
3425 INIT_LIST_HEAD(&pool->idle_list);
3426 hash_init(pool->busy_hash);
3427
3428 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3429
3430 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3431
3432 INIT_LIST_HEAD(&pool->workers);
3433
3434 ida_init(&pool->worker_ida);
3435 INIT_HLIST_NODE(&pool->hash_node);
3436 pool->refcnt = 1;
3437
3438 /* shouldn't fail above this point */
3439 pool->attrs = alloc_workqueue_attrs();
3440 if (!pool->attrs)
3441 return -ENOMEM;
3442 return 0;
3443}
3444
3445#ifdef CONFIG_LOCKDEP
3446static void wq_init_lockdep(struct workqueue_struct *wq)
3447{
3448 char *lock_name;
3449
3450 lockdep_register_key(&wq->key);
3451 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3452 if (!lock_name)
3453 lock_name = wq->name;
3454
3455 wq->lock_name = lock_name;
3456 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3457}
3458
3459static void wq_unregister_lockdep(struct workqueue_struct *wq)
3460{
3461 lockdep_unregister_key(&wq->key);
3462}
3463
3464static void wq_free_lockdep(struct workqueue_struct *wq)
3465{
3466 if (wq->lock_name != wq->name)
3467 kfree(wq->lock_name);
3468}
3469#else
3470static void wq_init_lockdep(struct workqueue_struct *wq)
3471{
3472}
3473
3474static void wq_unregister_lockdep(struct workqueue_struct *wq)
3475{
3476}
3477
3478static void wq_free_lockdep(struct workqueue_struct *wq)
3479{
3480}
3481#endif
3482
3483static void rcu_free_wq(struct rcu_head *rcu)
3484{
3485 struct workqueue_struct *wq =
3486 container_of(rcu, struct workqueue_struct, rcu);
3487
3488 wq_free_lockdep(wq);
3489
3490 if (!(wq->flags & WQ_UNBOUND))
3491 free_percpu(wq->cpu_pwqs);
3492 else
3493 free_workqueue_attrs(wq->unbound_attrs);
3494
3495 kfree(wq);
3496}
3497
3498static void rcu_free_pool(struct rcu_head *rcu)
3499{
3500 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3501
3502 ida_destroy(&pool->worker_ida);
3503 free_workqueue_attrs(pool->attrs);
3504 kfree(pool);
3505}
3506
3507/* This returns with the lock held on success (pool manager is inactive). */
3508static bool wq_manager_inactive(struct worker_pool *pool)
3509{
3510 raw_spin_lock_irq(&pool->lock);
3511
3512 if (pool->flags & POOL_MANAGER_ACTIVE) {
3513 raw_spin_unlock_irq(&pool->lock);
3514 return false;
3515 }
3516 return true;
3517}
3518
3519/**
3520 * put_unbound_pool - put a worker_pool
3521 * @pool: worker_pool to put
3522 *
3523 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3524 * safe manner. get_unbound_pool() calls this function on its failure path
3525 * and this function should be able to release pools which went through,
3526 * successfully or not, init_worker_pool().
3527 *
3528 * Should be called with wq_pool_mutex held.
3529 */
3530static void put_unbound_pool(struct worker_pool *pool)
3531{
3532 DECLARE_COMPLETION_ONSTACK(detach_completion);
3533 struct worker *worker;
3534
3535 lockdep_assert_held(&wq_pool_mutex);
3536
3537 if (--pool->refcnt)
3538 return;
3539
3540 /* sanity checks */
3541 if (WARN_ON(!(pool->cpu < 0)) ||
3542 WARN_ON(!list_empty(&pool->worklist)))
3543 return;
3544
3545 /* release id and unhash */
3546 if (pool->id >= 0)
3547 idr_remove(&worker_pool_idr, pool->id);
3548 hash_del(&pool->hash_node);
3549
3550 /*
3551 * Become the manager and destroy all workers. This prevents
3552 * @pool's workers from blocking on attach_mutex. We're the last
3553 * manager and @pool gets freed with the flag set.
3554 * Because of how wq_manager_inactive() works, we will hold the
3555 * spinlock after a successful wait.
3556 */
3557 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3558 TASK_UNINTERRUPTIBLE);
3559 pool->flags |= POOL_MANAGER_ACTIVE;
3560
3561 while ((worker = first_idle_worker(pool)))
3562 destroy_worker(worker);
3563 WARN_ON(pool->nr_workers || pool->nr_idle);
3564 raw_spin_unlock_irq(&pool->lock);
3565
3566 mutex_lock(&wq_pool_attach_mutex);
3567 if (!list_empty(&pool->workers))
3568 pool->detach_completion = &detach_completion;
3569 mutex_unlock(&wq_pool_attach_mutex);
3570
3571 if (pool->detach_completion)
3572 wait_for_completion(pool->detach_completion);
3573
3574 /* shut down the timers */
3575 del_timer_sync(&pool->idle_timer);
3576 del_timer_sync(&pool->mayday_timer);
3577
3578 /* RCU protected to allow dereferences from get_work_pool() */
3579 call_rcu(&pool->rcu, rcu_free_pool);
3580}
3581
3582/**
3583 * get_unbound_pool - get a worker_pool with the specified attributes
3584 * @attrs: the attributes of the worker_pool to get
3585 *
3586 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3587 * reference count and return it. If there already is a matching
3588 * worker_pool, it will be used; otherwise, this function attempts to
3589 * create a new one.
3590 *
3591 * Should be called with wq_pool_mutex held.
3592 *
3593 * Return: On success, a worker_pool with the same attributes as @attrs.
3594 * On failure, %NULL.
3595 */
3596static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3597{
3598 u32 hash = wqattrs_hash(attrs);
3599 struct worker_pool *pool;
3600 int node;
3601 int target_node = NUMA_NO_NODE;
3602
3603 lockdep_assert_held(&wq_pool_mutex);
3604
3605 /* do we already have a matching pool? */
3606 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3607 if (wqattrs_equal(pool->attrs, attrs)) {
3608 pool->refcnt++;
3609 return pool;
3610 }
3611 }
3612
3613 /* if cpumask is contained inside a NUMA node, we belong to that node */
3614 if (wq_numa_enabled) {
3615 for_each_node(node) {
3616 if (cpumask_subset(attrs->cpumask,
3617 wq_numa_possible_cpumask[node])) {
3618 target_node = node;
3619 break;
3620 }
3621 }
3622 }
3623
3624 /* nope, create a new one */
3625 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3626 if (!pool || init_worker_pool(pool) < 0)
3627 goto fail;
3628
3629 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3630 copy_workqueue_attrs(pool->attrs, attrs);
3631 pool->node = target_node;
3632
3633 /*
3634 * no_numa isn't a worker_pool attribute, always clear it. See
3635 * 'struct workqueue_attrs' comments for detail.
3636 */
3637 pool->attrs->no_numa = false;
3638
3639 if (worker_pool_assign_id(pool) < 0)
3640 goto fail;
3641
3642 /* create and start the initial worker */
3643 if (wq_online && !create_worker(pool))
3644 goto fail;
3645
3646 /* install */
3647 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3648
3649 return pool;
3650fail:
3651 if (pool)
3652 put_unbound_pool(pool);
3653 return NULL;
3654}
3655
3656static void rcu_free_pwq(struct rcu_head *rcu)
3657{
3658 kmem_cache_free(pwq_cache,
3659 container_of(rcu, struct pool_workqueue, rcu));
3660}
3661
3662/*
3663 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3664 * and needs to be destroyed.
3665 */
3666static void pwq_unbound_release_workfn(struct work_struct *work)
3667{
3668 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3669 unbound_release_work);
3670 struct workqueue_struct *wq = pwq->wq;
3671 struct worker_pool *pool = pwq->pool;
3672 bool is_last;
3673
3674 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3675 return;
3676
3677 mutex_lock(&wq->mutex);
3678 list_del_rcu(&pwq->pwqs_node);
3679 is_last = list_empty(&wq->pwqs);
3680 mutex_unlock(&wq->mutex);
3681
3682 mutex_lock(&wq_pool_mutex);
3683 put_unbound_pool(pool);
3684 mutex_unlock(&wq_pool_mutex);
3685
3686 call_rcu(&pwq->rcu, rcu_free_pwq);
3687
3688 /*
3689 * If we're the last pwq going away, @wq is already dead and no one
3690 * is gonna access it anymore. Schedule RCU free.
3691 */
3692 if (is_last) {
3693 wq_unregister_lockdep(wq);
3694 call_rcu(&wq->rcu, rcu_free_wq);
3695 }
3696}
3697
3698/**
3699 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3700 * @pwq: target pool_workqueue
3701 *
3702 * If @pwq isn't freezing, set @pwq->max_active to the associated
3703 * workqueue's saved_max_active and activate delayed work items
3704 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3705 */
3706static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3707{
3708 struct workqueue_struct *wq = pwq->wq;
3709 bool freezable = wq->flags & WQ_FREEZABLE;
3710 unsigned long flags;
3711
3712 /* for @wq->saved_max_active */
3713 lockdep_assert_held(&wq->mutex);
3714
3715 /* fast exit for non-freezable wqs */
3716 if (!freezable && pwq->max_active == wq->saved_max_active)
3717 return;
3718
3719 /* this function can be called during early boot w/ irq disabled */
3720 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3721
3722 /*
3723 * During [un]freezing, the caller is responsible for ensuring that
3724 * this function is called at least once after @workqueue_freezing
3725 * is updated and visible.
3726 */
3727 if (!freezable || !workqueue_freezing) {
3728 pwq->max_active = wq->saved_max_active;
3729
3730 while (!list_empty(&pwq->delayed_works) &&
3731 pwq->nr_active < pwq->max_active)
3732 pwq_activate_first_delayed(pwq);
3733
3734 /*
3735 * Need to kick a worker after thawed or an unbound wq's
3736 * max_active is bumped. It's a slow path. Do it always.
3737 */
3738 wake_up_worker(pwq->pool);
3739 } else {
3740 pwq->max_active = 0;
3741 }
3742
3743 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3744}
3745
3746/* initialize newly alloced @pwq which is associated with @wq and @pool */
3747static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3748 struct worker_pool *pool)
3749{
3750 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3751
3752 memset(pwq, 0, sizeof(*pwq));
3753
3754 pwq->pool = pool;
3755 pwq->wq = wq;
3756 pwq->flush_color = -1;
3757 pwq->refcnt = 1;
3758 INIT_LIST_HEAD(&pwq->delayed_works);
3759 INIT_LIST_HEAD(&pwq->pwqs_node);
3760 INIT_LIST_HEAD(&pwq->mayday_node);
3761 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3762}
3763
3764/* sync @pwq with the current state of its associated wq and link it */
3765static void link_pwq(struct pool_workqueue *pwq)
3766{
3767 struct workqueue_struct *wq = pwq->wq;
3768
3769 lockdep_assert_held(&wq->mutex);
3770
3771 /* may be called multiple times, ignore if already linked */
3772 if (!list_empty(&pwq->pwqs_node))
3773 return;
3774
3775 /* set the matching work_color */
3776 pwq->work_color = wq->work_color;
3777
3778 /* sync max_active to the current setting */
3779 pwq_adjust_max_active(pwq);
3780
3781 /* link in @pwq */
3782 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3783}
3784
3785/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3786static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3787 const struct workqueue_attrs *attrs)
3788{
3789 struct worker_pool *pool;
3790 struct pool_workqueue *pwq;
3791
3792 lockdep_assert_held(&wq_pool_mutex);
3793
3794 pool = get_unbound_pool(attrs);
3795 if (!pool)
3796 return NULL;
3797
3798 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3799 if (!pwq) {
3800 put_unbound_pool(pool);
3801 return NULL;
3802 }
3803
3804 init_pwq(pwq, wq, pool);
3805 return pwq;
3806}
3807
3808/**
3809 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3810 * @attrs: the wq_attrs of the default pwq of the target workqueue
3811 * @node: the target NUMA node
3812 * @cpu_going_down: if >= 0, the CPU to consider as offline
3813 * @cpumask: outarg, the resulting cpumask
3814 *
3815 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3816 * @cpu_going_down is >= 0, that cpu is considered offline during
3817 * calculation. The result is stored in @cpumask.
3818 *
3819 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3820 * enabled and @node has online CPUs requested by @attrs, the returned
3821 * cpumask is the intersection of the possible CPUs of @node and
3822 * @attrs->cpumask.
3823 *
3824 * The caller is responsible for ensuring that the cpumask of @node stays
3825 * stable.
3826 *
3827 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3828 * %false if equal.
3829 */
3830static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3831 int cpu_going_down, cpumask_t *cpumask)
3832{
3833 if (!wq_numa_enabled || attrs->no_numa)
3834 goto use_dfl;
3835
3836 /* does @node have any online CPUs @attrs wants? */
3837 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3838 if (cpu_going_down >= 0)
3839 cpumask_clear_cpu(cpu_going_down, cpumask);
3840
3841 if (cpumask_empty(cpumask))
3842 goto use_dfl;
3843
3844 /* yeap, return possible CPUs in @node that @attrs wants */
3845 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3846
3847 if (cpumask_empty(cpumask)) {
3848 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3849 "possible intersect\n");
3850 return false;
3851 }
3852
3853 return !cpumask_equal(cpumask, attrs->cpumask);
3854
3855use_dfl:
3856 cpumask_copy(cpumask, attrs->cpumask);
3857 return false;
3858}
3859
3860/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3861static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3862 int node,
3863 struct pool_workqueue *pwq)
3864{
3865 struct pool_workqueue *old_pwq;
3866
3867 lockdep_assert_held(&wq_pool_mutex);
3868 lockdep_assert_held(&wq->mutex);
3869
3870 /* link_pwq() can handle duplicate calls */
3871 link_pwq(pwq);
3872
3873 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3874 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3875 return old_pwq;
3876}
3877
3878/* context to store the prepared attrs & pwqs before applying */
3879struct apply_wqattrs_ctx {
3880 struct workqueue_struct *wq; /* target workqueue */
3881 struct workqueue_attrs *attrs; /* attrs to apply */
3882 struct list_head list; /* queued for batching commit */
3883 struct pool_workqueue *dfl_pwq;
3884 struct pool_workqueue *pwq_tbl[];
3885};
3886
3887/* free the resources after success or abort */
3888static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3889{
3890 if (ctx) {
3891 int node;
3892
3893 for_each_node(node)
3894 put_pwq_unlocked(ctx->pwq_tbl[node]);
3895 put_pwq_unlocked(ctx->dfl_pwq);
3896
3897 free_workqueue_attrs(ctx->attrs);
3898
3899 kfree(ctx);
3900 }
3901}
3902
3903/* allocate the attrs and pwqs for later installation */
3904static struct apply_wqattrs_ctx *
3905apply_wqattrs_prepare(struct workqueue_struct *wq,
3906 const struct workqueue_attrs *attrs)
3907{
3908 struct apply_wqattrs_ctx *ctx;
3909 struct workqueue_attrs *new_attrs, *tmp_attrs;
3910 int node;
3911
3912 lockdep_assert_held(&wq_pool_mutex);
3913
3914 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3915
3916 new_attrs = alloc_workqueue_attrs();
3917 tmp_attrs = alloc_workqueue_attrs();
3918 if (!ctx || !new_attrs || !tmp_attrs)
3919 goto out_free;
3920
3921 /*
3922 * Calculate the attrs of the default pwq.
3923 * If the user configured cpumask doesn't overlap with the
3924 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3925 */
3926 copy_workqueue_attrs(new_attrs, attrs);
3927 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3928 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3929 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3930
3931 /*
3932 * We may create multiple pwqs with differing cpumasks. Make a
3933 * copy of @new_attrs which will be modified and used to obtain
3934 * pools.
3935 */
3936 copy_workqueue_attrs(tmp_attrs, new_attrs);
3937
3938 /*
3939 * If something goes wrong during CPU up/down, we'll fall back to
3940 * the default pwq covering whole @attrs->cpumask. Always create
3941 * it even if we don't use it immediately.
3942 */
3943 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3944 if (!ctx->dfl_pwq)
3945 goto out_free;
3946
3947 for_each_node(node) {
3948 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3949 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3950 if (!ctx->pwq_tbl[node])
3951 goto out_free;
3952 } else {
3953 ctx->dfl_pwq->refcnt++;
3954 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3955 }
3956 }
3957
3958 /* save the user configured attrs and sanitize it. */
3959 copy_workqueue_attrs(new_attrs, attrs);
3960 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3961 ctx->attrs = new_attrs;
3962
3963 ctx->wq = wq;
3964 free_workqueue_attrs(tmp_attrs);
3965 return ctx;
3966
3967out_free:
3968 free_workqueue_attrs(tmp_attrs);
3969 free_workqueue_attrs(new_attrs);
3970 apply_wqattrs_cleanup(ctx);
3971 return NULL;
3972}
3973
3974/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3975static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3976{
3977 int node;
3978
3979 /* all pwqs have been created successfully, let's install'em */
3980 mutex_lock(&ctx->wq->mutex);
3981
3982 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3983
3984 /* save the previous pwq and install the new one */
3985 for_each_node(node)
3986 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3987 ctx->pwq_tbl[node]);
3988
3989 /* @dfl_pwq might not have been used, ensure it's linked */
3990 link_pwq(ctx->dfl_pwq);
3991 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3992
3993 mutex_unlock(&ctx->wq->mutex);
3994}
3995
3996static void apply_wqattrs_lock(void)
3997{
3998 /* CPUs should stay stable across pwq creations and installations */
3999 get_online_cpus();
4000 mutex_lock(&wq_pool_mutex);
4001}
4002
4003static void apply_wqattrs_unlock(void)
4004{
4005 mutex_unlock(&wq_pool_mutex);
4006 put_online_cpus();
4007}
4008
4009static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4010 const struct workqueue_attrs *attrs)
4011{
4012 struct apply_wqattrs_ctx *ctx;
4013
4014 /* only unbound workqueues can change attributes */
4015 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4016 return -EINVAL;
4017
4018 /* creating multiple pwqs breaks ordering guarantee */
4019 if (!list_empty(&wq->pwqs)) {
4020 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4021 return -EINVAL;
4022
4023 wq->flags &= ~__WQ_ORDERED;
4024 }
4025
4026 ctx = apply_wqattrs_prepare(wq, attrs);
4027 if (!ctx)
4028 return -ENOMEM;
4029
4030 /* the ctx has been prepared successfully, let's commit it */
4031 apply_wqattrs_commit(ctx);
4032 apply_wqattrs_cleanup(ctx);
4033
4034 return 0;
4035}
4036
4037/**
4038 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4039 * @wq: the target workqueue
4040 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4041 *
4042 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4043 * machines, this function maps a separate pwq to each NUMA node with
4044 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4045 * NUMA node it was issued on. Older pwqs are released as in-flight work
4046 * items finish. Note that a work item which repeatedly requeues itself
4047 * back-to-back will stay on its current pwq.
4048 *
4049 * Performs GFP_KERNEL allocations.
4050 *
4051 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4052 *
4053 * Return: 0 on success and -errno on failure.
4054 */
4055int apply_workqueue_attrs(struct workqueue_struct *wq,
4056 const struct workqueue_attrs *attrs)
4057{
4058 int ret;
4059
4060 lockdep_assert_cpus_held();
4061
4062 mutex_lock(&wq_pool_mutex);
4063 ret = apply_workqueue_attrs_locked(wq, attrs);
4064 mutex_unlock(&wq_pool_mutex);
4065
4066 return ret;
4067}
4068
4069/**
4070 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4071 * @wq: the target workqueue
4072 * @cpu: the CPU coming up or going down
4073 * @online: whether @cpu is coming up or going down
4074 *
4075 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4076 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4077 * @wq accordingly.
4078 *
4079 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4080 * falls back to @wq->dfl_pwq which may not be optimal but is always
4081 * correct.
4082 *
4083 * Note that when the last allowed CPU of a NUMA node goes offline for a
4084 * workqueue with a cpumask spanning multiple nodes, the workers which were
4085 * already executing the work items for the workqueue will lose their CPU
4086 * affinity and may execute on any CPU. This is similar to how per-cpu
4087 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4088 * affinity, it's the user's responsibility to flush the work item from
4089 * CPU_DOWN_PREPARE.
4090 */
4091static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4092 bool online)
4093{
4094 int node = cpu_to_node(cpu);
4095 int cpu_off = online ? -1 : cpu;
4096 struct pool_workqueue *old_pwq = NULL, *pwq;
4097 struct workqueue_attrs *target_attrs;
4098 cpumask_t *cpumask;
4099
4100 lockdep_assert_held(&wq_pool_mutex);
4101
4102 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4103 wq->unbound_attrs->no_numa)
4104 return;
4105
4106 /*
4107 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4108 * Let's use a preallocated one. The following buf is protected by
4109 * CPU hotplug exclusion.
4110 */
4111 target_attrs = wq_update_unbound_numa_attrs_buf;
4112 cpumask = target_attrs->cpumask;
4113
4114 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4115 pwq = unbound_pwq_by_node(wq, node);
4116
4117 /*
4118 * Let's determine what needs to be done. If the target cpumask is
4119 * different from the default pwq's, we need to compare it to @pwq's
4120 * and create a new one if they don't match. If the target cpumask
4121 * equals the default pwq's, the default pwq should be used.
4122 */
4123 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4124 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4125 return;
4126 } else {
4127 goto use_dfl_pwq;
4128 }
4129
4130 /* create a new pwq */
4131 pwq = alloc_unbound_pwq(wq, target_attrs);
4132 if (!pwq) {
4133 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4134 wq->name);
4135 goto use_dfl_pwq;
4136 }
4137
4138 /* Install the new pwq. */
4139 mutex_lock(&wq->mutex);
4140 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4141 goto out_unlock;
4142
4143use_dfl_pwq:
4144 mutex_lock(&wq->mutex);
4145 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4146 get_pwq(wq->dfl_pwq);
4147 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4148 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4149out_unlock:
4150 mutex_unlock(&wq->mutex);
4151 put_pwq_unlocked(old_pwq);
4152}
4153
4154static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4155{
4156 bool highpri = wq->flags & WQ_HIGHPRI;
4157 int cpu, ret;
4158
4159 if (!(wq->flags & WQ_UNBOUND)) {
4160 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4161 if (!wq->cpu_pwqs)
4162 return -ENOMEM;
4163
4164 for_each_possible_cpu(cpu) {
4165 struct pool_workqueue *pwq =
4166 per_cpu_ptr(wq->cpu_pwqs, cpu);
4167 struct worker_pool *cpu_pools =
4168 per_cpu(cpu_worker_pools, cpu);
4169
4170 init_pwq(pwq, wq, &cpu_pools[highpri]);
4171
4172 mutex_lock(&wq->mutex);
4173 link_pwq(pwq);
4174 mutex_unlock(&wq->mutex);
4175 }
4176 return 0;
4177 }
4178
4179 get_online_cpus();
4180 if (wq->flags & __WQ_ORDERED) {
4181 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4182 /* there should only be single pwq for ordering guarantee */
4183 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4184 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4185 "ordering guarantee broken for workqueue %s\n", wq->name);
4186 } else {
4187 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4188 }
4189 put_online_cpus();
4190
4191 return ret;
4192}
4193
4194static int wq_clamp_max_active(int max_active, unsigned int flags,
4195 const char *name)
4196{
4197 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4198
4199 if (max_active < 1 || max_active > lim)
4200 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4201 max_active, name, 1, lim);
4202
4203 return clamp_val(max_active, 1, lim);
4204}
4205
4206/*
4207 * Workqueues which may be used during memory reclaim should have a rescuer
4208 * to guarantee forward progress.
4209 */
4210static int init_rescuer(struct workqueue_struct *wq)
4211{
4212 struct worker *rescuer;
4213 int ret;
4214
4215 if (!(wq->flags & WQ_MEM_RECLAIM))
4216 return 0;
4217
4218 rescuer = alloc_worker(NUMA_NO_NODE);
4219 if (!rescuer)
4220 return -ENOMEM;
4221
4222 rescuer->rescue_wq = wq;
4223 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4224 if (IS_ERR(rescuer->task)) {
4225 ret = PTR_ERR(rescuer->task);
4226 kfree(rescuer);
4227 return ret;
4228 }
4229
4230 wq->rescuer = rescuer;
4231 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4232 wake_up_process(rescuer->task);
4233
4234 return 0;
4235}
4236
4237__printf(1, 4)
4238struct workqueue_struct *alloc_workqueue(const char *fmt,
4239 unsigned int flags,
4240 int max_active, ...)
4241{
4242 size_t tbl_size = 0;
4243 va_list args;
4244 struct workqueue_struct *wq;
4245 struct pool_workqueue *pwq;
4246
4247 /*
4248 * Unbound && max_active == 1 used to imply ordered, which is no
4249 * longer the case on NUMA machines due to per-node pools. While
4250 * alloc_ordered_workqueue() is the right way to create an ordered
4251 * workqueue, keep the previous behavior to avoid subtle breakages
4252 * on NUMA.
4253 */
4254 if ((flags & WQ_UNBOUND) && max_active == 1)
4255 flags |= __WQ_ORDERED;
4256
4257 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4258 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4259 flags |= WQ_UNBOUND;
4260
4261 /* allocate wq and format name */
4262 if (flags & WQ_UNBOUND)
4263 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4264
4265 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4266 if (!wq)
4267 return NULL;
4268
4269 if (flags & WQ_UNBOUND) {
4270 wq->unbound_attrs = alloc_workqueue_attrs();
4271 if (!wq->unbound_attrs)
4272 goto err_free_wq;
4273 }
4274
4275 va_start(args, max_active);
4276 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4277 va_end(args);
4278
4279 max_active = max_active ?: WQ_DFL_ACTIVE;
4280 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4281
4282 /* init wq */
4283 wq->flags = flags;
4284 wq->saved_max_active = max_active;
4285 mutex_init(&wq->mutex);
4286 atomic_set(&wq->nr_pwqs_to_flush, 0);
4287 INIT_LIST_HEAD(&wq->pwqs);
4288 INIT_LIST_HEAD(&wq->flusher_queue);
4289 INIT_LIST_HEAD(&wq->flusher_overflow);
4290 INIT_LIST_HEAD(&wq->maydays);
4291
4292 wq_init_lockdep(wq);
4293 INIT_LIST_HEAD(&wq->list);
4294
4295 if (alloc_and_link_pwqs(wq) < 0)
4296 goto err_unreg_lockdep;
4297
4298 if (wq_online && init_rescuer(wq) < 0)
4299 goto err_destroy;
4300
4301 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4302 goto err_destroy;
4303
4304 /*
4305 * wq_pool_mutex protects global freeze state and workqueues list.
4306 * Grab it, adjust max_active and add the new @wq to workqueues
4307 * list.
4308 */
4309 mutex_lock(&wq_pool_mutex);
4310
4311 mutex_lock(&wq->mutex);
4312 for_each_pwq(pwq, wq)
4313 pwq_adjust_max_active(pwq);
4314 mutex_unlock(&wq->mutex);
4315
4316 list_add_tail_rcu(&wq->list, &workqueues);
4317
4318 mutex_unlock(&wq_pool_mutex);
4319
4320 return wq;
4321
4322err_unreg_lockdep:
4323 wq_unregister_lockdep(wq);
4324 wq_free_lockdep(wq);
4325err_free_wq:
4326 free_workqueue_attrs(wq->unbound_attrs);
4327 kfree(wq);
4328 return NULL;
4329err_destroy:
4330 destroy_workqueue(wq);
4331 return NULL;
4332}
4333EXPORT_SYMBOL_GPL(alloc_workqueue);
4334
4335static bool pwq_busy(struct pool_workqueue *pwq)
4336{
4337 int i;
4338
4339 for (i = 0; i < WORK_NR_COLORS; i++)
4340 if (pwq->nr_in_flight[i])
4341 return true;
4342
4343 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4344 return true;
4345 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4346 return true;
4347
4348 return false;
4349}
4350
4351/**
4352 * destroy_workqueue - safely terminate a workqueue
4353 * @wq: target workqueue
4354 *
4355 * Safely destroy a workqueue. All work currently pending will be done first.
4356 */
4357void destroy_workqueue(struct workqueue_struct *wq)
4358{
4359 struct pool_workqueue *pwq;
4360 int node;
4361
4362 /*
4363 * Remove it from sysfs first so that sanity check failure doesn't
4364 * lead to sysfs name conflicts.
4365 */
4366 workqueue_sysfs_unregister(wq);
4367
4368 /* drain it before proceeding with destruction */
4369 drain_workqueue(wq);
4370
4371 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4372 if (wq->rescuer) {
4373 struct worker *rescuer = wq->rescuer;
4374
4375 /* this prevents new queueing */
4376 raw_spin_lock_irq(&wq_mayday_lock);
4377 wq->rescuer = NULL;
4378 raw_spin_unlock_irq(&wq_mayday_lock);
4379
4380 /* rescuer will empty maydays list before exiting */
4381 kthread_stop(rescuer->task);
4382 kfree(rescuer);
4383 }
4384
4385 /*
4386 * Sanity checks - grab all the locks so that we wait for all
4387 * in-flight operations which may do put_pwq().
4388 */
4389 mutex_lock(&wq_pool_mutex);
4390 mutex_lock(&wq->mutex);
4391 for_each_pwq(pwq, wq) {
4392 raw_spin_lock_irq(&pwq->pool->lock);
4393 if (WARN_ON(pwq_busy(pwq))) {
4394 pr_warn("%s: %s has the following busy pwq\n",
4395 __func__, wq->name);
4396 show_pwq(pwq);
4397 raw_spin_unlock_irq(&pwq->pool->lock);
4398 mutex_unlock(&wq->mutex);
4399 mutex_unlock(&wq_pool_mutex);
4400 show_workqueue_state();
4401 return;
4402 }
4403 raw_spin_unlock_irq(&pwq->pool->lock);
4404 }
4405 mutex_unlock(&wq->mutex);
4406
4407 /*
4408 * wq list is used to freeze wq, remove from list after
4409 * flushing is complete in case freeze races us.
4410 */
4411 list_del_rcu(&wq->list);
4412 mutex_unlock(&wq_pool_mutex);
4413
4414 if (!(wq->flags & WQ_UNBOUND)) {
4415 wq_unregister_lockdep(wq);
4416 /*
4417 * The base ref is never dropped on per-cpu pwqs. Directly
4418 * schedule RCU free.
4419 */
4420 call_rcu(&wq->rcu, rcu_free_wq);
4421 } else {
4422 /*
4423 * We're the sole accessor of @wq at this point. Directly
4424 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4425 * @wq will be freed when the last pwq is released.
4426 */
4427 for_each_node(node) {
4428 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4429 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4430 put_pwq_unlocked(pwq);
4431 }
4432
4433 /*
4434 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4435 * put. Don't access it afterwards.
4436 */
4437 pwq = wq->dfl_pwq;
4438 wq->dfl_pwq = NULL;
4439 put_pwq_unlocked(pwq);
4440 }
4441}
4442EXPORT_SYMBOL_GPL(destroy_workqueue);
4443
4444/**
4445 * workqueue_set_max_active - adjust max_active of a workqueue
4446 * @wq: target workqueue
4447 * @max_active: new max_active value.
4448 *
4449 * Set max_active of @wq to @max_active.
4450 *
4451 * CONTEXT:
4452 * Don't call from IRQ context.
4453 */
4454void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4455{
4456 struct pool_workqueue *pwq;
4457
4458 /* disallow meddling with max_active for ordered workqueues */
4459 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4460 return;
4461
4462 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4463
4464 mutex_lock(&wq->mutex);
4465
4466 wq->flags &= ~__WQ_ORDERED;
4467 wq->saved_max_active = max_active;
4468
4469 for_each_pwq(pwq, wq)
4470 pwq_adjust_max_active(pwq);
4471
4472 mutex_unlock(&wq->mutex);
4473}
4474EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4475
4476/**
4477 * current_work - retrieve %current task's work struct
4478 *
4479 * Determine if %current task is a workqueue worker and what it's working on.
4480 * Useful to find out the context that the %current task is running in.
4481 *
4482 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4483 */
4484struct work_struct *current_work(void)
4485{
4486 struct worker *worker = current_wq_worker();
4487
4488 return worker ? worker->current_work : NULL;
4489}
4490EXPORT_SYMBOL(current_work);
4491
4492/**
4493 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4494 *
4495 * Determine whether %current is a workqueue rescuer. Can be used from
4496 * work functions to determine whether it's being run off the rescuer task.
4497 *
4498 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4499 */
4500bool current_is_workqueue_rescuer(void)
4501{
4502 struct worker *worker = current_wq_worker();
4503
4504 return worker && worker->rescue_wq;
4505}
4506
4507/**
4508 * workqueue_congested - test whether a workqueue is congested
4509 * @cpu: CPU in question
4510 * @wq: target workqueue
4511 *
4512 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4513 * no synchronization around this function and the test result is
4514 * unreliable and only useful as advisory hints or for debugging.
4515 *
4516 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4517 * Note that both per-cpu and unbound workqueues may be associated with
4518 * multiple pool_workqueues which have separate congested states. A
4519 * workqueue being congested on one CPU doesn't mean the workqueue is also
4520 * contested on other CPUs / NUMA nodes.
4521 *
4522 * Return:
4523 * %true if congested, %false otherwise.
4524 */
4525bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4526{
4527 struct pool_workqueue *pwq;
4528 bool ret;
4529
4530 rcu_read_lock();
4531 preempt_disable();
4532
4533 if (cpu == WORK_CPU_UNBOUND)
4534 cpu = smp_processor_id();
4535
4536 if (!(wq->flags & WQ_UNBOUND))
4537 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4538 else
4539 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4540
4541 ret = !list_empty(&pwq->delayed_works);
4542 preempt_enable();
4543 rcu_read_unlock();
4544
4545 return ret;
4546}
4547EXPORT_SYMBOL_GPL(workqueue_congested);
4548
4549/**
4550 * work_busy - test whether a work is currently pending or running
4551 * @work: the work to be tested
4552 *
4553 * Test whether @work is currently pending or running. There is no
4554 * synchronization around this function and the test result is
4555 * unreliable and only useful as advisory hints or for debugging.
4556 *
4557 * Return:
4558 * OR'd bitmask of WORK_BUSY_* bits.
4559 */
4560unsigned int work_busy(struct work_struct *work)
4561{
4562 struct worker_pool *pool;
4563 unsigned long flags;
4564 unsigned int ret = 0;
4565
4566 if (work_pending(work))
4567 ret |= WORK_BUSY_PENDING;
4568
4569 rcu_read_lock();
4570 pool = get_work_pool(work);
4571 if (pool) {
4572 raw_spin_lock_irqsave(&pool->lock, flags);
4573 if (find_worker_executing_work(pool, work))
4574 ret |= WORK_BUSY_RUNNING;
4575 raw_spin_unlock_irqrestore(&pool->lock, flags);
4576 }
4577 rcu_read_unlock();
4578
4579 return ret;
4580}
4581EXPORT_SYMBOL_GPL(work_busy);
4582
4583/**
4584 * set_worker_desc - set description for the current work item
4585 * @fmt: printf-style format string
4586 * @...: arguments for the format string
4587 *
4588 * This function can be called by a running work function to describe what
4589 * the work item is about. If the worker task gets dumped, this
4590 * information will be printed out together to help debugging. The
4591 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4592 */
4593void set_worker_desc(const char *fmt, ...)
4594{
4595 struct worker *worker = current_wq_worker();
4596 va_list args;
4597
4598 if (worker) {
4599 va_start(args, fmt);
4600 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4601 va_end(args);
4602 }
4603}
4604EXPORT_SYMBOL_GPL(set_worker_desc);
4605
4606/**
4607 * print_worker_info - print out worker information and description
4608 * @log_lvl: the log level to use when printing
4609 * @task: target task
4610 *
4611 * If @task is a worker and currently executing a work item, print out the
4612 * name of the workqueue being serviced and worker description set with
4613 * set_worker_desc() by the currently executing work item.
4614 *
4615 * This function can be safely called on any task as long as the
4616 * task_struct itself is accessible. While safe, this function isn't
4617 * synchronized and may print out mixups or garbages of limited length.
4618 */
4619void print_worker_info(const char *log_lvl, struct task_struct *task)
4620{
4621 work_func_t *fn = NULL;
4622 char name[WQ_NAME_LEN] = { };
4623 char desc[WORKER_DESC_LEN] = { };
4624 struct pool_workqueue *pwq = NULL;
4625 struct workqueue_struct *wq = NULL;
4626 struct worker *worker;
4627
4628 if (!(task->flags & PF_WQ_WORKER))
4629 return;
4630
4631 /*
4632 * This function is called without any synchronization and @task
4633 * could be in any state. Be careful with dereferences.
4634 */
4635 worker = kthread_probe_data(task);
4636
4637 /*
4638 * Carefully copy the associated workqueue's workfn, name and desc.
4639 * Keep the original last '\0' in case the original is garbage.
4640 */
4641 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4642 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4643 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4644 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4645 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4646
4647 if (fn || name[0] || desc[0]) {
4648 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4649 if (strcmp(name, desc))
4650 pr_cont(" (%s)", desc);
4651 pr_cont("\n");
4652 }
4653}
4654
4655static void pr_cont_pool_info(struct worker_pool *pool)
4656{
4657 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4658 if (pool->node != NUMA_NO_NODE)
4659 pr_cont(" node=%d", pool->node);
4660 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4661}
4662
4663static void pr_cont_work(bool comma, struct work_struct *work)
4664{
4665 if (work->func == wq_barrier_func) {
4666 struct wq_barrier *barr;
4667
4668 barr = container_of(work, struct wq_barrier, work);
4669
4670 pr_cont("%s BAR(%d)", comma ? "," : "",
4671 task_pid_nr(barr->task));
4672 } else {
4673 pr_cont("%s %ps", comma ? "," : "", work->func);
4674 }
4675}
4676
4677static void show_pwq(struct pool_workqueue *pwq)
4678{
4679 struct worker_pool *pool = pwq->pool;
4680 struct work_struct *work;
4681 struct worker *worker;
4682 bool has_in_flight = false, has_pending = false;
4683 int bkt;
4684
4685 pr_info(" pwq %d:", pool->id);
4686 pr_cont_pool_info(pool);
4687
4688 pr_cont(" active=%d/%d refcnt=%d%s\n",
4689 pwq->nr_active, pwq->max_active, pwq->refcnt,
4690 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4691
4692 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4693 if (worker->current_pwq == pwq) {
4694 has_in_flight = true;
4695 break;
4696 }
4697 }
4698 if (has_in_flight) {
4699 bool comma = false;
4700
4701 pr_info(" in-flight:");
4702 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4703 if (worker->current_pwq != pwq)
4704 continue;
4705
4706 pr_cont("%s %d%s:%ps", comma ? "," : "",
4707 task_pid_nr(worker->task),
4708 worker->rescue_wq ? "(RESCUER)" : "",
4709 worker->current_func);
4710 list_for_each_entry(work, &worker->scheduled, entry)
4711 pr_cont_work(false, work);
4712 comma = true;
4713 }
4714 pr_cont("\n");
4715 }
4716
4717 list_for_each_entry(work, &pool->worklist, entry) {
4718 if (get_work_pwq(work) == pwq) {
4719 has_pending = true;
4720 break;
4721 }
4722 }
4723 if (has_pending) {
4724 bool comma = false;
4725
4726 pr_info(" pending:");
4727 list_for_each_entry(work, &pool->worklist, entry) {
4728 if (get_work_pwq(work) != pwq)
4729 continue;
4730
4731 pr_cont_work(comma, work);
4732 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4733 }
4734 pr_cont("\n");
4735 }
4736
4737 if (!list_empty(&pwq->delayed_works)) {
4738 bool comma = false;
4739
4740 pr_info(" delayed:");
4741 list_for_each_entry(work, &pwq->delayed_works, entry) {
4742 pr_cont_work(comma, work);
4743 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4744 }
4745 pr_cont("\n");
4746 }
4747}
4748
4749/**
4750 * show_workqueue_state - dump workqueue state
4751 *
4752 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4753 * all busy workqueues and pools.
4754 */
4755void show_workqueue_state(void)
4756{
4757 struct workqueue_struct *wq;
4758 struct worker_pool *pool;
4759 unsigned long flags;
4760 int pi;
4761
4762 rcu_read_lock();
4763
4764 pr_info("Showing busy workqueues and worker pools:\n");
4765
4766 list_for_each_entry_rcu(wq, &workqueues, list) {
4767 struct pool_workqueue *pwq;
4768 bool idle = true;
4769
4770 for_each_pwq(pwq, wq) {
4771 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4772 idle = false;
4773 break;
4774 }
4775 }
4776 if (idle)
4777 continue;
4778
4779 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4780
4781 for_each_pwq(pwq, wq) {
4782 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4783 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4784 show_pwq(pwq);
4785 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4786 /*
4787 * We could be printing a lot from atomic context, e.g.
4788 * sysrq-t -> show_workqueue_state(). Avoid triggering
4789 * hard lockup.
4790 */
4791 touch_nmi_watchdog();
4792 }
4793 }
4794
4795 for_each_pool(pool, pi) {
4796 struct worker *worker;
4797 bool first = true;
4798
4799 raw_spin_lock_irqsave(&pool->lock, flags);
4800 if (pool->nr_workers == pool->nr_idle)
4801 goto next_pool;
4802
4803 pr_info("pool %d:", pool->id);
4804 pr_cont_pool_info(pool);
4805 pr_cont(" hung=%us workers=%d",
4806 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4807 pool->nr_workers);
4808 if (pool->manager)
4809 pr_cont(" manager: %d",
4810 task_pid_nr(pool->manager->task));
4811 list_for_each_entry(worker, &pool->idle_list, entry) {
4812 pr_cont(" %s%d", first ? "idle: " : "",
4813 task_pid_nr(worker->task));
4814 first = false;
4815 }
4816 pr_cont("\n");
4817 next_pool:
4818 raw_spin_unlock_irqrestore(&pool->lock, flags);
4819 /*
4820 * We could be printing a lot from atomic context, e.g.
4821 * sysrq-t -> show_workqueue_state(). Avoid triggering
4822 * hard lockup.
4823 */
4824 touch_nmi_watchdog();
4825 }
4826
4827 rcu_read_unlock();
4828}
4829
4830/* used to show worker information through /proc/PID/{comm,stat,status} */
4831void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4832{
4833 int off;
4834
4835 /* always show the actual comm */
4836 off = strscpy(buf, task->comm, size);
4837 if (off < 0)
4838 return;
4839
4840 /* stabilize PF_WQ_WORKER and worker pool association */
4841 mutex_lock(&wq_pool_attach_mutex);
4842
4843 if (task->flags & PF_WQ_WORKER) {
4844 struct worker *worker = kthread_data(task);
4845 struct worker_pool *pool = worker->pool;
4846
4847 if (pool) {
4848 raw_spin_lock_irq(&pool->lock);
4849 /*
4850 * ->desc tracks information (wq name or
4851 * set_worker_desc()) for the latest execution. If
4852 * current, prepend '+', otherwise '-'.
4853 */
4854 if (worker->desc[0] != '\0') {
4855 if (worker->current_work)
4856 scnprintf(buf + off, size - off, "+%s",
4857 worker->desc);
4858 else
4859 scnprintf(buf + off, size - off, "-%s",
4860 worker->desc);
4861 }
4862 raw_spin_unlock_irq(&pool->lock);
4863 }
4864 }
4865
4866 mutex_unlock(&wq_pool_attach_mutex);
4867}
4868
4869#ifdef CONFIG_SMP
4870
4871/*
4872 * CPU hotplug.
4873 *
4874 * There are two challenges in supporting CPU hotplug. Firstly, there
4875 * are a lot of assumptions on strong associations among work, pwq and
4876 * pool which make migrating pending and scheduled works very
4877 * difficult to implement without impacting hot paths. Secondly,
4878 * worker pools serve mix of short, long and very long running works making
4879 * blocked draining impractical.
4880 *
4881 * This is solved by allowing the pools to be disassociated from the CPU
4882 * running as an unbound one and allowing it to be reattached later if the
4883 * cpu comes back online.
4884 */
4885
4886static void unbind_workers(int cpu)
4887{
4888 struct worker_pool *pool;
4889 struct worker *worker;
4890
4891 for_each_cpu_worker_pool(pool, cpu) {
4892 mutex_lock(&wq_pool_attach_mutex);
4893 raw_spin_lock_irq(&pool->lock);
4894
4895 /*
4896 * We've blocked all attach/detach operations. Make all workers
4897 * unbound and set DISASSOCIATED. Before this, all workers
4898 * except for the ones which are still executing works from
4899 * before the last CPU down must be on the cpu. After
4900 * this, they may become diasporas.
4901 */
4902 for_each_pool_worker(worker, pool)
4903 worker->flags |= WORKER_UNBOUND;
4904
4905 pool->flags |= POOL_DISASSOCIATED;
4906
4907 raw_spin_unlock_irq(&pool->lock);
4908 mutex_unlock(&wq_pool_attach_mutex);
4909
4910 /*
4911 * Call schedule() so that we cross rq->lock and thus can
4912 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4913 * This is necessary as scheduler callbacks may be invoked
4914 * from other cpus.
4915 */
4916 schedule();
4917
4918 /*
4919 * Sched callbacks are disabled now. Zap nr_running.
4920 * After this, nr_running stays zero and need_more_worker()
4921 * and keep_working() are always true as long as the
4922 * worklist is not empty. This pool now behaves as an
4923 * unbound (in terms of concurrency management) pool which
4924 * are served by workers tied to the pool.
4925 */
4926 atomic_set(&pool->nr_running, 0);
4927
4928 /*
4929 * With concurrency management just turned off, a busy
4930 * worker blocking could lead to lengthy stalls. Kick off
4931 * unbound chain execution of currently pending work items.
4932 */
4933 raw_spin_lock_irq(&pool->lock);
4934 wake_up_worker(pool);
4935 raw_spin_unlock_irq(&pool->lock);
4936 }
4937}
4938
4939/**
4940 * rebind_workers - rebind all workers of a pool to the associated CPU
4941 * @pool: pool of interest
4942 *
4943 * @pool->cpu is coming online. Rebind all workers to the CPU.
4944 */
4945static void rebind_workers(struct worker_pool *pool)
4946{
4947 struct worker *worker;
4948
4949 lockdep_assert_held(&wq_pool_attach_mutex);
4950
4951 /*
4952 * Restore CPU affinity of all workers. As all idle workers should
4953 * be on the run-queue of the associated CPU before any local
4954 * wake-ups for concurrency management happen, restore CPU affinity
4955 * of all workers first and then clear UNBOUND. As we're called
4956 * from CPU_ONLINE, the following shouldn't fail.
4957 */
4958 for_each_pool_worker(worker, pool)
4959 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4960 pool->attrs->cpumask) < 0);
4961
4962 raw_spin_lock_irq(&pool->lock);
4963
4964 pool->flags &= ~POOL_DISASSOCIATED;
4965
4966 for_each_pool_worker(worker, pool) {
4967 unsigned int worker_flags = worker->flags;
4968
4969 /*
4970 * A bound idle worker should actually be on the runqueue
4971 * of the associated CPU for local wake-ups targeting it to
4972 * work. Kick all idle workers so that they migrate to the
4973 * associated CPU. Doing this in the same loop as
4974 * replacing UNBOUND with REBOUND is safe as no worker will
4975 * be bound before @pool->lock is released.
4976 */
4977 if (worker_flags & WORKER_IDLE)
4978 wake_up_process(worker->task);
4979
4980 /*
4981 * We want to clear UNBOUND but can't directly call
4982 * worker_clr_flags() or adjust nr_running. Atomically
4983 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4984 * @worker will clear REBOUND using worker_clr_flags() when
4985 * it initiates the next execution cycle thus restoring
4986 * concurrency management. Note that when or whether
4987 * @worker clears REBOUND doesn't affect correctness.
4988 *
4989 * WRITE_ONCE() is necessary because @worker->flags may be
4990 * tested without holding any lock in
4991 * wq_worker_running(). Without it, NOT_RUNNING test may
4992 * fail incorrectly leading to premature concurrency
4993 * management operations.
4994 */
4995 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4996 worker_flags |= WORKER_REBOUND;
4997 worker_flags &= ~WORKER_UNBOUND;
4998 WRITE_ONCE(worker->flags, worker_flags);
4999 }
5000
5001 raw_spin_unlock_irq(&pool->lock);
5002}
5003
5004/**
5005 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5006 * @pool: unbound pool of interest
5007 * @cpu: the CPU which is coming up
5008 *
5009 * An unbound pool may end up with a cpumask which doesn't have any online
5010 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5011 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5012 * online CPU before, cpus_allowed of all its workers should be restored.
5013 */
5014static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5015{
5016 static cpumask_t cpumask;
5017 struct worker *worker;
5018
5019 lockdep_assert_held(&wq_pool_attach_mutex);
5020
5021 /* is @cpu allowed for @pool? */
5022 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5023 return;
5024
5025 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5026
5027 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5028 for_each_pool_worker(worker, pool)
5029 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5030}
5031
5032int workqueue_prepare_cpu(unsigned int cpu)
5033{
5034 struct worker_pool *pool;
5035
5036 for_each_cpu_worker_pool(pool, cpu) {
5037 if (pool->nr_workers)
5038 continue;
5039 if (!create_worker(pool))
5040 return -ENOMEM;
5041 }
5042 return 0;
5043}
5044
5045int workqueue_online_cpu(unsigned int cpu)
5046{
5047 struct worker_pool *pool;
5048 struct workqueue_struct *wq;
5049 int pi;
5050
5051 mutex_lock(&wq_pool_mutex);
5052
5053 for_each_pool(pool, pi) {
5054 mutex_lock(&wq_pool_attach_mutex);
5055
5056 if (pool->cpu == cpu)
5057 rebind_workers(pool);
5058 else if (pool->cpu < 0)
5059 restore_unbound_workers_cpumask(pool, cpu);
5060
5061 mutex_unlock(&wq_pool_attach_mutex);
5062 }
5063
5064 /* update NUMA affinity of unbound workqueues */
5065 list_for_each_entry(wq, &workqueues, list)
5066 wq_update_unbound_numa(wq, cpu, true);
5067
5068 mutex_unlock(&wq_pool_mutex);
5069 return 0;
5070}
5071
5072int workqueue_offline_cpu(unsigned int cpu)
5073{
5074 struct workqueue_struct *wq;
5075
5076 /* unbinding per-cpu workers should happen on the local CPU */
5077 if (WARN_ON(cpu != smp_processor_id()))
5078 return -1;
5079
5080 unbind_workers(cpu);
5081
5082 /* update NUMA affinity of unbound workqueues */
5083 mutex_lock(&wq_pool_mutex);
5084 list_for_each_entry(wq, &workqueues, list)
5085 wq_update_unbound_numa(wq, cpu, false);
5086 mutex_unlock(&wq_pool_mutex);
5087
5088 return 0;
5089}
5090
5091struct work_for_cpu {
5092 struct work_struct work;
5093 long (*fn)(void *);
5094 void *arg;
5095 long ret;
5096};
5097
5098static void work_for_cpu_fn(struct work_struct *work)
5099{
5100 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5101
5102 wfc->ret = wfc->fn(wfc->arg);
5103}
5104
5105/**
5106 * work_on_cpu - run a function in thread context on a particular cpu
5107 * @cpu: the cpu to run on
5108 * @fn: the function to run
5109 * @arg: the function arg
5110 *
5111 * It is up to the caller to ensure that the cpu doesn't go offline.
5112 * The caller must not hold any locks which would prevent @fn from completing.
5113 *
5114 * Return: The value @fn returns.
5115 */
5116long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5117{
5118 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5119
5120 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5121 schedule_work_on(cpu, &wfc.work);
5122 flush_work(&wfc.work);
5123 destroy_work_on_stack(&wfc.work);
5124 return wfc.ret;
5125}
5126EXPORT_SYMBOL_GPL(work_on_cpu);
5127
5128/**
5129 * work_on_cpu_safe - run a function in thread context on a particular cpu
5130 * @cpu: the cpu to run on
5131 * @fn: the function to run
5132 * @arg: the function argument
5133 *
5134 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5135 * any locks which would prevent @fn from completing.
5136 *
5137 * Return: The value @fn returns.
5138 */
5139long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5140{
5141 long ret = -ENODEV;
5142
5143 get_online_cpus();
5144 if (cpu_online(cpu))
5145 ret = work_on_cpu(cpu, fn, arg);
5146 put_online_cpus();
5147 return ret;
5148}
5149EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5150#endif /* CONFIG_SMP */
5151
5152#ifdef CONFIG_FREEZER
5153
5154/**
5155 * freeze_workqueues_begin - begin freezing workqueues
5156 *
5157 * Start freezing workqueues. After this function returns, all freezable
5158 * workqueues will queue new works to their delayed_works list instead of
5159 * pool->worklist.
5160 *
5161 * CONTEXT:
5162 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5163 */
5164void freeze_workqueues_begin(void)
5165{
5166 struct workqueue_struct *wq;
5167 struct pool_workqueue *pwq;
5168
5169 mutex_lock(&wq_pool_mutex);
5170
5171 WARN_ON_ONCE(workqueue_freezing);
5172 workqueue_freezing = true;
5173
5174 list_for_each_entry(wq, &workqueues, list) {
5175 mutex_lock(&wq->mutex);
5176 for_each_pwq(pwq, wq)
5177 pwq_adjust_max_active(pwq);
5178 mutex_unlock(&wq->mutex);
5179 }
5180
5181 mutex_unlock(&wq_pool_mutex);
5182}
5183
5184/**
5185 * freeze_workqueues_busy - are freezable workqueues still busy?
5186 *
5187 * Check whether freezing is complete. This function must be called
5188 * between freeze_workqueues_begin() and thaw_workqueues().
5189 *
5190 * CONTEXT:
5191 * Grabs and releases wq_pool_mutex.
5192 *
5193 * Return:
5194 * %true if some freezable workqueues are still busy. %false if freezing
5195 * is complete.
5196 */
5197bool freeze_workqueues_busy(void)
5198{
5199 bool busy = false;
5200 struct workqueue_struct *wq;
5201 struct pool_workqueue *pwq;
5202
5203 mutex_lock(&wq_pool_mutex);
5204
5205 WARN_ON_ONCE(!workqueue_freezing);
5206
5207 list_for_each_entry(wq, &workqueues, list) {
5208 if (!(wq->flags & WQ_FREEZABLE))
5209 continue;
5210 /*
5211 * nr_active is monotonically decreasing. It's safe
5212 * to peek without lock.
5213 */
5214 rcu_read_lock();
5215 for_each_pwq(pwq, wq) {
5216 WARN_ON_ONCE(pwq->nr_active < 0);
5217 if (pwq->nr_active) {
5218 busy = true;
5219 rcu_read_unlock();
5220 goto out_unlock;
5221 }
5222 }
5223 rcu_read_unlock();
5224 }
5225out_unlock:
5226 mutex_unlock(&wq_pool_mutex);
5227 return busy;
5228}
5229
5230/**
5231 * thaw_workqueues - thaw workqueues
5232 *
5233 * Thaw workqueues. Normal queueing is restored and all collected
5234 * frozen works are transferred to their respective pool worklists.
5235 *
5236 * CONTEXT:
5237 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5238 */
5239void thaw_workqueues(void)
5240{
5241 struct workqueue_struct *wq;
5242 struct pool_workqueue *pwq;
5243
5244 mutex_lock(&wq_pool_mutex);
5245
5246 if (!workqueue_freezing)
5247 goto out_unlock;
5248
5249 workqueue_freezing = false;
5250
5251 /* restore max_active and repopulate worklist */
5252 list_for_each_entry(wq, &workqueues, list) {
5253 mutex_lock(&wq->mutex);
5254 for_each_pwq(pwq, wq)
5255 pwq_adjust_max_active(pwq);
5256 mutex_unlock(&wq->mutex);
5257 }
5258
5259out_unlock:
5260 mutex_unlock(&wq_pool_mutex);
5261}
5262#endif /* CONFIG_FREEZER */
5263
5264static int workqueue_apply_unbound_cpumask(void)
5265{
5266 LIST_HEAD(ctxs);
5267 int ret = 0;
5268 struct workqueue_struct *wq;
5269 struct apply_wqattrs_ctx *ctx, *n;
5270
5271 lockdep_assert_held(&wq_pool_mutex);
5272
5273 list_for_each_entry(wq, &workqueues, list) {
5274 if (!(wq->flags & WQ_UNBOUND))
5275 continue;
5276 /* creating multiple pwqs breaks ordering guarantee */
5277 if (wq->flags & __WQ_ORDERED)
5278 continue;
5279
5280 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5281 if (!ctx) {
5282 ret = -ENOMEM;
5283 break;
5284 }
5285
5286 list_add_tail(&ctx->list, &ctxs);
5287 }
5288
5289 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5290 if (!ret)
5291 apply_wqattrs_commit(ctx);
5292 apply_wqattrs_cleanup(ctx);
5293 }
5294
5295 return ret;
5296}
5297
5298/**
5299 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5300 * @cpumask: the cpumask to set
5301 *
5302 * The low-level workqueues cpumask is a global cpumask that limits
5303 * the affinity of all unbound workqueues. This function check the @cpumask
5304 * and apply it to all unbound workqueues and updates all pwqs of them.
5305 *
5306 * Retun: 0 - Success
5307 * -EINVAL - Invalid @cpumask
5308 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5309 */
5310int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5311{
5312 int ret = -EINVAL;
5313 cpumask_var_t saved_cpumask;
5314
5315 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5316 return -ENOMEM;
5317
5318 /*
5319 * Not excluding isolated cpus on purpose.
5320 * If the user wishes to include them, we allow that.
5321 */
5322 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5323 if (!cpumask_empty(cpumask)) {
5324 apply_wqattrs_lock();
5325
5326 /* save the old wq_unbound_cpumask. */
5327 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5328
5329 /* update wq_unbound_cpumask at first and apply it to wqs. */
5330 cpumask_copy(wq_unbound_cpumask, cpumask);
5331 ret = workqueue_apply_unbound_cpumask();
5332
5333 /* restore the wq_unbound_cpumask when failed. */
5334 if (ret < 0)
5335 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5336
5337 apply_wqattrs_unlock();
5338 }
5339
5340 free_cpumask_var(saved_cpumask);
5341 return ret;
5342}
5343
5344#ifdef CONFIG_SYSFS
5345/*
5346 * Workqueues with WQ_SYSFS flag set is visible to userland via
5347 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5348 * following attributes.
5349 *
5350 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5351 * max_active RW int : maximum number of in-flight work items
5352 *
5353 * Unbound workqueues have the following extra attributes.
5354 *
5355 * pool_ids RO int : the associated pool IDs for each node
5356 * nice RW int : nice value of the workers
5357 * cpumask RW mask : bitmask of allowed CPUs for the workers
5358 * numa RW bool : whether enable NUMA affinity
5359 */
5360struct wq_device {
5361 struct workqueue_struct *wq;
5362 struct device dev;
5363};
5364
5365static struct workqueue_struct *dev_to_wq(struct device *dev)
5366{
5367 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5368
5369 return wq_dev->wq;
5370}
5371
5372static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5373 char *buf)
5374{
5375 struct workqueue_struct *wq = dev_to_wq(dev);
5376
5377 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5378}
5379static DEVICE_ATTR_RO(per_cpu);
5380
5381static ssize_t max_active_show(struct device *dev,
5382 struct device_attribute *attr, char *buf)
5383{
5384 struct workqueue_struct *wq = dev_to_wq(dev);
5385
5386 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5387}
5388
5389static ssize_t max_active_store(struct device *dev,
5390 struct device_attribute *attr, const char *buf,
5391 size_t count)
5392{
5393 struct workqueue_struct *wq = dev_to_wq(dev);
5394 int val;
5395
5396 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5397 return -EINVAL;
5398
5399 workqueue_set_max_active(wq, val);
5400 return count;
5401}
5402static DEVICE_ATTR_RW(max_active);
5403
5404static struct attribute *wq_sysfs_attrs[] = {
5405 &dev_attr_per_cpu.attr,
5406 &dev_attr_max_active.attr,
5407 NULL,
5408};
5409ATTRIBUTE_GROUPS(wq_sysfs);
5410
5411static ssize_t wq_pool_ids_show(struct device *dev,
5412 struct device_attribute *attr, char *buf)
5413{
5414 struct workqueue_struct *wq = dev_to_wq(dev);
5415 const char *delim = "";
5416 int node, written = 0;
5417
5418 get_online_cpus();
5419 rcu_read_lock();
5420 for_each_node(node) {
5421 written += scnprintf(buf + written, PAGE_SIZE - written,
5422 "%s%d:%d", delim, node,
5423 unbound_pwq_by_node(wq, node)->pool->id);
5424 delim = " ";
5425 }
5426 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5427 rcu_read_unlock();
5428 put_online_cpus();
5429
5430 return written;
5431}
5432
5433static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5434 char *buf)
5435{
5436 struct workqueue_struct *wq = dev_to_wq(dev);
5437 int written;
5438
5439 mutex_lock(&wq->mutex);
5440 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5441 mutex_unlock(&wq->mutex);
5442
5443 return written;
5444}
5445
5446/* prepare workqueue_attrs for sysfs store operations */
5447static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5448{
5449 struct workqueue_attrs *attrs;
5450
5451 lockdep_assert_held(&wq_pool_mutex);
5452
5453 attrs = alloc_workqueue_attrs();
5454 if (!attrs)
5455 return NULL;
5456
5457 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5458 return attrs;
5459}
5460
5461static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5462 const char *buf, size_t count)
5463{
5464 struct workqueue_struct *wq = dev_to_wq(dev);
5465 struct workqueue_attrs *attrs;
5466 int ret = -ENOMEM;
5467
5468 apply_wqattrs_lock();
5469
5470 attrs = wq_sysfs_prep_attrs(wq);
5471 if (!attrs)
5472 goto out_unlock;
5473
5474 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5475 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5476 ret = apply_workqueue_attrs_locked(wq, attrs);
5477 else
5478 ret = -EINVAL;
5479
5480out_unlock:
5481 apply_wqattrs_unlock();
5482 free_workqueue_attrs(attrs);
5483 return ret ?: count;
5484}
5485
5486static ssize_t wq_cpumask_show(struct device *dev,
5487 struct device_attribute *attr, char *buf)
5488{
5489 struct workqueue_struct *wq = dev_to_wq(dev);
5490 int written;
5491
5492 mutex_lock(&wq->mutex);
5493 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5494 cpumask_pr_args(wq->unbound_attrs->cpumask));
5495 mutex_unlock(&wq->mutex);
5496 return written;
5497}
5498
5499static ssize_t wq_cpumask_store(struct device *dev,
5500 struct device_attribute *attr,
5501 const char *buf, size_t count)
5502{
5503 struct workqueue_struct *wq = dev_to_wq(dev);
5504 struct workqueue_attrs *attrs;
5505 int ret = -ENOMEM;
5506
5507 apply_wqattrs_lock();
5508
5509 attrs = wq_sysfs_prep_attrs(wq);
5510 if (!attrs)
5511 goto out_unlock;
5512
5513 ret = cpumask_parse(buf, attrs->cpumask);
5514 if (!ret)
5515 ret = apply_workqueue_attrs_locked(wq, attrs);
5516
5517out_unlock:
5518 apply_wqattrs_unlock();
5519 free_workqueue_attrs(attrs);
5520 return ret ?: count;
5521}
5522
5523static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5524 char *buf)
5525{
5526 struct workqueue_struct *wq = dev_to_wq(dev);
5527 int written;
5528
5529 mutex_lock(&wq->mutex);
5530 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5531 !wq->unbound_attrs->no_numa);
5532 mutex_unlock(&wq->mutex);
5533
5534 return written;
5535}
5536
5537static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5538 const char *buf, size_t count)
5539{
5540 struct workqueue_struct *wq = dev_to_wq(dev);
5541 struct workqueue_attrs *attrs;
5542 int v, ret = -ENOMEM;
5543
5544 apply_wqattrs_lock();
5545
5546 attrs = wq_sysfs_prep_attrs(wq);
5547 if (!attrs)
5548 goto out_unlock;
5549
5550 ret = -EINVAL;
5551 if (sscanf(buf, "%d", &v) == 1) {
5552 attrs->no_numa = !v;
5553 ret = apply_workqueue_attrs_locked(wq, attrs);
5554 }
5555
5556out_unlock:
5557 apply_wqattrs_unlock();
5558 free_workqueue_attrs(attrs);
5559 return ret ?: count;
5560}
5561
5562static struct device_attribute wq_sysfs_unbound_attrs[] = {
5563 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5564 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5565 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5566 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5567 __ATTR_NULL,
5568};
5569
5570static struct bus_type wq_subsys = {
5571 .name = "workqueue",
5572 .dev_groups = wq_sysfs_groups,
5573};
5574
5575static ssize_t wq_unbound_cpumask_show(struct device *dev,
5576 struct device_attribute *attr, char *buf)
5577{
5578 int written;
5579
5580 mutex_lock(&wq_pool_mutex);
5581 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5582 cpumask_pr_args(wq_unbound_cpumask));
5583 mutex_unlock(&wq_pool_mutex);
5584
5585 return written;
5586}
5587
5588static ssize_t wq_unbound_cpumask_store(struct device *dev,
5589 struct device_attribute *attr, const char *buf, size_t count)
5590{
5591 cpumask_var_t cpumask;
5592 int ret;
5593
5594 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5595 return -ENOMEM;
5596
5597 ret = cpumask_parse(buf, cpumask);
5598 if (!ret)
5599 ret = workqueue_set_unbound_cpumask(cpumask);
5600
5601 free_cpumask_var(cpumask);
5602 return ret ? ret : count;
5603}
5604
5605static struct device_attribute wq_sysfs_cpumask_attr =
5606 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5607 wq_unbound_cpumask_store);
5608
5609static int __init wq_sysfs_init(void)
5610{
5611 int err;
5612
5613 err = subsys_virtual_register(&wq_subsys, NULL);
5614 if (err)
5615 return err;
5616
5617 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5618}
5619core_initcall(wq_sysfs_init);
5620
5621static void wq_device_release(struct device *dev)
5622{
5623 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5624
5625 kfree(wq_dev);
5626}
5627
5628/**
5629 * workqueue_sysfs_register - make a workqueue visible in sysfs
5630 * @wq: the workqueue to register
5631 *
5632 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5633 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5634 * which is the preferred method.
5635 *
5636 * Workqueue user should use this function directly iff it wants to apply
5637 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5638 * apply_workqueue_attrs() may race against userland updating the
5639 * attributes.
5640 *
5641 * Return: 0 on success, -errno on failure.
5642 */
5643int workqueue_sysfs_register(struct workqueue_struct *wq)
5644{
5645 struct wq_device *wq_dev;
5646 int ret;
5647
5648 /*
5649 * Adjusting max_active or creating new pwqs by applying
5650 * attributes breaks ordering guarantee. Disallow exposing ordered
5651 * workqueues.
5652 */
5653 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5654 return -EINVAL;
5655
5656 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5657 if (!wq_dev)
5658 return -ENOMEM;
5659
5660 wq_dev->wq = wq;
5661 wq_dev->dev.bus = &wq_subsys;
5662 wq_dev->dev.release = wq_device_release;
5663 dev_set_name(&wq_dev->dev, "%s", wq->name);
5664
5665 /*
5666 * unbound_attrs are created separately. Suppress uevent until
5667 * everything is ready.
5668 */
5669 dev_set_uevent_suppress(&wq_dev->dev, true);
5670
5671 ret = device_register(&wq_dev->dev);
5672 if (ret) {
5673 put_device(&wq_dev->dev);
5674 wq->wq_dev = NULL;
5675 return ret;
5676 }
5677
5678 if (wq->flags & WQ_UNBOUND) {
5679 struct device_attribute *attr;
5680
5681 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5682 ret = device_create_file(&wq_dev->dev, attr);
5683 if (ret) {
5684 device_unregister(&wq_dev->dev);
5685 wq->wq_dev = NULL;
5686 return ret;
5687 }
5688 }
5689 }
5690
5691 dev_set_uevent_suppress(&wq_dev->dev, false);
5692 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5693 return 0;
5694}
5695
5696/**
5697 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5698 * @wq: the workqueue to unregister
5699 *
5700 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5701 */
5702static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5703{
5704 struct wq_device *wq_dev = wq->wq_dev;
5705
5706 if (!wq->wq_dev)
5707 return;
5708
5709 wq->wq_dev = NULL;
5710 device_unregister(&wq_dev->dev);
5711}
5712#else /* CONFIG_SYSFS */
5713static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5714#endif /* CONFIG_SYSFS */
5715
5716/*
5717 * Workqueue watchdog.
5718 *
5719 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5720 * flush dependency, a concurrency managed work item which stays RUNNING
5721 * indefinitely. Workqueue stalls can be very difficult to debug as the
5722 * usual warning mechanisms don't trigger and internal workqueue state is
5723 * largely opaque.
5724 *
5725 * Workqueue watchdog monitors all worker pools periodically and dumps
5726 * state if some pools failed to make forward progress for a while where
5727 * forward progress is defined as the first item on ->worklist changing.
5728 *
5729 * This mechanism is controlled through the kernel parameter
5730 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5731 * corresponding sysfs parameter file.
5732 */
5733#ifdef CONFIG_WQ_WATCHDOG
5734
5735static unsigned long wq_watchdog_thresh = 30;
5736static struct timer_list wq_watchdog_timer;
5737
5738static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5739static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5740
5741static void wq_watchdog_reset_touched(void)
5742{
5743 int cpu;
5744
5745 wq_watchdog_touched = jiffies;
5746 for_each_possible_cpu(cpu)
5747 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5748}
5749
5750static void wq_watchdog_timer_fn(struct timer_list *unused)
5751{
5752 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5753 bool lockup_detected = false;
5754 struct worker_pool *pool;
5755 int pi;
5756
5757 if (!thresh)
5758 return;
5759
5760 rcu_read_lock();
5761
5762 for_each_pool(pool, pi) {
5763 unsigned long pool_ts, touched, ts;
5764
5765 if (list_empty(&pool->worklist))
5766 continue;
5767
5768 /* get the latest of pool and touched timestamps */
5769 pool_ts = READ_ONCE(pool->watchdog_ts);
5770 touched = READ_ONCE(wq_watchdog_touched);
5771
5772 if (time_after(pool_ts, touched))
5773 ts = pool_ts;
5774 else
5775 ts = touched;
5776
5777 if (pool->cpu >= 0) {
5778 unsigned long cpu_touched =
5779 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5780 pool->cpu));
5781 if (time_after(cpu_touched, ts))
5782 ts = cpu_touched;
5783 }
5784
5785 /* did we stall? */
5786 if (time_after(jiffies, ts + thresh)) {
5787 lockup_detected = true;
5788 pr_emerg("BUG: workqueue lockup - pool");
5789 pr_cont_pool_info(pool);
5790 pr_cont(" stuck for %us!\n",
5791 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5792 }
5793 }
5794
5795 rcu_read_unlock();
5796
5797 if (lockup_detected)
5798 show_workqueue_state();
5799
5800 wq_watchdog_reset_touched();
5801 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5802}
5803
5804notrace void wq_watchdog_touch(int cpu)
5805{
5806 if (cpu >= 0)
5807 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5808 else
5809 wq_watchdog_touched = jiffies;
5810}
5811
5812static void wq_watchdog_set_thresh(unsigned long thresh)
5813{
5814 wq_watchdog_thresh = 0;
5815 del_timer_sync(&wq_watchdog_timer);
5816
5817 if (thresh) {
5818 wq_watchdog_thresh = thresh;
5819 wq_watchdog_reset_touched();
5820 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5821 }
5822}
5823
5824static int wq_watchdog_param_set_thresh(const char *val,
5825 const struct kernel_param *kp)
5826{
5827 unsigned long thresh;
5828 int ret;
5829
5830 ret = kstrtoul(val, 0, &thresh);
5831 if (ret)
5832 return ret;
5833
5834 if (system_wq)
5835 wq_watchdog_set_thresh(thresh);
5836 else
5837 wq_watchdog_thresh = thresh;
5838
5839 return 0;
5840}
5841
5842static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5843 .set = wq_watchdog_param_set_thresh,
5844 .get = param_get_ulong,
5845};
5846
5847module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5848 0644);
5849
5850static void wq_watchdog_init(void)
5851{
5852 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5853 wq_watchdog_set_thresh(wq_watchdog_thresh);
5854}
5855
5856#else /* CONFIG_WQ_WATCHDOG */
5857
5858static inline void wq_watchdog_init(void) { }
5859
5860#endif /* CONFIG_WQ_WATCHDOG */
5861
5862static void __init wq_numa_init(void)
5863{
5864 cpumask_var_t *tbl;
5865 int node, cpu;
5866
5867 if (num_possible_nodes() <= 1)
5868 return;
5869
5870 if (wq_disable_numa) {
5871 pr_info("workqueue: NUMA affinity support disabled\n");
5872 return;
5873 }
5874
5875 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5876 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5877
5878 /*
5879 * We want masks of possible CPUs of each node which isn't readily
5880 * available. Build one from cpu_to_node() which should have been
5881 * fully initialized by now.
5882 */
5883 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5884 BUG_ON(!tbl);
5885
5886 for_each_node(node)
5887 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5888 node_online(node) ? node : NUMA_NO_NODE));
5889
5890 for_each_possible_cpu(cpu) {
5891 node = cpu_to_node(cpu);
5892 if (WARN_ON(node == NUMA_NO_NODE)) {
5893 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5894 /* happens iff arch is bonkers, let's just proceed */
5895 return;
5896 }
5897 cpumask_set_cpu(cpu, tbl[node]);
5898 }
5899
5900 wq_numa_possible_cpumask = tbl;
5901 wq_numa_enabled = true;
5902}
5903
5904/**
5905 * workqueue_init_early - early init for workqueue subsystem
5906 *
5907 * This is the first half of two-staged workqueue subsystem initialization
5908 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5909 * idr are up. It sets up all the data structures and system workqueues
5910 * and allows early boot code to create workqueues and queue/cancel work
5911 * items. Actual work item execution starts only after kthreads can be
5912 * created and scheduled right before early initcalls.
5913 */
5914void __init workqueue_init_early(void)
5915{
5916 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5917 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5918 int i, cpu;
5919
5920 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5921
5922 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5923 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5924
5925 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5926
5927 /* initialize CPU pools */
5928 for_each_possible_cpu(cpu) {
5929 struct worker_pool *pool;
5930
5931 i = 0;
5932 for_each_cpu_worker_pool(pool, cpu) {
5933 BUG_ON(init_worker_pool(pool));
5934 pool->cpu = cpu;
5935 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5936 pool->attrs->nice = std_nice[i++];
5937 pool->node = cpu_to_node(cpu);
5938
5939 /* alloc pool ID */
5940 mutex_lock(&wq_pool_mutex);
5941 BUG_ON(worker_pool_assign_id(pool));
5942 mutex_unlock(&wq_pool_mutex);
5943 }
5944 }
5945
5946 /* create default unbound and ordered wq attrs */
5947 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5948 struct workqueue_attrs *attrs;
5949
5950 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5951 attrs->nice = std_nice[i];
5952 unbound_std_wq_attrs[i] = attrs;
5953
5954 /*
5955 * An ordered wq should have only one pwq as ordering is
5956 * guaranteed by max_active which is enforced by pwqs.
5957 * Turn off NUMA so that dfl_pwq is used for all nodes.
5958 */
5959 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5960 attrs->nice = std_nice[i];
5961 attrs->no_numa = true;
5962 ordered_wq_attrs[i] = attrs;
5963 }
5964
5965 system_wq = alloc_workqueue("events", 0, 0);
5966 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5967 system_long_wq = alloc_workqueue("events_long", 0, 0);
5968 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5969 WQ_UNBOUND_MAX_ACTIVE);
5970 system_freezable_wq = alloc_workqueue("events_freezable",
5971 WQ_FREEZABLE, 0);
5972 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5973 WQ_POWER_EFFICIENT, 0);
5974 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5975 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5976 0);
5977 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5978 !system_unbound_wq || !system_freezable_wq ||
5979 !system_power_efficient_wq ||
5980 !system_freezable_power_efficient_wq);
5981}
5982
5983/**
5984 * workqueue_init - bring workqueue subsystem fully online
5985 *
5986 * This is the latter half of two-staged workqueue subsystem initialization
5987 * and invoked as soon as kthreads can be created and scheduled.
5988 * Workqueues have been created and work items queued on them, but there
5989 * are no kworkers executing the work items yet. Populate the worker pools
5990 * with the initial workers and enable future kworker creations.
5991 */
5992void __init workqueue_init(void)
5993{
5994 struct workqueue_struct *wq;
5995 struct worker_pool *pool;
5996 int cpu, bkt;
5997
5998 /*
5999 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6000 * CPU to node mapping may not be available that early on some
6001 * archs such as power and arm64. As per-cpu pools created
6002 * previously could be missing node hint and unbound pools NUMA
6003 * affinity, fix them up.
6004 *
6005 * Also, while iterating workqueues, create rescuers if requested.
6006 */
6007 wq_numa_init();
6008
6009 mutex_lock(&wq_pool_mutex);
6010
6011 for_each_possible_cpu(cpu) {
6012 for_each_cpu_worker_pool(pool, cpu) {
6013 pool->node = cpu_to_node(cpu);
6014 }
6015 }
6016
6017 list_for_each_entry(wq, &workqueues, list) {
6018 wq_update_unbound_numa(wq, smp_processor_id(), true);
6019 WARN(init_rescuer(wq),
6020 "workqueue: failed to create early rescuer for %s",
6021 wq->name);
6022 }
6023
6024 mutex_unlock(&wq_pool_mutex);
6025
6026 /* create the initial workers */
6027 for_each_online_cpu(cpu) {
6028 for_each_cpu_worker_pool(pool, cpu) {
6029 pool->flags &= ~POOL_DISASSOCIATED;
6030 BUG_ON(!create_worker(pool));
6031 }
6032 }
6033
6034 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6035 BUG_ON(!create_worker(pool));
6036
6037 wq_online = true;
6038 wq_watchdog_init();
6039}