Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/workqueue.c - generic async execution with shared worker pool
   4 *
   5 * Copyright (C) 2002		Ingo Molnar
   6 *
   7 *   Derived from the taskqueue/keventd code by:
   8 *     David Woodhouse <dwmw2@infradead.org>
   9 *     Andrew Morton
  10 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  11 *     Theodore Ts'o <tytso@mit.edu>
  12 *
  13 * Made to use alloc_percpu by Christoph Lameter.
  14 *
  15 * Copyright (C) 2010		SUSE Linux Products GmbH
  16 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  17 *
  18 * This is the generic async execution mechanism.  Work items as are
  19 * executed in process context.  The worker pool is shared and
  20 * automatically managed.  There are two worker pools for each CPU (one for
  21 * normal work items and the other for high priority ones) and some extra
  22 * pools for workqueues which are not bound to any specific CPU - the
  23 * number of these backing pools is dynamic.
  24 *
  25 * Please read Documentation/core-api/workqueue.rst for details.
  26 */
  27
  28#include <linux/export.h>
  29#include <linux/kernel.h>
  30#include <linux/sched.h>
  31#include <linux/init.h>
  32#include <linux/signal.h>
  33#include <linux/completion.h>
  34#include <linux/workqueue.h>
  35#include <linux/slab.h>
  36#include <linux/cpu.h>
  37#include <linux/notifier.h>
  38#include <linux/kthread.h>
  39#include <linux/hardirq.h>
  40#include <linux/mempolicy.h>
  41#include <linux/freezer.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51#include <linux/sched/isolation.h>
  52#include <linux/sched/debug.h>
  53#include <linux/nmi.h>
  54#include <linux/kvm_para.h>
  55#include <linux/delay.h>
  56
  57#include "workqueue_internal.h"
  58
  59enum {
  60	/*
  61	 * worker_pool flags
  62	 *
  63	 * A bound pool is either associated or disassociated with its CPU.
  64	 * While associated (!DISASSOCIATED), all workers are bound to the
  65	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  66	 * is in effect.
  67	 *
  68	 * While DISASSOCIATED, the cpu may be offline and all workers have
  69	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  70	 * be executing on any CPU.  The pool behaves as an unbound one.
  71	 *
  72	 * Note that DISASSOCIATED should be flipped only while holding
  73	 * wq_pool_attach_mutex to avoid changing binding state while
  74	 * worker_attach_to_pool() is in progress.
  75	 */
  76	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
  77	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  78
  79	/* worker flags */
  80	WORKER_DIE		= 1 << 1,	/* die die die */
  81	WORKER_IDLE		= 1 << 2,	/* is idle */
  82	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  83	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  84	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  85	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  86
  87	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  88				  WORKER_UNBOUND | WORKER_REBOUND,
  89
  90	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
  91
  92	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
  93	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  94
  95	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  96	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  97
  98	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  99						/* call for help after 10ms
 100						   (min two ticks) */
 101	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
 102	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
 103
 104	/*
 105	 * Rescue workers are used only on emergencies and shared by
 106	 * all cpus.  Give MIN_NICE.
 107	 */
 108	RESCUER_NICE_LEVEL	= MIN_NICE,
 109	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 110
 111	WQ_NAME_LEN		= 24,
 112};
 113
 114/*
 115 * Structure fields follow one of the following exclusion rules.
 116 *
 117 * I: Modifiable by initialization/destruction paths and read-only for
 118 *    everyone else.
 119 *
 120 * P: Preemption protected.  Disabling preemption is enough and should
 121 *    only be modified and accessed from the local cpu.
 122 *
 123 * L: pool->lock protected.  Access with pool->lock held.
 124 *
 125 * K: Only modified by worker while holding pool->lock. Can be safely read by
 126 *    self, while holding pool->lock or from IRQ context if %current is the
 127 *    kworker.
 128 *
 129 * S: Only modified by worker self.
 130 *
 131 * A: wq_pool_attach_mutex protected.
 132 *
 133 * PL: wq_pool_mutex protected.
 134 *
 135 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
 136 *
 137 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 138 *
 139 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 140 *      RCU for reads.
 141 *
 142 * WQ: wq->mutex protected.
 143 *
 144 * WR: wq->mutex protected for writes.  RCU protected for reads.
 145 *
 146 * MD: wq_mayday_lock protected.
 147 *
 148 * WD: Used internally by the watchdog.
 149 */
 150
 151/* struct worker is defined in workqueue_internal.h */
 152
 153struct worker_pool {
 154	raw_spinlock_t		lock;		/* the pool lock */
 155	int			cpu;		/* I: the associated cpu */
 156	int			node;		/* I: the associated node ID */
 157	int			id;		/* I: pool ID */
 158	unsigned int		flags;		/* L: flags */
 159
 160	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 161	bool			cpu_stall;	/* WD: stalled cpu bound pool */
 162
 163	/*
 164	 * The counter is incremented in a process context on the associated CPU
 165	 * w/ preemption disabled, and decremented or reset in the same context
 166	 * but w/ pool->lock held. The readers grab pool->lock and are
 167	 * guaranteed to see if the counter reached zero.
 168	 */
 169	int			nr_running;
 170
 171	struct list_head	worklist;	/* L: list of pending works */
 172
 173	int			nr_workers;	/* L: total number of workers */
 174	int			nr_idle;	/* L: currently idle workers */
 175
 176	struct list_head	idle_list;	/* L: list of idle workers */
 177	struct timer_list	idle_timer;	/* L: worker idle timeout */
 178	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
 179
 180	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
 181
 182	/* a workers is either on busy_hash or idle_list, or the manager */
 183	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 184						/* L: hash of busy workers */
 185
 186	struct worker		*manager;	/* L: purely informational */
 187	struct list_head	workers;	/* A: attached workers */
 188	struct list_head        dying_workers;  /* A: workers about to die */
 189	struct completion	*detach_completion; /* all workers detached */
 190
 191	struct ida		worker_ida;	/* worker IDs for task name */
 192
 193	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 194	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 195	int			refcnt;		/* PL: refcnt for unbound pools */
 196
 197	/*
 
 
 
 
 
 
 
 198	 * Destruction of pool is RCU protected to allow dereferences
 199	 * from get_work_pool().
 200	 */
 201	struct rcu_head		rcu;
 202};
 203
 204/*
 205 * Per-pool_workqueue statistics. These can be monitored using
 206 * tools/workqueue/wq_monitor.py.
 207 */
 208enum pool_workqueue_stats {
 209	PWQ_STAT_STARTED,	/* work items started execution */
 210	PWQ_STAT_COMPLETED,	/* work items completed execution */
 211	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
 212	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
 213	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
 214	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
 215	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
 216	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
 217
 218	PWQ_NR_STATS,
 219};
 220
 221/*
 222 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 223 * of work_struct->data are used for flags and the remaining high bits
 224 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 225 * number of flag bits.
 226 */
 227struct pool_workqueue {
 228	struct worker_pool	*pool;		/* I: the associated pool */
 229	struct workqueue_struct *wq;		/* I: the owning workqueue */
 230	int			work_color;	/* L: current color */
 231	int			flush_color;	/* L: flushing color */
 232	int			refcnt;		/* L: reference count */
 233	int			nr_in_flight[WORK_NR_COLORS];
 234						/* L: nr of in_flight works */
 235
 236	/*
 237	 * nr_active management and WORK_STRUCT_INACTIVE:
 238	 *
 239	 * When pwq->nr_active >= max_active, new work item is queued to
 240	 * pwq->inactive_works instead of pool->worklist and marked with
 241	 * WORK_STRUCT_INACTIVE.
 242	 *
 243	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
 244	 * in pwq->nr_active and all work items in pwq->inactive_works are
 245	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
 246	 * work items are in pwq->inactive_works.  Some of them are ready to
 247	 * run in pool->worklist or worker->scheduled.  Those work itmes are
 248	 * only struct wq_barrier which is used for flush_work() and should
 249	 * not participate in pwq->nr_active.  For non-barrier work item, it
 250	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
 251	 */
 252	int			nr_active;	/* L: nr of active works */
 253	int			max_active;	/* L: max active works */
 254	struct list_head	inactive_works;	/* L: inactive works */
 255	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 256	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 257
 258	u64			stats[PWQ_NR_STATS];
 259
 260	/*
 261	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
 262	 * and pwq_release_workfn() for details. pool_workqueue itself is also
 263	 * RCU protected so that the first pwq can be determined without
 264	 * grabbing wq->mutex.
 265	 */
 266	struct kthread_work	release_work;
 267	struct rcu_head		rcu;
 268} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 269
 270/*
 271 * Structure used to wait for workqueue flush.
 272 */
 273struct wq_flusher {
 274	struct list_head	list;		/* WQ: list of flushers */
 275	int			flush_color;	/* WQ: flush color waiting for */
 276	struct completion	done;		/* flush completion */
 277};
 278
 279struct wq_device;
 280
 281/*
 282 * The externally visible workqueue.  It relays the issued work items to
 283 * the appropriate worker_pool through its pool_workqueues.
 284 */
 285struct workqueue_struct {
 286	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 287	struct list_head	list;		/* PR: list of all workqueues */
 288
 289	struct mutex		mutex;		/* protects this wq */
 290	int			work_color;	/* WQ: current work color */
 291	int			flush_color;	/* WQ: current flush color */
 292	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 293	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 294	struct list_head	flusher_queue;	/* WQ: flush waiters */
 295	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 296
 297	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 298	struct worker		*rescuer;	/* MD: rescue worker */
 299
 300	int			nr_drainers;	/* WQ: drain in progress */
 301	int			saved_max_active; /* WQ: saved pwq max_active */
 302
 303	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 304	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
 305
 306#ifdef CONFIG_SYSFS
 307	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 308#endif
 309#ifdef CONFIG_LOCKDEP
 310	char			*lock_name;
 311	struct lock_class_key	key;
 312	struct lockdep_map	lockdep_map;
 313#endif
 314	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 315
 316	/*
 317	 * Destruction of workqueue_struct is RCU protected to allow walking
 318	 * the workqueues list without grabbing wq_pool_mutex.
 319	 * This is used to dump all workqueues from sysrq.
 320	 */
 321	struct rcu_head		rcu;
 322
 323	/* hot fields used during command issue, aligned to cacheline */
 324	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 325	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
 
 326};
 327
 328static struct kmem_cache *pwq_cache;
 329
 330/*
 331 * Each pod type describes how CPUs should be grouped for unbound workqueues.
 332 * See the comment above workqueue_attrs->affn_scope.
 333 */
 334struct wq_pod_type {
 335	int			nr_pods;	/* number of pods */
 336	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
 337	int			*pod_node;	/* pod -> node */
 338	int			*cpu_pod;	/* cpu -> pod */
 339};
 340
 341static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
 342static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
 343
 344static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
 345	[WQ_AFFN_DFL]			= "default",
 346	[WQ_AFFN_CPU]			= "cpu",
 347	[WQ_AFFN_SMT]			= "smt",
 348	[WQ_AFFN_CACHE]			= "cache",
 349	[WQ_AFFN_NUMA]			= "numa",
 350	[WQ_AFFN_SYSTEM]		= "system",
 351};
 352
 353/*
 354 * Per-cpu work items which run for longer than the following threshold are
 355 * automatically considered CPU intensive and excluded from concurrency
 356 * management to prevent them from noticeably delaying other per-cpu work items.
 357 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
 358 * The actual value is initialized in wq_cpu_intensive_thresh_init().
 359 */
 360static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
 361module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
 362
 363/* see the comment above the definition of WQ_POWER_EFFICIENT */
 364static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 365module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 366
 367static bool wq_online;			/* can kworkers be created yet? */
 368
 369/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
 370static struct workqueue_attrs *wq_update_pod_attrs_buf;
 
 
 371
 372static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 373static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
 374static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 375/* wait for manager to go away */
 376static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
 377
 378static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 379static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 380
 381/* PL&A: allowable cpus for unbound wqs and work items */
 382static cpumask_var_t wq_unbound_cpumask;
 383
 384/* PL: user requested unbound cpumask via sysfs */
 385static cpumask_var_t wq_requested_unbound_cpumask;
 386
 387/* PL: isolated cpumask to be excluded from unbound cpumask */
 388static cpumask_var_t wq_isolated_cpumask;
 389
 390/* for further constrain wq_unbound_cpumask by cmdline parameter*/
 391static struct cpumask wq_cmdline_cpumask __initdata;
 392
 393/* CPU where unbound work was last round robin scheduled from this CPU */
 394static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 395
 396/*
 397 * Local execution of unbound work items is no longer guaranteed.  The
 398 * following always forces round-robin CPU selection on unbound work items
 399 * to uncover usages which depend on it.
 400 */
 401#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 402static bool wq_debug_force_rr_cpu = true;
 403#else
 404static bool wq_debug_force_rr_cpu = false;
 405#endif
 406module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 407
 408/* the per-cpu worker pools */
 409static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 410
 411static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 412
 413/* PL: hash of all unbound pools keyed by pool->attrs */
 414static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 415
 416/* I: attributes used when instantiating standard unbound pools on demand */
 417static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 418
 419/* I: attributes used when instantiating ordered pools on demand */
 420static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 421
 422/*
 423 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
 424 * process context while holding a pool lock. Bounce to a dedicated kthread
 425 * worker to avoid A-A deadlocks.
 426 */
 427static struct kthread_worker *pwq_release_worker __ro_after_init;
 428
 429struct workqueue_struct *system_wq __ro_after_init;
 430EXPORT_SYMBOL(system_wq);
 431struct workqueue_struct *system_highpri_wq __ro_after_init;
 432EXPORT_SYMBOL_GPL(system_highpri_wq);
 433struct workqueue_struct *system_long_wq __ro_after_init;
 434EXPORT_SYMBOL_GPL(system_long_wq);
 435struct workqueue_struct *system_unbound_wq __ro_after_init;
 436EXPORT_SYMBOL_GPL(system_unbound_wq);
 437struct workqueue_struct *system_freezable_wq __ro_after_init;
 438EXPORT_SYMBOL_GPL(system_freezable_wq);
 439struct workqueue_struct *system_power_efficient_wq __ro_after_init;
 440EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 441struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
 442EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 443
 444static int worker_thread(void *__worker);
 445static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 446static void show_pwq(struct pool_workqueue *pwq);
 447static void show_one_worker_pool(struct worker_pool *pool);
 448
 449#define CREATE_TRACE_POINTS
 450#include <trace/events/workqueue.h>
 451
 452#define assert_rcu_or_pool_mutex()					\
 453	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 454			 !lockdep_is_held(&wq_pool_mutex),		\
 455			 "RCU or wq_pool_mutex should be held")
 456
 
 
 
 
 
 457#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 458	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 459			 !lockdep_is_held(&wq->mutex) &&		\
 460			 !lockdep_is_held(&wq_pool_mutex),		\
 461			 "RCU, wq->mutex or wq_pool_mutex should be held")
 462
 463#define for_each_cpu_worker_pool(pool, cpu)				\
 464	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 465	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 466	     (pool)++)
 467
 468/**
 469 * for_each_pool - iterate through all worker_pools in the system
 470 * @pool: iteration cursor
 471 * @pi: integer used for iteration
 472 *
 473 * This must be called either with wq_pool_mutex held or RCU read
 474 * locked.  If the pool needs to be used beyond the locking in effect, the
 475 * caller is responsible for guaranteeing that the pool stays online.
 476 *
 477 * The if/else clause exists only for the lockdep assertion and can be
 478 * ignored.
 479 */
 480#define for_each_pool(pool, pi)						\
 481	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 482		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 483		else
 484
 485/**
 486 * for_each_pool_worker - iterate through all workers of a worker_pool
 487 * @worker: iteration cursor
 488 * @pool: worker_pool to iterate workers of
 489 *
 490 * This must be called with wq_pool_attach_mutex.
 491 *
 492 * The if/else clause exists only for the lockdep assertion and can be
 493 * ignored.
 494 */
 495#define for_each_pool_worker(worker, pool)				\
 496	list_for_each_entry((worker), &(pool)->workers, node)		\
 497		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
 498		else
 499
 500/**
 501 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 502 * @pwq: iteration cursor
 503 * @wq: the target workqueue
 504 *
 505 * This must be called either with wq->mutex held or RCU read locked.
 506 * If the pwq needs to be used beyond the locking in effect, the caller is
 507 * responsible for guaranteeing that the pwq stays online.
 508 *
 509 * The if/else clause exists only for the lockdep assertion and can be
 510 * ignored.
 511 */
 512#define for_each_pwq(pwq, wq)						\
 513	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
 514				 lockdep_is_held(&(wq->mutex)))
 
 515
 516#ifdef CONFIG_DEBUG_OBJECTS_WORK
 517
 518static const struct debug_obj_descr work_debug_descr;
 519
 520static void *work_debug_hint(void *addr)
 521{
 522	return ((struct work_struct *) addr)->func;
 523}
 524
 525static bool work_is_static_object(void *addr)
 526{
 527	struct work_struct *work = addr;
 528
 529	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 530}
 531
 532/*
 533 * fixup_init is called when:
 534 * - an active object is initialized
 535 */
 536static bool work_fixup_init(void *addr, enum debug_obj_state state)
 537{
 538	struct work_struct *work = addr;
 539
 540	switch (state) {
 541	case ODEBUG_STATE_ACTIVE:
 542		cancel_work_sync(work);
 543		debug_object_init(work, &work_debug_descr);
 544		return true;
 545	default:
 546		return false;
 547	}
 548}
 549
 550/*
 551 * fixup_free is called when:
 552 * - an active object is freed
 553 */
 554static bool work_fixup_free(void *addr, enum debug_obj_state state)
 555{
 556	struct work_struct *work = addr;
 557
 558	switch (state) {
 559	case ODEBUG_STATE_ACTIVE:
 560		cancel_work_sync(work);
 561		debug_object_free(work, &work_debug_descr);
 562		return true;
 563	default:
 564		return false;
 565	}
 566}
 567
 568static const struct debug_obj_descr work_debug_descr = {
 569	.name		= "work_struct",
 570	.debug_hint	= work_debug_hint,
 571	.is_static_object = work_is_static_object,
 572	.fixup_init	= work_fixup_init,
 573	.fixup_free	= work_fixup_free,
 574};
 575
 576static inline void debug_work_activate(struct work_struct *work)
 577{
 578	debug_object_activate(work, &work_debug_descr);
 579}
 580
 581static inline void debug_work_deactivate(struct work_struct *work)
 582{
 583	debug_object_deactivate(work, &work_debug_descr);
 584}
 585
 586void __init_work(struct work_struct *work, int onstack)
 587{
 588	if (onstack)
 589		debug_object_init_on_stack(work, &work_debug_descr);
 590	else
 591		debug_object_init(work, &work_debug_descr);
 592}
 593EXPORT_SYMBOL_GPL(__init_work);
 594
 595void destroy_work_on_stack(struct work_struct *work)
 596{
 597	debug_object_free(work, &work_debug_descr);
 598}
 599EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 600
 601void destroy_delayed_work_on_stack(struct delayed_work *work)
 602{
 603	destroy_timer_on_stack(&work->timer);
 604	debug_object_free(&work->work, &work_debug_descr);
 605}
 606EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 607
 608#else
 609static inline void debug_work_activate(struct work_struct *work) { }
 610static inline void debug_work_deactivate(struct work_struct *work) { }
 611#endif
 612
 613/**
 614 * worker_pool_assign_id - allocate ID and assign it to @pool
 615 * @pool: the pool pointer of interest
 616 *
 617 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 618 * successfully, -errno on failure.
 619 */
 620static int worker_pool_assign_id(struct worker_pool *pool)
 621{
 622	int ret;
 623
 624	lockdep_assert_held(&wq_pool_mutex);
 625
 626	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 627			GFP_KERNEL);
 628	if (ret >= 0) {
 629		pool->id = ret;
 630		return 0;
 631	}
 632	return ret;
 633}
 634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635static unsigned int work_color_to_flags(int color)
 636{
 637	return color << WORK_STRUCT_COLOR_SHIFT;
 638}
 639
 640static int get_work_color(unsigned long work_data)
 641{
 642	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
 643		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 644}
 645
 646static int work_next_color(int color)
 647{
 648	return (color + 1) % WORK_NR_COLORS;
 649}
 650
 651/*
 652 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 653 * contain the pointer to the queued pwq.  Once execution starts, the flag
 654 * is cleared and the high bits contain OFFQ flags and pool ID.
 655 *
 656 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 657 * and clear_work_data() can be used to set the pwq, pool or clear
 658 * work->data.  These functions should only be called while the work is
 659 * owned - ie. while the PENDING bit is set.
 660 *
 661 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 662 * corresponding to a work.  Pool is available once the work has been
 663 * queued anywhere after initialization until it is sync canceled.  pwq is
 664 * available only while the work item is queued.
 665 *
 666 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 667 * canceled.  While being canceled, a work item may have its PENDING set
 668 * but stay off timer and worklist for arbitrarily long and nobody should
 669 * try to steal the PENDING bit.
 670 */
 671static inline void set_work_data(struct work_struct *work, unsigned long data,
 672				 unsigned long flags)
 673{
 674	WARN_ON_ONCE(!work_pending(work));
 675	atomic_long_set(&work->data, data | flags | work_static(work));
 676}
 677
 678static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 679			 unsigned long extra_flags)
 680{
 681	set_work_data(work, (unsigned long)pwq,
 682		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 683}
 684
 685static void set_work_pool_and_keep_pending(struct work_struct *work,
 686					   int pool_id)
 687{
 688	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 689		      WORK_STRUCT_PENDING);
 690}
 691
 692static void set_work_pool_and_clear_pending(struct work_struct *work,
 693					    int pool_id)
 694{
 695	/*
 696	 * The following wmb is paired with the implied mb in
 697	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 698	 * here are visible to and precede any updates by the next PENDING
 699	 * owner.
 700	 */
 701	smp_wmb();
 702	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 703	/*
 704	 * The following mb guarantees that previous clear of a PENDING bit
 705	 * will not be reordered with any speculative LOADS or STORES from
 706	 * work->current_func, which is executed afterwards.  This possible
 707	 * reordering can lead to a missed execution on attempt to queue
 708	 * the same @work.  E.g. consider this case:
 709	 *
 710	 *   CPU#0                         CPU#1
 711	 *   ----------------------------  --------------------------------
 712	 *
 713	 * 1  STORE event_indicated
 714	 * 2  queue_work_on() {
 715	 * 3    test_and_set_bit(PENDING)
 716	 * 4 }                             set_..._and_clear_pending() {
 717	 * 5                                 set_work_data() # clear bit
 718	 * 6                                 smp_mb()
 719	 * 7                               work->current_func() {
 720	 * 8				      LOAD event_indicated
 721	 *				   }
 722	 *
 723	 * Without an explicit full barrier speculative LOAD on line 8 can
 724	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 725	 * CPU#0 observes the PENDING bit is still set and new execution of
 726	 * a @work is not queued in a hope, that CPU#1 will eventually
 727	 * finish the queued @work.  Meanwhile CPU#1 does not see
 728	 * event_indicated is set, because speculative LOAD was executed
 729	 * before actual STORE.
 730	 */
 731	smp_mb();
 732}
 733
 734static void clear_work_data(struct work_struct *work)
 735{
 736	smp_wmb();	/* see set_work_pool_and_clear_pending() */
 737	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 738}
 739
 740static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
 741{
 742	return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
 743}
 744
 745static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 746{
 747	unsigned long data = atomic_long_read(&work->data);
 748
 749	if (data & WORK_STRUCT_PWQ)
 750		return work_struct_pwq(data);
 751	else
 752		return NULL;
 753}
 754
 755/**
 756 * get_work_pool - return the worker_pool a given work was associated with
 757 * @work: the work item of interest
 758 *
 759 * Pools are created and destroyed under wq_pool_mutex, and allows read
 760 * access under RCU read lock.  As such, this function should be
 761 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
 762 *
 763 * All fields of the returned pool are accessible as long as the above
 764 * mentioned locking is in effect.  If the returned pool needs to be used
 765 * beyond the critical section, the caller is responsible for ensuring the
 766 * returned pool is and stays online.
 767 *
 768 * Return: The worker_pool @work was last associated with.  %NULL if none.
 769 */
 770static struct worker_pool *get_work_pool(struct work_struct *work)
 771{
 772	unsigned long data = atomic_long_read(&work->data);
 773	int pool_id;
 774
 775	assert_rcu_or_pool_mutex();
 776
 777	if (data & WORK_STRUCT_PWQ)
 778		return work_struct_pwq(data)->pool;
 
 779
 780	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 781	if (pool_id == WORK_OFFQ_POOL_NONE)
 782		return NULL;
 783
 784	return idr_find(&worker_pool_idr, pool_id);
 785}
 786
 787/**
 788 * get_work_pool_id - return the worker pool ID a given work is associated with
 789 * @work: the work item of interest
 790 *
 791 * Return: The worker_pool ID @work was last associated with.
 792 * %WORK_OFFQ_POOL_NONE if none.
 793 */
 794static int get_work_pool_id(struct work_struct *work)
 795{
 796	unsigned long data = atomic_long_read(&work->data);
 797
 798	if (data & WORK_STRUCT_PWQ)
 799		return work_struct_pwq(data)->pool->id;
 
 800
 801	return data >> WORK_OFFQ_POOL_SHIFT;
 802}
 803
 804static void mark_work_canceling(struct work_struct *work)
 805{
 806	unsigned long pool_id = get_work_pool_id(work);
 807
 808	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 809	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 810}
 811
 812static bool work_is_canceling(struct work_struct *work)
 813{
 814	unsigned long data = atomic_long_read(&work->data);
 815
 816	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 817}
 818
 819/*
 820 * Policy functions.  These define the policies on how the global worker
 821 * pools are managed.  Unless noted otherwise, these functions assume that
 822 * they're being called with pool->lock held.
 823 */
 824
 
 
 
 
 
 825/*
 826 * Need to wake up a worker?  Called from anything but currently
 827 * running workers.
 828 *
 829 * Note that, because unbound workers never contribute to nr_running, this
 830 * function will always return %true for unbound pools as long as the
 831 * worklist isn't empty.
 832 */
 833static bool need_more_worker(struct worker_pool *pool)
 834{
 835	return !list_empty(&pool->worklist) && !pool->nr_running;
 836}
 837
 838/* Can I start working?  Called from busy but !running workers. */
 839static bool may_start_working(struct worker_pool *pool)
 840{
 841	return pool->nr_idle;
 842}
 843
 844/* Do I need to keep working?  Called from currently running workers. */
 845static bool keep_working(struct worker_pool *pool)
 846{
 847	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
 
 848}
 849
 850/* Do we need a new worker?  Called from manager. */
 851static bool need_to_create_worker(struct worker_pool *pool)
 852{
 853	return need_more_worker(pool) && !may_start_working(pool);
 854}
 855
 856/* Do we have too many workers and should some go away? */
 857static bool too_many_workers(struct worker_pool *pool)
 858{
 859	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 860	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 861	int nr_busy = pool->nr_workers - nr_idle;
 862
 863	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 864}
 865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 866/**
 867 * worker_set_flags - set worker flags and adjust nr_running accordingly
 868 * @worker: self
 869 * @flags: flags to set
 870 *
 871 * Set @flags in @worker->flags and adjust nr_running accordingly.
 
 
 
 872 */
 873static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 874{
 875	struct worker_pool *pool = worker->pool;
 876
 877	lockdep_assert_held(&pool->lock);
 878
 879	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 880	if ((flags & WORKER_NOT_RUNNING) &&
 881	    !(worker->flags & WORKER_NOT_RUNNING)) {
 882		pool->nr_running--;
 883	}
 884
 885	worker->flags |= flags;
 886}
 887
 888/**
 889 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 890 * @worker: self
 891 * @flags: flags to clear
 892 *
 893 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 
 
 
 894 */
 895static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 896{
 897	struct worker_pool *pool = worker->pool;
 898	unsigned int oflags = worker->flags;
 899
 900	lockdep_assert_held(&pool->lock);
 901
 902	worker->flags &= ~flags;
 903
 904	/*
 905	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 906	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 907	 * of multiple flags, not a single flag.
 908	 */
 909	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 910		if (!(worker->flags & WORKER_NOT_RUNNING))
 911			pool->nr_running++;
 912}
 913
 914/* Return the first idle worker.  Called with pool->lock held. */
 915static struct worker *first_idle_worker(struct worker_pool *pool)
 916{
 917	if (unlikely(list_empty(&pool->idle_list)))
 918		return NULL;
 919
 920	return list_first_entry(&pool->idle_list, struct worker, entry);
 921}
 922
 923/**
 924 * worker_enter_idle - enter idle state
 925 * @worker: worker which is entering idle state
 926 *
 927 * @worker is entering idle state.  Update stats and idle timer if
 928 * necessary.
 929 *
 930 * LOCKING:
 931 * raw_spin_lock_irq(pool->lock).
 932 */
 933static void worker_enter_idle(struct worker *worker)
 934{
 935	struct worker_pool *pool = worker->pool;
 936
 937	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
 938	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
 939			 (worker->hentry.next || worker->hentry.pprev)))
 940		return;
 941
 942	/* can't use worker_set_flags(), also called from create_worker() */
 943	worker->flags |= WORKER_IDLE;
 944	pool->nr_idle++;
 945	worker->last_active = jiffies;
 946
 947	/* idle_list is LIFO */
 948	list_add(&worker->entry, &pool->idle_list);
 949
 950	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
 951		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
 952
 953	/* Sanity check nr_running. */
 954	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
 955}
 956
 957/**
 958 * worker_leave_idle - leave idle state
 959 * @worker: worker which is leaving idle state
 960 *
 961 * @worker is leaving idle state.  Update stats.
 962 *
 963 * LOCKING:
 964 * raw_spin_lock_irq(pool->lock).
 965 */
 966static void worker_leave_idle(struct worker *worker)
 967{
 968	struct worker_pool *pool = worker->pool;
 969
 970	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
 971		return;
 972	worker_clr_flags(worker, WORKER_IDLE);
 973	pool->nr_idle--;
 974	list_del_init(&worker->entry);
 975}
 976
 977/**
 978 * find_worker_executing_work - find worker which is executing a work
 979 * @pool: pool of interest
 980 * @work: work to find worker for
 981 *
 982 * Find a worker which is executing @work on @pool by searching
 983 * @pool->busy_hash which is keyed by the address of @work.  For a worker
 984 * to match, its current execution should match the address of @work and
 985 * its work function.  This is to avoid unwanted dependency between
 986 * unrelated work executions through a work item being recycled while still
 987 * being executed.
 988 *
 989 * This is a bit tricky.  A work item may be freed once its execution
 990 * starts and nothing prevents the freed area from being recycled for
 991 * another work item.  If the same work item address ends up being reused
 992 * before the original execution finishes, workqueue will identify the
 993 * recycled work item as currently executing and make it wait until the
 994 * current execution finishes, introducing an unwanted dependency.
 995 *
 996 * This function checks the work item address and work function to avoid
 997 * false positives.  Note that this isn't complete as one may construct a
 998 * work function which can introduce dependency onto itself through a
 999 * recycled work item.  Well, if somebody wants to shoot oneself in the
1000 * foot that badly, there's only so much we can do, and if such deadlock
1001 * actually occurs, it should be easy to locate the culprit work function.
1002 *
1003 * CONTEXT:
1004 * raw_spin_lock_irq(pool->lock).
1005 *
1006 * Return:
1007 * Pointer to worker which is executing @work if found, %NULL
1008 * otherwise.
1009 */
1010static struct worker *find_worker_executing_work(struct worker_pool *pool,
1011						 struct work_struct *work)
1012{
1013	struct worker *worker;
1014
1015	hash_for_each_possible(pool->busy_hash, worker, hentry,
1016			       (unsigned long)work)
1017		if (worker->current_work == work &&
1018		    worker->current_func == work->func)
1019			return worker;
1020
1021	return NULL;
1022}
1023
1024/**
1025 * move_linked_works - move linked works to a list
1026 * @work: start of series of works to be scheduled
1027 * @head: target list to append @work to
1028 * @nextp: out parameter for nested worklist walking
1029 *
1030 * Schedule linked works starting from @work to @head. Work series to be
1031 * scheduled starts at @work and includes any consecutive work with
1032 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1033 * @nextp.
 
 
 
1034 *
1035 * CONTEXT:
1036 * raw_spin_lock_irq(pool->lock).
1037 */
1038static void move_linked_works(struct work_struct *work, struct list_head *head,
1039			      struct work_struct **nextp)
1040{
1041	struct work_struct *n;
1042
1043	/*
1044	 * Linked worklist will always end before the end of the list,
1045	 * use NULL for list head.
1046	 */
1047	list_for_each_entry_safe_from(work, n, NULL, entry) {
1048		list_move_tail(&work->entry, head);
1049		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1050			break;
1051	}
1052
1053	/*
1054	 * If we're already inside safe list traversal and have moved
1055	 * multiple works to the scheduled queue, the next position
1056	 * needs to be updated.
1057	 */
1058	if (nextp)
1059		*nextp = n;
1060}
1061
1062/**
1063 * assign_work - assign a work item and its linked work items to a worker
1064 * @work: work to assign
1065 * @worker: worker to assign to
1066 * @nextp: out parameter for nested worklist walking
1067 *
1068 * Assign @work and its linked work items to @worker. If @work is already being
1069 * executed by another worker in the same pool, it'll be punted there.
1070 *
1071 * If @nextp is not NULL, it's updated to point to the next work of the last
1072 * scheduled work. This allows assign_work() to be nested inside
1073 * list_for_each_entry_safe().
1074 *
1075 * Returns %true if @work was successfully assigned to @worker. %false if @work
1076 * was punted to another worker already executing it.
1077 */
1078static bool assign_work(struct work_struct *work, struct worker *worker,
1079			struct work_struct **nextp)
1080{
1081	struct worker_pool *pool = worker->pool;
1082	struct worker *collision;
1083
1084	lockdep_assert_held(&pool->lock);
1085
1086	/*
1087	 * A single work shouldn't be executed concurrently by multiple workers.
1088	 * __queue_work() ensures that @work doesn't jump to a different pool
1089	 * while still running in the previous pool. Here, we should ensure that
1090	 * @work is not executed concurrently by multiple workers from the same
1091	 * pool. Check whether anyone is already processing the work. If so,
1092	 * defer the work to the currently executing one.
1093	 */
1094	collision = find_worker_executing_work(pool, work);
1095	if (unlikely(collision)) {
1096		move_linked_works(work, &collision->scheduled, nextp);
1097		return false;
1098	}
1099
1100	move_linked_works(work, &worker->scheduled, nextp);
1101	return true;
1102}
1103
1104/**
1105 * kick_pool - wake up an idle worker if necessary
1106 * @pool: pool to kick
1107 *
1108 * @pool may have pending work items. Wake up worker if necessary. Returns
1109 * whether a worker was woken up.
1110 */
1111static bool kick_pool(struct worker_pool *pool)
1112{
1113	struct worker *worker = first_idle_worker(pool);
1114	struct task_struct *p;
1115
1116	lockdep_assert_held(&pool->lock);
1117
1118	if (!need_more_worker(pool) || !worker)
1119		return false;
1120
1121	p = worker->task;
1122
1123#ifdef CONFIG_SMP
1124	/*
1125	 * Idle @worker is about to execute @work and waking up provides an
1126	 * opportunity to migrate @worker at a lower cost by setting the task's
1127	 * wake_cpu field. Let's see if we want to move @worker to improve
1128	 * execution locality.
1129	 *
1130	 * We're waking the worker that went idle the latest and there's some
1131	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1132	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1133	 * optimization and the race window is narrow, let's leave as-is for
1134	 * now. If this becomes pronounced, we can skip over workers which are
1135	 * still on cpu when picking an idle worker.
1136	 *
1137	 * If @pool has non-strict affinity, @worker might have ended up outside
1138	 * its affinity scope. Repatriate.
1139	 */
1140	if (!pool->attrs->affn_strict &&
1141	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1142		struct work_struct *work = list_first_entry(&pool->worklist,
1143						struct work_struct, entry);
1144		p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1145		get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1146	}
1147#endif
1148	wake_up_process(p);
1149	return true;
1150}
1151
1152#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1153
1154/*
1155 * Concurrency-managed per-cpu work items that hog CPU for longer than
1156 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1157 * which prevents them from stalling other concurrency-managed work items. If a
1158 * work function keeps triggering this mechanism, it's likely that the work item
1159 * should be using an unbound workqueue instead.
1160 *
1161 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1162 * and report them so that they can be examined and converted to use unbound
1163 * workqueues as appropriate. To avoid flooding the console, each violating work
1164 * function is tracked and reported with exponential backoff.
1165 */
1166#define WCI_MAX_ENTS 128
1167
1168struct wci_ent {
1169	work_func_t		func;
1170	atomic64_t		cnt;
1171	struct hlist_node	hash_node;
1172};
1173
1174static struct wci_ent wci_ents[WCI_MAX_ENTS];
1175static int wci_nr_ents;
1176static DEFINE_RAW_SPINLOCK(wci_lock);
1177static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1178
1179static struct wci_ent *wci_find_ent(work_func_t func)
1180{
1181	struct wci_ent *ent;
1182
1183	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1184				   (unsigned long)func) {
1185		if (ent->func == func)
1186			return ent;
1187	}
1188	return NULL;
1189}
1190
1191static void wq_cpu_intensive_report(work_func_t func)
1192{
1193	struct wci_ent *ent;
1194
1195restart:
1196	ent = wci_find_ent(func);
1197	if (ent) {
1198		u64 cnt;
1199
1200		/*
1201		 * Start reporting from the fourth time and back off
1202		 * exponentially.
1203		 */
1204		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1205		if (cnt >= 4 && is_power_of_2(cnt))
1206			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1207					ent->func, wq_cpu_intensive_thresh_us,
1208					atomic64_read(&ent->cnt));
1209		return;
1210	}
1211
1212	/*
1213	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1214	 * is exhausted, something went really wrong and we probably made enough
1215	 * noise already.
1216	 */
1217	if (wci_nr_ents >= WCI_MAX_ENTS)
1218		return;
1219
1220	raw_spin_lock(&wci_lock);
1221
1222	if (wci_nr_ents >= WCI_MAX_ENTS) {
1223		raw_spin_unlock(&wci_lock);
1224		return;
1225	}
1226
1227	if (wci_find_ent(func)) {
1228		raw_spin_unlock(&wci_lock);
1229		goto restart;
1230	}
1231
1232	ent = &wci_ents[wci_nr_ents++];
1233	ent->func = func;
1234	atomic64_set(&ent->cnt, 1);
1235	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1236
1237	raw_spin_unlock(&wci_lock);
1238}
1239
1240#else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1241static void wq_cpu_intensive_report(work_func_t func) {}
1242#endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1243
1244/**
1245 * wq_worker_running - a worker is running again
1246 * @task: task waking up
1247 *
1248 * This function is called when a worker returns from schedule()
1249 */
1250void wq_worker_running(struct task_struct *task)
1251{
1252	struct worker *worker = kthread_data(task);
1253
1254	if (!READ_ONCE(worker->sleeping))
1255		return;
1256
1257	/*
1258	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1259	 * and the nr_running increment below, we may ruin the nr_running reset
1260	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1261	 * pool. Protect against such race.
1262	 */
1263	preempt_disable();
1264	if (!(worker->flags & WORKER_NOT_RUNNING))
1265		worker->pool->nr_running++;
1266	preempt_enable();
1267
1268	/*
1269	 * CPU intensive auto-detection cares about how long a work item hogged
1270	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1271	 */
1272	worker->current_at = worker->task->se.sum_exec_runtime;
1273
1274	WRITE_ONCE(worker->sleeping, 0);
1275}
1276
1277/**
1278 * wq_worker_sleeping - a worker is going to sleep
1279 * @task: task going to sleep
1280 *
1281 * This function is called from schedule() when a busy worker is
1282 * going to sleep.
1283 */
1284void wq_worker_sleeping(struct task_struct *task)
1285{
1286	struct worker *worker = kthread_data(task);
1287	struct worker_pool *pool;
1288
1289	/*
1290	 * Rescuers, which may not have all the fields set up like normal
1291	 * workers, also reach here, let's not access anything before
1292	 * checking NOT_RUNNING.
1293	 */
1294	if (worker->flags & WORKER_NOT_RUNNING)
1295		return;
1296
1297	pool = worker->pool;
1298
1299	/* Return if preempted before wq_worker_running() was reached */
1300	if (READ_ONCE(worker->sleeping))
1301		return;
1302
1303	WRITE_ONCE(worker->sleeping, 1);
1304	raw_spin_lock_irq(&pool->lock);
1305
1306	/*
1307	 * Recheck in case unbind_workers() preempted us. We don't
1308	 * want to decrement nr_running after the worker is unbound
1309	 * and nr_running has been reset.
1310	 */
1311	if (worker->flags & WORKER_NOT_RUNNING) {
1312		raw_spin_unlock_irq(&pool->lock);
1313		return;
1314	}
1315
1316	pool->nr_running--;
1317	if (kick_pool(pool))
1318		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1319
1320	raw_spin_unlock_irq(&pool->lock);
1321}
1322
1323/**
1324 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1325 * @task: task currently running
1326 *
1327 * Called from scheduler_tick(). We're in the IRQ context and the current
1328 * worker's fields which follow the 'K' locking rule can be accessed safely.
1329 */
1330void wq_worker_tick(struct task_struct *task)
1331{
1332	struct worker *worker = kthread_data(task);
1333	struct pool_workqueue *pwq = worker->current_pwq;
1334	struct worker_pool *pool = worker->pool;
1335
1336	if (!pwq)
1337		return;
1338
1339	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1340
1341	if (!wq_cpu_intensive_thresh_us)
1342		return;
1343
1344	/*
1345	 * If the current worker is concurrency managed and hogged the CPU for
1346	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1347	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1348	 *
1349	 * Set @worker->sleeping means that @worker is in the process of
1350	 * switching out voluntarily and won't be contributing to
1351	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1352	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1353	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1354	 * We probably want to make this prettier in the future.
1355	 */
1356	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1357	    worker->task->se.sum_exec_runtime - worker->current_at <
1358	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1359		return;
1360
1361	raw_spin_lock(&pool->lock);
1362
1363	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1364	wq_cpu_intensive_report(worker->current_func);
1365	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1366
1367	if (kick_pool(pool))
1368		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1369
1370	raw_spin_unlock(&pool->lock);
1371}
1372
1373/**
1374 * wq_worker_last_func - retrieve worker's last work function
1375 * @task: Task to retrieve last work function of.
1376 *
1377 * Determine the last function a worker executed. This is called from
1378 * the scheduler to get a worker's last known identity.
1379 *
1380 * CONTEXT:
1381 * raw_spin_lock_irq(rq->lock)
1382 *
1383 * This function is called during schedule() when a kworker is going
1384 * to sleep. It's used by psi to identify aggregation workers during
1385 * dequeuing, to allow periodic aggregation to shut-off when that
1386 * worker is the last task in the system or cgroup to go to sleep.
1387 *
1388 * As this function doesn't involve any workqueue-related locking, it
1389 * only returns stable values when called from inside the scheduler's
1390 * queuing and dequeuing paths, when @task, which must be a kworker,
1391 * is guaranteed to not be processing any works.
1392 *
1393 * Return:
1394 * The last work function %current executed as a worker, NULL if it
1395 * hasn't executed any work yet.
1396 */
1397work_func_t wq_worker_last_func(struct task_struct *task)
1398{
1399	struct worker *worker = kthread_data(task);
1400
1401	return worker->last_func;
1402}
1403
1404/**
1405 * get_pwq - get an extra reference on the specified pool_workqueue
1406 * @pwq: pool_workqueue to get
1407 *
1408 * Obtain an extra reference on @pwq.  The caller should guarantee that
1409 * @pwq has positive refcnt and be holding the matching pool->lock.
1410 */
1411static void get_pwq(struct pool_workqueue *pwq)
1412{
1413	lockdep_assert_held(&pwq->pool->lock);
1414	WARN_ON_ONCE(pwq->refcnt <= 0);
1415	pwq->refcnt++;
1416}
1417
1418/**
1419 * put_pwq - put a pool_workqueue reference
1420 * @pwq: pool_workqueue to put
1421 *
1422 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1423 * destruction.  The caller should be holding the matching pool->lock.
1424 */
1425static void put_pwq(struct pool_workqueue *pwq)
1426{
1427	lockdep_assert_held(&pwq->pool->lock);
1428	if (likely(--pwq->refcnt))
1429		return;
 
 
1430	/*
1431	 * @pwq can't be released under pool->lock, bounce to a dedicated
1432	 * kthread_worker to avoid A-A deadlocks.
 
 
 
 
1433	 */
1434	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1435}
1436
1437/**
1438 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1439 * @pwq: pool_workqueue to put (can be %NULL)
1440 *
1441 * put_pwq() with locking.  This function also allows %NULL @pwq.
1442 */
1443static void put_pwq_unlocked(struct pool_workqueue *pwq)
1444{
1445	if (pwq) {
1446		/*
1447		 * As both pwqs and pools are RCU protected, the
1448		 * following lock operations are safe.
1449		 */
1450		raw_spin_lock_irq(&pwq->pool->lock);
1451		put_pwq(pwq);
1452		raw_spin_unlock_irq(&pwq->pool->lock);
1453	}
1454}
1455
1456static void pwq_activate_inactive_work(struct work_struct *work)
1457{
1458	struct pool_workqueue *pwq = get_work_pwq(work);
1459
1460	trace_workqueue_activate_work(work);
1461	if (list_empty(&pwq->pool->worklist))
1462		pwq->pool->watchdog_ts = jiffies;
1463	move_linked_works(work, &pwq->pool->worklist, NULL);
1464	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1465	pwq->nr_active++;
1466}
1467
1468static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1469{
1470	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1471						    struct work_struct, entry);
1472
1473	pwq_activate_inactive_work(work);
1474}
1475
1476/**
1477 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1478 * @pwq: pwq of interest
1479 * @work_data: work_data of work which left the queue
1480 *
1481 * A work either has completed or is removed from pending queue,
1482 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1483 *
1484 * CONTEXT:
1485 * raw_spin_lock_irq(pool->lock).
1486 */
1487static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1488{
1489	int color = get_work_color(work_data);
1490
1491	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1492		pwq->nr_active--;
1493		if (!list_empty(&pwq->inactive_works)) {
1494			/* one down, submit an inactive one */
1495			if (pwq->nr_active < pwq->max_active)
1496				pwq_activate_first_inactive(pwq);
1497		}
1498	}
1499
1500	pwq->nr_in_flight[color]--;
1501
 
 
 
 
 
 
 
1502	/* is flush in progress and are we at the flushing tip? */
1503	if (likely(pwq->flush_color != color))
1504		goto out_put;
1505
1506	/* are there still in-flight works? */
1507	if (pwq->nr_in_flight[color])
1508		goto out_put;
1509
1510	/* this pwq is done, clear flush_color */
1511	pwq->flush_color = -1;
1512
1513	/*
1514	 * If this was the last pwq, wake up the first flusher.  It
1515	 * will handle the rest.
1516	 */
1517	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1518		complete(&pwq->wq->first_flusher->done);
1519out_put:
1520	put_pwq(pwq);
1521}
1522
1523/**
1524 * try_to_grab_pending - steal work item from worklist and disable irq
1525 * @work: work item to steal
1526 * @is_dwork: @work is a delayed_work
1527 * @flags: place to store irq state
1528 *
1529 * Try to grab PENDING bit of @work.  This function can handle @work in any
1530 * stable state - idle, on timer or on worklist.
1531 *
1532 * Return:
1533 *
1534 *  ========	================================================================
1535 *  1		if @work was pending and we successfully stole PENDING
1536 *  0		if @work was idle and we claimed PENDING
1537 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1538 *  -ENOENT	if someone else is canceling @work, this state may persist
1539 *		for arbitrarily long
1540 *  ========	================================================================
1541 *
1542 * Note:
1543 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1544 * interrupted while holding PENDING and @work off queue, irq must be
1545 * disabled on entry.  This, combined with delayed_work->timer being
1546 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1547 *
1548 * On successful return, >= 0, irq is disabled and the caller is
1549 * responsible for releasing it using local_irq_restore(*@flags).
1550 *
1551 * This function is safe to call from any context including IRQ handler.
1552 */
1553static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1554			       unsigned long *flags)
1555{
1556	struct worker_pool *pool;
1557	struct pool_workqueue *pwq;
1558
1559	local_irq_save(*flags);
1560
1561	/* try to steal the timer if it exists */
1562	if (is_dwork) {
1563		struct delayed_work *dwork = to_delayed_work(work);
1564
1565		/*
1566		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1567		 * guaranteed that the timer is not queued anywhere and not
1568		 * running on the local CPU.
1569		 */
1570		if (likely(del_timer(&dwork->timer)))
1571			return 1;
1572	}
1573
1574	/* try to claim PENDING the normal way */
1575	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1576		return 0;
1577
1578	rcu_read_lock();
1579	/*
1580	 * The queueing is in progress, or it is already queued. Try to
1581	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1582	 */
1583	pool = get_work_pool(work);
1584	if (!pool)
1585		goto fail;
1586
1587	raw_spin_lock(&pool->lock);
1588	/*
1589	 * work->data is guaranteed to point to pwq only while the work
1590	 * item is queued on pwq->wq, and both updating work->data to point
1591	 * to pwq on queueing and to pool on dequeueing are done under
1592	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1593	 * points to pwq which is associated with a locked pool, the work
1594	 * item is currently queued on that pool.
1595	 */
1596	pwq = get_work_pwq(work);
1597	if (pwq && pwq->pool == pool) {
1598		debug_work_deactivate(work);
1599
1600		/*
1601		 * A cancelable inactive work item must be in the
1602		 * pwq->inactive_works since a queued barrier can't be
1603		 * canceled (see the comments in insert_wq_barrier()).
1604		 *
1605		 * An inactive work item cannot be grabbed directly because
1606		 * it might have linked barrier work items which, if left
1607		 * on the inactive_works list, will confuse pwq->nr_active
1608		 * management later on and cause stall.  Make sure the work
1609		 * item is activated before grabbing.
1610		 */
1611		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1612			pwq_activate_inactive_work(work);
1613
1614		list_del_init(&work->entry);
1615		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1616
1617		/* work->data points to pwq iff queued, point to pool */
1618		set_work_pool_and_keep_pending(work, pool->id);
1619
1620		raw_spin_unlock(&pool->lock);
1621		rcu_read_unlock();
1622		return 1;
1623	}
1624	raw_spin_unlock(&pool->lock);
1625fail:
1626	rcu_read_unlock();
1627	local_irq_restore(*flags);
1628	if (work_is_canceling(work))
1629		return -ENOENT;
1630	cpu_relax();
1631	return -EAGAIN;
1632}
1633
1634/**
1635 * insert_work - insert a work into a pool
1636 * @pwq: pwq @work belongs to
1637 * @work: work to insert
1638 * @head: insertion point
1639 * @extra_flags: extra WORK_STRUCT_* flags to set
1640 *
1641 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1642 * work_struct flags.
1643 *
1644 * CONTEXT:
1645 * raw_spin_lock_irq(pool->lock).
1646 */
1647static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1648			struct list_head *head, unsigned int extra_flags)
1649{
1650	debug_work_activate(work);
1651
1652	/* record the work call stack in order to print it in KASAN reports */
1653	kasan_record_aux_stack_noalloc(work);
1654
1655	/* we own @work, set data and link */
1656	set_work_pwq(work, pwq, extra_flags);
1657	list_add_tail(&work->entry, head);
1658	get_pwq(pwq);
 
 
 
 
 
 
 
 
 
 
1659}
1660
1661/*
1662 * Test whether @work is being queued from another work executing on the
1663 * same workqueue.
1664 */
1665static bool is_chained_work(struct workqueue_struct *wq)
1666{
1667	struct worker *worker;
1668
1669	worker = current_wq_worker();
1670	/*
1671	 * Return %true iff I'm a worker executing a work item on @wq.  If
1672	 * I'm @worker, it's safe to dereference it without locking.
1673	 */
1674	return worker && worker->current_pwq->wq == wq;
1675}
1676
1677/*
1678 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1679 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1680 * avoid perturbing sensitive tasks.
1681 */
1682static int wq_select_unbound_cpu(int cpu)
1683{
 
1684	int new_cpu;
1685
1686	if (likely(!wq_debug_force_rr_cpu)) {
1687		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1688			return cpu;
1689	} else {
1690		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
 
1691	}
1692
 
 
 
1693	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1694	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1695	if (unlikely(new_cpu >= nr_cpu_ids)) {
1696		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1697		if (unlikely(new_cpu >= nr_cpu_ids))
1698			return cpu;
1699	}
1700	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1701
1702	return new_cpu;
1703}
1704
1705static void __queue_work(int cpu, struct workqueue_struct *wq,
1706			 struct work_struct *work)
1707{
1708	struct pool_workqueue *pwq;
1709	struct worker_pool *last_pool, *pool;
 
1710	unsigned int work_flags;
1711	unsigned int req_cpu = cpu;
1712
1713	/*
1714	 * While a work item is PENDING && off queue, a task trying to
1715	 * steal the PENDING will busy-loop waiting for it to either get
1716	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1717	 * happen with IRQ disabled.
1718	 */
1719	lockdep_assert_irqs_disabled();
1720
 
1721
1722	/*
1723	 * For a draining wq, only works from the same workqueue are
1724	 * allowed. The __WQ_DESTROYING helps to spot the issue that
1725	 * queues a new work item to a wq after destroy_workqueue(wq).
1726	 */
1727	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1728		     WARN_ON_ONCE(!is_chained_work(wq))))
1729		return;
1730	rcu_read_lock();
1731retry:
1732	/* pwq which will be used unless @work is executing elsewhere */
1733	if (req_cpu == WORK_CPU_UNBOUND) {
1734		if (wq->flags & WQ_UNBOUND)
1735			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1736		else
1737			cpu = raw_smp_processor_id();
1738	}
1739
1740	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
1741	pool = pwq->pool;
 
 
 
1742
1743	/*
1744	 * If @work was previously on a different pool, it might still be
1745	 * running there, in which case the work needs to be queued on that
1746	 * pool to guarantee non-reentrancy.
1747	 */
1748	last_pool = get_work_pool(work);
1749	if (last_pool && last_pool != pool) {
1750		struct worker *worker;
1751
1752		raw_spin_lock(&last_pool->lock);
1753
1754		worker = find_worker_executing_work(last_pool, work);
1755
1756		if (worker && worker->current_pwq->wq == wq) {
1757			pwq = worker->current_pwq;
1758			pool = pwq->pool;
1759			WARN_ON_ONCE(pool != last_pool);
1760		} else {
1761			/* meh... not running there, queue here */
1762			raw_spin_unlock(&last_pool->lock);
1763			raw_spin_lock(&pool->lock);
1764		}
1765	} else {
1766		raw_spin_lock(&pool->lock);
1767	}
1768
1769	/*
1770	 * pwq is determined and locked. For unbound pools, we could have raced
1771	 * with pwq release and it could already be dead. If its refcnt is zero,
1772	 * repeat pwq selection. Note that unbound pwqs never die without
1773	 * another pwq replacing it in cpu_pwq or while work items are executing
1774	 * on it, so the retrying is guaranteed to make forward-progress.
 
1775	 */
1776	if (unlikely(!pwq->refcnt)) {
1777		if (wq->flags & WQ_UNBOUND) {
1778			raw_spin_unlock(&pool->lock);
1779			cpu_relax();
1780			goto retry;
1781		}
1782		/* oops */
1783		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1784			  wq->name, cpu);
1785	}
1786
1787	/* pwq determined, queue */
1788	trace_workqueue_queue_work(req_cpu, pwq, work);
1789
1790	if (WARN_ON(!list_empty(&work->entry)))
1791		goto out;
1792
1793	pwq->nr_in_flight[pwq->work_color]++;
1794	work_flags = work_color_to_flags(pwq->work_color);
1795
1796	if (likely(pwq->nr_active < pwq->max_active)) {
1797		if (list_empty(&pool->worklist))
1798			pool->watchdog_ts = jiffies;
1799
1800		trace_workqueue_activate_work(work);
1801		pwq->nr_active++;
1802		insert_work(pwq, work, &pool->worklist, work_flags);
1803		kick_pool(pool);
 
1804	} else {
1805		work_flags |= WORK_STRUCT_INACTIVE;
1806		insert_work(pwq, work, &pwq->inactive_works, work_flags);
1807	}
1808
 
 
1809out:
1810	raw_spin_unlock(&pool->lock);
1811	rcu_read_unlock();
1812}
1813
1814/**
1815 * queue_work_on - queue work on specific cpu
1816 * @cpu: CPU number to execute work on
1817 * @wq: workqueue to use
1818 * @work: work to queue
1819 *
1820 * We queue the work to a specific CPU, the caller must ensure it
1821 * can't go away.  Callers that fail to ensure that the specified
1822 * CPU cannot go away will execute on a randomly chosen CPU.
1823 * But note well that callers specifying a CPU that never has been
1824 * online will get a splat.
1825 *
1826 * Return: %false if @work was already on a queue, %true otherwise.
1827 */
1828bool queue_work_on(int cpu, struct workqueue_struct *wq,
1829		   struct work_struct *work)
1830{
1831	bool ret = false;
1832	unsigned long flags;
1833
1834	local_irq_save(flags);
1835
1836	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1837		__queue_work(cpu, wq, work);
1838		ret = true;
1839	}
1840
1841	local_irq_restore(flags);
1842	return ret;
1843}
1844EXPORT_SYMBOL(queue_work_on);
1845
1846/**
1847 * select_numa_node_cpu - Select a CPU based on NUMA node
1848 * @node: NUMA node ID that we want to select a CPU from
1849 *
1850 * This function will attempt to find a "random" cpu available on a given
1851 * node. If there are no CPUs available on the given node it will return
1852 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1853 * available CPU if we need to schedule this work.
1854 */
1855static int select_numa_node_cpu(int node)
1856{
1857	int cpu;
1858
 
 
 
 
1859	/* Delay binding to CPU if node is not valid or online */
1860	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1861		return WORK_CPU_UNBOUND;
1862
1863	/* Use local node/cpu if we are already there */
1864	cpu = raw_smp_processor_id();
1865	if (node == cpu_to_node(cpu))
1866		return cpu;
1867
1868	/* Use "random" otherwise know as "first" online CPU of node */
1869	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1870
1871	/* If CPU is valid return that, otherwise just defer */
1872	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1873}
1874
1875/**
1876 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1877 * @node: NUMA node that we are targeting the work for
1878 * @wq: workqueue to use
1879 * @work: work to queue
1880 *
1881 * We queue the work to a "random" CPU within a given NUMA node. The basic
1882 * idea here is to provide a way to somehow associate work with a given
1883 * NUMA node.
1884 *
1885 * This function will only make a best effort attempt at getting this onto
1886 * the right NUMA node. If no node is requested or the requested node is
1887 * offline then we just fall back to standard queue_work behavior.
1888 *
1889 * Currently the "random" CPU ends up being the first available CPU in the
1890 * intersection of cpu_online_mask and the cpumask of the node, unless we
1891 * are running on the node. In that case we just use the current CPU.
1892 *
1893 * Return: %false if @work was already on a queue, %true otherwise.
1894 */
1895bool queue_work_node(int node, struct workqueue_struct *wq,
1896		     struct work_struct *work)
1897{
1898	unsigned long flags;
1899	bool ret = false;
1900
1901	/*
1902	 * This current implementation is specific to unbound workqueues.
1903	 * Specifically we only return the first available CPU for a given
1904	 * node instead of cycling through individual CPUs within the node.
1905	 *
1906	 * If this is used with a per-cpu workqueue then the logic in
1907	 * workqueue_select_cpu_near would need to be updated to allow for
1908	 * some round robin type logic.
1909	 */
1910	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1911
1912	local_irq_save(flags);
1913
1914	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1915		int cpu = select_numa_node_cpu(node);
1916
1917		__queue_work(cpu, wq, work);
1918		ret = true;
1919	}
1920
1921	local_irq_restore(flags);
1922	return ret;
1923}
1924EXPORT_SYMBOL_GPL(queue_work_node);
1925
1926void delayed_work_timer_fn(struct timer_list *t)
1927{
1928	struct delayed_work *dwork = from_timer(dwork, t, timer);
1929
1930	/* should have been called from irqsafe timer with irq already off */
1931	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1932}
1933EXPORT_SYMBOL(delayed_work_timer_fn);
1934
1935static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1936				struct delayed_work *dwork, unsigned long delay)
1937{
1938	struct timer_list *timer = &dwork->timer;
1939	struct work_struct *work = &dwork->work;
1940
1941	WARN_ON_ONCE(!wq);
1942	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1943	WARN_ON_ONCE(timer_pending(timer));
1944	WARN_ON_ONCE(!list_empty(&work->entry));
1945
1946	/*
1947	 * If @delay is 0, queue @dwork->work immediately.  This is for
1948	 * both optimization and correctness.  The earliest @timer can
1949	 * expire is on the closest next tick and delayed_work users depend
1950	 * on that there's no such delay when @delay is 0.
1951	 */
1952	if (!delay) {
1953		__queue_work(cpu, wq, &dwork->work);
1954		return;
1955	}
1956
1957	dwork->wq = wq;
1958	dwork->cpu = cpu;
1959	timer->expires = jiffies + delay;
1960
1961	if (unlikely(cpu != WORK_CPU_UNBOUND))
1962		add_timer_on(timer, cpu);
1963	else
1964		add_timer(timer);
1965}
1966
1967/**
1968 * queue_delayed_work_on - queue work on specific CPU after delay
1969 * @cpu: CPU number to execute work on
1970 * @wq: workqueue to use
1971 * @dwork: work to queue
1972 * @delay: number of jiffies to wait before queueing
1973 *
1974 * Return: %false if @work was already on a queue, %true otherwise.  If
1975 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1976 * execution.
1977 */
1978bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1979			   struct delayed_work *dwork, unsigned long delay)
1980{
1981	struct work_struct *work = &dwork->work;
1982	bool ret = false;
1983	unsigned long flags;
1984
1985	/* read the comment in __queue_work() */
1986	local_irq_save(flags);
1987
1988	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1989		__queue_delayed_work(cpu, wq, dwork, delay);
1990		ret = true;
1991	}
1992
1993	local_irq_restore(flags);
1994	return ret;
1995}
1996EXPORT_SYMBOL(queue_delayed_work_on);
1997
1998/**
1999 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2000 * @cpu: CPU number to execute work on
2001 * @wq: workqueue to use
2002 * @dwork: work to queue
2003 * @delay: number of jiffies to wait before queueing
2004 *
2005 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2006 * modify @dwork's timer so that it expires after @delay.  If @delay is
2007 * zero, @work is guaranteed to be scheduled immediately regardless of its
2008 * current state.
2009 *
2010 * Return: %false if @dwork was idle and queued, %true if @dwork was
2011 * pending and its timer was modified.
2012 *
2013 * This function is safe to call from any context including IRQ handler.
2014 * See try_to_grab_pending() for details.
2015 */
2016bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2017			 struct delayed_work *dwork, unsigned long delay)
2018{
2019	unsigned long flags;
2020	int ret;
2021
2022	do {
2023		ret = try_to_grab_pending(&dwork->work, true, &flags);
2024	} while (unlikely(ret == -EAGAIN));
2025
2026	if (likely(ret >= 0)) {
2027		__queue_delayed_work(cpu, wq, dwork, delay);
2028		local_irq_restore(flags);
2029	}
2030
2031	/* -ENOENT from try_to_grab_pending() becomes %true */
2032	return ret;
2033}
2034EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2035
2036static void rcu_work_rcufn(struct rcu_head *rcu)
2037{
2038	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2039
2040	/* read the comment in __queue_work() */
2041	local_irq_disable();
2042	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2043	local_irq_enable();
2044}
2045
2046/**
2047 * queue_rcu_work - queue work after a RCU grace period
2048 * @wq: workqueue to use
2049 * @rwork: work to queue
2050 *
2051 * Return: %false if @rwork was already pending, %true otherwise.  Note
2052 * that a full RCU grace period is guaranteed only after a %true return.
2053 * While @rwork is guaranteed to be executed after a %false return, the
2054 * execution may happen before a full RCU grace period has passed.
2055 */
2056bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2057{
2058	struct work_struct *work = &rwork->work;
2059
2060	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2061		rwork->wq = wq;
2062		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2063		return true;
2064	}
2065
2066	return false;
2067}
2068EXPORT_SYMBOL(queue_rcu_work);
2069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2070static struct worker *alloc_worker(int node)
2071{
2072	struct worker *worker;
2073
2074	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2075	if (worker) {
2076		INIT_LIST_HEAD(&worker->entry);
2077		INIT_LIST_HEAD(&worker->scheduled);
2078		INIT_LIST_HEAD(&worker->node);
2079		/* on creation a worker is in !idle && prep state */
2080		worker->flags = WORKER_PREP;
2081	}
2082	return worker;
2083}
2084
2085static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2086{
2087	if (pool->cpu < 0 && pool->attrs->affn_strict)
2088		return pool->attrs->__pod_cpumask;
2089	else
2090		return pool->attrs->cpumask;
2091}
2092
2093/**
2094 * worker_attach_to_pool() - attach a worker to a pool
2095 * @worker: worker to be attached
2096 * @pool: the target pool
2097 *
2098 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2099 * cpu-binding of @worker are kept coordinated with the pool across
2100 * cpu-[un]hotplugs.
2101 */
2102static void worker_attach_to_pool(struct worker *worker,
2103				   struct worker_pool *pool)
2104{
2105	mutex_lock(&wq_pool_attach_mutex);
2106
2107	/*
 
 
 
 
 
 
2108	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
2109	 * stable across this function.  See the comments above the flag
2110	 * definition for details.
2111	 */
2112	if (pool->flags & POOL_DISASSOCIATED)
2113		worker->flags |= WORKER_UNBOUND;
2114	else
2115		kthread_set_per_cpu(worker->task, pool->cpu);
2116
2117	if (worker->rescue_wq)
2118		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2119
2120	list_add_tail(&worker->node, &pool->workers);
2121	worker->pool = pool;
2122
2123	mutex_unlock(&wq_pool_attach_mutex);
2124}
2125
2126/**
2127 * worker_detach_from_pool() - detach a worker from its pool
2128 * @worker: worker which is attached to its pool
2129 *
2130 * Undo the attaching which had been done in worker_attach_to_pool().  The
2131 * caller worker shouldn't access to the pool after detached except it has
2132 * other reference to the pool.
2133 */
2134static void worker_detach_from_pool(struct worker *worker)
2135{
2136	struct worker_pool *pool = worker->pool;
2137	struct completion *detach_completion = NULL;
2138
2139	mutex_lock(&wq_pool_attach_mutex);
2140
2141	kthread_set_per_cpu(worker->task, -1);
2142	list_del(&worker->node);
2143	worker->pool = NULL;
2144
2145	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2146		detach_completion = pool->detach_completion;
2147	mutex_unlock(&wq_pool_attach_mutex);
2148
2149	/* clear leftover flags without pool->lock after it is detached */
2150	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2151
2152	if (detach_completion)
2153		complete(detach_completion);
2154}
2155
2156/**
2157 * create_worker - create a new workqueue worker
2158 * @pool: pool the new worker will belong to
2159 *
2160 * Create and start a new worker which is attached to @pool.
2161 *
2162 * CONTEXT:
2163 * Might sleep.  Does GFP_KERNEL allocations.
2164 *
2165 * Return:
2166 * Pointer to the newly created worker.
2167 */
2168static struct worker *create_worker(struct worker_pool *pool)
2169{
2170	struct worker *worker;
2171	int id;
2172	char id_buf[23];
2173
2174	/* ID is needed to determine kthread name */
2175	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2176	if (id < 0) {
2177		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2178			    ERR_PTR(id));
2179		return NULL;
2180	}
2181
2182	worker = alloc_worker(pool->node);
2183	if (!worker) {
2184		pr_err_once("workqueue: Failed to allocate a worker\n");
2185		goto fail;
2186	}
2187
2188	worker->id = id;
2189
2190	if (pool->cpu >= 0)
2191		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2192			 pool->attrs->nice < 0  ? "H" : "");
2193	else
2194		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2195
2196	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
2197					      "kworker/%s", id_buf);
2198	if (IS_ERR(worker->task)) {
2199		if (PTR_ERR(worker->task) == -EINTR) {
2200			pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2201			       id_buf);
2202		} else {
2203			pr_err_once("workqueue: Failed to create a worker thread: %pe",
2204				    worker->task);
2205		}
2206		goto fail;
2207	}
2208
2209	set_user_nice(worker->task, pool->attrs->nice);
2210	kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2211
2212	/* successful, attach the worker to the pool */
2213	worker_attach_to_pool(worker, pool);
2214
2215	/* start the newly created worker */
2216	raw_spin_lock_irq(&pool->lock);
2217
2218	worker->pool->nr_workers++;
2219	worker_enter_idle(worker);
2220	kick_pool(pool);
2221
2222	/*
2223	 * @worker is waiting on a completion in kthread() and will trigger hung
2224	 * check if not woken up soon. As kick_pool() might not have waken it
2225	 * up, wake it up explicitly once more.
2226	 */
2227	wake_up_process(worker->task);
2228
2229	raw_spin_unlock_irq(&pool->lock);
2230
2231	return worker;
2232
2233fail:
2234	ida_free(&pool->worker_ida, id);
 
2235	kfree(worker);
2236	return NULL;
2237}
2238
2239static void unbind_worker(struct worker *worker)
2240{
2241	lockdep_assert_held(&wq_pool_attach_mutex);
2242
2243	kthread_set_per_cpu(worker->task, -1);
2244	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2245		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2246	else
2247		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2248}
2249
2250static void wake_dying_workers(struct list_head *cull_list)
2251{
2252	struct worker *worker, *tmp;
2253
2254	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2255		list_del_init(&worker->entry);
2256		unbind_worker(worker);
2257		/*
2258		 * If the worker was somehow already running, then it had to be
2259		 * in pool->idle_list when set_worker_dying() happened or we
2260		 * wouldn't have gotten here.
2261		 *
2262		 * Thus, the worker must either have observed the WORKER_DIE
2263		 * flag, or have set its state to TASK_IDLE. Either way, the
2264		 * below will be observed by the worker and is safe to do
2265		 * outside of pool->lock.
2266		 */
2267		wake_up_process(worker->task);
2268	}
2269}
2270
2271/**
2272 * set_worker_dying - Tag a worker for destruction
2273 * @worker: worker to be destroyed
2274 * @list: transfer worker away from its pool->idle_list and into list
2275 *
2276 * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2277 * should be idle.
2278 *
2279 * CONTEXT:
2280 * raw_spin_lock_irq(pool->lock).
2281 */
2282static void set_worker_dying(struct worker *worker, struct list_head *list)
2283{
2284	struct worker_pool *pool = worker->pool;
2285
2286	lockdep_assert_held(&pool->lock);
2287	lockdep_assert_held(&wq_pool_attach_mutex);
2288
2289	/* sanity check frenzy */
2290	if (WARN_ON(worker->current_work) ||
2291	    WARN_ON(!list_empty(&worker->scheduled)) ||
2292	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2293		return;
2294
2295	pool->nr_workers--;
2296	pool->nr_idle--;
2297
 
2298	worker->flags |= WORKER_DIE;
2299
2300	list_move(&worker->entry, list);
2301	list_move(&worker->node, &pool->dying_workers);
2302}
2303
2304/**
2305 * idle_worker_timeout - check if some idle workers can now be deleted.
2306 * @t: The pool's idle_timer that just expired
2307 *
2308 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2309 * worker_leave_idle(), as a worker flicking between idle and active while its
2310 * pool is at the too_many_workers() tipping point would cause too much timer
2311 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2312 * it expire and re-evaluate things from there.
2313 */
2314static void idle_worker_timeout(struct timer_list *t)
2315{
2316	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2317	bool do_cull = false;
2318
2319	if (work_pending(&pool->idle_cull_work))
2320		return;
2321
2322	raw_spin_lock_irq(&pool->lock);
2323
2324	if (too_many_workers(pool)) {
2325		struct worker *worker;
2326		unsigned long expires;
2327
2328		/* idle_list is kept in LIFO order, check the last one */
2329		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2330		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2331		do_cull = !time_before(jiffies, expires);
2332
2333		if (!do_cull)
2334			mod_timer(&pool->idle_timer, expires);
2335	}
2336	raw_spin_unlock_irq(&pool->lock);
2337
2338	if (do_cull)
2339		queue_work(system_unbound_wq, &pool->idle_cull_work);
2340}
2341
2342/**
2343 * idle_cull_fn - cull workers that have been idle for too long.
2344 * @work: the pool's work for handling these idle workers
2345 *
2346 * This goes through a pool's idle workers and gets rid of those that have been
2347 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2348 *
2349 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2350 * culled, so this also resets worker affinity. This requires a sleepable
2351 * context, hence the split between timer callback and work item.
2352 */
2353static void idle_cull_fn(struct work_struct *work)
2354{
2355	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2356	LIST_HEAD(cull_list);
2357
2358	/*
2359	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2360	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2361	 * path. This is required as a previously-preempted worker could run after
2362	 * set_worker_dying() has happened but before wake_dying_workers() did.
2363	 */
2364	mutex_lock(&wq_pool_attach_mutex);
2365	raw_spin_lock_irq(&pool->lock);
2366
2367	while (too_many_workers(pool)) {
2368		struct worker *worker;
2369		unsigned long expires;
2370
 
2371		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2372		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2373
2374		if (time_before(jiffies, expires)) {
2375			mod_timer(&pool->idle_timer, expires);
2376			break;
2377		}
2378
2379		set_worker_dying(worker, &cull_list);
2380	}
2381
2382	raw_spin_unlock_irq(&pool->lock);
2383	wake_dying_workers(&cull_list);
2384	mutex_unlock(&wq_pool_attach_mutex);
2385}
2386
2387static void send_mayday(struct work_struct *work)
2388{
2389	struct pool_workqueue *pwq = get_work_pwq(work);
2390	struct workqueue_struct *wq = pwq->wq;
2391
2392	lockdep_assert_held(&wq_mayday_lock);
2393
2394	if (!wq->rescuer)
2395		return;
2396
2397	/* mayday mayday mayday */
2398	if (list_empty(&pwq->mayday_node)) {
2399		/*
2400		 * If @pwq is for an unbound wq, its base ref may be put at
2401		 * any time due to an attribute change.  Pin @pwq until the
2402		 * rescuer is done with it.
2403		 */
2404		get_pwq(pwq);
2405		list_add_tail(&pwq->mayday_node, &wq->maydays);
2406		wake_up_process(wq->rescuer->task);
2407		pwq->stats[PWQ_STAT_MAYDAY]++;
2408	}
2409}
2410
2411static void pool_mayday_timeout(struct timer_list *t)
2412{
2413	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2414	struct work_struct *work;
2415
2416	raw_spin_lock_irq(&pool->lock);
2417	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2418
2419	if (need_to_create_worker(pool)) {
2420		/*
2421		 * We've been trying to create a new worker but
2422		 * haven't been successful.  We might be hitting an
2423		 * allocation deadlock.  Send distress signals to
2424		 * rescuers.
2425		 */
2426		list_for_each_entry(work, &pool->worklist, entry)
2427			send_mayday(work);
2428	}
2429
2430	raw_spin_unlock(&wq_mayday_lock);
2431	raw_spin_unlock_irq(&pool->lock);
2432
2433	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2434}
2435
2436/**
2437 * maybe_create_worker - create a new worker if necessary
2438 * @pool: pool to create a new worker for
2439 *
2440 * Create a new worker for @pool if necessary.  @pool is guaranteed to
2441 * have at least one idle worker on return from this function.  If
2442 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2443 * sent to all rescuers with works scheduled on @pool to resolve
2444 * possible allocation deadlock.
2445 *
2446 * On return, need_to_create_worker() is guaranteed to be %false and
2447 * may_start_working() %true.
2448 *
2449 * LOCKING:
2450 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2451 * multiple times.  Does GFP_KERNEL allocations.  Called only from
2452 * manager.
2453 */
2454static void maybe_create_worker(struct worker_pool *pool)
2455__releases(&pool->lock)
2456__acquires(&pool->lock)
2457{
2458restart:
2459	raw_spin_unlock_irq(&pool->lock);
2460
2461	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2462	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2463
2464	while (true) {
2465		if (create_worker(pool) || !need_to_create_worker(pool))
2466			break;
2467
2468		schedule_timeout_interruptible(CREATE_COOLDOWN);
2469
2470		if (!need_to_create_worker(pool))
2471			break;
2472	}
2473
2474	del_timer_sync(&pool->mayday_timer);
2475	raw_spin_lock_irq(&pool->lock);
2476	/*
2477	 * This is necessary even after a new worker was just successfully
2478	 * created as @pool->lock was dropped and the new worker might have
2479	 * already become busy.
2480	 */
2481	if (need_to_create_worker(pool))
2482		goto restart;
2483}
2484
2485/**
2486 * manage_workers - manage worker pool
2487 * @worker: self
2488 *
2489 * Assume the manager role and manage the worker pool @worker belongs
2490 * to.  At any given time, there can be only zero or one manager per
2491 * pool.  The exclusion is handled automatically by this function.
2492 *
2493 * The caller can safely start processing works on false return.  On
2494 * true return, it's guaranteed that need_to_create_worker() is false
2495 * and may_start_working() is true.
2496 *
2497 * CONTEXT:
2498 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2499 * multiple times.  Does GFP_KERNEL allocations.
2500 *
2501 * Return:
2502 * %false if the pool doesn't need management and the caller can safely
2503 * start processing works, %true if management function was performed and
2504 * the conditions that the caller verified before calling the function may
2505 * no longer be true.
2506 */
2507static bool manage_workers(struct worker *worker)
2508{
2509	struct worker_pool *pool = worker->pool;
2510
2511	if (pool->flags & POOL_MANAGER_ACTIVE)
2512		return false;
2513
2514	pool->flags |= POOL_MANAGER_ACTIVE;
2515	pool->manager = worker;
2516
2517	maybe_create_worker(pool);
2518
2519	pool->manager = NULL;
2520	pool->flags &= ~POOL_MANAGER_ACTIVE;
2521	rcuwait_wake_up(&manager_wait);
2522	return true;
2523}
2524
2525/**
2526 * process_one_work - process single work
2527 * @worker: self
2528 * @work: work to process
2529 *
2530 * Process @work.  This function contains all the logics necessary to
2531 * process a single work including synchronization against and
2532 * interaction with other workers on the same cpu, queueing and
2533 * flushing.  As long as context requirement is met, any worker can
2534 * call this function to process a work.
2535 *
2536 * CONTEXT:
2537 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2538 */
2539static void process_one_work(struct worker *worker, struct work_struct *work)
2540__releases(&pool->lock)
2541__acquires(&pool->lock)
2542{
2543	struct pool_workqueue *pwq = get_work_pwq(work);
2544	struct worker_pool *pool = worker->pool;
2545	unsigned long work_data;
 
 
2546#ifdef CONFIG_LOCKDEP
2547	/*
2548	 * It is permissible to free the struct work_struct from
2549	 * inside the function that is called from it, this we need to
2550	 * take into account for lockdep too.  To avoid bogus "held
2551	 * lock freed" warnings as well as problems when looking into
2552	 * work->lockdep_map, make a copy and use that here.
2553	 */
2554	struct lockdep_map lockdep_map;
2555
2556	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2557#endif
2558	/* ensure we're on the correct CPU */
2559	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2560		     raw_smp_processor_id() != pool->cpu);
2561
 
 
 
 
 
 
 
 
 
 
 
 
2562	/* claim and dequeue */
2563	debug_work_deactivate(work);
2564	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2565	worker->current_work = work;
2566	worker->current_func = work->func;
2567	worker->current_pwq = pwq;
2568	worker->current_at = worker->task->se.sum_exec_runtime;
2569	work_data = *work_data_bits(work);
2570	worker->current_color = get_work_color(work_data);
2571
2572	/*
2573	 * Record wq name for cmdline and debug reporting, may get
2574	 * overridden through set_worker_desc().
2575	 */
2576	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2577
2578	list_del_init(&work->entry);
2579
2580	/*
2581	 * CPU intensive works don't participate in concurrency management.
2582	 * They're the scheduler's responsibility.  This takes @worker out
2583	 * of concurrency management and the next code block will chain
2584	 * execution of the pending work items.
2585	 */
2586	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
2587		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2588
2589	/*
2590	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
2591	 * since nr_running would always be >= 1 at this point. This is used to
2592	 * chain execution of the pending work items for WORKER_NOT_RUNNING
2593	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
 
2594	 */
2595	kick_pool(pool);
 
2596
2597	/*
2598	 * Record the last pool and clear PENDING which should be the last
2599	 * update to @work.  Also, do this inside @pool->lock so that
2600	 * PENDING and queued state changes happen together while IRQ is
2601	 * disabled.
2602	 */
2603	set_work_pool_and_clear_pending(work, pool->id);
2604
2605	pwq->stats[PWQ_STAT_STARTED]++;
2606	raw_spin_unlock_irq(&pool->lock);
2607
2608	lock_map_acquire(&pwq->wq->lockdep_map);
2609	lock_map_acquire(&lockdep_map);
2610	/*
2611	 * Strictly speaking we should mark the invariant state without holding
2612	 * any locks, that is, before these two lock_map_acquire()'s.
2613	 *
2614	 * However, that would result in:
2615	 *
2616	 *   A(W1)
2617	 *   WFC(C)
2618	 *		A(W1)
2619	 *		C(C)
2620	 *
2621	 * Which would create W1->C->W1 dependencies, even though there is no
2622	 * actual deadlock possible. There are two solutions, using a
2623	 * read-recursive acquire on the work(queue) 'locks', but this will then
2624	 * hit the lockdep limitation on recursive locks, or simply discard
2625	 * these locks.
2626	 *
2627	 * AFAICT there is no possible deadlock scenario between the
2628	 * flush_work() and complete() primitives (except for single-threaded
2629	 * workqueues), so hiding them isn't a problem.
2630	 */
2631	lockdep_invariant_state(true);
2632	trace_workqueue_execute_start(work);
2633	worker->current_func(work);
2634	/*
2635	 * While we must be careful to not use "work" after this, the trace
2636	 * point will only record its address.
2637	 */
2638	trace_workqueue_execute_end(work, worker->current_func);
2639	pwq->stats[PWQ_STAT_COMPLETED]++;
2640	lock_map_release(&lockdep_map);
2641	lock_map_release(&pwq->wq->lockdep_map);
2642
2643	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2644		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2645		       "     last function: %ps\n",
2646		       current->comm, preempt_count(), task_pid_nr(current),
2647		       worker->current_func);
2648		debug_show_held_locks(current);
2649		dump_stack();
2650	}
2651
2652	/*
2653	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2654	 * kernels, where a requeueing work item waiting for something to
2655	 * happen could deadlock with stop_machine as such work item could
2656	 * indefinitely requeue itself while all other CPUs are trapped in
2657	 * stop_machine. At the same time, report a quiescent RCU state so
2658	 * the same condition doesn't freeze RCU.
2659	 */
2660	cond_resched();
2661
2662	raw_spin_lock_irq(&pool->lock);
2663
2664	/*
2665	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
2666	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
2667	 * wq_cpu_intensive_thresh_us. Clear it.
2668	 */
2669	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2670
2671	/* tag the worker for identification in schedule() */
2672	worker->last_func = worker->current_func;
2673
2674	/* we're done with it, release */
2675	hash_del(&worker->hentry);
2676	worker->current_work = NULL;
2677	worker->current_func = NULL;
2678	worker->current_pwq = NULL;
2679	worker->current_color = INT_MAX;
2680	pwq_dec_nr_in_flight(pwq, work_data);
2681}
2682
2683/**
2684 * process_scheduled_works - process scheduled works
2685 * @worker: self
2686 *
2687 * Process all scheduled works.  Please note that the scheduled list
2688 * may change while processing a work, so this function repeatedly
2689 * fetches a work from the top and executes it.
2690 *
2691 * CONTEXT:
2692 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2693 * multiple times.
2694 */
2695static void process_scheduled_works(struct worker *worker)
2696{
2697	struct work_struct *work;
2698	bool first = true;
2699
2700	while ((work = list_first_entry_or_null(&worker->scheduled,
2701						struct work_struct, entry))) {
2702		if (first) {
2703			worker->pool->watchdog_ts = jiffies;
2704			first = false;
2705		}
2706		process_one_work(worker, work);
2707	}
2708}
2709
2710static void set_pf_worker(bool val)
2711{
2712	mutex_lock(&wq_pool_attach_mutex);
2713	if (val)
2714		current->flags |= PF_WQ_WORKER;
2715	else
2716		current->flags &= ~PF_WQ_WORKER;
2717	mutex_unlock(&wq_pool_attach_mutex);
2718}
2719
2720/**
2721 * worker_thread - the worker thread function
2722 * @__worker: self
2723 *
2724 * The worker thread function.  All workers belong to a worker_pool -
2725 * either a per-cpu one or dynamic unbound one.  These workers process all
2726 * work items regardless of their specific target workqueue.  The only
2727 * exception is work items which belong to workqueues with a rescuer which
2728 * will be explained in rescuer_thread().
2729 *
2730 * Return: 0
2731 */
2732static int worker_thread(void *__worker)
2733{
2734	struct worker *worker = __worker;
2735	struct worker_pool *pool = worker->pool;
2736
2737	/* tell the scheduler that this is a workqueue worker */
2738	set_pf_worker(true);
2739woke_up:
2740	raw_spin_lock_irq(&pool->lock);
2741
2742	/* am I supposed to die? */
2743	if (unlikely(worker->flags & WORKER_DIE)) {
2744		raw_spin_unlock_irq(&pool->lock);
 
2745		set_pf_worker(false);
2746
2747		set_task_comm(worker->task, "kworker/dying");
2748		ida_free(&pool->worker_ida, worker->id);
2749		worker_detach_from_pool(worker);
2750		WARN_ON_ONCE(!list_empty(&worker->entry));
2751		kfree(worker);
2752		return 0;
2753	}
2754
2755	worker_leave_idle(worker);
2756recheck:
2757	/* no more worker necessary? */
2758	if (!need_more_worker(pool))
2759		goto sleep;
2760
2761	/* do we need to manage? */
2762	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2763		goto recheck;
2764
2765	/*
2766	 * ->scheduled list can only be filled while a worker is
2767	 * preparing to process a work or actually processing it.
2768	 * Make sure nobody diddled with it while I was sleeping.
2769	 */
2770	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2771
2772	/*
2773	 * Finish PREP stage.  We're guaranteed to have at least one idle
2774	 * worker or that someone else has already assumed the manager
2775	 * role.  This is where @worker starts participating in concurrency
2776	 * management if applicable and concurrency management is restored
2777	 * after being rebound.  See rebind_workers() for details.
2778	 */
2779	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2780
2781	do {
2782		struct work_struct *work =
2783			list_first_entry(&pool->worklist,
2784					 struct work_struct, entry);
2785
2786		if (assign_work(work, worker, NULL))
 
 
 
 
 
 
 
 
2787			process_scheduled_works(worker);
 
2788	} while (keep_working(pool));
2789
2790	worker_set_flags(worker, WORKER_PREP);
2791sleep:
2792	/*
2793	 * pool->lock is held and there's no work to process and no need to
2794	 * manage, sleep.  Workers are woken up only while holding
2795	 * pool->lock or from local cpu, so setting the current state
2796	 * before releasing pool->lock is enough to prevent losing any
2797	 * event.
2798	 */
2799	worker_enter_idle(worker);
2800	__set_current_state(TASK_IDLE);
2801	raw_spin_unlock_irq(&pool->lock);
2802	schedule();
2803	goto woke_up;
2804}
2805
2806/**
2807 * rescuer_thread - the rescuer thread function
2808 * @__rescuer: self
2809 *
2810 * Workqueue rescuer thread function.  There's one rescuer for each
2811 * workqueue which has WQ_MEM_RECLAIM set.
2812 *
2813 * Regular work processing on a pool may block trying to create a new
2814 * worker which uses GFP_KERNEL allocation which has slight chance of
2815 * developing into deadlock if some works currently on the same queue
2816 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2817 * the problem rescuer solves.
2818 *
2819 * When such condition is possible, the pool summons rescuers of all
2820 * workqueues which have works queued on the pool and let them process
2821 * those works so that forward progress can be guaranteed.
2822 *
2823 * This should happen rarely.
2824 *
2825 * Return: 0
2826 */
2827static int rescuer_thread(void *__rescuer)
2828{
2829	struct worker *rescuer = __rescuer;
2830	struct workqueue_struct *wq = rescuer->rescue_wq;
 
2831	bool should_stop;
2832
2833	set_user_nice(current, RESCUER_NICE_LEVEL);
2834
2835	/*
2836	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2837	 * doesn't participate in concurrency management.
2838	 */
2839	set_pf_worker(true);
2840repeat:
2841	set_current_state(TASK_IDLE);
2842
2843	/*
2844	 * By the time the rescuer is requested to stop, the workqueue
2845	 * shouldn't have any work pending, but @wq->maydays may still have
2846	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2847	 * all the work items before the rescuer got to them.  Go through
2848	 * @wq->maydays processing before acting on should_stop so that the
2849	 * list is always empty on exit.
2850	 */
2851	should_stop = kthread_should_stop();
2852
2853	/* see whether any pwq is asking for help */
2854	raw_spin_lock_irq(&wq_mayday_lock);
2855
2856	while (!list_empty(&wq->maydays)) {
2857		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2858					struct pool_workqueue, mayday_node);
2859		struct worker_pool *pool = pwq->pool;
2860		struct work_struct *work, *n;
 
2861
2862		__set_current_state(TASK_RUNNING);
2863		list_del_init(&pwq->mayday_node);
2864
2865		raw_spin_unlock_irq(&wq_mayday_lock);
2866
2867		worker_attach_to_pool(rescuer, pool);
2868
2869		raw_spin_lock_irq(&pool->lock);
2870
2871		/*
2872		 * Slurp in all works issued via this workqueue and
2873		 * process'em.
2874		 */
2875		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2876		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2877			if (get_work_pwq(work) == pwq &&
2878			    assign_work(work, rescuer, &n))
2879				pwq->stats[PWQ_STAT_RESCUED]++;
 
 
 
2880		}
2881
2882		if (!list_empty(&rescuer->scheduled)) {
2883			process_scheduled_works(rescuer);
2884
2885			/*
2886			 * The above execution of rescued work items could
2887			 * have created more to rescue through
2888			 * pwq_activate_first_inactive() or chained
2889			 * queueing.  Let's put @pwq back on mayday list so
2890			 * that such back-to-back work items, which may be
2891			 * being used to relieve memory pressure, don't
2892			 * incur MAYDAY_INTERVAL delay inbetween.
2893			 */
2894			if (pwq->nr_active && need_to_create_worker(pool)) {
2895				raw_spin_lock(&wq_mayday_lock);
2896				/*
2897				 * Queue iff we aren't racing destruction
2898				 * and somebody else hasn't queued it already.
2899				 */
2900				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2901					get_pwq(pwq);
2902					list_add_tail(&pwq->mayday_node, &wq->maydays);
2903				}
2904				raw_spin_unlock(&wq_mayday_lock);
2905			}
2906		}
2907
2908		/*
2909		 * Put the reference grabbed by send_mayday().  @pool won't
2910		 * go away while we're still attached to it.
2911		 */
2912		put_pwq(pwq);
2913
2914		/*
2915		 * Leave this pool. Notify regular workers; otherwise, we end up
2916		 * with 0 concurrency and stalling the execution.
 
2917		 */
2918		kick_pool(pool);
 
2919
2920		raw_spin_unlock_irq(&pool->lock);
2921
2922		worker_detach_from_pool(rescuer);
2923
2924		raw_spin_lock_irq(&wq_mayday_lock);
2925	}
2926
2927	raw_spin_unlock_irq(&wq_mayday_lock);
2928
2929	if (should_stop) {
2930		__set_current_state(TASK_RUNNING);
2931		set_pf_worker(false);
2932		return 0;
2933	}
2934
2935	/* rescuers should never participate in concurrency management */
2936	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2937	schedule();
2938	goto repeat;
2939}
2940
2941/**
2942 * check_flush_dependency - check for flush dependency sanity
2943 * @target_wq: workqueue being flushed
2944 * @target_work: work item being flushed (NULL for workqueue flushes)
2945 *
2946 * %current is trying to flush the whole @target_wq or @target_work on it.
2947 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2948 * reclaiming memory or running on a workqueue which doesn't have
2949 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2950 * a deadlock.
2951 */
2952static void check_flush_dependency(struct workqueue_struct *target_wq,
2953				   struct work_struct *target_work)
2954{
2955	work_func_t target_func = target_work ? target_work->func : NULL;
2956	struct worker *worker;
2957
2958	if (target_wq->flags & WQ_MEM_RECLAIM)
2959		return;
2960
2961	worker = current_wq_worker();
2962
2963	WARN_ONCE(current->flags & PF_MEMALLOC,
2964		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2965		  current->pid, current->comm, target_wq->name, target_func);
2966	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2967			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2968		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2969		  worker->current_pwq->wq->name, worker->current_func,
2970		  target_wq->name, target_func);
2971}
2972
2973struct wq_barrier {
2974	struct work_struct	work;
2975	struct completion	done;
2976	struct task_struct	*task;	/* purely informational */
2977};
2978
2979static void wq_barrier_func(struct work_struct *work)
2980{
2981	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2982	complete(&barr->done);
2983}
2984
2985/**
2986 * insert_wq_barrier - insert a barrier work
2987 * @pwq: pwq to insert barrier into
2988 * @barr: wq_barrier to insert
2989 * @target: target work to attach @barr to
2990 * @worker: worker currently executing @target, NULL if @target is not executing
2991 *
2992 * @barr is linked to @target such that @barr is completed only after
2993 * @target finishes execution.  Please note that the ordering
2994 * guarantee is observed only with respect to @target and on the local
2995 * cpu.
2996 *
2997 * Currently, a queued barrier can't be canceled.  This is because
2998 * try_to_grab_pending() can't determine whether the work to be
2999 * grabbed is at the head of the queue and thus can't clear LINKED
3000 * flag of the previous work while there must be a valid next work
3001 * after a work with LINKED flag set.
3002 *
3003 * Note that when @worker is non-NULL, @target may be modified
3004 * underneath us, so we can't reliably determine pwq from @target.
3005 *
3006 * CONTEXT:
3007 * raw_spin_lock_irq(pool->lock).
3008 */
3009static void insert_wq_barrier(struct pool_workqueue *pwq,
3010			      struct wq_barrier *barr,
3011			      struct work_struct *target, struct worker *worker)
3012{
3013	unsigned int work_flags = 0;
3014	unsigned int work_color;
3015	struct list_head *head;
 
3016
3017	/*
3018	 * debugobject calls are safe here even with pool->lock locked
3019	 * as we know for sure that this will not trigger any of the
3020	 * checks and call back into the fixup functions where we
3021	 * might deadlock.
3022	 */
3023	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
3024	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3025
3026	init_completion_map(&barr->done, &target->lockdep_map);
3027
3028	barr->task = current;
3029
3030	/* The barrier work item does not participate in pwq->nr_active. */
3031	work_flags |= WORK_STRUCT_INACTIVE;
3032
3033	/*
3034	 * If @target is currently being executed, schedule the
3035	 * barrier to the worker; otherwise, put it after @target.
3036	 */
3037	if (worker) {
3038		head = worker->scheduled.next;
3039		work_color = worker->current_color;
3040	} else {
3041		unsigned long *bits = work_data_bits(target);
3042
3043		head = target->entry.next;
3044		/* there can already be other linked works, inherit and set */
3045		work_flags |= *bits & WORK_STRUCT_LINKED;
3046		work_color = get_work_color(*bits);
3047		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3048	}
3049
3050	pwq->nr_in_flight[work_color]++;
3051	work_flags |= work_color_to_flags(work_color);
3052
3053	insert_work(pwq, &barr->work, head, work_flags);
3054}
3055
3056/**
3057 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3058 * @wq: workqueue being flushed
3059 * @flush_color: new flush color, < 0 for no-op
3060 * @work_color: new work color, < 0 for no-op
3061 *
3062 * Prepare pwqs for workqueue flushing.
3063 *
3064 * If @flush_color is non-negative, flush_color on all pwqs should be
3065 * -1.  If no pwq has in-flight commands at the specified color, all
3066 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3067 * has in flight commands, its pwq->flush_color is set to
3068 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3069 * wakeup logic is armed and %true is returned.
3070 *
3071 * The caller should have initialized @wq->first_flusher prior to
3072 * calling this function with non-negative @flush_color.  If
3073 * @flush_color is negative, no flush color update is done and %false
3074 * is returned.
3075 *
3076 * If @work_color is non-negative, all pwqs should have the same
3077 * work_color which is previous to @work_color and all will be
3078 * advanced to @work_color.
3079 *
3080 * CONTEXT:
3081 * mutex_lock(wq->mutex).
3082 *
3083 * Return:
3084 * %true if @flush_color >= 0 and there's something to flush.  %false
3085 * otherwise.
3086 */
3087static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3088				      int flush_color, int work_color)
3089{
3090	bool wait = false;
3091	struct pool_workqueue *pwq;
3092
3093	if (flush_color >= 0) {
3094		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3095		atomic_set(&wq->nr_pwqs_to_flush, 1);
3096	}
3097
3098	for_each_pwq(pwq, wq) {
3099		struct worker_pool *pool = pwq->pool;
3100
3101		raw_spin_lock_irq(&pool->lock);
3102
3103		if (flush_color >= 0) {
3104			WARN_ON_ONCE(pwq->flush_color != -1);
3105
3106			if (pwq->nr_in_flight[flush_color]) {
3107				pwq->flush_color = flush_color;
3108				atomic_inc(&wq->nr_pwqs_to_flush);
3109				wait = true;
3110			}
3111		}
3112
3113		if (work_color >= 0) {
3114			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3115			pwq->work_color = work_color;
3116		}
3117
3118		raw_spin_unlock_irq(&pool->lock);
3119	}
3120
3121	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3122		complete(&wq->first_flusher->done);
3123
3124	return wait;
3125}
3126
3127/**
3128 * __flush_workqueue - ensure that any scheduled work has run to completion.
3129 * @wq: workqueue to flush
3130 *
3131 * This function sleeps until all work items which were queued on entry
3132 * have finished execution, but it is not livelocked by new incoming ones.
3133 */
3134void __flush_workqueue(struct workqueue_struct *wq)
3135{
3136	struct wq_flusher this_flusher = {
3137		.list = LIST_HEAD_INIT(this_flusher.list),
3138		.flush_color = -1,
3139		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3140	};
3141	int next_color;
3142
3143	if (WARN_ON(!wq_online))
3144		return;
3145
3146	lock_map_acquire(&wq->lockdep_map);
3147	lock_map_release(&wq->lockdep_map);
3148
3149	mutex_lock(&wq->mutex);
3150
3151	/*
3152	 * Start-to-wait phase
3153	 */
3154	next_color = work_next_color(wq->work_color);
3155
3156	if (next_color != wq->flush_color) {
3157		/*
3158		 * Color space is not full.  The current work_color
3159		 * becomes our flush_color and work_color is advanced
3160		 * by one.
3161		 */
3162		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3163		this_flusher.flush_color = wq->work_color;
3164		wq->work_color = next_color;
3165
3166		if (!wq->first_flusher) {
3167			/* no flush in progress, become the first flusher */
3168			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3169
3170			wq->first_flusher = &this_flusher;
3171
3172			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3173						       wq->work_color)) {
3174				/* nothing to flush, done */
3175				wq->flush_color = next_color;
3176				wq->first_flusher = NULL;
3177				goto out_unlock;
3178			}
3179		} else {
3180			/* wait in queue */
3181			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3182			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3183			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3184		}
3185	} else {
3186		/*
3187		 * Oops, color space is full, wait on overflow queue.
3188		 * The next flush completion will assign us
3189		 * flush_color and transfer to flusher_queue.
3190		 */
3191		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3192	}
3193
3194	check_flush_dependency(wq, NULL);
3195
3196	mutex_unlock(&wq->mutex);
3197
3198	wait_for_completion(&this_flusher.done);
3199
3200	/*
3201	 * Wake-up-and-cascade phase
3202	 *
3203	 * First flushers are responsible for cascading flushes and
3204	 * handling overflow.  Non-first flushers can simply return.
3205	 */
3206	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3207		return;
3208
3209	mutex_lock(&wq->mutex);
3210
3211	/* we might have raced, check again with mutex held */
3212	if (wq->first_flusher != &this_flusher)
3213		goto out_unlock;
3214
3215	WRITE_ONCE(wq->first_flusher, NULL);
3216
3217	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3218	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3219
3220	while (true) {
3221		struct wq_flusher *next, *tmp;
3222
3223		/* complete all the flushers sharing the current flush color */
3224		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3225			if (next->flush_color != wq->flush_color)
3226				break;
3227			list_del_init(&next->list);
3228			complete(&next->done);
3229		}
3230
3231		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3232			     wq->flush_color != work_next_color(wq->work_color));
3233
3234		/* this flush_color is finished, advance by one */
3235		wq->flush_color = work_next_color(wq->flush_color);
3236
3237		/* one color has been freed, handle overflow queue */
3238		if (!list_empty(&wq->flusher_overflow)) {
3239			/*
3240			 * Assign the same color to all overflowed
3241			 * flushers, advance work_color and append to
3242			 * flusher_queue.  This is the start-to-wait
3243			 * phase for these overflowed flushers.
3244			 */
3245			list_for_each_entry(tmp, &wq->flusher_overflow, list)
3246				tmp->flush_color = wq->work_color;
3247
3248			wq->work_color = work_next_color(wq->work_color);
3249
3250			list_splice_tail_init(&wq->flusher_overflow,
3251					      &wq->flusher_queue);
3252			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3253		}
3254
3255		if (list_empty(&wq->flusher_queue)) {
3256			WARN_ON_ONCE(wq->flush_color != wq->work_color);
3257			break;
3258		}
3259
3260		/*
3261		 * Need to flush more colors.  Make the next flusher
3262		 * the new first flusher and arm pwqs.
3263		 */
3264		WARN_ON_ONCE(wq->flush_color == wq->work_color);
3265		WARN_ON_ONCE(wq->flush_color != next->flush_color);
3266
3267		list_del_init(&next->list);
3268		wq->first_flusher = next;
3269
3270		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3271			break;
3272
3273		/*
3274		 * Meh... this color is already done, clear first
3275		 * flusher and repeat cascading.
3276		 */
3277		wq->first_flusher = NULL;
3278	}
3279
3280out_unlock:
3281	mutex_unlock(&wq->mutex);
3282}
3283EXPORT_SYMBOL(__flush_workqueue);
3284
3285/**
3286 * drain_workqueue - drain a workqueue
3287 * @wq: workqueue to drain
3288 *
3289 * Wait until the workqueue becomes empty.  While draining is in progress,
3290 * only chain queueing is allowed.  IOW, only currently pending or running
3291 * work items on @wq can queue further work items on it.  @wq is flushed
3292 * repeatedly until it becomes empty.  The number of flushing is determined
3293 * by the depth of chaining and should be relatively short.  Whine if it
3294 * takes too long.
3295 */
3296void drain_workqueue(struct workqueue_struct *wq)
3297{
3298	unsigned int flush_cnt = 0;
3299	struct pool_workqueue *pwq;
3300
3301	/*
3302	 * __queue_work() needs to test whether there are drainers, is much
3303	 * hotter than drain_workqueue() and already looks at @wq->flags.
3304	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3305	 */
3306	mutex_lock(&wq->mutex);
3307	if (!wq->nr_drainers++)
3308		wq->flags |= __WQ_DRAINING;
3309	mutex_unlock(&wq->mutex);
3310reflush:
3311	__flush_workqueue(wq);
3312
3313	mutex_lock(&wq->mutex);
3314
3315	for_each_pwq(pwq, wq) {
3316		bool drained;
3317
3318		raw_spin_lock_irq(&pwq->pool->lock);
3319		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3320		raw_spin_unlock_irq(&pwq->pool->lock);
3321
3322		if (drained)
3323			continue;
3324
3325		if (++flush_cnt == 10 ||
3326		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3327			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3328				wq->name, __func__, flush_cnt);
3329
3330		mutex_unlock(&wq->mutex);
3331		goto reflush;
3332	}
3333
3334	if (!--wq->nr_drainers)
3335		wq->flags &= ~__WQ_DRAINING;
3336	mutex_unlock(&wq->mutex);
3337}
3338EXPORT_SYMBOL_GPL(drain_workqueue);
3339
3340static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3341			     bool from_cancel)
3342{
3343	struct worker *worker = NULL;
3344	struct worker_pool *pool;
3345	struct pool_workqueue *pwq;
3346
3347	might_sleep();
3348
3349	rcu_read_lock();
3350	pool = get_work_pool(work);
3351	if (!pool) {
3352		rcu_read_unlock();
3353		return false;
3354	}
3355
3356	raw_spin_lock_irq(&pool->lock);
3357	/* see the comment in try_to_grab_pending() with the same code */
3358	pwq = get_work_pwq(work);
3359	if (pwq) {
3360		if (unlikely(pwq->pool != pool))
3361			goto already_gone;
3362	} else {
3363		worker = find_worker_executing_work(pool, work);
3364		if (!worker)
3365			goto already_gone;
3366		pwq = worker->current_pwq;
3367	}
3368
3369	check_flush_dependency(pwq->wq, work);
3370
3371	insert_wq_barrier(pwq, barr, work, worker);
3372	raw_spin_unlock_irq(&pool->lock);
3373
3374	/*
3375	 * Force a lock recursion deadlock when using flush_work() inside a
3376	 * single-threaded or rescuer equipped workqueue.
3377	 *
3378	 * For single threaded workqueues the deadlock happens when the work
3379	 * is after the work issuing the flush_work(). For rescuer equipped
3380	 * workqueues the deadlock happens when the rescuer stalls, blocking
3381	 * forward progress.
3382	 */
3383	if (!from_cancel &&
3384	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3385		lock_map_acquire(&pwq->wq->lockdep_map);
3386		lock_map_release(&pwq->wq->lockdep_map);
3387	}
3388	rcu_read_unlock();
3389	return true;
3390already_gone:
3391	raw_spin_unlock_irq(&pool->lock);
3392	rcu_read_unlock();
3393	return false;
3394}
3395
3396static bool __flush_work(struct work_struct *work, bool from_cancel)
3397{
3398	struct wq_barrier barr;
3399
3400	if (WARN_ON(!wq_online))
3401		return false;
3402
3403	if (WARN_ON(!work->func))
3404		return false;
3405
3406	lock_map_acquire(&work->lockdep_map);
3407	lock_map_release(&work->lockdep_map);
 
 
3408
3409	if (start_flush_work(work, &barr, from_cancel)) {
3410		wait_for_completion(&barr.done);
3411		destroy_work_on_stack(&barr.work);
3412		return true;
3413	} else {
3414		return false;
3415	}
3416}
3417
3418/**
3419 * flush_work - wait for a work to finish executing the last queueing instance
3420 * @work: the work to flush
3421 *
3422 * Wait until @work has finished execution.  @work is guaranteed to be idle
3423 * on return if it hasn't been requeued since flush started.
3424 *
3425 * Return:
3426 * %true if flush_work() waited for the work to finish execution,
3427 * %false if it was already idle.
3428 */
3429bool flush_work(struct work_struct *work)
3430{
3431	return __flush_work(work, false);
3432}
3433EXPORT_SYMBOL_GPL(flush_work);
3434
3435struct cwt_wait {
3436	wait_queue_entry_t		wait;
3437	struct work_struct	*work;
3438};
3439
3440static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3441{
3442	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3443
3444	if (cwait->work != key)
3445		return 0;
3446	return autoremove_wake_function(wait, mode, sync, key);
3447}
3448
3449static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3450{
3451	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3452	unsigned long flags;
3453	int ret;
3454
3455	do {
3456		ret = try_to_grab_pending(work, is_dwork, &flags);
3457		/*
3458		 * If someone else is already canceling, wait for it to
3459		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3460		 * because we may get scheduled between @work's completion
3461		 * and the other canceling task resuming and clearing
3462		 * CANCELING - flush_work() will return false immediately
3463		 * as @work is no longer busy, try_to_grab_pending() will
3464		 * return -ENOENT as @work is still being canceled and the
3465		 * other canceling task won't be able to clear CANCELING as
3466		 * we're hogging the CPU.
3467		 *
3468		 * Let's wait for completion using a waitqueue.  As this
3469		 * may lead to the thundering herd problem, use a custom
3470		 * wake function which matches @work along with exclusive
3471		 * wait and wakeup.
3472		 */
3473		if (unlikely(ret == -ENOENT)) {
3474			struct cwt_wait cwait;
3475
3476			init_wait(&cwait.wait);
3477			cwait.wait.func = cwt_wakefn;
3478			cwait.work = work;
3479
3480			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3481						  TASK_UNINTERRUPTIBLE);
3482			if (work_is_canceling(work))
3483				schedule();
3484			finish_wait(&cancel_waitq, &cwait.wait);
3485		}
3486	} while (unlikely(ret < 0));
3487
3488	/* tell other tasks trying to grab @work to back off */
3489	mark_work_canceling(work);
3490	local_irq_restore(flags);
3491
3492	/*
3493	 * This allows canceling during early boot.  We know that @work
3494	 * isn't executing.
3495	 */
3496	if (wq_online)
3497		__flush_work(work, true);
3498
3499	clear_work_data(work);
3500
3501	/*
3502	 * Paired with prepare_to_wait() above so that either
3503	 * waitqueue_active() is visible here or !work_is_canceling() is
3504	 * visible there.
3505	 */
3506	smp_mb();
3507	if (waitqueue_active(&cancel_waitq))
3508		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3509
3510	return ret;
3511}
3512
3513/**
3514 * cancel_work_sync - cancel a work and wait for it to finish
3515 * @work: the work to cancel
3516 *
3517 * Cancel @work and wait for its execution to finish.  This function
3518 * can be used even if the work re-queues itself or migrates to
3519 * another workqueue.  On return from this function, @work is
3520 * guaranteed to be not pending or executing on any CPU.
3521 *
3522 * cancel_work_sync(&delayed_work->work) must not be used for
3523 * delayed_work's.  Use cancel_delayed_work_sync() instead.
3524 *
3525 * The caller must ensure that the workqueue on which @work was last
3526 * queued can't be destroyed before this function returns.
3527 *
3528 * Return:
3529 * %true if @work was pending, %false otherwise.
3530 */
3531bool cancel_work_sync(struct work_struct *work)
3532{
3533	return __cancel_work_timer(work, false);
3534}
3535EXPORT_SYMBOL_GPL(cancel_work_sync);
3536
3537/**
3538 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3539 * @dwork: the delayed work to flush
3540 *
3541 * Delayed timer is cancelled and the pending work is queued for
3542 * immediate execution.  Like flush_work(), this function only
3543 * considers the last queueing instance of @dwork.
3544 *
3545 * Return:
3546 * %true if flush_work() waited for the work to finish execution,
3547 * %false if it was already idle.
3548 */
3549bool flush_delayed_work(struct delayed_work *dwork)
3550{
3551	local_irq_disable();
3552	if (del_timer_sync(&dwork->timer))
3553		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3554	local_irq_enable();
3555	return flush_work(&dwork->work);
3556}
3557EXPORT_SYMBOL(flush_delayed_work);
3558
3559/**
3560 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3561 * @rwork: the rcu work to flush
3562 *
3563 * Return:
3564 * %true if flush_rcu_work() waited for the work to finish execution,
3565 * %false if it was already idle.
3566 */
3567bool flush_rcu_work(struct rcu_work *rwork)
3568{
3569	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3570		rcu_barrier();
3571		flush_work(&rwork->work);
3572		return true;
3573	} else {
3574		return flush_work(&rwork->work);
3575	}
3576}
3577EXPORT_SYMBOL(flush_rcu_work);
3578
3579static bool __cancel_work(struct work_struct *work, bool is_dwork)
3580{
3581	unsigned long flags;
3582	int ret;
3583
3584	do {
3585		ret = try_to_grab_pending(work, is_dwork, &flags);
3586	} while (unlikely(ret == -EAGAIN));
3587
3588	if (unlikely(ret < 0))
3589		return false;
3590
3591	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3592	local_irq_restore(flags);
3593	return ret;
3594}
3595
3596/*
3597 * See cancel_delayed_work()
3598 */
3599bool cancel_work(struct work_struct *work)
3600{
3601	return __cancel_work(work, false);
3602}
3603EXPORT_SYMBOL(cancel_work);
3604
3605/**
3606 * cancel_delayed_work - cancel a delayed work
3607 * @dwork: delayed_work to cancel
3608 *
3609 * Kill off a pending delayed_work.
3610 *
3611 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3612 * pending.
3613 *
3614 * Note:
3615 * The work callback function may still be running on return, unless
3616 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3617 * use cancel_delayed_work_sync() to wait on it.
3618 *
3619 * This function is safe to call from any context including IRQ handler.
3620 */
3621bool cancel_delayed_work(struct delayed_work *dwork)
3622{
3623	return __cancel_work(&dwork->work, true);
3624}
3625EXPORT_SYMBOL(cancel_delayed_work);
3626
3627/**
3628 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3629 * @dwork: the delayed work cancel
3630 *
3631 * This is cancel_work_sync() for delayed works.
3632 *
3633 * Return:
3634 * %true if @dwork was pending, %false otherwise.
3635 */
3636bool cancel_delayed_work_sync(struct delayed_work *dwork)
3637{
3638	return __cancel_work_timer(&dwork->work, true);
3639}
3640EXPORT_SYMBOL(cancel_delayed_work_sync);
3641
3642/**
3643 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3644 * @func: the function to call
3645 *
3646 * schedule_on_each_cpu() executes @func on each online CPU using the
3647 * system workqueue and blocks until all CPUs have completed.
3648 * schedule_on_each_cpu() is very slow.
3649 *
3650 * Return:
3651 * 0 on success, -errno on failure.
3652 */
3653int schedule_on_each_cpu(work_func_t func)
3654{
3655	int cpu;
3656	struct work_struct __percpu *works;
3657
3658	works = alloc_percpu(struct work_struct);
3659	if (!works)
3660		return -ENOMEM;
3661
3662	cpus_read_lock();
3663
3664	for_each_online_cpu(cpu) {
3665		struct work_struct *work = per_cpu_ptr(works, cpu);
3666
3667		INIT_WORK(work, func);
3668		schedule_work_on(cpu, work);
3669	}
3670
3671	for_each_online_cpu(cpu)
3672		flush_work(per_cpu_ptr(works, cpu));
3673
3674	cpus_read_unlock();
3675	free_percpu(works);
3676	return 0;
3677}
3678
3679/**
3680 * execute_in_process_context - reliably execute the routine with user context
3681 * @fn:		the function to execute
3682 * @ew:		guaranteed storage for the execute work structure (must
3683 *		be available when the work executes)
3684 *
3685 * Executes the function immediately if process context is available,
3686 * otherwise schedules the function for delayed execution.
3687 *
3688 * Return:	0 - function was executed
3689 *		1 - function was scheduled for execution
3690 */
3691int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3692{
3693	if (!in_interrupt()) {
3694		fn(&ew->work);
3695		return 0;
3696	}
3697
3698	INIT_WORK(&ew->work, fn);
3699	schedule_work(&ew->work);
3700
3701	return 1;
3702}
3703EXPORT_SYMBOL_GPL(execute_in_process_context);
3704
3705/**
3706 * free_workqueue_attrs - free a workqueue_attrs
3707 * @attrs: workqueue_attrs to free
3708 *
3709 * Undo alloc_workqueue_attrs().
3710 */
3711void free_workqueue_attrs(struct workqueue_attrs *attrs)
3712{
3713	if (attrs) {
3714		free_cpumask_var(attrs->cpumask);
3715		free_cpumask_var(attrs->__pod_cpumask);
3716		kfree(attrs);
3717	}
3718}
3719
3720/**
3721 * alloc_workqueue_attrs - allocate a workqueue_attrs
3722 *
3723 * Allocate a new workqueue_attrs, initialize with default settings and
3724 * return it.
3725 *
3726 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3727 */
3728struct workqueue_attrs *alloc_workqueue_attrs(void)
3729{
3730	struct workqueue_attrs *attrs;
3731
3732	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3733	if (!attrs)
3734		goto fail;
3735	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3736		goto fail;
3737	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
3738		goto fail;
3739
3740	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3741	attrs->affn_scope = WQ_AFFN_DFL;
3742	return attrs;
3743fail:
3744	free_workqueue_attrs(attrs);
3745	return NULL;
3746}
3747
3748static void copy_workqueue_attrs(struct workqueue_attrs *to,
3749				 const struct workqueue_attrs *from)
3750{
3751	to->nice = from->nice;
3752	cpumask_copy(to->cpumask, from->cpumask);
3753	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
3754	to->affn_strict = from->affn_strict;
3755
3756	/*
3757	 * Unlike hash and equality test, copying shouldn't ignore wq-only
3758	 * fields as copying is used for both pool and wq attrs. Instead,
3759	 * get_unbound_pool() explicitly clears the fields.
3760	 */
3761	to->affn_scope = from->affn_scope;
3762	to->ordered = from->ordered;
3763}
3764
3765/*
3766 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
3767 * comments in 'struct workqueue_attrs' definition.
3768 */
3769static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
3770{
3771	attrs->affn_scope = WQ_AFFN_NR_TYPES;
3772	attrs->ordered = false;
3773}
3774
3775/* hash value of the content of @attr */
3776static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3777{
3778	u32 hash = 0;
3779
3780	hash = jhash_1word(attrs->nice, hash);
3781	hash = jhash(cpumask_bits(attrs->cpumask),
3782		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3783	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
3784		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3785	hash = jhash_1word(attrs->affn_strict, hash);
3786	return hash;
3787}
3788
3789/* content equality test */
3790static bool wqattrs_equal(const struct workqueue_attrs *a,
3791			  const struct workqueue_attrs *b)
3792{
3793	if (a->nice != b->nice)
3794		return false;
3795	if (!cpumask_equal(a->cpumask, b->cpumask))
3796		return false;
3797	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
3798		return false;
3799	if (a->affn_strict != b->affn_strict)
3800		return false;
3801	return true;
3802}
3803
3804/* Update @attrs with actually available CPUs */
3805static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
3806				      const cpumask_t *unbound_cpumask)
3807{
3808	/*
3809	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
3810	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
3811	 * @unbound_cpumask.
3812	 */
3813	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
3814	if (unlikely(cpumask_empty(attrs->cpumask)))
3815		cpumask_copy(attrs->cpumask, unbound_cpumask);
3816}
3817
3818/* find wq_pod_type to use for @attrs */
3819static const struct wq_pod_type *
3820wqattrs_pod_type(const struct workqueue_attrs *attrs)
3821{
3822	enum wq_affn_scope scope;
3823	struct wq_pod_type *pt;
3824
3825	/* to synchronize access to wq_affn_dfl */
3826	lockdep_assert_held(&wq_pool_mutex);
3827
3828	if (attrs->affn_scope == WQ_AFFN_DFL)
3829		scope = wq_affn_dfl;
3830	else
3831		scope = attrs->affn_scope;
3832
3833	pt = &wq_pod_types[scope];
3834
3835	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
3836	    likely(pt->nr_pods))
3837		return pt;
3838
3839	/*
3840	 * Before workqueue_init_topology(), only SYSTEM is available which is
3841	 * initialized in workqueue_init_early().
3842	 */
3843	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
3844	BUG_ON(!pt->nr_pods);
3845	return pt;
3846}
3847
3848/**
3849 * init_worker_pool - initialize a newly zalloc'd worker_pool
3850 * @pool: worker_pool to initialize
3851 *
3852 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3853 *
3854 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3855 * inside @pool proper are initialized and put_unbound_pool() can be called
3856 * on @pool safely to release it.
3857 */
3858static int init_worker_pool(struct worker_pool *pool)
3859{
3860	raw_spin_lock_init(&pool->lock);
3861	pool->id = -1;
3862	pool->cpu = -1;
3863	pool->node = NUMA_NO_NODE;
3864	pool->flags |= POOL_DISASSOCIATED;
3865	pool->watchdog_ts = jiffies;
3866	INIT_LIST_HEAD(&pool->worklist);
3867	INIT_LIST_HEAD(&pool->idle_list);
3868	hash_init(pool->busy_hash);
3869
3870	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3871	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
3872
3873	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3874
3875	INIT_LIST_HEAD(&pool->workers);
3876	INIT_LIST_HEAD(&pool->dying_workers);
3877
3878	ida_init(&pool->worker_ida);
3879	INIT_HLIST_NODE(&pool->hash_node);
3880	pool->refcnt = 1;
3881
3882	/* shouldn't fail above this point */
3883	pool->attrs = alloc_workqueue_attrs();
3884	if (!pool->attrs)
3885		return -ENOMEM;
3886
3887	wqattrs_clear_for_pool(pool->attrs);
3888
3889	return 0;
3890}
3891
3892#ifdef CONFIG_LOCKDEP
3893static void wq_init_lockdep(struct workqueue_struct *wq)
3894{
3895	char *lock_name;
3896
3897	lockdep_register_key(&wq->key);
3898	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3899	if (!lock_name)
3900		lock_name = wq->name;
3901
3902	wq->lock_name = lock_name;
3903	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3904}
3905
3906static void wq_unregister_lockdep(struct workqueue_struct *wq)
3907{
3908	lockdep_unregister_key(&wq->key);
3909}
3910
3911static void wq_free_lockdep(struct workqueue_struct *wq)
3912{
3913	if (wq->lock_name != wq->name)
3914		kfree(wq->lock_name);
3915}
3916#else
3917static void wq_init_lockdep(struct workqueue_struct *wq)
3918{
3919}
3920
3921static void wq_unregister_lockdep(struct workqueue_struct *wq)
3922{
3923}
3924
3925static void wq_free_lockdep(struct workqueue_struct *wq)
3926{
3927}
3928#endif
3929
3930static void rcu_free_wq(struct rcu_head *rcu)
3931{
3932	struct workqueue_struct *wq =
3933		container_of(rcu, struct workqueue_struct, rcu);
3934
3935	wq_free_lockdep(wq);
3936	free_percpu(wq->cpu_pwq);
3937	free_workqueue_attrs(wq->unbound_attrs);
 
 
 
 
 
3938	kfree(wq);
3939}
3940
3941static void rcu_free_pool(struct rcu_head *rcu)
3942{
3943	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3944
3945	ida_destroy(&pool->worker_ida);
3946	free_workqueue_attrs(pool->attrs);
3947	kfree(pool);
3948}
3949
3950/**
3951 * put_unbound_pool - put a worker_pool
3952 * @pool: worker_pool to put
3953 *
3954 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3955 * safe manner.  get_unbound_pool() calls this function on its failure path
3956 * and this function should be able to release pools which went through,
3957 * successfully or not, init_worker_pool().
3958 *
3959 * Should be called with wq_pool_mutex held.
3960 */
3961static void put_unbound_pool(struct worker_pool *pool)
3962{
3963	DECLARE_COMPLETION_ONSTACK(detach_completion);
3964	struct worker *worker;
3965	LIST_HEAD(cull_list);
3966
3967	lockdep_assert_held(&wq_pool_mutex);
3968
3969	if (--pool->refcnt)
3970		return;
3971
3972	/* sanity checks */
3973	if (WARN_ON(!(pool->cpu < 0)) ||
3974	    WARN_ON(!list_empty(&pool->worklist)))
3975		return;
3976
3977	/* release id and unhash */
3978	if (pool->id >= 0)
3979		idr_remove(&worker_pool_idr, pool->id);
3980	hash_del(&pool->hash_node);
3981
3982	/*
3983	 * Become the manager and destroy all workers.  This prevents
3984	 * @pool's workers from blocking on attach_mutex.  We're the last
3985	 * manager and @pool gets freed with the flag set.
3986	 *
3987	 * Having a concurrent manager is quite unlikely to happen as we can
3988	 * only get here with
3989	 *   pwq->refcnt == pool->refcnt == 0
3990	 * which implies no work queued to the pool, which implies no worker can
3991	 * become the manager. However a worker could have taken the role of
3992	 * manager before the refcnts dropped to 0, since maybe_create_worker()
3993	 * drops pool->lock
3994	 */
3995	while (true) {
3996		rcuwait_wait_event(&manager_wait,
3997				   !(pool->flags & POOL_MANAGER_ACTIVE),
3998				   TASK_UNINTERRUPTIBLE);
3999
4000		mutex_lock(&wq_pool_attach_mutex);
4001		raw_spin_lock_irq(&pool->lock);
4002		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4003			pool->flags |= POOL_MANAGER_ACTIVE;
4004			break;
4005		}
4006		raw_spin_unlock_irq(&pool->lock);
4007		mutex_unlock(&wq_pool_attach_mutex);
4008	}
4009
4010	while ((worker = first_idle_worker(pool)))
4011		set_worker_dying(worker, &cull_list);
4012	WARN_ON(pool->nr_workers || pool->nr_idle);
4013	raw_spin_unlock_irq(&pool->lock);
4014
4015	wake_dying_workers(&cull_list);
4016
4017	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
 
4018		pool->detach_completion = &detach_completion;
4019	mutex_unlock(&wq_pool_attach_mutex);
4020
4021	if (pool->detach_completion)
4022		wait_for_completion(pool->detach_completion);
4023
4024	/* shut down the timers */
4025	del_timer_sync(&pool->idle_timer);
4026	cancel_work_sync(&pool->idle_cull_work);
4027	del_timer_sync(&pool->mayday_timer);
4028
4029	/* RCU protected to allow dereferences from get_work_pool() */
4030	call_rcu(&pool->rcu, rcu_free_pool);
4031}
4032
4033/**
4034 * get_unbound_pool - get a worker_pool with the specified attributes
4035 * @attrs: the attributes of the worker_pool to get
4036 *
4037 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4038 * reference count and return it.  If there already is a matching
4039 * worker_pool, it will be used; otherwise, this function attempts to
4040 * create a new one.
4041 *
4042 * Should be called with wq_pool_mutex held.
4043 *
4044 * Return: On success, a worker_pool with the same attributes as @attrs.
4045 * On failure, %NULL.
4046 */
4047static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4048{
4049	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4050	u32 hash = wqattrs_hash(attrs);
4051	struct worker_pool *pool;
4052	int pod, node = NUMA_NO_NODE;
 
4053
4054	lockdep_assert_held(&wq_pool_mutex);
4055
4056	/* do we already have a matching pool? */
4057	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4058		if (wqattrs_equal(pool->attrs, attrs)) {
4059			pool->refcnt++;
4060			return pool;
4061		}
4062	}
4063
4064	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4065	for (pod = 0; pod < pt->nr_pods; pod++) {
4066		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4067			node = pt->pod_node[pod];
4068			break;
 
 
 
4069		}
4070	}
4071
4072	/* nope, create a new one */
4073	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4074	if (!pool || init_worker_pool(pool) < 0)
4075		goto fail;
4076
4077	pool->node = node;
4078	copy_workqueue_attrs(pool->attrs, attrs);
4079	wqattrs_clear_for_pool(pool->attrs);
 
 
 
 
 
 
4080
4081	if (worker_pool_assign_id(pool) < 0)
4082		goto fail;
4083
4084	/* create and start the initial worker */
4085	if (wq_online && !create_worker(pool))
4086		goto fail;
4087
4088	/* install */
4089	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4090
4091	return pool;
4092fail:
4093	if (pool)
4094		put_unbound_pool(pool);
4095	return NULL;
4096}
4097
4098static void rcu_free_pwq(struct rcu_head *rcu)
4099{
4100	kmem_cache_free(pwq_cache,
4101			container_of(rcu, struct pool_workqueue, rcu));
4102}
4103
4104/*
4105 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4106 * refcnt and needs to be destroyed.
4107 */
4108static void pwq_release_workfn(struct kthread_work *work)
4109{
4110	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4111						  release_work);
4112	struct workqueue_struct *wq = pwq->wq;
4113	struct worker_pool *pool = pwq->pool;
4114	bool is_last = false;
4115
4116	/*
4117	 * When @pwq is not linked, it doesn't hold any reference to the
4118	 * @wq, and @wq is invalid to access.
4119	 */
4120	if (!list_empty(&pwq->pwqs_node)) {
4121		mutex_lock(&wq->mutex);
4122		list_del_rcu(&pwq->pwqs_node);
4123		is_last = list_empty(&wq->pwqs);
4124		mutex_unlock(&wq->mutex);
4125	}
4126
4127	if (wq->flags & WQ_UNBOUND) {
4128		mutex_lock(&wq_pool_mutex);
4129		put_unbound_pool(pool);
4130		mutex_unlock(&wq_pool_mutex);
4131	}
 
 
 
4132
4133	call_rcu(&pwq->rcu, rcu_free_pwq);
4134
4135	/*
4136	 * If we're the last pwq going away, @wq is already dead and no one
4137	 * is gonna access it anymore.  Schedule RCU free.
4138	 */
4139	if (is_last) {
4140		wq_unregister_lockdep(wq);
4141		call_rcu(&wq->rcu, rcu_free_wq);
4142	}
4143}
4144
4145/**
4146 * pwq_adjust_max_active - update a pwq's max_active to the current setting
4147 * @pwq: target pool_workqueue
4148 *
4149 * If @pwq isn't freezing, set @pwq->max_active to the associated
4150 * workqueue's saved_max_active and activate inactive work items
4151 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
4152 */
4153static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4154{
4155	struct workqueue_struct *wq = pwq->wq;
4156	bool freezable = wq->flags & WQ_FREEZABLE;
4157	unsigned long flags;
4158
4159	/* for @wq->saved_max_active */
4160	lockdep_assert_held(&wq->mutex);
4161
4162	/* fast exit for non-freezable wqs */
4163	if (!freezable && pwq->max_active == wq->saved_max_active)
4164		return;
4165
4166	/* this function can be called during early boot w/ irq disabled */
4167	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4168
4169	/*
4170	 * During [un]freezing, the caller is responsible for ensuring that
4171	 * this function is called at least once after @workqueue_freezing
4172	 * is updated and visible.
4173	 */
4174	if (!freezable || !workqueue_freezing) {
4175		pwq->max_active = wq->saved_max_active;
4176
4177		while (!list_empty(&pwq->inactive_works) &&
4178		       pwq->nr_active < pwq->max_active)
4179			pwq_activate_first_inactive(pwq);
4180
4181		kick_pool(pwq->pool);
 
 
 
 
4182	} else {
4183		pwq->max_active = 0;
4184	}
4185
4186	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4187}
4188
4189/* initialize newly allocated @pwq which is associated with @wq and @pool */
4190static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4191		     struct worker_pool *pool)
4192{
4193	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
4194
4195	memset(pwq, 0, sizeof(*pwq));
4196
4197	pwq->pool = pool;
4198	pwq->wq = wq;
4199	pwq->flush_color = -1;
4200	pwq->refcnt = 1;
4201	INIT_LIST_HEAD(&pwq->inactive_works);
4202	INIT_LIST_HEAD(&pwq->pwqs_node);
4203	INIT_LIST_HEAD(&pwq->mayday_node);
4204	kthread_init_work(&pwq->release_work, pwq_release_workfn);
4205}
4206
4207/* sync @pwq with the current state of its associated wq and link it */
4208static void link_pwq(struct pool_workqueue *pwq)
4209{
4210	struct workqueue_struct *wq = pwq->wq;
4211
4212	lockdep_assert_held(&wq->mutex);
4213
4214	/* may be called multiple times, ignore if already linked */
4215	if (!list_empty(&pwq->pwqs_node))
4216		return;
4217
4218	/* set the matching work_color */
4219	pwq->work_color = wq->work_color;
4220
4221	/* sync max_active to the current setting */
4222	pwq_adjust_max_active(pwq);
4223
4224	/* link in @pwq */
4225	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4226}
4227
4228/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4229static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4230					const struct workqueue_attrs *attrs)
4231{
4232	struct worker_pool *pool;
4233	struct pool_workqueue *pwq;
4234
4235	lockdep_assert_held(&wq_pool_mutex);
4236
4237	pool = get_unbound_pool(attrs);
4238	if (!pool)
4239		return NULL;
4240
4241	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4242	if (!pwq) {
4243		put_unbound_pool(pool);
4244		return NULL;
4245	}
4246
4247	init_pwq(pwq, wq, pool);
4248	return pwq;
4249}
4250
4251/**
4252 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
4253 * @attrs: the wq_attrs of the default pwq of the target workqueue
4254 * @cpu: the target CPU
4255 * @cpu_going_down: if >= 0, the CPU to consider as offline
 
4256 *
4257 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4258 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
4259 * The result is stored in @attrs->__pod_cpumask.
4260 *
4261 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4262 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4263 * intersection of the possible CPUs of @pod and @attrs->cpumask.
 
4264 *
4265 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
 
 
 
 
4266 */
4267static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4268				int cpu_going_down)
4269{
4270	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4271	int pod = pt->cpu_pod[cpu];
4272
4273	/* does @pod have any online CPUs @attrs wants? */
4274	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
4275	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
4276	if (cpu_going_down >= 0)
4277		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
4278
4279	if (cpumask_empty(attrs->__pod_cpumask)) {
4280		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
4281		return;
4282	}
4283
4284	/* yeap, return possible CPUs in @pod that @attrs wants */
4285	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
4286
4287	if (cpumask_empty(attrs->__pod_cpumask))
4288		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4289				"possible intersect\n");
 
 
 
 
 
 
 
 
4290}
4291
4292/* install @pwq into @wq's cpu_pwq and return the old pwq */
4293static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4294					int cpu, struct pool_workqueue *pwq)
 
4295{
4296	struct pool_workqueue *old_pwq;
4297
4298	lockdep_assert_held(&wq_pool_mutex);
4299	lockdep_assert_held(&wq->mutex);
4300
4301	/* link_pwq() can handle duplicate calls */
4302	link_pwq(pwq);
4303
4304	old_pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4305	rcu_assign_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu), pwq);
4306	return old_pwq;
4307}
4308
4309/* context to store the prepared attrs & pwqs before applying */
4310struct apply_wqattrs_ctx {
4311	struct workqueue_struct	*wq;		/* target workqueue */
4312	struct workqueue_attrs	*attrs;		/* attrs to apply */
4313	struct list_head	list;		/* queued for batching commit */
4314	struct pool_workqueue	*dfl_pwq;
4315	struct pool_workqueue	*pwq_tbl[];
4316};
4317
4318/* free the resources after success or abort */
4319static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4320{
4321	if (ctx) {
4322		int cpu;
4323
4324		for_each_possible_cpu(cpu)
4325			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
4326		put_pwq_unlocked(ctx->dfl_pwq);
4327
4328		free_workqueue_attrs(ctx->attrs);
4329
4330		kfree(ctx);
4331	}
4332}
4333
4334/* allocate the attrs and pwqs for later installation */
4335static struct apply_wqattrs_ctx *
4336apply_wqattrs_prepare(struct workqueue_struct *wq,
4337		      const struct workqueue_attrs *attrs,
4338		      const cpumask_var_t unbound_cpumask)
4339{
4340	struct apply_wqattrs_ctx *ctx;
4341	struct workqueue_attrs *new_attrs;
4342	int cpu;
4343
4344	lockdep_assert_held(&wq_pool_mutex);
4345
4346	if (WARN_ON(attrs->affn_scope < 0 ||
4347		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4348		return ERR_PTR(-EINVAL);
4349
4350	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
4351
4352	new_attrs = alloc_workqueue_attrs();
4353	if (!ctx || !new_attrs)
 
4354		goto out_free;
4355
4356	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4357	 * If something goes wrong during CPU up/down, we'll fall back to
4358	 * the default pwq covering whole @attrs->cpumask.  Always create
4359	 * it even if we don't use it immediately.
4360	 */
4361	copy_workqueue_attrs(new_attrs, attrs);
4362	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
4363	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4364	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4365	if (!ctx->dfl_pwq)
4366		goto out_free;
4367
4368	for_each_possible_cpu(cpu) {
4369		if (new_attrs->ordered) {
4370			ctx->dfl_pwq->refcnt++;
4371			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4372		} else {
4373			wq_calc_pod_cpumask(new_attrs, cpu, -1);
4374			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
4375			if (!ctx->pwq_tbl[cpu])
4376				goto out_free;
 
 
 
4377		}
4378	}
4379
4380	/* save the user configured attrs and sanitize it. */
4381	copy_workqueue_attrs(new_attrs, attrs);
4382	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4383	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4384	ctx->attrs = new_attrs;
4385
4386	ctx->wq = wq;
 
4387	return ctx;
4388
4389out_free:
 
4390	free_workqueue_attrs(new_attrs);
4391	apply_wqattrs_cleanup(ctx);
4392	return ERR_PTR(-ENOMEM);
4393}
4394
4395/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4396static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4397{
4398	int cpu;
4399
4400	/* all pwqs have been created successfully, let's install'em */
4401	mutex_lock(&ctx->wq->mutex);
4402
4403	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4404
4405	/* save the previous pwq and install the new one */
4406	for_each_possible_cpu(cpu)
4407		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
4408							ctx->pwq_tbl[cpu]);
4409
4410	/* @dfl_pwq might not have been used, ensure it's linked */
4411	link_pwq(ctx->dfl_pwq);
4412	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4413
4414	mutex_unlock(&ctx->wq->mutex);
4415}
4416
 
 
 
 
 
 
 
 
 
 
 
 
 
4417static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4418					const struct workqueue_attrs *attrs)
4419{
4420	struct apply_wqattrs_ctx *ctx;
4421
4422	/* only unbound workqueues can change attributes */
4423	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4424		return -EINVAL;
4425
4426	/* creating multiple pwqs breaks ordering guarantee */
4427	if (!list_empty(&wq->pwqs)) {
4428		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4429			return -EINVAL;
4430
4431		wq->flags &= ~__WQ_ORDERED;
4432	}
4433
4434	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4435	if (IS_ERR(ctx))
4436		return PTR_ERR(ctx);
4437
4438	/* the ctx has been prepared successfully, let's commit it */
4439	apply_wqattrs_commit(ctx);
4440	apply_wqattrs_cleanup(ctx);
4441
4442	return 0;
4443}
4444
4445/**
4446 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4447 * @wq: the target workqueue
4448 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4449 *
4450 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
4451 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
4452 * work items are affine to the pod it was issued on. Older pwqs are released as
4453 * in-flight work items finish. Note that a work item which repeatedly requeues
4454 * itself back-to-back will stay on its current pwq.
 
4455 *
4456 * Performs GFP_KERNEL allocations.
4457 *
4458 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4459 *
4460 * Return: 0 on success and -errno on failure.
4461 */
4462int apply_workqueue_attrs(struct workqueue_struct *wq,
4463			  const struct workqueue_attrs *attrs)
4464{
4465	int ret;
4466
4467	lockdep_assert_cpus_held();
4468
4469	mutex_lock(&wq_pool_mutex);
4470	ret = apply_workqueue_attrs_locked(wq, attrs);
4471	mutex_unlock(&wq_pool_mutex);
4472
4473	return ret;
4474}
4475
4476/**
4477 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4478 * @wq: the target workqueue
4479 * @cpu: the CPU to update pool association for
4480 * @hotplug_cpu: the CPU coming up or going down
4481 * @online: whether @cpu is coming up or going down
4482 *
4483 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4484 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
4485 * @wq accordingly.
4486 *
4487 *
4488 * If pod affinity can't be adjusted due to memory allocation failure, it falls
4489 * back to @wq->dfl_pwq which may not be optimal but is always correct.
4490 *
4491 * Note that when the last allowed CPU of a pod goes offline for a workqueue
4492 * with a cpumask spanning multiple pods, the workers which were already
4493 * executing the work items for the workqueue will lose their CPU affinity and
4494 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
4495 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
4496 * responsibility to flush the work item from CPU_DOWN_PREPARE.
 
4497 */
4498static void wq_update_pod(struct workqueue_struct *wq, int cpu,
4499			  int hotplug_cpu, bool online)
4500{
4501	int off_cpu = online ? -1 : hotplug_cpu;
 
4502	struct pool_workqueue *old_pwq = NULL, *pwq;
4503	struct workqueue_attrs *target_attrs;
 
4504
4505	lockdep_assert_held(&wq_pool_mutex);
4506
4507	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
 
4508		return;
4509
4510	/*
4511	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4512	 * Let's use a preallocated one.  The following buf is protected by
4513	 * CPU hotplug exclusion.
4514	 */
4515	target_attrs = wq_update_pod_attrs_buf;
 
4516
4517	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4518	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4519
4520	/* nothing to do if the target cpumask matches the current pwq */
4521	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
4522	pwq = rcu_dereference_protected(*per_cpu_ptr(wq->cpu_pwq, cpu),
4523					lockdep_is_held(&wq_pool_mutex));
4524	if (wqattrs_equal(target_attrs, pwq->pool->attrs))
4525		return;
 
 
 
 
 
 
4526
4527	/* create a new pwq */
4528	pwq = alloc_unbound_pwq(wq, target_attrs);
4529	if (!pwq) {
4530		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
4531			wq->name);
4532		goto use_dfl_pwq;
4533	}
4534
4535	/* Install the new pwq. */
4536	mutex_lock(&wq->mutex);
4537	old_pwq = install_unbound_pwq(wq, cpu, pwq);
4538	goto out_unlock;
4539
4540use_dfl_pwq:
4541	mutex_lock(&wq->mutex);
4542	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4543	get_pwq(wq->dfl_pwq);
4544	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4545	old_pwq = install_unbound_pwq(wq, cpu, wq->dfl_pwq);
4546out_unlock:
4547	mutex_unlock(&wq->mutex);
4548	put_pwq_unlocked(old_pwq);
4549}
4550
4551static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4552{
4553	bool highpri = wq->flags & WQ_HIGHPRI;
4554	int cpu, ret;
4555
4556	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
4557	if (!wq->cpu_pwq)
4558		goto enomem;
4559
4560	if (!(wq->flags & WQ_UNBOUND)) {
 
 
 
 
4561		for_each_possible_cpu(cpu) {
4562			struct pool_workqueue **pwq_p =
4563				per_cpu_ptr(wq->cpu_pwq, cpu);
4564			struct worker_pool *pool =
4565				&(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]);
4566
4567			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
4568						       pool->node);
4569			if (!*pwq_p)
4570				goto enomem;
4571
4572			init_pwq(*pwq_p, wq, pool);
4573
4574			mutex_lock(&wq->mutex);
4575			link_pwq(*pwq_p);
4576			mutex_unlock(&wq->mutex);
4577		}
4578		return 0;
4579	}
4580
4581	cpus_read_lock();
4582	if (wq->flags & __WQ_ORDERED) {
4583		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4584		/* there should only be single pwq for ordering guarantee */
4585		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4586			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4587		     "ordering guarantee broken for workqueue %s\n", wq->name);
4588	} else {
4589		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4590	}
4591	cpus_read_unlock();
4592
4593	/* for unbound pwq, flush the pwq_release_worker ensures that the
4594	 * pwq_release_workfn() completes before calling kfree(wq).
4595	 */
4596	if (ret)
4597		kthread_flush_worker(pwq_release_worker);
4598
4599	return ret;
4600
4601enomem:
4602	if (wq->cpu_pwq) {
4603		for_each_possible_cpu(cpu) {
4604			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4605
4606			if (pwq)
4607				kmem_cache_free(pwq_cache, pwq);
4608		}
4609		free_percpu(wq->cpu_pwq);
4610		wq->cpu_pwq = NULL;
4611	}
4612	return -ENOMEM;
4613}
4614
4615static int wq_clamp_max_active(int max_active, unsigned int flags,
4616			       const char *name)
4617{
4618	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
 
 
4619		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4620			max_active, name, 1, WQ_MAX_ACTIVE);
4621
4622	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
4623}
4624
4625/*
4626 * Workqueues which may be used during memory reclaim should have a rescuer
4627 * to guarantee forward progress.
4628 */
4629static int init_rescuer(struct workqueue_struct *wq)
4630{
4631	struct worker *rescuer;
4632	int ret;
4633
4634	if (!(wq->flags & WQ_MEM_RECLAIM))
4635		return 0;
4636
4637	rescuer = alloc_worker(NUMA_NO_NODE);
4638	if (!rescuer) {
4639		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
4640		       wq->name);
4641		return -ENOMEM;
4642	}
4643
4644	rescuer->rescue_wq = wq;
4645	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
4646	if (IS_ERR(rescuer->task)) {
4647		ret = PTR_ERR(rescuer->task);
4648		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
4649		       wq->name, ERR_PTR(ret));
4650		kfree(rescuer);
4651		return ret;
4652	}
4653
4654	wq->rescuer = rescuer;
4655	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4656	wake_up_process(rescuer->task);
4657
4658	return 0;
4659}
4660
4661__printf(1, 4)
4662struct workqueue_struct *alloc_workqueue(const char *fmt,
4663					 unsigned int flags,
4664					 int max_active, ...)
4665{
 
4666	va_list args;
4667	struct workqueue_struct *wq;
4668	struct pool_workqueue *pwq;
4669
4670	/*
4671	 * Unbound && max_active == 1 used to imply ordered, which is no longer
4672	 * the case on many machines due to per-pod pools. While
4673	 * alloc_ordered_workqueue() is the right way to create an ordered
4674	 * workqueue, keep the previous behavior to avoid subtle breakages.
 
4675	 */
4676	if ((flags & WQ_UNBOUND) && max_active == 1)
4677		flags |= __WQ_ORDERED;
4678
4679	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4680	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4681		flags |= WQ_UNBOUND;
4682
4683	/* allocate wq and format name */
4684	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
 
 
 
4685	if (!wq)
4686		return NULL;
4687
4688	if (flags & WQ_UNBOUND) {
4689		wq->unbound_attrs = alloc_workqueue_attrs();
4690		if (!wq->unbound_attrs)
4691			goto err_free_wq;
4692	}
4693
4694	va_start(args, max_active);
4695	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4696	va_end(args);
4697
4698	max_active = max_active ?: WQ_DFL_ACTIVE;
4699	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4700
4701	/* init wq */
4702	wq->flags = flags;
4703	wq->saved_max_active = max_active;
4704	mutex_init(&wq->mutex);
4705	atomic_set(&wq->nr_pwqs_to_flush, 0);
4706	INIT_LIST_HEAD(&wq->pwqs);
4707	INIT_LIST_HEAD(&wq->flusher_queue);
4708	INIT_LIST_HEAD(&wq->flusher_overflow);
4709	INIT_LIST_HEAD(&wq->maydays);
4710
4711	wq_init_lockdep(wq);
4712	INIT_LIST_HEAD(&wq->list);
4713
4714	if (alloc_and_link_pwqs(wq) < 0)
4715		goto err_unreg_lockdep;
4716
4717	if (wq_online && init_rescuer(wq) < 0)
4718		goto err_destroy;
4719
4720	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4721		goto err_destroy;
4722
4723	/*
4724	 * wq_pool_mutex protects global freeze state and workqueues list.
4725	 * Grab it, adjust max_active and add the new @wq to workqueues
4726	 * list.
4727	 */
4728	mutex_lock(&wq_pool_mutex);
4729
4730	mutex_lock(&wq->mutex);
4731	for_each_pwq(pwq, wq)
4732		pwq_adjust_max_active(pwq);
4733	mutex_unlock(&wq->mutex);
4734
4735	list_add_tail_rcu(&wq->list, &workqueues);
4736
4737	mutex_unlock(&wq_pool_mutex);
4738
4739	return wq;
4740
4741err_unreg_lockdep:
4742	wq_unregister_lockdep(wq);
4743	wq_free_lockdep(wq);
4744err_free_wq:
4745	free_workqueue_attrs(wq->unbound_attrs);
4746	kfree(wq);
4747	return NULL;
4748err_destroy:
4749	destroy_workqueue(wq);
4750	return NULL;
4751}
4752EXPORT_SYMBOL_GPL(alloc_workqueue);
4753
4754static bool pwq_busy(struct pool_workqueue *pwq)
4755{
4756	int i;
4757
4758	for (i = 0; i < WORK_NR_COLORS; i++)
4759		if (pwq->nr_in_flight[i])
4760			return true;
4761
4762	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4763		return true;
4764	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4765		return true;
4766
4767	return false;
4768}
4769
4770/**
4771 * destroy_workqueue - safely terminate a workqueue
4772 * @wq: target workqueue
4773 *
4774 * Safely destroy a workqueue. All work currently pending will be done first.
4775 */
4776void destroy_workqueue(struct workqueue_struct *wq)
4777{
4778	struct pool_workqueue *pwq;
4779	int cpu;
4780
4781	/*
4782	 * Remove it from sysfs first so that sanity check failure doesn't
4783	 * lead to sysfs name conflicts.
4784	 */
4785	workqueue_sysfs_unregister(wq);
4786
4787	/* mark the workqueue destruction is in progress */
4788	mutex_lock(&wq->mutex);
4789	wq->flags |= __WQ_DESTROYING;
4790	mutex_unlock(&wq->mutex);
4791
4792	/* drain it before proceeding with destruction */
4793	drain_workqueue(wq);
4794
4795	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4796	if (wq->rescuer) {
4797		struct worker *rescuer = wq->rescuer;
4798
4799		/* this prevents new queueing */
4800		raw_spin_lock_irq(&wq_mayday_lock);
4801		wq->rescuer = NULL;
4802		raw_spin_unlock_irq(&wq_mayday_lock);
4803
4804		/* rescuer will empty maydays list before exiting */
4805		kthread_stop(rescuer->task);
4806		kfree(rescuer);
4807	}
4808
4809	/*
4810	 * Sanity checks - grab all the locks so that we wait for all
4811	 * in-flight operations which may do put_pwq().
4812	 */
4813	mutex_lock(&wq_pool_mutex);
4814	mutex_lock(&wq->mutex);
4815	for_each_pwq(pwq, wq) {
4816		raw_spin_lock_irq(&pwq->pool->lock);
4817		if (WARN_ON(pwq_busy(pwq))) {
4818			pr_warn("%s: %s has the following busy pwq\n",
4819				__func__, wq->name);
4820			show_pwq(pwq);
4821			raw_spin_unlock_irq(&pwq->pool->lock);
 
 
 
 
 
 
 
4822			mutex_unlock(&wq->mutex);
4823			mutex_unlock(&wq_pool_mutex);
4824			show_one_workqueue(wq);
4825			return;
4826		}
4827		raw_spin_unlock_irq(&pwq->pool->lock);
4828	}
4829	mutex_unlock(&wq->mutex);
4830
4831	/*
4832	 * wq list is used to freeze wq, remove from list after
4833	 * flushing is complete in case freeze races us.
4834	 */
 
4835	list_del_rcu(&wq->list);
4836	mutex_unlock(&wq_pool_mutex);
4837
4838	/*
4839	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
4840	 * to put the base refs. @wq will be auto-destroyed from the last
4841	 * pwq_put. RCU read lock prevents @wq from going away from under us.
4842	 */
4843	rcu_read_lock();
4844
4845	for_each_possible_cpu(cpu) {
4846		pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4847		RCU_INIT_POINTER(*per_cpu_ptr(wq->cpu_pwq, cpu), NULL);
4848		put_pwq_unlocked(pwq);
4849	}
4850
4851	put_pwq_unlocked(wq->dfl_pwq);
4852	wq->dfl_pwq = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4853
4854	rcu_read_unlock();
 
 
 
 
 
 
 
4855}
4856EXPORT_SYMBOL_GPL(destroy_workqueue);
4857
4858/**
4859 * workqueue_set_max_active - adjust max_active of a workqueue
4860 * @wq: target workqueue
4861 * @max_active: new max_active value.
4862 *
4863 * Set max_active of @wq to @max_active.
4864 *
4865 * CONTEXT:
4866 * Don't call from IRQ context.
4867 */
4868void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4869{
4870	struct pool_workqueue *pwq;
4871
4872	/* disallow meddling with max_active for ordered workqueues */
4873	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4874		return;
4875
4876	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4877
4878	mutex_lock(&wq->mutex);
4879
4880	wq->flags &= ~__WQ_ORDERED;
4881	wq->saved_max_active = max_active;
4882
4883	for_each_pwq(pwq, wq)
4884		pwq_adjust_max_active(pwq);
4885
4886	mutex_unlock(&wq->mutex);
4887}
4888EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4889
4890/**
4891 * current_work - retrieve %current task's work struct
4892 *
4893 * Determine if %current task is a workqueue worker and what it's working on.
4894 * Useful to find out the context that the %current task is running in.
4895 *
4896 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4897 */
4898struct work_struct *current_work(void)
4899{
4900	struct worker *worker = current_wq_worker();
4901
4902	return worker ? worker->current_work : NULL;
4903}
4904EXPORT_SYMBOL(current_work);
4905
4906/**
4907 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4908 *
4909 * Determine whether %current is a workqueue rescuer.  Can be used from
4910 * work functions to determine whether it's being run off the rescuer task.
4911 *
4912 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4913 */
4914bool current_is_workqueue_rescuer(void)
4915{
4916	struct worker *worker = current_wq_worker();
4917
4918	return worker && worker->rescue_wq;
4919}
4920
4921/**
4922 * workqueue_congested - test whether a workqueue is congested
4923 * @cpu: CPU in question
4924 * @wq: target workqueue
4925 *
4926 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4927 * no synchronization around this function and the test result is
4928 * unreliable and only useful as advisory hints or for debugging.
4929 *
4930 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4931 *
4932 * With the exception of ordered workqueues, all workqueues have per-cpu
4933 * pool_workqueues, each with its own congested state. A workqueue being
4934 * congested on one CPU doesn't mean that the workqueue is contested on any
4935 * other CPUs.
4936 *
4937 * Return:
4938 * %true if congested, %false otherwise.
4939 */
4940bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4941{
4942	struct pool_workqueue *pwq;
4943	bool ret;
4944
4945	rcu_read_lock();
4946	preempt_disable();
4947
4948	if (cpu == WORK_CPU_UNBOUND)
4949		cpu = smp_processor_id();
4950
4951	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4952	ret = !list_empty(&pwq->inactive_works);
 
 
4953
 
4954	preempt_enable();
4955	rcu_read_unlock();
4956
4957	return ret;
4958}
4959EXPORT_SYMBOL_GPL(workqueue_congested);
4960
4961/**
4962 * work_busy - test whether a work is currently pending or running
4963 * @work: the work to be tested
4964 *
4965 * Test whether @work is currently pending or running.  There is no
4966 * synchronization around this function and the test result is
4967 * unreliable and only useful as advisory hints or for debugging.
4968 *
4969 * Return:
4970 * OR'd bitmask of WORK_BUSY_* bits.
4971 */
4972unsigned int work_busy(struct work_struct *work)
4973{
4974	struct worker_pool *pool;
4975	unsigned long flags;
4976	unsigned int ret = 0;
4977
4978	if (work_pending(work))
4979		ret |= WORK_BUSY_PENDING;
4980
4981	rcu_read_lock();
4982	pool = get_work_pool(work);
4983	if (pool) {
4984		raw_spin_lock_irqsave(&pool->lock, flags);
4985		if (find_worker_executing_work(pool, work))
4986			ret |= WORK_BUSY_RUNNING;
4987		raw_spin_unlock_irqrestore(&pool->lock, flags);
4988	}
4989	rcu_read_unlock();
4990
4991	return ret;
4992}
4993EXPORT_SYMBOL_GPL(work_busy);
4994
4995/**
4996 * set_worker_desc - set description for the current work item
4997 * @fmt: printf-style format string
4998 * @...: arguments for the format string
4999 *
5000 * This function can be called by a running work function to describe what
5001 * the work item is about.  If the worker task gets dumped, this
5002 * information will be printed out together to help debugging.  The
5003 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5004 */
5005void set_worker_desc(const char *fmt, ...)
5006{
5007	struct worker *worker = current_wq_worker();
5008	va_list args;
5009
5010	if (worker) {
5011		va_start(args, fmt);
5012		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5013		va_end(args);
5014	}
5015}
5016EXPORT_SYMBOL_GPL(set_worker_desc);
5017
5018/**
5019 * print_worker_info - print out worker information and description
5020 * @log_lvl: the log level to use when printing
5021 * @task: target task
5022 *
5023 * If @task is a worker and currently executing a work item, print out the
5024 * name of the workqueue being serviced and worker description set with
5025 * set_worker_desc() by the currently executing work item.
5026 *
5027 * This function can be safely called on any task as long as the
5028 * task_struct itself is accessible.  While safe, this function isn't
5029 * synchronized and may print out mixups or garbages of limited length.
5030 */
5031void print_worker_info(const char *log_lvl, struct task_struct *task)
5032{
5033	work_func_t *fn = NULL;
5034	char name[WQ_NAME_LEN] = { };
5035	char desc[WORKER_DESC_LEN] = { };
5036	struct pool_workqueue *pwq = NULL;
5037	struct workqueue_struct *wq = NULL;
5038	struct worker *worker;
5039
5040	if (!(task->flags & PF_WQ_WORKER))
5041		return;
5042
5043	/*
5044	 * This function is called without any synchronization and @task
5045	 * could be in any state.  Be careful with dereferences.
5046	 */
5047	worker = kthread_probe_data(task);
5048
5049	/*
5050	 * Carefully copy the associated workqueue's workfn, name and desc.
5051	 * Keep the original last '\0' in case the original is garbage.
5052	 */
5053	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5054	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5055	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5056	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5057	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5058
5059	if (fn || name[0] || desc[0]) {
5060		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5061		if (strcmp(name, desc))
5062			pr_cont(" (%s)", desc);
5063		pr_cont("\n");
5064	}
5065}
5066
5067static void pr_cont_pool_info(struct worker_pool *pool)
5068{
5069	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5070	if (pool->node != NUMA_NO_NODE)
5071		pr_cont(" node=%d", pool->node);
5072	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
5073}
5074
5075struct pr_cont_work_struct {
5076	bool comma;
5077	work_func_t func;
5078	long ctr;
5079};
5080
5081static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5082{
5083	if (!pcwsp->ctr)
5084		goto out_record;
5085	if (func == pcwsp->func) {
5086		pcwsp->ctr++;
5087		return;
5088	}
5089	if (pcwsp->ctr == 1)
5090		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5091	else
5092		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5093	pcwsp->ctr = 0;
5094out_record:
5095	if ((long)func == -1L)
5096		return;
5097	pcwsp->comma = comma;
5098	pcwsp->func = func;
5099	pcwsp->ctr = 1;
5100}
5101
5102static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
5103{
5104	if (work->func == wq_barrier_func) {
5105		struct wq_barrier *barr;
5106
5107		barr = container_of(work, struct wq_barrier, work);
5108
5109		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5110		pr_cont("%s BAR(%d)", comma ? "," : "",
5111			task_pid_nr(barr->task));
5112	} else {
5113		if (!comma)
5114			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5115		pr_cont_work_flush(comma, work->func, pcwsp);
5116	}
5117}
5118
5119static void show_pwq(struct pool_workqueue *pwq)
5120{
5121	struct pr_cont_work_struct pcws = { .ctr = 0, };
5122	struct worker_pool *pool = pwq->pool;
5123	struct work_struct *work;
5124	struct worker *worker;
5125	bool has_in_flight = false, has_pending = false;
5126	int bkt;
5127
5128	pr_info("  pwq %d:", pool->id);
5129	pr_cont_pool_info(pool);
5130
5131	pr_cont(" active=%d/%d refcnt=%d%s\n",
5132		pwq->nr_active, pwq->max_active, pwq->refcnt,
5133		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5134
5135	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5136		if (worker->current_pwq == pwq) {
5137			has_in_flight = true;
5138			break;
5139		}
5140	}
5141	if (has_in_flight) {
5142		bool comma = false;
5143
5144		pr_info("    in-flight:");
5145		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5146			if (worker->current_pwq != pwq)
5147				continue;
5148
5149			pr_cont("%s %d%s:%ps", comma ? "," : "",
5150				task_pid_nr(worker->task),
5151				worker->rescue_wq ? "(RESCUER)" : "",
5152				worker->current_func);
5153			list_for_each_entry(work, &worker->scheduled, entry)
5154				pr_cont_work(false, work, &pcws);
5155			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5156			comma = true;
5157		}
5158		pr_cont("\n");
5159	}
5160
5161	list_for_each_entry(work, &pool->worklist, entry) {
5162		if (get_work_pwq(work) == pwq) {
5163			has_pending = true;
5164			break;
5165		}
5166	}
5167	if (has_pending) {
5168		bool comma = false;
5169
5170		pr_info("    pending:");
5171		list_for_each_entry(work, &pool->worklist, entry) {
5172			if (get_work_pwq(work) != pwq)
5173				continue;
5174
5175			pr_cont_work(comma, work, &pcws);
5176			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5177		}
5178		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5179		pr_cont("\n");
5180	}
5181
5182	if (!list_empty(&pwq->inactive_works)) {
5183		bool comma = false;
5184
5185		pr_info("    inactive:");
5186		list_for_each_entry(work, &pwq->inactive_works, entry) {
5187			pr_cont_work(comma, work, &pcws);
5188			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5189		}
5190		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5191		pr_cont("\n");
5192	}
5193}
5194
5195/**
5196 * show_one_workqueue - dump state of specified workqueue
5197 * @wq: workqueue whose state will be printed
5198 */
5199void show_one_workqueue(struct workqueue_struct *wq)
5200{
5201	struct pool_workqueue *pwq;
5202	bool idle = true;
5203	unsigned long flags;
5204
5205	for_each_pwq(pwq, wq) {
5206		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5207			idle = false;
5208			break;
5209		}
5210	}
5211	if (idle) /* Nothing to print for idle workqueue */
5212		return;
5213
5214	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
5215
5216	for_each_pwq(pwq, wq) {
5217		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5218		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5219			/*
5220			 * Defer printing to avoid deadlocks in console
5221			 * drivers that queue work while holding locks
5222			 * also taken in their write paths.
5223			 */
5224			printk_deferred_enter();
5225			show_pwq(pwq);
5226			printk_deferred_exit();
5227		}
5228		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5229		/*
5230		 * We could be printing a lot from atomic context, e.g.
5231		 * sysrq-t -> show_all_workqueues(). Avoid triggering
5232		 * hard lockup.
5233		 */
5234		touch_nmi_watchdog();
5235	}
5236
5237}
5238
5239/**
5240 * show_one_worker_pool - dump state of specified worker pool
5241 * @pool: worker pool whose state will be printed
5242 */
5243static void show_one_worker_pool(struct worker_pool *pool)
5244{
5245	struct worker *worker;
5246	bool first = true;
5247	unsigned long flags;
5248	unsigned long hung = 0;
5249
5250	raw_spin_lock_irqsave(&pool->lock, flags);
5251	if (pool->nr_workers == pool->nr_idle)
5252		goto next_pool;
5253
5254	/* How long the first pending work is waiting for a worker. */
5255	if (!list_empty(&pool->worklist))
5256		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5257
5258	/*
5259	 * Defer printing to avoid deadlocks in console drivers that
5260	 * queue work while holding locks also taken in their write
5261	 * paths.
5262	 */
5263	printk_deferred_enter();
5264	pr_info("pool %d:", pool->id);
5265	pr_cont_pool_info(pool);
5266	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
5267	if (pool->manager)
5268		pr_cont(" manager: %d",
5269			task_pid_nr(pool->manager->task));
5270	list_for_each_entry(worker, &pool->idle_list, entry) {
5271		pr_cont(" %s%d", first ? "idle: " : "",
5272			task_pid_nr(worker->task));
5273		first = false;
5274	}
5275	pr_cont("\n");
5276	printk_deferred_exit();
5277next_pool:
5278	raw_spin_unlock_irqrestore(&pool->lock, flags);
5279	/*
5280	 * We could be printing a lot from atomic context, e.g.
5281	 * sysrq-t -> show_all_workqueues(). Avoid triggering
5282	 * hard lockup.
5283	 */
5284	touch_nmi_watchdog();
5285
5286}
5287
5288/**
5289 * show_all_workqueues - dump workqueue state
5290 *
5291 * Called from a sysrq handler and prints out all busy workqueues and pools.
 
5292 */
5293void show_all_workqueues(void)
5294{
5295	struct workqueue_struct *wq;
5296	struct worker_pool *pool;
 
5297	int pi;
5298
5299	rcu_read_lock();
5300
5301	pr_info("Showing busy workqueues and worker pools:\n");
5302
5303	list_for_each_entry_rcu(wq, &workqueues, list)
5304		show_one_workqueue(wq);
5305
5306	for_each_pool(pool, pi)
5307		show_one_worker_pool(pool);
5308
5309	rcu_read_unlock();
5310}
 
 
 
 
 
 
5311
5312/**
5313 * show_freezable_workqueues - dump freezable workqueue state
5314 *
5315 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5316 * still busy.
5317 */
5318void show_freezable_workqueues(void)
5319{
5320	struct workqueue_struct *wq;
5321
5322	rcu_read_lock();
 
 
 
 
 
 
 
 
 
 
 
 
5323
5324	pr_info("Showing freezable workqueues that are still busy:\n");
 
 
5325
5326	list_for_each_entry_rcu(wq, &workqueues, list) {
5327		if (!(wq->flags & WQ_FREEZABLE))
5328			continue;
5329		show_one_workqueue(wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5330	}
5331
5332	rcu_read_unlock();
5333}
5334
5335/* used to show worker information through /proc/PID/{comm,stat,status} */
5336void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5337{
5338	int off;
5339
5340	/* always show the actual comm */
5341	off = strscpy(buf, task->comm, size);
5342	if (off < 0)
5343		return;
5344
5345	/* stabilize PF_WQ_WORKER and worker pool association */
5346	mutex_lock(&wq_pool_attach_mutex);
5347
5348	if (task->flags & PF_WQ_WORKER) {
5349		struct worker *worker = kthread_data(task);
5350		struct worker_pool *pool = worker->pool;
5351
5352		if (pool) {
5353			raw_spin_lock_irq(&pool->lock);
5354			/*
5355			 * ->desc tracks information (wq name or
5356			 * set_worker_desc()) for the latest execution.  If
5357			 * current, prepend '+', otherwise '-'.
5358			 */
5359			if (worker->desc[0] != '\0') {
5360				if (worker->current_work)
5361					scnprintf(buf + off, size - off, "+%s",
5362						  worker->desc);
5363				else
5364					scnprintf(buf + off, size - off, "-%s",
5365						  worker->desc);
5366			}
5367			raw_spin_unlock_irq(&pool->lock);
5368		}
5369	}
5370
5371	mutex_unlock(&wq_pool_attach_mutex);
5372}
5373
5374#ifdef CONFIG_SMP
5375
5376/*
5377 * CPU hotplug.
5378 *
5379 * There are two challenges in supporting CPU hotplug.  Firstly, there
5380 * are a lot of assumptions on strong associations among work, pwq and
5381 * pool which make migrating pending and scheduled works very
5382 * difficult to implement without impacting hot paths.  Secondly,
5383 * worker pools serve mix of short, long and very long running works making
5384 * blocked draining impractical.
5385 *
5386 * This is solved by allowing the pools to be disassociated from the CPU
5387 * running as an unbound one and allowing it to be reattached later if the
5388 * cpu comes back online.
5389 */
5390
5391static void unbind_workers(int cpu)
5392{
5393	struct worker_pool *pool;
5394	struct worker *worker;
5395
5396	for_each_cpu_worker_pool(pool, cpu) {
5397		mutex_lock(&wq_pool_attach_mutex);
5398		raw_spin_lock_irq(&pool->lock);
5399
5400		/*
5401		 * We've blocked all attach/detach operations. Make all workers
5402		 * unbound and set DISASSOCIATED.  Before this, all workers
5403		 * must be on the cpu.  After this, they may become diasporas.
5404		 * And the preemption disabled section in their sched callbacks
5405		 * are guaranteed to see WORKER_UNBOUND since the code here
5406		 * is on the same cpu.
5407		 */
5408		for_each_pool_worker(worker, pool)
5409			worker->flags |= WORKER_UNBOUND;
5410
5411		pool->flags |= POOL_DISASSOCIATED;
5412
 
 
 
 
 
 
 
 
 
 
 
5413		/*
5414		 * The handling of nr_running in sched callbacks are disabled
5415		 * now.  Zap nr_running.  After this, nr_running stays zero and
5416		 * need_more_worker() and keep_working() are always true as
5417		 * long as the worklist is not empty.  This pool now behaves as
5418		 * an unbound (in terms of concurrency management) pool which
5419		 * are served by workers tied to the pool.
5420		 */
5421		pool->nr_running = 0;
5422
5423		/*
5424		 * With concurrency management just turned off, a busy
5425		 * worker blocking could lead to lengthy stalls.  Kick off
5426		 * unbound chain execution of currently pending work items.
5427		 */
5428		kick_pool(pool);
5429
5430		raw_spin_unlock_irq(&pool->lock);
5431
5432		for_each_pool_worker(worker, pool)
5433			unbind_worker(worker);
5434
5435		mutex_unlock(&wq_pool_attach_mutex);
5436	}
5437}
5438
5439/**
5440 * rebind_workers - rebind all workers of a pool to the associated CPU
5441 * @pool: pool of interest
5442 *
5443 * @pool->cpu is coming online.  Rebind all workers to the CPU.
5444 */
5445static void rebind_workers(struct worker_pool *pool)
5446{
5447	struct worker *worker;
5448
5449	lockdep_assert_held(&wq_pool_attach_mutex);
5450
5451	/*
5452	 * Restore CPU affinity of all workers.  As all idle workers should
5453	 * be on the run-queue of the associated CPU before any local
5454	 * wake-ups for concurrency management happen, restore CPU affinity
5455	 * of all workers first and then clear UNBOUND.  As we're called
5456	 * from CPU_ONLINE, the following shouldn't fail.
5457	 */
5458	for_each_pool_worker(worker, pool) {
5459		kthread_set_per_cpu(worker->task, pool->cpu);
5460		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5461						  pool_allowed_cpus(pool)) < 0);
5462	}
5463
5464	raw_spin_lock_irq(&pool->lock);
5465
5466	pool->flags &= ~POOL_DISASSOCIATED;
5467
5468	for_each_pool_worker(worker, pool) {
5469		unsigned int worker_flags = worker->flags;
5470
5471		/*
 
 
 
 
 
 
 
 
 
 
 
5472		 * We want to clear UNBOUND but can't directly call
5473		 * worker_clr_flags() or adjust nr_running.  Atomically
5474		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5475		 * @worker will clear REBOUND using worker_clr_flags() when
5476		 * it initiates the next execution cycle thus restoring
5477		 * concurrency management.  Note that when or whether
5478		 * @worker clears REBOUND doesn't affect correctness.
5479		 *
5480		 * WRITE_ONCE() is necessary because @worker->flags may be
5481		 * tested without holding any lock in
5482		 * wq_worker_running().  Without it, NOT_RUNNING test may
5483		 * fail incorrectly leading to premature concurrency
5484		 * management operations.
5485		 */
5486		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5487		worker_flags |= WORKER_REBOUND;
5488		worker_flags &= ~WORKER_UNBOUND;
5489		WRITE_ONCE(worker->flags, worker_flags);
5490	}
5491
5492	raw_spin_unlock_irq(&pool->lock);
5493}
5494
5495/**
5496 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5497 * @pool: unbound pool of interest
5498 * @cpu: the CPU which is coming up
5499 *
5500 * An unbound pool may end up with a cpumask which doesn't have any online
5501 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5502 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5503 * online CPU before, cpus_allowed of all its workers should be restored.
5504 */
5505static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5506{
5507	static cpumask_t cpumask;
5508	struct worker *worker;
5509
5510	lockdep_assert_held(&wq_pool_attach_mutex);
5511
5512	/* is @cpu allowed for @pool? */
5513	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5514		return;
5515
5516	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5517
5518	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5519	for_each_pool_worker(worker, pool)
5520		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5521}
5522
5523int workqueue_prepare_cpu(unsigned int cpu)
5524{
5525	struct worker_pool *pool;
5526
5527	for_each_cpu_worker_pool(pool, cpu) {
5528		if (pool->nr_workers)
5529			continue;
5530		if (!create_worker(pool))
5531			return -ENOMEM;
5532	}
5533	return 0;
5534}
5535
5536int workqueue_online_cpu(unsigned int cpu)
5537{
5538	struct worker_pool *pool;
5539	struct workqueue_struct *wq;
5540	int pi;
5541
5542	mutex_lock(&wq_pool_mutex);
5543
5544	for_each_pool(pool, pi) {
5545		mutex_lock(&wq_pool_attach_mutex);
5546
5547		if (pool->cpu == cpu)
5548			rebind_workers(pool);
5549		else if (pool->cpu < 0)
5550			restore_unbound_workers_cpumask(pool, cpu);
5551
5552		mutex_unlock(&wq_pool_attach_mutex);
5553	}
5554
5555	/* update pod affinity of unbound workqueues */
5556	list_for_each_entry(wq, &workqueues, list) {
5557		struct workqueue_attrs *attrs = wq->unbound_attrs;
5558
5559		if (attrs) {
5560			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5561			int tcpu;
5562
5563			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5564				wq_update_pod(wq, tcpu, cpu, true);
5565		}
5566	}
5567
5568	mutex_unlock(&wq_pool_mutex);
5569	return 0;
5570}
5571
5572int workqueue_offline_cpu(unsigned int cpu)
5573{
5574	struct workqueue_struct *wq;
5575
5576	/* unbinding per-cpu workers should happen on the local CPU */
5577	if (WARN_ON(cpu != smp_processor_id()))
5578		return -1;
5579
5580	unbind_workers(cpu);
5581
5582	/* update pod affinity of unbound workqueues */
5583	mutex_lock(&wq_pool_mutex);
5584	list_for_each_entry(wq, &workqueues, list) {
5585		struct workqueue_attrs *attrs = wq->unbound_attrs;
5586
5587		if (attrs) {
5588			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5589			int tcpu;
5590
5591			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5592				wq_update_pod(wq, tcpu, cpu, false);
5593		}
5594	}
5595	mutex_unlock(&wq_pool_mutex);
5596
5597	return 0;
5598}
5599
5600struct work_for_cpu {
5601	struct work_struct work;
5602	long (*fn)(void *);
5603	void *arg;
5604	long ret;
5605};
5606
5607static void work_for_cpu_fn(struct work_struct *work)
5608{
5609	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5610
5611	wfc->ret = wfc->fn(wfc->arg);
5612}
5613
5614/**
5615 * work_on_cpu_key - run a function in thread context on a particular cpu
5616 * @cpu: the cpu to run on
5617 * @fn: the function to run
5618 * @arg: the function arg
5619 * @key: The lock class key for lock debugging purposes
5620 *
5621 * It is up to the caller to ensure that the cpu doesn't go offline.
5622 * The caller must not hold any locks which would prevent @fn from completing.
5623 *
5624 * Return: The value @fn returns.
5625 */
5626long work_on_cpu_key(int cpu, long (*fn)(void *),
5627		     void *arg, struct lock_class_key *key)
5628{
5629	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5630
5631	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
5632	schedule_work_on(cpu, &wfc.work);
5633	flush_work(&wfc.work);
5634	destroy_work_on_stack(&wfc.work);
5635	return wfc.ret;
5636}
5637EXPORT_SYMBOL_GPL(work_on_cpu_key);
5638
5639/**
5640 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
5641 * @cpu: the cpu to run on
5642 * @fn:  the function to run
5643 * @arg: the function argument
5644 * @key: The lock class key for lock debugging purposes
5645 *
5646 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5647 * any locks which would prevent @fn from completing.
5648 *
5649 * Return: The value @fn returns.
5650 */
5651long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
5652			  void *arg, struct lock_class_key *key)
5653{
5654	long ret = -ENODEV;
5655
5656	cpus_read_lock();
5657	if (cpu_online(cpu))
5658		ret = work_on_cpu_key(cpu, fn, arg, key);
5659	cpus_read_unlock();
5660	return ret;
5661}
5662EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
5663#endif /* CONFIG_SMP */
5664
5665#ifdef CONFIG_FREEZER
5666
5667/**
5668 * freeze_workqueues_begin - begin freezing workqueues
5669 *
5670 * Start freezing workqueues.  After this function returns, all freezable
5671 * workqueues will queue new works to their inactive_works list instead of
5672 * pool->worklist.
5673 *
5674 * CONTEXT:
5675 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5676 */
5677void freeze_workqueues_begin(void)
5678{
5679	struct workqueue_struct *wq;
5680	struct pool_workqueue *pwq;
5681
5682	mutex_lock(&wq_pool_mutex);
5683
5684	WARN_ON_ONCE(workqueue_freezing);
5685	workqueue_freezing = true;
5686
5687	list_for_each_entry(wq, &workqueues, list) {
5688		mutex_lock(&wq->mutex);
5689		for_each_pwq(pwq, wq)
5690			pwq_adjust_max_active(pwq);
5691		mutex_unlock(&wq->mutex);
5692	}
5693
5694	mutex_unlock(&wq_pool_mutex);
5695}
5696
5697/**
5698 * freeze_workqueues_busy - are freezable workqueues still busy?
5699 *
5700 * Check whether freezing is complete.  This function must be called
5701 * between freeze_workqueues_begin() and thaw_workqueues().
5702 *
5703 * CONTEXT:
5704 * Grabs and releases wq_pool_mutex.
5705 *
5706 * Return:
5707 * %true if some freezable workqueues are still busy.  %false if freezing
5708 * is complete.
5709 */
5710bool freeze_workqueues_busy(void)
5711{
5712	bool busy = false;
5713	struct workqueue_struct *wq;
5714	struct pool_workqueue *pwq;
5715
5716	mutex_lock(&wq_pool_mutex);
5717
5718	WARN_ON_ONCE(!workqueue_freezing);
5719
5720	list_for_each_entry(wq, &workqueues, list) {
5721		if (!(wq->flags & WQ_FREEZABLE))
5722			continue;
5723		/*
5724		 * nr_active is monotonically decreasing.  It's safe
5725		 * to peek without lock.
5726		 */
5727		rcu_read_lock();
5728		for_each_pwq(pwq, wq) {
5729			WARN_ON_ONCE(pwq->nr_active < 0);
5730			if (pwq->nr_active) {
5731				busy = true;
5732				rcu_read_unlock();
5733				goto out_unlock;
5734			}
5735		}
5736		rcu_read_unlock();
5737	}
5738out_unlock:
5739	mutex_unlock(&wq_pool_mutex);
5740	return busy;
5741}
5742
5743/**
5744 * thaw_workqueues - thaw workqueues
5745 *
5746 * Thaw workqueues.  Normal queueing is restored and all collected
5747 * frozen works are transferred to their respective pool worklists.
5748 *
5749 * CONTEXT:
5750 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5751 */
5752void thaw_workqueues(void)
5753{
5754	struct workqueue_struct *wq;
5755	struct pool_workqueue *pwq;
5756
5757	mutex_lock(&wq_pool_mutex);
5758
5759	if (!workqueue_freezing)
5760		goto out_unlock;
5761
5762	workqueue_freezing = false;
5763
5764	/* restore max_active and repopulate worklist */
5765	list_for_each_entry(wq, &workqueues, list) {
5766		mutex_lock(&wq->mutex);
5767		for_each_pwq(pwq, wq)
5768			pwq_adjust_max_active(pwq);
5769		mutex_unlock(&wq->mutex);
5770	}
5771
5772out_unlock:
5773	mutex_unlock(&wq_pool_mutex);
5774}
5775#endif /* CONFIG_FREEZER */
5776
5777static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5778{
5779	LIST_HEAD(ctxs);
5780	int ret = 0;
5781	struct workqueue_struct *wq;
5782	struct apply_wqattrs_ctx *ctx, *n;
5783
5784	lockdep_assert_held(&wq_pool_mutex);
5785
5786	list_for_each_entry(wq, &workqueues, list) {
5787		if (!(wq->flags & WQ_UNBOUND))
5788			continue;
5789		/* creating multiple pwqs breaks ordering guarantee */
5790		if (wq->flags & __WQ_ORDERED)
5791			continue;
5792
5793		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5794		if (IS_ERR(ctx)) {
5795			ret = PTR_ERR(ctx);
5796			break;
5797		}
5798
5799		list_add_tail(&ctx->list, &ctxs);
5800	}
5801
5802	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5803		if (!ret)
5804			apply_wqattrs_commit(ctx);
5805		apply_wqattrs_cleanup(ctx);
5806	}
5807
5808	if (!ret) {
5809		mutex_lock(&wq_pool_attach_mutex);
5810		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5811		mutex_unlock(&wq_pool_attach_mutex);
5812	}
5813	return ret;
5814}
5815
5816/**
5817 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
5818 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
5819 *
5820 * This function can be called from cpuset code to provide a set of isolated
5821 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
5822 * either cpus_read_lock or cpus_write_lock.
 
 
 
 
5823 */
5824int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
5825{
5826	cpumask_var_t cpumask;
5827	int ret = 0;
5828
5829	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5830		return -ENOMEM;
5831
5832	lockdep_assert_cpus_held();
5833	mutex_lock(&wq_pool_mutex);
5834
5835	/* Save the current isolated cpumask & export it via sysfs */
5836	cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
5837
5838	/*
5839	 * If the operation fails, it will fall back to
5840	 * wq_requested_unbound_cpumask which is initially set to
5841	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
5842	 * by any subsequent write to workqueue/cpumask sysfs file.
5843	 */
5844	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
5845		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
5846	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
5847		ret = workqueue_apply_unbound_cpumask(cpumask);
5848
5849	mutex_unlock(&wq_pool_mutex);
5850	free_cpumask_var(cpumask);
5851	return ret;
5852}
5853
5854static int parse_affn_scope(const char *val)
5855{
5856	int i;
5857
5858	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
5859		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
5860			return i;
5861	}
5862	return -EINVAL;
5863}
5864
5865static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
5866{
5867	struct workqueue_struct *wq;
5868	int affn, cpu;
5869
5870	affn = parse_affn_scope(val);
5871	if (affn < 0)
5872		return affn;
5873	if (affn == WQ_AFFN_DFL)
5874		return -EINVAL;
5875
5876	cpus_read_lock();
5877	mutex_lock(&wq_pool_mutex);
5878
5879	wq_affn_dfl = affn;
 
 
 
 
 
 
5880
5881	list_for_each_entry(wq, &workqueues, list) {
5882		for_each_online_cpu(cpu) {
5883			wq_update_pod(wq, cpu, cpu, true);
5884		}
5885	}
5886
5887	mutex_unlock(&wq_pool_mutex);
5888	cpus_read_unlock();
5889
5890	return 0;
5891}
5892
5893static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
5894{
5895	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
5896}
5897
5898static const struct kernel_param_ops wq_affn_dfl_ops = {
5899	.set	= wq_affn_dfl_set,
5900	.get	= wq_affn_dfl_get,
5901};
5902
5903module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
5904
5905#ifdef CONFIG_SYSFS
5906/*
5907 * Workqueues with WQ_SYSFS flag set is visible to userland via
5908 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5909 * following attributes.
5910 *
5911 *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
5912 *  max_active		RW int	: maximum number of in-flight work items
5913 *
5914 * Unbound workqueues have the following extra attributes.
5915 *
5916 *  nice		RW int	: nice value of the workers
5917 *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
5918 *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
5919 *  affinity_strict	RW bool : worker CPU affinity is strict
5920 */
5921struct wq_device {
5922	struct workqueue_struct		*wq;
5923	struct device			dev;
5924};
5925
5926static struct workqueue_struct *dev_to_wq(struct device *dev)
5927{
5928	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5929
5930	return wq_dev->wq;
5931}
5932
5933static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5934			    char *buf)
5935{
5936	struct workqueue_struct *wq = dev_to_wq(dev);
5937
5938	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5939}
5940static DEVICE_ATTR_RO(per_cpu);
5941
5942static ssize_t max_active_show(struct device *dev,
5943			       struct device_attribute *attr, char *buf)
5944{
5945	struct workqueue_struct *wq = dev_to_wq(dev);
5946
5947	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5948}
5949
5950static ssize_t max_active_store(struct device *dev,
5951				struct device_attribute *attr, const char *buf,
5952				size_t count)
5953{
5954	struct workqueue_struct *wq = dev_to_wq(dev);
5955	int val;
5956
5957	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5958		return -EINVAL;
5959
5960	workqueue_set_max_active(wq, val);
5961	return count;
5962}
5963static DEVICE_ATTR_RW(max_active);
5964
5965static struct attribute *wq_sysfs_attrs[] = {
5966	&dev_attr_per_cpu.attr,
5967	&dev_attr_max_active.attr,
5968	NULL,
5969};
5970ATTRIBUTE_GROUPS(wq_sysfs);
5971
5972static void apply_wqattrs_lock(void)
 
5973{
5974	/* CPUs should stay stable across pwq creations and installations */
5975	cpus_read_lock();
5976	mutex_lock(&wq_pool_mutex);
5977}
5978
5979static void apply_wqattrs_unlock(void)
5980{
5981	mutex_unlock(&wq_pool_mutex);
5982	cpus_read_unlock();
 
 
 
 
 
 
 
 
 
5983}
5984
5985static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5986			    char *buf)
5987{
5988	struct workqueue_struct *wq = dev_to_wq(dev);
5989	int written;
5990
5991	mutex_lock(&wq->mutex);
5992	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5993	mutex_unlock(&wq->mutex);
5994
5995	return written;
5996}
5997
5998/* prepare workqueue_attrs for sysfs store operations */
5999static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6000{
6001	struct workqueue_attrs *attrs;
6002
6003	lockdep_assert_held(&wq_pool_mutex);
6004
6005	attrs = alloc_workqueue_attrs();
6006	if (!attrs)
6007		return NULL;
6008
6009	copy_workqueue_attrs(attrs, wq->unbound_attrs);
6010	return attrs;
6011}
6012
6013static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6014			     const char *buf, size_t count)
6015{
6016	struct workqueue_struct *wq = dev_to_wq(dev);
6017	struct workqueue_attrs *attrs;
6018	int ret = -ENOMEM;
6019
6020	apply_wqattrs_lock();
6021
6022	attrs = wq_sysfs_prep_attrs(wq);
6023	if (!attrs)
6024		goto out_unlock;
6025
6026	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6027	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6028		ret = apply_workqueue_attrs_locked(wq, attrs);
6029	else
6030		ret = -EINVAL;
6031
6032out_unlock:
6033	apply_wqattrs_unlock();
6034	free_workqueue_attrs(attrs);
6035	return ret ?: count;
6036}
6037
6038static ssize_t wq_cpumask_show(struct device *dev,
6039			       struct device_attribute *attr, char *buf)
6040{
6041	struct workqueue_struct *wq = dev_to_wq(dev);
6042	int written;
6043
6044	mutex_lock(&wq->mutex);
6045	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6046			    cpumask_pr_args(wq->unbound_attrs->cpumask));
6047	mutex_unlock(&wq->mutex);
6048	return written;
6049}
6050
6051static ssize_t wq_cpumask_store(struct device *dev,
6052				struct device_attribute *attr,
6053				const char *buf, size_t count)
6054{
6055	struct workqueue_struct *wq = dev_to_wq(dev);
6056	struct workqueue_attrs *attrs;
6057	int ret = -ENOMEM;
6058
6059	apply_wqattrs_lock();
6060
6061	attrs = wq_sysfs_prep_attrs(wq);
6062	if (!attrs)
6063		goto out_unlock;
6064
6065	ret = cpumask_parse(buf, attrs->cpumask);
6066	if (!ret)
6067		ret = apply_workqueue_attrs_locked(wq, attrs);
6068
6069out_unlock:
6070	apply_wqattrs_unlock();
6071	free_workqueue_attrs(attrs);
6072	return ret ?: count;
6073}
6074
6075static ssize_t wq_affn_scope_show(struct device *dev,
6076				  struct device_attribute *attr, char *buf)
6077{
6078	struct workqueue_struct *wq = dev_to_wq(dev);
6079	int written;
6080
6081	mutex_lock(&wq->mutex);
6082	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6083		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
6084				    wq_affn_names[WQ_AFFN_DFL],
6085				    wq_affn_names[wq_affn_dfl]);
6086	else
6087		written = scnprintf(buf, PAGE_SIZE, "%s\n",
6088				    wq_affn_names[wq->unbound_attrs->affn_scope]);
6089	mutex_unlock(&wq->mutex);
6090
6091	return written;
6092}
6093
6094static ssize_t wq_affn_scope_store(struct device *dev,
6095				   struct device_attribute *attr,
6096				   const char *buf, size_t count)
6097{
6098	struct workqueue_struct *wq = dev_to_wq(dev);
6099	struct workqueue_attrs *attrs;
6100	int affn, ret = -ENOMEM;
6101
6102	affn = parse_affn_scope(buf);
6103	if (affn < 0)
6104		return affn;
6105
6106	apply_wqattrs_lock();
6107	attrs = wq_sysfs_prep_attrs(wq);
6108	if (attrs) {
6109		attrs->affn_scope = affn;
6110		ret = apply_workqueue_attrs_locked(wq, attrs);
6111	}
6112	apply_wqattrs_unlock();
6113	free_workqueue_attrs(attrs);
6114	return ret ?: count;
6115}
6116
6117static ssize_t wq_affinity_strict_show(struct device *dev,
6118				       struct device_attribute *attr, char *buf)
6119{
6120	struct workqueue_struct *wq = dev_to_wq(dev);
6121
6122	return scnprintf(buf, PAGE_SIZE, "%d\n",
6123			 wq->unbound_attrs->affn_strict);
6124}
6125
6126static ssize_t wq_affinity_strict_store(struct device *dev,
6127					struct device_attribute *attr,
6128					const char *buf, size_t count)
6129{
6130	struct workqueue_struct *wq = dev_to_wq(dev);
6131	struct workqueue_attrs *attrs;
6132	int v, ret = -ENOMEM;
6133
6134	if (sscanf(buf, "%d", &v) != 1)
6135		return -EINVAL;
6136
6137	apply_wqattrs_lock();
 
6138	attrs = wq_sysfs_prep_attrs(wq);
6139	if (attrs) {
6140		attrs->affn_strict = (bool)v;
 
 
 
 
6141		ret = apply_workqueue_attrs_locked(wq, attrs);
6142	}
 
 
6143	apply_wqattrs_unlock();
6144	free_workqueue_attrs(attrs);
6145	return ret ?: count;
6146}
6147
6148static struct device_attribute wq_sysfs_unbound_attrs[] = {
 
6149	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6150	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
6151	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
6152	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6153	__ATTR_NULL,
6154};
6155
6156static struct bus_type wq_subsys = {
6157	.name				= "workqueue",
6158	.dev_groups			= wq_sysfs_groups,
6159};
6160
6161/**
6162 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
6163 *  @cpumask: the cpumask to set
6164 *
6165 *  The low-level workqueues cpumask is a global cpumask that limits
6166 *  the affinity of all unbound workqueues.  This function check the @cpumask
6167 *  and apply it to all unbound workqueues and updates all pwqs of them.
6168 *
6169 *  Return:	0	- Success
6170 *		-EINVAL	- Invalid @cpumask
6171 *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
6172 */
6173static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
6174{
6175	int ret = -EINVAL;
6176
6177	/*
6178	 * Not excluding isolated cpus on purpose.
6179	 * If the user wishes to include them, we allow that.
6180	 */
6181	cpumask_and(cpumask, cpumask, cpu_possible_mask);
6182	if (!cpumask_empty(cpumask)) {
6183		apply_wqattrs_lock();
6184		cpumask_copy(wq_requested_unbound_cpumask, cpumask);
6185		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
6186			ret = 0;
6187			goto out_unlock;
6188		}
6189
6190		ret = workqueue_apply_unbound_cpumask(cpumask);
6191
6192out_unlock:
6193		apply_wqattrs_unlock();
6194	}
6195
6196	return ret;
6197}
6198
6199static ssize_t __wq_cpumask_show(struct device *dev,
6200		struct device_attribute *attr, char *buf, cpumask_var_t mask)
6201{
6202	int written;
6203
6204	mutex_lock(&wq_pool_mutex);
6205	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
 
6206	mutex_unlock(&wq_pool_mutex);
6207
6208	return written;
6209}
6210
6211static ssize_t wq_unbound_cpumask_show(struct device *dev,
6212		struct device_attribute *attr, char *buf)
6213{
6214	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
6215}
6216
6217static ssize_t wq_requested_cpumask_show(struct device *dev,
6218		struct device_attribute *attr, char *buf)
6219{
6220	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
6221}
6222
6223static ssize_t wq_isolated_cpumask_show(struct device *dev,
6224		struct device_attribute *attr, char *buf)
6225{
6226	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
6227}
6228
6229static ssize_t wq_unbound_cpumask_store(struct device *dev,
6230		struct device_attribute *attr, const char *buf, size_t count)
6231{
6232	cpumask_var_t cpumask;
6233	int ret;
6234
6235	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6236		return -ENOMEM;
6237
6238	ret = cpumask_parse(buf, cpumask);
6239	if (!ret)
6240		ret = workqueue_set_unbound_cpumask(cpumask);
6241
6242	free_cpumask_var(cpumask);
6243	return ret ? ret : count;
6244}
6245
6246static struct device_attribute wq_sysfs_cpumask_attrs[] = {
6247	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
6248	       wq_unbound_cpumask_store),
6249	__ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
6250	__ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
6251	__ATTR_NULL,
6252};
6253
6254static int __init wq_sysfs_init(void)
6255{
6256	struct device *dev_root;
6257	int err;
6258
6259	err = subsys_virtual_register(&wq_subsys, NULL);
6260	if (err)
6261		return err;
6262
6263	dev_root = bus_get_dev_root(&wq_subsys);
6264	if (dev_root) {
6265		struct device_attribute *attr;
6266
6267		for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
6268			err = device_create_file(dev_root, attr);
6269			if (err)
6270				break;
6271		}
6272		put_device(dev_root);
6273	}
6274	return err;
6275}
6276core_initcall(wq_sysfs_init);
6277
6278static void wq_device_release(struct device *dev)
6279{
6280	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6281
6282	kfree(wq_dev);
6283}
6284
6285/**
6286 * workqueue_sysfs_register - make a workqueue visible in sysfs
6287 * @wq: the workqueue to register
6288 *
6289 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
6290 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
6291 * which is the preferred method.
6292 *
6293 * Workqueue user should use this function directly iff it wants to apply
6294 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
6295 * apply_workqueue_attrs() may race against userland updating the
6296 * attributes.
6297 *
6298 * Return: 0 on success, -errno on failure.
6299 */
6300int workqueue_sysfs_register(struct workqueue_struct *wq)
6301{
6302	struct wq_device *wq_dev;
6303	int ret;
6304
6305	/*
6306	 * Adjusting max_active or creating new pwqs by applying
6307	 * attributes breaks ordering guarantee.  Disallow exposing ordered
6308	 * workqueues.
6309	 */
6310	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6311		return -EINVAL;
6312
6313	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
6314	if (!wq_dev)
6315		return -ENOMEM;
6316
6317	wq_dev->wq = wq;
6318	wq_dev->dev.bus = &wq_subsys;
6319	wq_dev->dev.release = wq_device_release;
6320	dev_set_name(&wq_dev->dev, "%s", wq->name);
6321
6322	/*
6323	 * unbound_attrs are created separately.  Suppress uevent until
6324	 * everything is ready.
6325	 */
6326	dev_set_uevent_suppress(&wq_dev->dev, true);
6327
6328	ret = device_register(&wq_dev->dev);
6329	if (ret) {
6330		put_device(&wq_dev->dev);
6331		wq->wq_dev = NULL;
6332		return ret;
6333	}
6334
6335	if (wq->flags & WQ_UNBOUND) {
6336		struct device_attribute *attr;
6337
6338		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6339			ret = device_create_file(&wq_dev->dev, attr);
6340			if (ret) {
6341				device_unregister(&wq_dev->dev);
6342				wq->wq_dev = NULL;
6343				return ret;
6344			}
6345		}
6346	}
6347
6348	dev_set_uevent_suppress(&wq_dev->dev, false);
6349	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
6350	return 0;
6351}
6352
6353/**
6354 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6355 * @wq: the workqueue to unregister
6356 *
6357 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
6358 */
6359static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
6360{
6361	struct wq_device *wq_dev = wq->wq_dev;
6362
6363	if (!wq->wq_dev)
6364		return;
6365
6366	wq->wq_dev = NULL;
6367	device_unregister(&wq_dev->dev);
6368}
6369#else	/* CONFIG_SYSFS */
6370static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
6371#endif	/* CONFIG_SYSFS */
6372
6373/*
6374 * Workqueue watchdog.
6375 *
6376 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6377 * flush dependency, a concurrency managed work item which stays RUNNING
6378 * indefinitely.  Workqueue stalls can be very difficult to debug as the
6379 * usual warning mechanisms don't trigger and internal workqueue state is
6380 * largely opaque.
6381 *
6382 * Workqueue watchdog monitors all worker pools periodically and dumps
6383 * state if some pools failed to make forward progress for a while where
6384 * forward progress is defined as the first item on ->worklist changing.
6385 *
6386 * This mechanism is controlled through the kernel parameter
6387 * "workqueue.watchdog_thresh" which can be updated at runtime through the
6388 * corresponding sysfs parameter file.
6389 */
6390#ifdef CONFIG_WQ_WATCHDOG
6391
6392static unsigned long wq_watchdog_thresh = 30;
6393static struct timer_list wq_watchdog_timer;
6394
6395static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6396static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6397
6398/*
6399 * Show workers that might prevent the processing of pending work items.
6400 * The only candidates are CPU-bound workers in the running state.
6401 * Pending work items should be handled by another idle worker
6402 * in all other situations.
6403 */
6404static void show_cpu_pool_hog(struct worker_pool *pool)
6405{
6406	struct worker *worker;
6407	unsigned long flags;
6408	int bkt;
6409
6410	raw_spin_lock_irqsave(&pool->lock, flags);
6411
6412	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6413		if (task_is_running(worker->task)) {
6414			/*
6415			 * Defer printing to avoid deadlocks in console
6416			 * drivers that queue work while holding locks
6417			 * also taken in their write paths.
6418			 */
6419			printk_deferred_enter();
6420
6421			pr_info("pool %d:\n", pool->id);
6422			sched_show_task(worker->task);
6423
6424			printk_deferred_exit();
6425		}
6426	}
6427
6428	raw_spin_unlock_irqrestore(&pool->lock, flags);
6429}
6430
6431static void show_cpu_pools_hogs(void)
6432{
6433	struct worker_pool *pool;
6434	int pi;
6435
6436	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6437
6438	rcu_read_lock();
6439
6440	for_each_pool(pool, pi) {
6441		if (pool->cpu_stall)
6442			show_cpu_pool_hog(pool);
6443
6444	}
6445
6446	rcu_read_unlock();
6447}
6448
6449static void wq_watchdog_reset_touched(void)
6450{
6451	int cpu;
6452
6453	wq_watchdog_touched = jiffies;
6454	for_each_possible_cpu(cpu)
6455		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6456}
6457
6458static void wq_watchdog_timer_fn(struct timer_list *unused)
6459{
6460	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6461	bool lockup_detected = false;
6462	bool cpu_pool_stall = false;
6463	unsigned long now = jiffies;
6464	struct worker_pool *pool;
6465	int pi;
6466
6467	if (!thresh)
6468		return;
6469
6470	rcu_read_lock();
6471
6472	for_each_pool(pool, pi) {
6473		unsigned long pool_ts, touched, ts;
6474
6475		pool->cpu_stall = false;
6476		if (list_empty(&pool->worklist))
6477			continue;
6478
6479		/*
6480		 * If a virtual machine is stopped by the host it can look to
6481		 * the watchdog like a stall.
6482		 */
6483		kvm_check_and_clear_guest_paused();
6484
6485		/* get the latest of pool and touched timestamps */
6486		if (pool->cpu >= 0)
6487			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6488		else
6489			touched = READ_ONCE(wq_watchdog_touched);
6490		pool_ts = READ_ONCE(pool->watchdog_ts);
 
6491
6492		if (time_after(pool_ts, touched))
6493			ts = pool_ts;
6494		else
6495			ts = touched;
6496
 
 
 
 
 
 
 
 
6497		/* did we stall? */
6498		if (time_after(now, ts + thresh)) {
6499			lockup_detected = true;
6500			if (pool->cpu >= 0) {
6501				pool->cpu_stall = true;
6502				cpu_pool_stall = true;
6503			}
6504			pr_emerg("BUG: workqueue lockup - pool");
6505			pr_cont_pool_info(pool);
6506			pr_cont(" stuck for %us!\n",
6507				jiffies_to_msecs(now - pool_ts) / 1000);
6508		}
6509
6510
6511	}
6512
6513	rcu_read_unlock();
6514
6515	if (lockup_detected)
6516		show_all_workqueues();
6517
6518	if (cpu_pool_stall)
6519		show_cpu_pools_hogs();
6520
6521	wq_watchdog_reset_touched();
6522	mod_timer(&wq_watchdog_timer, jiffies + thresh);
6523}
6524
6525notrace void wq_watchdog_touch(int cpu)
6526{
6527	if (cpu >= 0)
6528		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6529
6530	wq_watchdog_touched = jiffies;
6531}
6532
6533static void wq_watchdog_set_thresh(unsigned long thresh)
6534{
6535	wq_watchdog_thresh = 0;
6536	del_timer_sync(&wq_watchdog_timer);
6537
6538	if (thresh) {
6539		wq_watchdog_thresh = thresh;
6540		wq_watchdog_reset_touched();
6541		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6542	}
6543}
6544
6545static int wq_watchdog_param_set_thresh(const char *val,
6546					const struct kernel_param *kp)
6547{
6548	unsigned long thresh;
6549	int ret;
6550
6551	ret = kstrtoul(val, 0, &thresh);
6552	if (ret)
6553		return ret;
6554
6555	if (system_wq)
6556		wq_watchdog_set_thresh(thresh);
6557	else
6558		wq_watchdog_thresh = thresh;
6559
6560	return 0;
6561}
6562
6563static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6564	.set	= wq_watchdog_param_set_thresh,
6565	.get	= param_get_ulong,
6566};
6567
6568module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6569		0644);
6570
6571static void wq_watchdog_init(void)
6572{
6573	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
6574	wq_watchdog_set_thresh(wq_watchdog_thresh);
6575}
6576
6577#else	/* CONFIG_WQ_WATCHDOG */
6578
6579static inline void wq_watchdog_init(void) { }
6580
6581#endif	/* CONFIG_WQ_WATCHDOG */
6582
6583static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
6584{
6585	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
6586		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
6587			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
 
 
 
 
 
6588		return;
6589	}
6590
6591	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6592}
6593
6594/**
6595 * workqueue_init_early - early init for workqueue subsystem
6596 *
6597 * This is the first step of three-staged workqueue subsystem initialization and
6598 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
6599 * up. It sets up all the data structures and system workqueues and allows early
6600 * boot code to create workqueues and queue/cancel work items. Actual work item
6601 * execution starts only after kthreads can be created and scheduled right
6602 * before early initcalls.
6603 */
6604void __init workqueue_init_early(void)
6605{
6606	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
6607	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
 
6608	int i, cpu;
6609
6610	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6611
6612	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6613	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
6614	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
6615
6616	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
6617	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
6618	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
6619	if (!cpumask_empty(&wq_cmdline_cpumask))
6620		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
6621
6622	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
6623
6624	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6625
6626	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
6627	BUG_ON(!wq_update_pod_attrs_buf);
6628
6629	/* initialize WQ_AFFN_SYSTEM pods */
6630	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6631	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
6632	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6633	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
6634
6635	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
6636
6637	pt->nr_pods = 1;
6638	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
6639	pt->pod_node[0] = NUMA_NO_NODE;
6640	pt->cpu_pod[0] = 0;
6641
6642	/* initialize CPU pools */
6643	for_each_possible_cpu(cpu) {
6644		struct worker_pool *pool;
6645
6646		i = 0;
6647		for_each_cpu_worker_pool(pool, cpu) {
6648			BUG_ON(init_worker_pool(pool));
6649			pool->cpu = cpu;
6650			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6651			cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
6652			pool->attrs->nice = std_nice[i++];
6653			pool->attrs->affn_strict = true;
6654			pool->node = cpu_to_node(cpu);
6655
6656			/* alloc pool ID */
6657			mutex_lock(&wq_pool_mutex);
6658			BUG_ON(worker_pool_assign_id(pool));
6659			mutex_unlock(&wq_pool_mutex);
6660		}
6661	}
6662
6663	/* create default unbound and ordered wq attrs */
6664	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6665		struct workqueue_attrs *attrs;
6666
6667		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6668		attrs->nice = std_nice[i];
6669		unbound_std_wq_attrs[i] = attrs;
6670
6671		/*
6672		 * An ordered wq should have only one pwq as ordering is
6673		 * guaranteed by max_active which is enforced by pwqs.
 
6674		 */
6675		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6676		attrs->nice = std_nice[i];
6677		attrs->ordered = true;
6678		ordered_wq_attrs[i] = attrs;
6679	}
6680
6681	system_wq = alloc_workqueue("events", 0, 0);
6682	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6683	system_long_wq = alloc_workqueue("events_long", 0, 0);
6684	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6685					    WQ_MAX_ACTIVE);
6686	system_freezable_wq = alloc_workqueue("events_freezable",
6687					      WQ_FREEZABLE, 0);
6688	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6689					      WQ_POWER_EFFICIENT, 0);
6690	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6691					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6692					      0);
6693	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6694	       !system_unbound_wq || !system_freezable_wq ||
6695	       !system_power_efficient_wq ||
6696	       !system_freezable_power_efficient_wq);
6697}
6698
6699static void __init wq_cpu_intensive_thresh_init(void)
6700{
6701	unsigned long thresh;
6702	unsigned long bogo;
6703
6704	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
6705	BUG_ON(IS_ERR(pwq_release_worker));
6706
6707	/* if the user set it to a specific value, keep it */
6708	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
6709		return;
6710
6711	/*
6712	 * The default of 10ms is derived from the fact that most modern (as of
6713	 * 2023) processors can do a lot in 10ms and that it's just below what
6714	 * most consider human-perceivable. However, the kernel also runs on a
6715	 * lot slower CPUs including microcontrollers where the threshold is way
6716	 * too low.
6717	 *
6718	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
6719	 * This is by no means accurate but it doesn't have to be. The mechanism
6720	 * is still useful even when the threshold is fully scaled up. Also, as
6721	 * the reports would usually be applicable to everyone, some machines
6722	 * operating on longer thresholds won't significantly diminish their
6723	 * usefulness.
6724	 */
6725	thresh = 10 * USEC_PER_MSEC;
6726
6727	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
6728	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
6729	if (bogo < 4000)
6730		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
6731
6732	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
6733		 loops_per_jiffy, bogo, thresh);
6734
6735	wq_cpu_intensive_thresh_us = thresh;
6736}
6737
6738/**
6739 * workqueue_init - bring workqueue subsystem fully online
6740 *
6741 * This is the second step of three-staged workqueue subsystem initialization
6742 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
6743 * been created and work items queued on them, but there are no kworkers
6744 * executing the work items yet. Populate the worker pools with the initial
6745 * workers and enable future kworker creations.
6746 */
6747void __init workqueue_init(void)
6748{
6749	struct workqueue_struct *wq;
6750	struct worker_pool *pool;
6751	int cpu, bkt;
6752
6753	wq_cpu_intensive_thresh_init();
 
 
 
 
 
 
 
 
 
6754
6755	mutex_lock(&wq_pool_mutex);
6756
6757	/*
6758	 * Per-cpu pools created earlier could be missing node hint. Fix them
6759	 * up. Also, create a rescuer for workqueues that requested it.
6760	 */
6761	for_each_possible_cpu(cpu) {
6762		for_each_cpu_worker_pool(pool, cpu) {
6763			pool->node = cpu_to_node(cpu);
6764		}
6765	}
6766
6767	list_for_each_entry(wq, &workqueues, list) {
 
6768		WARN(init_rescuer(wq),
6769		     "workqueue: failed to create early rescuer for %s",
6770		     wq->name);
6771	}
6772
6773	mutex_unlock(&wq_pool_mutex);
6774
6775	/* create the initial workers */
6776	for_each_online_cpu(cpu) {
6777		for_each_cpu_worker_pool(pool, cpu) {
6778			pool->flags &= ~POOL_DISASSOCIATED;
6779			BUG_ON(!create_worker(pool));
6780		}
6781	}
6782
6783	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6784		BUG_ON(!create_worker(pool));
6785
6786	wq_online = true;
6787	wq_watchdog_init();
6788}
6789
6790/*
6791 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
6792 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
6793 * and consecutive pod ID. The rest of @pt is initialized accordingly.
6794 */
6795static void __init init_pod_type(struct wq_pod_type *pt,
6796				 bool (*cpus_share_pod)(int, int))
6797{
6798	int cur, pre, cpu, pod;
6799
6800	pt->nr_pods = 0;
6801
6802	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
6803	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6804	BUG_ON(!pt->cpu_pod);
6805
6806	for_each_possible_cpu(cur) {
6807		for_each_possible_cpu(pre) {
6808			if (pre >= cur) {
6809				pt->cpu_pod[cur] = pt->nr_pods++;
6810				break;
6811			}
6812			if (cpus_share_pod(cur, pre)) {
6813				pt->cpu_pod[cur] = pt->cpu_pod[pre];
6814				break;
6815			}
6816		}
6817	}
6818
6819	/* init the rest to match @pt->cpu_pod[] */
6820	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6821	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
6822	BUG_ON(!pt->pod_cpus || !pt->pod_node);
6823
6824	for (pod = 0; pod < pt->nr_pods; pod++)
6825		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
6826
6827	for_each_possible_cpu(cpu) {
6828		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
6829		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
6830	}
6831}
6832
6833static bool __init cpus_dont_share(int cpu0, int cpu1)
6834{
6835	return false;
6836}
6837
6838static bool __init cpus_share_smt(int cpu0, int cpu1)
6839{
6840#ifdef CONFIG_SCHED_SMT
6841	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
6842#else
6843	return false;
6844#endif
6845}
6846
6847static bool __init cpus_share_numa(int cpu0, int cpu1)
6848{
6849	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
6850}
6851
6852/**
6853 * workqueue_init_topology - initialize CPU pods for unbound workqueues
6854 *
6855 * This is the third step of there-staged workqueue subsystem initialization and
6856 * invoked after SMP and topology information are fully initialized. It
6857 * initializes the unbound CPU pods accordingly.
6858 */
6859void __init workqueue_init_topology(void)
6860{
6861	struct workqueue_struct *wq;
6862	int cpu;
6863
6864	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
6865	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
6866	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
6867	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
6868
6869	mutex_lock(&wq_pool_mutex);
6870
6871	/*
6872	 * Workqueues allocated earlier would have all CPUs sharing the default
6873	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
6874	 * combinations to apply per-pod sharing.
6875	 */
6876	list_for_each_entry(wq, &workqueues, list) {
6877		for_each_online_cpu(cpu) {
6878			wq_update_pod(wq, cpu, cpu, true);
6879		}
6880	}
6881
6882	mutex_unlock(&wq_pool_mutex);
6883}
6884
6885void __warn_flushing_systemwide_wq(void)
6886{
6887	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
6888	dump_stack();
6889}
6890EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6891
6892static int __init workqueue_unbound_cpus_setup(char *str)
6893{
6894	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
6895		cpumask_clear(&wq_cmdline_cpumask);
6896		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
6897	}
6898
6899	return 1;
6900}
6901__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/workqueue.c - generic async execution with shared worker pool
   4 *
   5 * Copyright (C) 2002		Ingo Molnar
   6 *
   7 *   Derived from the taskqueue/keventd code by:
   8 *     David Woodhouse <dwmw2@infradead.org>
   9 *     Andrew Morton
  10 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  11 *     Theodore Ts'o <tytso@mit.edu>
  12 *
  13 * Made to use alloc_percpu by Christoph Lameter.
  14 *
  15 * Copyright (C) 2010		SUSE Linux Products GmbH
  16 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  17 *
  18 * This is the generic async execution mechanism.  Work items as are
  19 * executed in process context.  The worker pool is shared and
  20 * automatically managed.  There are two worker pools for each CPU (one for
  21 * normal work items and the other for high priority ones) and some extra
  22 * pools for workqueues which are not bound to any specific CPU - the
  23 * number of these backing pools is dynamic.
  24 *
  25 * Please read Documentation/core-api/workqueue.rst for details.
  26 */
  27
  28#include <linux/export.h>
  29#include <linux/kernel.h>
  30#include <linux/sched.h>
  31#include <linux/init.h>
  32#include <linux/signal.h>
  33#include <linux/completion.h>
  34#include <linux/workqueue.h>
  35#include <linux/slab.h>
  36#include <linux/cpu.h>
  37#include <linux/notifier.h>
  38#include <linux/kthread.h>
  39#include <linux/hardirq.h>
  40#include <linux/mempolicy.h>
  41#include <linux/freezer.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51#include <linux/sched/isolation.h>
 
  52#include <linux/nmi.h>
 
 
  53
  54#include "workqueue_internal.h"
  55
  56enum {
  57	/*
  58	 * worker_pool flags
  59	 *
  60	 * A bound pool is either associated or disassociated with its CPU.
  61	 * While associated (!DISASSOCIATED), all workers are bound to the
  62	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  63	 * is in effect.
  64	 *
  65	 * While DISASSOCIATED, the cpu may be offline and all workers have
  66	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  67	 * be executing on any CPU.  The pool behaves as an unbound one.
  68	 *
  69	 * Note that DISASSOCIATED should be flipped only while holding
  70	 * wq_pool_attach_mutex to avoid changing binding state while
  71	 * worker_attach_to_pool() is in progress.
  72	 */
  73	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
  74	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  75
  76	/* worker flags */
  77	WORKER_DIE		= 1 << 1,	/* die die die */
  78	WORKER_IDLE		= 1 << 2,	/* is idle */
  79	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  80	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  81	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  82	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  83
  84	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  85				  WORKER_UNBOUND | WORKER_REBOUND,
  86
  87	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
  88
  89	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
  90	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  91
  92	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  93	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  94
  95	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  96						/* call for help after 10ms
  97						   (min two ticks) */
  98	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
  99	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
 100
 101	/*
 102	 * Rescue workers are used only on emergencies and shared by
 103	 * all cpus.  Give MIN_NICE.
 104	 */
 105	RESCUER_NICE_LEVEL	= MIN_NICE,
 106	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 107
 108	WQ_NAME_LEN		= 24,
 109};
 110
 111/*
 112 * Structure fields follow one of the following exclusion rules.
 113 *
 114 * I: Modifiable by initialization/destruction paths and read-only for
 115 *    everyone else.
 116 *
 117 * P: Preemption protected.  Disabling preemption is enough and should
 118 *    only be modified and accessed from the local cpu.
 119 *
 120 * L: pool->lock protected.  Access with pool->lock held.
 121 *
 122 * X: During normal operation, modification requires pool->lock and should
 123 *    be done only from local cpu.  Either disabling preemption on local
 124 *    cpu or grabbing pool->lock is enough for read access.  If
 125 *    POOL_DISASSOCIATED is set, it's identical to L.
 
 126 *
 127 * A: wq_pool_attach_mutex protected.
 128 *
 129 * PL: wq_pool_mutex protected.
 130 *
 131 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
 132 *
 133 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 134 *
 135 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 136 *      RCU for reads.
 137 *
 138 * WQ: wq->mutex protected.
 139 *
 140 * WR: wq->mutex protected for writes.  RCU protected for reads.
 141 *
 142 * MD: wq_mayday_lock protected.
 
 
 143 */
 144
 145/* struct worker is defined in workqueue_internal.h */
 146
 147struct worker_pool {
 148	spinlock_t		lock;		/* the pool lock */
 149	int			cpu;		/* I: the associated cpu */
 150	int			node;		/* I: the associated node ID */
 151	int			id;		/* I: pool ID */
 152	unsigned int		flags;		/* X: flags */
 153
 154	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 
 
 
 
 
 
 
 
 
 155
 156	struct list_head	worklist;	/* L: list of pending works */
 157
 158	int			nr_workers;	/* L: total number of workers */
 159	int			nr_idle;	/* L: currently idle workers */
 160
 161	struct list_head	idle_list;	/* X: list of idle workers */
 162	struct timer_list	idle_timer;	/* L: worker idle timeout */
 163	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
 
 
 164
 165	/* a workers is either on busy_hash or idle_list, or the manager */
 166	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 167						/* L: hash of busy workers */
 168
 169	struct worker		*manager;	/* L: purely informational */
 170	struct list_head	workers;	/* A: attached workers */
 
 171	struct completion	*detach_completion; /* all workers detached */
 172
 173	struct ida		worker_ida;	/* worker IDs for task name */
 174
 175	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 176	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 177	int			refcnt;		/* PL: refcnt for unbound pools */
 178
 179	/*
 180	 * The current concurrency level.  As it's likely to be accessed
 181	 * from other CPUs during try_to_wake_up(), put it in a separate
 182	 * cacheline.
 183	 */
 184	atomic_t		nr_running ____cacheline_aligned_in_smp;
 185
 186	/*
 187	 * Destruction of pool is RCU protected to allow dereferences
 188	 * from get_work_pool().
 189	 */
 190	struct rcu_head		rcu;
 191} ____cacheline_aligned_in_smp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 192
 193/*
 194 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 195 * of work_struct->data are used for flags and the remaining high bits
 196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 197 * number of flag bits.
 198 */
 199struct pool_workqueue {
 200	struct worker_pool	*pool;		/* I: the associated pool */
 201	struct workqueue_struct *wq;		/* I: the owning workqueue */
 202	int			work_color;	/* L: current color */
 203	int			flush_color;	/* L: flushing color */
 204	int			refcnt;		/* L: reference count */
 205	int			nr_in_flight[WORK_NR_COLORS];
 206						/* L: nr of in_flight works */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207	int			nr_active;	/* L: nr of active works */
 208	int			max_active;	/* L: max active works */
 209	struct list_head	delayed_works;	/* L: delayed works */
 210	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 211	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 212
 
 
 213	/*
 214	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
 215	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
 216	 * itself is also RCU protected so that the first pwq can be
 217	 * determined without grabbing wq->mutex.
 218	 */
 219	struct work_struct	unbound_release_work;
 220	struct rcu_head		rcu;
 221} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 222
 223/*
 224 * Structure used to wait for workqueue flush.
 225 */
 226struct wq_flusher {
 227	struct list_head	list;		/* WQ: list of flushers */
 228	int			flush_color;	/* WQ: flush color waiting for */
 229	struct completion	done;		/* flush completion */
 230};
 231
 232struct wq_device;
 233
 234/*
 235 * The externally visible workqueue.  It relays the issued work items to
 236 * the appropriate worker_pool through its pool_workqueues.
 237 */
 238struct workqueue_struct {
 239	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 240	struct list_head	list;		/* PR: list of all workqueues */
 241
 242	struct mutex		mutex;		/* protects this wq */
 243	int			work_color;	/* WQ: current work color */
 244	int			flush_color;	/* WQ: current flush color */
 245	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 246	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 247	struct list_head	flusher_queue;	/* WQ: flush waiters */
 248	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 249
 250	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 251	struct worker		*rescuer;	/* I: rescue worker */
 252
 253	int			nr_drainers;	/* WQ: drain in progress */
 254	int			saved_max_active; /* WQ: saved pwq max_active */
 255
 256	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 257	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
 258
 259#ifdef CONFIG_SYSFS
 260	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 261#endif
 262#ifdef CONFIG_LOCKDEP
 263	char			*lock_name;
 264	struct lock_class_key	key;
 265	struct lockdep_map	lockdep_map;
 266#endif
 267	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 268
 269	/*
 270	 * Destruction of workqueue_struct is RCU protected to allow walking
 271	 * the workqueues list without grabbing wq_pool_mutex.
 272	 * This is used to dump all workqueues from sysrq.
 273	 */
 274	struct rcu_head		rcu;
 275
 276	/* hot fields used during command issue, aligned to cacheline */
 277	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 278	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 279	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 280};
 281
 282static struct kmem_cache *pwq_cache;
 283
 284static cpumask_var_t *wq_numa_possible_cpumask;
 285					/* possible CPUs of each node */
 
 
 
 
 
 
 
 
 286
 287static bool wq_disable_numa;
 288module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289
 290/* see the comment above the definition of WQ_POWER_EFFICIENT */
 291static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 292module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 293
 294static bool wq_online;			/* can kworkers be created yet? */
 295
 296static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
 297
 298/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 299static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 300
 301static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 302static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
 303static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 304static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
 
 305
 306static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 307static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 308
 309/* PL: allowable cpus for unbound wqs and work items */
 310static cpumask_var_t wq_unbound_cpumask;
 311
 
 
 
 
 
 
 
 
 
 312/* CPU where unbound work was last round robin scheduled from this CPU */
 313static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 314
 315/*
 316 * Local execution of unbound work items is no longer guaranteed.  The
 317 * following always forces round-robin CPU selection on unbound work items
 318 * to uncover usages which depend on it.
 319 */
 320#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 321static bool wq_debug_force_rr_cpu = true;
 322#else
 323static bool wq_debug_force_rr_cpu = false;
 324#endif
 325module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 326
 327/* the per-cpu worker pools */
 328static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 329
 330static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 331
 332/* PL: hash of all unbound pools keyed by pool->attrs */
 333static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 334
 335/* I: attributes used when instantiating standard unbound pools on demand */
 336static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 337
 338/* I: attributes used when instantiating ordered pools on demand */
 339static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 340
 341struct workqueue_struct *system_wq __read_mostly;
 
 
 
 
 
 
 
 342EXPORT_SYMBOL(system_wq);
 343struct workqueue_struct *system_highpri_wq __read_mostly;
 344EXPORT_SYMBOL_GPL(system_highpri_wq);
 345struct workqueue_struct *system_long_wq __read_mostly;
 346EXPORT_SYMBOL_GPL(system_long_wq);
 347struct workqueue_struct *system_unbound_wq __read_mostly;
 348EXPORT_SYMBOL_GPL(system_unbound_wq);
 349struct workqueue_struct *system_freezable_wq __read_mostly;
 350EXPORT_SYMBOL_GPL(system_freezable_wq);
 351struct workqueue_struct *system_power_efficient_wq __read_mostly;
 352EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 353struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 354EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 355
 356static int worker_thread(void *__worker);
 357static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 
 
 358
 359#define CREATE_TRACE_POINTS
 360#include <trace/events/workqueue.h>
 361
 362#define assert_rcu_or_pool_mutex()					\
 363	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 364			 !lockdep_is_held(&wq_pool_mutex),		\
 365			 "RCU or wq_pool_mutex should be held")
 366
 367#define assert_rcu_or_wq_mutex(wq)					\
 368	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 369			 !lockdep_is_held(&wq->mutex),			\
 370			 "RCU or wq->mutex should be held")
 371
 372#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 373	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 374			 !lockdep_is_held(&wq->mutex) &&		\
 375			 !lockdep_is_held(&wq_pool_mutex),		\
 376			 "RCU, wq->mutex or wq_pool_mutex should be held")
 377
 378#define for_each_cpu_worker_pool(pool, cpu)				\
 379	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 380	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 381	     (pool)++)
 382
 383/**
 384 * for_each_pool - iterate through all worker_pools in the system
 385 * @pool: iteration cursor
 386 * @pi: integer used for iteration
 387 *
 388 * This must be called either with wq_pool_mutex held or RCU read
 389 * locked.  If the pool needs to be used beyond the locking in effect, the
 390 * caller is responsible for guaranteeing that the pool stays online.
 391 *
 392 * The if/else clause exists only for the lockdep assertion and can be
 393 * ignored.
 394 */
 395#define for_each_pool(pool, pi)						\
 396	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 397		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 398		else
 399
 400/**
 401 * for_each_pool_worker - iterate through all workers of a worker_pool
 402 * @worker: iteration cursor
 403 * @pool: worker_pool to iterate workers of
 404 *
 405 * This must be called with wq_pool_attach_mutex.
 406 *
 407 * The if/else clause exists only for the lockdep assertion and can be
 408 * ignored.
 409 */
 410#define for_each_pool_worker(worker, pool)				\
 411	list_for_each_entry((worker), &(pool)->workers, node)		\
 412		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
 413		else
 414
 415/**
 416 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 417 * @pwq: iteration cursor
 418 * @wq: the target workqueue
 419 *
 420 * This must be called either with wq->mutex held or RCU read locked.
 421 * If the pwq needs to be used beyond the locking in effect, the caller is
 422 * responsible for guaranteeing that the pwq stays online.
 423 *
 424 * The if/else clause exists only for the lockdep assertion and can be
 425 * ignored.
 426 */
 427#define for_each_pwq(pwq, wq)						\
 428	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
 429		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
 430		else
 431
 432#ifdef CONFIG_DEBUG_OBJECTS_WORK
 433
 434static struct debug_obj_descr work_debug_descr;
 435
 436static void *work_debug_hint(void *addr)
 437{
 438	return ((struct work_struct *) addr)->func;
 439}
 440
 441static bool work_is_static_object(void *addr)
 442{
 443	struct work_struct *work = addr;
 444
 445	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 446}
 447
 448/*
 449 * fixup_init is called when:
 450 * - an active object is initialized
 451 */
 452static bool work_fixup_init(void *addr, enum debug_obj_state state)
 453{
 454	struct work_struct *work = addr;
 455
 456	switch (state) {
 457	case ODEBUG_STATE_ACTIVE:
 458		cancel_work_sync(work);
 459		debug_object_init(work, &work_debug_descr);
 460		return true;
 461	default:
 462		return false;
 463	}
 464}
 465
 466/*
 467 * fixup_free is called when:
 468 * - an active object is freed
 469 */
 470static bool work_fixup_free(void *addr, enum debug_obj_state state)
 471{
 472	struct work_struct *work = addr;
 473
 474	switch (state) {
 475	case ODEBUG_STATE_ACTIVE:
 476		cancel_work_sync(work);
 477		debug_object_free(work, &work_debug_descr);
 478		return true;
 479	default:
 480		return false;
 481	}
 482}
 483
 484static struct debug_obj_descr work_debug_descr = {
 485	.name		= "work_struct",
 486	.debug_hint	= work_debug_hint,
 487	.is_static_object = work_is_static_object,
 488	.fixup_init	= work_fixup_init,
 489	.fixup_free	= work_fixup_free,
 490};
 491
 492static inline void debug_work_activate(struct work_struct *work)
 493{
 494	debug_object_activate(work, &work_debug_descr);
 495}
 496
 497static inline void debug_work_deactivate(struct work_struct *work)
 498{
 499	debug_object_deactivate(work, &work_debug_descr);
 500}
 501
 502void __init_work(struct work_struct *work, int onstack)
 503{
 504	if (onstack)
 505		debug_object_init_on_stack(work, &work_debug_descr);
 506	else
 507		debug_object_init(work, &work_debug_descr);
 508}
 509EXPORT_SYMBOL_GPL(__init_work);
 510
 511void destroy_work_on_stack(struct work_struct *work)
 512{
 513	debug_object_free(work, &work_debug_descr);
 514}
 515EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 516
 517void destroy_delayed_work_on_stack(struct delayed_work *work)
 518{
 519	destroy_timer_on_stack(&work->timer);
 520	debug_object_free(&work->work, &work_debug_descr);
 521}
 522EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 523
 524#else
 525static inline void debug_work_activate(struct work_struct *work) { }
 526static inline void debug_work_deactivate(struct work_struct *work) { }
 527#endif
 528
 529/**
 530 * worker_pool_assign_id - allocate ID and assing it to @pool
 531 * @pool: the pool pointer of interest
 532 *
 533 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 534 * successfully, -errno on failure.
 535 */
 536static int worker_pool_assign_id(struct worker_pool *pool)
 537{
 538	int ret;
 539
 540	lockdep_assert_held(&wq_pool_mutex);
 541
 542	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 543			GFP_KERNEL);
 544	if (ret >= 0) {
 545		pool->id = ret;
 546		return 0;
 547	}
 548	return ret;
 549}
 550
 551/**
 552 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 553 * @wq: the target workqueue
 554 * @node: the node ID
 555 *
 556 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
 557 * read locked.
 558 * If the pwq needs to be used beyond the locking in effect, the caller is
 559 * responsible for guaranteeing that the pwq stays online.
 560 *
 561 * Return: The unbound pool_workqueue for @node.
 562 */
 563static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 564						  int node)
 565{
 566	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 567
 568	/*
 569	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 570	 * delayed item is pending.  The plan is to keep CPU -> NODE
 571	 * mapping valid and stable across CPU on/offlines.  Once that
 572	 * happens, this workaround can be removed.
 573	 */
 574	if (unlikely(node == NUMA_NO_NODE))
 575		return wq->dfl_pwq;
 576
 577	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 578}
 579
 580static unsigned int work_color_to_flags(int color)
 581{
 582	return color << WORK_STRUCT_COLOR_SHIFT;
 583}
 584
 585static int get_work_color(struct work_struct *work)
 586{
 587	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 588		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 589}
 590
 591static int work_next_color(int color)
 592{
 593	return (color + 1) % WORK_NR_COLORS;
 594}
 595
 596/*
 597 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 598 * contain the pointer to the queued pwq.  Once execution starts, the flag
 599 * is cleared and the high bits contain OFFQ flags and pool ID.
 600 *
 601 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 602 * and clear_work_data() can be used to set the pwq, pool or clear
 603 * work->data.  These functions should only be called while the work is
 604 * owned - ie. while the PENDING bit is set.
 605 *
 606 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 607 * corresponding to a work.  Pool is available once the work has been
 608 * queued anywhere after initialization until it is sync canceled.  pwq is
 609 * available only while the work item is queued.
 610 *
 611 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 612 * canceled.  While being canceled, a work item may have its PENDING set
 613 * but stay off timer and worklist for arbitrarily long and nobody should
 614 * try to steal the PENDING bit.
 615 */
 616static inline void set_work_data(struct work_struct *work, unsigned long data,
 617				 unsigned long flags)
 618{
 619	WARN_ON_ONCE(!work_pending(work));
 620	atomic_long_set(&work->data, data | flags | work_static(work));
 621}
 622
 623static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 624			 unsigned long extra_flags)
 625{
 626	set_work_data(work, (unsigned long)pwq,
 627		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 628}
 629
 630static void set_work_pool_and_keep_pending(struct work_struct *work,
 631					   int pool_id)
 632{
 633	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 634		      WORK_STRUCT_PENDING);
 635}
 636
 637static void set_work_pool_and_clear_pending(struct work_struct *work,
 638					    int pool_id)
 639{
 640	/*
 641	 * The following wmb is paired with the implied mb in
 642	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 643	 * here are visible to and precede any updates by the next PENDING
 644	 * owner.
 645	 */
 646	smp_wmb();
 647	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 648	/*
 649	 * The following mb guarantees that previous clear of a PENDING bit
 650	 * will not be reordered with any speculative LOADS or STORES from
 651	 * work->current_func, which is executed afterwards.  This possible
 652	 * reordering can lead to a missed execution on attempt to queue
 653	 * the same @work.  E.g. consider this case:
 654	 *
 655	 *   CPU#0                         CPU#1
 656	 *   ----------------------------  --------------------------------
 657	 *
 658	 * 1  STORE event_indicated
 659	 * 2  queue_work_on() {
 660	 * 3    test_and_set_bit(PENDING)
 661	 * 4 }                             set_..._and_clear_pending() {
 662	 * 5                                 set_work_data() # clear bit
 663	 * 6                                 smp_mb()
 664	 * 7                               work->current_func() {
 665	 * 8				      LOAD event_indicated
 666	 *				   }
 667	 *
 668	 * Without an explicit full barrier speculative LOAD on line 8 can
 669	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 670	 * CPU#0 observes the PENDING bit is still set and new execution of
 671	 * a @work is not queued in a hope, that CPU#1 will eventually
 672	 * finish the queued @work.  Meanwhile CPU#1 does not see
 673	 * event_indicated is set, because speculative LOAD was executed
 674	 * before actual STORE.
 675	 */
 676	smp_mb();
 677}
 678
 679static void clear_work_data(struct work_struct *work)
 680{
 681	smp_wmb();	/* see set_work_pool_and_clear_pending() */
 682	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 683}
 684
 
 
 
 
 
 685static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 686{
 687	unsigned long data = atomic_long_read(&work->data);
 688
 689	if (data & WORK_STRUCT_PWQ)
 690		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 691	else
 692		return NULL;
 693}
 694
 695/**
 696 * get_work_pool - return the worker_pool a given work was associated with
 697 * @work: the work item of interest
 698 *
 699 * Pools are created and destroyed under wq_pool_mutex, and allows read
 700 * access under RCU read lock.  As such, this function should be
 701 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
 702 *
 703 * All fields of the returned pool are accessible as long as the above
 704 * mentioned locking is in effect.  If the returned pool needs to be used
 705 * beyond the critical section, the caller is responsible for ensuring the
 706 * returned pool is and stays online.
 707 *
 708 * Return: The worker_pool @work was last associated with.  %NULL if none.
 709 */
 710static struct worker_pool *get_work_pool(struct work_struct *work)
 711{
 712	unsigned long data = atomic_long_read(&work->data);
 713	int pool_id;
 714
 715	assert_rcu_or_pool_mutex();
 716
 717	if (data & WORK_STRUCT_PWQ)
 718		return ((struct pool_workqueue *)
 719			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 720
 721	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 722	if (pool_id == WORK_OFFQ_POOL_NONE)
 723		return NULL;
 724
 725	return idr_find(&worker_pool_idr, pool_id);
 726}
 727
 728/**
 729 * get_work_pool_id - return the worker pool ID a given work is associated with
 730 * @work: the work item of interest
 731 *
 732 * Return: The worker_pool ID @work was last associated with.
 733 * %WORK_OFFQ_POOL_NONE if none.
 734 */
 735static int get_work_pool_id(struct work_struct *work)
 736{
 737	unsigned long data = atomic_long_read(&work->data);
 738
 739	if (data & WORK_STRUCT_PWQ)
 740		return ((struct pool_workqueue *)
 741			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 742
 743	return data >> WORK_OFFQ_POOL_SHIFT;
 744}
 745
 746static void mark_work_canceling(struct work_struct *work)
 747{
 748	unsigned long pool_id = get_work_pool_id(work);
 749
 750	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 751	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 752}
 753
 754static bool work_is_canceling(struct work_struct *work)
 755{
 756	unsigned long data = atomic_long_read(&work->data);
 757
 758	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 759}
 760
 761/*
 762 * Policy functions.  These define the policies on how the global worker
 763 * pools are managed.  Unless noted otherwise, these functions assume that
 764 * they're being called with pool->lock held.
 765 */
 766
 767static bool __need_more_worker(struct worker_pool *pool)
 768{
 769	return !atomic_read(&pool->nr_running);
 770}
 771
 772/*
 773 * Need to wake up a worker?  Called from anything but currently
 774 * running workers.
 775 *
 776 * Note that, because unbound workers never contribute to nr_running, this
 777 * function will always return %true for unbound pools as long as the
 778 * worklist isn't empty.
 779 */
 780static bool need_more_worker(struct worker_pool *pool)
 781{
 782	return !list_empty(&pool->worklist) && __need_more_worker(pool);
 783}
 784
 785/* Can I start working?  Called from busy but !running workers. */
 786static bool may_start_working(struct worker_pool *pool)
 787{
 788	return pool->nr_idle;
 789}
 790
 791/* Do I need to keep working?  Called from currently running workers. */
 792static bool keep_working(struct worker_pool *pool)
 793{
 794	return !list_empty(&pool->worklist) &&
 795		atomic_read(&pool->nr_running) <= 1;
 796}
 797
 798/* Do we need a new worker?  Called from manager. */
 799static bool need_to_create_worker(struct worker_pool *pool)
 800{
 801	return need_more_worker(pool) && !may_start_working(pool);
 802}
 803
 804/* Do we have too many workers and should some go away? */
 805static bool too_many_workers(struct worker_pool *pool)
 806{
 807	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 808	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 809	int nr_busy = pool->nr_workers - nr_idle;
 810
 811	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 812}
 813
 814/*
 815 * Wake up functions.
 816 */
 817
 818/* Return the first idle worker.  Safe with preemption disabled */
 819static struct worker *first_idle_worker(struct worker_pool *pool)
 820{
 821	if (unlikely(list_empty(&pool->idle_list)))
 822		return NULL;
 823
 824	return list_first_entry(&pool->idle_list, struct worker, entry);
 825}
 826
 827/**
 828 * wake_up_worker - wake up an idle worker
 829 * @pool: worker pool to wake worker from
 830 *
 831 * Wake up the first idle worker of @pool.
 832 *
 833 * CONTEXT:
 834 * spin_lock_irq(pool->lock).
 835 */
 836static void wake_up_worker(struct worker_pool *pool)
 837{
 838	struct worker *worker = first_idle_worker(pool);
 839
 840	if (likely(worker))
 841		wake_up_process(worker->task);
 842}
 843
 844/**
 845 * wq_worker_running - a worker is running again
 846 * @task: task waking up
 847 *
 848 * This function is called when a worker returns from schedule()
 849 */
 850void wq_worker_running(struct task_struct *task)
 851{
 852	struct worker *worker = kthread_data(task);
 853
 854	if (!worker->sleeping)
 855		return;
 856	if (!(worker->flags & WORKER_NOT_RUNNING))
 857		atomic_inc(&worker->pool->nr_running);
 858	worker->sleeping = 0;
 859}
 860
 861/**
 862 * wq_worker_sleeping - a worker is going to sleep
 863 * @task: task going to sleep
 864 *
 865 * This function is called from schedule() when a busy worker is
 866 * going to sleep.
 867 */
 868void wq_worker_sleeping(struct task_struct *task)
 869{
 870	struct worker *next, *worker = kthread_data(task);
 871	struct worker_pool *pool;
 872
 873	/*
 874	 * Rescuers, which may not have all the fields set up like normal
 875	 * workers, also reach here, let's not access anything before
 876	 * checking NOT_RUNNING.
 877	 */
 878	if (worker->flags & WORKER_NOT_RUNNING)
 879		return;
 880
 881	pool = worker->pool;
 882
 883	if (WARN_ON_ONCE(worker->sleeping))
 884		return;
 885
 886	worker->sleeping = 1;
 887	spin_lock_irq(&pool->lock);
 888
 889	/*
 890	 * The counterpart of the following dec_and_test, implied mb,
 891	 * worklist not empty test sequence is in insert_work().
 892	 * Please read comment there.
 893	 *
 894	 * NOT_RUNNING is clear.  This means that we're bound to and
 895	 * running on the local cpu w/ rq lock held and preemption
 896	 * disabled, which in turn means that none else could be
 897	 * manipulating idle_list, so dereferencing idle_list without pool
 898	 * lock is safe.
 899	 */
 900	if (atomic_dec_and_test(&pool->nr_running) &&
 901	    !list_empty(&pool->worklist)) {
 902		next = first_idle_worker(pool);
 903		if (next)
 904			wake_up_process(next->task);
 905	}
 906	spin_unlock_irq(&pool->lock);
 907}
 908
 909/**
 910 * wq_worker_last_func - retrieve worker's last work function
 911 * @task: Task to retrieve last work function of.
 912 *
 913 * Determine the last function a worker executed. This is called from
 914 * the scheduler to get a worker's last known identity.
 915 *
 916 * CONTEXT:
 917 * spin_lock_irq(rq->lock)
 918 *
 919 * This function is called during schedule() when a kworker is going
 920 * to sleep. It's used by psi to identify aggregation workers during
 921 * dequeuing, to allow periodic aggregation to shut-off when that
 922 * worker is the last task in the system or cgroup to go to sleep.
 923 *
 924 * As this function doesn't involve any workqueue-related locking, it
 925 * only returns stable values when called from inside the scheduler's
 926 * queuing and dequeuing paths, when @task, which must be a kworker,
 927 * is guaranteed to not be processing any works.
 928 *
 929 * Return:
 930 * The last work function %current executed as a worker, NULL if it
 931 * hasn't executed any work yet.
 932 */
 933work_func_t wq_worker_last_func(struct task_struct *task)
 934{
 935	struct worker *worker = kthread_data(task);
 936
 937	return worker->last_func;
 938}
 939
 940/**
 941 * worker_set_flags - set worker flags and adjust nr_running accordingly
 942 * @worker: self
 943 * @flags: flags to set
 944 *
 945 * Set @flags in @worker->flags and adjust nr_running accordingly.
 946 *
 947 * CONTEXT:
 948 * spin_lock_irq(pool->lock)
 949 */
 950static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 951{
 952	struct worker_pool *pool = worker->pool;
 953
 954	WARN_ON_ONCE(worker->task != current);
 955
 956	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 957	if ((flags & WORKER_NOT_RUNNING) &&
 958	    !(worker->flags & WORKER_NOT_RUNNING)) {
 959		atomic_dec(&pool->nr_running);
 960	}
 961
 962	worker->flags |= flags;
 963}
 964
 965/**
 966 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 967 * @worker: self
 968 * @flags: flags to clear
 969 *
 970 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 971 *
 972 * CONTEXT:
 973 * spin_lock_irq(pool->lock)
 974 */
 975static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 976{
 977	struct worker_pool *pool = worker->pool;
 978	unsigned int oflags = worker->flags;
 979
 980	WARN_ON_ONCE(worker->task != current);
 981
 982	worker->flags &= ~flags;
 983
 984	/*
 985	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 986	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 987	 * of multiple flags, not a single flag.
 988	 */
 989	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 990		if (!(worker->flags & WORKER_NOT_RUNNING))
 991			atomic_inc(&pool->nr_running);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992}
 993
 994/**
 995 * find_worker_executing_work - find worker which is executing a work
 996 * @pool: pool of interest
 997 * @work: work to find worker for
 998 *
 999 * Find a worker which is executing @work on @pool by searching
1000 * @pool->busy_hash which is keyed by the address of @work.  For a worker
1001 * to match, its current execution should match the address of @work and
1002 * its work function.  This is to avoid unwanted dependency between
1003 * unrelated work executions through a work item being recycled while still
1004 * being executed.
1005 *
1006 * This is a bit tricky.  A work item may be freed once its execution
1007 * starts and nothing prevents the freed area from being recycled for
1008 * another work item.  If the same work item address ends up being reused
1009 * before the original execution finishes, workqueue will identify the
1010 * recycled work item as currently executing and make it wait until the
1011 * current execution finishes, introducing an unwanted dependency.
1012 *
1013 * This function checks the work item address and work function to avoid
1014 * false positives.  Note that this isn't complete as one may construct a
1015 * work function which can introduce dependency onto itself through a
1016 * recycled work item.  Well, if somebody wants to shoot oneself in the
1017 * foot that badly, there's only so much we can do, and if such deadlock
1018 * actually occurs, it should be easy to locate the culprit work function.
1019 *
1020 * CONTEXT:
1021 * spin_lock_irq(pool->lock).
1022 *
1023 * Return:
1024 * Pointer to worker which is executing @work if found, %NULL
1025 * otherwise.
1026 */
1027static struct worker *find_worker_executing_work(struct worker_pool *pool,
1028						 struct work_struct *work)
1029{
1030	struct worker *worker;
1031
1032	hash_for_each_possible(pool->busy_hash, worker, hentry,
1033			       (unsigned long)work)
1034		if (worker->current_work == work &&
1035		    worker->current_func == work->func)
1036			return worker;
1037
1038	return NULL;
1039}
1040
1041/**
1042 * move_linked_works - move linked works to a list
1043 * @work: start of series of works to be scheduled
1044 * @head: target list to append @work to
1045 * @nextp: out parameter for nested worklist walking
1046 *
1047 * Schedule linked works starting from @work to @head.  Work series to
1048 * be scheduled starts at @work and includes any consecutive work with
1049 * WORK_STRUCT_LINKED set in its predecessor.
1050 *
1051 * If @nextp is not NULL, it's updated to point to the next work of
1052 * the last scheduled work.  This allows move_linked_works() to be
1053 * nested inside outer list_for_each_entry_safe().
1054 *
1055 * CONTEXT:
1056 * spin_lock_irq(pool->lock).
1057 */
1058static void move_linked_works(struct work_struct *work, struct list_head *head,
1059			      struct work_struct **nextp)
1060{
1061	struct work_struct *n;
1062
1063	/*
1064	 * Linked worklist will always end before the end of the list,
1065	 * use NULL for list head.
1066	 */
1067	list_for_each_entry_safe_from(work, n, NULL, entry) {
1068		list_move_tail(&work->entry, head);
1069		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1070			break;
1071	}
1072
1073	/*
1074	 * If we're already inside safe list traversal and have moved
1075	 * multiple works to the scheduled queue, the next position
1076	 * needs to be updated.
1077	 */
1078	if (nextp)
1079		*nextp = n;
1080}
1081
1082/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083 * get_pwq - get an extra reference on the specified pool_workqueue
1084 * @pwq: pool_workqueue to get
1085 *
1086 * Obtain an extra reference on @pwq.  The caller should guarantee that
1087 * @pwq has positive refcnt and be holding the matching pool->lock.
1088 */
1089static void get_pwq(struct pool_workqueue *pwq)
1090{
1091	lockdep_assert_held(&pwq->pool->lock);
1092	WARN_ON_ONCE(pwq->refcnt <= 0);
1093	pwq->refcnt++;
1094}
1095
1096/**
1097 * put_pwq - put a pool_workqueue reference
1098 * @pwq: pool_workqueue to put
1099 *
1100 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1101 * destruction.  The caller should be holding the matching pool->lock.
1102 */
1103static void put_pwq(struct pool_workqueue *pwq)
1104{
1105	lockdep_assert_held(&pwq->pool->lock);
1106	if (likely(--pwq->refcnt))
1107		return;
1108	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1109		return;
1110	/*
1111	 * @pwq can't be released under pool->lock, bounce to
1112	 * pwq_unbound_release_workfn().  This never recurses on the same
1113	 * pool->lock as this path is taken only for unbound workqueues and
1114	 * the release work item is scheduled on a per-cpu workqueue.  To
1115	 * avoid lockdep warning, unbound pool->locks are given lockdep
1116	 * subclass of 1 in get_unbound_pool().
1117	 */
1118	schedule_work(&pwq->unbound_release_work);
1119}
1120
1121/**
1122 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1123 * @pwq: pool_workqueue to put (can be %NULL)
1124 *
1125 * put_pwq() with locking.  This function also allows %NULL @pwq.
1126 */
1127static void put_pwq_unlocked(struct pool_workqueue *pwq)
1128{
1129	if (pwq) {
1130		/*
1131		 * As both pwqs and pools are RCU protected, the
1132		 * following lock operations are safe.
1133		 */
1134		spin_lock_irq(&pwq->pool->lock);
1135		put_pwq(pwq);
1136		spin_unlock_irq(&pwq->pool->lock);
1137	}
1138}
1139
1140static void pwq_activate_delayed_work(struct work_struct *work)
1141{
1142	struct pool_workqueue *pwq = get_work_pwq(work);
1143
1144	trace_workqueue_activate_work(work);
1145	if (list_empty(&pwq->pool->worklist))
1146		pwq->pool->watchdog_ts = jiffies;
1147	move_linked_works(work, &pwq->pool->worklist, NULL);
1148	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1149	pwq->nr_active++;
1150}
1151
1152static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1153{
1154	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1155						    struct work_struct, entry);
1156
1157	pwq_activate_delayed_work(work);
1158}
1159
1160/**
1161 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1162 * @pwq: pwq of interest
1163 * @color: color of work which left the queue
1164 *
1165 * A work either has completed or is removed from pending queue,
1166 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1167 *
1168 * CONTEXT:
1169 * spin_lock_irq(pool->lock).
1170 */
1171static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1172{
1173	/* uncolored work items don't participate in flushing or nr_active */
1174	if (color == WORK_NO_COLOR)
1175		goto out_put;
 
 
 
 
 
 
 
1176
1177	pwq->nr_in_flight[color]--;
1178
1179	pwq->nr_active--;
1180	if (!list_empty(&pwq->delayed_works)) {
1181		/* one down, submit a delayed one */
1182		if (pwq->nr_active < pwq->max_active)
1183			pwq_activate_first_delayed(pwq);
1184	}
1185
1186	/* is flush in progress and are we at the flushing tip? */
1187	if (likely(pwq->flush_color != color))
1188		goto out_put;
1189
1190	/* are there still in-flight works? */
1191	if (pwq->nr_in_flight[color])
1192		goto out_put;
1193
1194	/* this pwq is done, clear flush_color */
1195	pwq->flush_color = -1;
1196
1197	/*
1198	 * If this was the last pwq, wake up the first flusher.  It
1199	 * will handle the rest.
1200	 */
1201	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1202		complete(&pwq->wq->first_flusher->done);
1203out_put:
1204	put_pwq(pwq);
1205}
1206
1207/**
1208 * try_to_grab_pending - steal work item from worklist and disable irq
1209 * @work: work item to steal
1210 * @is_dwork: @work is a delayed_work
1211 * @flags: place to store irq state
1212 *
1213 * Try to grab PENDING bit of @work.  This function can handle @work in any
1214 * stable state - idle, on timer or on worklist.
1215 *
1216 * Return:
 
 
1217 *  1		if @work was pending and we successfully stole PENDING
1218 *  0		if @work was idle and we claimed PENDING
1219 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1220 *  -ENOENT	if someone else is canceling @work, this state may persist
1221 *		for arbitrarily long
 
1222 *
1223 * Note:
1224 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1225 * interrupted while holding PENDING and @work off queue, irq must be
1226 * disabled on entry.  This, combined with delayed_work->timer being
1227 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1228 *
1229 * On successful return, >= 0, irq is disabled and the caller is
1230 * responsible for releasing it using local_irq_restore(*@flags).
1231 *
1232 * This function is safe to call from any context including IRQ handler.
1233 */
1234static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1235			       unsigned long *flags)
1236{
1237	struct worker_pool *pool;
1238	struct pool_workqueue *pwq;
1239
1240	local_irq_save(*flags);
1241
1242	/* try to steal the timer if it exists */
1243	if (is_dwork) {
1244		struct delayed_work *dwork = to_delayed_work(work);
1245
1246		/*
1247		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1248		 * guaranteed that the timer is not queued anywhere and not
1249		 * running on the local CPU.
1250		 */
1251		if (likely(del_timer(&dwork->timer)))
1252			return 1;
1253	}
1254
1255	/* try to claim PENDING the normal way */
1256	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1257		return 0;
1258
1259	rcu_read_lock();
1260	/*
1261	 * The queueing is in progress, or it is already queued. Try to
1262	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1263	 */
1264	pool = get_work_pool(work);
1265	if (!pool)
1266		goto fail;
1267
1268	spin_lock(&pool->lock);
1269	/*
1270	 * work->data is guaranteed to point to pwq only while the work
1271	 * item is queued on pwq->wq, and both updating work->data to point
1272	 * to pwq on queueing and to pool on dequeueing are done under
1273	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1274	 * points to pwq which is associated with a locked pool, the work
1275	 * item is currently queued on that pool.
1276	 */
1277	pwq = get_work_pwq(work);
1278	if (pwq && pwq->pool == pool) {
1279		debug_work_deactivate(work);
1280
1281		/*
1282		 * A delayed work item cannot be grabbed directly because
1283		 * it might have linked NO_COLOR work items which, if left
1284		 * on the delayed_list, will confuse pwq->nr_active
 
 
 
 
1285		 * management later on and cause stall.  Make sure the work
1286		 * item is activated before grabbing.
1287		 */
1288		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1289			pwq_activate_delayed_work(work);
1290
1291		list_del_init(&work->entry);
1292		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1293
1294		/* work->data points to pwq iff queued, point to pool */
1295		set_work_pool_and_keep_pending(work, pool->id);
1296
1297		spin_unlock(&pool->lock);
1298		rcu_read_unlock();
1299		return 1;
1300	}
1301	spin_unlock(&pool->lock);
1302fail:
1303	rcu_read_unlock();
1304	local_irq_restore(*flags);
1305	if (work_is_canceling(work))
1306		return -ENOENT;
1307	cpu_relax();
1308	return -EAGAIN;
1309}
1310
1311/**
1312 * insert_work - insert a work into a pool
1313 * @pwq: pwq @work belongs to
1314 * @work: work to insert
1315 * @head: insertion point
1316 * @extra_flags: extra WORK_STRUCT_* flags to set
1317 *
1318 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1319 * work_struct flags.
1320 *
1321 * CONTEXT:
1322 * spin_lock_irq(pool->lock).
1323 */
1324static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1325			struct list_head *head, unsigned int extra_flags)
1326{
1327	struct worker_pool *pool = pwq->pool;
 
 
 
1328
1329	/* we own @work, set data and link */
1330	set_work_pwq(work, pwq, extra_flags);
1331	list_add_tail(&work->entry, head);
1332	get_pwq(pwq);
1333
1334	/*
1335	 * Ensure either wq_worker_sleeping() sees the above
1336	 * list_add_tail() or we see zero nr_running to avoid workers lying
1337	 * around lazily while there are works to be processed.
1338	 */
1339	smp_mb();
1340
1341	if (__need_more_worker(pool))
1342		wake_up_worker(pool);
1343}
1344
1345/*
1346 * Test whether @work is being queued from another work executing on the
1347 * same workqueue.
1348 */
1349static bool is_chained_work(struct workqueue_struct *wq)
1350{
1351	struct worker *worker;
1352
1353	worker = current_wq_worker();
1354	/*
1355	 * Return %true iff I'm a worker executing a work item on @wq.  If
1356	 * I'm @worker, it's safe to dereference it without locking.
1357	 */
1358	return worker && worker->current_pwq->wq == wq;
1359}
1360
1361/*
1362 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1363 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1364 * avoid perturbing sensitive tasks.
1365 */
1366static int wq_select_unbound_cpu(int cpu)
1367{
1368	static bool printed_dbg_warning;
1369	int new_cpu;
1370
1371	if (likely(!wq_debug_force_rr_cpu)) {
1372		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1373			return cpu;
1374	} else if (!printed_dbg_warning) {
1375		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1376		printed_dbg_warning = true;
1377	}
1378
1379	if (cpumask_empty(wq_unbound_cpumask))
1380		return cpu;
1381
1382	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1383	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1384	if (unlikely(new_cpu >= nr_cpu_ids)) {
1385		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1386		if (unlikely(new_cpu >= nr_cpu_ids))
1387			return cpu;
1388	}
1389	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1390
1391	return new_cpu;
1392}
1393
1394static void __queue_work(int cpu, struct workqueue_struct *wq,
1395			 struct work_struct *work)
1396{
1397	struct pool_workqueue *pwq;
1398	struct worker_pool *last_pool;
1399	struct list_head *worklist;
1400	unsigned int work_flags;
1401	unsigned int req_cpu = cpu;
1402
1403	/*
1404	 * While a work item is PENDING && off queue, a task trying to
1405	 * steal the PENDING will busy-loop waiting for it to either get
1406	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1407	 * happen with IRQ disabled.
1408	 */
1409	lockdep_assert_irqs_disabled();
1410
1411	debug_work_activate(work);
1412
1413	/* if draining, only works from the same workqueue are allowed */
1414	if (unlikely(wq->flags & __WQ_DRAINING) &&
1415	    WARN_ON_ONCE(!is_chained_work(wq)))
 
 
 
 
1416		return;
1417	rcu_read_lock();
1418retry:
1419	if (req_cpu == WORK_CPU_UNBOUND)
1420		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
 
 
 
 
 
1421
1422	/* pwq which will be used unless @work is executing elsewhere */
1423	if (!(wq->flags & WQ_UNBOUND))
1424		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1425	else
1426		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1427
1428	/*
1429	 * If @work was previously on a different pool, it might still be
1430	 * running there, in which case the work needs to be queued on that
1431	 * pool to guarantee non-reentrancy.
1432	 */
1433	last_pool = get_work_pool(work);
1434	if (last_pool && last_pool != pwq->pool) {
1435		struct worker *worker;
1436
1437		spin_lock(&last_pool->lock);
1438
1439		worker = find_worker_executing_work(last_pool, work);
1440
1441		if (worker && worker->current_pwq->wq == wq) {
1442			pwq = worker->current_pwq;
 
 
1443		} else {
1444			/* meh... not running there, queue here */
1445			spin_unlock(&last_pool->lock);
1446			spin_lock(&pwq->pool->lock);
1447		}
1448	} else {
1449		spin_lock(&pwq->pool->lock);
1450	}
1451
1452	/*
1453	 * pwq is determined and locked.  For unbound pools, we could have
1454	 * raced with pwq release and it could already be dead.  If its
1455	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1456	 * without another pwq replacing it in the numa_pwq_tbl or while
1457	 * work items are executing on it, so the retrying is guaranteed to
1458	 * make forward-progress.
1459	 */
1460	if (unlikely(!pwq->refcnt)) {
1461		if (wq->flags & WQ_UNBOUND) {
1462			spin_unlock(&pwq->pool->lock);
1463			cpu_relax();
1464			goto retry;
1465		}
1466		/* oops */
1467		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1468			  wq->name, cpu);
1469	}
1470
1471	/* pwq determined, queue */
1472	trace_workqueue_queue_work(req_cpu, pwq, work);
1473
1474	if (WARN_ON(!list_empty(&work->entry)))
1475		goto out;
1476
1477	pwq->nr_in_flight[pwq->work_color]++;
1478	work_flags = work_color_to_flags(pwq->work_color);
1479
1480	if (likely(pwq->nr_active < pwq->max_active)) {
 
 
 
1481		trace_workqueue_activate_work(work);
1482		pwq->nr_active++;
1483		worklist = &pwq->pool->worklist;
1484		if (list_empty(worklist))
1485			pwq->pool->watchdog_ts = jiffies;
1486	} else {
1487		work_flags |= WORK_STRUCT_DELAYED;
1488		worklist = &pwq->delayed_works;
1489	}
1490
1491	insert_work(pwq, work, worklist, work_flags);
1492
1493out:
1494	spin_unlock(&pwq->pool->lock);
1495	rcu_read_unlock();
1496}
1497
1498/**
1499 * queue_work_on - queue work on specific cpu
1500 * @cpu: CPU number to execute work on
1501 * @wq: workqueue to use
1502 * @work: work to queue
1503 *
1504 * We queue the work to a specific CPU, the caller must ensure it
1505 * can't go away.
 
 
 
1506 *
1507 * Return: %false if @work was already on a queue, %true otherwise.
1508 */
1509bool queue_work_on(int cpu, struct workqueue_struct *wq,
1510		   struct work_struct *work)
1511{
1512	bool ret = false;
1513	unsigned long flags;
1514
1515	local_irq_save(flags);
1516
1517	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1518		__queue_work(cpu, wq, work);
1519		ret = true;
1520	}
1521
1522	local_irq_restore(flags);
1523	return ret;
1524}
1525EXPORT_SYMBOL(queue_work_on);
1526
1527/**
1528 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1529 * @node: NUMA node ID that we want to select a CPU from
1530 *
1531 * This function will attempt to find a "random" cpu available on a given
1532 * node. If there are no CPUs available on the given node it will return
1533 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1534 * available CPU if we need to schedule this work.
1535 */
1536static int workqueue_select_cpu_near(int node)
1537{
1538	int cpu;
1539
1540	/* No point in doing this if NUMA isn't enabled for workqueues */
1541	if (!wq_numa_enabled)
1542		return WORK_CPU_UNBOUND;
1543
1544	/* Delay binding to CPU if node is not valid or online */
1545	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1546		return WORK_CPU_UNBOUND;
1547
1548	/* Use local node/cpu if we are already there */
1549	cpu = raw_smp_processor_id();
1550	if (node == cpu_to_node(cpu))
1551		return cpu;
1552
1553	/* Use "random" otherwise know as "first" online CPU of node */
1554	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1555
1556	/* If CPU is valid return that, otherwise just defer */
1557	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1558}
1559
1560/**
1561 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1562 * @node: NUMA node that we are targeting the work for
1563 * @wq: workqueue to use
1564 * @work: work to queue
1565 *
1566 * We queue the work to a "random" CPU within a given NUMA node. The basic
1567 * idea here is to provide a way to somehow associate work with a given
1568 * NUMA node.
1569 *
1570 * This function will only make a best effort attempt at getting this onto
1571 * the right NUMA node. If no node is requested or the requested node is
1572 * offline then we just fall back to standard queue_work behavior.
1573 *
1574 * Currently the "random" CPU ends up being the first available CPU in the
1575 * intersection of cpu_online_mask and the cpumask of the node, unless we
1576 * are running on the node. In that case we just use the current CPU.
1577 *
1578 * Return: %false if @work was already on a queue, %true otherwise.
1579 */
1580bool queue_work_node(int node, struct workqueue_struct *wq,
1581		     struct work_struct *work)
1582{
1583	unsigned long flags;
1584	bool ret = false;
1585
1586	/*
1587	 * This current implementation is specific to unbound workqueues.
1588	 * Specifically we only return the first available CPU for a given
1589	 * node instead of cycling through individual CPUs within the node.
1590	 *
1591	 * If this is used with a per-cpu workqueue then the logic in
1592	 * workqueue_select_cpu_near would need to be updated to allow for
1593	 * some round robin type logic.
1594	 */
1595	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1596
1597	local_irq_save(flags);
1598
1599	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1600		int cpu = workqueue_select_cpu_near(node);
1601
1602		__queue_work(cpu, wq, work);
1603		ret = true;
1604	}
1605
1606	local_irq_restore(flags);
1607	return ret;
1608}
1609EXPORT_SYMBOL_GPL(queue_work_node);
1610
1611void delayed_work_timer_fn(struct timer_list *t)
1612{
1613	struct delayed_work *dwork = from_timer(dwork, t, timer);
1614
1615	/* should have been called from irqsafe timer with irq already off */
1616	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1617}
1618EXPORT_SYMBOL(delayed_work_timer_fn);
1619
1620static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1621				struct delayed_work *dwork, unsigned long delay)
1622{
1623	struct timer_list *timer = &dwork->timer;
1624	struct work_struct *work = &dwork->work;
1625
1626	WARN_ON_ONCE(!wq);
1627	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1628	WARN_ON_ONCE(timer_pending(timer));
1629	WARN_ON_ONCE(!list_empty(&work->entry));
1630
1631	/*
1632	 * If @delay is 0, queue @dwork->work immediately.  This is for
1633	 * both optimization and correctness.  The earliest @timer can
1634	 * expire is on the closest next tick and delayed_work users depend
1635	 * on that there's no such delay when @delay is 0.
1636	 */
1637	if (!delay) {
1638		__queue_work(cpu, wq, &dwork->work);
1639		return;
1640	}
1641
1642	dwork->wq = wq;
1643	dwork->cpu = cpu;
1644	timer->expires = jiffies + delay;
1645
1646	if (unlikely(cpu != WORK_CPU_UNBOUND))
1647		add_timer_on(timer, cpu);
1648	else
1649		add_timer(timer);
1650}
1651
1652/**
1653 * queue_delayed_work_on - queue work on specific CPU after delay
1654 * @cpu: CPU number to execute work on
1655 * @wq: workqueue to use
1656 * @dwork: work to queue
1657 * @delay: number of jiffies to wait before queueing
1658 *
1659 * Return: %false if @work was already on a queue, %true otherwise.  If
1660 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1661 * execution.
1662 */
1663bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1664			   struct delayed_work *dwork, unsigned long delay)
1665{
1666	struct work_struct *work = &dwork->work;
1667	bool ret = false;
1668	unsigned long flags;
1669
1670	/* read the comment in __queue_work() */
1671	local_irq_save(flags);
1672
1673	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1674		__queue_delayed_work(cpu, wq, dwork, delay);
1675		ret = true;
1676	}
1677
1678	local_irq_restore(flags);
1679	return ret;
1680}
1681EXPORT_SYMBOL(queue_delayed_work_on);
1682
1683/**
1684 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1685 * @cpu: CPU number to execute work on
1686 * @wq: workqueue to use
1687 * @dwork: work to queue
1688 * @delay: number of jiffies to wait before queueing
1689 *
1690 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1691 * modify @dwork's timer so that it expires after @delay.  If @delay is
1692 * zero, @work is guaranteed to be scheduled immediately regardless of its
1693 * current state.
1694 *
1695 * Return: %false if @dwork was idle and queued, %true if @dwork was
1696 * pending and its timer was modified.
1697 *
1698 * This function is safe to call from any context including IRQ handler.
1699 * See try_to_grab_pending() for details.
1700 */
1701bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1702			 struct delayed_work *dwork, unsigned long delay)
1703{
1704	unsigned long flags;
1705	int ret;
1706
1707	do {
1708		ret = try_to_grab_pending(&dwork->work, true, &flags);
1709	} while (unlikely(ret == -EAGAIN));
1710
1711	if (likely(ret >= 0)) {
1712		__queue_delayed_work(cpu, wq, dwork, delay);
1713		local_irq_restore(flags);
1714	}
1715
1716	/* -ENOENT from try_to_grab_pending() becomes %true */
1717	return ret;
1718}
1719EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1720
1721static void rcu_work_rcufn(struct rcu_head *rcu)
1722{
1723	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1724
1725	/* read the comment in __queue_work() */
1726	local_irq_disable();
1727	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1728	local_irq_enable();
1729}
1730
1731/**
1732 * queue_rcu_work - queue work after a RCU grace period
1733 * @wq: workqueue to use
1734 * @rwork: work to queue
1735 *
1736 * Return: %false if @rwork was already pending, %true otherwise.  Note
1737 * that a full RCU grace period is guaranteed only after a %true return.
1738 * While @rwork is guaranteed to be executed after a %false return, the
1739 * execution may happen before a full RCU grace period has passed.
1740 */
1741bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1742{
1743	struct work_struct *work = &rwork->work;
1744
1745	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1746		rwork->wq = wq;
1747		call_rcu(&rwork->rcu, rcu_work_rcufn);
1748		return true;
1749	}
1750
1751	return false;
1752}
1753EXPORT_SYMBOL(queue_rcu_work);
1754
1755/**
1756 * worker_enter_idle - enter idle state
1757 * @worker: worker which is entering idle state
1758 *
1759 * @worker is entering idle state.  Update stats and idle timer if
1760 * necessary.
1761 *
1762 * LOCKING:
1763 * spin_lock_irq(pool->lock).
1764 */
1765static void worker_enter_idle(struct worker *worker)
1766{
1767	struct worker_pool *pool = worker->pool;
1768
1769	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1770	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1771			 (worker->hentry.next || worker->hentry.pprev)))
1772		return;
1773
1774	/* can't use worker_set_flags(), also called from create_worker() */
1775	worker->flags |= WORKER_IDLE;
1776	pool->nr_idle++;
1777	worker->last_active = jiffies;
1778
1779	/* idle_list is LIFO */
1780	list_add(&worker->entry, &pool->idle_list);
1781
1782	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1783		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1784
1785	/*
1786	 * Sanity check nr_running.  Because unbind_workers() releases
1787	 * pool->lock between setting %WORKER_UNBOUND and zapping
1788	 * nr_running, the warning may trigger spuriously.  Check iff
1789	 * unbind is not in progress.
1790	 */
1791	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1792		     pool->nr_workers == pool->nr_idle &&
1793		     atomic_read(&pool->nr_running));
1794}
1795
1796/**
1797 * worker_leave_idle - leave idle state
1798 * @worker: worker which is leaving idle state
1799 *
1800 * @worker is leaving idle state.  Update stats.
1801 *
1802 * LOCKING:
1803 * spin_lock_irq(pool->lock).
1804 */
1805static void worker_leave_idle(struct worker *worker)
1806{
1807	struct worker_pool *pool = worker->pool;
1808
1809	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1810		return;
1811	worker_clr_flags(worker, WORKER_IDLE);
1812	pool->nr_idle--;
1813	list_del_init(&worker->entry);
1814}
1815
1816static struct worker *alloc_worker(int node)
1817{
1818	struct worker *worker;
1819
1820	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1821	if (worker) {
1822		INIT_LIST_HEAD(&worker->entry);
1823		INIT_LIST_HEAD(&worker->scheduled);
1824		INIT_LIST_HEAD(&worker->node);
1825		/* on creation a worker is in !idle && prep state */
1826		worker->flags = WORKER_PREP;
1827	}
1828	return worker;
1829}
1830
 
 
 
 
 
 
 
 
1831/**
1832 * worker_attach_to_pool() - attach a worker to a pool
1833 * @worker: worker to be attached
1834 * @pool: the target pool
1835 *
1836 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1837 * cpu-binding of @worker are kept coordinated with the pool across
1838 * cpu-[un]hotplugs.
1839 */
1840static void worker_attach_to_pool(struct worker *worker,
1841				   struct worker_pool *pool)
1842{
1843	mutex_lock(&wq_pool_attach_mutex);
1844
1845	/*
1846	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1847	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1848	 */
1849	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1850
1851	/*
1852	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1853	 * stable across this function.  See the comments above the flag
1854	 * definition for details.
1855	 */
1856	if (pool->flags & POOL_DISASSOCIATED)
1857		worker->flags |= WORKER_UNBOUND;
 
 
 
 
 
1858
1859	list_add_tail(&worker->node, &pool->workers);
1860	worker->pool = pool;
1861
1862	mutex_unlock(&wq_pool_attach_mutex);
1863}
1864
1865/**
1866 * worker_detach_from_pool() - detach a worker from its pool
1867 * @worker: worker which is attached to its pool
1868 *
1869 * Undo the attaching which had been done in worker_attach_to_pool().  The
1870 * caller worker shouldn't access to the pool after detached except it has
1871 * other reference to the pool.
1872 */
1873static void worker_detach_from_pool(struct worker *worker)
1874{
1875	struct worker_pool *pool = worker->pool;
1876	struct completion *detach_completion = NULL;
1877
1878	mutex_lock(&wq_pool_attach_mutex);
1879
 
1880	list_del(&worker->node);
1881	worker->pool = NULL;
1882
1883	if (list_empty(&pool->workers))
1884		detach_completion = pool->detach_completion;
1885	mutex_unlock(&wq_pool_attach_mutex);
1886
1887	/* clear leftover flags without pool->lock after it is detached */
1888	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1889
1890	if (detach_completion)
1891		complete(detach_completion);
1892}
1893
1894/**
1895 * create_worker - create a new workqueue worker
1896 * @pool: pool the new worker will belong to
1897 *
1898 * Create and start a new worker which is attached to @pool.
1899 *
1900 * CONTEXT:
1901 * Might sleep.  Does GFP_KERNEL allocations.
1902 *
1903 * Return:
1904 * Pointer to the newly created worker.
1905 */
1906static struct worker *create_worker(struct worker_pool *pool)
1907{
1908	struct worker *worker = NULL;
1909	int id = -1;
1910	char id_buf[16];
1911
1912	/* ID is needed to determine kthread name */
1913	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1914	if (id < 0)
1915		goto fail;
 
 
 
1916
1917	worker = alloc_worker(pool->node);
1918	if (!worker)
 
1919		goto fail;
 
1920
1921	worker->id = id;
1922
1923	if (pool->cpu >= 0)
1924		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1925			 pool->attrs->nice < 0  ? "H" : "");
1926	else
1927		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1928
1929	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1930					      "kworker/%s", id_buf);
1931	if (IS_ERR(worker->task))
 
 
 
 
 
 
 
1932		goto fail;
 
1933
1934	set_user_nice(worker->task, pool->attrs->nice);
1935	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1936
1937	/* successful, attach the worker to the pool */
1938	worker_attach_to_pool(worker, pool);
1939
1940	/* start the newly created worker */
1941	spin_lock_irq(&pool->lock);
 
1942	worker->pool->nr_workers++;
1943	worker_enter_idle(worker);
 
 
 
 
 
 
 
1944	wake_up_process(worker->task);
1945	spin_unlock_irq(&pool->lock);
 
1946
1947	return worker;
1948
1949fail:
1950	if (id >= 0)
1951		ida_simple_remove(&pool->worker_ida, id);
1952	kfree(worker);
1953	return NULL;
1954}
1955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1956/**
1957 * destroy_worker - destroy a workqueue worker
1958 * @worker: worker to be destroyed
 
1959 *
1960 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1961 * be idle.
1962 *
1963 * CONTEXT:
1964 * spin_lock_irq(pool->lock).
1965 */
1966static void destroy_worker(struct worker *worker)
1967{
1968	struct worker_pool *pool = worker->pool;
1969
1970	lockdep_assert_held(&pool->lock);
 
1971
1972	/* sanity check frenzy */
1973	if (WARN_ON(worker->current_work) ||
1974	    WARN_ON(!list_empty(&worker->scheduled)) ||
1975	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1976		return;
1977
1978	pool->nr_workers--;
1979	pool->nr_idle--;
1980
1981	list_del_init(&worker->entry);
1982	worker->flags |= WORKER_DIE;
1983	wake_up_process(worker->task);
 
 
1984}
1985
 
 
 
 
 
 
 
 
 
 
1986static void idle_worker_timeout(struct timer_list *t)
1987{
1988	struct worker_pool *pool = from_timer(pool, t, idle_timer);
 
1989
1990	spin_lock_irq(&pool->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991
1992	while (too_many_workers(pool)) {
1993		struct worker *worker;
1994		unsigned long expires;
1995
1996		/* idle_list is kept in LIFO order, check the last one */
1997		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1998		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1999
2000		if (time_before(jiffies, expires)) {
2001			mod_timer(&pool->idle_timer, expires);
2002			break;
2003		}
2004
2005		destroy_worker(worker);
2006	}
2007
2008	spin_unlock_irq(&pool->lock);
 
 
2009}
2010
2011static void send_mayday(struct work_struct *work)
2012{
2013	struct pool_workqueue *pwq = get_work_pwq(work);
2014	struct workqueue_struct *wq = pwq->wq;
2015
2016	lockdep_assert_held(&wq_mayday_lock);
2017
2018	if (!wq->rescuer)
2019		return;
2020
2021	/* mayday mayday mayday */
2022	if (list_empty(&pwq->mayday_node)) {
2023		/*
2024		 * If @pwq is for an unbound wq, its base ref may be put at
2025		 * any time due to an attribute change.  Pin @pwq until the
2026		 * rescuer is done with it.
2027		 */
2028		get_pwq(pwq);
2029		list_add_tail(&pwq->mayday_node, &wq->maydays);
2030		wake_up_process(wq->rescuer->task);
 
2031	}
2032}
2033
2034static void pool_mayday_timeout(struct timer_list *t)
2035{
2036	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2037	struct work_struct *work;
2038
2039	spin_lock_irq(&pool->lock);
2040	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2041
2042	if (need_to_create_worker(pool)) {
2043		/*
2044		 * We've been trying to create a new worker but
2045		 * haven't been successful.  We might be hitting an
2046		 * allocation deadlock.  Send distress signals to
2047		 * rescuers.
2048		 */
2049		list_for_each_entry(work, &pool->worklist, entry)
2050			send_mayday(work);
2051	}
2052
2053	spin_unlock(&wq_mayday_lock);
2054	spin_unlock_irq(&pool->lock);
2055
2056	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2057}
2058
2059/**
2060 * maybe_create_worker - create a new worker if necessary
2061 * @pool: pool to create a new worker for
2062 *
2063 * Create a new worker for @pool if necessary.  @pool is guaranteed to
2064 * have at least one idle worker on return from this function.  If
2065 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2066 * sent to all rescuers with works scheduled on @pool to resolve
2067 * possible allocation deadlock.
2068 *
2069 * On return, need_to_create_worker() is guaranteed to be %false and
2070 * may_start_working() %true.
2071 *
2072 * LOCKING:
2073 * spin_lock_irq(pool->lock) which may be released and regrabbed
2074 * multiple times.  Does GFP_KERNEL allocations.  Called only from
2075 * manager.
2076 */
2077static void maybe_create_worker(struct worker_pool *pool)
2078__releases(&pool->lock)
2079__acquires(&pool->lock)
2080{
2081restart:
2082	spin_unlock_irq(&pool->lock);
2083
2084	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2085	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2086
2087	while (true) {
2088		if (create_worker(pool) || !need_to_create_worker(pool))
2089			break;
2090
2091		schedule_timeout_interruptible(CREATE_COOLDOWN);
2092
2093		if (!need_to_create_worker(pool))
2094			break;
2095	}
2096
2097	del_timer_sync(&pool->mayday_timer);
2098	spin_lock_irq(&pool->lock);
2099	/*
2100	 * This is necessary even after a new worker was just successfully
2101	 * created as @pool->lock was dropped and the new worker might have
2102	 * already become busy.
2103	 */
2104	if (need_to_create_worker(pool))
2105		goto restart;
2106}
2107
2108/**
2109 * manage_workers - manage worker pool
2110 * @worker: self
2111 *
2112 * Assume the manager role and manage the worker pool @worker belongs
2113 * to.  At any given time, there can be only zero or one manager per
2114 * pool.  The exclusion is handled automatically by this function.
2115 *
2116 * The caller can safely start processing works on false return.  On
2117 * true return, it's guaranteed that need_to_create_worker() is false
2118 * and may_start_working() is true.
2119 *
2120 * CONTEXT:
2121 * spin_lock_irq(pool->lock) which may be released and regrabbed
2122 * multiple times.  Does GFP_KERNEL allocations.
2123 *
2124 * Return:
2125 * %false if the pool doesn't need management and the caller can safely
2126 * start processing works, %true if management function was performed and
2127 * the conditions that the caller verified before calling the function may
2128 * no longer be true.
2129 */
2130static bool manage_workers(struct worker *worker)
2131{
2132	struct worker_pool *pool = worker->pool;
2133
2134	if (pool->flags & POOL_MANAGER_ACTIVE)
2135		return false;
2136
2137	pool->flags |= POOL_MANAGER_ACTIVE;
2138	pool->manager = worker;
2139
2140	maybe_create_worker(pool);
2141
2142	pool->manager = NULL;
2143	pool->flags &= ~POOL_MANAGER_ACTIVE;
2144	wake_up(&wq_manager_wait);
2145	return true;
2146}
2147
2148/**
2149 * process_one_work - process single work
2150 * @worker: self
2151 * @work: work to process
2152 *
2153 * Process @work.  This function contains all the logics necessary to
2154 * process a single work including synchronization against and
2155 * interaction with other workers on the same cpu, queueing and
2156 * flushing.  As long as context requirement is met, any worker can
2157 * call this function to process a work.
2158 *
2159 * CONTEXT:
2160 * spin_lock_irq(pool->lock) which is released and regrabbed.
2161 */
2162static void process_one_work(struct worker *worker, struct work_struct *work)
2163__releases(&pool->lock)
2164__acquires(&pool->lock)
2165{
2166	struct pool_workqueue *pwq = get_work_pwq(work);
2167	struct worker_pool *pool = worker->pool;
2168	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2169	int work_color;
2170	struct worker *collision;
2171#ifdef CONFIG_LOCKDEP
2172	/*
2173	 * It is permissible to free the struct work_struct from
2174	 * inside the function that is called from it, this we need to
2175	 * take into account for lockdep too.  To avoid bogus "held
2176	 * lock freed" warnings as well as problems when looking into
2177	 * work->lockdep_map, make a copy and use that here.
2178	 */
2179	struct lockdep_map lockdep_map;
2180
2181	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2182#endif
2183	/* ensure we're on the correct CPU */
2184	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2185		     raw_smp_processor_id() != pool->cpu);
2186
2187	/*
2188	 * A single work shouldn't be executed concurrently by
2189	 * multiple workers on a single cpu.  Check whether anyone is
2190	 * already processing the work.  If so, defer the work to the
2191	 * currently executing one.
2192	 */
2193	collision = find_worker_executing_work(pool, work);
2194	if (unlikely(collision)) {
2195		move_linked_works(work, &collision->scheduled, NULL);
2196		return;
2197	}
2198
2199	/* claim and dequeue */
2200	debug_work_deactivate(work);
2201	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2202	worker->current_work = work;
2203	worker->current_func = work->func;
2204	worker->current_pwq = pwq;
2205	work_color = get_work_color(work);
 
 
2206
2207	/*
2208	 * Record wq name for cmdline and debug reporting, may get
2209	 * overridden through set_worker_desc().
2210	 */
2211	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2212
2213	list_del_init(&work->entry);
2214
2215	/*
2216	 * CPU intensive works don't participate in concurrency management.
2217	 * They're the scheduler's responsibility.  This takes @worker out
2218	 * of concurrency management and the next code block will chain
2219	 * execution of the pending work items.
2220	 */
2221	if (unlikely(cpu_intensive))
2222		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2223
2224	/*
2225	 * Wake up another worker if necessary.  The condition is always
2226	 * false for normal per-cpu workers since nr_running would always
2227	 * be >= 1 at this point.  This is used to chain execution of the
2228	 * pending work items for WORKER_NOT_RUNNING workers such as the
2229	 * UNBOUND and CPU_INTENSIVE ones.
2230	 */
2231	if (need_more_worker(pool))
2232		wake_up_worker(pool);
2233
2234	/*
2235	 * Record the last pool and clear PENDING which should be the last
2236	 * update to @work.  Also, do this inside @pool->lock so that
2237	 * PENDING and queued state changes happen together while IRQ is
2238	 * disabled.
2239	 */
2240	set_work_pool_and_clear_pending(work, pool->id);
2241
2242	spin_unlock_irq(&pool->lock);
 
2243
2244	lock_map_acquire(&pwq->wq->lockdep_map);
2245	lock_map_acquire(&lockdep_map);
2246	/*
2247	 * Strictly speaking we should mark the invariant state without holding
2248	 * any locks, that is, before these two lock_map_acquire()'s.
2249	 *
2250	 * However, that would result in:
2251	 *
2252	 *   A(W1)
2253	 *   WFC(C)
2254	 *		A(W1)
2255	 *		C(C)
2256	 *
2257	 * Which would create W1->C->W1 dependencies, even though there is no
2258	 * actual deadlock possible. There are two solutions, using a
2259	 * read-recursive acquire on the work(queue) 'locks', but this will then
2260	 * hit the lockdep limitation on recursive locks, or simply discard
2261	 * these locks.
2262	 *
2263	 * AFAICT there is no possible deadlock scenario between the
2264	 * flush_work() and complete() primitives (except for single-threaded
2265	 * workqueues), so hiding them isn't a problem.
2266	 */
2267	lockdep_invariant_state(true);
2268	trace_workqueue_execute_start(work);
2269	worker->current_func(work);
2270	/*
2271	 * While we must be careful to not use "work" after this, the trace
2272	 * point will only record its address.
2273	 */
2274	trace_workqueue_execute_end(work);
 
2275	lock_map_release(&lockdep_map);
2276	lock_map_release(&pwq->wq->lockdep_map);
2277
2278	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2279		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2280		       "     last function: %ps\n",
2281		       current->comm, preempt_count(), task_pid_nr(current),
2282		       worker->current_func);
2283		debug_show_held_locks(current);
2284		dump_stack();
2285	}
2286
2287	/*
2288	 * The following prevents a kworker from hogging CPU on !PREEMPT
2289	 * kernels, where a requeueing work item waiting for something to
2290	 * happen could deadlock with stop_machine as such work item could
2291	 * indefinitely requeue itself while all other CPUs are trapped in
2292	 * stop_machine. At the same time, report a quiescent RCU state so
2293	 * the same condition doesn't freeze RCU.
2294	 */
2295	cond_resched();
2296
2297	spin_lock_irq(&pool->lock);
2298
2299	/* clear cpu intensive status */
2300	if (unlikely(cpu_intensive))
2301		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
 
 
 
2302
2303	/* tag the worker for identification in schedule() */
2304	worker->last_func = worker->current_func;
2305
2306	/* we're done with it, release */
2307	hash_del(&worker->hentry);
2308	worker->current_work = NULL;
2309	worker->current_func = NULL;
2310	worker->current_pwq = NULL;
2311	pwq_dec_nr_in_flight(pwq, work_color);
 
2312}
2313
2314/**
2315 * process_scheduled_works - process scheduled works
2316 * @worker: self
2317 *
2318 * Process all scheduled works.  Please note that the scheduled list
2319 * may change while processing a work, so this function repeatedly
2320 * fetches a work from the top and executes it.
2321 *
2322 * CONTEXT:
2323 * spin_lock_irq(pool->lock) which may be released and regrabbed
2324 * multiple times.
2325 */
2326static void process_scheduled_works(struct worker *worker)
2327{
2328	while (!list_empty(&worker->scheduled)) {
2329		struct work_struct *work = list_first_entry(&worker->scheduled,
2330						struct work_struct, entry);
 
 
 
 
 
 
2331		process_one_work(worker, work);
2332	}
2333}
2334
2335static void set_pf_worker(bool val)
2336{
2337	mutex_lock(&wq_pool_attach_mutex);
2338	if (val)
2339		current->flags |= PF_WQ_WORKER;
2340	else
2341		current->flags &= ~PF_WQ_WORKER;
2342	mutex_unlock(&wq_pool_attach_mutex);
2343}
2344
2345/**
2346 * worker_thread - the worker thread function
2347 * @__worker: self
2348 *
2349 * The worker thread function.  All workers belong to a worker_pool -
2350 * either a per-cpu one or dynamic unbound one.  These workers process all
2351 * work items regardless of their specific target workqueue.  The only
2352 * exception is work items which belong to workqueues with a rescuer which
2353 * will be explained in rescuer_thread().
2354 *
2355 * Return: 0
2356 */
2357static int worker_thread(void *__worker)
2358{
2359	struct worker *worker = __worker;
2360	struct worker_pool *pool = worker->pool;
2361
2362	/* tell the scheduler that this is a workqueue worker */
2363	set_pf_worker(true);
2364woke_up:
2365	spin_lock_irq(&pool->lock);
2366
2367	/* am I supposed to die? */
2368	if (unlikely(worker->flags & WORKER_DIE)) {
2369		spin_unlock_irq(&pool->lock);
2370		WARN_ON_ONCE(!list_empty(&worker->entry));
2371		set_pf_worker(false);
2372
2373		set_task_comm(worker->task, "kworker/dying");
2374		ida_simple_remove(&pool->worker_ida, worker->id);
2375		worker_detach_from_pool(worker);
 
2376		kfree(worker);
2377		return 0;
2378	}
2379
2380	worker_leave_idle(worker);
2381recheck:
2382	/* no more worker necessary? */
2383	if (!need_more_worker(pool))
2384		goto sleep;
2385
2386	/* do we need to manage? */
2387	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2388		goto recheck;
2389
2390	/*
2391	 * ->scheduled list can only be filled while a worker is
2392	 * preparing to process a work or actually processing it.
2393	 * Make sure nobody diddled with it while I was sleeping.
2394	 */
2395	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2396
2397	/*
2398	 * Finish PREP stage.  We're guaranteed to have at least one idle
2399	 * worker or that someone else has already assumed the manager
2400	 * role.  This is where @worker starts participating in concurrency
2401	 * management if applicable and concurrency management is restored
2402	 * after being rebound.  See rebind_workers() for details.
2403	 */
2404	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2405
2406	do {
2407		struct work_struct *work =
2408			list_first_entry(&pool->worklist,
2409					 struct work_struct, entry);
2410
2411		pool->watchdog_ts = jiffies;
2412
2413		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2414			/* optimization path, not strictly necessary */
2415			process_one_work(worker, work);
2416			if (unlikely(!list_empty(&worker->scheduled)))
2417				process_scheduled_works(worker);
2418		} else {
2419			move_linked_works(work, &worker->scheduled, NULL);
2420			process_scheduled_works(worker);
2421		}
2422	} while (keep_working(pool));
2423
2424	worker_set_flags(worker, WORKER_PREP);
2425sleep:
2426	/*
2427	 * pool->lock is held and there's no work to process and no need to
2428	 * manage, sleep.  Workers are woken up only while holding
2429	 * pool->lock or from local cpu, so setting the current state
2430	 * before releasing pool->lock is enough to prevent losing any
2431	 * event.
2432	 */
2433	worker_enter_idle(worker);
2434	__set_current_state(TASK_IDLE);
2435	spin_unlock_irq(&pool->lock);
2436	schedule();
2437	goto woke_up;
2438}
2439
2440/**
2441 * rescuer_thread - the rescuer thread function
2442 * @__rescuer: self
2443 *
2444 * Workqueue rescuer thread function.  There's one rescuer for each
2445 * workqueue which has WQ_MEM_RECLAIM set.
2446 *
2447 * Regular work processing on a pool may block trying to create a new
2448 * worker which uses GFP_KERNEL allocation which has slight chance of
2449 * developing into deadlock if some works currently on the same queue
2450 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2451 * the problem rescuer solves.
2452 *
2453 * When such condition is possible, the pool summons rescuers of all
2454 * workqueues which have works queued on the pool and let them process
2455 * those works so that forward progress can be guaranteed.
2456 *
2457 * This should happen rarely.
2458 *
2459 * Return: 0
2460 */
2461static int rescuer_thread(void *__rescuer)
2462{
2463	struct worker *rescuer = __rescuer;
2464	struct workqueue_struct *wq = rescuer->rescue_wq;
2465	struct list_head *scheduled = &rescuer->scheduled;
2466	bool should_stop;
2467
2468	set_user_nice(current, RESCUER_NICE_LEVEL);
2469
2470	/*
2471	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2472	 * doesn't participate in concurrency management.
2473	 */
2474	set_pf_worker(true);
2475repeat:
2476	set_current_state(TASK_IDLE);
2477
2478	/*
2479	 * By the time the rescuer is requested to stop, the workqueue
2480	 * shouldn't have any work pending, but @wq->maydays may still have
2481	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2482	 * all the work items before the rescuer got to them.  Go through
2483	 * @wq->maydays processing before acting on should_stop so that the
2484	 * list is always empty on exit.
2485	 */
2486	should_stop = kthread_should_stop();
2487
2488	/* see whether any pwq is asking for help */
2489	spin_lock_irq(&wq_mayday_lock);
2490
2491	while (!list_empty(&wq->maydays)) {
2492		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2493					struct pool_workqueue, mayday_node);
2494		struct worker_pool *pool = pwq->pool;
2495		struct work_struct *work, *n;
2496		bool first = true;
2497
2498		__set_current_state(TASK_RUNNING);
2499		list_del_init(&pwq->mayday_node);
2500
2501		spin_unlock_irq(&wq_mayday_lock);
2502
2503		worker_attach_to_pool(rescuer, pool);
2504
2505		spin_lock_irq(&pool->lock);
2506
2507		/*
2508		 * Slurp in all works issued via this workqueue and
2509		 * process'em.
2510		 */
2511		WARN_ON_ONCE(!list_empty(scheduled));
2512		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2513			if (get_work_pwq(work) == pwq) {
2514				if (first)
2515					pool->watchdog_ts = jiffies;
2516				move_linked_works(work, scheduled, &n);
2517			}
2518			first = false;
2519		}
2520
2521		if (!list_empty(scheduled)) {
2522			process_scheduled_works(rescuer);
2523
2524			/*
2525			 * The above execution of rescued work items could
2526			 * have created more to rescue through
2527			 * pwq_activate_first_delayed() or chained
2528			 * queueing.  Let's put @pwq back on mayday list so
2529			 * that such back-to-back work items, which may be
2530			 * being used to relieve memory pressure, don't
2531			 * incur MAYDAY_INTERVAL delay inbetween.
2532			 */
2533			if (need_to_create_worker(pool)) {
2534				spin_lock(&wq_mayday_lock);
2535				get_pwq(pwq);
2536				list_move_tail(&pwq->mayday_node, &wq->maydays);
2537				spin_unlock(&wq_mayday_lock);
 
 
 
 
 
 
2538			}
2539		}
2540
2541		/*
2542		 * Put the reference grabbed by send_mayday().  @pool won't
2543		 * go away while we're still attached to it.
2544		 */
2545		put_pwq(pwq);
2546
2547		/*
2548		 * Leave this pool.  If need_more_worker() is %true, notify a
2549		 * regular worker; otherwise, we end up with 0 concurrency
2550		 * and stalling the execution.
2551		 */
2552		if (need_more_worker(pool))
2553			wake_up_worker(pool);
2554
2555		spin_unlock_irq(&pool->lock);
2556
2557		worker_detach_from_pool(rescuer);
2558
2559		spin_lock_irq(&wq_mayday_lock);
2560	}
2561
2562	spin_unlock_irq(&wq_mayday_lock);
2563
2564	if (should_stop) {
2565		__set_current_state(TASK_RUNNING);
2566		set_pf_worker(false);
2567		return 0;
2568	}
2569
2570	/* rescuers should never participate in concurrency management */
2571	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2572	schedule();
2573	goto repeat;
2574}
2575
2576/**
2577 * check_flush_dependency - check for flush dependency sanity
2578 * @target_wq: workqueue being flushed
2579 * @target_work: work item being flushed (NULL for workqueue flushes)
2580 *
2581 * %current is trying to flush the whole @target_wq or @target_work on it.
2582 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2583 * reclaiming memory or running on a workqueue which doesn't have
2584 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2585 * a deadlock.
2586 */
2587static void check_flush_dependency(struct workqueue_struct *target_wq,
2588				   struct work_struct *target_work)
2589{
2590	work_func_t target_func = target_work ? target_work->func : NULL;
2591	struct worker *worker;
2592
2593	if (target_wq->flags & WQ_MEM_RECLAIM)
2594		return;
2595
2596	worker = current_wq_worker();
2597
2598	WARN_ONCE(current->flags & PF_MEMALLOC,
2599		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2600		  current->pid, current->comm, target_wq->name, target_func);
2601	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2602			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2603		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2604		  worker->current_pwq->wq->name, worker->current_func,
2605		  target_wq->name, target_func);
2606}
2607
2608struct wq_barrier {
2609	struct work_struct	work;
2610	struct completion	done;
2611	struct task_struct	*task;	/* purely informational */
2612};
2613
2614static void wq_barrier_func(struct work_struct *work)
2615{
2616	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2617	complete(&barr->done);
2618}
2619
2620/**
2621 * insert_wq_barrier - insert a barrier work
2622 * @pwq: pwq to insert barrier into
2623 * @barr: wq_barrier to insert
2624 * @target: target work to attach @barr to
2625 * @worker: worker currently executing @target, NULL if @target is not executing
2626 *
2627 * @barr is linked to @target such that @barr is completed only after
2628 * @target finishes execution.  Please note that the ordering
2629 * guarantee is observed only with respect to @target and on the local
2630 * cpu.
2631 *
2632 * Currently, a queued barrier can't be canceled.  This is because
2633 * try_to_grab_pending() can't determine whether the work to be
2634 * grabbed is at the head of the queue and thus can't clear LINKED
2635 * flag of the previous work while there must be a valid next work
2636 * after a work with LINKED flag set.
2637 *
2638 * Note that when @worker is non-NULL, @target may be modified
2639 * underneath us, so we can't reliably determine pwq from @target.
2640 *
2641 * CONTEXT:
2642 * spin_lock_irq(pool->lock).
2643 */
2644static void insert_wq_barrier(struct pool_workqueue *pwq,
2645			      struct wq_barrier *barr,
2646			      struct work_struct *target, struct worker *worker)
2647{
 
 
2648	struct list_head *head;
2649	unsigned int linked = 0;
2650
2651	/*
2652	 * debugobject calls are safe here even with pool->lock locked
2653	 * as we know for sure that this will not trigger any of the
2654	 * checks and call back into the fixup functions where we
2655	 * might deadlock.
2656	 */
2657	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2658	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2659
2660	init_completion_map(&barr->done, &target->lockdep_map);
2661
2662	barr->task = current;
2663
 
 
 
2664	/*
2665	 * If @target is currently being executed, schedule the
2666	 * barrier to the worker; otherwise, put it after @target.
2667	 */
2668	if (worker)
2669		head = worker->scheduled.next;
2670	else {
 
2671		unsigned long *bits = work_data_bits(target);
2672
2673		head = target->entry.next;
2674		/* there can already be other linked works, inherit and set */
2675		linked = *bits & WORK_STRUCT_LINKED;
 
2676		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2677	}
2678
2679	debug_work_activate(&barr->work);
2680	insert_work(pwq, &barr->work, head,
2681		    work_color_to_flags(WORK_NO_COLOR) | linked);
 
2682}
2683
2684/**
2685 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2686 * @wq: workqueue being flushed
2687 * @flush_color: new flush color, < 0 for no-op
2688 * @work_color: new work color, < 0 for no-op
2689 *
2690 * Prepare pwqs for workqueue flushing.
2691 *
2692 * If @flush_color is non-negative, flush_color on all pwqs should be
2693 * -1.  If no pwq has in-flight commands at the specified color, all
2694 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2695 * has in flight commands, its pwq->flush_color is set to
2696 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2697 * wakeup logic is armed and %true is returned.
2698 *
2699 * The caller should have initialized @wq->first_flusher prior to
2700 * calling this function with non-negative @flush_color.  If
2701 * @flush_color is negative, no flush color update is done and %false
2702 * is returned.
2703 *
2704 * If @work_color is non-negative, all pwqs should have the same
2705 * work_color which is previous to @work_color and all will be
2706 * advanced to @work_color.
2707 *
2708 * CONTEXT:
2709 * mutex_lock(wq->mutex).
2710 *
2711 * Return:
2712 * %true if @flush_color >= 0 and there's something to flush.  %false
2713 * otherwise.
2714 */
2715static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2716				      int flush_color, int work_color)
2717{
2718	bool wait = false;
2719	struct pool_workqueue *pwq;
2720
2721	if (flush_color >= 0) {
2722		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2723		atomic_set(&wq->nr_pwqs_to_flush, 1);
2724	}
2725
2726	for_each_pwq(pwq, wq) {
2727		struct worker_pool *pool = pwq->pool;
2728
2729		spin_lock_irq(&pool->lock);
2730
2731		if (flush_color >= 0) {
2732			WARN_ON_ONCE(pwq->flush_color != -1);
2733
2734			if (pwq->nr_in_flight[flush_color]) {
2735				pwq->flush_color = flush_color;
2736				atomic_inc(&wq->nr_pwqs_to_flush);
2737				wait = true;
2738			}
2739		}
2740
2741		if (work_color >= 0) {
2742			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2743			pwq->work_color = work_color;
2744		}
2745
2746		spin_unlock_irq(&pool->lock);
2747	}
2748
2749	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2750		complete(&wq->first_flusher->done);
2751
2752	return wait;
2753}
2754
2755/**
2756 * flush_workqueue - ensure that any scheduled work has run to completion.
2757 * @wq: workqueue to flush
2758 *
2759 * This function sleeps until all work items which were queued on entry
2760 * have finished execution, but it is not livelocked by new incoming ones.
2761 */
2762void flush_workqueue(struct workqueue_struct *wq)
2763{
2764	struct wq_flusher this_flusher = {
2765		.list = LIST_HEAD_INIT(this_flusher.list),
2766		.flush_color = -1,
2767		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2768	};
2769	int next_color;
2770
2771	if (WARN_ON(!wq_online))
2772		return;
2773
2774	lock_map_acquire(&wq->lockdep_map);
2775	lock_map_release(&wq->lockdep_map);
2776
2777	mutex_lock(&wq->mutex);
2778
2779	/*
2780	 * Start-to-wait phase
2781	 */
2782	next_color = work_next_color(wq->work_color);
2783
2784	if (next_color != wq->flush_color) {
2785		/*
2786		 * Color space is not full.  The current work_color
2787		 * becomes our flush_color and work_color is advanced
2788		 * by one.
2789		 */
2790		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2791		this_flusher.flush_color = wq->work_color;
2792		wq->work_color = next_color;
2793
2794		if (!wq->first_flusher) {
2795			/* no flush in progress, become the first flusher */
2796			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2797
2798			wq->first_flusher = &this_flusher;
2799
2800			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2801						       wq->work_color)) {
2802				/* nothing to flush, done */
2803				wq->flush_color = next_color;
2804				wq->first_flusher = NULL;
2805				goto out_unlock;
2806			}
2807		} else {
2808			/* wait in queue */
2809			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2810			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2811			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2812		}
2813	} else {
2814		/*
2815		 * Oops, color space is full, wait on overflow queue.
2816		 * The next flush completion will assign us
2817		 * flush_color and transfer to flusher_queue.
2818		 */
2819		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2820	}
2821
2822	check_flush_dependency(wq, NULL);
2823
2824	mutex_unlock(&wq->mutex);
2825
2826	wait_for_completion(&this_flusher.done);
2827
2828	/*
2829	 * Wake-up-and-cascade phase
2830	 *
2831	 * First flushers are responsible for cascading flushes and
2832	 * handling overflow.  Non-first flushers can simply return.
2833	 */
2834	if (wq->first_flusher != &this_flusher)
2835		return;
2836
2837	mutex_lock(&wq->mutex);
2838
2839	/* we might have raced, check again with mutex held */
2840	if (wq->first_flusher != &this_flusher)
2841		goto out_unlock;
2842
2843	wq->first_flusher = NULL;
2844
2845	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2846	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2847
2848	while (true) {
2849		struct wq_flusher *next, *tmp;
2850
2851		/* complete all the flushers sharing the current flush color */
2852		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2853			if (next->flush_color != wq->flush_color)
2854				break;
2855			list_del_init(&next->list);
2856			complete(&next->done);
2857		}
2858
2859		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2860			     wq->flush_color != work_next_color(wq->work_color));
2861
2862		/* this flush_color is finished, advance by one */
2863		wq->flush_color = work_next_color(wq->flush_color);
2864
2865		/* one color has been freed, handle overflow queue */
2866		if (!list_empty(&wq->flusher_overflow)) {
2867			/*
2868			 * Assign the same color to all overflowed
2869			 * flushers, advance work_color and append to
2870			 * flusher_queue.  This is the start-to-wait
2871			 * phase for these overflowed flushers.
2872			 */
2873			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2874				tmp->flush_color = wq->work_color;
2875
2876			wq->work_color = work_next_color(wq->work_color);
2877
2878			list_splice_tail_init(&wq->flusher_overflow,
2879					      &wq->flusher_queue);
2880			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2881		}
2882
2883		if (list_empty(&wq->flusher_queue)) {
2884			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2885			break;
2886		}
2887
2888		/*
2889		 * Need to flush more colors.  Make the next flusher
2890		 * the new first flusher and arm pwqs.
2891		 */
2892		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2893		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2894
2895		list_del_init(&next->list);
2896		wq->first_flusher = next;
2897
2898		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2899			break;
2900
2901		/*
2902		 * Meh... this color is already done, clear first
2903		 * flusher and repeat cascading.
2904		 */
2905		wq->first_flusher = NULL;
2906	}
2907
2908out_unlock:
2909	mutex_unlock(&wq->mutex);
2910}
2911EXPORT_SYMBOL(flush_workqueue);
2912
2913/**
2914 * drain_workqueue - drain a workqueue
2915 * @wq: workqueue to drain
2916 *
2917 * Wait until the workqueue becomes empty.  While draining is in progress,
2918 * only chain queueing is allowed.  IOW, only currently pending or running
2919 * work items on @wq can queue further work items on it.  @wq is flushed
2920 * repeatedly until it becomes empty.  The number of flushing is determined
2921 * by the depth of chaining and should be relatively short.  Whine if it
2922 * takes too long.
2923 */
2924void drain_workqueue(struct workqueue_struct *wq)
2925{
2926	unsigned int flush_cnt = 0;
2927	struct pool_workqueue *pwq;
2928
2929	/*
2930	 * __queue_work() needs to test whether there are drainers, is much
2931	 * hotter than drain_workqueue() and already looks at @wq->flags.
2932	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2933	 */
2934	mutex_lock(&wq->mutex);
2935	if (!wq->nr_drainers++)
2936		wq->flags |= __WQ_DRAINING;
2937	mutex_unlock(&wq->mutex);
2938reflush:
2939	flush_workqueue(wq);
2940
2941	mutex_lock(&wq->mutex);
2942
2943	for_each_pwq(pwq, wq) {
2944		bool drained;
2945
2946		spin_lock_irq(&pwq->pool->lock);
2947		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2948		spin_unlock_irq(&pwq->pool->lock);
2949
2950		if (drained)
2951			continue;
2952
2953		if (++flush_cnt == 10 ||
2954		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2955			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2956				wq->name, flush_cnt);
2957
2958		mutex_unlock(&wq->mutex);
2959		goto reflush;
2960	}
2961
2962	if (!--wq->nr_drainers)
2963		wq->flags &= ~__WQ_DRAINING;
2964	mutex_unlock(&wq->mutex);
2965}
2966EXPORT_SYMBOL_GPL(drain_workqueue);
2967
2968static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2969			     bool from_cancel)
2970{
2971	struct worker *worker = NULL;
2972	struct worker_pool *pool;
2973	struct pool_workqueue *pwq;
2974
2975	might_sleep();
2976
2977	rcu_read_lock();
2978	pool = get_work_pool(work);
2979	if (!pool) {
2980		rcu_read_unlock();
2981		return false;
2982	}
2983
2984	spin_lock_irq(&pool->lock);
2985	/* see the comment in try_to_grab_pending() with the same code */
2986	pwq = get_work_pwq(work);
2987	if (pwq) {
2988		if (unlikely(pwq->pool != pool))
2989			goto already_gone;
2990	} else {
2991		worker = find_worker_executing_work(pool, work);
2992		if (!worker)
2993			goto already_gone;
2994		pwq = worker->current_pwq;
2995	}
2996
2997	check_flush_dependency(pwq->wq, work);
2998
2999	insert_wq_barrier(pwq, barr, work, worker);
3000	spin_unlock_irq(&pool->lock);
3001
3002	/*
3003	 * Force a lock recursion deadlock when using flush_work() inside a
3004	 * single-threaded or rescuer equipped workqueue.
3005	 *
3006	 * For single threaded workqueues the deadlock happens when the work
3007	 * is after the work issuing the flush_work(). For rescuer equipped
3008	 * workqueues the deadlock happens when the rescuer stalls, blocking
3009	 * forward progress.
3010	 */
3011	if (!from_cancel &&
3012	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3013		lock_map_acquire(&pwq->wq->lockdep_map);
3014		lock_map_release(&pwq->wq->lockdep_map);
3015	}
3016	rcu_read_unlock();
3017	return true;
3018already_gone:
3019	spin_unlock_irq(&pool->lock);
3020	rcu_read_unlock();
3021	return false;
3022}
3023
3024static bool __flush_work(struct work_struct *work, bool from_cancel)
3025{
3026	struct wq_barrier barr;
3027
3028	if (WARN_ON(!wq_online))
3029		return false;
3030
3031	if (WARN_ON(!work->func))
3032		return false;
3033
3034	if (!from_cancel) {
3035		lock_map_acquire(&work->lockdep_map);
3036		lock_map_release(&work->lockdep_map);
3037	}
3038
3039	if (start_flush_work(work, &barr, from_cancel)) {
3040		wait_for_completion(&barr.done);
3041		destroy_work_on_stack(&barr.work);
3042		return true;
3043	} else {
3044		return false;
3045	}
3046}
3047
3048/**
3049 * flush_work - wait for a work to finish executing the last queueing instance
3050 * @work: the work to flush
3051 *
3052 * Wait until @work has finished execution.  @work is guaranteed to be idle
3053 * on return if it hasn't been requeued since flush started.
3054 *
3055 * Return:
3056 * %true if flush_work() waited for the work to finish execution,
3057 * %false if it was already idle.
3058 */
3059bool flush_work(struct work_struct *work)
3060{
3061	return __flush_work(work, false);
3062}
3063EXPORT_SYMBOL_GPL(flush_work);
3064
3065struct cwt_wait {
3066	wait_queue_entry_t		wait;
3067	struct work_struct	*work;
3068};
3069
3070static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3071{
3072	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3073
3074	if (cwait->work != key)
3075		return 0;
3076	return autoremove_wake_function(wait, mode, sync, key);
3077}
3078
3079static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3080{
3081	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3082	unsigned long flags;
3083	int ret;
3084
3085	do {
3086		ret = try_to_grab_pending(work, is_dwork, &flags);
3087		/*
3088		 * If someone else is already canceling, wait for it to
3089		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3090		 * because we may get scheduled between @work's completion
3091		 * and the other canceling task resuming and clearing
3092		 * CANCELING - flush_work() will return false immediately
3093		 * as @work is no longer busy, try_to_grab_pending() will
3094		 * return -ENOENT as @work is still being canceled and the
3095		 * other canceling task won't be able to clear CANCELING as
3096		 * we're hogging the CPU.
3097		 *
3098		 * Let's wait for completion using a waitqueue.  As this
3099		 * may lead to the thundering herd problem, use a custom
3100		 * wake function which matches @work along with exclusive
3101		 * wait and wakeup.
3102		 */
3103		if (unlikely(ret == -ENOENT)) {
3104			struct cwt_wait cwait;
3105
3106			init_wait(&cwait.wait);
3107			cwait.wait.func = cwt_wakefn;
3108			cwait.work = work;
3109
3110			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3111						  TASK_UNINTERRUPTIBLE);
3112			if (work_is_canceling(work))
3113				schedule();
3114			finish_wait(&cancel_waitq, &cwait.wait);
3115		}
3116	} while (unlikely(ret < 0));
3117
3118	/* tell other tasks trying to grab @work to back off */
3119	mark_work_canceling(work);
3120	local_irq_restore(flags);
3121
3122	/*
3123	 * This allows canceling during early boot.  We know that @work
3124	 * isn't executing.
3125	 */
3126	if (wq_online)
3127		__flush_work(work, true);
3128
3129	clear_work_data(work);
3130
3131	/*
3132	 * Paired with prepare_to_wait() above so that either
3133	 * waitqueue_active() is visible here or !work_is_canceling() is
3134	 * visible there.
3135	 */
3136	smp_mb();
3137	if (waitqueue_active(&cancel_waitq))
3138		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3139
3140	return ret;
3141}
3142
3143/**
3144 * cancel_work_sync - cancel a work and wait for it to finish
3145 * @work: the work to cancel
3146 *
3147 * Cancel @work and wait for its execution to finish.  This function
3148 * can be used even if the work re-queues itself or migrates to
3149 * another workqueue.  On return from this function, @work is
3150 * guaranteed to be not pending or executing on any CPU.
3151 *
3152 * cancel_work_sync(&delayed_work->work) must not be used for
3153 * delayed_work's.  Use cancel_delayed_work_sync() instead.
3154 *
3155 * The caller must ensure that the workqueue on which @work was last
3156 * queued can't be destroyed before this function returns.
3157 *
3158 * Return:
3159 * %true if @work was pending, %false otherwise.
3160 */
3161bool cancel_work_sync(struct work_struct *work)
3162{
3163	return __cancel_work_timer(work, false);
3164}
3165EXPORT_SYMBOL_GPL(cancel_work_sync);
3166
3167/**
3168 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3169 * @dwork: the delayed work to flush
3170 *
3171 * Delayed timer is cancelled and the pending work is queued for
3172 * immediate execution.  Like flush_work(), this function only
3173 * considers the last queueing instance of @dwork.
3174 *
3175 * Return:
3176 * %true if flush_work() waited for the work to finish execution,
3177 * %false if it was already idle.
3178 */
3179bool flush_delayed_work(struct delayed_work *dwork)
3180{
3181	local_irq_disable();
3182	if (del_timer_sync(&dwork->timer))
3183		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3184	local_irq_enable();
3185	return flush_work(&dwork->work);
3186}
3187EXPORT_SYMBOL(flush_delayed_work);
3188
3189/**
3190 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3191 * @rwork: the rcu work to flush
3192 *
3193 * Return:
3194 * %true if flush_rcu_work() waited for the work to finish execution,
3195 * %false if it was already idle.
3196 */
3197bool flush_rcu_work(struct rcu_work *rwork)
3198{
3199	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3200		rcu_barrier();
3201		flush_work(&rwork->work);
3202		return true;
3203	} else {
3204		return flush_work(&rwork->work);
3205	}
3206}
3207EXPORT_SYMBOL(flush_rcu_work);
3208
3209static bool __cancel_work(struct work_struct *work, bool is_dwork)
3210{
3211	unsigned long flags;
3212	int ret;
3213
3214	do {
3215		ret = try_to_grab_pending(work, is_dwork, &flags);
3216	} while (unlikely(ret == -EAGAIN));
3217
3218	if (unlikely(ret < 0))
3219		return false;
3220
3221	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3222	local_irq_restore(flags);
3223	return ret;
3224}
3225
 
 
 
 
 
 
 
 
 
3226/**
3227 * cancel_delayed_work - cancel a delayed work
3228 * @dwork: delayed_work to cancel
3229 *
3230 * Kill off a pending delayed_work.
3231 *
3232 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3233 * pending.
3234 *
3235 * Note:
3236 * The work callback function may still be running on return, unless
3237 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3238 * use cancel_delayed_work_sync() to wait on it.
3239 *
3240 * This function is safe to call from any context including IRQ handler.
3241 */
3242bool cancel_delayed_work(struct delayed_work *dwork)
3243{
3244	return __cancel_work(&dwork->work, true);
3245}
3246EXPORT_SYMBOL(cancel_delayed_work);
3247
3248/**
3249 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3250 * @dwork: the delayed work cancel
3251 *
3252 * This is cancel_work_sync() for delayed works.
3253 *
3254 * Return:
3255 * %true if @dwork was pending, %false otherwise.
3256 */
3257bool cancel_delayed_work_sync(struct delayed_work *dwork)
3258{
3259	return __cancel_work_timer(&dwork->work, true);
3260}
3261EXPORT_SYMBOL(cancel_delayed_work_sync);
3262
3263/**
3264 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3265 * @func: the function to call
3266 *
3267 * schedule_on_each_cpu() executes @func on each online CPU using the
3268 * system workqueue and blocks until all CPUs have completed.
3269 * schedule_on_each_cpu() is very slow.
3270 *
3271 * Return:
3272 * 0 on success, -errno on failure.
3273 */
3274int schedule_on_each_cpu(work_func_t func)
3275{
3276	int cpu;
3277	struct work_struct __percpu *works;
3278
3279	works = alloc_percpu(struct work_struct);
3280	if (!works)
3281		return -ENOMEM;
3282
3283	get_online_cpus();
3284
3285	for_each_online_cpu(cpu) {
3286		struct work_struct *work = per_cpu_ptr(works, cpu);
3287
3288		INIT_WORK(work, func);
3289		schedule_work_on(cpu, work);
3290	}
3291
3292	for_each_online_cpu(cpu)
3293		flush_work(per_cpu_ptr(works, cpu));
3294
3295	put_online_cpus();
3296	free_percpu(works);
3297	return 0;
3298}
3299
3300/**
3301 * execute_in_process_context - reliably execute the routine with user context
3302 * @fn:		the function to execute
3303 * @ew:		guaranteed storage for the execute work structure (must
3304 *		be available when the work executes)
3305 *
3306 * Executes the function immediately if process context is available,
3307 * otherwise schedules the function for delayed execution.
3308 *
3309 * Return:	0 - function was executed
3310 *		1 - function was scheduled for execution
3311 */
3312int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3313{
3314	if (!in_interrupt()) {
3315		fn(&ew->work);
3316		return 0;
3317	}
3318
3319	INIT_WORK(&ew->work, fn);
3320	schedule_work(&ew->work);
3321
3322	return 1;
3323}
3324EXPORT_SYMBOL_GPL(execute_in_process_context);
3325
3326/**
3327 * free_workqueue_attrs - free a workqueue_attrs
3328 * @attrs: workqueue_attrs to free
3329 *
3330 * Undo alloc_workqueue_attrs().
3331 */
3332void free_workqueue_attrs(struct workqueue_attrs *attrs)
3333{
3334	if (attrs) {
3335		free_cpumask_var(attrs->cpumask);
 
3336		kfree(attrs);
3337	}
3338}
3339
3340/**
3341 * alloc_workqueue_attrs - allocate a workqueue_attrs
3342 *
3343 * Allocate a new workqueue_attrs, initialize with default settings and
3344 * return it.
3345 *
3346 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3347 */
3348struct workqueue_attrs *alloc_workqueue_attrs(void)
3349{
3350	struct workqueue_attrs *attrs;
3351
3352	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3353	if (!attrs)
3354		goto fail;
3355	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3356		goto fail;
 
 
3357
3358	cpumask_copy(attrs->cpumask, cpu_possible_mask);
 
3359	return attrs;
3360fail:
3361	free_workqueue_attrs(attrs);
3362	return NULL;
3363}
3364
3365static void copy_workqueue_attrs(struct workqueue_attrs *to,
3366				 const struct workqueue_attrs *from)
3367{
3368	to->nice = from->nice;
3369	cpumask_copy(to->cpumask, from->cpumask);
 
 
 
3370	/*
3371	 * Unlike hash and equality test, this function doesn't ignore
3372	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3373	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3374	 */
3375	to->no_numa = from->no_numa;
 
 
 
 
 
 
 
 
 
 
 
3376}
3377
3378/* hash value of the content of @attr */
3379static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3380{
3381	u32 hash = 0;
3382
3383	hash = jhash_1word(attrs->nice, hash);
3384	hash = jhash(cpumask_bits(attrs->cpumask),
3385		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
 
 
 
3386	return hash;
3387}
3388
3389/* content equality test */
3390static bool wqattrs_equal(const struct workqueue_attrs *a,
3391			  const struct workqueue_attrs *b)
3392{
3393	if (a->nice != b->nice)
3394		return false;
3395	if (!cpumask_equal(a->cpumask, b->cpumask))
3396		return false;
 
 
 
 
3397	return true;
3398}
3399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3400/**
3401 * init_worker_pool - initialize a newly zalloc'd worker_pool
3402 * @pool: worker_pool to initialize
3403 *
3404 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3405 *
3406 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3407 * inside @pool proper are initialized and put_unbound_pool() can be called
3408 * on @pool safely to release it.
3409 */
3410static int init_worker_pool(struct worker_pool *pool)
3411{
3412	spin_lock_init(&pool->lock);
3413	pool->id = -1;
3414	pool->cpu = -1;
3415	pool->node = NUMA_NO_NODE;
3416	pool->flags |= POOL_DISASSOCIATED;
3417	pool->watchdog_ts = jiffies;
3418	INIT_LIST_HEAD(&pool->worklist);
3419	INIT_LIST_HEAD(&pool->idle_list);
3420	hash_init(pool->busy_hash);
3421
3422	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
 
3423
3424	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3425
3426	INIT_LIST_HEAD(&pool->workers);
 
3427
3428	ida_init(&pool->worker_ida);
3429	INIT_HLIST_NODE(&pool->hash_node);
3430	pool->refcnt = 1;
3431
3432	/* shouldn't fail above this point */
3433	pool->attrs = alloc_workqueue_attrs();
3434	if (!pool->attrs)
3435		return -ENOMEM;
 
 
 
3436	return 0;
3437}
3438
3439#ifdef CONFIG_LOCKDEP
3440static void wq_init_lockdep(struct workqueue_struct *wq)
3441{
3442	char *lock_name;
3443
3444	lockdep_register_key(&wq->key);
3445	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3446	if (!lock_name)
3447		lock_name = wq->name;
3448
3449	wq->lock_name = lock_name;
3450	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3451}
3452
3453static void wq_unregister_lockdep(struct workqueue_struct *wq)
3454{
3455	lockdep_unregister_key(&wq->key);
3456}
3457
3458static void wq_free_lockdep(struct workqueue_struct *wq)
3459{
3460	if (wq->lock_name != wq->name)
3461		kfree(wq->lock_name);
3462}
3463#else
3464static void wq_init_lockdep(struct workqueue_struct *wq)
3465{
3466}
3467
3468static void wq_unregister_lockdep(struct workqueue_struct *wq)
3469{
3470}
3471
3472static void wq_free_lockdep(struct workqueue_struct *wq)
3473{
3474}
3475#endif
3476
3477static void rcu_free_wq(struct rcu_head *rcu)
3478{
3479	struct workqueue_struct *wq =
3480		container_of(rcu, struct workqueue_struct, rcu);
3481
3482	wq_free_lockdep(wq);
3483
3484	if (!(wq->flags & WQ_UNBOUND))
3485		free_percpu(wq->cpu_pwqs);
3486	else
3487		free_workqueue_attrs(wq->unbound_attrs);
3488
3489	kfree(wq->rescuer);
3490	kfree(wq);
3491}
3492
3493static void rcu_free_pool(struct rcu_head *rcu)
3494{
3495	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3496
3497	ida_destroy(&pool->worker_ida);
3498	free_workqueue_attrs(pool->attrs);
3499	kfree(pool);
3500}
3501
3502/**
3503 * put_unbound_pool - put a worker_pool
3504 * @pool: worker_pool to put
3505 *
3506 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3507 * safe manner.  get_unbound_pool() calls this function on its failure path
3508 * and this function should be able to release pools which went through,
3509 * successfully or not, init_worker_pool().
3510 *
3511 * Should be called with wq_pool_mutex held.
3512 */
3513static void put_unbound_pool(struct worker_pool *pool)
3514{
3515	DECLARE_COMPLETION_ONSTACK(detach_completion);
3516	struct worker *worker;
 
3517
3518	lockdep_assert_held(&wq_pool_mutex);
3519
3520	if (--pool->refcnt)
3521		return;
3522
3523	/* sanity checks */
3524	if (WARN_ON(!(pool->cpu < 0)) ||
3525	    WARN_ON(!list_empty(&pool->worklist)))
3526		return;
3527
3528	/* release id and unhash */
3529	if (pool->id >= 0)
3530		idr_remove(&worker_pool_idr, pool->id);
3531	hash_del(&pool->hash_node);
3532
3533	/*
3534	 * Become the manager and destroy all workers.  This prevents
3535	 * @pool's workers from blocking on attach_mutex.  We're the last
3536	 * manager and @pool gets freed with the flag set.
 
 
 
 
 
 
 
 
3537	 */
3538	spin_lock_irq(&pool->lock);
3539	wait_event_lock_irq(wq_manager_wait,
3540			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3541	pool->flags |= POOL_MANAGER_ACTIVE;
 
 
 
 
 
 
 
 
 
 
3542
3543	while ((worker = first_idle_worker(pool)))
3544		destroy_worker(worker);
3545	WARN_ON(pool->nr_workers || pool->nr_idle);
3546	spin_unlock_irq(&pool->lock);
 
 
3547
3548	mutex_lock(&wq_pool_attach_mutex);
3549	if (!list_empty(&pool->workers))
3550		pool->detach_completion = &detach_completion;
3551	mutex_unlock(&wq_pool_attach_mutex);
3552
3553	if (pool->detach_completion)
3554		wait_for_completion(pool->detach_completion);
3555
3556	/* shut down the timers */
3557	del_timer_sync(&pool->idle_timer);
 
3558	del_timer_sync(&pool->mayday_timer);
3559
3560	/* RCU protected to allow dereferences from get_work_pool() */
3561	call_rcu(&pool->rcu, rcu_free_pool);
3562}
3563
3564/**
3565 * get_unbound_pool - get a worker_pool with the specified attributes
3566 * @attrs: the attributes of the worker_pool to get
3567 *
3568 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3569 * reference count and return it.  If there already is a matching
3570 * worker_pool, it will be used; otherwise, this function attempts to
3571 * create a new one.
3572 *
3573 * Should be called with wq_pool_mutex held.
3574 *
3575 * Return: On success, a worker_pool with the same attributes as @attrs.
3576 * On failure, %NULL.
3577 */
3578static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3579{
 
3580	u32 hash = wqattrs_hash(attrs);
3581	struct worker_pool *pool;
3582	int node;
3583	int target_node = NUMA_NO_NODE;
3584
3585	lockdep_assert_held(&wq_pool_mutex);
3586
3587	/* do we already have a matching pool? */
3588	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3589		if (wqattrs_equal(pool->attrs, attrs)) {
3590			pool->refcnt++;
3591			return pool;
3592		}
3593	}
3594
3595	/* if cpumask is contained inside a NUMA node, we belong to that node */
3596	if (wq_numa_enabled) {
3597		for_each_node(node) {
3598			if (cpumask_subset(attrs->cpumask,
3599					   wq_numa_possible_cpumask[node])) {
3600				target_node = node;
3601				break;
3602			}
3603		}
3604	}
3605
3606	/* nope, create a new one */
3607	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3608	if (!pool || init_worker_pool(pool) < 0)
3609		goto fail;
3610
3611	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3612	copy_workqueue_attrs(pool->attrs, attrs);
3613	pool->node = target_node;
3614
3615	/*
3616	 * no_numa isn't a worker_pool attribute, always clear it.  See
3617	 * 'struct workqueue_attrs' comments for detail.
3618	 */
3619	pool->attrs->no_numa = false;
3620
3621	if (worker_pool_assign_id(pool) < 0)
3622		goto fail;
3623
3624	/* create and start the initial worker */
3625	if (wq_online && !create_worker(pool))
3626		goto fail;
3627
3628	/* install */
3629	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3630
3631	return pool;
3632fail:
3633	if (pool)
3634		put_unbound_pool(pool);
3635	return NULL;
3636}
3637
3638static void rcu_free_pwq(struct rcu_head *rcu)
3639{
3640	kmem_cache_free(pwq_cache,
3641			container_of(rcu, struct pool_workqueue, rcu));
3642}
3643
3644/*
3645 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3646 * and needs to be destroyed.
3647 */
3648static void pwq_unbound_release_workfn(struct work_struct *work)
3649{
3650	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3651						  unbound_release_work);
3652	struct workqueue_struct *wq = pwq->wq;
3653	struct worker_pool *pool = pwq->pool;
3654	bool is_last;
3655
3656	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3657		return;
 
 
 
 
 
 
 
 
3658
3659	mutex_lock(&wq->mutex);
3660	list_del_rcu(&pwq->pwqs_node);
3661	is_last = list_empty(&wq->pwqs);
3662	mutex_unlock(&wq->mutex);
3663
3664	mutex_lock(&wq_pool_mutex);
3665	put_unbound_pool(pool);
3666	mutex_unlock(&wq_pool_mutex);
3667
3668	call_rcu(&pwq->rcu, rcu_free_pwq);
3669
3670	/*
3671	 * If we're the last pwq going away, @wq is already dead and no one
3672	 * is gonna access it anymore.  Schedule RCU free.
3673	 */
3674	if (is_last) {
3675		wq_unregister_lockdep(wq);
3676		call_rcu(&wq->rcu, rcu_free_wq);
3677	}
3678}
3679
3680/**
3681 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3682 * @pwq: target pool_workqueue
3683 *
3684 * If @pwq isn't freezing, set @pwq->max_active to the associated
3685 * workqueue's saved_max_active and activate delayed work items
3686 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3687 */
3688static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3689{
3690	struct workqueue_struct *wq = pwq->wq;
3691	bool freezable = wq->flags & WQ_FREEZABLE;
3692	unsigned long flags;
3693
3694	/* for @wq->saved_max_active */
3695	lockdep_assert_held(&wq->mutex);
3696
3697	/* fast exit for non-freezable wqs */
3698	if (!freezable && pwq->max_active == wq->saved_max_active)
3699		return;
3700
3701	/* this function can be called during early boot w/ irq disabled */
3702	spin_lock_irqsave(&pwq->pool->lock, flags);
3703
3704	/*
3705	 * During [un]freezing, the caller is responsible for ensuring that
3706	 * this function is called at least once after @workqueue_freezing
3707	 * is updated and visible.
3708	 */
3709	if (!freezable || !workqueue_freezing) {
3710		pwq->max_active = wq->saved_max_active;
3711
3712		while (!list_empty(&pwq->delayed_works) &&
3713		       pwq->nr_active < pwq->max_active)
3714			pwq_activate_first_delayed(pwq);
3715
3716		/*
3717		 * Need to kick a worker after thawed or an unbound wq's
3718		 * max_active is bumped.  It's a slow path.  Do it always.
3719		 */
3720		wake_up_worker(pwq->pool);
3721	} else {
3722		pwq->max_active = 0;
3723	}
3724
3725	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3726}
3727
3728/* initialize newly alloced @pwq which is associated with @wq and @pool */
3729static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3730		     struct worker_pool *pool)
3731{
3732	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3733
3734	memset(pwq, 0, sizeof(*pwq));
3735
3736	pwq->pool = pool;
3737	pwq->wq = wq;
3738	pwq->flush_color = -1;
3739	pwq->refcnt = 1;
3740	INIT_LIST_HEAD(&pwq->delayed_works);
3741	INIT_LIST_HEAD(&pwq->pwqs_node);
3742	INIT_LIST_HEAD(&pwq->mayday_node);
3743	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3744}
3745
3746/* sync @pwq with the current state of its associated wq and link it */
3747static void link_pwq(struct pool_workqueue *pwq)
3748{
3749	struct workqueue_struct *wq = pwq->wq;
3750
3751	lockdep_assert_held(&wq->mutex);
3752
3753	/* may be called multiple times, ignore if already linked */
3754	if (!list_empty(&pwq->pwqs_node))
3755		return;
3756
3757	/* set the matching work_color */
3758	pwq->work_color = wq->work_color;
3759
3760	/* sync max_active to the current setting */
3761	pwq_adjust_max_active(pwq);
3762
3763	/* link in @pwq */
3764	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3765}
3766
3767/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3768static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3769					const struct workqueue_attrs *attrs)
3770{
3771	struct worker_pool *pool;
3772	struct pool_workqueue *pwq;
3773
3774	lockdep_assert_held(&wq_pool_mutex);
3775
3776	pool = get_unbound_pool(attrs);
3777	if (!pool)
3778		return NULL;
3779
3780	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3781	if (!pwq) {
3782		put_unbound_pool(pool);
3783		return NULL;
3784	}
3785
3786	init_pwq(pwq, wq, pool);
3787	return pwq;
3788}
3789
3790/**
3791 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3792 * @attrs: the wq_attrs of the default pwq of the target workqueue
3793 * @node: the target NUMA node
3794 * @cpu_going_down: if >= 0, the CPU to consider as offline
3795 * @cpumask: outarg, the resulting cpumask
3796 *
3797 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3798 * @cpu_going_down is >= 0, that cpu is considered offline during
3799 * calculation.  The result is stored in @cpumask.
3800 *
3801 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3802 * enabled and @node has online CPUs requested by @attrs, the returned
3803 * cpumask is the intersection of the possible CPUs of @node and
3804 * @attrs->cpumask.
3805 *
3806 * The caller is responsible for ensuring that the cpumask of @node stays
3807 * stable.
3808 *
3809 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3810 * %false if equal.
3811 */
3812static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3813				 int cpu_going_down, cpumask_t *cpumask)
3814{
3815	if (!wq_numa_enabled || attrs->no_numa)
3816		goto use_dfl;
3817
3818	/* does @node have any online CPUs @attrs wants? */
3819	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
 
3820	if (cpu_going_down >= 0)
3821		cpumask_clear_cpu(cpu_going_down, cpumask);
3822
3823	if (cpumask_empty(cpumask))
3824		goto use_dfl;
 
 
3825
3826	/* yeap, return possible CPUs in @node that @attrs wants */
3827	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3828
3829	if (cpumask_empty(cpumask)) {
3830		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3831				"possible intersect\n");
3832		return false;
3833	}
3834
3835	return !cpumask_equal(cpumask, attrs->cpumask);
3836
3837use_dfl:
3838	cpumask_copy(cpumask, attrs->cpumask);
3839	return false;
3840}
3841
3842/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3843static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3844						   int node,
3845						   struct pool_workqueue *pwq)
3846{
3847	struct pool_workqueue *old_pwq;
3848
3849	lockdep_assert_held(&wq_pool_mutex);
3850	lockdep_assert_held(&wq->mutex);
3851
3852	/* link_pwq() can handle duplicate calls */
3853	link_pwq(pwq);
3854
3855	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3856	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3857	return old_pwq;
3858}
3859
3860/* context to store the prepared attrs & pwqs before applying */
3861struct apply_wqattrs_ctx {
3862	struct workqueue_struct	*wq;		/* target workqueue */
3863	struct workqueue_attrs	*attrs;		/* attrs to apply */
3864	struct list_head	list;		/* queued for batching commit */
3865	struct pool_workqueue	*dfl_pwq;
3866	struct pool_workqueue	*pwq_tbl[];
3867};
3868
3869/* free the resources after success or abort */
3870static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3871{
3872	if (ctx) {
3873		int node;
3874
3875		for_each_node(node)
3876			put_pwq_unlocked(ctx->pwq_tbl[node]);
3877		put_pwq_unlocked(ctx->dfl_pwq);
3878
3879		free_workqueue_attrs(ctx->attrs);
3880
3881		kfree(ctx);
3882	}
3883}
3884
3885/* allocate the attrs and pwqs for later installation */
3886static struct apply_wqattrs_ctx *
3887apply_wqattrs_prepare(struct workqueue_struct *wq,
3888		      const struct workqueue_attrs *attrs)
 
3889{
3890	struct apply_wqattrs_ctx *ctx;
3891	struct workqueue_attrs *new_attrs, *tmp_attrs;
3892	int node;
3893
3894	lockdep_assert_held(&wq_pool_mutex);
3895
3896	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
 
 
 
 
3897
3898	new_attrs = alloc_workqueue_attrs();
3899	tmp_attrs = alloc_workqueue_attrs();
3900	if (!ctx || !new_attrs || !tmp_attrs)
3901		goto out_free;
3902
3903	/*
3904	 * Calculate the attrs of the default pwq.
3905	 * If the user configured cpumask doesn't overlap with the
3906	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3907	 */
3908	copy_workqueue_attrs(new_attrs, attrs);
3909	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3910	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3911		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3912
3913	/*
3914	 * We may create multiple pwqs with differing cpumasks.  Make a
3915	 * copy of @new_attrs which will be modified and used to obtain
3916	 * pools.
3917	 */
3918	copy_workqueue_attrs(tmp_attrs, new_attrs);
3919
3920	/*
3921	 * If something goes wrong during CPU up/down, we'll fall back to
3922	 * the default pwq covering whole @attrs->cpumask.  Always create
3923	 * it even if we don't use it immediately.
3924	 */
 
 
 
3925	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3926	if (!ctx->dfl_pwq)
3927		goto out_free;
3928
3929	for_each_node(node) {
3930		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3931			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3932			if (!ctx->pwq_tbl[node])
 
 
 
 
3933				goto out_free;
3934		} else {
3935			ctx->dfl_pwq->refcnt++;
3936			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3937		}
3938	}
3939
3940	/* save the user configured attrs and sanitize it. */
3941	copy_workqueue_attrs(new_attrs, attrs);
3942	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
 
3943	ctx->attrs = new_attrs;
3944
3945	ctx->wq = wq;
3946	free_workqueue_attrs(tmp_attrs);
3947	return ctx;
3948
3949out_free:
3950	free_workqueue_attrs(tmp_attrs);
3951	free_workqueue_attrs(new_attrs);
3952	apply_wqattrs_cleanup(ctx);
3953	return NULL;
3954}
3955
3956/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3957static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3958{
3959	int node;
3960
3961	/* all pwqs have been created successfully, let's install'em */
3962	mutex_lock(&ctx->wq->mutex);
3963
3964	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3965
3966	/* save the previous pwq and install the new one */
3967	for_each_node(node)
3968		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3969							  ctx->pwq_tbl[node]);
3970
3971	/* @dfl_pwq might not have been used, ensure it's linked */
3972	link_pwq(ctx->dfl_pwq);
3973	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3974
3975	mutex_unlock(&ctx->wq->mutex);
3976}
3977
3978static void apply_wqattrs_lock(void)
3979{
3980	/* CPUs should stay stable across pwq creations and installations */
3981	get_online_cpus();
3982	mutex_lock(&wq_pool_mutex);
3983}
3984
3985static void apply_wqattrs_unlock(void)
3986{
3987	mutex_unlock(&wq_pool_mutex);
3988	put_online_cpus();
3989}
3990
3991static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3992					const struct workqueue_attrs *attrs)
3993{
3994	struct apply_wqattrs_ctx *ctx;
3995
3996	/* only unbound workqueues can change attributes */
3997	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3998		return -EINVAL;
3999
4000	/* creating multiple pwqs breaks ordering guarantee */
4001	if (!list_empty(&wq->pwqs)) {
4002		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4003			return -EINVAL;
4004
4005		wq->flags &= ~__WQ_ORDERED;
4006	}
4007
4008	ctx = apply_wqattrs_prepare(wq, attrs);
4009	if (!ctx)
4010		return -ENOMEM;
4011
4012	/* the ctx has been prepared successfully, let's commit it */
4013	apply_wqattrs_commit(ctx);
4014	apply_wqattrs_cleanup(ctx);
4015
4016	return 0;
4017}
4018
4019/**
4020 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4021 * @wq: the target workqueue
4022 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4023 *
4024 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4025 * machines, this function maps a separate pwq to each NUMA node with
4026 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4027 * NUMA node it was issued on.  Older pwqs are released as in-flight work
4028 * items finish.  Note that a work item which repeatedly requeues itself
4029 * back-to-back will stay on its current pwq.
4030 *
4031 * Performs GFP_KERNEL allocations.
4032 *
4033 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4034 *
4035 * Return: 0 on success and -errno on failure.
4036 */
4037int apply_workqueue_attrs(struct workqueue_struct *wq,
4038			  const struct workqueue_attrs *attrs)
4039{
4040	int ret;
4041
4042	lockdep_assert_cpus_held();
4043
4044	mutex_lock(&wq_pool_mutex);
4045	ret = apply_workqueue_attrs_locked(wq, attrs);
4046	mutex_unlock(&wq_pool_mutex);
4047
4048	return ret;
4049}
4050
4051/**
4052 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4053 * @wq: the target workqueue
4054 * @cpu: the CPU coming up or going down
 
4055 * @online: whether @cpu is coming up or going down
4056 *
4057 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4058 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4059 * @wq accordingly.
4060 *
4061 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4062 * falls back to @wq->dfl_pwq which may not be optimal but is always
4063 * correct.
4064 *
4065 * Note that when the last allowed CPU of a NUMA node goes offline for a
4066 * workqueue with a cpumask spanning multiple nodes, the workers which were
4067 * already executing the work items for the workqueue will lose their CPU
4068 * affinity and may execute on any CPU.  This is similar to how per-cpu
4069 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4070 * affinity, it's the user's responsibility to flush the work item from
4071 * CPU_DOWN_PREPARE.
4072 */
4073static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4074				   bool online)
4075{
4076	int node = cpu_to_node(cpu);
4077	int cpu_off = online ? -1 : cpu;
4078	struct pool_workqueue *old_pwq = NULL, *pwq;
4079	struct workqueue_attrs *target_attrs;
4080	cpumask_t *cpumask;
4081
4082	lockdep_assert_held(&wq_pool_mutex);
4083
4084	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4085	    wq->unbound_attrs->no_numa)
4086		return;
4087
4088	/*
4089	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4090	 * Let's use a preallocated one.  The following buf is protected by
4091	 * CPU hotplug exclusion.
4092	 */
4093	target_attrs = wq_update_unbound_numa_attrs_buf;
4094	cpumask = target_attrs->cpumask;
4095
4096	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4097	pwq = unbound_pwq_by_node(wq, node);
4098
4099	/*
4100	 * Let's determine what needs to be done.  If the target cpumask is
4101	 * different from the default pwq's, we need to compare it to @pwq's
4102	 * and create a new one if they don't match.  If the target cpumask
4103	 * equals the default pwq's, the default pwq should be used.
4104	 */
4105	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4106		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4107			return;
4108	} else {
4109		goto use_dfl_pwq;
4110	}
4111
4112	/* create a new pwq */
4113	pwq = alloc_unbound_pwq(wq, target_attrs);
4114	if (!pwq) {
4115		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4116			wq->name);
4117		goto use_dfl_pwq;
4118	}
4119
4120	/* Install the new pwq. */
4121	mutex_lock(&wq->mutex);
4122	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4123	goto out_unlock;
4124
4125use_dfl_pwq:
4126	mutex_lock(&wq->mutex);
4127	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4128	get_pwq(wq->dfl_pwq);
4129	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4130	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4131out_unlock:
4132	mutex_unlock(&wq->mutex);
4133	put_pwq_unlocked(old_pwq);
4134}
4135
4136static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4137{
4138	bool highpri = wq->flags & WQ_HIGHPRI;
4139	int cpu, ret;
4140
 
 
 
 
4141	if (!(wq->flags & WQ_UNBOUND)) {
4142		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4143		if (!wq->cpu_pwqs)
4144			return -ENOMEM;
4145
4146		for_each_possible_cpu(cpu) {
4147			struct pool_workqueue *pwq =
4148				per_cpu_ptr(wq->cpu_pwqs, cpu);
4149			struct worker_pool *cpu_pools =
4150				per_cpu(cpu_worker_pools, cpu);
 
 
 
 
 
4151
4152			init_pwq(pwq, wq, &cpu_pools[highpri]);
4153
4154			mutex_lock(&wq->mutex);
4155			link_pwq(pwq);
4156			mutex_unlock(&wq->mutex);
4157		}
4158		return 0;
4159	}
4160
4161	get_online_cpus();
4162	if (wq->flags & __WQ_ORDERED) {
4163		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4164		/* there should only be single pwq for ordering guarantee */
4165		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4166			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4167		     "ordering guarantee broken for workqueue %s\n", wq->name);
4168	} else {
4169		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4170	}
4171	put_online_cpus();
 
 
 
 
 
 
4172
4173	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
4174}
4175
4176static int wq_clamp_max_active(int max_active, unsigned int flags,
4177			       const char *name)
4178{
4179	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4180
4181	if (max_active < 1 || max_active > lim)
4182		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4183			max_active, name, 1, lim);
4184
4185	return clamp_val(max_active, 1, lim);
4186}
4187
4188/*
4189 * Workqueues which may be used during memory reclaim should have a rescuer
4190 * to guarantee forward progress.
4191 */
4192static int init_rescuer(struct workqueue_struct *wq)
4193{
4194	struct worker *rescuer;
4195	int ret;
4196
4197	if (!(wq->flags & WQ_MEM_RECLAIM))
4198		return 0;
4199
4200	rescuer = alloc_worker(NUMA_NO_NODE);
4201	if (!rescuer)
 
 
4202		return -ENOMEM;
 
4203
4204	rescuer->rescue_wq = wq;
4205	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4206	ret = PTR_ERR_OR_ZERO(rescuer->task);
4207	if (ret) {
 
 
4208		kfree(rescuer);
4209		return ret;
4210	}
4211
4212	wq->rescuer = rescuer;
4213	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4214	wake_up_process(rescuer->task);
4215
4216	return 0;
4217}
4218
4219__printf(1, 4)
4220struct workqueue_struct *alloc_workqueue(const char *fmt,
4221					 unsigned int flags,
4222					 int max_active, ...)
4223{
4224	size_t tbl_size = 0;
4225	va_list args;
4226	struct workqueue_struct *wq;
4227	struct pool_workqueue *pwq;
4228
4229	/*
4230	 * Unbound && max_active == 1 used to imply ordered, which is no
4231	 * longer the case on NUMA machines due to per-node pools.  While
4232	 * alloc_ordered_workqueue() is the right way to create an ordered
4233	 * workqueue, keep the previous behavior to avoid subtle breakages
4234	 * on NUMA.
4235	 */
4236	if ((flags & WQ_UNBOUND) && max_active == 1)
4237		flags |= __WQ_ORDERED;
4238
4239	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4240	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4241		flags |= WQ_UNBOUND;
4242
4243	/* allocate wq and format name */
4244	if (flags & WQ_UNBOUND)
4245		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4246
4247	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4248	if (!wq)
4249		return NULL;
4250
4251	if (flags & WQ_UNBOUND) {
4252		wq->unbound_attrs = alloc_workqueue_attrs();
4253		if (!wq->unbound_attrs)
4254			goto err_free_wq;
4255	}
4256
4257	va_start(args, max_active);
4258	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4259	va_end(args);
4260
4261	max_active = max_active ?: WQ_DFL_ACTIVE;
4262	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4263
4264	/* init wq */
4265	wq->flags = flags;
4266	wq->saved_max_active = max_active;
4267	mutex_init(&wq->mutex);
4268	atomic_set(&wq->nr_pwqs_to_flush, 0);
4269	INIT_LIST_HEAD(&wq->pwqs);
4270	INIT_LIST_HEAD(&wq->flusher_queue);
4271	INIT_LIST_HEAD(&wq->flusher_overflow);
4272	INIT_LIST_HEAD(&wq->maydays);
4273
4274	wq_init_lockdep(wq);
4275	INIT_LIST_HEAD(&wq->list);
4276
4277	if (alloc_and_link_pwqs(wq) < 0)
4278		goto err_unreg_lockdep;
4279
4280	if (wq_online && init_rescuer(wq) < 0)
4281		goto err_destroy;
4282
4283	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4284		goto err_destroy;
4285
4286	/*
4287	 * wq_pool_mutex protects global freeze state and workqueues list.
4288	 * Grab it, adjust max_active and add the new @wq to workqueues
4289	 * list.
4290	 */
4291	mutex_lock(&wq_pool_mutex);
4292
4293	mutex_lock(&wq->mutex);
4294	for_each_pwq(pwq, wq)
4295		pwq_adjust_max_active(pwq);
4296	mutex_unlock(&wq->mutex);
4297
4298	list_add_tail_rcu(&wq->list, &workqueues);
4299
4300	mutex_unlock(&wq_pool_mutex);
4301
4302	return wq;
4303
4304err_unreg_lockdep:
4305	wq_unregister_lockdep(wq);
4306	wq_free_lockdep(wq);
4307err_free_wq:
4308	free_workqueue_attrs(wq->unbound_attrs);
4309	kfree(wq);
4310	return NULL;
4311err_destroy:
4312	destroy_workqueue(wq);
4313	return NULL;
4314}
4315EXPORT_SYMBOL_GPL(alloc_workqueue);
4316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4317/**
4318 * destroy_workqueue - safely terminate a workqueue
4319 * @wq: target workqueue
4320 *
4321 * Safely destroy a workqueue. All work currently pending will be done first.
4322 */
4323void destroy_workqueue(struct workqueue_struct *wq)
4324{
4325	struct pool_workqueue *pwq;
4326	int node;
 
 
 
 
 
 
 
 
 
 
 
4327
4328	/* drain it before proceeding with destruction */
4329	drain_workqueue(wq);
4330
4331	/* sanity checks */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4332	mutex_lock(&wq->mutex);
4333	for_each_pwq(pwq, wq) {
4334		int i;
4335
4336		for (i = 0; i < WORK_NR_COLORS; i++) {
4337			if (WARN_ON(pwq->nr_in_flight[i])) {
4338				mutex_unlock(&wq->mutex);
4339				show_workqueue_state();
4340				return;
4341			}
4342		}
4343
4344		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4345		    WARN_ON(pwq->nr_active) ||
4346		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4347			mutex_unlock(&wq->mutex);
4348			show_workqueue_state();
 
4349			return;
4350		}
 
4351	}
4352	mutex_unlock(&wq->mutex);
4353
4354	/*
4355	 * wq list is used to freeze wq, remove from list after
4356	 * flushing is complete in case freeze races us.
4357	 */
4358	mutex_lock(&wq_pool_mutex);
4359	list_del_rcu(&wq->list);
4360	mutex_unlock(&wq_pool_mutex);
4361
4362	workqueue_sysfs_unregister(wq);
 
 
 
 
 
4363
4364	if (wq->rescuer)
4365		kthread_stop(wq->rescuer->task);
 
 
 
4366
4367	if (!(wq->flags & WQ_UNBOUND)) {
4368		wq_unregister_lockdep(wq);
4369		/*
4370		 * The base ref is never dropped on per-cpu pwqs.  Directly
4371		 * schedule RCU free.
4372		 */
4373		call_rcu(&wq->rcu, rcu_free_wq);
4374	} else {
4375		/*
4376		 * We're the sole accessor of @wq at this point.  Directly
4377		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4378		 * @wq will be freed when the last pwq is released.
4379		 */
4380		for_each_node(node) {
4381			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4382			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4383			put_pwq_unlocked(pwq);
4384		}
4385
4386		/*
4387		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4388		 * put.  Don't access it afterwards.
4389		 */
4390		pwq = wq->dfl_pwq;
4391		wq->dfl_pwq = NULL;
4392		put_pwq_unlocked(pwq);
4393	}
4394}
4395EXPORT_SYMBOL_GPL(destroy_workqueue);
4396
4397/**
4398 * workqueue_set_max_active - adjust max_active of a workqueue
4399 * @wq: target workqueue
4400 * @max_active: new max_active value.
4401 *
4402 * Set max_active of @wq to @max_active.
4403 *
4404 * CONTEXT:
4405 * Don't call from IRQ context.
4406 */
4407void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4408{
4409	struct pool_workqueue *pwq;
4410
4411	/* disallow meddling with max_active for ordered workqueues */
4412	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4413		return;
4414
4415	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4416
4417	mutex_lock(&wq->mutex);
4418
4419	wq->flags &= ~__WQ_ORDERED;
4420	wq->saved_max_active = max_active;
4421
4422	for_each_pwq(pwq, wq)
4423		pwq_adjust_max_active(pwq);
4424
4425	mutex_unlock(&wq->mutex);
4426}
4427EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4428
4429/**
4430 * current_work - retrieve %current task's work struct
4431 *
4432 * Determine if %current task is a workqueue worker and what it's working on.
4433 * Useful to find out the context that the %current task is running in.
4434 *
4435 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4436 */
4437struct work_struct *current_work(void)
4438{
4439	struct worker *worker = current_wq_worker();
4440
4441	return worker ? worker->current_work : NULL;
4442}
4443EXPORT_SYMBOL(current_work);
4444
4445/**
4446 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4447 *
4448 * Determine whether %current is a workqueue rescuer.  Can be used from
4449 * work functions to determine whether it's being run off the rescuer task.
4450 *
4451 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4452 */
4453bool current_is_workqueue_rescuer(void)
4454{
4455	struct worker *worker = current_wq_worker();
4456
4457	return worker && worker->rescue_wq;
4458}
4459
4460/**
4461 * workqueue_congested - test whether a workqueue is congested
4462 * @cpu: CPU in question
4463 * @wq: target workqueue
4464 *
4465 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4466 * no synchronization around this function and the test result is
4467 * unreliable and only useful as advisory hints or for debugging.
4468 *
4469 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4470 * Note that both per-cpu and unbound workqueues may be associated with
4471 * multiple pool_workqueues which have separate congested states.  A
4472 * workqueue being congested on one CPU doesn't mean the workqueue is also
4473 * contested on other CPUs / NUMA nodes.
 
4474 *
4475 * Return:
4476 * %true if congested, %false otherwise.
4477 */
4478bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4479{
4480	struct pool_workqueue *pwq;
4481	bool ret;
4482
4483	rcu_read_lock();
4484	preempt_disable();
4485
4486	if (cpu == WORK_CPU_UNBOUND)
4487		cpu = smp_processor_id();
4488
4489	if (!(wq->flags & WQ_UNBOUND))
4490		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4491	else
4492		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4493
4494	ret = !list_empty(&pwq->delayed_works);
4495	preempt_enable();
4496	rcu_read_unlock();
4497
4498	return ret;
4499}
4500EXPORT_SYMBOL_GPL(workqueue_congested);
4501
4502/**
4503 * work_busy - test whether a work is currently pending or running
4504 * @work: the work to be tested
4505 *
4506 * Test whether @work is currently pending or running.  There is no
4507 * synchronization around this function and the test result is
4508 * unreliable and only useful as advisory hints or for debugging.
4509 *
4510 * Return:
4511 * OR'd bitmask of WORK_BUSY_* bits.
4512 */
4513unsigned int work_busy(struct work_struct *work)
4514{
4515	struct worker_pool *pool;
4516	unsigned long flags;
4517	unsigned int ret = 0;
4518
4519	if (work_pending(work))
4520		ret |= WORK_BUSY_PENDING;
4521
4522	rcu_read_lock();
4523	pool = get_work_pool(work);
4524	if (pool) {
4525		spin_lock_irqsave(&pool->lock, flags);
4526		if (find_worker_executing_work(pool, work))
4527			ret |= WORK_BUSY_RUNNING;
4528		spin_unlock_irqrestore(&pool->lock, flags);
4529	}
4530	rcu_read_unlock();
4531
4532	return ret;
4533}
4534EXPORT_SYMBOL_GPL(work_busy);
4535
4536/**
4537 * set_worker_desc - set description for the current work item
4538 * @fmt: printf-style format string
4539 * @...: arguments for the format string
4540 *
4541 * This function can be called by a running work function to describe what
4542 * the work item is about.  If the worker task gets dumped, this
4543 * information will be printed out together to help debugging.  The
4544 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4545 */
4546void set_worker_desc(const char *fmt, ...)
4547{
4548	struct worker *worker = current_wq_worker();
4549	va_list args;
4550
4551	if (worker) {
4552		va_start(args, fmt);
4553		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4554		va_end(args);
4555	}
4556}
4557EXPORT_SYMBOL_GPL(set_worker_desc);
4558
4559/**
4560 * print_worker_info - print out worker information and description
4561 * @log_lvl: the log level to use when printing
4562 * @task: target task
4563 *
4564 * If @task is a worker and currently executing a work item, print out the
4565 * name of the workqueue being serviced and worker description set with
4566 * set_worker_desc() by the currently executing work item.
4567 *
4568 * This function can be safely called on any task as long as the
4569 * task_struct itself is accessible.  While safe, this function isn't
4570 * synchronized and may print out mixups or garbages of limited length.
4571 */
4572void print_worker_info(const char *log_lvl, struct task_struct *task)
4573{
4574	work_func_t *fn = NULL;
4575	char name[WQ_NAME_LEN] = { };
4576	char desc[WORKER_DESC_LEN] = { };
4577	struct pool_workqueue *pwq = NULL;
4578	struct workqueue_struct *wq = NULL;
4579	struct worker *worker;
4580
4581	if (!(task->flags & PF_WQ_WORKER))
4582		return;
4583
4584	/*
4585	 * This function is called without any synchronization and @task
4586	 * could be in any state.  Be careful with dereferences.
4587	 */
4588	worker = kthread_probe_data(task);
4589
4590	/*
4591	 * Carefully copy the associated workqueue's workfn, name and desc.
4592	 * Keep the original last '\0' in case the original is garbage.
4593	 */
4594	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4595	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4596	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4597	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4598	probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4599
4600	if (fn || name[0] || desc[0]) {
4601		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4602		if (strcmp(name, desc))
4603			pr_cont(" (%s)", desc);
4604		pr_cont("\n");
4605	}
4606}
4607
4608static void pr_cont_pool_info(struct worker_pool *pool)
4609{
4610	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4611	if (pool->node != NUMA_NO_NODE)
4612		pr_cont(" node=%d", pool->node);
4613	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4614}
4615
4616static void pr_cont_work(bool comma, struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4617{
4618	if (work->func == wq_barrier_func) {
4619		struct wq_barrier *barr;
4620
4621		barr = container_of(work, struct wq_barrier, work);
4622
 
4623		pr_cont("%s BAR(%d)", comma ? "," : "",
4624			task_pid_nr(barr->task));
4625	} else {
4626		pr_cont("%s %ps", comma ? "," : "", work->func);
 
 
4627	}
4628}
4629
4630static void show_pwq(struct pool_workqueue *pwq)
4631{
 
4632	struct worker_pool *pool = pwq->pool;
4633	struct work_struct *work;
4634	struct worker *worker;
4635	bool has_in_flight = false, has_pending = false;
4636	int bkt;
4637
4638	pr_info("  pwq %d:", pool->id);
4639	pr_cont_pool_info(pool);
4640
4641	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
 
4642		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4643
4644	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4645		if (worker->current_pwq == pwq) {
4646			has_in_flight = true;
4647			break;
4648		}
4649	}
4650	if (has_in_flight) {
4651		bool comma = false;
4652
4653		pr_info("    in-flight:");
4654		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4655			if (worker->current_pwq != pwq)
4656				continue;
4657
4658			pr_cont("%s %d%s:%ps", comma ? "," : "",
4659				task_pid_nr(worker->task),
4660				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4661				worker->current_func);
4662			list_for_each_entry(work, &worker->scheduled, entry)
4663				pr_cont_work(false, work);
 
4664			comma = true;
4665		}
4666		pr_cont("\n");
4667	}
4668
4669	list_for_each_entry(work, &pool->worklist, entry) {
4670		if (get_work_pwq(work) == pwq) {
4671			has_pending = true;
4672			break;
4673		}
4674	}
4675	if (has_pending) {
4676		bool comma = false;
4677
4678		pr_info("    pending:");
4679		list_for_each_entry(work, &pool->worklist, entry) {
4680			if (get_work_pwq(work) != pwq)
4681				continue;
4682
4683			pr_cont_work(comma, work);
4684			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4685		}
 
4686		pr_cont("\n");
4687	}
4688
4689	if (!list_empty(&pwq->delayed_works)) {
4690		bool comma = false;
4691
4692		pr_info("    delayed:");
4693		list_for_each_entry(work, &pwq->delayed_works, entry) {
4694			pr_cont_work(comma, work);
4695			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4696		}
 
4697		pr_cont("\n");
4698	}
4699}
4700
4701/**
4702 * show_workqueue_state - dump workqueue state
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4703 *
4704 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4705 * all busy workqueues and pools.
4706 */
4707void show_workqueue_state(void)
4708{
4709	struct workqueue_struct *wq;
4710	struct worker_pool *pool;
4711	unsigned long flags;
4712	int pi;
4713
4714	rcu_read_lock();
4715
4716	pr_info("Showing busy workqueues and worker pools:\n");
4717
4718	list_for_each_entry_rcu(wq, &workqueues, list) {
4719		struct pool_workqueue *pwq;
4720		bool idle = true;
 
 
4721
4722		for_each_pwq(pwq, wq) {
4723			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4724				idle = false;
4725				break;
4726			}
4727		}
4728		if (idle)
4729			continue;
4730
4731		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
 
 
 
 
 
 
 
 
4732
4733		for_each_pwq(pwq, wq) {
4734			spin_lock_irqsave(&pwq->pool->lock, flags);
4735			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4736				show_pwq(pwq);
4737			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4738			/*
4739			 * We could be printing a lot from atomic context, e.g.
4740			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4741			 * hard lockup.
4742			 */
4743			touch_nmi_watchdog();
4744		}
4745	}
4746
4747	for_each_pool(pool, pi) {
4748		struct worker *worker;
4749		bool first = true;
4750
4751		spin_lock_irqsave(&pool->lock, flags);
4752		if (pool->nr_workers == pool->nr_idle)
4753			goto next_pool;
4754
4755		pr_info("pool %d:", pool->id);
4756		pr_cont_pool_info(pool);
4757		pr_cont(" hung=%us workers=%d",
4758			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4759			pool->nr_workers);
4760		if (pool->manager)
4761			pr_cont(" manager: %d",
4762				task_pid_nr(pool->manager->task));
4763		list_for_each_entry(worker, &pool->idle_list, entry) {
4764			pr_cont(" %s%d", first ? "idle: " : "",
4765				task_pid_nr(worker->task));
4766			first = false;
4767		}
4768		pr_cont("\n");
4769	next_pool:
4770		spin_unlock_irqrestore(&pool->lock, flags);
4771		/*
4772		 * We could be printing a lot from atomic context, e.g.
4773		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4774		 * hard lockup.
4775		 */
4776		touch_nmi_watchdog();
4777	}
4778
4779	rcu_read_unlock();
4780}
4781
4782/* used to show worker information through /proc/PID/{comm,stat,status} */
4783void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4784{
4785	int off;
4786
4787	/* always show the actual comm */
4788	off = strscpy(buf, task->comm, size);
4789	if (off < 0)
4790		return;
4791
4792	/* stabilize PF_WQ_WORKER and worker pool association */
4793	mutex_lock(&wq_pool_attach_mutex);
4794
4795	if (task->flags & PF_WQ_WORKER) {
4796		struct worker *worker = kthread_data(task);
4797		struct worker_pool *pool = worker->pool;
4798
4799		if (pool) {
4800			spin_lock_irq(&pool->lock);
4801			/*
4802			 * ->desc tracks information (wq name or
4803			 * set_worker_desc()) for the latest execution.  If
4804			 * current, prepend '+', otherwise '-'.
4805			 */
4806			if (worker->desc[0] != '\0') {
4807				if (worker->current_work)
4808					scnprintf(buf + off, size - off, "+%s",
4809						  worker->desc);
4810				else
4811					scnprintf(buf + off, size - off, "-%s",
4812						  worker->desc);
4813			}
4814			spin_unlock_irq(&pool->lock);
4815		}
4816	}
4817
4818	mutex_unlock(&wq_pool_attach_mutex);
4819}
4820
4821#ifdef CONFIG_SMP
4822
4823/*
4824 * CPU hotplug.
4825 *
4826 * There are two challenges in supporting CPU hotplug.  Firstly, there
4827 * are a lot of assumptions on strong associations among work, pwq and
4828 * pool which make migrating pending and scheduled works very
4829 * difficult to implement without impacting hot paths.  Secondly,
4830 * worker pools serve mix of short, long and very long running works making
4831 * blocked draining impractical.
4832 *
4833 * This is solved by allowing the pools to be disassociated from the CPU
4834 * running as an unbound one and allowing it to be reattached later if the
4835 * cpu comes back online.
4836 */
4837
4838static void unbind_workers(int cpu)
4839{
4840	struct worker_pool *pool;
4841	struct worker *worker;
4842
4843	for_each_cpu_worker_pool(pool, cpu) {
4844		mutex_lock(&wq_pool_attach_mutex);
4845		spin_lock_irq(&pool->lock);
4846
4847		/*
4848		 * We've blocked all attach/detach operations. Make all workers
4849		 * unbound and set DISASSOCIATED.  Before this, all workers
4850		 * except for the ones which are still executing works from
4851		 * before the last CPU down must be on the cpu.  After
4852		 * this, they may become diasporas.
 
4853		 */
4854		for_each_pool_worker(worker, pool)
4855			worker->flags |= WORKER_UNBOUND;
4856
4857		pool->flags |= POOL_DISASSOCIATED;
4858
4859		spin_unlock_irq(&pool->lock);
4860		mutex_unlock(&wq_pool_attach_mutex);
4861
4862		/*
4863		 * Call schedule() so that we cross rq->lock and thus can
4864		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4865		 * This is necessary as scheduler callbacks may be invoked
4866		 * from other cpus.
4867		 */
4868		schedule();
4869
4870		/*
4871		 * Sched callbacks are disabled now.  Zap nr_running.
4872		 * After this, nr_running stays zero and need_more_worker()
4873		 * and keep_working() are always true as long as the
4874		 * worklist is not empty.  This pool now behaves as an
4875		 * unbound (in terms of concurrency management) pool which
4876		 * are served by workers tied to the pool.
4877		 */
4878		atomic_set(&pool->nr_running, 0);
4879
4880		/*
4881		 * With concurrency management just turned off, a busy
4882		 * worker blocking could lead to lengthy stalls.  Kick off
4883		 * unbound chain execution of currently pending work items.
4884		 */
4885		spin_lock_irq(&pool->lock);
4886		wake_up_worker(pool);
4887		spin_unlock_irq(&pool->lock);
 
 
 
 
 
4888	}
4889}
4890
4891/**
4892 * rebind_workers - rebind all workers of a pool to the associated CPU
4893 * @pool: pool of interest
4894 *
4895 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4896 */
4897static void rebind_workers(struct worker_pool *pool)
4898{
4899	struct worker *worker;
4900
4901	lockdep_assert_held(&wq_pool_attach_mutex);
4902
4903	/*
4904	 * Restore CPU affinity of all workers.  As all idle workers should
4905	 * be on the run-queue of the associated CPU before any local
4906	 * wake-ups for concurrency management happen, restore CPU affinity
4907	 * of all workers first and then clear UNBOUND.  As we're called
4908	 * from CPU_ONLINE, the following shouldn't fail.
4909	 */
4910	for_each_pool_worker(worker, pool)
 
4911		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4912						  pool->attrs->cpumask) < 0);
 
4913
4914	spin_lock_irq(&pool->lock);
4915
4916	pool->flags &= ~POOL_DISASSOCIATED;
4917
4918	for_each_pool_worker(worker, pool) {
4919		unsigned int worker_flags = worker->flags;
4920
4921		/*
4922		 * A bound idle worker should actually be on the runqueue
4923		 * of the associated CPU for local wake-ups targeting it to
4924		 * work.  Kick all idle workers so that they migrate to the
4925		 * associated CPU.  Doing this in the same loop as
4926		 * replacing UNBOUND with REBOUND is safe as no worker will
4927		 * be bound before @pool->lock is released.
4928		 */
4929		if (worker_flags & WORKER_IDLE)
4930			wake_up_process(worker->task);
4931
4932		/*
4933		 * We want to clear UNBOUND but can't directly call
4934		 * worker_clr_flags() or adjust nr_running.  Atomically
4935		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4936		 * @worker will clear REBOUND using worker_clr_flags() when
4937		 * it initiates the next execution cycle thus restoring
4938		 * concurrency management.  Note that when or whether
4939		 * @worker clears REBOUND doesn't affect correctness.
4940		 *
4941		 * WRITE_ONCE() is necessary because @worker->flags may be
4942		 * tested without holding any lock in
4943		 * wq_worker_running().  Without it, NOT_RUNNING test may
4944		 * fail incorrectly leading to premature concurrency
4945		 * management operations.
4946		 */
4947		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4948		worker_flags |= WORKER_REBOUND;
4949		worker_flags &= ~WORKER_UNBOUND;
4950		WRITE_ONCE(worker->flags, worker_flags);
4951	}
4952
4953	spin_unlock_irq(&pool->lock);
4954}
4955
4956/**
4957 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4958 * @pool: unbound pool of interest
4959 * @cpu: the CPU which is coming up
4960 *
4961 * An unbound pool may end up with a cpumask which doesn't have any online
4962 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4963 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4964 * online CPU before, cpus_allowed of all its workers should be restored.
4965 */
4966static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4967{
4968	static cpumask_t cpumask;
4969	struct worker *worker;
4970
4971	lockdep_assert_held(&wq_pool_attach_mutex);
4972
4973	/* is @cpu allowed for @pool? */
4974	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4975		return;
4976
4977	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4978
4979	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4980	for_each_pool_worker(worker, pool)
4981		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4982}
4983
4984int workqueue_prepare_cpu(unsigned int cpu)
4985{
4986	struct worker_pool *pool;
4987
4988	for_each_cpu_worker_pool(pool, cpu) {
4989		if (pool->nr_workers)
4990			continue;
4991		if (!create_worker(pool))
4992			return -ENOMEM;
4993	}
4994	return 0;
4995}
4996
4997int workqueue_online_cpu(unsigned int cpu)
4998{
4999	struct worker_pool *pool;
5000	struct workqueue_struct *wq;
5001	int pi;
5002
5003	mutex_lock(&wq_pool_mutex);
5004
5005	for_each_pool(pool, pi) {
5006		mutex_lock(&wq_pool_attach_mutex);
5007
5008		if (pool->cpu == cpu)
5009			rebind_workers(pool);
5010		else if (pool->cpu < 0)
5011			restore_unbound_workers_cpumask(pool, cpu);
5012
5013		mutex_unlock(&wq_pool_attach_mutex);
5014	}
5015
5016	/* update NUMA affinity of unbound workqueues */
5017	list_for_each_entry(wq, &workqueues, list)
5018		wq_update_unbound_numa(wq, cpu, true);
 
 
 
 
 
 
 
 
 
5019
5020	mutex_unlock(&wq_pool_mutex);
5021	return 0;
5022}
5023
5024int workqueue_offline_cpu(unsigned int cpu)
5025{
5026	struct workqueue_struct *wq;
5027
5028	/* unbinding per-cpu workers should happen on the local CPU */
5029	if (WARN_ON(cpu != smp_processor_id()))
5030		return -1;
5031
5032	unbind_workers(cpu);
5033
5034	/* update NUMA affinity of unbound workqueues */
5035	mutex_lock(&wq_pool_mutex);
5036	list_for_each_entry(wq, &workqueues, list)
5037		wq_update_unbound_numa(wq, cpu, false);
 
 
 
 
 
 
 
 
 
5038	mutex_unlock(&wq_pool_mutex);
5039
5040	return 0;
5041}
5042
5043struct work_for_cpu {
5044	struct work_struct work;
5045	long (*fn)(void *);
5046	void *arg;
5047	long ret;
5048};
5049
5050static void work_for_cpu_fn(struct work_struct *work)
5051{
5052	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5053
5054	wfc->ret = wfc->fn(wfc->arg);
5055}
5056
5057/**
5058 * work_on_cpu - run a function in thread context on a particular cpu
5059 * @cpu: the cpu to run on
5060 * @fn: the function to run
5061 * @arg: the function arg
 
5062 *
5063 * It is up to the caller to ensure that the cpu doesn't go offline.
5064 * The caller must not hold any locks which would prevent @fn from completing.
5065 *
5066 * Return: The value @fn returns.
5067 */
5068long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
 
5069{
5070	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5071
5072	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5073	schedule_work_on(cpu, &wfc.work);
5074	flush_work(&wfc.work);
5075	destroy_work_on_stack(&wfc.work);
5076	return wfc.ret;
5077}
5078EXPORT_SYMBOL_GPL(work_on_cpu);
5079
5080/**
5081 * work_on_cpu_safe - run a function in thread context on a particular cpu
5082 * @cpu: the cpu to run on
5083 * @fn:  the function to run
5084 * @arg: the function argument
 
5085 *
5086 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5087 * any locks which would prevent @fn from completing.
5088 *
5089 * Return: The value @fn returns.
5090 */
5091long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
 
5092{
5093	long ret = -ENODEV;
5094
5095	get_online_cpus();
5096	if (cpu_online(cpu))
5097		ret = work_on_cpu(cpu, fn, arg);
5098	put_online_cpus();
5099	return ret;
5100}
5101EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5102#endif /* CONFIG_SMP */
5103
5104#ifdef CONFIG_FREEZER
5105
5106/**
5107 * freeze_workqueues_begin - begin freezing workqueues
5108 *
5109 * Start freezing workqueues.  After this function returns, all freezable
5110 * workqueues will queue new works to their delayed_works list instead of
5111 * pool->worklist.
5112 *
5113 * CONTEXT:
5114 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5115 */
5116void freeze_workqueues_begin(void)
5117{
5118	struct workqueue_struct *wq;
5119	struct pool_workqueue *pwq;
5120
5121	mutex_lock(&wq_pool_mutex);
5122
5123	WARN_ON_ONCE(workqueue_freezing);
5124	workqueue_freezing = true;
5125
5126	list_for_each_entry(wq, &workqueues, list) {
5127		mutex_lock(&wq->mutex);
5128		for_each_pwq(pwq, wq)
5129			pwq_adjust_max_active(pwq);
5130		mutex_unlock(&wq->mutex);
5131	}
5132
5133	mutex_unlock(&wq_pool_mutex);
5134}
5135
5136/**
5137 * freeze_workqueues_busy - are freezable workqueues still busy?
5138 *
5139 * Check whether freezing is complete.  This function must be called
5140 * between freeze_workqueues_begin() and thaw_workqueues().
5141 *
5142 * CONTEXT:
5143 * Grabs and releases wq_pool_mutex.
5144 *
5145 * Return:
5146 * %true if some freezable workqueues are still busy.  %false if freezing
5147 * is complete.
5148 */
5149bool freeze_workqueues_busy(void)
5150{
5151	bool busy = false;
5152	struct workqueue_struct *wq;
5153	struct pool_workqueue *pwq;
5154
5155	mutex_lock(&wq_pool_mutex);
5156
5157	WARN_ON_ONCE(!workqueue_freezing);
5158
5159	list_for_each_entry(wq, &workqueues, list) {
5160		if (!(wq->flags & WQ_FREEZABLE))
5161			continue;
5162		/*
5163		 * nr_active is monotonically decreasing.  It's safe
5164		 * to peek without lock.
5165		 */
5166		rcu_read_lock();
5167		for_each_pwq(pwq, wq) {
5168			WARN_ON_ONCE(pwq->nr_active < 0);
5169			if (pwq->nr_active) {
5170				busy = true;
5171				rcu_read_unlock();
5172				goto out_unlock;
5173			}
5174		}
5175		rcu_read_unlock();
5176	}
5177out_unlock:
5178	mutex_unlock(&wq_pool_mutex);
5179	return busy;
5180}
5181
5182/**
5183 * thaw_workqueues - thaw workqueues
5184 *
5185 * Thaw workqueues.  Normal queueing is restored and all collected
5186 * frozen works are transferred to their respective pool worklists.
5187 *
5188 * CONTEXT:
5189 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5190 */
5191void thaw_workqueues(void)
5192{
5193	struct workqueue_struct *wq;
5194	struct pool_workqueue *pwq;
5195
5196	mutex_lock(&wq_pool_mutex);
5197
5198	if (!workqueue_freezing)
5199		goto out_unlock;
5200
5201	workqueue_freezing = false;
5202
5203	/* restore max_active and repopulate worklist */
5204	list_for_each_entry(wq, &workqueues, list) {
5205		mutex_lock(&wq->mutex);
5206		for_each_pwq(pwq, wq)
5207			pwq_adjust_max_active(pwq);
5208		mutex_unlock(&wq->mutex);
5209	}
5210
5211out_unlock:
5212	mutex_unlock(&wq_pool_mutex);
5213}
5214#endif /* CONFIG_FREEZER */
5215
5216static int workqueue_apply_unbound_cpumask(void)
5217{
5218	LIST_HEAD(ctxs);
5219	int ret = 0;
5220	struct workqueue_struct *wq;
5221	struct apply_wqattrs_ctx *ctx, *n;
5222
5223	lockdep_assert_held(&wq_pool_mutex);
5224
5225	list_for_each_entry(wq, &workqueues, list) {
5226		if (!(wq->flags & WQ_UNBOUND))
5227			continue;
5228		/* creating multiple pwqs breaks ordering guarantee */
5229		if (wq->flags & __WQ_ORDERED)
5230			continue;
5231
5232		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5233		if (!ctx) {
5234			ret = -ENOMEM;
5235			break;
5236		}
5237
5238		list_add_tail(&ctx->list, &ctxs);
5239	}
5240
5241	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5242		if (!ret)
5243			apply_wqattrs_commit(ctx);
5244		apply_wqattrs_cleanup(ctx);
5245	}
5246
 
 
 
 
 
5247	return ret;
5248}
5249
5250/**
5251 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5252 *  @cpumask: the cpumask to set
5253 *
5254 *  The low-level workqueues cpumask is a global cpumask that limits
5255 *  the affinity of all unbound workqueues.  This function check the @cpumask
5256 *  and apply it to all unbound workqueues and updates all pwqs of them.
5257 *
5258 *  Retun:	0	- Success
5259 *  		-EINVAL	- Invalid @cpumask
5260 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5261 */
5262int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5263{
5264	int ret = -EINVAL;
5265	cpumask_var_t saved_cpumask;
5266
5267	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5268		return -ENOMEM;
5269
 
 
 
 
 
 
5270	/*
5271	 * Not excluding isolated cpus on purpose.
5272	 * If the user wishes to include them, we allow that.
5273	 */
5274	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5275	if (!cpumask_empty(cpumask)) {
5276		apply_wqattrs_lock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5277
5278		/* save the old wq_unbound_cpumask. */
5279		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5280
5281		/* update wq_unbound_cpumask at first and apply it to wqs. */
5282		cpumask_copy(wq_unbound_cpumask, cpumask);
5283		ret = workqueue_apply_unbound_cpumask();
5284
5285		/* restore the wq_unbound_cpumask when failed. */
5286		if (ret < 0)
5287			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5288
5289		apply_wqattrs_unlock();
 
 
 
5290	}
5291
5292	free_cpumask_var(saved_cpumask);
5293	return ret;
 
 
 
 
 
 
 
5294}
5295
 
 
 
 
 
 
 
5296#ifdef CONFIG_SYSFS
5297/*
5298 * Workqueues with WQ_SYSFS flag set is visible to userland via
5299 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5300 * following attributes.
5301 *
5302 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5303 *  max_active	RW int	: maximum number of in-flight work items
5304 *
5305 * Unbound workqueues have the following extra attributes.
5306 *
5307 *  pool_ids	RO int	: the associated pool IDs for each node
5308 *  nice	RW int	: nice value of the workers
5309 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5310 *  numa	RW bool	: whether enable NUMA affinity
5311 */
5312struct wq_device {
5313	struct workqueue_struct		*wq;
5314	struct device			dev;
5315};
5316
5317static struct workqueue_struct *dev_to_wq(struct device *dev)
5318{
5319	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5320
5321	return wq_dev->wq;
5322}
5323
5324static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5325			    char *buf)
5326{
5327	struct workqueue_struct *wq = dev_to_wq(dev);
5328
5329	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5330}
5331static DEVICE_ATTR_RO(per_cpu);
5332
5333static ssize_t max_active_show(struct device *dev,
5334			       struct device_attribute *attr, char *buf)
5335{
5336	struct workqueue_struct *wq = dev_to_wq(dev);
5337
5338	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5339}
5340
5341static ssize_t max_active_store(struct device *dev,
5342				struct device_attribute *attr, const char *buf,
5343				size_t count)
5344{
5345	struct workqueue_struct *wq = dev_to_wq(dev);
5346	int val;
5347
5348	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5349		return -EINVAL;
5350
5351	workqueue_set_max_active(wq, val);
5352	return count;
5353}
5354static DEVICE_ATTR_RW(max_active);
5355
5356static struct attribute *wq_sysfs_attrs[] = {
5357	&dev_attr_per_cpu.attr,
5358	&dev_attr_max_active.attr,
5359	NULL,
5360};
5361ATTRIBUTE_GROUPS(wq_sysfs);
5362
5363static ssize_t wq_pool_ids_show(struct device *dev,
5364				struct device_attribute *attr, char *buf)
5365{
5366	struct workqueue_struct *wq = dev_to_wq(dev);
5367	const char *delim = "";
5368	int node, written = 0;
 
5369
5370	get_online_cpus();
5371	rcu_read_lock();
5372	for_each_node(node) {
5373		written += scnprintf(buf + written, PAGE_SIZE - written,
5374				     "%s%d:%d", delim, node,
5375				     unbound_pwq_by_node(wq, node)->pool->id);
5376		delim = " ";
5377	}
5378	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5379	rcu_read_unlock();
5380	put_online_cpus();
5381
5382	return written;
5383}
5384
5385static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5386			    char *buf)
5387{
5388	struct workqueue_struct *wq = dev_to_wq(dev);
5389	int written;
5390
5391	mutex_lock(&wq->mutex);
5392	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5393	mutex_unlock(&wq->mutex);
5394
5395	return written;
5396}
5397
5398/* prepare workqueue_attrs for sysfs store operations */
5399static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5400{
5401	struct workqueue_attrs *attrs;
5402
5403	lockdep_assert_held(&wq_pool_mutex);
5404
5405	attrs = alloc_workqueue_attrs();
5406	if (!attrs)
5407		return NULL;
5408
5409	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5410	return attrs;
5411}
5412
5413static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5414			     const char *buf, size_t count)
5415{
5416	struct workqueue_struct *wq = dev_to_wq(dev);
5417	struct workqueue_attrs *attrs;
5418	int ret = -ENOMEM;
5419
5420	apply_wqattrs_lock();
5421
5422	attrs = wq_sysfs_prep_attrs(wq);
5423	if (!attrs)
5424		goto out_unlock;
5425
5426	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5427	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5428		ret = apply_workqueue_attrs_locked(wq, attrs);
5429	else
5430		ret = -EINVAL;
5431
5432out_unlock:
5433	apply_wqattrs_unlock();
5434	free_workqueue_attrs(attrs);
5435	return ret ?: count;
5436}
5437
5438static ssize_t wq_cpumask_show(struct device *dev,
5439			       struct device_attribute *attr, char *buf)
5440{
5441	struct workqueue_struct *wq = dev_to_wq(dev);
5442	int written;
5443
5444	mutex_lock(&wq->mutex);
5445	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5446			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5447	mutex_unlock(&wq->mutex);
5448	return written;
5449}
5450
5451static ssize_t wq_cpumask_store(struct device *dev,
5452				struct device_attribute *attr,
5453				const char *buf, size_t count)
5454{
5455	struct workqueue_struct *wq = dev_to_wq(dev);
5456	struct workqueue_attrs *attrs;
5457	int ret = -ENOMEM;
5458
5459	apply_wqattrs_lock();
5460
5461	attrs = wq_sysfs_prep_attrs(wq);
5462	if (!attrs)
5463		goto out_unlock;
5464
5465	ret = cpumask_parse(buf, attrs->cpumask);
5466	if (!ret)
5467		ret = apply_workqueue_attrs_locked(wq, attrs);
5468
5469out_unlock:
5470	apply_wqattrs_unlock();
5471	free_workqueue_attrs(attrs);
5472	return ret ?: count;
5473}
5474
5475static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5476			    char *buf)
5477{
5478	struct workqueue_struct *wq = dev_to_wq(dev);
5479	int written;
5480
5481	mutex_lock(&wq->mutex);
5482	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5483			    !wq->unbound_attrs->no_numa);
 
 
 
 
 
5484	mutex_unlock(&wq->mutex);
5485
5486	return written;
5487}
5488
5489static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5490			     const char *buf, size_t count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5491{
5492	struct workqueue_struct *wq = dev_to_wq(dev);
5493	struct workqueue_attrs *attrs;
5494	int v, ret = -ENOMEM;
5495
 
 
 
5496	apply_wqattrs_lock();
5497
5498	attrs = wq_sysfs_prep_attrs(wq);
5499	if (!attrs)
5500		goto out_unlock;
5501
5502	ret = -EINVAL;
5503	if (sscanf(buf, "%d", &v) == 1) {
5504		attrs->no_numa = !v;
5505		ret = apply_workqueue_attrs_locked(wq, attrs);
5506	}
5507
5508out_unlock:
5509	apply_wqattrs_unlock();
5510	free_workqueue_attrs(attrs);
5511	return ret ?: count;
5512}
5513
5514static struct device_attribute wq_sysfs_unbound_attrs[] = {
5515	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5516	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5517	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5518	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
 
5519	__ATTR_NULL,
5520};
5521
5522static struct bus_type wq_subsys = {
5523	.name				= "workqueue",
5524	.dev_groups			= wq_sysfs_groups,
5525};
5526
5527static ssize_t wq_unbound_cpumask_show(struct device *dev,
5528		struct device_attribute *attr, char *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5529{
5530	int written;
5531
5532	mutex_lock(&wq_pool_mutex);
5533	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5534			    cpumask_pr_args(wq_unbound_cpumask));
5535	mutex_unlock(&wq_pool_mutex);
5536
5537	return written;
5538}
5539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5540static ssize_t wq_unbound_cpumask_store(struct device *dev,
5541		struct device_attribute *attr, const char *buf, size_t count)
5542{
5543	cpumask_var_t cpumask;
5544	int ret;
5545
5546	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5547		return -ENOMEM;
5548
5549	ret = cpumask_parse(buf, cpumask);
5550	if (!ret)
5551		ret = workqueue_set_unbound_cpumask(cpumask);
5552
5553	free_cpumask_var(cpumask);
5554	return ret ? ret : count;
5555}
5556
5557static struct device_attribute wq_sysfs_cpumask_attr =
5558	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5559	       wq_unbound_cpumask_store);
 
 
 
 
5560
5561static int __init wq_sysfs_init(void)
5562{
 
5563	int err;
5564
5565	err = subsys_virtual_register(&wq_subsys, NULL);
5566	if (err)
5567		return err;
5568
5569	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
 
 
 
 
 
 
 
 
 
 
 
5570}
5571core_initcall(wq_sysfs_init);
5572
5573static void wq_device_release(struct device *dev)
5574{
5575	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5576
5577	kfree(wq_dev);
5578}
5579
5580/**
5581 * workqueue_sysfs_register - make a workqueue visible in sysfs
5582 * @wq: the workqueue to register
5583 *
5584 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5585 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5586 * which is the preferred method.
5587 *
5588 * Workqueue user should use this function directly iff it wants to apply
5589 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5590 * apply_workqueue_attrs() may race against userland updating the
5591 * attributes.
5592 *
5593 * Return: 0 on success, -errno on failure.
5594 */
5595int workqueue_sysfs_register(struct workqueue_struct *wq)
5596{
5597	struct wq_device *wq_dev;
5598	int ret;
5599
5600	/*
5601	 * Adjusting max_active or creating new pwqs by applying
5602	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5603	 * workqueues.
5604	 */
5605	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5606		return -EINVAL;
5607
5608	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5609	if (!wq_dev)
5610		return -ENOMEM;
5611
5612	wq_dev->wq = wq;
5613	wq_dev->dev.bus = &wq_subsys;
5614	wq_dev->dev.release = wq_device_release;
5615	dev_set_name(&wq_dev->dev, "%s", wq->name);
5616
5617	/*
5618	 * unbound_attrs are created separately.  Suppress uevent until
5619	 * everything is ready.
5620	 */
5621	dev_set_uevent_suppress(&wq_dev->dev, true);
5622
5623	ret = device_register(&wq_dev->dev);
5624	if (ret) {
5625		put_device(&wq_dev->dev);
5626		wq->wq_dev = NULL;
5627		return ret;
5628	}
5629
5630	if (wq->flags & WQ_UNBOUND) {
5631		struct device_attribute *attr;
5632
5633		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5634			ret = device_create_file(&wq_dev->dev, attr);
5635			if (ret) {
5636				device_unregister(&wq_dev->dev);
5637				wq->wq_dev = NULL;
5638				return ret;
5639			}
5640		}
5641	}
5642
5643	dev_set_uevent_suppress(&wq_dev->dev, false);
5644	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5645	return 0;
5646}
5647
5648/**
5649 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5650 * @wq: the workqueue to unregister
5651 *
5652 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5653 */
5654static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5655{
5656	struct wq_device *wq_dev = wq->wq_dev;
5657
5658	if (!wq->wq_dev)
5659		return;
5660
5661	wq->wq_dev = NULL;
5662	device_unregister(&wq_dev->dev);
5663}
5664#else	/* CONFIG_SYSFS */
5665static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5666#endif	/* CONFIG_SYSFS */
5667
5668/*
5669 * Workqueue watchdog.
5670 *
5671 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5672 * flush dependency, a concurrency managed work item which stays RUNNING
5673 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5674 * usual warning mechanisms don't trigger and internal workqueue state is
5675 * largely opaque.
5676 *
5677 * Workqueue watchdog monitors all worker pools periodically and dumps
5678 * state if some pools failed to make forward progress for a while where
5679 * forward progress is defined as the first item on ->worklist changing.
5680 *
5681 * This mechanism is controlled through the kernel parameter
5682 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5683 * corresponding sysfs parameter file.
5684 */
5685#ifdef CONFIG_WQ_WATCHDOG
5686
5687static unsigned long wq_watchdog_thresh = 30;
5688static struct timer_list wq_watchdog_timer;
5689
5690static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5691static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5693static void wq_watchdog_reset_touched(void)
5694{
5695	int cpu;
5696
5697	wq_watchdog_touched = jiffies;
5698	for_each_possible_cpu(cpu)
5699		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5700}
5701
5702static void wq_watchdog_timer_fn(struct timer_list *unused)
5703{
5704	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5705	bool lockup_detected = false;
 
 
5706	struct worker_pool *pool;
5707	int pi;
5708
5709	if (!thresh)
5710		return;
5711
5712	rcu_read_lock();
5713
5714	for_each_pool(pool, pi) {
5715		unsigned long pool_ts, touched, ts;
5716
 
5717		if (list_empty(&pool->worklist))
5718			continue;
5719
 
 
 
 
 
 
5720		/* get the latest of pool and touched timestamps */
 
 
 
 
5721		pool_ts = READ_ONCE(pool->watchdog_ts);
5722		touched = READ_ONCE(wq_watchdog_touched);
5723
5724		if (time_after(pool_ts, touched))
5725			ts = pool_ts;
5726		else
5727			ts = touched;
5728
5729		if (pool->cpu >= 0) {
5730			unsigned long cpu_touched =
5731				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5732						  pool->cpu));
5733			if (time_after(cpu_touched, ts))
5734				ts = cpu_touched;
5735		}
5736
5737		/* did we stall? */
5738		if (time_after(jiffies, ts + thresh)) {
5739			lockup_detected = true;
 
 
 
 
5740			pr_emerg("BUG: workqueue lockup - pool");
5741			pr_cont_pool_info(pool);
5742			pr_cont(" stuck for %us!\n",
5743				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5744		}
 
 
5745	}
5746
5747	rcu_read_unlock();
5748
5749	if (lockup_detected)
5750		show_workqueue_state();
 
 
 
5751
5752	wq_watchdog_reset_touched();
5753	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5754}
5755
5756notrace void wq_watchdog_touch(int cpu)
5757{
5758	if (cpu >= 0)
5759		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5760	else
5761		wq_watchdog_touched = jiffies;
5762}
5763
5764static void wq_watchdog_set_thresh(unsigned long thresh)
5765{
5766	wq_watchdog_thresh = 0;
5767	del_timer_sync(&wq_watchdog_timer);
5768
5769	if (thresh) {
5770		wq_watchdog_thresh = thresh;
5771		wq_watchdog_reset_touched();
5772		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5773	}
5774}
5775
5776static int wq_watchdog_param_set_thresh(const char *val,
5777					const struct kernel_param *kp)
5778{
5779	unsigned long thresh;
5780	int ret;
5781
5782	ret = kstrtoul(val, 0, &thresh);
5783	if (ret)
5784		return ret;
5785
5786	if (system_wq)
5787		wq_watchdog_set_thresh(thresh);
5788	else
5789		wq_watchdog_thresh = thresh;
5790
5791	return 0;
5792}
5793
5794static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5795	.set	= wq_watchdog_param_set_thresh,
5796	.get	= param_get_ulong,
5797};
5798
5799module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5800		0644);
5801
5802static void wq_watchdog_init(void)
5803{
5804	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5805	wq_watchdog_set_thresh(wq_watchdog_thresh);
5806}
5807
5808#else	/* CONFIG_WQ_WATCHDOG */
5809
5810static inline void wq_watchdog_init(void) { }
5811
5812#endif	/* CONFIG_WQ_WATCHDOG */
5813
5814static void __init wq_numa_init(void)
5815{
5816	cpumask_var_t *tbl;
5817	int node, cpu;
5818
5819	if (num_possible_nodes() <= 1)
5820		return;
5821
5822	if (wq_disable_numa) {
5823		pr_info("workqueue: NUMA affinity support disabled\n");
5824		return;
5825	}
5826
5827	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5828	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5829
5830	/*
5831	 * We want masks of possible CPUs of each node which isn't readily
5832	 * available.  Build one from cpu_to_node() which should have been
5833	 * fully initialized by now.
5834	 */
5835	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5836	BUG_ON(!tbl);
5837
5838	for_each_node(node)
5839		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5840				node_online(node) ? node : NUMA_NO_NODE));
5841
5842	for_each_possible_cpu(cpu) {
5843		node = cpu_to_node(cpu);
5844		if (WARN_ON(node == NUMA_NO_NODE)) {
5845			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5846			/* happens iff arch is bonkers, let's just proceed */
5847			return;
5848		}
5849		cpumask_set_cpu(cpu, tbl[node]);
5850	}
5851
5852	wq_numa_possible_cpumask = tbl;
5853	wq_numa_enabled = true;
5854}
5855
5856/**
5857 * workqueue_init_early - early init for workqueue subsystem
5858 *
5859 * This is the first half of two-staged workqueue subsystem initialization
5860 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5861 * idr are up.  It sets up all the data structures and system workqueues
5862 * and allows early boot code to create workqueues and queue/cancel work
5863 * items.  Actual work item execution starts only after kthreads can be
5864 * created and scheduled right before early initcalls.
5865 */
5866int __init workqueue_init_early(void)
5867{
 
5868	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5869	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5870	int i, cpu;
5871
5872	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5873
5874	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5875	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
 
 
 
 
 
 
 
 
 
5876
5877	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5879	/* initialize CPU pools */
5880	for_each_possible_cpu(cpu) {
5881		struct worker_pool *pool;
5882
5883		i = 0;
5884		for_each_cpu_worker_pool(pool, cpu) {
5885			BUG_ON(init_worker_pool(pool));
5886			pool->cpu = cpu;
5887			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
 
5888			pool->attrs->nice = std_nice[i++];
 
5889			pool->node = cpu_to_node(cpu);
5890
5891			/* alloc pool ID */
5892			mutex_lock(&wq_pool_mutex);
5893			BUG_ON(worker_pool_assign_id(pool));
5894			mutex_unlock(&wq_pool_mutex);
5895		}
5896	}
5897
5898	/* create default unbound and ordered wq attrs */
5899	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5900		struct workqueue_attrs *attrs;
5901
5902		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5903		attrs->nice = std_nice[i];
5904		unbound_std_wq_attrs[i] = attrs;
5905
5906		/*
5907		 * An ordered wq should have only one pwq as ordering is
5908		 * guaranteed by max_active which is enforced by pwqs.
5909		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5910		 */
5911		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5912		attrs->nice = std_nice[i];
5913		attrs->no_numa = true;
5914		ordered_wq_attrs[i] = attrs;
5915	}
5916
5917	system_wq = alloc_workqueue("events", 0, 0);
5918	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5919	system_long_wq = alloc_workqueue("events_long", 0, 0);
5920	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5921					    WQ_UNBOUND_MAX_ACTIVE);
5922	system_freezable_wq = alloc_workqueue("events_freezable",
5923					      WQ_FREEZABLE, 0);
5924	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5925					      WQ_POWER_EFFICIENT, 0);
5926	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5927					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5928					      0);
5929	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5930	       !system_unbound_wq || !system_freezable_wq ||
5931	       !system_power_efficient_wq ||
5932	       !system_freezable_power_efficient_wq);
 
 
 
 
 
 
5933
5934	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5935}
5936
5937/**
5938 * workqueue_init - bring workqueue subsystem fully online
5939 *
5940 * This is the latter half of two-staged workqueue subsystem initialization
5941 * and invoked as soon as kthreads can be created and scheduled.
5942 * Workqueues have been created and work items queued on them, but there
5943 * are no kworkers executing the work items yet.  Populate the worker pools
5944 * with the initial workers and enable future kworker creations.
5945 */
5946int __init workqueue_init(void)
5947{
5948	struct workqueue_struct *wq;
5949	struct worker_pool *pool;
5950	int cpu, bkt;
5951
5952	/*
5953	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5954	 * CPU to node mapping may not be available that early on some
5955	 * archs such as power and arm64.  As per-cpu pools created
5956	 * previously could be missing node hint and unbound pools NUMA
5957	 * affinity, fix them up.
5958	 *
5959	 * Also, while iterating workqueues, create rescuers if requested.
5960	 */
5961	wq_numa_init();
5962
5963	mutex_lock(&wq_pool_mutex);
5964
 
 
 
 
5965	for_each_possible_cpu(cpu) {
5966		for_each_cpu_worker_pool(pool, cpu) {
5967			pool->node = cpu_to_node(cpu);
5968		}
5969	}
5970
5971	list_for_each_entry(wq, &workqueues, list) {
5972		wq_update_unbound_numa(wq, smp_processor_id(), true);
5973		WARN(init_rescuer(wq),
5974		     "workqueue: failed to create early rescuer for %s",
5975		     wq->name);
5976	}
5977
5978	mutex_unlock(&wq_pool_mutex);
5979
5980	/* create the initial workers */
5981	for_each_online_cpu(cpu) {
5982		for_each_cpu_worker_pool(pool, cpu) {
5983			pool->flags &= ~POOL_DISASSOCIATED;
5984			BUG_ON(!create_worker(pool));
5985		}
5986	}
5987
5988	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5989		BUG_ON(!create_worker(pool));
5990
5991	wq_online = true;
5992	wq_watchdog_init();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5993
5994	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5995}