Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1// SPDX-License-Identifier: GPL-2.0+
   2/* Faraday FOTG210 EHCI-like driver
   3 *
   4 * Copyright (c) 2013 Faraday Technology Corporation
   5 *
   6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
   7 *	   Feng-Hsin Chiang <john453@faraday-tech.com>
   8 *	   Po-Yu Chuang <ratbert.chuang@gmail.com>
   9 *
  10 * Most of code borrowed from the Linux-3.7 EHCI driver
  11 */
  12#include <linux/module.h>
  13#include <linux/of.h>
  14#include <linux/device.h>
  15#include <linux/dmapool.h>
  16#include <linux/kernel.h>
  17#include <linux/delay.h>
  18#include <linux/ioport.h>
  19#include <linux/sched.h>
  20#include <linux/vmalloc.h>
  21#include <linux/errno.h>
  22#include <linux/init.h>
  23#include <linux/hrtimer.h>
  24#include <linux/list.h>
  25#include <linux/interrupt.h>
  26#include <linux/usb.h>
  27#include <linux/usb/hcd.h>
  28#include <linux/moduleparam.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/debugfs.h>
  31#include <linux/slab.h>
  32#include <linux/uaccess.h>
  33#include <linux/platform_device.h>
  34#include <linux/io.h>
  35#include <linux/clk.h>
  36
  37#include <asm/byteorder.h>
  38#include <asm/irq.h>
  39#include <asm/unaligned.h>
  40
  41#define DRIVER_AUTHOR "Yuan-Hsin Chen"
  42#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
  43static const char hcd_name[] = "fotg210_hcd";
  44
  45#undef FOTG210_URB_TRACE
  46#define FOTG210_STATS
  47
  48/* magic numbers that can affect system performance */
  49#define FOTG210_TUNE_CERR	3 /* 0-3 qtd retries; 0 == don't stop */
  50#define FOTG210_TUNE_RL_HS	4 /* nak throttle; see 4.9 */
  51#define FOTG210_TUNE_RL_TT	0
  52#define FOTG210_TUNE_MULT_HS	1 /* 1-3 transactions/uframe; 4.10.3 */
  53#define FOTG210_TUNE_MULT_TT	1
  54
  55/* Some drivers think it's safe to schedule isochronous transfers more than 256
  56 * ms into the future (partly as a result of an old bug in the scheduling
  57 * code).  In an attempt to avoid trouble, we will use a minimum scheduling
  58 * length of 512 frames instead of 256.
  59 */
  60#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
  61
  62/* Initial IRQ latency:  faster than hw default */
  63static int log2_irq_thresh; /* 0 to 6 */
  64module_param(log2_irq_thresh, int, S_IRUGO);
  65MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
  66
  67/* initial park setting:  slower than hw default */
  68static unsigned park;
  69module_param(park, uint, S_IRUGO);
  70MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
  71
  72/* for link power management(LPM) feature */
  73static unsigned int hird;
  74module_param(hird, int, S_IRUGO);
  75MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
  76
  77#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
  78
  79#include "fotg210.h"
  80
  81#define fotg210_dbg(fotg210, fmt, args...) \
  82	dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  83#define fotg210_err(fotg210, fmt, args...) \
  84	dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  85#define fotg210_info(fotg210, fmt, args...) \
  86	dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  87#define fotg210_warn(fotg210, fmt, args...) \
  88	dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  89
  90/* check the values in the HCSPARAMS register (host controller _Structural_
  91 * parameters) see EHCI spec, Table 2-4 for each value
  92 */
  93static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
  94{
  95	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
  96
  97	fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
  98			HCS_N_PORTS(params));
  99}
 100
 101/* check the values in the HCCPARAMS register (host controller _Capability_
 102 * parameters) see EHCI Spec, Table 2-5 for each value
 103 */
 104static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
 105{
 106	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
 107
 108	fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
 109			params,
 110			HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
 111			HCC_CANPARK(params) ? " park" : "");
 112}
 113
 114static void __maybe_unused
 115dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
 116{
 117	fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
 118			hc32_to_cpup(fotg210, &qtd->hw_next),
 119			hc32_to_cpup(fotg210, &qtd->hw_alt_next),
 120			hc32_to_cpup(fotg210, &qtd->hw_token),
 121			hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
 122	if (qtd->hw_buf[1])
 123		fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
 124				hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
 125				hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
 126				hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
 127				hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
 128}
 129
 130static void __maybe_unused
 131dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
 132{
 133	struct fotg210_qh_hw *hw = qh->hw;
 134
 135	fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
 136			hw->hw_next, hw->hw_info1, hw->hw_info2,
 137			hw->hw_current);
 138
 139	dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
 140}
 141
 142static void __maybe_unused
 143dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
 144{
 145	fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
 146			itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
 147			itd->urb);
 148
 149	fotg210_dbg(fotg210,
 150			"  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
 151			hc32_to_cpu(fotg210, itd->hw_transaction[0]),
 152			hc32_to_cpu(fotg210, itd->hw_transaction[1]),
 153			hc32_to_cpu(fotg210, itd->hw_transaction[2]),
 154			hc32_to_cpu(fotg210, itd->hw_transaction[3]),
 155			hc32_to_cpu(fotg210, itd->hw_transaction[4]),
 156			hc32_to_cpu(fotg210, itd->hw_transaction[5]),
 157			hc32_to_cpu(fotg210, itd->hw_transaction[6]),
 158			hc32_to_cpu(fotg210, itd->hw_transaction[7]));
 159
 160	fotg210_dbg(fotg210,
 161			"  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
 162			hc32_to_cpu(fotg210, itd->hw_bufp[0]),
 163			hc32_to_cpu(fotg210, itd->hw_bufp[1]),
 164			hc32_to_cpu(fotg210, itd->hw_bufp[2]),
 165			hc32_to_cpu(fotg210, itd->hw_bufp[3]),
 166			hc32_to_cpu(fotg210, itd->hw_bufp[4]),
 167			hc32_to_cpu(fotg210, itd->hw_bufp[5]),
 168			hc32_to_cpu(fotg210, itd->hw_bufp[6]));
 169
 170	fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
 171			itd->index[0], itd->index[1], itd->index[2],
 172			itd->index[3], itd->index[4], itd->index[5],
 173			itd->index[6], itd->index[7]);
 174}
 175
 176static int __maybe_unused
 177dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
 178{
 179	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
 180			label, label[0] ? " " : "", status,
 181			(status & STS_ASS) ? " Async" : "",
 182			(status & STS_PSS) ? " Periodic" : "",
 183			(status & STS_RECL) ? " Recl" : "",
 184			(status & STS_HALT) ? " Halt" : "",
 185			(status & STS_IAA) ? " IAA" : "",
 186			(status & STS_FATAL) ? " FATAL" : "",
 187			(status & STS_FLR) ? " FLR" : "",
 188			(status & STS_PCD) ? " PCD" : "",
 189			(status & STS_ERR) ? " ERR" : "",
 190			(status & STS_INT) ? " INT" : "");
 191}
 192
 193static int __maybe_unused
 194dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
 195{
 196	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
 197			label, label[0] ? " " : "", enable,
 198			(enable & STS_IAA) ? " IAA" : "",
 199			(enable & STS_FATAL) ? " FATAL" : "",
 200			(enable & STS_FLR) ? " FLR" : "",
 201			(enable & STS_PCD) ? " PCD" : "",
 202			(enable & STS_ERR) ? " ERR" : "",
 203			(enable & STS_INT) ? " INT" : "");
 204}
 205
 206static const char *const fls_strings[] = { "1024", "512", "256", "??" };
 207
 208static int dbg_command_buf(char *buf, unsigned len, const char *label,
 209		u32 command)
 210{
 211	return scnprintf(buf, len,
 212			"%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
 213			label, label[0] ? " " : "", command,
 214			(command & CMD_PARK) ? " park" : "(park)",
 215			CMD_PARK_CNT(command),
 216			(command >> 16) & 0x3f,
 217			(command & CMD_IAAD) ? " IAAD" : "",
 218			(command & CMD_ASE) ? " Async" : "",
 219			(command & CMD_PSE) ? " Periodic" : "",
 220			fls_strings[(command >> 2) & 0x3],
 221			(command & CMD_RESET) ? " Reset" : "",
 222			(command & CMD_RUN) ? "RUN" : "HALT");
 223}
 224
 225static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
 226		u32 status)
 227{
 228	char *sig;
 229
 230	/* signaling state */
 231	switch (status & (3 << 10)) {
 232	case 0 << 10:
 233		sig = "se0";
 234		break;
 235	case 1 << 10:
 236		sig = "k";
 237		break; /* low speed */
 238	case 2 << 10:
 239		sig = "j";
 240		break;
 241	default:
 242		sig = "?";
 243		break;
 244	}
 245
 246	scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
 247			label, label[0] ? " " : "", port, status,
 248			status >> 25, /*device address */
 249			sig,
 250			(status & PORT_RESET) ? " RESET" : "",
 251			(status & PORT_SUSPEND) ? " SUSPEND" : "",
 252			(status & PORT_RESUME) ? " RESUME" : "",
 253			(status & PORT_PEC) ? " PEC" : "",
 254			(status & PORT_PE) ? " PE" : "",
 255			(status & PORT_CSC) ? " CSC" : "",
 256			(status & PORT_CONNECT) ? " CONNECT" : "");
 257
 258	return buf;
 259}
 260
 261/* functions have the "wrong" filename when they're output... */
 262#define dbg_status(fotg210, label, status) {			\
 263	char _buf[80];						\
 264	dbg_status_buf(_buf, sizeof(_buf), label, status);	\
 265	fotg210_dbg(fotg210, "%s\n", _buf);			\
 266}
 267
 268#define dbg_cmd(fotg210, label, command) {			\
 269	char _buf[80];						\
 270	dbg_command_buf(_buf, sizeof(_buf), label, command);	\
 271	fotg210_dbg(fotg210, "%s\n", _buf);			\
 272}
 273
 274#define dbg_port(fotg210, label, port, status) {			       \
 275	char _buf[80];							       \
 276	fotg210_dbg(fotg210, "%s\n",					       \
 277			dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
 278}
 279
 280/* troubleshooting help: expose state in debugfs */
 281static int debug_async_open(struct inode *, struct file *);
 282static int debug_periodic_open(struct inode *, struct file *);
 283static int debug_registers_open(struct inode *, struct file *);
 284static int debug_async_open(struct inode *, struct file *);
 285
 286static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
 287static int debug_close(struct inode *, struct file *);
 288
 289static const struct file_operations debug_async_fops = {
 290	.owner		= THIS_MODULE,
 291	.open		= debug_async_open,
 292	.read		= debug_output,
 293	.release	= debug_close,
 294	.llseek		= default_llseek,
 295};
 296static const struct file_operations debug_periodic_fops = {
 297	.owner		= THIS_MODULE,
 298	.open		= debug_periodic_open,
 299	.read		= debug_output,
 300	.release	= debug_close,
 301	.llseek		= default_llseek,
 302};
 303static const struct file_operations debug_registers_fops = {
 304	.owner		= THIS_MODULE,
 305	.open		= debug_registers_open,
 306	.read		= debug_output,
 307	.release	= debug_close,
 308	.llseek		= default_llseek,
 309};
 310
 311static struct dentry *fotg210_debug_root;
 312
 313struct debug_buffer {
 314	ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */
 315	struct usb_bus *bus;
 316	struct mutex mutex;	/* protect filling of buffer */
 317	size_t count;		/* number of characters filled into buffer */
 318	char *output_buf;
 319	size_t alloc_size;
 320};
 321
 322static inline char speed_char(u32 scratch)
 323{
 324	switch (scratch & (3 << 12)) {
 325	case QH_FULL_SPEED:
 326		return 'f';
 327
 328	case QH_LOW_SPEED:
 329		return 'l';
 330
 331	case QH_HIGH_SPEED:
 332		return 'h';
 333
 334	default:
 335		return '?';
 336	}
 337}
 338
 339static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
 340{
 341	__u32 v = hc32_to_cpu(fotg210, token);
 342
 343	if (v & QTD_STS_ACTIVE)
 344		return '*';
 345	if (v & QTD_STS_HALT)
 346		return '-';
 347	if (!IS_SHORT_READ(v))
 348		return ' ';
 349	/* tries to advance through hw_alt_next */
 350	return '/';
 351}
 352
 353static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
 354		char **nextp, unsigned *sizep)
 355{
 356	u32 scratch;
 357	u32 hw_curr;
 358	struct fotg210_qtd *td;
 359	unsigned temp;
 360	unsigned size = *sizep;
 361	char *next = *nextp;
 362	char mark;
 363	__le32 list_end = FOTG210_LIST_END(fotg210);
 364	struct fotg210_qh_hw *hw = qh->hw;
 365
 366	if (hw->hw_qtd_next == list_end) /* NEC does this */
 367		mark = '@';
 368	else
 369		mark = token_mark(fotg210, hw->hw_token);
 370	if (mark == '/') { /* qh_alt_next controls qh advance? */
 371		if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
 372		    fotg210->async->hw->hw_alt_next)
 373			mark = '#'; /* blocked */
 374		else if (hw->hw_alt_next == list_end)
 375			mark = '.'; /* use hw_qtd_next */
 376		/* else alt_next points to some other qtd */
 377	}
 378	scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
 379	hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
 380	temp = scnprintf(next, size,
 381			"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
 382			qh, scratch & 0x007f,
 383			speed_char(scratch),
 384			(scratch >> 8) & 0x000f,
 385			scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
 386			hc32_to_cpup(fotg210, &hw->hw_token), mark,
 387			(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
 388				? "data1" : "data0",
 389			(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
 390	size -= temp;
 391	next += temp;
 392
 393	/* hc may be modifying the list as we read it ... */
 394	list_for_each_entry(td, &qh->qtd_list, qtd_list) {
 395		scratch = hc32_to_cpup(fotg210, &td->hw_token);
 396		mark = ' ';
 397		if (hw_curr == td->qtd_dma)
 398			mark = '*';
 399		else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
 400			mark = '+';
 401		else if (QTD_LENGTH(scratch)) {
 402			if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
 403				mark = '#';
 404			else if (td->hw_alt_next != list_end)
 405				mark = '/';
 406		}
 407		temp = snprintf(next, size,
 408				"\n\t%p%c%s len=%d %08x urb %p",
 409				td, mark, ({ char *tmp;
 410				 switch ((scratch>>8)&0x03) {
 411				 case 0:
 412					tmp = "out";
 413					break;
 414				 case 1:
 415					tmp = "in";
 416					break;
 417				 case 2:
 418					tmp = "setup";
 419					break;
 420				 default:
 421					tmp = "?";
 422					break;
 423				 } tmp; }),
 424				(scratch >> 16) & 0x7fff,
 425				scratch,
 426				td->urb);
 427		if (size < temp)
 428			temp = size;
 429		size -= temp;
 430		next += temp;
 431		if (temp == size)
 432			goto done;
 433	}
 434
 435	temp = snprintf(next, size, "\n");
 436	if (size < temp)
 437		temp = size;
 438
 439	size -= temp;
 440	next += temp;
 441
 442done:
 443	*sizep = size;
 444	*nextp = next;
 445}
 446
 447static ssize_t fill_async_buffer(struct debug_buffer *buf)
 448{
 449	struct usb_hcd *hcd;
 450	struct fotg210_hcd *fotg210;
 451	unsigned long flags;
 452	unsigned temp, size;
 453	char *next;
 454	struct fotg210_qh *qh;
 455
 456	hcd = bus_to_hcd(buf->bus);
 457	fotg210 = hcd_to_fotg210(hcd);
 458	next = buf->output_buf;
 459	size = buf->alloc_size;
 460
 461	*next = 0;
 462
 463	/* dumps a snapshot of the async schedule.
 464	 * usually empty except for long-term bulk reads, or head.
 465	 * one QH per line, and TDs we know about
 466	 */
 467	spin_lock_irqsave(&fotg210->lock, flags);
 468	for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
 469			qh = qh->qh_next.qh)
 470		qh_lines(fotg210, qh, &next, &size);
 471	if (fotg210->async_unlink && size > 0) {
 472		temp = scnprintf(next, size, "\nunlink =\n");
 473		size -= temp;
 474		next += temp;
 475
 476		for (qh = fotg210->async_unlink; size > 0 && qh;
 477				qh = qh->unlink_next)
 478			qh_lines(fotg210, qh, &next, &size);
 479	}
 480	spin_unlock_irqrestore(&fotg210->lock, flags);
 481
 482	return strlen(buf->output_buf);
 483}
 484
 485/* count tds, get ep direction */
 486static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
 487		struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
 488{
 489	u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
 490	struct fotg210_qtd *qtd;
 491	char *type = "";
 492	unsigned temp = 0;
 493
 494	/* count tds, get ep direction */
 495	list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
 496		temp++;
 497		switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
 498		case 0:
 499			type = "out";
 500			continue;
 501		case 1:
 502			type = "in";
 503			continue;
 504		}
 505	}
 506
 507	return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
 508			speed_char(scratch), scratch & 0x007f,
 509			(scratch >> 8) & 0x000f, type, qh->usecs,
 510			qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
 511}
 512
 513#define DBG_SCHED_LIMIT 64
 514static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
 515{
 516	struct usb_hcd *hcd;
 517	struct fotg210_hcd *fotg210;
 518	unsigned long flags;
 519	union fotg210_shadow p, *seen;
 520	unsigned temp, size, seen_count;
 521	char *next;
 522	unsigned i;
 523	__hc32 tag;
 524
 525	seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
 526	if (!seen)
 527		return 0;
 528
 529	seen_count = 0;
 530
 531	hcd = bus_to_hcd(buf->bus);
 532	fotg210 = hcd_to_fotg210(hcd);
 533	next = buf->output_buf;
 534	size = buf->alloc_size;
 535
 536	temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
 537	size -= temp;
 538	next += temp;
 539
 540	/* dump a snapshot of the periodic schedule.
 541	 * iso changes, interrupt usually doesn't.
 542	 */
 543	spin_lock_irqsave(&fotg210->lock, flags);
 544	for (i = 0; i < fotg210->periodic_size; i++) {
 545		p = fotg210->pshadow[i];
 546		if (likely(!p.ptr))
 547			continue;
 548
 549		tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
 550
 551		temp = scnprintf(next, size, "%4d: ", i);
 552		size -= temp;
 553		next += temp;
 554
 555		do {
 556			struct fotg210_qh_hw *hw;
 557
 558			switch (hc32_to_cpu(fotg210, tag)) {
 559			case Q_TYPE_QH:
 560				hw = p.qh->hw;
 561				temp = scnprintf(next, size, " qh%d-%04x/%p",
 562						p.qh->period,
 563						hc32_to_cpup(fotg210,
 564							&hw->hw_info2)
 565							/* uframe masks */
 566							& (QH_CMASK | QH_SMASK),
 567						p.qh);
 568				size -= temp;
 569				next += temp;
 570				/* don't repeat what follows this qh */
 571				for (temp = 0; temp < seen_count; temp++) {
 572					if (seen[temp].ptr != p.ptr)
 573						continue;
 574					if (p.qh->qh_next.ptr) {
 575						temp = scnprintf(next, size,
 576								" ...");
 577						size -= temp;
 578						next += temp;
 579					}
 580					break;
 581				}
 582				/* show more info the first time around */
 583				if (temp == seen_count) {
 584					temp = output_buf_tds_dir(next,
 585							fotg210, hw,
 586							p.qh, size);
 587
 588					if (seen_count < DBG_SCHED_LIMIT)
 589						seen[seen_count++].qh = p.qh;
 590				} else
 591					temp = 0;
 592				tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
 593				p = p.qh->qh_next;
 594				break;
 595			case Q_TYPE_FSTN:
 596				temp = scnprintf(next, size,
 597						" fstn-%8x/%p",
 598						p.fstn->hw_prev, p.fstn);
 599				tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
 600				p = p.fstn->fstn_next;
 601				break;
 602			case Q_TYPE_ITD:
 603				temp = scnprintf(next, size,
 604						" itd/%p", p.itd);
 605				tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
 606				p = p.itd->itd_next;
 607				break;
 608			}
 609			size -= temp;
 610			next += temp;
 611		} while (p.ptr);
 612
 613		temp = scnprintf(next, size, "\n");
 614		size -= temp;
 615		next += temp;
 616	}
 617	spin_unlock_irqrestore(&fotg210->lock, flags);
 618	kfree(seen);
 619
 620	return buf->alloc_size - size;
 621}
 622#undef DBG_SCHED_LIMIT
 623
 624static const char *rh_state_string(struct fotg210_hcd *fotg210)
 625{
 626	switch (fotg210->rh_state) {
 627	case FOTG210_RH_HALTED:
 628		return "halted";
 629	case FOTG210_RH_SUSPENDED:
 630		return "suspended";
 631	case FOTG210_RH_RUNNING:
 632		return "running";
 633	case FOTG210_RH_STOPPING:
 634		return "stopping";
 635	}
 636	return "?";
 637}
 638
 639static ssize_t fill_registers_buffer(struct debug_buffer *buf)
 640{
 641	struct usb_hcd *hcd;
 642	struct fotg210_hcd *fotg210;
 643	unsigned long flags;
 644	unsigned temp, size, i;
 645	char *next, scratch[80];
 646	static const char fmt[] = "%*s\n";
 647	static const char label[] = "";
 648
 649	hcd = bus_to_hcd(buf->bus);
 650	fotg210 = hcd_to_fotg210(hcd);
 651	next = buf->output_buf;
 652	size = buf->alloc_size;
 653
 654	spin_lock_irqsave(&fotg210->lock, flags);
 655
 656	if (!HCD_HW_ACCESSIBLE(hcd)) {
 657		size = scnprintf(next, size,
 658				"bus %s, device %s\n"
 659				"%s\n"
 660				"SUSPENDED(no register access)\n",
 661				hcd->self.controller->bus->name,
 662				dev_name(hcd->self.controller),
 663				hcd->product_desc);
 664		goto done;
 665	}
 666
 667	/* Capability Registers */
 668	i = HC_VERSION(fotg210, fotg210_readl(fotg210,
 669			&fotg210->caps->hc_capbase));
 670	temp = scnprintf(next, size,
 671			"bus %s, device %s\n"
 672			"%s\n"
 673			"EHCI %x.%02x, rh state %s\n",
 674			hcd->self.controller->bus->name,
 675			dev_name(hcd->self.controller),
 676			hcd->product_desc,
 677			i >> 8, i & 0x0ff, rh_state_string(fotg210));
 678	size -= temp;
 679	next += temp;
 680
 681	/* FIXME interpret both types of params */
 682	i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
 683	temp = scnprintf(next, size, "structural params 0x%08x\n", i);
 684	size -= temp;
 685	next += temp;
 686
 687	i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
 688	temp = scnprintf(next, size, "capability params 0x%08x\n", i);
 689	size -= temp;
 690	next += temp;
 691
 692	/* Operational Registers */
 693	temp = dbg_status_buf(scratch, sizeof(scratch), label,
 694			fotg210_readl(fotg210, &fotg210->regs->status));
 695	temp = scnprintf(next, size, fmt, temp, scratch);
 696	size -= temp;
 697	next += temp;
 698
 699	temp = dbg_command_buf(scratch, sizeof(scratch), label,
 700			fotg210_readl(fotg210, &fotg210->regs->command));
 701	temp = scnprintf(next, size, fmt, temp, scratch);
 702	size -= temp;
 703	next += temp;
 704
 705	temp = dbg_intr_buf(scratch, sizeof(scratch), label,
 706			fotg210_readl(fotg210, &fotg210->regs->intr_enable));
 707	temp = scnprintf(next, size, fmt, temp, scratch);
 708	size -= temp;
 709	next += temp;
 710
 711	temp = scnprintf(next, size, "uframe %04x\n",
 712			fotg210_read_frame_index(fotg210));
 713	size -= temp;
 714	next += temp;
 715
 716	if (fotg210->async_unlink) {
 717		temp = scnprintf(next, size, "async unlink qh %p\n",
 718				fotg210->async_unlink);
 719		size -= temp;
 720		next += temp;
 721	}
 722
 723#ifdef FOTG210_STATS
 724	temp = scnprintf(next, size,
 725			"irq normal %ld err %ld iaa %ld(lost %ld)\n",
 726			fotg210->stats.normal, fotg210->stats.error,
 727			fotg210->stats.iaa, fotg210->stats.lost_iaa);
 728	size -= temp;
 729	next += temp;
 730
 731	temp = scnprintf(next, size, "complete %ld unlink %ld\n",
 732			fotg210->stats.complete, fotg210->stats.unlink);
 733	size -= temp;
 734	next += temp;
 735#endif
 736
 737done:
 738	spin_unlock_irqrestore(&fotg210->lock, flags);
 739
 740	return buf->alloc_size - size;
 741}
 742
 743static struct debug_buffer
 744*alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
 745{
 746	struct debug_buffer *buf;
 747
 748	buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
 749
 750	if (buf) {
 751		buf->bus = bus;
 752		buf->fill_func = fill_func;
 753		mutex_init(&buf->mutex);
 754		buf->alloc_size = PAGE_SIZE;
 755	}
 756
 757	return buf;
 758}
 759
 760static int fill_buffer(struct debug_buffer *buf)
 761{
 762	int ret = 0;
 763
 764	if (!buf->output_buf)
 765		buf->output_buf = vmalloc(buf->alloc_size);
 766
 767	if (!buf->output_buf) {
 768		ret = -ENOMEM;
 769		goto out;
 770	}
 771
 772	ret = buf->fill_func(buf);
 773
 774	if (ret >= 0) {
 775		buf->count = ret;
 776		ret = 0;
 777	}
 778
 779out:
 780	return ret;
 781}
 782
 783static ssize_t debug_output(struct file *file, char __user *user_buf,
 784		size_t len, loff_t *offset)
 785{
 786	struct debug_buffer *buf = file->private_data;
 787	int ret = 0;
 788
 789	mutex_lock(&buf->mutex);
 790	if (buf->count == 0) {
 791		ret = fill_buffer(buf);
 792		if (ret != 0) {
 793			mutex_unlock(&buf->mutex);
 794			goto out;
 795		}
 796	}
 797	mutex_unlock(&buf->mutex);
 798
 799	ret = simple_read_from_buffer(user_buf, len, offset,
 800			buf->output_buf, buf->count);
 801
 802out:
 803	return ret;
 804
 805}
 806
 807static int debug_close(struct inode *inode, struct file *file)
 808{
 809	struct debug_buffer *buf = file->private_data;
 810
 811	if (buf) {
 812		vfree(buf->output_buf);
 813		kfree(buf);
 814	}
 815
 816	return 0;
 817}
 818static int debug_async_open(struct inode *inode, struct file *file)
 819{
 820	file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
 821
 822	return file->private_data ? 0 : -ENOMEM;
 823}
 824
 825static int debug_periodic_open(struct inode *inode, struct file *file)
 826{
 827	struct debug_buffer *buf;
 828
 829	buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
 830	if (!buf)
 831		return -ENOMEM;
 832
 833	buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
 834	file->private_data = buf;
 835	return 0;
 836}
 837
 838static int debug_registers_open(struct inode *inode, struct file *file)
 839{
 840	file->private_data = alloc_buffer(inode->i_private,
 841			fill_registers_buffer);
 842
 843	return file->private_data ? 0 : -ENOMEM;
 844}
 845
 846static inline void create_debug_files(struct fotg210_hcd *fotg210)
 847{
 848	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
 849	struct dentry *root;
 850
 851	root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
 852	fotg210->debug_dir = root;
 853
 854	debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
 855	debugfs_create_file("periodic", S_IRUGO, root, bus,
 856			    &debug_periodic_fops);
 857	debugfs_create_file("registers", S_IRUGO, root, bus,
 858			    &debug_registers_fops);
 859}
 860
 861static inline void remove_debug_files(struct fotg210_hcd *fotg210)
 862{
 863	debugfs_remove_recursive(fotg210->debug_dir);
 864}
 865
 866/* handshake - spin reading hc until handshake completes or fails
 867 * @ptr: address of hc register to be read
 868 * @mask: bits to look at in result of read
 869 * @done: value of those bits when handshake succeeds
 870 * @usec: timeout in microseconds
 871 *
 872 * Returns negative errno, or zero on success
 873 *
 874 * Success happens when the "mask" bits have the specified value (hardware
 875 * handshake done).  There are two failure modes:  "usec" have passed (major
 876 * hardware flakeout), or the register reads as all-ones (hardware removed).
 877 *
 878 * That last failure should_only happen in cases like physical cardbus eject
 879 * before driver shutdown. But it also seems to be caused by bugs in cardbus
 880 * bridge shutdown:  shutting down the bridge before the devices using it.
 881 */
 882static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
 883		u32 mask, u32 done, int usec)
 884{
 885	u32 result;
 886
 887	do {
 888		result = fotg210_readl(fotg210, ptr);
 889		if (result == ~(u32)0)		/* card removed */
 890			return -ENODEV;
 891		result &= mask;
 892		if (result == done)
 893			return 0;
 894		udelay(1);
 895		usec--;
 896	} while (usec > 0);
 897	return -ETIMEDOUT;
 898}
 899
 900/* Force HC to halt state from unknown (EHCI spec section 2.3).
 901 * Must be called with interrupts enabled and the lock not held.
 902 */
 903static int fotg210_halt(struct fotg210_hcd *fotg210)
 904{
 905	u32 temp;
 906
 907	spin_lock_irq(&fotg210->lock);
 908
 909	/* disable any irqs left enabled by previous code */
 910	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
 911
 912	/*
 913	 * This routine gets called during probe before fotg210->command
 914	 * has been initialized, so we can't rely on its value.
 915	 */
 916	fotg210->command &= ~CMD_RUN;
 917	temp = fotg210_readl(fotg210, &fotg210->regs->command);
 918	temp &= ~(CMD_RUN | CMD_IAAD);
 919	fotg210_writel(fotg210, temp, &fotg210->regs->command);
 920
 921	spin_unlock_irq(&fotg210->lock);
 922	synchronize_irq(fotg210_to_hcd(fotg210)->irq);
 923
 924	return handshake(fotg210, &fotg210->regs->status,
 925			STS_HALT, STS_HALT, 16 * 125);
 926}
 927
 928/* Reset a non-running (STS_HALT == 1) controller.
 929 * Must be called with interrupts enabled and the lock not held.
 930 */
 931static int fotg210_reset(struct fotg210_hcd *fotg210)
 932{
 933	int retval;
 934	u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
 935
 936	/* If the EHCI debug controller is active, special care must be
 937	 * taken before and after a host controller reset
 938	 */
 939	if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
 940		fotg210->debug = NULL;
 941
 942	command |= CMD_RESET;
 943	dbg_cmd(fotg210, "reset", command);
 944	fotg210_writel(fotg210, command, &fotg210->regs->command);
 945	fotg210->rh_state = FOTG210_RH_HALTED;
 946	fotg210->next_statechange = jiffies;
 947	retval = handshake(fotg210, &fotg210->regs->command,
 948			CMD_RESET, 0, 250 * 1000);
 949
 950	if (retval)
 951		return retval;
 952
 953	if (fotg210->debug)
 954		dbgp_external_startup(fotg210_to_hcd(fotg210));
 955
 956	fotg210->port_c_suspend = fotg210->suspended_ports =
 957			fotg210->resuming_ports = 0;
 958	return retval;
 959}
 960
 961/* Idle the controller (turn off the schedules).
 962 * Must be called with interrupts enabled and the lock not held.
 963 */
 964static void fotg210_quiesce(struct fotg210_hcd *fotg210)
 965{
 966	u32 temp;
 967
 968	if (fotg210->rh_state != FOTG210_RH_RUNNING)
 969		return;
 970
 971	/* wait for any schedule enables/disables to take effect */
 972	temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
 973	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
 974			16 * 125);
 975
 976	/* then disable anything that's still active */
 977	spin_lock_irq(&fotg210->lock);
 978	fotg210->command &= ~(CMD_ASE | CMD_PSE);
 979	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
 980	spin_unlock_irq(&fotg210->lock);
 981
 982	/* hardware can take 16 microframes to turn off ... */
 983	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
 984			16 * 125);
 985}
 986
 987static void end_unlink_async(struct fotg210_hcd *fotg210);
 988static void unlink_empty_async(struct fotg210_hcd *fotg210);
 989static void fotg210_work(struct fotg210_hcd *fotg210);
 990static void start_unlink_intr(struct fotg210_hcd *fotg210,
 991			      struct fotg210_qh *qh);
 992static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
 993
 994/* Set a bit in the USBCMD register */
 995static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
 996{
 997	fotg210->command |= bit;
 998	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
 999
1000	/* unblock posted write */
1001	fotg210_readl(fotg210, &fotg210->regs->command);
1002}
1003
1004/* Clear a bit in the USBCMD register */
1005static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1006{
1007	fotg210->command &= ~bit;
1008	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1009
1010	/* unblock posted write */
1011	fotg210_readl(fotg210, &fotg210->regs->command);
1012}
1013
1014/* EHCI timer support...  Now using hrtimers.
1015 *
1016 * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1017 * the timer routine runs, it checks each possible event; events that are
1018 * currently enabled and whose expiration time has passed get handled.
1019 * The set of enabled events is stored as a collection of bitflags in
1020 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1021 * increasing delay values (ranging between 1 ms and 100 ms).
1022 *
1023 * Rather than implementing a sorted list or tree of all pending events,
1024 * we keep track only of the lowest-numbered pending event, in
1025 * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1026 * expiration time is set to the timeout value for this event.
1027 *
1028 * As a result, events might not get handled right away; the actual delay
1029 * could be anywhere up to twice the requested delay.  This doesn't
1030 * matter, because none of the events are especially time-critical.  The
1031 * ones that matter most all have a delay of 1 ms, so they will be
1032 * handled after 2 ms at most, which is okay.  In addition to this, we
1033 * allow for an expiration range of 1 ms.
1034 */
1035
1036/* Delay lengths for the hrtimer event types.
1037 * Keep this list sorted by delay length, in the same order as
1038 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1039 */
1040static unsigned event_delays_ns[] = {
1041	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */
1042	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */
1043	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */
1044	1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */
1045	2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */
1046	6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1047	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */
1048	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1049	15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */
1050	100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */
1051};
1052
1053/* Enable a pending hrtimer event */
1054static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1055		bool resched)
1056{
1057	ktime_t *timeout = &fotg210->hr_timeouts[event];
1058
1059	if (resched)
1060		*timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1061	fotg210->enabled_hrtimer_events |= (1 << event);
1062
1063	/* Track only the lowest-numbered pending event */
1064	if (event < fotg210->next_hrtimer_event) {
1065		fotg210->next_hrtimer_event = event;
1066		hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1067				NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1068	}
1069}
1070
1071
1072/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1073static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1074{
1075	unsigned actual, want;
1076
1077	/* Don't enable anything if the controller isn't running (e.g., died) */
1078	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1079		return;
1080
1081	want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1082	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1083
1084	if (want != actual) {
1085
1086		/* Poll again later, but give up after about 20 ms */
1087		if (fotg210->ASS_poll_count++ < 20) {
1088			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1089					true);
1090			return;
1091		}
1092		fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1093				want, actual);
1094	}
1095	fotg210->ASS_poll_count = 0;
1096
1097	/* The status is up-to-date; restart or stop the schedule as needed */
1098	if (want == 0) {	/* Stopped */
1099		if (fotg210->async_count > 0)
1100			fotg210_set_command_bit(fotg210, CMD_ASE);
1101
1102	} else {		/* Running */
1103		if (fotg210->async_count == 0) {
1104
1105			/* Turn off the schedule after a while */
1106			fotg210_enable_event(fotg210,
1107					FOTG210_HRTIMER_DISABLE_ASYNC,
1108					true);
1109		}
1110	}
1111}
1112
1113/* Turn off the async schedule after a brief delay */
1114static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1115{
1116	fotg210_clear_command_bit(fotg210, CMD_ASE);
1117}
1118
1119
1120/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1121static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1122{
1123	unsigned actual, want;
1124
1125	/* Don't do anything if the controller isn't running (e.g., died) */
1126	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1127		return;
1128
1129	want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1130	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1131
1132	if (want != actual) {
1133
1134		/* Poll again later, but give up after about 20 ms */
1135		if (fotg210->PSS_poll_count++ < 20) {
1136			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1137					true);
1138			return;
1139		}
1140		fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1141				want, actual);
1142	}
1143	fotg210->PSS_poll_count = 0;
1144
1145	/* The status is up-to-date; restart or stop the schedule as needed */
1146	if (want == 0) {	/* Stopped */
1147		if (fotg210->periodic_count > 0)
1148			fotg210_set_command_bit(fotg210, CMD_PSE);
1149
1150	} else {		/* Running */
1151		if (fotg210->periodic_count == 0) {
1152
1153			/* Turn off the schedule after a while */
1154			fotg210_enable_event(fotg210,
1155					FOTG210_HRTIMER_DISABLE_PERIODIC,
1156					true);
1157		}
1158	}
1159}
1160
1161/* Turn off the periodic schedule after a brief delay */
1162static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1163{
1164	fotg210_clear_command_bit(fotg210, CMD_PSE);
1165}
1166
1167
1168/* Poll the STS_HALT status bit; see when a dead controller stops */
1169static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1170{
1171	if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1172
1173		/* Give up after a few milliseconds */
1174		if (fotg210->died_poll_count++ < 5) {
1175			/* Try again later */
1176			fotg210_enable_event(fotg210,
1177					FOTG210_HRTIMER_POLL_DEAD, true);
1178			return;
1179		}
1180		fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1181	}
1182
1183	/* Clean up the mess */
1184	fotg210->rh_state = FOTG210_RH_HALTED;
1185	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1186	fotg210_work(fotg210);
1187	end_unlink_async(fotg210);
1188
1189	/* Not in process context, so don't try to reset the controller */
1190}
1191
1192
1193/* Handle unlinked interrupt QHs once they are gone from the hardware */
1194static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1195{
1196	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1197
1198	/*
1199	 * Process all the QHs on the intr_unlink list that were added
1200	 * before the current unlink cycle began.  The list is in
1201	 * temporal order, so stop when we reach the first entry in the
1202	 * current cycle.  But if the root hub isn't running then
1203	 * process all the QHs on the list.
1204	 */
1205	fotg210->intr_unlinking = true;
1206	while (fotg210->intr_unlink) {
1207		struct fotg210_qh *qh = fotg210->intr_unlink;
1208
1209		if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1210			break;
1211		fotg210->intr_unlink = qh->unlink_next;
1212		qh->unlink_next = NULL;
1213		end_unlink_intr(fotg210, qh);
1214	}
1215
1216	/* Handle remaining entries later */
1217	if (fotg210->intr_unlink) {
1218		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1219				true);
1220		++fotg210->intr_unlink_cycle;
1221	}
1222	fotg210->intr_unlinking = false;
1223}
1224
1225
1226/* Start another free-iTDs/siTDs cycle */
1227static void start_free_itds(struct fotg210_hcd *fotg210)
1228{
1229	if (!(fotg210->enabled_hrtimer_events &
1230			BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1231		fotg210->last_itd_to_free = list_entry(
1232				fotg210->cached_itd_list.prev,
1233				struct fotg210_itd, itd_list);
1234		fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1235	}
1236}
1237
1238/* Wait for controller to stop using old iTDs and siTDs */
1239static void end_free_itds(struct fotg210_hcd *fotg210)
1240{
1241	struct fotg210_itd *itd, *n;
1242
1243	if (fotg210->rh_state < FOTG210_RH_RUNNING)
1244		fotg210->last_itd_to_free = NULL;
1245
1246	list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1247		list_del(&itd->itd_list);
1248		dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1249		if (itd == fotg210->last_itd_to_free)
1250			break;
1251	}
1252
1253	if (!list_empty(&fotg210->cached_itd_list))
1254		start_free_itds(fotg210);
1255}
1256
1257
1258/* Handle lost (or very late) IAA interrupts */
1259static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1260{
1261	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1262		return;
1263
1264	/*
1265	 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1266	 * So we need this watchdog, but must protect it against both
1267	 * (a) SMP races against real IAA firing and retriggering, and
1268	 * (b) clean HC shutdown, when IAA watchdog was pending.
1269	 */
1270	if (fotg210->async_iaa) {
1271		u32 cmd, status;
1272
1273		/* If we get here, IAA is *REALLY* late.  It's barely
1274		 * conceivable that the system is so busy that CMD_IAAD
1275		 * is still legitimately set, so let's be sure it's
1276		 * clear before we read STS_IAA.  (The HC should clear
1277		 * CMD_IAAD when it sets STS_IAA.)
1278		 */
1279		cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1280
1281		/*
1282		 * If IAA is set here it either legitimately triggered
1283		 * after the watchdog timer expired (_way_ late, so we'll
1284		 * still count it as lost) ... or a silicon erratum:
1285		 * - VIA seems to set IAA without triggering the IRQ;
1286		 * - IAAD potentially cleared without setting IAA.
1287		 */
1288		status = fotg210_readl(fotg210, &fotg210->regs->status);
1289		if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1290			INCR(fotg210->stats.lost_iaa);
1291			fotg210_writel(fotg210, STS_IAA,
1292					&fotg210->regs->status);
1293		}
1294
1295		fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1296				status, cmd);
1297		end_unlink_async(fotg210);
1298	}
1299}
1300
1301
1302/* Enable the I/O watchdog, if appropriate */
1303static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1304{
1305	/* Not needed if the controller isn't running or it's already enabled */
1306	if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1307			(fotg210->enabled_hrtimer_events &
1308			BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1309		return;
1310
1311	/*
1312	 * Isochronous transfers always need the watchdog.
1313	 * For other sorts we use it only if the flag is set.
1314	 */
1315	if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1316			fotg210->async_count + fotg210->intr_count > 0))
1317		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1318				true);
1319}
1320
1321
1322/* Handler functions for the hrtimer event types.
1323 * Keep this array in the same order as the event types indexed by
1324 * enum fotg210_hrtimer_event in fotg210.h.
1325 */
1326static void (*event_handlers[])(struct fotg210_hcd *) = {
1327	fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */
1328	fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */
1329	fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */
1330	fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */
1331	end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */
1332	unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1333	fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */
1334	fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1335	fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */
1336	fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */
1337};
1338
1339static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1340{
1341	struct fotg210_hcd *fotg210 =
1342			container_of(t, struct fotg210_hcd, hrtimer);
1343	ktime_t now;
1344	unsigned long events;
1345	unsigned long flags;
1346	unsigned e;
1347
1348	spin_lock_irqsave(&fotg210->lock, flags);
1349
1350	events = fotg210->enabled_hrtimer_events;
1351	fotg210->enabled_hrtimer_events = 0;
1352	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1353
1354	/*
1355	 * Check each pending event.  If its time has expired, handle
1356	 * the event; otherwise re-enable it.
1357	 */
1358	now = ktime_get();
1359	for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1360		if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1361			event_handlers[e](fotg210);
1362		else
1363			fotg210_enable_event(fotg210, e, false);
1364	}
1365
1366	spin_unlock_irqrestore(&fotg210->lock, flags);
1367	return HRTIMER_NORESTART;
1368}
1369
1370#define fotg210_bus_suspend NULL
1371#define fotg210_bus_resume NULL
1372
1373static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1374		u32 __iomem *status_reg, int port_status)
1375{
1376	if (!(port_status & PORT_CONNECT))
1377		return port_status;
1378
1379	/* if reset finished and it's still not enabled -- handoff */
1380	if (!(port_status & PORT_PE))
1381		/* with integrated TT, there's nobody to hand it to! */
1382		fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1383				index + 1);
1384	else
1385		fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1386				index + 1);
1387
1388	return port_status;
1389}
1390
1391
1392/* build "status change" packet (one or two bytes) from HC registers */
1393
1394static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1395{
1396	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1397	u32 temp, status;
1398	u32 mask;
1399	int retval = 1;
1400	unsigned long flags;
1401
1402	/* init status to no-changes */
1403	buf[0] = 0;
1404
1405	/* Inform the core about resumes-in-progress by returning
1406	 * a non-zero value even if there are no status changes.
1407	 */
1408	status = fotg210->resuming_ports;
1409
1410	mask = PORT_CSC | PORT_PEC;
1411	/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1412
1413	/* no hub change reports (bit 0) for now (power, ...) */
1414
1415	/* port N changes (bit N)? */
1416	spin_lock_irqsave(&fotg210->lock, flags);
1417
1418	temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1419
1420	/*
1421	 * Return status information even for ports with OWNER set.
1422	 * Otherwise hub_wq wouldn't see the disconnect event when a
1423	 * high-speed device is switched over to the companion
1424	 * controller by the user.
1425	 */
1426
1427	if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1428			(fotg210->reset_done[0] &&
1429			time_after_eq(jiffies, fotg210->reset_done[0]))) {
1430		buf[0] |= 1 << 1;
1431		status = STS_PCD;
1432	}
1433	/* FIXME autosuspend idle root hubs */
1434	spin_unlock_irqrestore(&fotg210->lock, flags);
1435	return status ? retval : 0;
1436}
1437
1438static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1439		struct usb_hub_descriptor *desc)
1440{
1441	int ports = HCS_N_PORTS(fotg210->hcs_params);
1442	u16 temp;
1443
1444	desc->bDescriptorType = USB_DT_HUB;
1445	desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */
1446	desc->bHubContrCurrent = 0;
1447
1448	desc->bNbrPorts = ports;
1449	temp = 1 + (ports / 8);
1450	desc->bDescLength = 7 + 2 * temp;
1451
1452	/* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1453	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1454	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1455
1456	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
1457	temp |= HUB_CHAR_NO_LPSM;	/* no power switching */
1458	desc->wHubCharacteristics = cpu_to_le16(temp);
1459}
1460
1461static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1462		u16 wIndex, char *buf, u16 wLength)
1463{
1464	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1465	int ports = HCS_N_PORTS(fotg210->hcs_params);
1466	u32 __iomem *status_reg = &fotg210->regs->port_status;
1467	u32 temp, temp1, status;
1468	unsigned long flags;
1469	int retval = 0;
1470	unsigned selector;
1471
1472	/*
1473	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1474	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1475	 * (track current state ourselves) ... blink for diagnostics,
1476	 * power, "this is the one", etc.  EHCI spec supports this.
1477	 */
1478
1479	spin_lock_irqsave(&fotg210->lock, flags);
1480	switch (typeReq) {
1481	case ClearHubFeature:
1482		switch (wValue) {
1483		case C_HUB_LOCAL_POWER:
1484		case C_HUB_OVER_CURRENT:
1485			/* no hub-wide feature/status flags */
1486			break;
1487		default:
1488			goto error;
1489		}
1490		break;
1491	case ClearPortFeature:
1492		if (!wIndex || wIndex > ports)
1493			goto error;
1494		wIndex--;
1495		temp = fotg210_readl(fotg210, status_reg);
1496		temp &= ~PORT_RWC_BITS;
1497
1498		/*
1499		 * Even if OWNER is set, so the port is owned by the
1500		 * companion controller, hub_wq needs to be able to clear
1501		 * the port-change status bits (especially
1502		 * USB_PORT_STAT_C_CONNECTION).
1503		 */
1504
1505		switch (wValue) {
1506		case USB_PORT_FEAT_ENABLE:
1507			fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1508			break;
1509		case USB_PORT_FEAT_C_ENABLE:
1510			fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1511			break;
1512		case USB_PORT_FEAT_SUSPEND:
1513			if (temp & PORT_RESET)
1514				goto error;
1515			if (!(temp & PORT_SUSPEND))
1516				break;
1517			if ((temp & PORT_PE) == 0)
1518				goto error;
1519
1520			/* resume signaling for 20 msec */
1521			fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1522			fotg210->reset_done[wIndex] = jiffies
1523					+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
1524			break;
1525		case USB_PORT_FEAT_C_SUSPEND:
1526			clear_bit(wIndex, &fotg210->port_c_suspend);
1527			break;
1528		case USB_PORT_FEAT_C_CONNECTION:
1529			fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1530			break;
1531		case USB_PORT_FEAT_C_OVER_CURRENT:
1532			fotg210_writel(fotg210, temp | OTGISR_OVC,
1533					&fotg210->regs->otgisr);
1534			break;
1535		case USB_PORT_FEAT_C_RESET:
1536			/* GetPortStatus clears reset */
1537			break;
1538		default:
1539			goto error;
1540		}
1541		fotg210_readl(fotg210, &fotg210->regs->command);
1542		break;
1543	case GetHubDescriptor:
1544		fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1545				buf);
1546		break;
1547	case GetHubStatus:
1548		/* no hub-wide feature/status flags */
1549		memset(buf, 0, 4);
1550		/*cpu_to_le32s ((u32 *) buf); */
1551		break;
1552	case GetPortStatus:
1553		if (!wIndex || wIndex > ports)
1554			goto error;
1555		wIndex--;
1556		status = 0;
1557		temp = fotg210_readl(fotg210, status_reg);
1558
1559		/* wPortChange bits */
1560		if (temp & PORT_CSC)
1561			status |= USB_PORT_STAT_C_CONNECTION << 16;
1562		if (temp & PORT_PEC)
1563			status |= USB_PORT_STAT_C_ENABLE << 16;
1564
1565		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1566		if (temp1 & OTGISR_OVC)
1567			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1568
1569		/* whoever resumes must GetPortStatus to complete it!! */
1570		if (temp & PORT_RESUME) {
1571
1572			/* Remote Wakeup received? */
1573			if (!fotg210->reset_done[wIndex]) {
1574				/* resume signaling for 20 msec */
1575				fotg210->reset_done[wIndex] = jiffies
1576						+ msecs_to_jiffies(20);
1577				/* check the port again */
1578				mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1579						fotg210->reset_done[wIndex]);
1580			}
1581
1582			/* resume completed? */
1583			else if (time_after_eq(jiffies,
1584					fotg210->reset_done[wIndex])) {
1585				clear_bit(wIndex, &fotg210->suspended_ports);
1586				set_bit(wIndex, &fotg210->port_c_suspend);
1587				fotg210->reset_done[wIndex] = 0;
1588
1589				/* stop resume signaling */
1590				temp = fotg210_readl(fotg210, status_reg);
1591				fotg210_writel(fotg210, temp &
1592						~(PORT_RWC_BITS | PORT_RESUME),
1593						status_reg);
1594				clear_bit(wIndex, &fotg210->resuming_ports);
1595				retval = handshake(fotg210, status_reg,
1596						PORT_RESUME, 0, 2000);/* 2ms */
1597				if (retval != 0) {
1598					fotg210_err(fotg210,
1599							"port %d resume error %d\n",
1600							wIndex + 1, retval);
1601					goto error;
1602				}
1603				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1604			}
1605		}
1606
1607		/* whoever resets must GetPortStatus to complete it!! */
1608		if ((temp & PORT_RESET) && time_after_eq(jiffies,
1609				fotg210->reset_done[wIndex])) {
1610			status |= USB_PORT_STAT_C_RESET << 16;
1611			fotg210->reset_done[wIndex] = 0;
1612			clear_bit(wIndex, &fotg210->resuming_ports);
1613
1614			/* force reset to complete */
1615			fotg210_writel(fotg210,
1616					temp & ~(PORT_RWC_BITS | PORT_RESET),
1617					status_reg);
1618			/* REVISIT:  some hardware needs 550+ usec to clear
1619			 * this bit; seems too long to spin routinely...
1620			 */
1621			retval = handshake(fotg210, status_reg,
1622					PORT_RESET, 0, 1000);
1623			if (retval != 0) {
1624				fotg210_err(fotg210, "port %d reset error %d\n",
1625						wIndex + 1, retval);
1626				goto error;
1627			}
1628
1629			/* see what we found out */
1630			temp = check_reset_complete(fotg210, wIndex, status_reg,
1631					fotg210_readl(fotg210, status_reg));
1632
1633			/* restart schedule */
1634			fotg210->command |= CMD_RUN;
1635			fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1636		}
1637
1638		if (!(temp & (PORT_RESUME|PORT_RESET))) {
1639			fotg210->reset_done[wIndex] = 0;
1640			clear_bit(wIndex, &fotg210->resuming_ports);
1641		}
1642
1643		/* transfer dedicated ports to the companion hc */
1644		if ((temp & PORT_CONNECT) &&
1645				test_bit(wIndex, &fotg210->companion_ports)) {
1646			temp &= ~PORT_RWC_BITS;
1647			fotg210_writel(fotg210, temp, status_reg);
1648			fotg210_dbg(fotg210, "port %d --> companion\n",
1649					wIndex + 1);
1650			temp = fotg210_readl(fotg210, status_reg);
1651		}
1652
1653		/*
1654		 * Even if OWNER is set, there's no harm letting hub_wq
1655		 * see the wPortStatus values (they should all be 0 except
1656		 * for PORT_POWER anyway).
1657		 */
1658
1659		if (temp & PORT_CONNECT) {
1660			status |= USB_PORT_STAT_CONNECTION;
1661			status |= fotg210_port_speed(fotg210, temp);
1662		}
1663		if (temp & PORT_PE)
1664			status |= USB_PORT_STAT_ENABLE;
1665
1666		/* maybe the port was unsuspended without our knowledge */
1667		if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1668			status |= USB_PORT_STAT_SUSPEND;
1669		} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1670			clear_bit(wIndex, &fotg210->suspended_ports);
1671			clear_bit(wIndex, &fotg210->resuming_ports);
1672			fotg210->reset_done[wIndex] = 0;
1673			if (temp & PORT_PE)
1674				set_bit(wIndex, &fotg210->port_c_suspend);
1675		}
1676
1677		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1678		if (temp1 & OTGISR_OVC)
1679			status |= USB_PORT_STAT_OVERCURRENT;
1680		if (temp & PORT_RESET)
1681			status |= USB_PORT_STAT_RESET;
1682		if (test_bit(wIndex, &fotg210->port_c_suspend))
1683			status |= USB_PORT_STAT_C_SUSPEND << 16;
1684
1685		if (status & ~0xffff)	/* only if wPortChange is interesting */
1686			dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1687		put_unaligned_le32(status, buf);
1688		break;
1689	case SetHubFeature:
1690		switch (wValue) {
1691		case C_HUB_LOCAL_POWER:
1692		case C_HUB_OVER_CURRENT:
1693			/* no hub-wide feature/status flags */
1694			break;
1695		default:
1696			goto error;
1697		}
1698		break;
1699	case SetPortFeature:
1700		selector = wIndex >> 8;
1701		wIndex &= 0xff;
1702
1703		if (!wIndex || wIndex > ports)
1704			goto error;
1705		wIndex--;
1706		temp = fotg210_readl(fotg210, status_reg);
1707		temp &= ~PORT_RWC_BITS;
1708		switch (wValue) {
1709		case USB_PORT_FEAT_SUSPEND:
1710			if ((temp & PORT_PE) == 0
1711					|| (temp & PORT_RESET) != 0)
1712				goto error;
1713
1714			/* After above check the port must be connected.
1715			 * Set appropriate bit thus could put phy into low power
1716			 * mode if we have hostpc feature
1717			 */
1718			fotg210_writel(fotg210, temp | PORT_SUSPEND,
1719					status_reg);
1720			set_bit(wIndex, &fotg210->suspended_ports);
1721			break;
1722		case USB_PORT_FEAT_RESET:
1723			if (temp & PORT_RESUME)
1724				goto error;
1725			/* line status bits may report this as low speed,
1726			 * which can be fine if this root hub has a
1727			 * transaction translator built in.
1728			 */
1729			fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1730			temp |= PORT_RESET;
1731			temp &= ~PORT_PE;
1732
1733			/*
1734			 * caller must wait, then call GetPortStatus
1735			 * usb 2.0 spec says 50 ms resets on root
1736			 */
1737			fotg210->reset_done[wIndex] = jiffies
1738					+ msecs_to_jiffies(50);
1739			fotg210_writel(fotg210, temp, status_reg);
1740			break;
1741
1742		/* For downstream facing ports (these):  one hub port is put
1743		 * into test mode according to USB2 11.24.2.13, then the hub
1744		 * must be reset (which for root hub now means rmmod+modprobe,
1745		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1746		 * about the EHCI-specific stuff.
1747		 */
1748		case USB_PORT_FEAT_TEST:
1749			if (!selector || selector > 5)
1750				goto error;
1751			spin_unlock_irqrestore(&fotg210->lock, flags);
1752			fotg210_quiesce(fotg210);
1753			spin_lock_irqsave(&fotg210->lock, flags);
1754
1755			/* Put all enabled ports into suspend */
1756			temp = fotg210_readl(fotg210, status_reg) &
1757				~PORT_RWC_BITS;
1758			if (temp & PORT_PE)
1759				fotg210_writel(fotg210, temp | PORT_SUSPEND,
1760						status_reg);
1761
1762			spin_unlock_irqrestore(&fotg210->lock, flags);
1763			fotg210_halt(fotg210);
1764			spin_lock_irqsave(&fotg210->lock, flags);
1765
1766			temp = fotg210_readl(fotg210, status_reg);
1767			temp |= selector << 16;
1768			fotg210_writel(fotg210, temp, status_reg);
1769			break;
1770
1771		default:
1772			goto error;
1773		}
1774		fotg210_readl(fotg210, &fotg210->regs->command);
1775		break;
1776
1777	default:
1778error:
1779		/* "stall" on error */
1780		retval = -EPIPE;
1781	}
1782	spin_unlock_irqrestore(&fotg210->lock, flags);
1783	return retval;
1784}
1785
1786static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1787		int portnum)
1788{
1789	return;
1790}
1791
1792static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1793		int portnum)
1794{
1795	return 0;
1796}
1797
1798/* There's basically three types of memory:
1799 *	- data used only by the HCD ... kmalloc is fine
1800 *	- async and periodic schedules, shared by HC and HCD ... these
1801 *	  need to use dma_pool or dma_alloc_coherent
1802 *	- driver buffers, read/written by HC ... single shot DMA mapped
1803 *
1804 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1805 * No memory seen by this driver is pageable.
1806 */
1807
1808/* Allocate the key transfer structures from the previously allocated pool */
1809static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1810		struct fotg210_qtd *qtd, dma_addr_t dma)
1811{
1812	memset(qtd, 0, sizeof(*qtd));
1813	qtd->qtd_dma = dma;
1814	qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1815	qtd->hw_next = FOTG210_LIST_END(fotg210);
1816	qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1817	INIT_LIST_HEAD(&qtd->qtd_list);
1818}
1819
1820static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1821		gfp_t flags)
1822{
1823	struct fotg210_qtd *qtd;
1824	dma_addr_t dma;
1825
1826	qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1827	if (qtd != NULL)
1828		fotg210_qtd_init(fotg210, qtd, dma);
1829
1830	return qtd;
1831}
1832
1833static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1834		struct fotg210_qtd *qtd)
1835{
1836	dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1837}
1838
1839
1840static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1841{
1842	/* clean qtds first, and know this is not linked */
1843	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1844		fotg210_dbg(fotg210, "unused qh not empty!\n");
1845		BUG();
1846	}
1847	if (qh->dummy)
1848		fotg210_qtd_free(fotg210, qh->dummy);
1849	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1850	kfree(qh);
1851}
1852
1853static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1854		gfp_t flags)
1855{
1856	struct fotg210_qh *qh;
1857	dma_addr_t dma;
1858
1859	qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1860	if (!qh)
1861		goto done;
1862	qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1863	if (!qh->hw)
1864		goto fail;
1865	qh->qh_dma = dma;
1866	INIT_LIST_HEAD(&qh->qtd_list);
1867
1868	/* dummy td enables safe urb queuing */
1869	qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1870	if (qh->dummy == NULL) {
1871		fotg210_dbg(fotg210, "no dummy td\n");
1872		goto fail1;
1873	}
1874done:
1875	return qh;
1876fail1:
1877	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1878fail:
1879	kfree(qh);
1880	return NULL;
1881}
1882
1883/* The queue heads and transfer descriptors are managed from pools tied
1884 * to each of the "per device" structures.
1885 * This is the initialisation and cleanup code.
1886 */
1887
1888static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1889{
1890	if (fotg210->async)
1891		qh_destroy(fotg210, fotg210->async);
1892	fotg210->async = NULL;
1893
1894	if (fotg210->dummy)
1895		qh_destroy(fotg210, fotg210->dummy);
1896	fotg210->dummy = NULL;
1897
1898	/* DMA consistent memory and pools */
1899	dma_pool_destroy(fotg210->qtd_pool);
1900	fotg210->qtd_pool = NULL;
1901
1902	dma_pool_destroy(fotg210->qh_pool);
1903	fotg210->qh_pool = NULL;
1904
1905	dma_pool_destroy(fotg210->itd_pool);
1906	fotg210->itd_pool = NULL;
1907
1908	if (fotg210->periodic)
1909		dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1910				fotg210->periodic_size * sizeof(u32),
1911				fotg210->periodic, fotg210->periodic_dma);
1912	fotg210->periodic = NULL;
1913
1914	/* shadow periodic table */
1915	kfree(fotg210->pshadow);
1916	fotg210->pshadow = NULL;
1917}
1918
1919/* remember to add cleanup code (above) if you add anything here */
1920static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1921{
1922	int i;
1923
1924	/* QTDs for control/bulk/intr transfers */
1925	fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1926			fotg210_to_hcd(fotg210)->self.controller,
1927			sizeof(struct fotg210_qtd),
1928			32 /* byte alignment (for hw parts) */,
1929			4096 /* can't cross 4K */);
1930	if (!fotg210->qtd_pool)
1931		goto fail;
1932
1933	/* QHs for control/bulk/intr transfers */
1934	fotg210->qh_pool = dma_pool_create("fotg210_qh",
1935			fotg210_to_hcd(fotg210)->self.controller,
1936			sizeof(struct fotg210_qh_hw),
1937			32 /* byte alignment (for hw parts) */,
1938			4096 /* can't cross 4K */);
1939	if (!fotg210->qh_pool)
1940		goto fail;
1941
1942	fotg210->async = fotg210_qh_alloc(fotg210, flags);
1943	if (!fotg210->async)
1944		goto fail;
1945
1946	/* ITD for high speed ISO transfers */
1947	fotg210->itd_pool = dma_pool_create("fotg210_itd",
1948			fotg210_to_hcd(fotg210)->self.controller,
1949			sizeof(struct fotg210_itd),
1950			64 /* byte alignment (for hw parts) */,
1951			4096 /* can't cross 4K */);
1952	if (!fotg210->itd_pool)
1953		goto fail;
1954
1955	/* Hardware periodic table */
1956	fotg210->periodic = (__le32 *)
1957		dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1958				fotg210->periodic_size * sizeof(__le32),
1959				&fotg210->periodic_dma, 0);
1960	if (fotg210->periodic == NULL)
1961		goto fail;
1962
1963	for (i = 0; i < fotg210->periodic_size; i++)
1964		fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1965
1966	/* software shadow of hardware table */
1967	fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1968			flags);
1969	if (fotg210->pshadow != NULL)
1970		return 0;
1971
1972fail:
1973	fotg210_dbg(fotg210, "couldn't init memory\n");
1974	fotg210_mem_cleanup(fotg210);
1975	return -ENOMEM;
1976}
1977/* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1978 *
1979 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
1980 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1981 * buffers needed for the larger number).  We use one QH per endpoint, queue
1982 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
1983 *
1984 * ISO traffic uses "ISO TD" (itd) records, and (along with
1985 * interrupts) needs careful scheduling.  Performance improvements can be
1986 * an ongoing challenge.  That's in "ehci-sched.c".
1987 *
1988 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1989 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1990 * (b) special fields in qh entries or (c) split iso entries.  TTs will
1991 * buffer low/full speed data so the host collects it at high speed.
1992 */
1993
1994/* fill a qtd, returning how much of the buffer we were able to queue up */
1995static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1996		dma_addr_t buf, size_t len, int token, int maxpacket)
1997{
1998	int i, count;
1999	u64 addr = buf;
2000
2001	/* one buffer entry per 4K ... first might be short or unaligned */
2002	qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2003	qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2004	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
2005	if (likely(len < count))		/* ... iff needed */
2006		count = len;
2007	else {
2008		buf +=  0x1000;
2009		buf &= ~0x0fff;
2010
2011		/* per-qtd limit: from 16K to 20K (best alignment) */
2012		for (i = 1; count < len && i < 5; i++) {
2013			addr = buf;
2014			qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2015			qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2016					(u32)(addr >> 32));
2017			buf += 0x1000;
2018			if ((count + 0x1000) < len)
2019				count += 0x1000;
2020			else
2021				count = len;
2022		}
2023
2024		/* short packets may only terminate transfers */
2025		if (count != len)
2026			count -= (count % maxpacket);
2027	}
2028	qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2029	qtd->length = count;
2030
2031	return count;
2032}
2033
2034static inline void qh_update(struct fotg210_hcd *fotg210,
2035		struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2036{
2037	struct fotg210_qh_hw *hw = qh->hw;
2038
2039	/* writes to an active overlay are unsafe */
2040	BUG_ON(qh->qh_state != QH_STATE_IDLE);
2041
2042	hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2043	hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2044
2045	/* Except for control endpoints, we make hardware maintain data
2046	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2047	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2048	 * ever clear it.
2049	 */
2050	if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2051		unsigned is_out, epnum;
2052
2053		is_out = qh->is_out;
2054		epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2055		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2056			hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2057			usb_settoggle(qh->dev, epnum, is_out, 1);
2058		}
2059	}
2060
2061	hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2062}
2063
2064/* if it weren't for a common silicon quirk (writing the dummy into the qh
2065 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2066 * recovery (including urb dequeue) would need software changes to a QH...
2067 */
2068static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2069{
2070	struct fotg210_qtd *qtd;
2071
2072	if (list_empty(&qh->qtd_list))
2073		qtd = qh->dummy;
2074	else {
2075		qtd = list_entry(qh->qtd_list.next,
2076				struct fotg210_qtd, qtd_list);
2077		/*
2078		 * first qtd may already be partially processed.
2079		 * If we come here during unlink, the QH overlay region
2080		 * might have reference to the just unlinked qtd. The
2081		 * qtd is updated in qh_completions(). Update the QH
2082		 * overlay here.
2083		 */
2084		if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2085			qh->hw->hw_qtd_next = qtd->hw_next;
2086			qtd = NULL;
2087		}
2088	}
2089
2090	if (qtd)
2091		qh_update(fotg210, qh, qtd);
2092}
2093
2094static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2095
2096static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2097		struct usb_host_endpoint *ep)
2098{
2099	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2100	struct fotg210_qh *qh = ep->hcpriv;
2101	unsigned long flags;
2102
2103	spin_lock_irqsave(&fotg210->lock, flags);
2104	qh->clearing_tt = 0;
2105	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2106			&& fotg210->rh_state == FOTG210_RH_RUNNING)
2107		qh_link_async(fotg210, qh);
2108	spin_unlock_irqrestore(&fotg210->lock, flags);
2109}
2110
2111static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2112		struct fotg210_qh *qh, struct urb *urb, u32 token)
2113{
2114
2115	/* If an async split transaction gets an error or is unlinked,
2116	 * the TT buffer may be left in an indeterminate state.  We
2117	 * have to clear the TT buffer.
2118	 *
2119	 * Note: this routine is never called for Isochronous transfers.
2120	 */
2121	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2122		struct usb_device *tt = urb->dev->tt->hub;
2123
2124		dev_dbg(&tt->dev,
2125				"clear tt buffer port %d, a%d ep%d t%08x\n",
2126				urb->dev->ttport, urb->dev->devnum,
2127				usb_pipeendpoint(urb->pipe), token);
2128
2129		if (urb->dev->tt->hub !=
2130				fotg210_to_hcd(fotg210)->self.root_hub) {
2131			if (usb_hub_clear_tt_buffer(urb) == 0)
2132				qh->clearing_tt = 1;
2133		}
2134	}
2135}
2136
2137static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2138		size_t length, u32 token)
2139{
2140	int status = -EINPROGRESS;
2141
2142	/* count IN/OUT bytes, not SETUP (even short packets) */
2143	if (likely(QTD_PID(token) != 2))
2144		urb->actual_length += length - QTD_LENGTH(token);
2145
2146	/* don't modify error codes */
2147	if (unlikely(urb->unlinked))
2148		return status;
2149
2150	/* force cleanup after short read; not always an error */
2151	if (unlikely(IS_SHORT_READ(token)))
2152		status = -EREMOTEIO;
2153
2154	/* serious "can't proceed" faults reported by the hardware */
2155	if (token & QTD_STS_HALT) {
2156		if (token & QTD_STS_BABBLE) {
2157			/* FIXME "must" disable babbling device's port too */
2158			status = -EOVERFLOW;
2159		/* CERR nonzero + halt --> stall */
2160		} else if (QTD_CERR(token)) {
2161			status = -EPIPE;
2162
2163		/* In theory, more than one of the following bits can be set
2164		 * since they are sticky and the transaction is retried.
2165		 * Which to test first is rather arbitrary.
2166		 */
2167		} else if (token & QTD_STS_MMF) {
2168			/* fs/ls interrupt xfer missed the complete-split */
2169			status = -EPROTO;
2170		} else if (token & QTD_STS_DBE) {
2171			status = (QTD_PID(token) == 1) /* IN ? */
2172				? -ENOSR  /* hc couldn't read data */
2173				: -ECOMM; /* hc couldn't write data */
2174		} else if (token & QTD_STS_XACT) {
2175			/* timeout, bad CRC, wrong PID, etc */
2176			fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2177					urb->dev->devpath,
2178					usb_pipeendpoint(urb->pipe),
2179					usb_pipein(urb->pipe) ? "in" : "out");
2180			status = -EPROTO;
2181		} else {	/* unknown */
2182			status = -EPROTO;
2183		}
2184
2185		fotg210_dbg(fotg210,
2186				"dev%d ep%d%s qtd token %08x --> status %d\n",
2187				usb_pipedevice(urb->pipe),
2188				usb_pipeendpoint(urb->pipe),
2189				usb_pipein(urb->pipe) ? "in" : "out",
2190				token, status);
2191	}
2192
2193	return status;
2194}
2195
2196static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2197		int status)
2198__releases(fotg210->lock)
2199__acquires(fotg210->lock)
2200{
2201	if (likely(urb->hcpriv != NULL)) {
2202		struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2203
2204		/* S-mask in a QH means it's an interrupt urb */
2205		if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2206
2207			/* ... update hc-wide periodic stats (for usbfs) */
2208			fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2209		}
2210	}
2211
2212	if (unlikely(urb->unlinked)) {
2213		INCR(fotg210->stats.unlink);
2214	} else {
2215		/* report non-error and short read status as zero */
2216		if (status == -EINPROGRESS || status == -EREMOTEIO)
2217			status = 0;
2218		INCR(fotg210->stats.complete);
2219	}
2220
2221#ifdef FOTG210_URB_TRACE
2222	fotg210_dbg(fotg210,
2223			"%s %s urb %p ep%d%s status %d len %d/%d\n",
2224			__func__, urb->dev->devpath, urb,
2225			usb_pipeendpoint(urb->pipe),
2226			usb_pipein(urb->pipe) ? "in" : "out",
2227			status,
2228			urb->actual_length, urb->transfer_buffer_length);
2229#endif
2230
2231	/* complete() can reenter this HCD */
2232	usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2233	spin_unlock(&fotg210->lock);
2234	usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2235	spin_lock(&fotg210->lock);
2236}
2237
2238static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2239
2240/* Process and free completed qtds for a qh, returning URBs to drivers.
2241 * Chases up to qh->hw_current.  Returns number of completions called,
2242 * indicating how much "real" work we did.
2243 */
2244static unsigned qh_completions(struct fotg210_hcd *fotg210,
2245		struct fotg210_qh *qh)
2246{
2247	struct fotg210_qtd *last, *end = qh->dummy;
2248	struct fotg210_qtd *qtd, *tmp;
2249	int last_status;
2250	int stopped;
2251	unsigned count = 0;
2252	u8 state;
2253	struct fotg210_qh_hw *hw = qh->hw;
2254
2255	if (unlikely(list_empty(&qh->qtd_list)))
2256		return count;
2257
2258	/* completions (or tasks on other cpus) must never clobber HALT
2259	 * till we've gone through and cleaned everything up, even when
2260	 * they add urbs to this qh's queue or mark them for unlinking.
2261	 *
2262	 * NOTE:  unlinking expects to be done in queue order.
2263	 *
2264	 * It's a bug for qh->qh_state to be anything other than
2265	 * QH_STATE_IDLE, unless our caller is scan_async() or
2266	 * scan_intr().
2267	 */
2268	state = qh->qh_state;
2269	qh->qh_state = QH_STATE_COMPLETING;
2270	stopped = (state == QH_STATE_IDLE);
2271
2272rescan:
2273	last = NULL;
2274	last_status = -EINPROGRESS;
2275	qh->needs_rescan = 0;
2276
2277	/* remove de-activated QTDs from front of queue.
2278	 * after faults (including short reads), cleanup this urb
2279	 * then let the queue advance.
2280	 * if queue is stopped, handles unlinks.
2281	 */
2282	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2283		struct urb *urb;
2284		u32 token = 0;
2285
2286		urb = qtd->urb;
2287
2288		/* clean up any state from previous QTD ...*/
2289		if (last) {
2290			if (likely(last->urb != urb)) {
2291				fotg210_urb_done(fotg210, last->urb,
2292						last_status);
2293				count++;
2294				last_status = -EINPROGRESS;
2295			}
2296			fotg210_qtd_free(fotg210, last);
2297			last = NULL;
2298		}
2299
2300		/* ignore urbs submitted during completions we reported */
2301		if (qtd == end)
2302			break;
2303
2304		/* hardware copies qtd out of qh overlay */
2305		rmb();
2306		token = hc32_to_cpu(fotg210, qtd->hw_token);
2307
2308		/* always clean up qtds the hc de-activated */
2309retry_xacterr:
2310		if ((token & QTD_STS_ACTIVE) == 0) {
2311
2312			/* Report Data Buffer Error: non-fatal but useful */
2313			if (token & QTD_STS_DBE)
2314				fotg210_dbg(fotg210,
2315					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2316					urb, usb_endpoint_num(&urb->ep->desc),
2317					usb_endpoint_dir_in(&urb->ep->desc)
2318						? "in" : "out",
2319					urb->transfer_buffer_length, qtd, qh);
2320
2321			/* on STALL, error, and short reads this urb must
2322			 * complete and all its qtds must be recycled.
2323			 */
2324			if ((token & QTD_STS_HALT) != 0) {
2325
2326				/* retry transaction errors until we
2327				 * reach the software xacterr limit
2328				 */
2329				if ((token & QTD_STS_XACT) &&
2330						QTD_CERR(token) == 0 &&
2331						++qh->xacterrs < QH_XACTERR_MAX &&
2332						!urb->unlinked) {
2333					fotg210_dbg(fotg210,
2334						"detected XactErr len %zu/%zu retry %d\n",
2335						qtd->length - QTD_LENGTH(token),
2336						qtd->length,
2337						qh->xacterrs);
2338
2339					/* reset the token in the qtd and the
2340					 * qh overlay (which still contains
2341					 * the qtd) so that we pick up from
2342					 * where we left off
2343					 */
2344					token &= ~QTD_STS_HALT;
2345					token |= QTD_STS_ACTIVE |
2346						 (FOTG210_TUNE_CERR << 10);
2347					qtd->hw_token = cpu_to_hc32(fotg210,
2348							token);
2349					wmb();
2350					hw->hw_token = cpu_to_hc32(fotg210,
2351							token);
2352					goto retry_xacterr;
2353				}
2354				stopped = 1;
2355
2356			/* magic dummy for some short reads; qh won't advance.
2357			 * that silicon quirk can kick in with this dummy too.
2358			 *
2359			 * other short reads won't stop the queue, including
2360			 * control transfers (status stage handles that) or
2361			 * most other single-qtd reads ... the queue stops if
2362			 * URB_SHORT_NOT_OK was set so the driver submitting
2363			 * the urbs could clean it up.
2364			 */
2365			} else if (IS_SHORT_READ(token) &&
2366					!(qtd->hw_alt_next &
2367					FOTG210_LIST_END(fotg210))) {
2368				stopped = 1;
2369			}
2370
2371		/* stop scanning when we reach qtds the hc is using */
2372		} else if (likely(!stopped
2373				&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2374			break;
2375
2376		/* scan the whole queue for unlinks whenever it stops */
2377		} else {
2378			stopped = 1;
2379
2380			/* cancel everything if we halt, suspend, etc */
2381			if (fotg210->rh_state < FOTG210_RH_RUNNING)
2382				last_status = -ESHUTDOWN;
2383
2384			/* this qtd is active; skip it unless a previous qtd
2385			 * for its urb faulted, or its urb was canceled.
2386			 */
2387			else if (last_status == -EINPROGRESS && !urb->unlinked)
2388				continue;
2389
2390			/* qh unlinked; token in overlay may be most current */
2391			if (state == QH_STATE_IDLE &&
2392					cpu_to_hc32(fotg210, qtd->qtd_dma)
2393					== hw->hw_current) {
2394				token = hc32_to_cpu(fotg210, hw->hw_token);
2395
2396				/* An unlink may leave an incomplete
2397				 * async transaction in the TT buffer.
2398				 * We have to clear it.
2399				 */
2400				fotg210_clear_tt_buffer(fotg210, qh, urb,
2401						token);
2402			}
2403		}
2404
2405		/* unless we already know the urb's status, collect qtd status
2406		 * and update count of bytes transferred.  in common short read
2407		 * cases with only one data qtd (including control transfers),
2408		 * queue processing won't halt.  but with two or more qtds (for
2409		 * example, with a 32 KB transfer), when the first qtd gets a
2410		 * short read the second must be removed by hand.
2411		 */
2412		if (last_status == -EINPROGRESS) {
2413			last_status = qtd_copy_status(fotg210, urb,
2414					qtd->length, token);
2415			if (last_status == -EREMOTEIO &&
2416					(qtd->hw_alt_next &
2417					FOTG210_LIST_END(fotg210)))
2418				last_status = -EINPROGRESS;
2419
2420			/* As part of low/full-speed endpoint-halt processing
2421			 * we must clear the TT buffer (11.17.5).
2422			 */
2423			if (unlikely(last_status != -EINPROGRESS &&
2424					last_status != -EREMOTEIO)) {
2425				/* The TT's in some hubs malfunction when they
2426				 * receive this request following a STALL (they
2427				 * stop sending isochronous packets).  Since a
2428				 * STALL can't leave the TT buffer in a busy
2429				 * state (if you believe Figures 11-48 - 11-51
2430				 * in the USB 2.0 spec), we won't clear the TT
2431				 * buffer in this case.  Strictly speaking this
2432				 * is a violation of the spec.
2433				 */
2434				if (last_status != -EPIPE)
2435					fotg210_clear_tt_buffer(fotg210, qh,
2436							urb, token);
2437			}
2438		}
2439
2440		/* if we're removing something not at the queue head,
2441		 * patch the hardware queue pointer.
2442		 */
2443		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2444			last = list_entry(qtd->qtd_list.prev,
2445					struct fotg210_qtd, qtd_list);
2446			last->hw_next = qtd->hw_next;
2447		}
2448
2449		/* remove qtd; it's recycled after possible urb completion */
2450		list_del(&qtd->qtd_list);
2451		last = qtd;
2452
2453		/* reinit the xacterr counter for the next qtd */
2454		qh->xacterrs = 0;
2455	}
2456
2457	/* last urb's completion might still need calling */
2458	if (likely(last != NULL)) {
2459		fotg210_urb_done(fotg210, last->urb, last_status);
2460		count++;
2461		fotg210_qtd_free(fotg210, last);
2462	}
2463
2464	/* Do we need to rescan for URBs dequeued during a giveback? */
2465	if (unlikely(qh->needs_rescan)) {
2466		/* If the QH is already unlinked, do the rescan now. */
2467		if (state == QH_STATE_IDLE)
2468			goto rescan;
2469
2470		/* Otherwise we have to wait until the QH is fully unlinked.
2471		 * Our caller will start an unlink if qh->needs_rescan is
2472		 * set.  But if an unlink has already started, nothing needs
2473		 * to be done.
2474		 */
2475		if (state != QH_STATE_LINKED)
2476			qh->needs_rescan = 0;
2477	}
2478
2479	/* restore original state; caller must unlink or relink */
2480	qh->qh_state = state;
2481
2482	/* be sure the hardware's done with the qh before refreshing
2483	 * it after fault cleanup, or recovering from silicon wrongly
2484	 * overlaying the dummy qtd (which reduces DMA chatter).
2485	 */
2486	if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2487		switch (state) {
2488		case QH_STATE_IDLE:
2489			qh_refresh(fotg210, qh);
2490			break;
2491		case QH_STATE_LINKED:
2492			/* We won't refresh a QH that's linked (after the HC
2493			 * stopped the queue).  That avoids a race:
2494			 *  - HC reads first part of QH;
2495			 *  - CPU updates that first part and the token;
2496			 *  - HC reads rest of that QH, including token
2497			 * Result:  HC gets an inconsistent image, and then
2498			 * DMAs to/from the wrong memory (corrupting it).
2499			 *
2500			 * That should be rare for interrupt transfers,
2501			 * except maybe high bandwidth ...
2502			 */
2503
2504			/* Tell the caller to start an unlink */
2505			qh->needs_rescan = 1;
2506			break;
2507		/* otherwise, unlink already started */
2508		}
2509	}
2510
2511	return count;
2512}
2513
2514/* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2515#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2516/* ... and packet size, for any kind of endpoint descriptor */
2517#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2518
2519/* reverse of qh_urb_transaction:  free a list of TDs.
2520 * used for cleanup after errors, before HC sees an URB's TDs.
2521 */
2522static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2523		struct list_head *head)
2524{
2525	struct fotg210_qtd *qtd, *temp;
2526
2527	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2528		list_del(&qtd->qtd_list);
2529		fotg210_qtd_free(fotg210, qtd);
2530	}
2531}
2532
2533/* create a list of filled qtds for this URB; won't link into qh.
2534 */
2535static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2536		struct urb *urb, struct list_head *head, gfp_t flags)
2537{
2538	struct fotg210_qtd *qtd, *qtd_prev;
2539	dma_addr_t buf;
2540	int len, this_sg_len, maxpacket;
2541	int is_input;
2542	u32 token;
2543	int i;
2544	struct scatterlist *sg;
2545
2546	/*
2547	 * URBs map to sequences of QTDs:  one logical transaction
2548	 */
2549	qtd = fotg210_qtd_alloc(fotg210, flags);
2550	if (unlikely(!qtd))
2551		return NULL;
2552	list_add_tail(&qtd->qtd_list, head);
2553	qtd->urb = urb;
2554
2555	token = QTD_STS_ACTIVE;
2556	token |= (FOTG210_TUNE_CERR << 10);
2557	/* for split transactions, SplitXState initialized to zero */
2558
2559	len = urb->transfer_buffer_length;
2560	is_input = usb_pipein(urb->pipe);
2561	if (usb_pipecontrol(urb->pipe)) {
2562		/* SETUP pid */
2563		qtd_fill(fotg210, qtd, urb->setup_dma,
2564				sizeof(struct usb_ctrlrequest),
2565				token | (2 /* "setup" */ << 8), 8);
2566
2567		/* ... and always at least one more pid */
2568		token ^= QTD_TOGGLE;
2569		qtd_prev = qtd;
2570		qtd = fotg210_qtd_alloc(fotg210, flags);
2571		if (unlikely(!qtd))
2572			goto cleanup;
2573		qtd->urb = urb;
2574		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2575		list_add_tail(&qtd->qtd_list, head);
2576
2577		/* for zero length DATA stages, STATUS is always IN */
2578		if (len == 0)
2579			token |= (1 /* "in" */ << 8);
2580	}
2581
2582	/*
2583	 * data transfer stage:  buffer setup
2584	 */
2585	i = urb->num_mapped_sgs;
2586	if (len > 0 && i > 0) {
2587		sg = urb->sg;
2588		buf = sg_dma_address(sg);
2589
2590		/* urb->transfer_buffer_length may be smaller than the
2591		 * size of the scatterlist (or vice versa)
2592		 */
2593		this_sg_len = min_t(int, sg_dma_len(sg), len);
2594	} else {
2595		sg = NULL;
2596		buf = urb->transfer_dma;
2597		this_sg_len = len;
2598	}
2599
2600	if (is_input)
2601		token |= (1 /* "in" */ << 8);
2602	/* else it's already initted to "out" pid (0 << 8) */
2603
2604	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2605
2606	/*
2607	 * buffer gets wrapped in one or more qtds;
2608	 * last one may be "short" (including zero len)
2609	 * and may serve as a control status ack
2610	 */
2611	for (;;) {
2612		int this_qtd_len;
2613
2614		this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2615				maxpacket);
2616		this_sg_len -= this_qtd_len;
2617		len -= this_qtd_len;
2618		buf += this_qtd_len;
2619
2620		/*
2621		 * short reads advance to a "magic" dummy instead of the next
2622		 * qtd ... that forces the queue to stop, for manual cleanup.
2623		 * (this will usually be overridden later.)
2624		 */
2625		if (is_input)
2626			qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2627
2628		/* qh makes control packets use qtd toggle; maybe switch it */
2629		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2630			token ^= QTD_TOGGLE;
2631
2632		if (likely(this_sg_len <= 0)) {
2633			if (--i <= 0 || len <= 0)
2634				break;
2635			sg = sg_next(sg);
2636			buf = sg_dma_address(sg);
2637			this_sg_len = min_t(int, sg_dma_len(sg), len);
2638		}
2639
2640		qtd_prev = qtd;
2641		qtd = fotg210_qtd_alloc(fotg210, flags);
2642		if (unlikely(!qtd))
2643			goto cleanup;
2644		qtd->urb = urb;
2645		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2646		list_add_tail(&qtd->qtd_list, head);
2647	}
2648
2649	/*
2650	 * unless the caller requires manual cleanup after short reads,
2651	 * have the alt_next mechanism keep the queue running after the
2652	 * last data qtd (the only one, for control and most other cases).
2653	 */
2654	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2655			usb_pipecontrol(urb->pipe)))
2656		qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2657
2658	/*
2659	 * control requests may need a terminating data "status" ack;
2660	 * other OUT ones may need a terminating short packet
2661	 * (zero length).
2662	 */
2663	if (likely(urb->transfer_buffer_length != 0)) {
2664		int one_more = 0;
2665
2666		if (usb_pipecontrol(urb->pipe)) {
2667			one_more = 1;
2668			token ^= 0x0100;	/* "in" <--> "out"  */
2669			token |= QTD_TOGGLE;	/* force DATA1 */
2670		} else if (usb_pipeout(urb->pipe)
2671				&& (urb->transfer_flags & URB_ZERO_PACKET)
2672				&& !(urb->transfer_buffer_length % maxpacket)) {
2673			one_more = 1;
2674		}
2675		if (one_more) {
2676			qtd_prev = qtd;
2677			qtd = fotg210_qtd_alloc(fotg210, flags);
2678			if (unlikely(!qtd))
2679				goto cleanup;
2680			qtd->urb = urb;
2681			qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2682			list_add_tail(&qtd->qtd_list, head);
2683
2684			/* never any data in such packets */
2685			qtd_fill(fotg210, qtd, 0, 0, token, 0);
2686		}
2687	}
2688
2689	/* by default, enable interrupt on urb completion */
2690	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2691		qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2692	return head;
2693
2694cleanup:
2695	qtd_list_free(fotg210, urb, head);
2696	return NULL;
2697}
2698
2699/* Would be best to create all qh's from config descriptors,
2700 * when each interface/altsetting is established.  Unlink
2701 * any previous qh and cancel its urbs first; endpoints are
2702 * implicitly reset then (data toggle too).
2703 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2704*/
2705
2706
2707/* Each QH holds a qtd list; a QH is used for everything except iso.
2708 *
2709 * For interrupt urbs, the scheduler must set the microframe scheduling
2710 * mask(s) each time the QH gets scheduled.  For highspeed, that's
2711 * just one microframe in the s-mask.  For split interrupt transactions
2712 * there are additional complications: c-mask, maybe FSTNs.
2713 */
2714static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2715		gfp_t flags)
2716{
2717	struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2718	u32 info1 = 0, info2 = 0;
2719	int is_input, type;
2720	int maxp = 0;
2721	struct usb_tt *tt = urb->dev->tt;
2722	struct fotg210_qh_hw *hw;
2723
2724	if (!qh)
2725		return qh;
2726
2727	/*
2728	 * init endpoint/device data for this QH
2729	 */
2730	info1 |= usb_pipeendpoint(urb->pipe) << 8;
2731	info1 |= usb_pipedevice(urb->pipe) << 0;
2732
2733	is_input = usb_pipein(urb->pipe);
2734	type = usb_pipetype(urb->pipe);
2735	maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2736
2737	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2738	 * acts like up to 3KB, but is built from smaller packets.
2739	 */
2740	if (max_packet(maxp) > 1024) {
2741		fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2742				max_packet(maxp));
2743		goto done;
2744	}
2745
2746	/* Compute interrupt scheduling parameters just once, and save.
2747	 * - allowing for high bandwidth, how many nsec/uframe are used?
2748	 * - split transactions need a second CSPLIT uframe; same question
2749	 * - splits also need a schedule gap (for full/low speed I/O)
2750	 * - qh has a polling interval
2751	 *
2752	 * For control/bulk requests, the HC or TT handles these.
2753	 */
2754	if (type == PIPE_INTERRUPT) {
2755		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2756				is_input, 0,
2757				hb_mult(maxp) * max_packet(maxp)));
2758		qh->start = NO_FRAME;
2759
2760		if (urb->dev->speed == USB_SPEED_HIGH) {
2761			qh->c_usecs = 0;
2762			qh->gap_uf = 0;
2763
2764			qh->period = urb->interval >> 3;
2765			if (qh->period == 0 && urb->interval != 1) {
2766				/* NOTE interval 2 or 4 uframes could work.
2767				 * But interval 1 scheduling is simpler, and
2768				 * includes high bandwidth.
2769				 */
2770				urb->interval = 1;
2771			} else if (qh->period > fotg210->periodic_size) {
2772				qh->period = fotg210->periodic_size;
2773				urb->interval = qh->period << 3;
2774			}
2775		} else {
2776			int think_time;
2777
2778			/* gap is f(FS/LS transfer times) */
2779			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2780					is_input, 0, maxp) / (125 * 1000);
2781
2782			/* FIXME this just approximates SPLIT/CSPLIT times */
2783			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
2784				qh->c_usecs = qh->usecs + HS_USECS(0);
2785				qh->usecs = HS_USECS(1);
2786			} else {		/* SPLIT+DATA, gap, CSPLIT */
2787				qh->usecs += HS_USECS(1);
2788				qh->c_usecs = HS_USECS(0);
2789			}
2790
2791			think_time = tt ? tt->think_time : 0;
2792			qh->tt_usecs = NS_TO_US(think_time +
2793					usb_calc_bus_time(urb->dev->speed,
2794					is_input, 0, max_packet(maxp)));
2795			qh->period = urb->interval;
2796			if (qh->period > fotg210->periodic_size) {
2797				qh->period = fotg210->periodic_size;
2798				urb->interval = qh->period;
2799			}
2800		}
2801	}
2802
2803	/* support for tt scheduling, and access to toggles */
2804	qh->dev = urb->dev;
2805
2806	/* using TT? */
2807	switch (urb->dev->speed) {
2808	case USB_SPEED_LOW:
2809		info1 |= QH_LOW_SPEED;
2810		fallthrough;
2811
2812	case USB_SPEED_FULL:
2813		/* EPS 0 means "full" */
2814		if (type != PIPE_INTERRUPT)
2815			info1 |= (FOTG210_TUNE_RL_TT << 28);
2816		if (type == PIPE_CONTROL) {
2817			info1 |= QH_CONTROL_EP;		/* for TT */
2818			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
2819		}
2820		info1 |= maxp << 16;
2821
2822		info2 |= (FOTG210_TUNE_MULT_TT << 30);
2823
2824		/* Some Freescale processors have an erratum in which the
2825		 * port number in the queue head was 0..N-1 instead of 1..N.
2826		 */
2827		if (fotg210_has_fsl_portno_bug(fotg210))
2828			info2 |= (urb->dev->ttport-1) << 23;
2829		else
2830			info2 |= urb->dev->ttport << 23;
2831
2832		/* set the address of the TT; for TDI's integrated
2833		 * root hub tt, leave it zeroed.
2834		 */
2835		if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2836			info2 |= tt->hub->devnum << 16;
2837
2838		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2839
2840		break;
2841
2842	case USB_SPEED_HIGH:		/* no TT involved */
2843		info1 |= QH_HIGH_SPEED;
2844		if (type == PIPE_CONTROL) {
2845			info1 |= (FOTG210_TUNE_RL_HS << 28);
2846			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
2847			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
2848			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2849		} else if (type == PIPE_BULK) {
2850			info1 |= (FOTG210_TUNE_RL_HS << 28);
2851			/* The USB spec says that high speed bulk endpoints
2852			 * always use 512 byte maxpacket.  But some device
2853			 * vendors decided to ignore that, and MSFT is happy
2854			 * to help them do so.  So now people expect to use
2855			 * such nonconformant devices with Linux too; sigh.
2856			 */
2857			info1 |= max_packet(maxp) << 16;
2858			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2859		} else {		/* PIPE_INTERRUPT */
2860			info1 |= max_packet(maxp) << 16;
2861			info2 |= hb_mult(maxp) << 30;
2862		}
2863		break;
2864	default:
2865		fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2866				urb->dev->speed);
2867done:
2868		qh_destroy(fotg210, qh);
2869		return NULL;
2870	}
2871
2872	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2873
2874	/* init as live, toggle clear, advance to dummy */
2875	qh->qh_state = QH_STATE_IDLE;
2876	hw = qh->hw;
2877	hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2878	hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2879	qh->is_out = !is_input;
2880	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2881	qh_refresh(fotg210, qh);
2882	return qh;
2883}
2884
2885static void enable_async(struct fotg210_hcd *fotg210)
2886{
2887	if (fotg210->async_count++)
2888		return;
2889
2890	/* Stop waiting to turn off the async schedule */
2891	fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2892
2893	/* Don't start the schedule until ASS is 0 */
2894	fotg210_poll_ASS(fotg210);
2895	turn_on_io_watchdog(fotg210);
2896}
2897
2898static void disable_async(struct fotg210_hcd *fotg210)
2899{
2900	if (--fotg210->async_count)
2901		return;
2902
2903	/* The async schedule and async_unlink list are supposed to be empty */
2904	WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2905
2906	/* Don't turn off the schedule until ASS is 1 */
2907	fotg210_poll_ASS(fotg210);
2908}
2909
2910/* move qh (and its qtds) onto async queue; maybe enable queue.  */
2911
2912static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2913{
2914	__hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2915	struct fotg210_qh *head;
2916
2917	/* Don't link a QH if there's a Clear-TT-Buffer pending */
2918	if (unlikely(qh->clearing_tt))
2919		return;
2920
2921	WARN_ON(qh->qh_state != QH_STATE_IDLE);
2922
2923	/* clear halt and/or toggle; and maybe recover from silicon quirk */
2924	qh_refresh(fotg210, qh);
2925
2926	/* splice right after start */
2927	head = fotg210->async;
2928	qh->qh_next = head->qh_next;
2929	qh->hw->hw_next = head->hw->hw_next;
2930	wmb();
2931
2932	head->qh_next.qh = qh;
2933	head->hw->hw_next = dma;
2934
2935	qh->xacterrs = 0;
2936	qh->qh_state = QH_STATE_LINKED;
2937	/* qtd completions reported later by interrupt */
2938
2939	enable_async(fotg210);
2940}
2941
2942/* For control/bulk/interrupt, return QH with these TDs appended.
2943 * Allocates and initializes the QH if necessary.
2944 * Returns null if it can't allocate a QH it needs to.
2945 * If the QH has TDs (urbs) already, that's great.
2946 */
2947static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2948		struct urb *urb, struct list_head *qtd_list,
2949		int epnum, void **ptr)
2950{
2951	struct fotg210_qh *qh = NULL;
2952	__hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2953
2954	qh = (struct fotg210_qh *) *ptr;
2955	if (unlikely(qh == NULL)) {
2956		/* can't sleep here, we have fotg210->lock... */
2957		qh = qh_make(fotg210, urb, GFP_ATOMIC);
2958		*ptr = qh;
2959	}
2960	if (likely(qh != NULL)) {
2961		struct fotg210_qtd *qtd;
2962
2963		if (unlikely(list_empty(qtd_list)))
2964			qtd = NULL;
2965		else
2966			qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2967					qtd_list);
2968
2969		/* control qh may need patching ... */
2970		if (unlikely(epnum == 0)) {
2971			/* usb_reset_device() briefly reverts to address 0 */
2972			if (usb_pipedevice(urb->pipe) == 0)
2973				qh->hw->hw_info1 &= ~qh_addr_mask;
2974		}
2975
2976		/* just one way to queue requests: swap with the dummy qtd.
2977		 * only hc or qh_refresh() ever modify the overlay.
2978		 */
2979		if (likely(qtd != NULL)) {
2980			struct fotg210_qtd *dummy;
2981			dma_addr_t dma;
2982			__hc32 token;
2983
2984			/* to avoid racing the HC, use the dummy td instead of
2985			 * the first td of our list (becomes new dummy).  both
2986			 * tds stay deactivated until we're done, when the
2987			 * HC is allowed to fetch the old dummy (4.10.2).
2988			 */
2989			token = qtd->hw_token;
2990			qtd->hw_token = HALT_BIT(fotg210);
2991
2992			dummy = qh->dummy;
2993
2994			dma = dummy->qtd_dma;
2995			*dummy = *qtd;
2996			dummy->qtd_dma = dma;
2997
2998			list_del(&qtd->qtd_list);
2999			list_add(&dummy->qtd_list, qtd_list);
3000			list_splice_tail(qtd_list, &qh->qtd_list);
3001
3002			fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3003			qh->dummy = qtd;
3004
3005			/* hc must see the new dummy at list end */
3006			dma = qtd->qtd_dma;
3007			qtd = list_entry(qh->qtd_list.prev,
3008					struct fotg210_qtd, qtd_list);
3009			qtd->hw_next = QTD_NEXT(fotg210, dma);
3010
3011			/* let the hc process these next qtds */
3012			wmb();
3013			dummy->hw_token = token;
3014
3015			urb->hcpriv = qh;
3016		}
3017	}
3018	return qh;
3019}
3020
3021static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3022		struct list_head *qtd_list, gfp_t mem_flags)
3023{
3024	int epnum;
3025	unsigned long flags;
3026	struct fotg210_qh *qh = NULL;
3027	int rc;
3028
3029	epnum = urb->ep->desc.bEndpointAddress;
3030
3031#ifdef FOTG210_URB_TRACE
3032	{
3033		struct fotg210_qtd *qtd;
3034
3035		qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3036		fotg210_dbg(fotg210,
3037				"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3038				__func__, urb->dev->devpath, urb,
3039				epnum & 0x0f, (epnum & USB_DIR_IN)
3040					? "in" : "out",
3041				urb->transfer_buffer_length,
3042				qtd, urb->ep->hcpriv);
3043	}
3044#endif
3045
3046	spin_lock_irqsave(&fotg210->lock, flags);
3047	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3048		rc = -ESHUTDOWN;
3049		goto done;
3050	}
3051	rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3052	if (unlikely(rc))
3053		goto done;
3054
3055	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3056	if (unlikely(qh == NULL)) {
3057		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3058		rc = -ENOMEM;
3059		goto done;
3060	}
3061
3062	/* Control/bulk operations through TTs don't need scheduling,
3063	 * the HC and TT handle it when the TT has a buffer ready.
3064	 */
3065	if (likely(qh->qh_state == QH_STATE_IDLE))
3066		qh_link_async(fotg210, qh);
3067done:
3068	spin_unlock_irqrestore(&fotg210->lock, flags);
3069	if (unlikely(qh == NULL))
3070		qtd_list_free(fotg210, urb, qtd_list);
3071	return rc;
3072}
3073
3074static void single_unlink_async(struct fotg210_hcd *fotg210,
3075		struct fotg210_qh *qh)
3076{
3077	struct fotg210_qh *prev;
3078
3079	/* Add to the end of the list of QHs waiting for the next IAAD */
3080	qh->qh_state = QH_STATE_UNLINK;
3081	if (fotg210->async_unlink)
3082		fotg210->async_unlink_last->unlink_next = qh;
3083	else
3084		fotg210->async_unlink = qh;
3085	fotg210->async_unlink_last = qh;
3086
3087	/* Unlink it from the schedule */
3088	prev = fotg210->async;
3089	while (prev->qh_next.qh != qh)
3090		prev = prev->qh_next.qh;
3091
3092	prev->hw->hw_next = qh->hw->hw_next;
3093	prev->qh_next = qh->qh_next;
3094	if (fotg210->qh_scan_next == qh)
3095		fotg210->qh_scan_next = qh->qh_next.qh;
3096}
3097
3098static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3099{
3100	/*
3101	 * Do nothing if an IAA cycle is already running or
3102	 * if one will be started shortly.
3103	 */
3104	if (fotg210->async_iaa || fotg210->async_unlinking)
3105		return;
3106
3107	/* Do all the waiting QHs at once */
3108	fotg210->async_iaa = fotg210->async_unlink;
3109	fotg210->async_unlink = NULL;
3110
3111	/* If the controller isn't running, we don't have to wait for it */
3112	if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3113		if (!nested)		/* Avoid recursion */
3114			end_unlink_async(fotg210);
3115
3116	/* Otherwise start a new IAA cycle */
3117	} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3118		/* Make sure the unlinks are all visible to the hardware */
3119		wmb();
3120
3121		fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3122				&fotg210->regs->command);
3123		fotg210_readl(fotg210, &fotg210->regs->command);
3124		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3125				true);
3126	}
3127}
3128
3129/* the async qh for the qtds being unlinked are now gone from the HC */
3130
3131static void end_unlink_async(struct fotg210_hcd *fotg210)
3132{
3133	struct fotg210_qh *qh;
3134
3135	/* Process the idle QHs */
3136restart:
3137	fotg210->async_unlinking = true;
3138	while (fotg210->async_iaa) {
3139		qh = fotg210->async_iaa;
3140		fotg210->async_iaa = qh->unlink_next;
3141		qh->unlink_next = NULL;
3142
3143		qh->qh_state = QH_STATE_IDLE;
3144		qh->qh_next.qh = NULL;
3145
3146		qh_completions(fotg210, qh);
3147		if (!list_empty(&qh->qtd_list) &&
3148				fotg210->rh_state == FOTG210_RH_RUNNING)
3149			qh_link_async(fotg210, qh);
3150		disable_async(fotg210);
3151	}
3152	fotg210->async_unlinking = false;
3153
3154	/* Start a new IAA cycle if any QHs are waiting for it */
3155	if (fotg210->async_unlink) {
3156		start_iaa_cycle(fotg210, true);
3157		if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3158			goto restart;
3159	}
3160}
3161
3162static void unlink_empty_async(struct fotg210_hcd *fotg210)
3163{
3164	struct fotg210_qh *qh, *next;
3165	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3166	bool check_unlinks_later = false;
3167
3168	/* Unlink all the async QHs that have been empty for a timer cycle */
3169	next = fotg210->async->qh_next.qh;
3170	while (next) {
3171		qh = next;
3172		next = qh->qh_next.qh;
3173
3174		if (list_empty(&qh->qtd_list) &&
3175				qh->qh_state == QH_STATE_LINKED) {
3176			if (!stopped && qh->unlink_cycle ==
3177					fotg210->async_unlink_cycle)
3178				check_unlinks_later = true;
3179			else
3180				single_unlink_async(fotg210, qh);
3181		}
3182	}
3183
3184	/* Start a new IAA cycle if any QHs are waiting for it */
3185	if (fotg210->async_unlink)
3186		start_iaa_cycle(fotg210, false);
3187
3188	/* QHs that haven't been empty for long enough will be handled later */
3189	if (check_unlinks_later) {
3190		fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3191				true);
3192		++fotg210->async_unlink_cycle;
3193	}
3194}
3195
3196/* makes sure the async qh will become idle */
3197/* caller must own fotg210->lock */
3198
3199static void start_unlink_async(struct fotg210_hcd *fotg210,
3200		struct fotg210_qh *qh)
3201{
3202	/*
3203	 * If the QH isn't linked then there's nothing we can do
3204	 * unless we were called during a giveback, in which case
3205	 * qh_completions() has to deal with it.
3206	 */
3207	if (qh->qh_state != QH_STATE_LINKED) {
3208		if (qh->qh_state == QH_STATE_COMPLETING)
3209			qh->needs_rescan = 1;
3210		return;
3211	}
3212
3213	single_unlink_async(fotg210, qh);
3214	start_iaa_cycle(fotg210, false);
3215}
3216
3217static void scan_async(struct fotg210_hcd *fotg210)
3218{
3219	struct fotg210_qh *qh;
3220	bool check_unlinks_later = false;
3221
3222	fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3223	while (fotg210->qh_scan_next) {
3224		qh = fotg210->qh_scan_next;
3225		fotg210->qh_scan_next = qh->qh_next.qh;
3226rescan:
3227		/* clean any finished work for this qh */
3228		if (!list_empty(&qh->qtd_list)) {
3229			int temp;
3230
3231			/*
3232			 * Unlinks could happen here; completion reporting
3233			 * drops the lock.  That's why fotg210->qh_scan_next
3234			 * always holds the next qh to scan; if the next qh
3235			 * gets unlinked then fotg210->qh_scan_next is adjusted
3236			 * in single_unlink_async().
3237			 */
3238			temp = qh_completions(fotg210, qh);
3239			if (qh->needs_rescan) {
3240				start_unlink_async(fotg210, qh);
3241			} else if (list_empty(&qh->qtd_list)
3242					&& qh->qh_state == QH_STATE_LINKED) {
3243				qh->unlink_cycle = fotg210->async_unlink_cycle;
3244				check_unlinks_later = true;
3245			} else if (temp != 0)
3246				goto rescan;
3247		}
3248	}
3249
3250	/*
3251	 * Unlink empty entries, reducing DMA usage as well
3252	 * as HCD schedule-scanning costs.  Delay for any qh
3253	 * we just scanned, there's a not-unusual case that it
3254	 * doesn't stay idle for long.
3255	 */
3256	if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3257			!(fotg210->enabled_hrtimer_events &
3258			BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3259		fotg210_enable_event(fotg210,
3260				FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3261		++fotg210->async_unlink_cycle;
3262	}
3263}
3264/* EHCI scheduled transaction support:  interrupt, iso, split iso
3265 * These are called "periodic" transactions in the EHCI spec.
3266 *
3267 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3268 * with the "asynchronous" transaction support (control/bulk transfers).
3269 * The only real difference is in how interrupt transfers are scheduled.
3270 *
3271 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3272 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3273 * pre-calculated schedule data to make appending to the queue be quick.
3274 */
3275static int fotg210_get_frame(struct usb_hcd *hcd);
3276
3277/* periodic_next_shadow - return "next" pointer on shadow list
3278 * @periodic: host pointer to qh/itd
3279 * @tag: hardware tag for type of this record
3280 */
3281static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3282		union fotg210_shadow *periodic, __hc32 tag)
3283{
3284	switch (hc32_to_cpu(fotg210, tag)) {
3285	case Q_TYPE_QH:
3286		return &periodic->qh->qh_next;
3287	case Q_TYPE_FSTN:
3288		return &periodic->fstn->fstn_next;
3289	default:
3290		return &periodic->itd->itd_next;
3291	}
3292}
3293
3294static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3295		union fotg210_shadow *periodic, __hc32 tag)
3296{
3297	switch (hc32_to_cpu(fotg210, tag)) {
3298	/* our fotg210_shadow.qh is actually software part */
3299	case Q_TYPE_QH:
3300		return &periodic->qh->hw->hw_next;
3301	/* others are hw parts */
3302	default:
3303		return periodic->hw_next;
3304	}
3305}
3306
3307/* caller must hold fotg210->lock */
3308static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3309		void *ptr)
3310{
3311	union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3312	__hc32 *hw_p = &fotg210->periodic[frame];
3313	union fotg210_shadow here = *prev_p;
3314
3315	/* find predecessor of "ptr"; hw and shadow lists are in sync */
3316	while (here.ptr && here.ptr != ptr) {
3317		prev_p = periodic_next_shadow(fotg210, prev_p,
3318				Q_NEXT_TYPE(fotg210, *hw_p));
3319		hw_p = shadow_next_periodic(fotg210, &here,
3320				Q_NEXT_TYPE(fotg210, *hw_p));
3321		here = *prev_p;
3322	}
3323	/* an interrupt entry (at list end) could have been shared */
3324	if (!here.ptr)
3325		return;
3326
3327	/* update shadow and hardware lists ... the old "next" pointers
3328	 * from ptr may still be in use, the caller updates them.
3329	 */
3330	*prev_p = *periodic_next_shadow(fotg210, &here,
3331			Q_NEXT_TYPE(fotg210, *hw_p));
3332
3333	*hw_p = *shadow_next_periodic(fotg210, &here,
3334			Q_NEXT_TYPE(fotg210, *hw_p));
3335}
3336
3337/* how many of the uframe's 125 usecs are allocated? */
3338static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3339		unsigned frame, unsigned uframe)
3340{
3341	__hc32 *hw_p = &fotg210->periodic[frame];
3342	union fotg210_shadow *q = &fotg210->pshadow[frame];
3343	unsigned usecs = 0;
3344	struct fotg210_qh_hw *hw;
3345
3346	while (q->ptr) {
3347		switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3348		case Q_TYPE_QH:
3349			hw = q->qh->hw;
3350			/* is it in the S-mask? */
3351			if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3352				usecs += q->qh->usecs;
3353			/* ... or C-mask? */
3354			if (hw->hw_info2 & cpu_to_hc32(fotg210,
3355					1 << (8 + uframe)))
3356				usecs += q->qh->c_usecs;
3357			hw_p = &hw->hw_next;
3358			q = &q->qh->qh_next;
3359			break;
3360		/* case Q_TYPE_FSTN: */
3361		default:
3362			/* for "save place" FSTNs, count the relevant INTR
3363			 * bandwidth from the previous frame
3364			 */
3365			if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3366				fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3367
3368			hw_p = &q->fstn->hw_next;
3369			q = &q->fstn->fstn_next;
3370			break;
3371		case Q_TYPE_ITD:
3372			if (q->itd->hw_transaction[uframe])
3373				usecs += q->itd->stream->usecs;
3374			hw_p = &q->itd->hw_next;
3375			q = &q->itd->itd_next;
3376			break;
3377		}
3378	}
3379	if (usecs > fotg210->uframe_periodic_max)
3380		fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3381				frame * 8 + uframe, usecs);
3382	return usecs;
3383}
3384
3385static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3386{
3387	if (!dev1->tt || !dev2->tt)
3388		return 0;
3389	if (dev1->tt != dev2->tt)
3390		return 0;
3391	if (dev1->tt->multi)
3392		return dev1->ttport == dev2->ttport;
3393	else
3394		return 1;
3395}
3396
3397/* return true iff the device's transaction translator is available
3398 * for a periodic transfer starting at the specified frame, using
3399 * all the uframes in the mask.
3400 */
3401static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3402		struct usb_device *dev, unsigned frame, u32 uf_mask)
3403{
3404	if (period == 0)	/* error */
3405		return 0;
3406
3407	/* note bandwidth wastage:  split never follows csplit
3408	 * (different dev or endpoint) until the next uframe.
3409	 * calling convention doesn't make that distinction.
3410	 */
3411	for (; frame < fotg210->periodic_size; frame += period) {
3412		union fotg210_shadow here;
3413		__hc32 type;
3414		struct fotg210_qh_hw *hw;
3415
3416		here = fotg210->pshadow[frame];
3417		type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3418		while (here.ptr) {
3419			switch (hc32_to_cpu(fotg210, type)) {
3420			case Q_TYPE_ITD:
3421				type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3422				here = here.itd->itd_next;
3423				continue;
3424			case Q_TYPE_QH:
3425				hw = here.qh->hw;
3426				if (same_tt(dev, here.qh->dev)) {
3427					u32 mask;
3428
3429					mask = hc32_to_cpu(fotg210,
3430							hw->hw_info2);
3431					/* "knows" no gap is needed */
3432					mask |= mask >> 8;
3433					if (mask & uf_mask)
3434						break;
3435				}
3436				type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3437				here = here.qh->qh_next;
3438				continue;
3439			/* case Q_TYPE_FSTN: */
3440			default:
3441				fotg210_dbg(fotg210,
3442						"periodic frame %d bogus type %d\n",
3443						frame, type);
3444			}
3445
3446			/* collision or error */
3447			return 0;
3448		}
3449	}
3450
3451	/* no collision */
3452	return 1;
3453}
3454
3455static void enable_periodic(struct fotg210_hcd *fotg210)
3456{
3457	if (fotg210->periodic_count++)
3458		return;
3459
3460	/* Stop waiting to turn off the periodic schedule */
3461	fotg210->enabled_hrtimer_events &=
3462		~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3463
3464	/* Don't start the schedule until PSS is 0 */
3465	fotg210_poll_PSS(fotg210);
3466	turn_on_io_watchdog(fotg210);
3467}
3468
3469static void disable_periodic(struct fotg210_hcd *fotg210)
3470{
3471	if (--fotg210->periodic_count)
3472		return;
3473
3474	/* Don't turn off the schedule until PSS is 1 */
3475	fotg210_poll_PSS(fotg210);
3476}
3477
3478/* periodic schedule slots have iso tds (normal or split) first, then a
3479 * sparse tree for active interrupt transfers.
3480 *
3481 * this just links in a qh; caller guarantees uframe masks are set right.
3482 * no FSTN support (yet; fotg210 0.96+)
3483 */
3484static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3485{
3486	unsigned i;
3487	unsigned period = qh->period;
3488
3489	dev_dbg(&qh->dev->dev,
3490			"link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3491			hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3492			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3493			qh->c_usecs);
3494
3495	/* high bandwidth, or otherwise every microframe */
3496	if (period == 0)
3497		period = 1;
3498
3499	for (i = qh->start; i < fotg210->periodic_size; i += period) {
3500		union fotg210_shadow *prev = &fotg210->pshadow[i];
3501		__hc32 *hw_p = &fotg210->periodic[i];
3502		union fotg210_shadow here = *prev;
3503		__hc32 type = 0;
3504
3505		/* skip the iso nodes at list head */
3506		while (here.ptr) {
3507			type = Q_NEXT_TYPE(fotg210, *hw_p);
3508			if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3509				break;
3510			prev = periodic_next_shadow(fotg210, prev, type);
3511			hw_p = shadow_next_periodic(fotg210, &here, type);
3512			here = *prev;
3513		}
3514
3515		/* sorting each branch by period (slow-->fast)
3516		 * enables sharing interior tree nodes
3517		 */
3518		while (here.ptr && qh != here.qh) {
3519			if (qh->period > here.qh->period)
3520				break;
3521			prev = &here.qh->qh_next;
3522			hw_p = &here.qh->hw->hw_next;
3523			here = *prev;
3524		}
3525		/* link in this qh, unless some earlier pass did that */
3526		if (qh != here.qh) {
3527			qh->qh_next = here;
3528			if (here.qh)
3529				qh->hw->hw_next = *hw_p;
3530			wmb();
3531			prev->qh = qh;
3532			*hw_p = QH_NEXT(fotg210, qh->qh_dma);
3533		}
3534	}
3535	qh->qh_state = QH_STATE_LINKED;
3536	qh->xacterrs = 0;
3537
3538	/* update per-qh bandwidth for usbfs */
3539	fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3540		? ((qh->usecs + qh->c_usecs) / qh->period)
3541		: (qh->usecs * 8);
3542
3543	list_add(&qh->intr_node, &fotg210->intr_qh_list);
3544
3545	/* maybe enable periodic schedule processing */
3546	++fotg210->intr_count;
3547	enable_periodic(fotg210);
3548}
3549
3550static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3551		struct fotg210_qh *qh)
3552{
3553	unsigned i;
3554	unsigned period;
3555
3556	/*
3557	 * If qh is for a low/full-speed device, simply unlinking it
3558	 * could interfere with an ongoing split transaction.  To unlink
3559	 * it safely would require setting the QH_INACTIVATE bit and
3560	 * waiting at least one frame, as described in EHCI 4.12.2.5.
3561	 *
3562	 * We won't bother with any of this.  Instead, we assume that the
3563	 * only reason for unlinking an interrupt QH while the current URB
3564	 * is still active is to dequeue all the URBs (flush the whole
3565	 * endpoint queue).
3566	 *
3567	 * If rebalancing the periodic schedule is ever implemented, this
3568	 * approach will no longer be valid.
3569	 */
3570
3571	/* high bandwidth, or otherwise part of every microframe */
3572	period = qh->period;
3573	if (!period)
3574		period = 1;
3575
3576	for (i = qh->start; i < fotg210->periodic_size; i += period)
3577		periodic_unlink(fotg210, i, qh);
3578
3579	/* update per-qh bandwidth for usbfs */
3580	fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3581		? ((qh->usecs + qh->c_usecs) / qh->period)
3582		: (qh->usecs * 8);
3583
3584	dev_dbg(&qh->dev->dev,
3585			"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3586			qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3587			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3588			qh->c_usecs);
3589
3590	/* qh->qh_next still "live" to HC */
3591	qh->qh_state = QH_STATE_UNLINK;
3592	qh->qh_next.ptr = NULL;
3593
3594	if (fotg210->qh_scan_next == qh)
3595		fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3596				struct fotg210_qh, intr_node);
3597	list_del(&qh->intr_node);
3598}
3599
3600static void start_unlink_intr(struct fotg210_hcd *fotg210,
3601		struct fotg210_qh *qh)
3602{
3603	/* If the QH isn't linked then there's nothing we can do
3604	 * unless we were called during a giveback, in which case
3605	 * qh_completions() has to deal with it.
3606	 */
3607	if (qh->qh_state != QH_STATE_LINKED) {
3608		if (qh->qh_state == QH_STATE_COMPLETING)
3609			qh->needs_rescan = 1;
3610		return;
3611	}
3612
3613	qh_unlink_periodic(fotg210, qh);
3614
3615	/* Make sure the unlinks are visible before starting the timer */
3616	wmb();
3617
3618	/*
3619	 * The EHCI spec doesn't say how long it takes the controller to
3620	 * stop accessing an unlinked interrupt QH.  The timer delay is
3621	 * 9 uframes; presumably that will be long enough.
3622	 */
3623	qh->unlink_cycle = fotg210->intr_unlink_cycle;
3624
3625	/* New entries go at the end of the intr_unlink list */
3626	if (fotg210->intr_unlink)
3627		fotg210->intr_unlink_last->unlink_next = qh;
3628	else
3629		fotg210->intr_unlink = qh;
3630	fotg210->intr_unlink_last = qh;
3631
3632	if (fotg210->intr_unlinking)
3633		;	/* Avoid recursive calls */
3634	else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3635		fotg210_handle_intr_unlinks(fotg210);
3636	else if (fotg210->intr_unlink == qh) {
3637		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3638				true);
3639		++fotg210->intr_unlink_cycle;
3640	}
3641}
3642
3643static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3644{
3645	struct fotg210_qh_hw *hw = qh->hw;
3646	int rc;
3647
3648	qh->qh_state = QH_STATE_IDLE;
3649	hw->hw_next = FOTG210_LIST_END(fotg210);
3650
3651	qh_completions(fotg210, qh);
3652
3653	/* reschedule QH iff another request is queued */
3654	if (!list_empty(&qh->qtd_list) &&
3655			fotg210->rh_state == FOTG210_RH_RUNNING) {
3656		rc = qh_schedule(fotg210, qh);
3657
3658		/* An error here likely indicates handshake failure
3659		 * or no space left in the schedule.  Neither fault
3660		 * should happen often ...
3661		 *
3662		 * FIXME kill the now-dysfunctional queued urbs
3663		 */
3664		if (rc != 0)
3665			fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3666					qh, rc);
3667	}
3668
3669	/* maybe turn off periodic schedule */
3670	--fotg210->intr_count;
3671	disable_periodic(fotg210);
3672}
3673
3674static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3675		unsigned uframe, unsigned period, unsigned usecs)
3676{
3677	int claimed;
3678
3679	/* complete split running into next frame?
3680	 * given FSTN support, we could sometimes check...
3681	 */
3682	if (uframe >= 8)
3683		return 0;
3684
3685	/* convert "usecs we need" to "max already claimed" */
3686	usecs = fotg210->uframe_periodic_max - usecs;
3687
3688	/* we "know" 2 and 4 uframe intervals were rejected; so
3689	 * for period 0, check _every_ microframe in the schedule.
3690	 */
3691	if (unlikely(period == 0)) {
3692		do {
3693			for (uframe = 0; uframe < 7; uframe++) {
3694				claimed = periodic_usecs(fotg210, frame,
3695						uframe);
3696				if (claimed > usecs)
3697					return 0;
3698			}
3699		} while ((frame += 1) < fotg210->periodic_size);
3700
3701	/* just check the specified uframe, at that period */
3702	} else {
3703		do {
3704			claimed = periodic_usecs(fotg210, frame, uframe);
3705			if (claimed > usecs)
3706				return 0;
3707		} while ((frame += period) < fotg210->periodic_size);
3708	}
3709
3710	/* success! */
3711	return 1;
3712}
3713
3714static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3715		unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3716{
3717	int retval = -ENOSPC;
3718	u8 mask = 0;
3719
3720	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
3721		goto done;
3722
3723	if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3724		goto done;
3725	if (!qh->c_usecs) {
3726		retval = 0;
3727		*c_maskp = 0;
3728		goto done;
3729	}
3730
3731	/* Make sure this tt's buffer is also available for CSPLITs.
3732	 * We pessimize a bit; probably the typical full speed case
3733	 * doesn't need the second CSPLIT.
3734	 *
3735	 * NOTE:  both SPLIT and CSPLIT could be checked in just
3736	 * one smart pass...
3737	 */
3738	mask = 0x03 << (uframe + qh->gap_uf);
3739	*c_maskp = cpu_to_hc32(fotg210, mask << 8);
3740
3741	mask |= 1 << uframe;
3742	if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3743		if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3744				qh->period, qh->c_usecs))
3745			goto done;
3746		if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3747				qh->period, qh->c_usecs))
3748			goto done;
3749		retval = 0;
3750	}
3751done:
3752	return retval;
3753}
3754
3755/* "first fit" scheduling policy used the first time through,
3756 * or when the previous schedule slot can't be re-used.
3757 */
3758static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3759{
3760	int status;
3761	unsigned uframe;
3762	__hc32 c_mask;
3763	unsigned frame;	/* 0..(qh->period - 1), or NO_FRAME */
3764	struct fotg210_qh_hw *hw = qh->hw;
3765
3766	qh_refresh(fotg210, qh);
3767	hw->hw_next = FOTG210_LIST_END(fotg210);
3768	frame = qh->start;
3769
3770	/* reuse the previous schedule slots, if we can */
3771	if (frame < qh->period) {
3772		uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3773		status = check_intr_schedule(fotg210, frame, --uframe,
3774				qh, &c_mask);
3775	} else {
3776		uframe = 0;
3777		c_mask = 0;
3778		status = -ENOSPC;
3779	}
3780
3781	/* else scan the schedule to find a group of slots such that all
3782	 * uframes have enough periodic bandwidth available.
3783	 */
3784	if (status) {
3785		/* "normal" case, uframing flexible except with splits */
3786		if (qh->period) {
3787			int i;
3788
3789			for (i = qh->period; status && i > 0; --i) {
3790				frame = ++fotg210->random_frame % qh->period;
3791				for (uframe = 0; uframe < 8; uframe++) {
3792					status = check_intr_schedule(fotg210,
3793							frame, uframe, qh,
3794							&c_mask);
3795					if (status == 0)
3796						break;
3797				}
3798			}
3799
3800		/* qh->period == 0 means every uframe */
3801		} else {
3802			frame = 0;
3803			status = check_intr_schedule(fotg210, 0, 0, qh,
3804					&c_mask);
3805		}
3806		if (status)
3807			goto done;
3808		qh->start = frame;
3809
3810		/* reset S-frame and (maybe) C-frame masks */
3811		hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3812		hw->hw_info2 |= qh->period
3813			? cpu_to_hc32(fotg210, 1 << uframe)
3814			: cpu_to_hc32(fotg210, QH_SMASK);
3815		hw->hw_info2 |= c_mask;
3816	} else
3817		fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3818
3819	/* stuff into the periodic schedule */
3820	qh_link_periodic(fotg210, qh);
3821done:
3822	return status;
3823}
3824
3825static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3826		struct list_head *qtd_list, gfp_t mem_flags)
3827{
3828	unsigned epnum;
3829	unsigned long flags;
3830	struct fotg210_qh *qh;
3831	int status;
3832	struct list_head empty;
3833
3834	/* get endpoint and transfer/schedule data */
3835	epnum = urb->ep->desc.bEndpointAddress;
3836
3837	spin_lock_irqsave(&fotg210->lock, flags);
3838
3839	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3840		status = -ESHUTDOWN;
3841		goto done_not_linked;
3842	}
3843	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3844	if (unlikely(status))
3845		goto done_not_linked;
3846
3847	/* get qh and force any scheduling errors */
3848	INIT_LIST_HEAD(&empty);
3849	qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3850	if (qh == NULL) {
3851		status = -ENOMEM;
3852		goto done;
3853	}
3854	if (qh->qh_state == QH_STATE_IDLE) {
3855		status = qh_schedule(fotg210, qh);
3856		if (status)
3857			goto done;
3858	}
3859
3860	/* then queue the urb's tds to the qh */
3861	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3862	BUG_ON(qh == NULL);
3863
3864	/* ... update usbfs periodic stats */
3865	fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3866
3867done:
3868	if (unlikely(status))
3869		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3870done_not_linked:
3871	spin_unlock_irqrestore(&fotg210->lock, flags);
3872	if (status)
3873		qtd_list_free(fotg210, urb, qtd_list);
3874
3875	return status;
3876}
3877
3878static void scan_intr(struct fotg210_hcd *fotg210)
3879{
3880	struct fotg210_qh *qh;
3881
3882	list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3883			&fotg210->intr_qh_list, intr_node) {
3884rescan:
3885		/* clean any finished work for this qh */
3886		if (!list_empty(&qh->qtd_list)) {
3887			int temp;
3888
3889			/*
3890			 * Unlinks could happen here; completion reporting
3891			 * drops the lock.  That's why fotg210->qh_scan_next
3892			 * always holds the next qh to scan; if the next qh
3893			 * gets unlinked then fotg210->qh_scan_next is adjusted
3894			 * in qh_unlink_periodic().
3895			 */
3896			temp = qh_completions(fotg210, qh);
3897			if (unlikely(qh->needs_rescan ||
3898					(list_empty(&qh->qtd_list) &&
3899					qh->qh_state == QH_STATE_LINKED)))
3900				start_unlink_intr(fotg210, qh);
3901			else if (temp != 0)
3902				goto rescan;
3903		}
3904	}
3905}
3906
3907/* fotg210_iso_stream ops work with both ITD and SITD */
3908
3909static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3910{
3911	struct fotg210_iso_stream *stream;
3912
3913	stream = kzalloc(sizeof(*stream), mem_flags);
3914	if (likely(stream != NULL)) {
3915		INIT_LIST_HEAD(&stream->td_list);
3916		INIT_LIST_HEAD(&stream->free_list);
3917		stream->next_uframe = -1;
3918	}
3919	return stream;
3920}
3921
3922static void iso_stream_init(struct fotg210_hcd *fotg210,
3923		struct fotg210_iso_stream *stream, struct usb_device *dev,
3924		int pipe, unsigned interval)
3925{
3926	u32 buf1;
3927	unsigned epnum, maxp;
3928	int is_input;
3929	long bandwidth;
3930	unsigned multi;
3931
3932	/*
3933	 * this might be a "high bandwidth" highspeed endpoint,
3934	 * as encoded in the ep descriptor's wMaxPacket field
3935	 */
3936	epnum = usb_pipeendpoint(pipe);
3937	is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3938	maxp = usb_maxpacket(dev, pipe, !is_input);
3939	if (is_input)
3940		buf1 = (1 << 11);
3941	else
3942		buf1 = 0;
3943
3944	maxp = max_packet(maxp);
3945	multi = hb_mult(maxp);
3946	buf1 |= maxp;
3947	maxp *= multi;
3948
3949	stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3950	stream->buf1 = cpu_to_hc32(fotg210, buf1);
3951	stream->buf2 = cpu_to_hc32(fotg210, multi);
3952
3953	/* usbfs wants to report the average usecs per frame tied up
3954	 * when transfers on this endpoint are scheduled ...
3955	 */
3956	if (dev->speed == USB_SPEED_FULL) {
3957		interval <<= 3;
3958		stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3959				is_input, 1, maxp));
3960		stream->usecs /= 8;
3961	} else {
3962		stream->highspeed = 1;
3963		stream->usecs = HS_USECS_ISO(maxp);
3964	}
3965	bandwidth = stream->usecs * 8;
3966	bandwidth /= interval;
3967
3968	stream->bandwidth = bandwidth;
3969	stream->udev = dev;
3970	stream->bEndpointAddress = is_input | epnum;
3971	stream->interval = interval;
3972	stream->maxp = maxp;
3973}
3974
3975static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3976		struct urb *urb)
3977{
3978	unsigned epnum;
3979	struct fotg210_iso_stream *stream;
3980	struct usb_host_endpoint *ep;
3981	unsigned long flags;
3982
3983	epnum = usb_pipeendpoint(urb->pipe);
3984	if (usb_pipein(urb->pipe))
3985		ep = urb->dev->ep_in[epnum];
3986	else
3987		ep = urb->dev->ep_out[epnum];
3988
3989	spin_lock_irqsave(&fotg210->lock, flags);
3990	stream = ep->hcpriv;
3991
3992	if (unlikely(stream == NULL)) {
3993		stream = iso_stream_alloc(GFP_ATOMIC);
3994		if (likely(stream != NULL)) {
3995			ep->hcpriv = stream;
3996			stream->ep = ep;
3997			iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3998					urb->interval);
3999		}
4000
4001	/* if dev->ep[epnum] is a QH, hw is set */
4002	} else if (unlikely(stream->hw != NULL)) {
4003		fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4004				urb->dev->devpath, epnum,
4005				usb_pipein(urb->pipe) ? "in" : "out");
4006		stream = NULL;
4007	}
4008
4009	spin_unlock_irqrestore(&fotg210->lock, flags);
4010	return stream;
4011}
4012
4013/* fotg210_iso_sched ops can be ITD-only or SITD-only */
4014
4015static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4016		gfp_t mem_flags)
4017{
4018	struct fotg210_iso_sched *iso_sched;
4019	int size = sizeof(*iso_sched);
4020
4021	size += packets * sizeof(struct fotg210_iso_packet);
4022	iso_sched = kzalloc(size, mem_flags);
4023	if (likely(iso_sched != NULL))
4024		INIT_LIST_HEAD(&iso_sched->td_list);
4025
4026	return iso_sched;
4027}
4028
4029static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4030		struct fotg210_iso_sched *iso_sched,
4031		struct fotg210_iso_stream *stream, struct urb *urb)
4032{
4033	unsigned i;
4034	dma_addr_t dma = urb->transfer_dma;
4035
4036	/* how many uframes are needed for these transfers */
4037	iso_sched->span = urb->number_of_packets * stream->interval;
4038
4039	/* figure out per-uframe itd fields that we'll need later
4040	 * when we fit new itds into the schedule.
4041	 */
4042	for (i = 0; i < urb->number_of_packets; i++) {
4043		struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4044		unsigned length;
4045		dma_addr_t buf;
4046		u32 trans;
4047
4048		length = urb->iso_frame_desc[i].length;
4049		buf = dma + urb->iso_frame_desc[i].offset;
4050
4051		trans = FOTG210_ISOC_ACTIVE;
4052		trans |= buf & 0x0fff;
4053		if (unlikely(((i + 1) == urb->number_of_packets))
4054				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
4055			trans |= FOTG210_ITD_IOC;
4056		trans |= length << 16;
4057		uframe->transaction = cpu_to_hc32(fotg210, trans);
4058
4059		/* might need to cross a buffer page within a uframe */
4060		uframe->bufp = (buf & ~(u64)0x0fff);
4061		buf += length;
4062		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4063			uframe->cross = 1;
4064	}
4065}
4066
4067static void iso_sched_free(struct fotg210_iso_stream *stream,
4068		struct fotg210_iso_sched *iso_sched)
4069{
4070	if (!iso_sched)
4071		return;
4072	/* caller must hold fotg210->lock!*/
4073	list_splice(&iso_sched->td_list, &stream->free_list);
4074	kfree(iso_sched);
4075}
4076
4077static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4078		struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4079{
4080	struct fotg210_itd *itd;
4081	dma_addr_t itd_dma;
4082	int i;
4083	unsigned num_itds;
4084	struct fotg210_iso_sched *sched;
4085	unsigned long flags;
4086
4087	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4088	if (unlikely(sched == NULL))
4089		return -ENOMEM;
4090
4091	itd_sched_init(fotg210, sched, stream, urb);
4092
4093	if (urb->interval < 8)
4094		num_itds = 1 + (sched->span + 7) / 8;
4095	else
4096		num_itds = urb->number_of_packets;
4097
4098	/* allocate/init ITDs */
4099	spin_lock_irqsave(&fotg210->lock, flags);
4100	for (i = 0; i < num_itds; i++) {
4101
4102		/*
4103		 * Use iTDs from the free list, but not iTDs that may
4104		 * still be in use by the hardware.
4105		 */
4106		if (likely(!list_empty(&stream->free_list))) {
4107			itd = list_first_entry(&stream->free_list,
4108					struct fotg210_itd, itd_list);
4109			if (itd->frame == fotg210->now_frame)
4110				goto alloc_itd;
4111			list_del(&itd->itd_list);
4112			itd_dma = itd->itd_dma;
4113		} else {
4114alloc_itd:
4115			spin_unlock_irqrestore(&fotg210->lock, flags);
4116			itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4117					&itd_dma);
4118			spin_lock_irqsave(&fotg210->lock, flags);
4119			if (!itd) {
4120				iso_sched_free(stream, sched);
4121				spin_unlock_irqrestore(&fotg210->lock, flags);
4122				return -ENOMEM;
4123			}
4124		}
4125
4126		itd->itd_dma = itd_dma;
4127		list_add(&itd->itd_list, &sched->td_list);
4128	}
4129	spin_unlock_irqrestore(&fotg210->lock, flags);
4130
4131	/* temporarily store schedule info in hcpriv */
4132	urb->hcpriv = sched;
4133	urb->error_count = 0;
4134	return 0;
4135}
4136
4137static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4138		u8 usecs, u32 period)
4139{
4140	uframe %= period;
4141	do {
4142		/* can't commit more than uframe_periodic_max usec */
4143		if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4144				> (fotg210->uframe_periodic_max - usecs))
4145			return 0;
4146
4147		/* we know urb->interval is 2^N uframes */
4148		uframe += period;
4149	} while (uframe < mod);
4150	return 1;
4151}
4152
4153/* This scheduler plans almost as far into the future as it has actual
4154 * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4155 * "as small as possible" to be cache-friendlier.)  That limits the size
4156 * transfers you can stream reliably; avoid more than 64 msec per urb.
4157 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4158 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4159 * and other factors); or more than about 230 msec total (for portability,
4160 * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4161 */
4162
4163#define SCHEDULE_SLOP 80 /* microframes */
4164
4165static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4166		struct fotg210_iso_stream *stream)
4167{
4168	u32 now, next, start, period, span;
4169	int status;
4170	unsigned mod = fotg210->periodic_size << 3;
4171	struct fotg210_iso_sched *sched = urb->hcpriv;
4172
4173	period = urb->interval;
4174	span = sched->span;
4175
4176	if (span > mod - SCHEDULE_SLOP) {
4177		fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4178		status = -EFBIG;
4179		goto fail;
4180	}
4181
4182	now = fotg210_read_frame_index(fotg210) & (mod - 1);
4183
4184	/* Typical case: reuse current schedule, stream is still active.
4185	 * Hopefully there are no gaps from the host falling behind
4186	 * (irq delays etc), but if there are we'll take the next
4187	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4188	 */
4189	if (likely(!list_empty(&stream->td_list))) {
4190		u32 excess;
4191
4192		/* For high speed devices, allow scheduling within the
4193		 * isochronous scheduling threshold.  For full speed devices
4194		 * and Intel PCI-based controllers, don't (work around for
4195		 * Intel ICH9 bug).
4196		 */
4197		if (!stream->highspeed && fotg210->fs_i_thresh)
4198			next = now + fotg210->i_thresh;
4199		else
4200			next = now;
4201
4202		/* Fell behind (by up to twice the slop amount)?
4203		 * We decide based on the time of the last currently-scheduled
4204		 * slot, not the time of the next available slot.
4205		 */
4206		excess = (stream->next_uframe - period - next) & (mod - 1);
4207		if (excess >= mod - 2 * SCHEDULE_SLOP)
4208			start = next + excess - mod + period *
4209					DIV_ROUND_UP(mod - excess, period);
4210		else
4211			start = next + excess + period;
4212		if (start - now >= mod) {
4213			fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4214					urb, start - now - period, period,
4215					mod);
4216			status = -EFBIG;
4217			goto fail;
4218		}
4219	}
4220
4221	/* need to schedule; when's the next (u)frame we could start?
4222	 * this is bigger than fotg210->i_thresh allows; scheduling itself
4223	 * isn't free, the slop should handle reasonably slow cpus.  it
4224	 * can also help high bandwidth if the dma and irq loads don't
4225	 * jump until after the queue is primed.
4226	 */
4227	else {
4228		int done = 0;
4229
4230		start = SCHEDULE_SLOP + (now & ~0x07);
4231
4232		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4233
4234		/* find a uframe slot with enough bandwidth.
4235		 * Early uframes are more precious because full-speed
4236		 * iso IN transfers can't use late uframes,
4237		 * and therefore they should be allocated last.
4238		 */
4239		next = start;
4240		start += period;
4241		do {
4242			start--;
4243			/* check schedule: enough space? */
4244			if (itd_slot_ok(fotg210, mod, start,
4245					stream->usecs, period))
4246				done = 1;
4247		} while (start > next && !done);
4248
4249		/* no room in the schedule */
4250		if (!done) {
4251			fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4252					urb, now, now + mod);
4253			status = -ENOSPC;
4254			goto fail;
4255		}
4256	}
4257
4258	/* Tried to schedule too far into the future? */
4259	if (unlikely(start - now + span - period >=
4260			mod - 2 * SCHEDULE_SLOP)) {
4261		fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4262				urb, start - now, span - period,
4263				mod - 2 * SCHEDULE_SLOP);
4264		status = -EFBIG;
4265		goto fail;
4266	}
4267
4268	stream->next_uframe = start & (mod - 1);
4269
4270	/* report high speed start in uframes; full speed, in frames */
4271	urb->start_frame = stream->next_uframe;
4272	if (!stream->highspeed)
4273		urb->start_frame >>= 3;
4274
4275	/* Make sure scan_isoc() sees these */
4276	if (fotg210->isoc_count == 0)
4277		fotg210->next_frame = now >> 3;
4278	return 0;
4279
4280fail:
4281	iso_sched_free(stream, sched);
4282	urb->hcpriv = NULL;
4283	return status;
4284}
4285
4286static inline void itd_init(struct fotg210_hcd *fotg210,
4287		struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4288{
4289	int i;
4290
4291	/* it's been recently zeroed */
4292	itd->hw_next = FOTG210_LIST_END(fotg210);
4293	itd->hw_bufp[0] = stream->buf0;
4294	itd->hw_bufp[1] = stream->buf1;
4295	itd->hw_bufp[2] = stream->buf2;
4296
4297	for (i = 0; i < 8; i++)
4298		itd->index[i] = -1;
4299
4300	/* All other fields are filled when scheduling */
4301}
4302
4303static inline void itd_patch(struct fotg210_hcd *fotg210,
4304		struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4305		unsigned index, u16 uframe)
4306{
4307	struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4308	unsigned pg = itd->pg;
4309
4310	uframe &= 0x07;
4311	itd->index[uframe] = index;
4312
4313	itd->hw_transaction[uframe] = uf->transaction;
4314	itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4315	itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4316	itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4317
4318	/* iso_frame_desc[].offset must be strictly increasing */
4319	if (unlikely(uf->cross)) {
4320		u64 bufp = uf->bufp + 4096;
4321
4322		itd->pg = ++pg;
4323		itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4324		itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4325	}
4326}
4327
4328static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4329		struct fotg210_itd *itd)
4330{
4331	union fotg210_shadow *prev = &fotg210->pshadow[frame];
4332	__hc32 *hw_p = &fotg210->periodic[frame];
4333	union fotg210_shadow here = *prev;
4334	__hc32 type = 0;
4335
4336	/* skip any iso nodes which might belong to previous microframes */
4337	while (here.ptr) {
4338		type = Q_NEXT_TYPE(fotg210, *hw_p);
4339		if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4340			break;
4341		prev = periodic_next_shadow(fotg210, prev, type);
4342		hw_p = shadow_next_periodic(fotg210, &here, type);
4343		here = *prev;
4344	}
4345
4346	itd->itd_next = here;
4347	itd->hw_next = *hw_p;
4348	prev->itd = itd;
4349	itd->frame = frame;
4350	wmb();
4351	*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4352}
4353
4354/* fit urb's itds into the selected schedule slot; activate as needed */
4355static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4356		unsigned mod, struct fotg210_iso_stream *stream)
4357{
4358	int packet;
4359	unsigned next_uframe, uframe, frame;
4360	struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4361	struct fotg210_itd *itd;
4362
4363	next_uframe = stream->next_uframe & (mod - 1);
4364
4365	if (unlikely(list_empty(&stream->td_list))) {
4366		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4367				+= stream->bandwidth;
4368		fotg210_dbg(fotg210,
4369			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4370			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4371			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4372			urb->interval,
4373			next_uframe >> 3, next_uframe & 0x7);
4374	}
4375
4376	/* fill iTDs uframe by uframe */
4377	for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4378		if (itd == NULL) {
4379			/* ASSERT:  we have all necessary itds */
4380
4381			/* ASSERT:  no itds for this endpoint in this uframe */
4382
4383			itd = list_entry(iso_sched->td_list.next,
4384					struct fotg210_itd, itd_list);
4385			list_move_tail(&itd->itd_list, &stream->td_list);
4386			itd->stream = stream;
4387			itd->urb = urb;
4388			itd_init(fotg210, stream, itd);
4389		}
4390
4391		uframe = next_uframe & 0x07;
4392		frame = next_uframe >> 3;
4393
4394		itd_patch(fotg210, itd, iso_sched, packet, uframe);
4395
4396		next_uframe += stream->interval;
4397		next_uframe &= mod - 1;
4398		packet++;
4399
4400		/* link completed itds into the schedule */
4401		if (((next_uframe >> 3) != frame)
4402				|| packet == urb->number_of_packets) {
4403			itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4404					itd);
4405			itd = NULL;
4406		}
4407	}
4408	stream->next_uframe = next_uframe;
4409
4410	/* don't need that schedule data any more */
4411	iso_sched_free(stream, iso_sched);
4412	urb->hcpriv = NULL;
4413
4414	++fotg210->isoc_count;
4415	enable_periodic(fotg210);
4416}
4417
4418#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4419		FOTG210_ISOC_XACTERR)
4420
4421/* Process and recycle a completed ITD.  Return true iff its urb completed,
4422 * and hence its completion callback probably added things to the hardware
4423 * schedule.
4424 *
4425 * Note that we carefully avoid recycling this descriptor until after any
4426 * completion callback runs, so that it won't be reused quickly.  That is,
4427 * assuming (a) no more than two urbs per frame on this endpoint, and also
4428 * (b) only this endpoint's completions submit URBs.  It seems some silicon
4429 * corrupts things if you reuse completed descriptors very quickly...
4430 */
4431static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4432{
4433	struct urb *urb = itd->urb;
4434	struct usb_iso_packet_descriptor *desc;
4435	u32 t;
4436	unsigned uframe;
4437	int urb_index = -1;
4438	struct fotg210_iso_stream *stream = itd->stream;
4439	struct usb_device *dev;
4440	bool retval = false;
4441
4442	/* for each uframe with a packet */
4443	for (uframe = 0; uframe < 8; uframe++) {
4444		if (likely(itd->index[uframe] == -1))
4445			continue;
4446		urb_index = itd->index[uframe];
4447		desc = &urb->iso_frame_desc[urb_index];
4448
4449		t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4450		itd->hw_transaction[uframe] = 0;
4451
4452		/* report transfer status */
4453		if (unlikely(t & ISO_ERRS)) {
4454			urb->error_count++;
4455			if (t & FOTG210_ISOC_BUF_ERR)
4456				desc->status = usb_pipein(urb->pipe)
4457					? -ENOSR  /* hc couldn't read */
4458					: -ECOMM; /* hc couldn't write */
4459			else if (t & FOTG210_ISOC_BABBLE)
4460				desc->status = -EOVERFLOW;
4461			else /* (t & FOTG210_ISOC_XACTERR) */
4462				desc->status = -EPROTO;
4463
4464			/* HC need not update length with this error */
4465			if (!(t & FOTG210_ISOC_BABBLE)) {
4466				desc->actual_length =
4467					fotg210_itdlen(urb, desc, t);
4468				urb->actual_length += desc->actual_length;
4469			}
4470		} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4471			desc->status = 0;
4472			desc->actual_length = fotg210_itdlen(urb, desc, t);
4473			urb->actual_length += desc->actual_length;
4474		} else {
4475			/* URB was too late */
4476			desc->status = -EXDEV;
4477		}
4478	}
4479
4480	/* handle completion now? */
4481	if (likely((urb_index + 1) != urb->number_of_packets))
4482		goto done;
4483
4484	/* ASSERT: it's really the last itd for this urb
4485	 * list_for_each_entry (itd, &stream->td_list, itd_list)
4486	 *	BUG_ON (itd->urb == urb);
4487	 */
4488
4489	/* give urb back to the driver; completion often (re)submits */
4490	dev = urb->dev;
4491	fotg210_urb_done(fotg210, urb, 0);
4492	retval = true;
4493	urb = NULL;
4494
4495	--fotg210->isoc_count;
4496	disable_periodic(fotg210);
4497
4498	if (unlikely(list_is_singular(&stream->td_list))) {
4499		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4500				-= stream->bandwidth;
4501		fotg210_dbg(fotg210,
4502			"deschedule devp %s ep%d%s-iso\n",
4503			dev->devpath, stream->bEndpointAddress & 0x0f,
4504			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4505	}
4506
4507done:
4508	itd->urb = NULL;
4509
4510	/* Add to the end of the free list for later reuse */
4511	list_move_tail(&itd->itd_list, &stream->free_list);
4512
4513	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4514	if (list_empty(&stream->td_list)) {
4515		list_splice_tail_init(&stream->free_list,
4516				&fotg210->cached_itd_list);
4517		start_free_itds(fotg210);
4518	}
4519
4520	return retval;
4521}
4522
4523static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4524		gfp_t mem_flags)
4525{
4526	int status = -EINVAL;
4527	unsigned long flags;
4528	struct fotg210_iso_stream *stream;
4529
4530	/* Get iso_stream head */
4531	stream = iso_stream_find(fotg210, urb);
4532	if (unlikely(stream == NULL)) {
4533		fotg210_dbg(fotg210, "can't get iso stream\n");
4534		return -ENOMEM;
4535	}
4536	if (unlikely(urb->interval != stream->interval &&
4537			fotg210_port_speed(fotg210, 0) ==
4538			USB_PORT_STAT_HIGH_SPEED)) {
4539		fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4540				stream->interval, urb->interval);
4541		goto done;
4542	}
4543
4544#ifdef FOTG210_URB_TRACE
4545	fotg210_dbg(fotg210,
4546			"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4547			__func__, urb->dev->devpath, urb,
4548			usb_pipeendpoint(urb->pipe),
4549			usb_pipein(urb->pipe) ? "in" : "out",
4550			urb->transfer_buffer_length,
4551			urb->number_of_packets, urb->interval,
4552			stream);
4553#endif
4554
4555	/* allocate ITDs w/o locking anything */
4556	status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4557	if (unlikely(status < 0)) {
4558		fotg210_dbg(fotg210, "can't init itds\n");
4559		goto done;
4560	}
4561
4562	/* schedule ... need to lock */
4563	spin_lock_irqsave(&fotg210->lock, flags);
4564	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4565		status = -ESHUTDOWN;
4566		goto done_not_linked;
4567	}
4568	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4569	if (unlikely(status))
4570		goto done_not_linked;
4571	status = iso_stream_schedule(fotg210, urb, stream);
4572	if (likely(status == 0))
4573		itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4574	else
4575		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4576done_not_linked:
4577	spin_unlock_irqrestore(&fotg210->lock, flags);
4578done:
4579	return status;
4580}
4581
4582static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4583		unsigned now_frame, bool live)
4584{
4585	unsigned uf;
4586	bool modified;
4587	union fotg210_shadow q, *q_p;
4588	__hc32 type, *hw_p;
4589
4590	/* scan each element in frame's queue for completions */
4591	q_p = &fotg210->pshadow[frame];
4592	hw_p = &fotg210->periodic[frame];
4593	q.ptr = q_p->ptr;
4594	type = Q_NEXT_TYPE(fotg210, *hw_p);
4595	modified = false;
4596
4597	while (q.ptr) {
4598		switch (hc32_to_cpu(fotg210, type)) {
4599		case Q_TYPE_ITD:
4600			/* If this ITD is still active, leave it for
4601			 * later processing ... check the next entry.
4602			 * No need to check for activity unless the
4603			 * frame is current.
4604			 */
4605			if (frame == now_frame && live) {
4606				rmb();
4607				for (uf = 0; uf < 8; uf++) {
4608					if (q.itd->hw_transaction[uf] &
4609							ITD_ACTIVE(fotg210))
4610						break;
4611				}
4612				if (uf < 8) {
4613					q_p = &q.itd->itd_next;
4614					hw_p = &q.itd->hw_next;
4615					type = Q_NEXT_TYPE(fotg210,
4616							q.itd->hw_next);
4617					q = *q_p;
4618					break;
4619				}
4620			}
4621
4622			/* Take finished ITDs out of the schedule
4623			 * and process them:  recycle, maybe report
4624			 * URB completion.  HC won't cache the
4625			 * pointer for much longer, if at all.
4626			 */
4627			*q_p = q.itd->itd_next;
4628			*hw_p = q.itd->hw_next;
4629			type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4630			wmb();
4631			modified = itd_complete(fotg210, q.itd);
4632			q = *q_p;
4633			break;
4634		default:
4635			fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4636					type, frame, q.ptr);
4637			fallthrough;
4638		case Q_TYPE_QH:
4639		case Q_TYPE_FSTN:
4640			/* End of the iTDs and siTDs */
4641			q.ptr = NULL;
4642			break;
4643		}
4644
4645		/* assume completion callbacks modify the queue */
4646		if (unlikely(modified && fotg210->isoc_count > 0))
4647			return -EINVAL;
4648	}
4649	return 0;
4650}
4651
4652static void scan_isoc(struct fotg210_hcd *fotg210)
4653{
4654	unsigned uf, now_frame, frame, ret;
4655	unsigned fmask = fotg210->periodic_size - 1;
4656	bool live;
4657
4658	/*
4659	 * When running, scan from last scan point up to "now"
4660	 * else clean up by scanning everything that's left.
4661	 * Touches as few pages as possible:  cache-friendly.
4662	 */
4663	if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4664		uf = fotg210_read_frame_index(fotg210);
4665		now_frame = (uf >> 3) & fmask;
4666		live = true;
4667	} else  {
4668		now_frame = (fotg210->next_frame - 1) & fmask;
4669		live = false;
4670	}
4671	fotg210->now_frame = now_frame;
4672
4673	frame = fotg210->next_frame;
4674	for (;;) {
4675		ret = 1;
4676		while (ret != 0)
4677			ret = scan_frame_queue(fotg210, frame,
4678					now_frame, live);
4679
4680		/* Stop when we have reached the current frame */
4681		if (frame == now_frame)
4682			break;
4683		frame = (frame + 1) & fmask;
4684	}
4685	fotg210->next_frame = now_frame;
4686}
4687
4688/* Display / Set uframe_periodic_max
4689 */
4690static ssize_t uframe_periodic_max_show(struct device *dev,
4691		struct device_attribute *attr, char *buf)
4692{
4693	struct fotg210_hcd *fotg210;
4694	int n;
4695
4696	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4697	n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4698	return n;
4699}
4700
4701
4702static ssize_t uframe_periodic_max_store(struct device *dev,
4703		struct device_attribute *attr, const char *buf, size_t count)
4704{
4705	struct fotg210_hcd *fotg210;
4706	unsigned uframe_periodic_max;
4707	unsigned frame, uframe;
4708	unsigned short allocated_max;
4709	unsigned long flags;
4710	ssize_t ret;
4711
4712	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4713	if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4714		return -EINVAL;
4715
4716	if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4717		fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4718				uframe_periodic_max);
4719		return -EINVAL;
4720	}
4721
4722	ret = -EINVAL;
4723
4724	/*
4725	 * lock, so that our checking does not race with possible periodic
4726	 * bandwidth allocation through submitting new urbs.
4727	 */
4728	spin_lock_irqsave(&fotg210->lock, flags);
4729
4730	/*
4731	 * for request to decrease max periodic bandwidth, we have to check
4732	 * every microframe in the schedule to see whether the decrease is
4733	 * possible.
4734	 */
4735	if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4736		allocated_max = 0;
4737
4738		for (frame = 0; frame < fotg210->periodic_size; ++frame)
4739			for (uframe = 0; uframe < 7; ++uframe)
4740				allocated_max = max(allocated_max,
4741						periodic_usecs(fotg210, frame,
4742						uframe));
4743
4744		if (allocated_max > uframe_periodic_max) {
4745			fotg210_info(fotg210,
4746					"cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4747					allocated_max, uframe_periodic_max);
4748			goto out_unlock;
4749		}
4750	}
4751
4752	/* increasing is always ok */
4753
4754	fotg210_info(fotg210,
4755			"setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4756			100 * uframe_periodic_max/125, uframe_periodic_max);
4757
4758	if (uframe_periodic_max != 100)
4759		fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4760
4761	fotg210->uframe_periodic_max = uframe_periodic_max;
4762	ret = count;
4763
4764out_unlock:
4765	spin_unlock_irqrestore(&fotg210->lock, flags);
4766	return ret;
4767}
4768
4769static DEVICE_ATTR_RW(uframe_periodic_max);
4770
4771static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4772{
4773	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4774
4775	return device_create_file(controller, &dev_attr_uframe_periodic_max);
4776}
4777
4778static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4779{
4780	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4781
4782	device_remove_file(controller, &dev_attr_uframe_periodic_max);
4783}
4784/* On some systems, leaving remote wakeup enabled prevents system shutdown.
4785 * The firmware seems to think that powering off is a wakeup event!
4786 * This routine turns off remote wakeup and everything else, on all ports.
4787 */
4788static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4789{
4790	u32 __iomem *status_reg = &fotg210->regs->port_status;
4791
4792	fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4793}
4794
4795/* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4796 * Must be called with interrupts enabled and the lock not held.
4797 */
4798static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4799{
4800	fotg210_halt(fotg210);
4801
4802	spin_lock_irq(&fotg210->lock);
4803	fotg210->rh_state = FOTG210_RH_HALTED;
4804	fotg210_turn_off_all_ports(fotg210);
4805	spin_unlock_irq(&fotg210->lock);
4806}
4807
4808/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4809 * This forcibly disables dma and IRQs, helping kexec and other cases
4810 * where the next system software may expect clean state.
4811 */
4812static void fotg210_shutdown(struct usb_hcd *hcd)
4813{
4814	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4815
4816	spin_lock_irq(&fotg210->lock);
4817	fotg210->shutdown = true;
4818	fotg210->rh_state = FOTG210_RH_STOPPING;
4819	fotg210->enabled_hrtimer_events = 0;
4820	spin_unlock_irq(&fotg210->lock);
4821
4822	fotg210_silence_controller(fotg210);
4823
4824	hrtimer_cancel(&fotg210->hrtimer);
4825}
4826
4827/* fotg210_work is called from some interrupts, timers, and so on.
4828 * it calls driver completion functions, after dropping fotg210->lock.
4829 */
4830static void fotg210_work(struct fotg210_hcd *fotg210)
4831{
4832	/* another CPU may drop fotg210->lock during a schedule scan while
4833	 * it reports urb completions.  this flag guards against bogus
4834	 * attempts at re-entrant schedule scanning.
4835	 */
4836	if (fotg210->scanning) {
4837		fotg210->need_rescan = true;
4838		return;
4839	}
4840	fotg210->scanning = true;
4841
4842rescan:
4843	fotg210->need_rescan = false;
4844	if (fotg210->async_count)
4845		scan_async(fotg210);
4846	if (fotg210->intr_count > 0)
4847		scan_intr(fotg210);
4848	if (fotg210->isoc_count > 0)
4849		scan_isoc(fotg210);
4850	if (fotg210->need_rescan)
4851		goto rescan;
4852	fotg210->scanning = false;
4853
4854	/* the IO watchdog guards against hardware or driver bugs that
4855	 * misplace IRQs, and should let us run completely without IRQs.
4856	 * such lossage has been observed on both VT6202 and VT8235.
4857	 */
4858	turn_on_io_watchdog(fotg210);
4859}
4860
4861/* Called when the fotg210_hcd module is removed.
4862 */
4863static void fotg210_stop(struct usb_hcd *hcd)
4864{
4865	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4866
4867	fotg210_dbg(fotg210, "stop\n");
4868
4869	/* no more interrupts ... */
4870
4871	spin_lock_irq(&fotg210->lock);
4872	fotg210->enabled_hrtimer_events = 0;
4873	spin_unlock_irq(&fotg210->lock);
4874
4875	fotg210_quiesce(fotg210);
4876	fotg210_silence_controller(fotg210);
4877	fotg210_reset(fotg210);
4878
4879	hrtimer_cancel(&fotg210->hrtimer);
4880	remove_sysfs_files(fotg210);
4881	remove_debug_files(fotg210);
4882
4883	/* root hub is shut down separately (first, when possible) */
4884	spin_lock_irq(&fotg210->lock);
4885	end_free_itds(fotg210);
4886	spin_unlock_irq(&fotg210->lock);
4887	fotg210_mem_cleanup(fotg210);
4888
4889#ifdef FOTG210_STATS
4890	fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4891			fotg210->stats.normal, fotg210->stats.error,
4892			fotg210->stats.iaa, fotg210->stats.lost_iaa);
4893	fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4894			fotg210->stats.complete, fotg210->stats.unlink);
4895#endif
4896
4897	dbg_status(fotg210, "fotg210_stop completed",
4898			fotg210_readl(fotg210, &fotg210->regs->status));
4899}
4900
4901/* one-time init, only for memory state */
4902static int hcd_fotg210_init(struct usb_hcd *hcd)
4903{
4904	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4905	u32 temp;
4906	int retval;
4907	u32 hcc_params;
4908	struct fotg210_qh_hw *hw;
4909
4910	spin_lock_init(&fotg210->lock);
4911
4912	/*
4913	 * keep io watchdog by default, those good HCDs could turn off it later
4914	 */
4915	fotg210->need_io_watchdog = 1;
4916
4917	hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4918	fotg210->hrtimer.function = fotg210_hrtimer_func;
4919	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4920
4921	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4922
4923	/*
4924	 * by default set standard 80% (== 100 usec/uframe) max periodic
4925	 * bandwidth as required by USB 2.0
4926	 */
4927	fotg210->uframe_periodic_max = 100;
4928
4929	/*
4930	 * hw default: 1K periodic list heads, one per frame.
4931	 * periodic_size can shrink by USBCMD update if hcc_params allows.
4932	 */
4933	fotg210->periodic_size = DEFAULT_I_TDPS;
4934	INIT_LIST_HEAD(&fotg210->intr_qh_list);
4935	INIT_LIST_HEAD(&fotg210->cached_itd_list);
4936
4937	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4938		/* periodic schedule size can be smaller than default */
4939		switch (FOTG210_TUNE_FLS) {
4940		case 0:
4941			fotg210->periodic_size = 1024;
4942			break;
4943		case 1:
4944			fotg210->periodic_size = 512;
4945			break;
4946		case 2:
4947			fotg210->periodic_size = 256;
4948			break;
4949		default:
4950			BUG();
4951		}
4952	}
4953	retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4954	if (retval < 0)
4955		return retval;
4956
4957	/* controllers may cache some of the periodic schedule ... */
4958	fotg210->i_thresh = 2;
4959
4960	/*
4961	 * dedicate a qh for the async ring head, since we couldn't unlink
4962	 * a 'real' qh without stopping the async schedule [4.8].  use it
4963	 * as the 'reclamation list head' too.
4964	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4965	 * from automatically advancing to the next td after short reads.
4966	 */
4967	fotg210->async->qh_next.qh = NULL;
4968	hw = fotg210->async->hw;
4969	hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4970	hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4971	hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4972	hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4973	fotg210->async->qh_state = QH_STATE_LINKED;
4974	hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4975
4976	/* clear interrupt enables, set irq latency */
4977	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4978		log2_irq_thresh = 0;
4979	temp = 1 << (16 + log2_irq_thresh);
4980	if (HCC_CANPARK(hcc_params)) {
4981		/* HW default park == 3, on hardware that supports it (like
4982		 * NVidia and ALI silicon), maximizes throughput on the async
4983		 * schedule by avoiding QH fetches between transfers.
4984		 *
4985		 * With fast usb storage devices and NForce2, "park" seems to
4986		 * make problems:  throughput reduction (!), data errors...
4987		 */
4988		if (park) {
4989			park = min_t(unsigned, park, 3);
4990			temp |= CMD_PARK;
4991			temp |= park << 8;
4992		}
4993		fotg210_dbg(fotg210, "park %d\n", park);
4994	}
4995	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4996		/* periodic schedule size can be smaller than default */
4997		temp &= ~(3 << 2);
4998		temp |= (FOTG210_TUNE_FLS << 2);
4999	}
5000	fotg210->command = temp;
5001
5002	/* Accept arbitrarily long scatter-gather lists */
5003	if (!hcd->localmem_pool)
5004		hcd->self.sg_tablesize = ~0;
5005	return 0;
5006}
5007
5008/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5009static int fotg210_run(struct usb_hcd *hcd)
5010{
5011	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5012	u32 temp;
5013
5014	hcd->uses_new_polling = 1;
5015
5016	/* EHCI spec section 4.1 */
5017
5018	fotg210_writel(fotg210, fotg210->periodic_dma,
5019			&fotg210->regs->frame_list);
5020	fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5021			&fotg210->regs->async_next);
5022
5023	/*
5024	 * hcc_params controls whether fotg210->regs->segment must (!!!)
5025	 * be used; it constrains QH/ITD/SITD and QTD locations.
5026	 * dma_pool consistent memory always uses segment zero.
5027	 * streaming mappings for I/O buffers, like pci_map_single(),
5028	 * can return segments above 4GB, if the device allows.
5029	 *
5030	 * NOTE:  the dma mask is visible through dev->dma_mask, so
5031	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5032	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5033	 * host side drivers though.
5034	 */
5035	fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5036
5037	/*
5038	 * Philips, Intel, and maybe others need CMD_RUN before the
5039	 * root hub will detect new devices (why?); NEC doesn't
5040	 */
5041	fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5042	fotg210->command |= CMD_RUN;
5043	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5044	dbg_cmd(fotg210, "init", fotg210->command);
5045
5046	/*
5047	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5048	 * are explicitly handed to companion controller(s), so no TT is
5049	 * involved with the root hub.  (Except where one is integrated,
5050	 * and there's no companion controller unless maybe for USB OTG.)
5051	 *
5052	 * Turning on the CF flag will transfer ownership of all ports
5053	 * from the companions to the EHCI controller.  If any of the
5054	 * companions are in the middle of a port reset at the time, it
5055	 * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5056	 * guarantees that no resets are in progress.  After we set CF,
5057	 * a short delay lets the hardware catch up; new resets shouldn't
5058	 * be started before the port switching actions could complete.
5059	 */
5060	down_write(&ehci_cf_port_reset_rwsem);
5061	fotg210->rh_state = FOTG210_RH_RUNNING;
5062	/* unblock posted writes */
5063	fotg210_readl(fotg210, &fotg210->regs->command);
5064	usleep_range(5000, 10000);
5065	up_write(&ehci_cf_port_reset_rwsem);
5066	fotg210->last_periodic_enable = ktime_get_real();
5067
5068	temp = HC_VERSION(fotg210,
5069			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5070	fotg210_info(fotg210,
5071			"USB %x.%x started, EHCI %x.%02x\n",
5072			((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5073			temp >> 8, temp & 0xff);
5074
5075	fotg210_writel(fotg210, INTR_MASK,
5076			&fotg210->regs->intr_enable); /* Turn On Interrupts */
5077
5078	/* GRR this is run-once init(), being done every time the HC starts.
5079	 * So long as they're part of class devices, we can't do it init()
5080	 * since the class device isn't created that early.
5081	 */
5082	create_debug_files(fotg210);
5083	create_sysfs_files(fotg210);
5084
5085	return 0;
5086}
5087
5088static int fotg210_setup(struct usb_hcd *hcd)
5089{
5090	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5091	int retval;
5092
5093	fotg210->regs = (void __iomem *)fotg210->caps +
5094			HC_LENGTH(fotg210,
5095			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5096	dbg_hcs_params(fotg210, "reset");
5097	dbg_hcc_params(fotg210, "reset");
5098
5099	/* cache this readonly data; minimize chip reads */
5100	fotg210->hcs_params = fotg210_readl(fotg210,
5101			&fotg210->caps->hcs_params);
5102
5103	fotg210->sbrn = HCD_USB2;
5104
5105	/* data structure init */
5106	retval = hcd_fotg210_init(hcd);
5107	if (retval)
5108		return retval;
5109
5110	retval = fotg210_halt(fotg210);
5111	if (retval)
5112		return retval;
5113
5114	fotg210_reset(fotg210);
5115
5116	return 0;
5117}
5118
5119static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5120{
5121	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5122	u32 status, masked_status, pcd_status = 0, cmd;
5123	int bh;
5124
5125	spin_lock(&fotg210->lock);
5126
5127	status = fotg210_readl(fotg210, &fotg210->regs->status);
5128
5129	/* e.g. cardbus physical eject */
5130	if (status == ~(u32) 0) {
5131		fotg210_dbg(fotg210, "device removed\n");
5132		goto dead;
5133	}
5134
5135	/*
5136	 * We don't use STS_FLR, but some controllers don't like it to
5137	 * remain on, so mask it out along with the other status bits.
5138	 */
5139	masked_status = status & (INTR_MASK | STS_FLR);
5140
5141	/* Shared IRQ? */
5142	if (!masked_status ||
5143			unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5144		spin_unlock(&fotg210->lock);
5145		return IRQ_NONE;
5146	}
5147
5148	/* clear (just) interrupts */
5149	fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5150	cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5151	bh = 0;
5152
5153	/* unrequested/ignored: Frame List Rollover */
5154	dbg_status(fotg210, "irq", status);
5155
5156	/* INT, ERR, and IAA interrupt rates can be throttled */
5157
5158	/* normal [4.15.1.2] or error [4.15.1.1] completion */
5159	if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5160		if (likely((status & STS_ERR) == 0))
5161			INCR(fotg210->stats.normal);
5162		else
5163			INCR(fotg210->stats.error);
5164		bh = 1;
5165	}
5166
5167	/* complete the unlinking of some qh [4.15.2.3] */
5168	if (status & STS_IAA) {
5169
5170		/* Turn off the IAA watchdog */
5171		fotg210->enabled_hrtimer_events &=
5172			~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5173
5174		/*
5175		 * Mild optimization: Allow another IAAD to reset the
5176		 * hrtimer, if one occurs before the next expiration.
5177		 * In theory we could always cancel the hrtimer, but
5178		 * tests show that about half the time it will be reset
5179		 * for some other event anyway.
5180		 */
5181		if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5182			++fotg210->next_hrtimer_event;
5183
5184		/* guard against (alleged) silicon errata */
5185		if (cmd & CMD_IAAD)
5186			fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5187		if (fotg210->async_iaa) {
5188			INCR(fotg210->stats.iaa);
5189			end_unlink_async(fotg210);
5190		} else
5191			fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5192	}
5193
5194	/* remote wakeup [4.3.1] */
5195	if (status & STS_PCD) {
5196		int pstatus;
5197		u32 __iomem *status_reg = &fotg210->regs->port_status;
5198
5199		/* kick root hub later */
5200		pcd_status = status;
5201
5202		/* resume root hub? */
5203		if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5204			usb_hcd_resume_root_hub(hcd);
5205
5206		pstatus = fotg210_readl(fotg210, status_reg);
5207
5208		if (test_bit(0, &fotg210->suspended_ports) &&
5209				((pstatus & PORT_RESUME) ||
5210				!(pstatus & PORT_SUSPEND)) &&
5211				(pstatus & PORT_PE) &&
5212				fotg210->reset_done[0] == 0) {
5213
5214			/* start 20 msec resume signaling from this port,
5215			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5216			 * stop that signaling.  Use 5 ms extra for safety,
5217			 * like usb_port_resume() does.
5218			 */
5219			fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5220			set_bit(0, &fotg210->resuming_ports);
5221			fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5222			mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5223		}
5224	}
5225
5226	/* PCI errors [4.15.2.4] */
5227	if (unlikely((status & STS_FATAL) != 0)) {
5228		fotg210_err(fotg210, "fatal error\n");
5229		dbg_cmd(fotg210, "fatal", cmd);
5230		dbg_status(fotg210, "fatal", status);
5231dead:
5232		usb_hc_died(hcd);
5233
5234		/* Don't let the controller do anything more */
5235		fotg210->shutdown = true;
5236		fotg210->rh_state = FOTG210_RH_STOPPING;
5237		fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5238		fotg210_writel(fotg210, fotg210->command,
5239				&fotg210->regs->command);
5240		fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5241		fotg210_handle_controller_death(fotg210);
5242
5243		/* Handle completions when the controller stops */
5244		bh = 0;
5245	}
5246
5247	if (bh)
5248		fotg210_work(fotg210);
5249	spin_unlock(&fotg210->lock);
5250	if (pcd_status)
5251		usb_hcd_poll_rh_status(hcd);
5252	return IRQ_HANDLED;
5253}
5254
5255/* non-error returns are a promise to giveback() the urb later
5256 * we drop ownership so next owner (or urb unlink) can get it
5257 *
5258 * urb + dev is in hcd.self.controller.urb_list
5259 * we're queueing TDs onto software and hardware lists
5260 *
5261 * hcd-specific init for hcpriv hasn't been done yet
5262 *
5263 * NOTE:  control, bulk, and interrupt share the same code to append TDs
5264 * to a (possibly active) QH, and the same QH scanning code.
5265 */
5266static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5267		gfp_t mem_flags)
5268{
5269	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5270	struct list_head qtd_list;
5271
5272	INIT_LIST_HEAD(&qtd_list);
5273
5274	switch (usb_pipetype(urb->pipe)) {
5275	case PIPE_CONTROL:
5276		/* qh_completions() code doesn't handle all the fault cases
5277		 * in multi-TD control transfers.  Even 1KB is rare anyway.
5278		 */
5279		if (urb->transfer_buffer_length > (16 * 1024))
5280			return -EMSGSIZE;
5281		/* FALLTHROUGH */
5282	/* case PIPE_BULK: */
5283	default:
5284		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5285			return -ENOMEM;
5286		return submit_async(fotg210, urb, &qtd_list, mem_flags);
5287
5288	case PIPE_INTERRUPT:
5289		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5290			return -ENOMEM;
5291		return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5292
5293	case PIPE_ISOCHRONOUS:
5294		return itd_submit(fotg210, urb, mem_flags);
5295	}
5296}
5297
5298/* remove from hardware lists
5299 * completions normally happen asynchronously
5300 */
5301
5302static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5303{
5304	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5305	struct fotg210_qh *qh;
5306	unsigned long flags;
5307	int rc;
5308
5309	spin_lock_irqsave(&fotg210->lock, flags);
5310	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5311	if (rc)
5312		goto done;
5313
5314	switch (usb_pipetype(urb->pipe)) {
5315	/* case PIPE_CONTROL: */
5316	/* case PIPE_BULK:*/
5317	default:
5318		qh = (struct fotg210_qh *) urb->hcpriv;
5319		if (!qh)
5320			break;
5321		switch (qh->qh_state) {
5322		case QH_STATE_LINKED:
5323		case QH_STATE_COMPLETING:
5324			start_unlink_async(fotg210, qh);
5325			break;
5326		case QH_STATE_UNLINK:
5327		case QH_STATE_UNLINK_WAIT:
5328			/* already started */
5329			break;
5330		case QH_STATE_IDLE:
5331			/* QH might be waiting for a Clear-TT-Buffer */
5332			qh_completions(fotg210, qh);
5333			break;
5334		}
5335		break;
5336
5337	case PIPE_INTERRUPT:
5338		qh = (struct fotg210_qh *) urb->hcpriv;
5339		if (!qh)
5340			break;
5341		switch (qh->qh_state) {
5342		case QH_STATE_LINKED:
5343		case QH_STATE_COMPLETING:
5344			start_unlink_intr(fotg210, qh);
5345			break;
5346		case QH_STATE_IDLE:
5347			qh_completions(fotg210, qh);
5348			break;
5349		default:
5350			fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5351					qh, qh->qh_state);
5352			goto done;
5353		}
5354		break;
5355
5356	case PIPE_ISOCHRONOUS:
5357		/* itd... */
5358
5359		/* wait till next completion, do it then. */
5360		/* completion irqs can wait up to 1024 msec, */
5361		break;
5362	}
5363done:
5364	spin_unlock_irqrestore(&fotg210->lock, flags);
5365	return rc;
5366}
5367
5368/* bulk qh holds the data toggle */
5369
5370static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5371		struct usb_host_endpoint *ep)
5372{
5373	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5374	unsigned long flags;
5375	struct fotg210_qh *qh, *tmp;
5376
5377	/* ASSERT:  any requests/urbs are being unlinked */
5378	/* ASSERT:  nobody can be submitting urbs for this any more */
5379
5380rescan:
5381	spin_lock_irqsave(&fotg210->lock, flags);
5382	qh = ep->hcpriv;
5383	if (!qh)
5384		goto done;
5385
5386	/* endpoints can be iso streams.  for now, we don't
5387	 * accelerate iso completions ... so spin a while.
5388	 */
5389	if (qh->hw == NULL) {
5390		struct fotg210_iso_stream *stream = ep->hcpriv;
5391
5392		if (!list_empty(&stream->td_list))
5393			goto idle_timeout;
5394
5395		/* BUG_ON(!list_empty(&stream->free_list)); */
5396		kfree(stream);
5397		goto done;
5398	}
5399
5400	if (fotg210->rh_state < FOTG210_RH_RUNNING)
5401		qh->qh_state = QH_STATE_IDLE;
5402	switch (qh->qh_state) {
5403	case QH_STATE_LINKED:
5404	case QH_STATE_COMPLETING:
5405		for (tmp = fotg210->async->qh_next.qh;
5406				tmp && tmp != qh;
5407				tmp = tmp->qh_next.qh)
5408			continue;
5409		/* periodic qh self-unlinks on empty, and a COMPLETING qh
5410		 * may already be unlinked.
5411		 */
5412		if (tmp)
5413			start_unlink_async(fotg210, qh);
5414		fallthrough;
5415	case QH_STATE_UNLINK:		/* wait for hw to finish? */
5416	case QH_STATE_UNLINK_WAIT:
5417idle_timeout:
5418		spin_unlock_irqrestore(&fotg210->lock, flags);
5419		schedule_timeout_uninterruptible(1);
5420		goto rescan;
5421	case QH_STATE_IDLE:		/* fully unlinked */
5422		if (qh->clearing_tt)
5423			goto idle_timeout;
5424		if (list_empty(&qh->qtd_list)) {
5425			qh_destroy(fotg210, qh);
5426			break;
5427		}
5428		fallthrough;
5429	default:
5430		/* caller was supposed to have unlinked any requests;
5431		 * that's not our job.  just leak this memory.
5432		 */
5433		fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5434				qh, ep->desc.bEndpointAddress, qh->qh_state,
5435				list_empty(&qh->qtd_list) ? "" : "(has tds)");
5436		break;
5437	}
5438done:
5439	ep->hcpriv = NULL;
5440	spin_unlock_irqrestore(&fotg210->lock, flags);
5441}
5442
5443static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5444		struct usb_host_endpoint *ep)
5445{
5446	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5447	struct fotg210_qh *qh;
5448	int eptype = usb_endpoint_type(&ep->desc);
5449	int epnum = usb_endpoint_num(&ep->desc);
5450	int is_out = usb_endpoint_dir_out(&ep->desc);
5451	unsigned long flags;
5452
5453	if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5454		return;
5455
5456	spin_lock_irqsave(&fotg210->lock, flags);
5457	qh = ep->hcpriv;
5458
5459	/* For Bulk and Interrupt endpoints we maintain the toggle state
5460	 * in the hardware; the toggle bits in udev aren't used at all.
5461	 * When an endpoint is reset by usb_clear_halt() we must reset
5462	 * the toggle bit in the QH.
5463	 */
5464	if (qh) {
5465		usb_settoggle(qh->dev, epnum, is_out, 0);
5466		if (!list_empty(&qh->qtd_list)) {
5467			WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5468		} else if (qh->qh_state == QH_STATE_LINKED ||
5469				qh->qh_state == QH_STATE_COMPLETING) {
5470
5471			/* The toggle value in the QH can't be updated
5472			 * while the QH is active.  Unlink it now;
5473			 * re-linking will call qh_refresh().
5474			 */
5475			if (eptype == USB_ENDPOINT_XFER_BULK)
5476				start_unlink_async(fotg210, qh);
5477			else
5478				start_unlink_intr(fotg210, qh);
5479		}
5480	}
5481	spin_unlock_irqrestore(&fotg210->lock, flags);
5482}
5483
5484static int fotg210_get_frame(struct usb_hcd *hcd)
5485{
5486	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5487
5488	return (fotg210_read_frame_index(fotg210) >> 3) %
5489		fotg210->periodic_size;
5490}
5491
5492/* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5493 * because its registers (and irq) are shared between host/gadget/otg
5494 * functions  and in order to facilitate role switching we cannot
5495 * give the fotg210 driver exclusive access to those.
5496 */
5497MODULE_DESCRIPTION(DRIVER_DESC);
5498MODULE_AUTHOR(DRIVER_AUTHOR);
5499MODULE_LICENSE("GPL");
5500
5501static const struct hc_driver fotg210_fotg210_hc_driver = {
5502	.description		= hcd_name,
5503	.product_desc		= "Faraday USB2.0 Host Controller",
5504	.hcd_priv_size		= sizeof(struct fotg210_hcd),
5505
5506	/*
5507	 * generic hardware linkage
5508	 */
5509	.irq			= fotg210_irq,
5510	.flags			= HCD_MEMORY | HCD_DMA | HCD_USB2,
5511
5512	/*
5513	 * basic lifecycle operations
5514	 */
5515	.reset			= hcd_fotg210_init,
5516	.start			= fotg210_run,
5517	.stop			= fotg210_stop,
5518	.shutdown		= fotg210_shutdown,
5519
5520	/*
5521	 * managing i/o requests and associated device resources
5522	 */
5523	.urb_enqueue		= fotg210_urb_enqueue,
5524	.urb_dequeue		= fotg210_urb_dequeue,
5525	.endpoint_disable	= fotg210_endpoint_disable,
5526	.endpoint_reset		= fotg210_endpoint_reset,
5527
5528	/*
5529	 * scheduling support
5530	 */
5531	.get_frame_number	= fotg210_get_frame,
5532
5533	/*
5534	 * root hub support
5535	 */
5536	.hub_status_data	= fotg210_hub_status_data,
5537	.hub_control		= fotg210_hub_control,
5538	.bus_suspend		= fotg210_bus_suspend,
5539	.bus_resume		= fotg210_bus_resume,
5540
5541	.relinquish_port	= fotg210_relinquish_port,
5542	.port_handed_over	= fotg210_port_handed_over,
5543
5544	.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5545};
5546
5547static void fotg210_init(struct fotg210_hcd *fotg210)
5548{
5549	u32 value;
5550
5551	iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5552			&fotg210->regs->gmir);
5553
5554	value = ioread32(&fotg210->regs->otgcsr);
5555	value &= ~OTGCSR_A_BUS_DROP;
5556	value |= OTGCSR_A_BUS_REQ;
5557	iowrite32(value, &fotg210->regs->otgcsr);
5558}
5559
5560/*
5561 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5562 *
5563 * Allocates basic resources for this USB host controller, and
5564 * then invokes the start() method for the HCD associated with it
5565 * through the hotplug entry's driver_data.
5566 */
5567static int fotg210_hcd_probe(struct platform_device *pdev)
5568{
5569	struct device *dev = &pdev->dev;
5570	struct usb_hcd *hcd;
5571	struct resource *res;
5572	int irq;
5573	int retval = -ENODEV;
5574	struct fotg210_hcd *fotg210;
5575
5576	if (usb_disabled())
5577		return -ENODEV;
5578
5579	pdev->dev.power.power_state = PMSG_ON;
5580
5581	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5582	if (!res) {
5583		dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5584				dev_name(dev));
5585		return -ENODEV;
5586	}
5587
5588	irq = res->start;
5589
5590	hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5591			dev_name(dev));
5592	if (!hcd) {
5593		dev_err(dev, "failed to create hcd with err %d\n", retval);
5594		retval = -ENOMEM;
5595		goto fail_create_hcd;
5596	}
5597
5598	hcd->has_tt = 1;
5599
5600	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5601	hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5602	if (IS_ERR(hcd->regs)) {
5603		retval = PTR_ERR(hcd->regs);
5604		goto failed_put_hcd;
5605	}
5606
5607	hcd->rsrc_start = res->start;
5608	hcd->rsrc_len = resource_size(res);
5609
5610	fotg210 = hcd_to_fotg210(hcd);
5611
5612	fotg210->caps = hcd->regs;
5613
5614	/* It's OK not to supply this clock */
5615	fotg210->pclk = clk_get(dev, "PCLK");
5616	if (!IS_ERR(fotg210->pclk)) {
5617		retval = clk_prepare_enable(fotg210->pclk);
5618		if (retval) {
5619			dev_err(dev, "failed to enable PCLK\n");
5620			goto failed_put_hcd;
5621		}
5622	} else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
5623		/*
5624		 * Percolate deferrals, for anything else,
5625		 * just live without the clocking.
5626		 */
5627		retval = PTR_ERR(fotg210->pclk);
5628		goto failed_dis_clk;
5629	}
5630
5631	retval = fotg210_setup(hcd);
5632	if (retval)
5633		goto failed_dis_clk;
5634
5635	fotg210_init(fotg210);
5636
5637	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5638	if (retval) {
5639		dev_err(dev, "failed to add hcd with err %d\n", retval);
5640		goto failed_dis_clk;
5641	}
5642	device_wakeup_enable(hcd->self.controller);
5643	platform_set_drvdata(pdev, hcd);
5644
5645	return retval;
5646
5647failed_dis_clk:
5648	if (!IS_ERR(fotg210->pclk)) {
5649		clk_disable_unprepare(fotg210->pclk);
5650		clk_put(fotg210->pclk);
5651	}
5652failed_put_hcd:
5653	usb_put_hcd(hcd);
5654fail_create_hcd:
5655	dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5656	return retval;
5657}
5658
5659/*
5660 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5661 * @dev: USB Host Controller being removed
5662 *
5663 */
5664static int fotg210_hcd_remove(struct platform_device *pdev)
5665{
5666	struct usb_hcd *hcd = platform_get_drvdata(pdev);
5667	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5668
5669	if (!IS_ERR(fotg210->pclk)) {
5670		clk_disable_unprepare(fotg210->pclk);
5671		clk_put(fotg210->pclk);
5672	}
5673
5674	usb_remove_hcd(hcd);
5675	usb_put_hcd(hcd);
5676
5677	return 0;
5678}
5679
5680#ifdef CONFIG_OF
5681static const struct of_device_id fotg210_of_match[] = {
5682	{ .compatible = "faraday,fotg210" },
5683	{},
5684};
5685MODULE_DEVICE_TABLE(of, fotg210_of_match);
5686#endif
5687
5688static struct platform_driver fotg210_hcd_driver = {
5689	.driver = {
5690		.name   = "fotg210-hcd",
5691		.of_match_table = of_match_ptr(fotg210_of_match),
5692	},
5693	.probe  = fotg210_hcd_probe,
5694	.remove = fotg210_hcd_remove,
5695};
5696
5697static int __init fotg210_hcd_init(void)
5698{
5699	int retval = 0;
5700
5701	if (usb_disabled())
5702		return -ENODEV;
5703
5704	pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5705	set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5706	if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5707			test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5708		pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5709
5710	pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5711			hcd_name, sizeof(struct fotg210_qh),
5712			sizeof(struct fotg210_qtd),
5713			sizeof(struct fotg210_itd));
5714
5715	fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5716
5717	retval = platform_driver_register(&fotg210_hcd_driver);
5718	if (retval < 0)
5719		goto clean;
5720	return retval;
5721
5722clean:
5723	debugfs_remove(fotg210_debug_root);
5724	fotg210_debug_root = NULL;
5725
5726	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5727	return retval;
5728}
5729module_init(fotg210_hcd_init);
5730
5731static void __exit fotg210_hcd_cleanup(void)
5732{
5733	platform_driver_unregister(&fotg210_hcd_driver);
5734	debugfs_remove(fotg210_debug_root);
5735	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5736}
5737module_exit(fotg210_hcd_cleanup);