Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1// SPDX-License-Identifier: GPL-2.0+
   2/* Faraday FOTG210 EHCI-like driver
   3 *
   4 * Copyright (c) 2013 Faraday Technology Corporation
   5 *
   6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
   7 *	   Feng-Hsin Chiang <john453@faraday-tech.com>
   8 *	   Po-Yu Chuang <ratbert.chuang@gmail.com>
   9 *
  10 * Most of code borrowed from the Linux-3.7 EHCI driver
  11 */
  12#include <linux/module.h>
  13#include <linux/of.h>
  14#include <linux/device.h>
  15#include <linux/dmapool.h>
  16#include <linux/kernel.h>
  17#include <linux/delay.h>
  18#include <linux/ioport.h>
  19#include <linux/sched.h>
  20#include <linux/vmalloc.h>
  21#include <linux/errno.h>
  22#include <linux/init.h>
  23#include <linux/hrtimer.h>
  24#include <linux/list.h>
  25#include <linux/interrupt.h>
  26#include <linux/usb.h>
  27#include <linux/usb/hcd.h>
  28#include <linux/moduleparam.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/debugfs.h>
  31#include <linux/slab.h>
  32#include <linux/uaccess.h>
  33#include <linux/platform_device.h>
  34#include <linux/io.h>
  35#include <linux/iopoll.h>
  36#include <linux/clk.h>
  37
  38#include <asm/byteorder.h>
  39#include <asm/irq.h>
  40#include <asm/unaligned.h>
  41
  42#define DRIVER_AUTHOR "Yuan-Hsin Chen"
  43#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
  44static const char hcd_name[] = "fotg210_hcd";
  45
  46#undef FOTG210_URB_TRACE
  47#define FOTG210_STATS
  48
  49/* magic numbers that can affect system performance */
  50#define FOTG210_TUNE_CERR	3 /* 0-3 qtd retries; 0 == don't stop */
  51#define FOTG210_TUNE_RL_HS	4 /* nak throttle; see 4.9 */
  52#define FOTG210_TUNE_RL_TT	0
  53#define FOTG210_TUNE_MULT_HS	1 /* 1-3 transactions/uframe; 4.10.3 */
  54#define FOTG210_TUNE_MULT_TT	1
  55
  56/* Some drivers think it's safe to schedule isochronous transfers more than 256
  57 * ms into the future (partly as a result of an old bug in the scheduling
  58 * code).  In an attempt to avoid trouble, we will use a minimum scheduling
  59 * length of 512 frames instead of 256.
  60 */
  61#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
  62
  63/* Initial IRQ latency:  faster than hw default */
  64static int log2_irq_thresh; /* 0 to 6 */
  65module_param(log2_irq_thresh, int, S_IRUGO);
  66MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
  67
  68/* initial park setting:  slower than hw default */
  69static unsigned park;
  70module_param(park, uint, S_IRUGO);
  71MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
  72
  73/* for link power management(LPM) feature */
  74static unsigned int hird;
  75module_param(hird, int, S_IRUGO);
  76MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
  77
  78#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
  79
  80#include "fotg210.h"
  81
  82#define fotg210_dbg(fotg210, fmt, args...) \
  83	dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  84#define fotg210_err(fotg210, fmt, args...) \
  85	dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  86#define fotg210_info(fotg210, fmt, args...) \
  87	dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  88#define fotg210_warn(fotg210, fmt, args...) \
  89	dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  90
  91/* check the values in the HCSPARAMS register (host controller _Structural_
  92 * parameters) see EHCI spec, Table 2-4 for each value
  93 */
  94static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
  95{
  96	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
  97
  98	fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
  99			HCS_N_PORTS(params));
 100}
 101
 102/* check the values in the HCCPARAMS register (host controller _Capability_
 103 * parameters) see EHCI Spec, Table 2-5 for each value
 104 */
 105static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
 106{
 107	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
 108
 109	fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
 110			params,
 111			HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
 112			HCC_CANPARK(params) ? " park" : "");
 113}
 114
 115static void __maybe_unused
 116dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
 117{
 118	fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
 119			hc32_to_cpup(fotg210, &qtd->hw_next),
 120			hc32_to_cpup(fotg210, &qtd->hw_alt_next),
 121			hc32_to_cpup(fotg210, &qtd->hw_token),
 122			hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
 123	if (qtd->hw_buf[1])
 124		fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
 125				hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
 126				hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
 127				hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
 128				hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
 129}
 130
 131static void __maybe_unused
 132dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
 133{
 134	struct fotg210_qh_hw *hw = qh->hw;
 135
 136	fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
 137			hw->hw_next, hw->hw_info1, hw->hw_info2,
 138			hw->hw_current);
 139
 140	dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
 141}
 142
 143static void __maybe_unused
 144dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
 145{
 146	fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
 147			itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
 148			itd->urb);
 149
 150	fotg210_dbg(fotg210,
 151			"  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
 152			hc32_to_cpu(fotg210, itd->hw_transaction[0]),
 153			hc32_to_cpu(fotg210, itd->hw_transaction[1]),
 154			hc32_to_cpu(fotg210, itd->hw_transaction[2]),
 155			hc32_to_cpu(fotg210, itd->hw_transaction[3]),
 156			hc32_to_cpu(fotg210, itd->hw_transaction[4]),
 157			hc32_to_cpu(fotg210, itd->hw_transaction[5]),
 158			hc32_to_cpu(fotg210, itd->hw_transaction[6]),
 159			hc32_to_cpu(fotg210, itd->hw_transaction[7]));
 160
 161	fotg210_dbg(fotg210,
 162			"  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
 163			hc32_to_cpu(fotg210, itd->hw_bufp[0]),
 164			hc32_to_cpu(fotg210, itd->hw_bufp[1]),
 165			hc32_to_cpu(fotg210, itd->hw_bufp[2]),
 166			hc32_to_cpu(fotg210, itd->hw_bufp[3]),
 167			hc32_to_cpu(fotg210, itd->hw_bufp[4]),
 168			hc32_to_cpu(fotg210, itd->hw_bufp[5]),
 169			hc32_to_cpu(fotg210, itd->hw_bufp[6]));
 170
 171	fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
 172			itd->index[0], itd->index[1], itd->index[2],
 173			itd->index[3], itd->index[4], itd->index[5],
 174			itd->index[6], itd->index[7]);
 175}
 176
 177static int __maybe_unused
 178dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
 179{
 180	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
 181			label, label[0] ? " " : "", status,
 182			(status & STS_ASS) ? " Async" : "",
 183			(status & STS_PSS) ? " Periodic" : "",
 184			(status & STS_RECL) ? " Recl" : "",
 185			(status & STS_HALT) ? " Halt" : "",
 186			(status & STS_IAA) ? " IAA" : "",
 187			(status & STS_FATAL) ? " FATAL" : "",
 188			(status & STS_FLR) ? " FLR" : "",
 189			(status & STS_PCD) ? " PCD" : "",
 190			(status & STS_ERR) ? " ERR" : "",
 191			(status & STS_INT) ? " INT" : "");
 192}
 193
 194static int __maybe_unused
 195dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
 196{
 197	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
 198			label, label[0] ? " " : "", enable,
 199			(enable & STS_IAA) ? " IAA" : "",
 200			(enable & STS_FATAL) ? " FATAL" : "",
 201			(enable & STS_FLR) ? " FLR" : "",
 202			(enable & STS_PCD) ? " PCD" : "",
 203			(enable & STS_ERR) ? " ERR" : "",
 204			(enable & STS_INT) ? " INT" : "");
 205}
 206
 207static const char *const fls_strings[] = { "1024", "512", "256", "??" };
 208
 209static int dbg_command_buf(char *buf, unsigned len, const char *label,
 210		u32 command)
 211{
 212	return scnprintf(buf, len,
 213			"%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
 214			label, label[0] ? " " : "", command,
 215			(command & CMD_PARK) ? " park" : "(park)",
 216			CMD_PARK_CNT(command),
 217			(command >> 16) & 0x3f,
 218			(command & CMD_IAAD) ? " IAAD" : "",
 219			(command & CMD_ASE) ? " Async" : "",
 220			(command & CMD_PSE) ? " Periodic" : "",
 221			fls_strings[(command >> 2) & 0x3],
 222			(command & CMD_RESET) ? " Reset" : "",
 223			(command & CMD_RUN) ? "RUN" : "HALT");
 224}
 225
 226static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
 227		u32 status)
 228{
 229	char *sig;
 230
 231	/* signaling state */
 232	switch (status & (3 << 10)) {
 233	case 0 << 10:
 234		sig = "se0";
 235		break;
 236	case 1 << 10:
 237		sig = "k";
 238		break; /* low speed */
 239	case 2 << 10:
 240		sig = "j";
 241		break;
 242	default:
 243		sig = "?";
 244		break;
 245	}
 246
 247	scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
 248			label, label[0] ? " " : "", port, status,
 249			status >> 25, /*device address */
 250			sig,
 251			(status & PORT_RESET) ? " RESET" : "",
 252			(status & PORT_SUSPEND) ? " SUSPEND" : "",
 253			(status & PORT_RESUME) ? " RESUME" : "",
 254			(status & PORT_PEC) ? " PEC" : "",
 255			(status & PORT_PE) ? " PE" : "",
 256			(status & PORT_CSC) ? " CSC" : "",
 257			(status & PORT_CONNECT) ? " CONNECT" : "");
 258
 259	return buf;
 260}
 261
 262/* functions have the "wrong" filename when they're output... */
 263#define dbg_status(fotg210, label, status) {			\
 264	char _buf[80];						\
 265	dbg_status_buf(_buf, sizeof(_buf), label, status);	\
 266	fotg210_dbg(fotg210, "%s\n", _buf);			\
 267}
 268
 269#define dbg_cmd(fotg210, label, command) {			\
 270	char _buf[80];						\
 271	dbg_command_buf(_buf, sizeof(_buf), label, command);	\
 272	fotg210_dbg(fotg210, "%s\n", _buf);			\
 273}
 274
 275#define dbg_port(fotg210, label, port, status) {			       \
 276	char _buf[80];							       \
 277	fotg210_dbg(fotg210, "%s\n",					       \
 278			dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
 279}
 280
 281/* troubleshooting help: expose state in debugfs */
 282static int debug_async_open(struct inode *, struct file *);
 283static int debug_periodic_open(struct inode *, struct file *);
 284static int debug_registers_open(struct inode *, struct file *);
 285static int debug_async_open(struct inode *, struct file *);
 286
 287static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
 288static int debug_close(struct inode *, struct file *);
 289
 290static const struct file_operations debug_async_fops = {
 291	.owner		= THIS_MODULE,
 292	.open		= debug_async_open,
 293	.read		= debug_output,
 294	.release	= debug_close,
 295	.llseek		= default_llseek,
 296};
 297static const struct file_operations debug_periodic_fops = {
 298	.owner		= THIS_MODULE,
 299	.open		= debug_periodic_open,
 300	.read		= debug_output,
 301	.release	= debug_close,
 302	.llseek		= default_llseek,
 303};
 304static const struct file_operations debug_registers_fops = {
 305	.owner		= THIS_MODULE,
 306	.open		= debug_registers_open,
 307	.read		= debug_output,
 308	.release	= debug_close,
 309	.llseek		= default_llseek,
 310};
 311
 312static struct dentry *fotg210_debug_root;
 313
 314struct debug_buffer {
 315	ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */
 316	struct usb_bus *bus;
 317	struct mutex mutex;	/* protect filling of buffer */
 318	size_t count;		/* number of characters filled into buffer */
 319	char *output_buf;
 320	size_t alloc_size;
 321};
 322
 323static inline char speed_char(u32 scratch)
 324{
 325	switch (scratch & (3 << 12)) {
 326	case QH_FULL_SPEED:
 327		return 'f';
 328
 329	case QH_LOW_SPEED:
 330		return 'l';
 331
 332	case QH_HIGH_SPEED:
 333		return 'h';
 334
 335	default:
 336		return '?';
 337	}
 338}
 339
 340static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
 341{
 342	__u32 v = hc32_to_cpu(fotg210, token);
 343
 344	if (v & QTD_STS_ACTIVE)
 345		return '*';
 346	if (v & QTD_STS_HALT)
 347		return '-';
 348	if (!IS_SHORT_READ(v))
 349		return ' ';
 350	/* tries to advance through hw_alt_next */
 351	return '/';
 352}
 353
 354static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
 355		char **nextp, unsigned *sizep)
 356{
 357	u32 scratch;
 358	u32 hw_curr;
 359	struct fotg210_qtd *td;
 360	unsigned temp;
 361	unsigned size = *sizep;
 362	char *next = *nextp;
 363	char mark;
 364	__le32 list_end = FOTG210_LIST_END(fotg210);
 365	struct fotg210_qh_hw *hw = qh->hw;
 366
 367	if (hw->hw_qtd_next == list_end) /* NEC does this */
 368		mark = '@';
 369	else
 370		mark = token_mark(fotg210, hw->hw_token);
 371	if (mark == '/') { /* qh_alt_next controls qh advance? */
 372		if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
 373		    fotg210->async->hw->hw_alt_next)
 374			mark = '#'; /* blocked */
 375		else if (hw->hw_alt_next == list_end)
 376			mark = '.'; /* use hw_qtd_next */
 377		/* else alt_next points to some other qtd */
 378	}
 379	scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
 380	hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
 381	temp = scnprintf(next, size,
 382			"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
 383			qh, scratch & 0x007f,
 384			speed_char(scratch),
 385			(scratch >> 8) & 0x000f,
 386			scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
 387			hc32_to_cpup(fotg210, &hw->hw_token), mark,
 388			(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
 389				? "data1" : "data0",
 390			(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
 391	size -= temp;
 392	next += temp;
 393
 394	/* hc may be modifying the list as we read it ... */
 395	list_for_each_entry(td, &qh->qtd_list, qtd_list) {
 396		scratch = hc32_to_cpup(fotg210, &td->hw_token);
 397		mark = ' ';
 398		if (hw_curr == td->qtd_dma)
 399			mark = '*';
 400		else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
 401			mark = '+';
 402		else if (QTD_LENGTH(scratch)) {
 403			if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
 404				mark = '#';
 405			else if (td->hw_alt_next != list_end)
 406				mark = '/';
 407		}
 408		temp = snprintf(next, size,
 409				"\n\t%p%c%s len=%d %08x urb %p",
 410				td, mark, ({ char *tmp;
 411				switch ((scratch>>8)&0x03) {
 412				case 0:
 413					tmp = "out";
 414					break;
 415				case 1:
 416					tmp = "in";
 417					break;
 418				case 2:
 419					tmp = "setup";
 420					break;
 421				default:
 422					tmp = "?";
 423					break;
 424				 } tmp; }),
 425				(scratch >> 16) & 0x7fff,
 426				scratch,
 427				td->urb);
 428		if (size < temp)
 429			temp = size;
 430		size -= temp;
 431		next += temp;
 432		if (temp == size)
 433			goto done;
 434	}
 435
 436	temp = snprintf(next, size, "\n");
 437	if (size < temp)
 438		temp = size;
 439
 440	size -= temp;
 441	next += temp;
 442
 443done:
 444	*sizep = size;
 445	*nextp = next;
 446}
 447
 448static ssize_t fill_async_buffer(struct debug_buffer *buf)
 449{
 450	struct usb_hcd *hcd;
 451	struct fotg210_hcd *fotg210;
 452	unsigned long flags;
 453	unsigned temp, size;
 454	char *next;
 455	struct fotg210_qh *qh;
 456
 457	hcd = bus_to_hcd(buf->bus);
 458	fotg210 = hcd_to_fotg210(hcd);
 459	next = buf->output_buf;
 460	size = buf->alloc_size;
 461
 462	*next = 0;
 463
 464	/* dumps a snapshot of the async schedule.
 465	 * usually empty except for long-term bulk reads, or head.
 466	 * one QH per line, and TDs we know about
 467	 */
 468	spin_lock_irqsave(&fotg210->lock, flags);
 469	for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
 470			qh = qh->qh_next.qh)
 471		qh_lines(fotg210, qh, &next, &size);
 472	if (fotg210->async_unlink && size > 0) {
 473		temp = scnprintf(next, size, "\nunlink =\n");
 474		size -= temp;
 475		next += temp;
 476
 477		for (qh = fotg210->async_unlink; size > 0 && qh;
 478				qh = qh->unlink_next)
 479			qh_lines(fotg210, qh, &next, &size);
 480	}
 481	spin_unlock_irqrestore(&fotg210->lock, flags);
 482
 483	return strlen(buf->output_buf);
 484}
 485
 486/* count tds, get ep direction */
 487static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
 488		struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
 489{
 490	u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
 491	struct fotg210_qtd *qtd;
 492	char *type = "";
 493	unsigned temp = 0;
 494
 495	/* count tds, get ep direction */
 496	list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
 497		temp++;
 498		switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
 499		case 0:
 500			type = "out";
 501			continue;
 502		case 1:
 503			type = "in";
 504			continue;
 505		}
 506	}
 507
 508	return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
 509			speed_char(scratch), scratch & 0x007f,
 510			(scratch >> 8) & 0x000f, type, qh->usecs,
 511			qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
 512}
 513
 514#define DBG_SCHED_LIMIT 64
 515static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
 516{
 517	struct usb_hcd *hcd;
 518	struct fotg210_hcd *fotg210;
 519	unsigned long flags;
 520	union fotg210_shadow p, *seen;
 521	unsigned temp, size, seen_count;
 522	char *next;
 523	unsigned i;
 524	__hc32 tag;
 525
 526	seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
 527	if (!seen)
 528		return 0;
 529
 530	seen_count = 0;
 531
 532	hcd = bus_to_hcd(buf->bus);
 533	fotg210 = hcd_to_fotg210(hcd);
 534	next = buf->output_buf;
 535	size = buf->alloc_size;
 536
 537	temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
 538	size -= temp;
 539	next += temp;
 540
 541	/* dump a snapshot of the periodic schedule.
 542	 * iso changes, interrupt usually doesn't.
 543	 */
 544	spin_lock_irqsave(&fotg210->lock, flags);
 545	for (i = 0; i < fotg210->periodic_size; i++) {
 546		p = fotg210->pshadow[i];
 547		if (likely(!p.ptr))
 548			continue;
 549
 550		tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
 551
 552		temp = scnprintf(next, size, "%4d: ", i);
 553		size -= temp;
 554		next += temp;
 555
 556		do {
 557			struct fotg210_qh_hw *hw;
 558
 559			switch (hc32_to_cpu(fotg210, tag)) {
 560			case Q_TYPE_QH:
 561				hw = p.qh->hw;
 562				temp = scnprintf(next, size, " qh%d-%04x/%p",
 563						p.qh->period,
 564						hc32_to_cpup(fotg210,
 565							&hw->hw_info2)
 566							/* uframe masks */
 567							& (QH_CMASK | QH_SMASK),
 568						p.qh);
 569				size -= temp;
 570				next += temp;
 571				/* don't repeat what follows this qh */
 572				for (temp = 0; temp < seen_count; temp++) {
 573					if (seen[temp].ptr != p.ptr)
 574						continue;
 575					if (p.qh->qh_next.ptr) {
 576						temp = scnprintf(next, size,
 577								" ...");
 578						size -= temp;
 579						next += temp;
 580					}
 581					break;
 582				}
 583				/* show more info the first time around */
 584				if (temp == seen_count) {
 585					temp = output_buf_tds_dir(next,
 586							fotg210, hw,
 587							p.qh, size);
 588
 589					if (seen_count < DBG_SCHED_LIMIT)
 590						seen[seen_count++].qh = p.qh;
 591				} else
 592					temp = 0;
 593				tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
 594				p = p.qh->qh_next;
 595				break;
 596			case Q_TYPE_FSTN:
 597				temp = scnprintf(next, size,
 598						" fstn-%8x/%p",
 599						p.fstn->hw_prev, p.fstn);
 600				tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
 601				p = p.fstn->fstn_next;
 602				break;
 603			case Q_TYPE_ITD:
 604				temp = scnprintf(next, size,
 605						" itd/%p", p.itd);
 606				tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
 607				p = p.itd->itd_next;
 608				break;
 609			}
 610			size -= temp;
 611			next += temp;
 612		} while (p.ptr);
 613
 614		temp = scnprintf(next, size, "\n");
 615		size -= temp;
 616		next += temp;
 617	}
 618	spin_unlock_irqrestore(&fotg210->lock, flags);
 619	kfree(seen);
 620
 621	return buf->alloc_size - size;
 622}
 623#undef DBG_SCHED_LIMIT
 624
 625static const char *rh_state_string(struct fotg210_hcd *fotg210)
 626{
 627	switch (fotg210->rh_state) {
 628	case FOTG210_RH_HALTED:
 629		return "halted";
 630	case FOTG210_RH_SUSPENDED:
 631		return "suspended";
 632	case FOTG210_RH_RUNNING:
 633		return "running";
 634	case FOTG210_RH_STOPPING:
 635		return "stopping";
 636	}
 637	return "?";
 638}
 639
 640static ssize_t fill_registers_buffer(struct debug_buffer *buf)
 641{
 642	struct usb_hcd *hcd;
 643	struct fotg210_hcd *fotg210;
 644	unsigned long flags;
 645	unsigned temp, size, i;
 646	char *next, scratch[80];
 647	static const char fmt[] = "%*s\n";
 648	static const char label[] = "";
 649
 650	hcd = bus_to_hcd(buf->bus);
 651	fotg210 = hcd_to_fotg210(hcd);
 652	next = buf->output_buf;
 653	size = buf->alloc_size;
 654
 655	spin_lock_irqsave(&fotg210->lock, flags);
 656
 657	if (!HCD_HW_ACCESSIBLE(hcd)) {
 658		size = scnprintf(next, size,
 659				"bus %s, device %s\n"
 660				"%s\n"
 661				"SUSPENDED(no register access)\n",
 662				hcd->self.controller->bus->name,
 663				dev_name(hcd->self.controller),
 664				hcd->product_desc);
 665		goto done;
 666	}
 667
 668	/* Capability Registers */
 669	i = HC_VERSION(fotg210, fotg210_readl(fotg210,
 670			&fotg210->caps->hc_capbase));
 671	temp = scnprintf(next, size,
 672			"bus %s, device %s\n"
 673			"%s\n"
 674			"EHCI %x.%02x, rh state %s\n",
 675			hcd->self.controller->bus->name,
 676			dev_name(hcd->self.controller),
 677			hcd->product_desc,
 678			i >> 8, i & 0x0ff, rh_state_string(fotg210));
 679	size -= temp;
 680	next += temp;
 681
 682	/* FIXME interpret both types of params */
 683	i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
 684	temp = scnprintf(next, size, "structural params 0x%08x\n", i);
 685	size -= temp;
 686	next += temp;
 687
 688	i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
 689	temp = scnprintf(next, size, "capability params 0x%08x\n", i);
 690	size -= temp;
 691	next += temp;
 692
 693	/* Operational Registers */
 694	temp = dbg_status_buf(scratch, sizeof(scratch), label,
 695			fotg210_readl(fotg210, &fotg210->regs->status));
 696	temp = scnprintf(next, size, fmt, temp, scratch);
 697	size -= temp;
 698	next += temp;
 699
 700	temp = dbg_command_buf(scratch, sizeof(scratch), label,
 701			fotg210_readl(fotg210, &fotg210->regs->command));
 702	temp = scnprintf(next, size, fmt, temp, scratch);
 703	size -= temp;
 704	next += temp;
 705
 706	temp = dbg_intr_buf(scratch, sizeof(scratch), label,
 707			fotg210_readl(fotg210, &fotg210->regs->intr_enable));
 708	temp = scnprintf(next, size, fmt, temp, scratch);
 709	size -= temp;
 710	next += temp;
 711
 712	temp = scnprintf(next, size, "uframe %04x\n",
 713			fotg210_read_frame_index(fotg210));
 714	size -= temp;
 715	next += temp;
 716
 717	if (fotg210->async_unlink) {
 718		temp = scnprintf(next, size, "async unlink qh %p\n",
 719				fotg210->async_unlink);
 720		size -= temp;
 721		next += temp;
 722	}
 723
 724#ifdef FOTG210_STATS
 725	temp = scnprintf(next, size,
 726			"irq normal %ld err %ld iaa %ld(lost %ld)\n",
 727			fotg210->stats.normal, fotg210->stats.error,
 728			fotg210->stats.iaa, fotg210->stats.lost_iaa);
 729	size -= temp;
 730	next += temp;
 731
 732	temp = scnprintf(next, size, "complete %ld unlink %ld\n",
 733			fotg210->stats.complete, fotg210->stats.unlink);
 734	size -= temp;
 735	next += temp;
 736#endif
 737
 738done:
 739	spin_unlock_irqrestore(&fotg210->lock, flags);
 740
 741	return buf->alloc_size - size;
 742}
 743
 744static struct debug_buffer
 745*alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
 746{
 747	struct debug_buffer *buf;
 748
 749	buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
 750
 751	if (buf) {
 752		buf->bus = bus;
 753		buf->fill_func = fill_func;
 754		mutex_init(&buf->mutex);
 755		buf->alloc_size = PAGE_SIZE;
 756	}
 757
 758	return buf;
 759}
 760
 761static int fill_buffer(struct debug_buffer *buf)
 762{
 763	int ret = 0;
 764
 765	if (!buf->output_buf)
 766		buf->output_buf = vmalloc(buf->alloc_size);
 767
 768	if (!buf->output_buf) {
 769		ret = -ENOMEM;
 770		goto out;
 771	}
 772
 773	ret = buf->fill_func(buf);
 774
 775	if (ret >= 0) {
 776		buf->count = ret;
 777		ret = 0;
 778	}
 779
 780out:
 781	return ret;
 782}
 783
 784static ssize_t debug_output(struct file *file, char __user *user_buf,
 785		size_t len, loff_t *offset)
 786{
 787	struct debug_buffer *buf = file->private_data;
 788	int ret = 0;
 789
 790	mutex_lock(&buf->mutex);
 791	if (buf->count == 0) {
 792		ret = fill_buffer(buf);
 793		if (ret != 0) {
 794			mutex_unlock(&buf->mutex);
 795			goto out;
 796		}
 797	}
 798	mutex_unlock(&buf->mutex);
 799
 800	ret = simple_read_from_buffer(user_buf, len, offset,
 801			buf->output_buf, buf->count);
 802
 803out:
 804	return ret;
 805
 806}
 807
 808static int debug_close(struct inode *inode, struct file *file)
 809{
 810	struct debug_buffer *buf = file->private_data;
 811
 812	if (buf) {
 813		vfree(buf->output_buf);
 814		kfree(buf);
 815	}
 816
 817	return 0;
 818}
 819static int debug_async_open(struct inode *inode, struct file *file)
 820{
 821	file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
 822
 823	return file->private_data ? 0 : -ENOMEM;
 824}
 825
 826static int debug_periodic_open(struct inode *inode, struct file *file)
 827{
 828	struct debug_buffer *buf;
 829
 830	buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
 831	if (!buf)
 832		return -ENOMEM;
 833
 834	buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
 835	file->private_data = buf;
 836	return 0;
 837}
 838
 839static int debug_registers_open(struct inode *inode, struct file *file)
 840{
 841	file->private_data = alloc_buffer(inode->i_private,
 842			fill_registers_buffer);
 843
 844	return file->private_data ? 0 : -ENOMEM;
 845}
 846
 847static inline void create_debug_files(struct fotg210_hcd *fotg210)
 848{
 849	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
 850	struct dentry *root;
 851
 852	root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
 853
 854	debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
 855	debugfs_create_file("periodic", S_IRUGO, root, bus,
 856			    &debug_periodic_fops);
 857	debugfs_create_file("registers", S_IRUGO, root, bus,
 858			    &debug_registers_fops);
 859}
 860
 861static inline void remove_debug_files(struct fotg210_hcd *fotg210)
 862{
 863	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
 864
 865	debugfs_remove(debugfs_lookup(bus->bus_name, fotg210_debug_root));
 866}
 867
 868/* handshake - spin reading hc until handshake completes or fails
 869 * @ptr: address of hc register to be read
 870 * @mask: bits to look at in result of read
 871 * @done: value of those bits when handshake succeeds
 872 * @usec: timeout in microseconds
 873 *
 874 * Returns negative errno, or zero on success
 875 *
 876 * Success happens when the "mask" bits have the specified value (hardware
 877 * handshake done).  There are two failure modes:  "usec" have passed (major
 878 * hardware flakeout), or the register reads as all-ones (hardware removed).
 879 *
 880 * That last failure should_only happen in cases like physical cardbus eject
 881 * before driver shutdown. But it also seems to be caused by bugs in cardbus
 882 * bridge shutdown:  shutting down the bridge before the devices using it.
 883 */
 884static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
 885		u32 mask, u32 done, int usec)
 886{
 887	u32 result;
 888	int ret;
 889
 890	ret = readl_poll_timeout_atomic(ptr, result,
 891					((result & mask) == done ||
 892					 result == U32_MAX), 1, usec);
 893	if (result == U32_MAX)		/* card removed */
 894		return -ENODEV;
 895
 896	return ret;
 897}
 898
 899/* Force HC to halt state from unknown (EHCI spec section 2.3).
 900 * Must be called with interrupts enabled and the lock not held.
 901 */
 902static int fotg210_halt(struct fotg210_hcd *fotg210)
 903{
 904	u32 temp;
 905
 906	spin_lock_irq(&fotg210->lock);
 907
 908	/* disable any irqs left enabled by previous code */
 909	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
 910
 911	/*
 912	 * This routine gets called during probe before fotg210->command
 913	 * has been initialized, so we can't rely on its value.
 914	 */
 915	fotg210->command &= ~CMD_RUN;
 916	temp = fotg210_readl(fotg210, &fotg210->regs->command);
 917	temp &= ~(CMD_RUN | CMD_IAAD);
 918	fotg210_writel(fotg210, temp, &fotg210->regs->command);
 919
 920	spin_unlock_irq(&fotg210->lock);
 921	synchronize_irq(fotg210_to_hcd(fotg210)->irq);
 922
 923	return handshake(fotg210, &fotg210->regs->status,
 924			STS_HALT, STS_HALT, 16 * 125);
 925}
 926
 927/* Reset a non-running (STS_HALT == 1) controller.
 928 * Must be called with interrupts enabled and the lock not held.
 929 */
 930static int fotg210_reset(struct fotg210_hcd *fotg210)
 931{
 932	int retval;
 933	u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
 934
 935	/* If the EHCI debug controller is active, special care must be
 936	 * taken before and after a host controller reset
 937	 */
 938	if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
 939		fotg210->debug = NULL;
 940
 941	command |= CMD_RESET;
 942	dbg_cmd(fotg210, "reset", command);
 943	fotg210_writel(fotg210, command, &fotg210->regs->command);
 944	fotg210->rh_state = FOTG210_RH_HALTED;
 945	fotg210->next_statechange = jiffies;
 946	retval = handshake(fotg210, &fotg210->regs->command,
 947			CMD_RESET, 0, 250 * 1000);
 948
 949	if (retval)
 950		return retval;
 951
 952	if (fotg210->debug)
 953		dbgp_external_startup(fotg210_to_hcd(fotg210));
 954
 955	fotg210->port_c_suspend = fotg210->suspended_ports =
 956			fotg210->resuming_ports = 0;
 957	return retval;
 958}
 959
 960/* Idle the controller (turn off the schedules).
 961 * Must be called with interrupts enabled and the lock not held.
 962 */
 963static void fotg210_quiesce(struct fotg210_hcd *fotg210)
 964{
 965	u32 temp;
 966
 967	if (fotg210->rh_state != FOTG210_RH_RUNNING)
 968		return;
 969
 970	/* wait for any schedule enables/disables to take effect */
 971	temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
 972	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
 973			16 * 125);
 974
 975	/* then disable anything that's still active */
 976	spin_lock_irq(&fotg210->lock);
 977	fotg210->command &= ~(CMD_ASE | CMD_PSE);
 978	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
 979	spin_unlock_irq(&fotg210->lock);
 980
 981	/* hardware can take 16 microframes to turn off ... */
 982	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
 983			16 * 125);
 984}
 985
 986static void end_unlink_async(struct fotg210_hcd *fotg210);
 987static void unlink_empty_async(struct fotg210_hcd *fotg210);
 988static void fotg210_work(struct fotg210_hcd *fotg210);
 989static void start_unlink_intr(struct fotg210_hcd *fotg210,
 990			      struct fotg210_qh *qh);
 991static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
 992
 993/* Set a bit in the USBCMD register */
 994static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
 995{
 996	fotg210->command |= bit;
 997	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
 998
 999	/* unblock posted write */
1000	fotg210_readl(fotg210, &fotg210->regs->command);
1001}
1002
1003/* Clear a bit in the USBCMD register */
1004static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1005{
1006	fotg210->command &= ~bit;
1007	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1008
1009	/* unblock posted write */
1010	fotg210_readl(fotg210, &fotg210->regs->command);
1011}
1012
1013/* EHCI timer support...  Now using hrtimers.
1014 *
1015 * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1016 * the timer routine runs, it checks each possible event; events that are
1017 * currently enabled and whose expiration time has passed get handled.
1018 * The set of enabled events is stored as a collection of bitflags in
1019 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1020 * increasing delay values (ranging between 1 ms and 100 ms).
1021 *
1022 * Rather than implementing a sorted list or tree of all pending events,
1023 * we keep track only of the lowest-numbered pending event, in
1024 * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1025 * expiration time is set to the timeout value for this event.
1026 *
1027 * As a result, events might not get handled right away; the actual delay
1028 * could be anywhere up to twice the requested delay.  This doesn't
1029 * matter, because none of the events are especially time-critical.  The
1030 * ones that matter most all have a delay of 1 ms, so they will be
1031 * handled after 2 ms at most, which is okay.  In addition to this, we
1032 * allow for an expiration range of 1 ms.
1033 */
1034
1035/* Delay lengths for the hrtimer event types.
1036 * Keep this list sorted by delay length, in the same order as
1037 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1038 */
1039static unsigned event_delays_ns[] = {
1040	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */
1041	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */
1042	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */
1043	1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */
1044	2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */
1045	6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1046	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */
1047	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1048	15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */
1049	100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */
1050};
1051
1052/* Enable a pending hrtimer event */
1053static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1054		bool resched)
1055{
1056	ktime_t *timeout = &fotg210->hr_timeouts[event];
1057
1058	if (resched)
1059		*timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1060	fotg210->enabled_hrtimer_events |= (1 << event);
1061
1062	/* Track only the lowest-numbered pending event */
1063	if (event < fotg210->next_hrtimer_event) {
1064		fotg210->next_hrtimer_event = event;
1065		hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1066				NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1067	}
1068}
1069
1070
1071/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1072static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1073{
1074	unsigned actual, want;
1075
1076	/* Don't enable anything if the controller isn't running (e.g., died) */
1077	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1078		return;
1079
1080	want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1081	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1082
1083	if (want != actual) {
1084
1085		/* Poll again later, but give up after about 20 ms */
1086		if (fotg210->ASS_poll_count++ < 20) {
1087			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1088					true);
1089			return;
1090		}
1091		fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1092				want, actual);
1093	}
1094	fotg210->ASS_poll_count = 0;
1095
1096	/* The status is up-to-date; restart or stop the schedule as needed */
1097	if (want == 0) {	/* Stopped */
1098		if (fotg210->async_count > 0)
1099			fotg210_set_command_bit(fotg210, CMD_ASE);
1100
1101	} else {		/* Running */
1102		if (fotg210->async_count == 0) {
1103
1104			/* Turn off the schedule after a while */
1105			fotg210_enable_event(fotg210,
1106					FOTG210_HRTIMER_DISABLE_ASYNC,
1107					true);
1108		}
1109	}
1110}
1111
1112/* Turn off the async schedule after a brief delay */
1113static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1114{
1115	fotg210_clear_command_bit(fotg210, CMD_ASE);
1116}
1117
1118
1119/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1120static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1121{
1122	unsigned actual, want;
1123
1124	/* Don't do anything if the controller isn't running (e.g., died) */
1125	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1126		return;
1127
1128	want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1129	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1130
1131	if (want != actual) {
1132
1133		/* Poll again later, but give up after about 20 ms */
1134		if (fotg210->PSS_poll_count++ < 20) {
1135			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1136					true);
1137			return;
1138		}
1139		fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1140				want, actual);
1141	}
1142	fotg210->PSS_poll_count = 0;
1143
1144	/* The status is up-to-date; restart or stop the schedule as needed */
1145	if (want == 0) {	/* Stopped */
1146		if (fotg210->periodic_count > 0)
1147			fotg210_set_command_bit(fotg210, CMD_PSE);
1148
1149	} else {		/* Running */
1150		if (fotg210->periodic_count == 0) {
1151
1152			/* Turn off the schedule after a while */
1153			fotg210_enable_event(fotg210,
1154					FOTG210_HRTIMER_DISABLE_PERIODIC,
1155					true);
1156		}
1157	}
1158}
1159
1160/* Turn off the periodic schedule after a brief delay */
1161static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1162{
1163	fotg210_clear_command_bit(fotg210, CMD_PSE);
1164}
1165
1166
1167/* Poll the STS_HALT status bit; see when a dead controller stops */
1168static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1169{
1170	if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1171
1172		/* Give up after a few milliseconds */
1173		if (fotg210->died_poll_count++ < 5) {
1174			/* Try again later */
1175			fotg210_enable_event(fotg210,
1176					FOTG210_HRTIMER_POLL_DEAD, true);
1177			return;
1178		}
1179		fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1180	}
1181
1182	/* Clean up the mess */
1183	fotg210->rh_state = FOTG210_RH_HALTED;
1184	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1185	fotg210_work(fotg210);
1186	end_unlink_async(fotg210);
1187
1188	/* Not in process context, so don't try to reset the controller */
1189}
1190
1191
1192/* Handle unlinked interrupt QHs once they are gone from the hardware */
1193static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1194{
1195	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1196
1197	/*
1198	 * Process all the QHs on the intr_unlink list that were added
1199	 * before the current unlink cycle began.  The list is in
1200	 * temporal order, so stop when we reach the first entry in the
1201	 * current cycle.  But if the root hub isn't running then
1202	 * process all the QHs on the list.
1203	 */
1204	fotg210->intr_unlinking = true;
1205	while (fotg210->intr_unlink) {
1206		struct fotg210_qh *qh = fotg210->intr_unlink;
1207
1208		if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1209			break;
1210		fotg210->intr_unlink = qh->unlink_next;
1211		qh->unlink_next = NULL;
1212		end_unlink_intr(fotg210, qh);
1213	}
1214
1215	/* Handle remaining entries later */
1216	if (fotg210->intr_unlink) {
1217		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1218				true);
1219		++fotg210->intr_unlink_cycle;
1220	}
1221	fotg210->intr_unlinking = false;
1222}
1223
1224
1225/* Start another free-iTDs/siTDs cycle */
1226static void start_free_itds(struct fotg210_hcd *fotg210)
1227{
1228	if (!(fotg210->enabled_hrtimer_events &
1229			BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1230		fotg210->last_itd_to_free = list_entry(
1231				fotg210->cached_itd_list.prev,
1232				struct fotg210_itd, itd_list);
1233		fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1234	}
1235}
1236
1237/* Wait for controller to stop using old iTDs and siTDs */
1238static void end_free_itds(struct fotg210_hcd *fotg210)
1239{
1240	struct fotg210_itd *itd, *n;
1241
1242	if (fotg210->rh_state < FOTG210_RH_RUNNING)
1243		fotg210->last_itd_to_free = NULL;
1244
1245	list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1246		list_del(&itd->itd_list);
1247		dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1248		if (itd == fotg210->last_itd_to_free)
1249			break;
1250	}
1251
1252	if (!list_empty(&fotg210->cached_itd_list))
1253		start_free_itds(fotg210);
1254}
1255
1256
1257/* Handle lost (or very late) IAA interrupts */
1258static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1259{
1260	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1261		return;
1262
1263	/*
1264	 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1265	 * So we need this watchdog, but must protect it against both
1266	 * (a) SMP races against real IAA firing and retriggering, and
1267	 * (b) clean HC shutdown, when IAA watchdog was pending.
1268	 */
1269	if (fotg210->async_iaa) {
1270		u32 cmd, status;
1271
1272		/* If we get here, IAA is *REALLY* late.  It's barely
1273		 * conceivable that the system is so busy that CMD_IAAD
1274		 * is still legitimately set, so let's be sure it's
1275		 * clear before we read STS_IAA.  (The HC should clear
1276		 * CMD_IAAD when it sets STS_IAA.)
1277		 */
1278		cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1279
1280		/*
1281		 * If IAA is set here it either legitimately triggered
1282		 * after the watchdog timer expired (_way_ late, so we'll
1283		 * still count it as lost) ... or a silicon erratum:
1284		 * - VIA seems to set IAA without triggering the IRQ;
1285		 * - IAAD potentially cleared without setting IAA.
1286		 */
1287		status = fotg210_readl(fotg210, &fotg210->regs->status);
1288		if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1289			INCR(fotg210->stats.lost_iaa);
1290			fotg210_writel(fotg210, STS_IAA,
1291					&fotg210->regs->status);
1292		}
1293
1294		fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1295				status, cmd);
1296		end_unlink_async(fotg210);
1297	}
1298}
1299
1300
1301/* Enable the I/O watchdog, if appropriate */
1302static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1303{
1304	/* Not needed if the controller isn't running or it's already enabled */
1305	if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1306			(fotg210->enabled_hrtimer_events &
1307			BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1308		return;
1309
1310	/*
1311	 * Isochronous transfers always need the watchdog.
1312	 * For other sorts we use it only if the flag is set.
1313	 */
1314	if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1315			fotg210->async_count + fotg210->intr_count > 0))
1316		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1317				true);
1318}
1319
1320
1321/* Handler functions for the hrtimer event types.
1322 * Keep this array in the same order as the event types indexed by
1323 * enum fotg210_hrtimer_event in fotg210.h.
1324 */
1325static void (*event_handlers[])(struct fotg210_hcd *) = {
1326	fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */
1327	fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */
1328	fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */
1329	fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */
1330	end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */
1331	unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1332	fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */
1333	fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1334	fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */
1335	fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */
1336};
1337
1338static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1339{
1340	struct fotg210_hcd *fotg210 =
1341			container_of(t, struct fotg210_hcd, hrtimer);
1342	ktime_t now;
1343	unsigned long events;
1344	unsigned long flags;
1345	unsigned e;
1346
1347	spin_lock_irqsave(&fotg210->lock, flags);
1348
1349	events = fotg210->enabled_hrtimer_events;
1350	fotg210->enabled_hrtimer_events = 0;
1351	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1352
1353	/*
1354	 * Check each pending event.  If its time has expired, handle
1355	 * the event; otherwise re-enable it.
1356	 */
1357	now = ktime_get();
1358	for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1359		if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1360			event_handlers[e](fotg210);
1361		else
1362			fotg210_enable_event(fotg210, e, false);
1363	}
1364
1365	spin_unlock_irqrestore(&fotg210->lock, flags);
1366	return HRTIMER_NORESTART;
1367}
1368
1369#define fotg210_bus_suspend NULL
1370#define fotg210_bus_resume NULL
1371
1372static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1373		u32 __iomem *status_reg, int port_status)
1374{
1375	if (!(port_status & PORT_CONNECT))
1376		return port_status;
1377
1378	/* if reset finished and it's still not enabled -- handoff */
1379	if (!(port_status & PORT_PE))
1380		/* with integrated TT, there's nobody to hand it to! */
1381		fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1382				index + 1);
1383	else
1384		fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1385				index + 1);
1386
1387	return port_status;
1388}
1389
1390
1391/* build "status change" packet (one or two bytes) from HC registers */
1392
1393static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1394{
1395	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1396	u32 temp, status;
1397	u32 mask;
1398	int retval = 1;
1399	unsigned long flags;
1400
1401	/* init status to no-changes */
1402	buf[0] = 0;
1403
1404	/* Inform the core about resumes-in-progress by returning
1405	 * a non-zero value even if there are no status changes.
1406	 */
1407	status = fotg210->resuming_ports;
1408
1409	mask = PORT_CSC | PORT_PEC;
1410	/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1411
1412	/* no hub change reports (bit 0) for now (power, ...) */
1413
1414	/* port N changes (bit N)? */
1415	spin_lock_irqsave(&fotg210->lock, flags);
1416
1417	temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1418
1419	/*
1420	 * Return status information even for ports with OWNER set.
1421	 * Otherwise hub_wq wouldn't see the disconnect event when a
1422	 * high-speed device is switched over to the companion
1423	 * controller by the user.
1424	 */
1425
1426	if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1427			(fotg210->reset_done[0] &&
1428			time_after_eq(jiffies, fotg210->reset_done[0]))) {
1429		buf[0] |= 1 << 1;
1430		status = STS_PCD;
1431	}
1432	/* FIXME autosuspend idle root hubs */
1433	spin_unlock_irqrestore(&fotg210->lock, flags);
1434	return status ? retval : 0;
1435}
1436
1437static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1438		struct usb_hub_descriptor *desc)
1439{
1440	int ports = HCS_N_PORTS(fotg210->hcs_params);
1441	u16 temp;
1442
1443	desc->bDescriptorType = USB_DT_HUB;
1444	desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */
1445	desc->bHubContrCurrent = 0;
1446
1447	desc->bNbrPorts = ports;
1448	temp = 1 + (ports / 8);
1449	desc->bDescLength = 7 + 2 * temp;
1450
1451	/* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1452	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1453	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1454
1455	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
1456	temp |= HUB_CHAR_NO_LPSM;	/* no power switching */
1457	desc->wHubCharacteristics = cpu_to_le16(temp);
1458}
1459
1460static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1461		u16 wIndex, char *buf, u16 wLength)
1462{
1463	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1464	int ports = HCS_N_PORTS(fotg210->hcs_params);
1465	u32 __iomem *status_reg = &fotg210->regs->port_status;
1466	u32 temp, temp1, status;
1467	unsigned long flags;
1468	int retval = 0;
1469	unsigned selector;
1470
1471	/*
1472	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1473	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1474	 * (track current state ourselves) ... blink for diagnostics,
1475	 * power, "this is the one", etc.  EHCI spec supports this.
1476	 */
1477
1478	spin_lock_irqsave(&fotg210->lock, flags);
1479	switch (typeReq) {
1480	case ClearHubFeature:
1481		switch (wValue) {
1482		case C_HUB_LOCAL_POWER:
1483		case C_HUB_OVER_CURRENT:
1484			/* no hub-wide feature/status flags */
1485			break;
1486		default:
1487			goto error;
1488		}
1489		break;
1490	case ClearPortFeature:
1491		if (!wIndex || wIndex > ports)
1492			goto error;
1493		wIndex--;
1494		temp = fotg210_readl(fotg210, status_reg);
1495		temp &= ~PORT_RWC_BITS;
1496
1497		/*
1498		 * Even if OWNER is set, so the port is owned by the
1499		 * companion controller, hub_wq needs to be able to clear
1500		 * the port-change status bits (especially
1501		 * USB_PORT_STAT_C_CONNECTION).
1502		 */
1503
1504		switch (wValue) {
1505		case USB_PORT_FEAT_ENABLE:
1506			fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1507			break;
1508		case USB_PORT_FEAT_C_ENABLE:
1509			fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1510			break;
1511		case USB_PORT_FEAT_SUSPEND:
1512			if (temp & PORT_RESET)
1513				goto error;
1514			if (!(temp & PORT_SUSPEND))
1515				break;
1516			if ((temp & PORT_PE) == 0)
1517				goto error;
1518
1519			/* resume signaling for 20 msec */
1520			fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1521			fotg210->reset_done[wIndex] = jiffies
1522					+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
1523			break;
1524		case USB_PORT_FEAT_C_SUSPEND:
1525			clear_bit(wIndex, &fotg210->port_c_suspend);
1526			break;
1527		case USB_PORT_FEAT_C_CONNECTION:
1528			fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1529			break;
1530		case USB_PORT_FEAT_C_OVER_CURRENT:
1531			fotg210_writel(fotg210, temp | OTGISR_OVC,
1532					&fotg210->regs->otgisr);
1533			break;
1534		case USB_PORT_FEAT_C_RESET:
1535			/* GetPortStatus clears reset */
1536			break;
1537		default:
1538			goto error;
1539		}
1540		fotg210_readl(fotg210, &fotg210->regs->command);
1541		break;
1542	case GetHubDescriptor:
1543		fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1544				buf);
1545		break;
1546	case GetHubStatus:
1547		/* no hub-wide feature/status flags */
1548		memset(buf, 0, 4);
1549		/*cpu_to_le32s ((u32 *) buf); */
1550		break;
1551	case GetPortStatus:
1552		if (!wIndex || wIndex > ports)
1553			goto error;
1554		wIndex--;
1555		status = 0;
1556		temp = fotg210_readl(fotg210, status_reg);
1557
1558		/* wPortChange bits */
1559		if (temp & PORT_CSC)
1560			status |= USB_PORT_STAT_C_CONNECTION << 16;
1561		if (temp & PORT_PEC)
1562			status |= USB_PORT_STAT_C_ENABLE << 16;
1563
1564		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1565		if (temp1 & OTGISR_OVC)
1566			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1567
1568		/* whoever resumes must GetPortStatus to complete it!! */
1569		if (temp & PORT_RESUME) {
1570
1571			/* Remote Wakeup received? */
1572			if (!fotg210->reset_done[wIndex]) {
1573				/* resume signaling for 20 msec */
1574				fotg210->reset_done[wIndex] = jiffies
1575						+ msecs_to_jiffies(20);
1576				/* check the port again */
1577				mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1578						fotg210->reset_done[wIndex]);
1579			}
1580
1581			/* resume completed? */
1582			else if (time_after_eq(jiffies,
1583					fotg210->reset_done[wIndex])) {
1584				clear_bit(wIndex, &fotg210->suspended_ports);
1585				set_bit(wIndex, &fotg210->port_c_suspend);
1586				fotg210->reset_done[wIndex] = 0;
1587
1588				/* stop resume signaling */
1589				temp = fotg210_readl(fotg210, status_reg);
1590				fotg210_writel(fotg210, temp &
1591						~(PORT_RWC_BITS | PORT_RESUME),
1592						status_reg);
1593				clear_bit(wIndex, &fotg210->resuming_ports);
1594				retval = handshake(fotg210, status_reg,
1595						PORT_RESUME, 0, 2000);/* 2ms */
1596				if (retval != 0) {
1597					fotg210_err(fotg210,
1598							"port %d resume error %d\n",
1599							wIndex + 1, retval);
1600					goto error;
1601				}
1602				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1603			}
1604		}
1605
1606		/* whoever resets must GetPortStatus to complete it!! */
1607		if ((temp & PORT_RESET) && time_after_eq(jiffies,
1608				fotg210->reset_done[wIndex])) {
1609			status |= USB_PORT_STAT_C_RESET << 16;
1610			fotg210->reset_done[wIndex] = 0;
1611			clear_bit(wIndex, &fotg210->resuming_ports);
1612
1613			/* force reset to complete */
1614			fotg210_writel(fotg210,
1615					temp & ~(PORT_RWC_BITS | PORT_RESET),
1616					status_reg);
1617			/* REVISIT:  some hardware needs 550+ usec to clear
1618			 * this bit; seems too long to spin routinely...
1619			 */
1620			retval = handshake(fotg210, status_reg,
1621					PORT_RESET, 0, 1000);
1622			if (retval != 0) {
1623				fotg210_err(fotg210, "port %d reset error %d\n",
1624						wIndex + 1, retval);
1625				goto error;
1626			}
1627
1628			/* see what we found out */
1629			temp = check_reset_complete(fotg210, wIndex, status_reg,
1630					fotg210_readl(fotg210, status_reg));
1631
1632			/* restart schedule */
1633			fotg210->command |= CMD_RUN;
1634			fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1635		}
1636
1637		if (!(temp & (PORT_RESUME|PORT_RESET))) {
1638			fotg210->reset_done[wIndex] = 0;
1639			clear_bit(wIndex, &fotg210->resuming_ports);
1640		}
1641
1642		/* transfer dedicated ports to the companion hc */
1643		if ((temp & PORT_CONNECT) &&
1644				test_bit(wIndex, &fotg210->companion_ports)) {
1645			temp &= ~PORT_RWC_BITS;
1646			fotg210_writel(fotg210, temp, status_reg);
1647			fotg210_dbg(fotg210, "port %d --> companion\n",
1648					wIndex + 1);
1649			temp = fotg210_readl(fotg210, status_reg);
1650		}
1651
1652		/*
1653		 * Even if OWNER is set, there's no harm letting hub_wq
1654		 * see the wPortStatus values (they should all be 0 except
1655		 * for PORT_POWER anyway).
1656		 */
1657
1658		if (temp & PORT_CONNECT) {
1659			status |= USB_PORT_STAT_CONNECTION;
1660			status |= fotg210_port_speed(fotg210, temp);
1661		}
1662		if (temp & PORT_PE)
1663			status |= USB_PORT_STAT_ENABLE;
1664
1665		/* maybe the port was unsuspended without our knowledge */
1666		if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1667			status |= USB_PORT_STAT_SUSPEND;
1668		} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1669			clear_bit(wIndex, &fotg210->suspended_ports);
1670			clear_bit(wIndex, &fotg210->resuming_ports);
1671			fotg210->reset_done[wIndex] = 0;
1672			if (temp & PORT_PE)
1673				set_bit(wIndex, &fotg210->port_c_suspend);
1674		}
1675
1676		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1677		if (temp1 & OTGISR_OVC)
1678			status |= USB_PORT_STAT_OVERCURRENT;
1679		if (temp & PORT_RESET)
1680			status |= USB_PORT_STAT_RESET;
1681		if (test_bit(wIndex, &fotg210->port_c_suspend))
1682			status |= USB_PORT_STAT_C_SUSPEND << 16;
1683
1684		if (status & ~0xffff)	/* only if wPortChange is interesting */
1685			dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1686		put_unaligned_le32(status, buf);
1687		break;
1688	case SetHubFeature:
1689		switch (wValue) {
1690		case C_HUB_LOCAL_POWER:
1691		case C_HUB_OVER_CURRENT:
1692			/* no hub-wide feature/status flags */
1693			break;
1694		default:
1695			goto error;
1696		}
1697		break;
1698	case SetPortFeature:
1699		selector = wIndex >> 8;
1700		wIndex &= 0xff;
1701
1702		if (!wIndex || wIndex > ports)
1703			goto error;
1704		wIndex--;
1705		temp = fotg210_readl(fotg210, status_reg);
1706		temp &= ~PORT_RWC_BITS;
1707		switch (wValue) {
1708		case USB_PORT_FEAT_SUSPEND:
1709			if ((temp & PORT_PE) == 0
1710					|| (temp & PORT_RESET) != 0)
1711				goto error;
1712
1713			/* After above check the port must be connected.
1714			 * Set appropriate bit thus could put phy into low power
1715			 * mode if we have hostpc feature
1716			 */
1717			fotg210_writel(fotg210, temp | PORT_SUSPEND,
1718					status_reg);
1719			set_bit(wIndex, &fotg210->suspended_ports);
1720			break;
1721		case USB_PORT_FEAT_RESET:
1722			if (temp & PORT_RESUME)
1723				goto error;
1724			/* line status bits may report this as low speed,
1725			 * which can be fine if this root hub has a
1726			 * transaction translator built in.
1727			 */
1728			fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1729			temp |= PORT_RESET;
1730			temp &= ~PORT_PE;
1731
1732			/*
1733			 * caller must wait, then call GetPortStatus
1734			 * usb 2.0 spec says 50 ms resets on root
1735			 */
1736			fotg210->reset_done[wIndex] = jiffies
1737					+ msecs_to_jiffies(50);
1738			fotg210_writel(fotg210, temp, status_reg);
1739			break;
1740
1741		/* For downstream facing ports (these):  one hub port is put
1742		 * into test mode according to USB2 11.24.2.13, then the hub
1743		 * must be reset (which for root hub now means rmmod+modprobe,
1744		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1745		 * about the EHCI-specific stuff.
1746		 */
1747		case USB_PORT_FEAT_TEST:
1748			if (!selector || selector > 5)
1749				goto error;
1750			spin_unlock_irqrestore(&fotg210->lock, flags);
1751			fotg210_quiesce(fotg210);
1752			spin_lock_irqsave(&fotg210->lock, flags);
1753
1754			/* Put all enabled ports into suspend */
1755			temp = fotg210_readl(fotg210, status_reg) &
1756				~PORT_RWC_BITS;
1757			if (temp & PORT_PE)
1758				fotg210_writel(fotg210, temp | PORT_SUSPEND,
1759						status_reg);
1760
1761			spin_unlock_irqrestore(&fotg210->lock, flags);
1762			fotg210_halt(fotg210);
1763			spin_lock_irqsave(&fotg210->lock, flags);
1764
1765			temp = fotg210_readl(fotg210, status_reg);
1766			temp |= selector << 16;
1767			fotg210_writel(fotg210, temp, status_reg);
1768			break;
1769
1770		default:
1771			goto error;
1772		}
1773		fotg210_readl(fotg210, &fotg210->regs->command);
1774		break;
1775
1776	default:
1777error:
1778		/* "stall" on error */
1779		retval = -EPIPE;
1780	}
1781	spin_unlock_irqrestore(&fotg210->lock, flags);
1782	return retval;
1783}
1784
1785static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1786		int portnum)
1787{
1788	return;
1789}
1790
1791static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1792		int portnum)
1793{
1794	return 0;
1795}
1796
1797/* There's basically three types of memory:
1798 *	- data used only by the HCD ... kmalloc is fine
1799 *	- async and periodic schedules, shared by HC and HCD ... these
1800 *	  need to use dma_pool or dma_alloc_coherent
1801 *	- driver buffers, read/written by HC ... single shot DMA mapped
1802 *
1803 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1804 * No memory seen by this driver is pageable.
1805 */
1806
1807/* Allocate the key transfer structures from the previously allocated pool */
1808static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1809		struct fotg210_qtd *qtd, dma_addr_t dma)
1810{
1811	memset(qtd, 0, sizeof(*qtd));
1812	qtd->qtd_dma = dma;
1813	qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1814	qtd->hw_next = FOTG210_LIST_END(fotg210);
1815	qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1816	INIT_LIST_HEAD(&qtd->qtd_list);
1817}
1818
1819static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1820		gfp_t flags)
1821{
1822	struct fotg210_qtd *qtd;
1823	dma_addr_t dma;
1824
1825	qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1826	if (qtd != NULL)
1827		fotg210_qtd_init(fotg210, qtd, dma);
1828
1829	return qtd;
1830}
1831
1832static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1833		struct fotg210_qtd *qtd)
1834{
1835	dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1836}
1837
1838
1839static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1840{
1841	/* clean qtds first, and know this is not linked */
1842	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1843		fotg210_dbg(fotg210, "unused qh not empty!\n");
1844		BUG();
1845	}
1846	if (qh->dummy)
1847		fotg210_qtd_free(fotg210, qh->dummy);
1848	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1849	kfree(qh);
1850}
1851
1852static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1853		gfp_t flags)
1854{
1855	struct fotg210_qh *qh;
1856	dma_addr_t dma;
1857
1858	qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1859	if (!qh)
1860		goto done;
1861	qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1862	if (!qh->hw)
1863		goto fail;
1864	qh->qh_dma = dma;
1865	INIT_LIST_HEAD(&qh->qtd_list);
1866
1867	/* dummy td enables safe urb queuing */
1868	qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1869	if (qh->dummy == NULL) {
1870		fotg210_dbg(fotg210, "no dummy td\n");
1871		goto fail1;
1872	}
1873done:
1874	return qh;
1875fail1:
1876	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1877fail:
1878	kfree(qh);
1879	return NULL;
1880}
1881
1882/* The queue heads and transfer descriptors are managed from pools tied
1883 * to each of the "per device" structures.
1884 * This is the initialisation and cleanup code.
1885 */
1886
1887static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1888{
1889	if (fotg210->async)
1890		qh_destroy(fotg210, fotg210->async);
1891	fotg210->async = NULL;
1892
1893	if (fotg210->dummy)
1894		qh_destroy(fotg210, fotg210->dummy);
1895	fotg210->dummy = NULL;
1896
1897	/* DMA consistent memory and pools */
1898	dma_pool_destroy(fotg210->qtd_pool);
1899	fotg210->qtd_pool = NULL;
1900
1901	dma_pool_destroy(fotg210->qh_pool);
1902	fotg210->qh_pool = NULL;
1903
1904	dma_pool_destroy(fotg210->itd_pool);
1905	fotg210->itd_pool = NULL;
1906
1907	if (fotg210->periodic)
1908		dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1909				fotg210->periodic_size * sizeof(u32),
1910				fotg210->periodic, fotg210->periodic_dma);
1911	fotg210->periodic = NULL;
1912
1913	/* shadow periodic table */
1914	kfree(fotg210->pshadow);
1915	fotg210->pshadow = NULL;
1916}
1917
1918/* remember to add cleanup code (above) if you add anything here */
1919static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1920{
1921	int i;
1922
1923	/* QTDs for control/bulk/intr transfers */
1924	fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1925			fotg210_to_hcd(fotg210)->self.controller,
1926			sizeof(struct fotg210_qtd),
1927			32 /* byte alignment (for hw parts) */,
1928			4096 /* can't cross 4K */);
1929	if (!fotg210->qtd_pool)
1930		goto fail;
1931
1932	/* QHs for control/bulk/intr transfers */
1933	fotg210->qh_pool = dma_pool_create("fotg210_qh",
1934			fotg210_to_hcd(fotg210)->self.controller,
1935			sizeof(struct fotg210_qh_hw),
1936			32 /* byte alignment (for hw parts) */,
1937			4096 /* can't cross 4K */);
1938	if (!fotg210->qh_pool)
1939		goto fail;
1940
1941	fotg210->async = fotg210_qh_alloc(fotg210, flags);
1942	if (!fotg210->async)
1943		goto fail;
1944
1945	/* ITD for high speed ISO transfers */
1946	fotg210->itd_pool = dma_pool_create("fotg210_itd",
1947			fotg210_to_hcd(fotg210)->self.controller,
1948			sizeof(struct fotg210_itd),
1949			64 /* byte alignment (for hw parts) */,
1950			4096 /* can't cross 4K */);
1951	if (!fotg210->itd_pool)
1952		goto fail;
1953
1954	/* Hardware periodic table */
1955	fotg210->periodic =
1956		dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1957				fotg210->periodic_size * sizeof(__le32),
1958				&fotg210->periodic_dma, 0);
1959	if (fotg210->periodic == NULL)
1960		goto fail;
1961
1962	for (i = 0; i < fotg210->periodic_size; i++)
1963		fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1964
1965	/* software shadow of hardware table */
1966	fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1967			flags);
1968	if (fotg210->pshadow != NULL)
1969		return 0;
1970
1971fail:
1972	fotg210_dbg(fotg210, "couldn't init memory\n");
1973	fotg210_mem_cleanup(fotg210);
1974	return -ENOMEM;
1975}
1976/* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1977 *
1978 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
1979 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1980 * buffers needed for the larger number).  We use one QH per endpoint, queue
1981 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
1982 *
1983 * ISO traffic uses "ISO TD" (itd) records, and (along with
1984 * interrupts) needs careful scheduling.  Performance improvements can be
1985 * an ongoing challenge.  That's in "ehci-sched.c".
1986 *
1987 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1988 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1989 * (b) special fields in qh entries or (c) split iso entries.  TTs will
1990 * buffer low/full speed data so the host collects it at high speed.
1991 */
1992
1993/* fill a qtd, returning how much of the buffer we were able to queue up */
1994static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1995		dma_addr_t buf, size_t len, int token, int maxpacket)
1996{
1997	int i, count;
1998	u64 addr = buf;
1999
2000	/* one buffer entry per 4K ... first might be short or unaligned */
2001	qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2002	qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2003	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
2004	if (likely(len < count))		/* ... iff needed */
2005		count = len;
2006	else {
2007		buf +=  0x1000;
2008		buf &= ~0x0fff;
2009
2010		/* per-qtd limit: from 16K to 20K (best alignment) */
2011		for (i = 1; count < len && i < 5; i++) {
2012			addr = buf;
2013			qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2014			qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2015					(u32)(addr >> 32));
2016			buf += 0x1000;
2017			if ((count + 0x1000) < len)
2018				count += 0x1000;
2019			else
2020				count = len;
2021		}
2022
2023		/* short packets may only terminate transfers */
2024		if (count != len)
2025			count -= (count % maxpacket);
2026	}
2027	qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2028	qtd->length = count;
2029
2030	return count;
2031}
2032
2033static inline void qh_update(struct fotg210_hcd *fotg210,
2034		struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2035{
2036	struct fotg210_qh_hw *hw = qh->hw;
2037
2038	/* writes to an active overlay are unsafe */
2039	BUG_ON(qh->qh_state != QH_STATE_IDLE);
2040
2041	hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2042	hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2043
2044	/* Except for control endpoints, we make hardware maintain data
2045	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2046	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2047	 * ever clear it.
2048	 */
2049	if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2050		unsigned is_out, epnum;
2051
2052		is_out = qh->is_out;
2053		epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2054		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2055			hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2056			usb_settoggle(qh->dev, epnum, is_out, 1);
2057		}
2058	}
2059
2060	hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2061}
2062
2063/* if it weren't for a common silicon quirk (writing the dummy into the qh
2064 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2065 * recovery (including urb dequeue) would need software changes to a QH...
2066 */
2067static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2068{
2069	struct fotg210_qtd *qtd;
2070
2071	if (list_empty(&qh->qtd_list))
2072		qtd = qh->dummy;
2073	else {
2074		qtd = list_entry(qh->qtd_list.next,
2075				struct fotg210_qtd, qtd_list);
2076		/*
2077		 * first qtd may already be partially processed.
2078		 * If we come here during unlink, the QH overlay region
2079		 * might have reference to the just unlinked qtd. The
2080		 * qtd is updated in qh_completions(). Update the QH
2081		 * overlay here.
2082		 */
2083		if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2084			qh->hw->hw_qtd_next = qtd->hw_next;
2085			qtd = NULL;
2086		}
2087	}
2088
2089	if (qtd)
2090		qh_update(fotg210, qh, qtd);
2091}
2092
2093static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2094
2095static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2096		struct usb_host_endpoint *ep)
2097{
2098	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2099	struct fotg210_qh *qh = ep->hcpriv;
2100	unsigned long flags;
2101
2102	spin_lock_irqsave(&fotg210->lock, flags);
2103	qh->clearing_tt = 0;
2104	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2105			&& fotg210->rh_state == FOTG210_RH_RUNNING)
2106		qh_link_async(fotg210, qh);
2107	spin_unlock_irqrestore(&fotg210->lock, flags);
2108}
2109
2110static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2111		struct fotg210_qh *qh, struct urb *urb, u32 token)
2112{
2113
2114	/* If an async split transaction gets an error or is unlinked,
2115	 * the TT buffer may be left in an indeterminate state.  We
2116	 * have to clear the TT buffer.
2117	 *
2118	 * Note: this routine is never called for Isochronous transfers.
2119	 */
2120	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2121		struct usb_device *tt = urb->dev->tt->hub;
2122
2123		dev_dbg(&tt->dev,
2124				"clear tt buffer port %d, a%d ep%d t%08x\n",
2125				urb->dev->ttport, urb->dev->devnum,
2126				usb_pipeendpoint(urb->pipe), token);
2127
2128		if (urb->dev->tt->hub !=
2129				fotg210_to_hcd(fotg210)->self.root_hub) {
2130			if (usb_hub_clear_tt_buffer(urb) == 0)
2131				qh->clearing_tt = 1;
2132		}
2133	}
2134}
2135
2136static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2137		size_t length, u32 token)
2138{
2139	int status = -EINPROGRESS;
2140
2141	/* count IN/OUT bytes, not SETUP (even short packets) */
2142	if (likely(QTD_PID(token) != 2))
2143		urb->actual_length += length - QTD_LENGTH(token);
2144
2145	/* don't modify error codes */
2146	if (unlikely(urb->unlinked))
2147		return status;
2148
2149	/* force cleanup after short read; not always an error */
2150	if (unlikely(IS_SHORT_READ(token)))
2151		status = -EREMOTEIO;
2152
2153	/* serious "can't proceed" faults reported by the hardware */
2154	if (token & QTD_STS_HALT) {
2155		if (token & QTD_STS_BABBLE) {
2156			/* FIXME "must" disable babbling device's port too */
2157			status = -EOVERFLOW;
2158		/* CERR nonzero + halt --> stall */
2159		} else if (QTD_CERR(token)) {
2160			status = -EPIPE;
2161
2162		/* In theory, more than one of the following bits can be set
2163		 * since they are sticky and the transaction is retried.
2164		 * Which to test first is rather arbitrary.
2165		 */
2166		} else if (token & QTD_STS_MMF) {
2167			/* fs/ls interrupt xfer missed the complete-split */
2168			status = -EPROTO;
2169		} else if (token & QTD_STS_DBE) {
2170			status = (QTD_PID(token) == 1) /* IN ? */
2171				? -ENOSR  /* hc couldn't read data */
2172				: -ECOMM; /* hc couldn't write data */
2173		} else if (token & QTD_STS_XACT) {
2174			/* timeout, bad CRC, wrong PID, etc */
2175			fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2176					urb->dev->devpath,
2177					usb_pipeendpoint(urb->pipe),
2178					usb_pipein(urb->pipe) ? "in" : "out");
2179			status = -EPROTO;
2180		} else {	/* unknown */
2181			status = -EPROTO;
2182		}
2183
2184		fotg210_dbg(fotg210,
2185				"dev%d ep%d%s qtd token %08x --> status %d\n",
2186				usb_pipedevice(urb->pipe),
2187				usb_pipeendpoint(urb->pipe),
2188				usb_pipein(urb->pipe) ? "in" : "out",
2189				token, status);
2190	}
2191
2192	return status;
2193}
2194
2195static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2196		int status)
2197__releases(fotg210->lock)
2198__acquires(fotg210->lock)
2199{
2200	if (likely(urb->hcpriv != NULL)) {
2201		struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2202
2203		/* S-mask in a QH means it's an interrupt urb */
2204		if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2205
2206			/* ... update hc-wide periodic stats (for usbfs) */
2207			fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2208		}
2209	}
2210
2211	if (unlikely(urb->unlinked)) {
2212		INCR(fotg210->stats.unlink);
2213	} else {
2214		/* report non-error and short read status as zero */
2215		if (status == -EINPROGRESS || status == -EREMOTEIO)
2216			status = 0;
2217		INCR(fotg210->stats.complete);
2218	}
2219
2220#ifdef FOTG210_URB_TRACE
2221	fotg210_dbg(fotg210,
2222			"%s %s urb %p ep%d%s status %d len %d/%d\n",
2223			__func__, urb->dev->devpath, urb,
2224			usb_pipeendpoint(urb->pipe),
2225			usb_pipein(urb->pipe) ? "in" : "out",
2226			status,
2227			urb->actual_length, urb->transfer_buffer_length);
2228#endif
2229
2230	/* complete() can reenter this HCD */
2231	usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2232	spin_unlock(&fotg210->lock);
2233	usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2234	spin_lock(&fotg210->lock);
2235}
2236
2237static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2238
2239/* Process and free completed qtds for a qh, returning URBs to drivers.
2240 * Chases up to qh->hw_current.  Returns number of completions called,
2241 * indicating how much "real" work we did.
2242 */
2243static unsigned qh_completions(struct fotg210_hcd *fotg210,
2244		struct fotg210_qh *qh)
2245{
2246	struct fotg210_qtd *last, *end = qh->dummy;
2247	struct fotg210_qtd *qtd, *tmp;
2248	int last_status;
2249	int stopped;
2250	unsigned count = 0;
2251	u8 state;
2252	struct fotg210_qh_hw *hw = qh->hw;
2253
2254	if (unlikely(list_empty(&qh->qtd_list)))
2255		return count;
2256
2257	/* completions (or tasks on other cpus) must never clobber HALT
2258	 * till we've gone through and cleaned everything up, even when
2259	 * they add urbs to this qh's queue or mark them for unlinking.
2260	 *
2261	 * NOTE:  unlinking expects to be done in queue order.
2262	 *
2263	 * It's a bug for qh->qh_state to be anything other than
2264	 * QH_STATE_IDLE, unless our caller is scan_async() or
2265	 * scan_intr().
2266	 */
2267	state = qh->qh_state;
2268	qh->qh_state = QH_STATE_COMPLETING;
2269	stopped = (state == QH_STATE_IDLE);
2270
2271rescan:
2272	last = NULL;
2273	last_status = -EINPROGRESS;
2274	qh->needs_rescan = 0;
2275
2276	/* remove de-activated QTDs from front of queue.
2277	 * after faults (including short reads), cleanup this urb
2278	 * then let the queue advance.
2279	 * if queue is stopped, handles unlinks.
2280	 */
2281	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2282		struct urb *urb;
2283		u32 token = 0;
2284
2285		urb = qtd->urb;
2286
2287		/* clean up any state from previous QTD ...*/
2288		if (last) {
2289			if (likely(last->urb != urb)) {
2290				fotg210_urb_done(fotg210, last->urb,
2291						last_status);
2292				count++;
2293				last_status = -EINPROGRESS;
2294			}
2295			fotg210_qtd_free(fotg210, last);
2296			last = NULL;
2297		}
2298
2299		/* ignore urbs submitted during completions we reported */
2300		if (qtd == end)
2301			break;
2302
2303		/* hardware copies qtd out of qh overlay */
2304		rmb();
2305		token = hc32_to_cpu(fotg210, qtd->hw_token);
2306
2307		/* always clean up qtds the hc de-activated */
2308retry_xacterr:
2309		if ((token & QTD_STS_ACTIVE) == 0) {
2310
2311			/* Report Data Buffer Error: non-fatal but useful */
2312			if (token & QTD_STS_DBE)
2313				fotg210_dbg(fotg210,
2314					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2315					urb, usb_endpoint_num(&urb->ep->desc),
2316					usb_endpoint_dir_in(&urb->ep->desc)
2317						? "in" : "out",
2318					urb->transfer_buffer_length, qtd, qh);
2319
2320			/* on STALL, error, and short reads this urb must
2321			 * complete and all its qtds must be recycled.
2322			 */
2323			if ((token & QTD_STS_HALT) != 0) {
2324
2325				/* retry transaction errors until we
2326				 * reach the software xacterr limit
2327				 */
2328				if ((token & QTD_STS_XACT) &&
2329						QTD_CERR(token) == 0 &&
2330						++qh->xacterrs < QH_XACTERR_MAX &&
2331						!urb->unlinked) {
2332					fotg210_dbg(fotg210,
2333						"detected XactErr len %zu/%zu retry %d\n",
2334						qtd->length - QTD_LENGTH(token),
2335						qtd->length,
2336						qh->xacterrs);
2337
2338					/* reset the token in the qtd and the
2339					 * qh overlay (which still contains
2340					 * the qtd) so that we pick up from
2341					 * where we left off
2342					 */
2343					token &= ~QTD_STS_HALT;
2344					token |= QTD_STS_ACTIVE |
2345						 (FOTG210_TUNE_CERR << 10);
2346					qtd->hw_token = cpu_to_hc32(fotg210,
2347							token);
2348					wmb();
2349					hw->hw_token = cpu_to_hc32(fotg210,
2350							token);
2351					goto retry_xacterr;
2352				}
2353				stopped = 1;
2354
2355			/* magic dummy for some short reads; qh won't advance.
2356			 * that silicon quirk can kick in with this dummy too.
2357			 *
2358			 * other short reads won't stop the queue, including
2359			 * control transfers (status stage handles that) or
2360			 * most other single-qtd reads ... the queue stops if
2361			 * URB_SHORT_NOT_OK was set so the driver submitting
2362			 * the urbs could clean it up.
2363			 */
2364			} else if (IS_SHORT_READ(token) &&
2365					!(qtd->hw_alt_next &
2366					FOTG210_LIST_END(fotg210))) {
2367				stopped = 1;
2368			}
2369
2370		/* stop scanning when we reach qtds the hc is using */
2371		} else if (likely(!stopped
2372				&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2373			break;
2374
2375		/* scan the whole queue for unlinks whenever it stops */
2376		} else {
2377			stopped = 1;
2378
2379			/* cancel everything if we halt, suspend, etc */
2380			if (fotg210->rh_state < FOTG210_RH_RUNNING)
2381				last_status = -ESHUTDOWN;
2382
2383			/* this qtd is active; skip it unless a previous qtd
2384			 * for its urb faulted, or its urb was canceled.
2385			 */
2386			else if (last_status == -EINPROGRESS && !urb->unlinked)
2387				continue;
2388
2389			/* qh unlinked; token in overlay may be most current */
2390			if (state == QH_STATE_IDLE &&
2391					cpu_to_hc32(fotg210, qtd->qtd_dma)
2392					== hw->hw_current) {
2393				token = hc32_to_cpu(fotg210, hw->hw_token);
2394
2395				/* An unlink may leave an incomplete
2396				 * async transaction in the TT buffer.
2397				 * We have to clear it.
2398				 */
2399				fotg210_clear_tt_buffer(fotg210, qh, urb,
2400						token);
2401			}
2402		}
2403
2404		/* unless we already know the urb's status, collect qtd status
2405		 * and update count of bytes transferred.  in common short read
2406		 * cases with only one data qtd (including control transfers),
2407		 * queue processing won't halt.  but with two or more qtds (for
2408		 * example, with a 32 KB transfer), when the first qtd gets a
2409		 * short read the second must be removed by hand.
2410		 */
2411		if (last_status == -EINPROGRESS) {
2412			last_status = qtd_copy_status(fotg210, urb,
2413					qtd->length, token);
2414			if (last_status == -EREMOTEIO &&
2415					(qtd->hw_alt_next &
2416					FOTG210_LIST_END(fotg210)))
2417				last_status = -EINPROGRESS;
2418
2419			/* As part of low/full-speed endpoint-halt processing
2420			 * we must clear the TT buffer (11.17.5).
2421			 */
2422			if (unlikely(last_status != -EINPROGRESS &&
2423					last_status != -EREMOTEIO)) {
2424				/* The TT's in some hubs malfunction when they
2425				 * receive this request following a STALL (they
2426				 * stop sending isochronous packets).  Since a
2427				 * STALL can't leave the TT buffer in a busy
2428				 * state (if you believe Figures 11-48 - 11-51
2429				 * in the USB 2.0 spec), we won't clear the TT
2430				 * buffer in this case.  Strictly speaking this
2431				 * is a violation of the spec.
2432				 */
2433				if (last_status != -EPIPE)
2434					fotg210_clear_tt_buffer(fotg210, qh,
2435							urb, token);
2436			}
2437		}
2438
2439		/* if we're removing something not at the queue head,
2440		 * patch the hardware queue pointer.
2441		 */
2442		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2443			last = list_entry(qtd->qtd_list.prev,
2444					struct fotg210_qtd, qtd_list);
2445			last->hw_next = qtd->hw_next;
2446		}
2447
2448		/* remove qtd; it's recycled after possible urb completion */
2449		list_del(&qtd->qtd_list);
2450		last = qtd;
2451
2452		/* reinit the xacterr counter for the next qtd */
2453		qh->xacterrs = 0;
2454	}
2455
2456	/* last urb's completion might still need calling */
2457	if (likely(last != NULL)) {
2458		fotg210_urb_done(fotg210, last->urb, last_status);
2459		count++;
2460		fotg210_qtd_free(fotg210, last);
2461	}
2462
2463	/* Do we need to rescan for URBs dequeued during a giveback? */
2464	if (unlikely(qh->needs_rescan)) {
2465		/* If the QH is already unlinked, do the rescan now. */
2466		if (state == QH_STATE_IDLE)
2467			goto rescan;
2468
2469		/* Otherwise we have to wait until the QH is fully unlinked.
2470		 * Our caller will start an unlink if qh->needs_rescan is
2471		 * set.  But if an unlink has already started, nothing needs
2472		 * to be done.
2473		 */
2474		if (state != QH_STATE_LINKED)
2475			qh->needs_rescan = 0;
2476	}
2477
2478	/* restore original state; caller must unlink or relink */
2479	qh->qh_state = state;
2480
2481	/* be sure the hardware's done with the qh before refreshing
2482	 * it after fault cleanup, or recovering from silicon wrongly
2483	 * overlaying the dummy qtd (which reduces DMA chatter).
2484	 */
2485	if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2486		switch (state) {
2487		case QH_STATE_IDLE:
2488			qh_refresh(fotg210, qh);
2489			break;
2490		case QH_STATE_LINKED:
2491			/* We won't refresh a QH that's linked (after the HC
2492			 * stopped the queue).  That avoids a race:
2493			 *  - HC reads first part of QH;
2494			 *  - CPU updates that first part and the token;
2495			 *  - HC reads rest of that QH, including token
2496			 * Result:  HC gets an inconsistent image, and then
2497			 * DMAs to/from the wrong memory (corrupting it).
2498			 *
2499			 * That should be rare for interrupt transfers,
2500			 * except maybe high bandwidth ...
2501			 */
2502
2503			/* Tell the caller to start an unlink */
2504			qh->needs_rescan = 1;
2505			break;
2506		/* otherwise, unlink already started */
2507		}
2508	}
2509
2510	return count;
2511}
2512
2513/* reverse of qh_urb_transaction:  free a list of TDs.
2514 * used for cleanup after errors, before HC sees an URB's TDs.
2515 */
2516static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2517		struct list_head *head)
2518{
2519	struct fotg210_qtd *qtd, *temp;
2520
2521	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2522		list_del(&qtd->qtd_list);
2523		fotg210_qtd_free(fotg210, qtd);
2524	}
2525}
2526
2527/* create a list of filled qtds for this URB; won't link into qh.
2528 */
2529static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2530		struct urb *urb, struct list_head *head, gfp_t flags)
2531{
2532	struct fotg210_qtd *qtd, *qtd_prev;
2533	dma_addr_t buf;
2534	int len, this_sg_len, maxpacket;
2535	int is_input;
2536	u32 token;
2537	int i;
2538	struct scatterlist *sg;
2539
2540	/*
2541	 * URBs map to sequences of QTDs:  one logical transaction
2542	 */
2543	qtd = fotg210_qtd_alloc(fotg210, flags);
2544	if (unlikely(!qtd))
2545		return NULL;
2546	list_add_tail(&qtd->qtd_list, head);
2547	qtd->urb = urb;
2548
2549	token = QTD_STS_ACTIVE;
2550	token |= (FOTG210_TUNE_CERR << 10);
2551	/* for split transactions, SplitXState initialized to zero */
2552
2553	len = urb->transfer_buffer_length;
2554	is_input = usb_pipein(urb->pipe);
2555	if (usb_pipecontrol(urb->pipe)) {
2556		/* SETUP pid */
2557		qtd_fill(fotg210, qtd, urb->setup_dma,
2558				sizeof(struct usb_ctrlrequest),
2559				token | (2 /* "setup" */ << 8), 8);
2560
2561		/* ... and always at least one more pid */
2562		token ^= QTD_TOGGLE;
2563		qtd_prev = qtd;
2564		qtd = fotg210_qtd_alloc(fotg210, flags);
2565		if (unlikely(!qtd))
2566			goto cleanup;
2567		qtd->urb = urb;
2568		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2569		list_add_tail(&qtd->qtd_list, head);
2570
2571		/* for zero length DATA stages, STATUS is always IN */
2572		if (len == 0)
2573			token |= (1 /* "in" */ << 8);
2574	}
2575
2576	/*
2577	 * data transfer stage:  buffer setup
2578	 */
2579	i = urb->num_mapped_sgs;
2580	if (len > 0 && i > 0) {
2581		sg = urb->sg;
2582		buf = sg_dma_address(sg);
2583
2584		/* urb->transfer_buffer_length may be smaller than the
2585		 * size of the scatterlist (or vice versa)
2586		 */
2587		this_sg_len = min_t(int, sg_dma_len(sg), len);
2588	} else {
2589		sg = NULL;
2590		buf = urb->transfer_dma;
2591		this_sg_len = len;
2592	}
2593
2594	if (is_input)
2595		token |= (1 /* "in" */ << 8);
2596	/* else it's already initted to "out" pid (0 << 8) */
2597
2598	maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2599
2600	/*
2601	 * buffer gets wrapped in one or more qtds;
2602	 * last one may be "short" (including zero len)
2603	 * and may serve as a control status ack
2604	 */
2605	for (;;) {
2606		int this_qtd_len;
2607
2608		this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2609				maxpacket);
2610		this_sg_len -= this_qtd_len;
2611		len -= this_qtd_len;
2612		buf += this_qtd_len;
2613
2614		/*
2615		 * short reads advance to a "magic" dummy instead of the next
2616		 * qtd ... that forces the queue to stop, for manual cleanup.
2617		 * (this will usually be overridden later.)
2618		 */
2619		if (is_input)
2620			qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2621
2622		/* qh makes control packets use qtd toggle; maybe switch it */
2623		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2624			token ^= QTD_TOGGLE;
2625
2626		if (likely(this_sg_len <= 0)) {
2627			if (--i <= 0 || len <= 0)
2628				break;
2629			sg = sg_next(sg);
2630			buf = sg_dma_address(sg);
2631			this_sg_len = min_t(int, sg_dma_len(sg), len);
2632		}
2633
2634		qtd_prev = qtd;
2635		qtd = fotg210_qtd_alloc(fotg210, flags);
2636		if (unlikely(!qtd))
2637			goto cleanup;
2638		qtd->urb = urb;
2639		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2640		list_add_tail(&qtd->qtd_list, head);
2641	}
2642
2643	/*
2644	 * unless the caller requires manual cleanup after short reads,
2645	 * have the alt_next mechanism keep the queue running after the
2646	 * last data qtd (the only one, for control and most other cases).
2647	 */
2648	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2649			usb_pipecontrol(urb->pipe)))
2650		qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2651
2652	/*
2653	 * control requests may need a terminating data "status" ack;
2654	 * other OUT ones may need a terminating short packet
2655	 * (zero length).
2656	 */
2657	if (likely(urb->transfer_buffer_length != 0)) {
2658		int one_more = 0;
2659
2660		if (usb_pipecontrol(urb->pipe)) {
2661			one_more = 1;
2662			token ^= 0x0100;	/* "in" <--> "out"  */
2663			token |= QTD_TOGGLE;	/* force DATA1 */
2664		} else if (usb_pipeout(urb->pipe)
2665				&& (urb->transfer_flags & URB_ZERO_PACKET)
2666				&& !(urb->transfer_buffer_length % maxpacket)) {
2667			one_more = 1;
2668		}
2669		if (one_more) {
2670			qtd_prev = qtd;
2671			qtd = fotg210_qtd_alloc(fotg210, flags);
2672			if (unlikely(!qtd))
2673				goto cleanup;
2674			qtd->urb = urb;
2675			qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2676			list_add_tail(&qtd->qtd_list, head);
2677
2678			/* never any data in such packets */
2679			qtd_fill(fotg210, qtd, 0, 0, token, 0);
2680		}
2681	}
2682
2683	/* by default, enable interrupt on urb completion */
2684	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2685		qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2686	return head;
2687
2688cleanup:
2689	qtd_list_free(fotg210, urb, head);
2690	return NULL;
2691}
2692
2693/* Would be best to create all qh's from config descriptors,
2694 * when each interface/altsetting is established.  Unlink
2695 * any previous qh and cancel its urbs first; endpoints are
2696 * implicitly reset then (data toggle too).
2697 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2698 */
2699
2700
2701/* Each QH holds a qtd list; a QH is used for everything except iso.
2702 *
2703 * For interrupt urbs, the scheduler must set the microframe scheduling
2704 * mask(s) each time the QH gets scheduled.  For highspeed, that's
2705 * just one microframe in the s-mask.  For split interrupt transactions
2706 * there are additional complications: c-mask, maybe FSTNs.
2707 */
2708static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2709		gfp_t flags)
2710{
2711	struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2712	struct usb_host_endpoint *ep;
2713	u32 info1 = 0, info2 = 0;
2714	int is_input, type;
2715	int maxp = 0;
2716	int mult;
2717	struct usb_tt *tt = urb->dev->tt;
2718	struct fotg210_qh_hw *hw;
2719
2720	if (!qh)
2721		return qh;
2722
2723	/*
2724	 * init endpoint/device data for this QH
2725	 */
2726	info1 |= usb_pipeendpoint(urb->pipe) << 8;
2727	info1 |= usb_pipedevice(urb->pipe) << 0;
2728
2729	is_input = usb_pipein(urb->pipe);
2730	type = usb_pipetype(urb->pipe);
2731	ep = usb_pipe_endpoint(urb->dev, urb->pipe);
2732	maxp = usb_endpoint_maxp(&ep->desc);
2733	mult = usb_endpoint_maxp_mult(&ep->desc);
2734
2735	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2736	 * acts like up to 3KB, but is built from smaller packets.
2737	 */
2738	if (maxp > 1024) {
2739		fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp);
2740		goto done;
2741	}
2742
2743	/* Compute interrupt scheduling parameters just once, and save.
2744	 * - allowing for high bandwidth, how many nsec/uframe are used?
2745	 * - split transactions need a second CSPLIT uframe; same question
2746	 * - splits also need a schedule gap (for full/low speed I/O)
2747	 * - qh has a polling interval
2748	 *
2749	 * For control/bulk requests, the HC or TT handles these.
2750	 */
2751	if (type == PIPE_INTERRUPT) {
2752		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2753				is_input, 0, mult * maxp));
2754		qh->start = NO_FRAME;
2755
2756		if (urb->dev->speed == USB_SPEED_HIGH) {
2757			qh->c_usecs = 0;
2758			qh->gap_uf = 0;
2759
2760			qh->period = urb->interval >> 3;
2761			if (qh->period == 0 && urb->interval != 1) {
2762				/* NOTE interval 2 or 4 uframes could work.
2763				 * But interval 1 scheduling is simpler, and
2764				 * includes high bandwidth.
2765				 */
2766				urb->interval = 1;
2767			} else if (qh->period > fotg210->periodic_size) {
2768				qh->period = fotg210->periodic_size;
2769				urb->interval = qh->period << 3;
2770			}
2771		} else {
2772			int think_time;
2773
2774			/* gap is f(FS/LS transfer times) */
2775			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2776					is_input, 0, maxp) / (125 * 1000);
2777
2778			/* FIXME this just approximates SPLIT/CSPLIT times */
2779			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
2780				qh->c_usecs = qh->usecs + HS_USECS(0);
2781				qh->usecs = HS_USECS(1);
2782			} else {		/* SPLIT+DATA, gap, CSPLIT */
2783				qh->usecs += HS_USECS(1);
2784				qh->c_usecs = HS_USECS(0);
2785			}
2786
2787			think_time = tt ? tt->think_time : 0;
2788			qh->tt_usecs = NS_TO_US(think_time +
2789					usb_calc_bus_time(urb->dev->speed,
2790					is_input, 0, maxp));
2791			qh->period = urb->interval;
2792			if (qh->period > fotg210->periodic_size) {
2793				qh->period = fotg210->periodic_size;
2794				urb->interval = qh->period;
2795			}
2796		}
2797	}
2798
2799	/* support for tt scheduling, and access to toggles */
2800	qh->dev = urb->dev;
2801
2802	/* using TT? */
2803	switch (urb->dev->speed) {
2804	case USB_SPEED_LOW:
2805		info1 |= QH_LOW_SPEED;
2806		fallthrough;
2807
2808	case USB_SPEED_FULL:
2809		/* EPS 0 means "full" */
2810		if (type != PIPE_INTERRUPT)
2811			info1 |= (FOTG210_TUNE_RL_TT << 28);
2812		if (type == PIPE_CONTROL) {
2813			info1 |= QH_CONTROL_EP;		/* for TT */
2814			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
2815		}
2816		info1 |= maxp << 16;
2817
2818		info2 |= (FOTG210_TUNE_MULT_TT << 30);
2819
2820		/* Some Freescale processors have an erratum in which the
2821		 * port number in the queue head was 0..N-1 instead of 1..N.
2822		 */
2823		if (fotg210_has_fsl_portno_bug(fotg210))
2824			info2 |= (urb->dev->ttport-1) << 23;
2825		else
2826			info2 |= urb->dev->ttport << 23;
2827
2828		/* set the address of the TT; for TDI's integrated
2829		 * root hub tt, leave it zeroed.
2830		 */
2831		if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2832			info2 |= tt->hub->devnum << 16;
2833
2834		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2835
2836		break;
2837
2838	case USB_SPEED_HIGH:		/* no TT involved */
2839		info1 |= QH_HIGH_SPEED;
2840		if (type == PIPE_CONTROL) {
2841			info1 |= (FOTG210_TUNE_RL_HS << 28);
2842			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
2843			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
2844			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2845		} else if (type == PIPE_BULK) {
2846			info1 |= (FOTG210_TUNE_RL_HS << 28);
2847			/* The USB spec says that high speed bulk endpoints
2848			 * always use 512 byte maxpacket.  But some device
2849			 * vendors decided to ignore that, and MSFT is happy
2850			 * to help them do so.  So now people expect to use
2851			 * such nonconformant devices with Linux too; sigh.
2852			 */
2853			info1 |= maxp << 16;
2854			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2855		} else {		/* PIPE_INTERRUPT */
2856			info1 |= maxp << 16;
2857			info2 |= mult << 30;
2858		}
2859		break;
2860	default:
2861		fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2862				urb->dev->speed);
2863done:
2864		qh_destroy(fotg210, qh);
2865		return NULL;
2866	}
2867
2868	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2869
2870	/* init as live, toggle clear, advance to dummy */
2871	qh->qh_state = QH_STATE_IDLE;
2872	hw = qh->hw;
2873	hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2874	hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2875	qh->is_out = !is_input;
2876	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2877	qh_refresh(fotg210, qh);
2878	return qh;
2879}
2880
2881static void enable_async(struct fotg210_hcd *fotg210)
2882{
2883	if (fotg210->async_count++)
2884		return;
2885
2886	/* Stop waiting to turn off the async schedule */
2887	fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2888
2889	/* Don't start the schedule until ASS is 0 */
2890	fotg210_poll_ASS(fotg210);
2891	turn_on_io_watchdog(fotg210);
2892}
2893
2894static void disable_async(struct fotg210_hcd *fotg210)
2895{
2896	if (--fotg210->async_count)
2897		return;
2898
2899	/* The async schedule and async_unlink list are supposed to be empty */
2900	WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2901
2902	/* Don't turn off the schedule until ASS is 1 */
2903	fotg210_poll_ASS(fotg210);
2904}
2905
2906/* move qh (and its qtds) onto async queue; maybe enable queue.  */
2907
2908static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2909{
2910	__hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2911	struct fotg210_qh *head;
2912
2913	/* Don't link a QH if there's a Clear-TT-Buffer pending */
2914	if (unlikely(qh->clearing_tt))
2915		return;
2916
2917	WARN_ON(qh->qh_state != QH_STATE_IDLE);
2918
2919	/* clear halt and/or toggle; and maybe recover from silicon quirk */
2920	qh_refresh(fotg210, qh);
2921
2922	/* splice right after start */
2923	head = fotg210->async;
2924	qh->qh_next = head->qh_next;
2925	qh->hw->hw_next = head->hw->hw_next;
2926	wmb();
2927
2928	head->qh_next.qh = qh;
2929	head->hw->hw_next = dma;
2930
2931	qh->xacterrs = 0;
2932	qh->qh_state = QH_STATE_LINKED;
2933	/* qtd completions reported later by interrupt */
2934
2935	enable_async(fotg210);
2936}
2937
2938/* For control/bulk/interrupt, return QH with these TDs appended.
2939 * Allocates and initializes the QH if necessary.
2940 * Returns null if it can't allocate a QH it needs to.
2941 * If the QH has TDs (urbs) already, that's great.
2942 */
2943static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2944		struct urb *urb, struct list_head *qtd_list,
2945		int epnum, void **ptr)
2946{
2947	struct fotg210_qh *qh = NULL;
2948	__hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2949
2950	qh = (struct fotg210_qh *) *ptr;
2951	if (unlikely(qh == NULL)) {
2952		/* can't sleep here, we have fotg210->lock... */
2953		qh = qh_make(fotg210, urb, GFP_ATOMIC);
2954		*ptr = qh;
2955	}
2956	if (likely(qh != NULL)) {
2957		struct fotg210_qtd *qtd;
2958
2959		if (unlikely(list_empty(qtd_list)))
2960			qtd = NULL;
2961		else
2962			qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2963					qtd_list);
2964
2965		/* control qh may need patching ... */
2966		if (unlikely(epnum == 0)) {
2967			/* usb_reset_device() briefly reverts to address 0 */
2968			if (usb_pipedevice(urb->pipe) == 0)
2969				qh->hw->hw_info1 &= ~qh_addr_mask;
2970		}
2971
2972		/* just one way to queue requests: swap with the dummy qtd.
2973		 * only hc or qh_refresh() ever modify the overlay.
2974		 */
2975		if (likely(qtd != NULL)) {
2976			struct fotg210_qtd *dummy;
2977			dma_addr_t dma;
2978			__hc32 token;
2979
2980			/* to avoid racing the HC, use the dummy td instead of
2981			 * the first td of our list (becomes new dummy).  both
2982			 * tds stay deactivated until we're done, when the
2983			 * HC is allowed to fetch the old dummy (4.10.2).
2984			 */
2985			token = qtd->hw_token;
2986			qtd->hw_token = HALT_BIT(fotg210);
2987
2988			dummy = qh->dummy;
2989
2990			dma = dummy->qtd_dma;
2991			*dummy = *qtd;
2992			dummy->qtd_dma = dma;
2993
2994			list_del(&qtd->qtd_list);
2995			list_add(&dummy->qtd_list, qtd_list);
2996			list_splice_tail(qtd_list, &qh->qtd_list);
2997
2998			fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
2999			qh->dummy = qtd;
3000
3001			/* hc must see the new dummy at list end */
3002			dma = qtd->qtd_dma;
3003			qtd = list_entry(qh->qtd_list.prev,
3004					struct fotg210_qtd, qtd_list);
3005			qtd->hw_next = QTD_NEXT(fotg210, dma);
3006
3007			/* let the hc process these next qtds */
3008			wmb();
3009			dummy->hw_token = token;
3010
3011			urb->hcpriv = qh;
3012		}
3013	}
3014	return qh;
3015}
3016
3017static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3018		struct list_head *qtd_list, gfp_t mem_flags)
3019{
3020	int epnum;
3021	unsigned long flags;
3022	struct fotg210_qh *qh = NULL;
3023	int rc;
3024
3025	epnum = urb->ep->desc.bEndpointAddress;
3026
3027#ifdef FOTG210_URB_TRACE
3028	{
3029		struct fotg210_qtd *qtd;
3030
3031		qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3032		fotg210_dbg(fotg210,
3033				"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3034				__func__, urb->dev->devpath, urb,
3035				epnum & 0x0f, (epnum & USB_DIR_IN)
3036					? "in" : "out",
3037				urb->transfer_buffer_length,
3038				qtd, urb->ep->hcpriv);
3039	}
3040#endif
3041
3042	spin_lock_irqsave(&fotg210->lock, flags);
3043	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3044		rc = -ESHUTDOWN;
3045		goto done;
3046	}
3047	rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3048	if (unlikely(rc))
3049		goto done;
3050
3051	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3052	if (unlikely(qh == NULL)) {
3053		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3054		rc = -ENOMEM;
3055		goto done;
3056	}
3057
3058	/* Control/bulk operations through TTs don't need scheduling,
3059	 * the HC and TT handle it when the TT has a buffer ready.
3060	 */
3061	if (likely(qh->qh_state == QH_STATE_IDLE))
3062		qh_link_async(fotg210, qh);
3063done:
3064	spin_unlock_irqrestore(&fotg210->lock, flags);
3065	if (unlikely(qh == NULL))
3066		qtd_list_free(fotg210, urb, qtd_list);
3067	return rc;
3068}
3069
3070static void single_unlink_async(struct fotg210_hcd *fotg210,
3071		struct fotg210_qh *qh)
3072{
3073	struct fotg210_qh *prev;
3074
3075	/* Add to the end of the list of QHs waiting for the next IAAD */
3076	qh->qh_state = QH_STATE_UNLINK;
3077	if (fotg210->async_unlink)
3078		fotg210->async_unlink_last->unlink_next = qh;
3079	else
3080		fotg210->async_unlink = qh;
3081	fotg210->async_unlink_last = qh;
3082
3083	/* Unlink it from the schedule */
3084	prev = fotg210->async;
3085	while (prev->qh_next.qh != qh)
3086		prev = prev->qh_next.qh;
3087
3088	prev->hw->hw_next = qh->hw->hw_next;
3089	prev->qh_next = qh->qh_next;
3090	if (fotg210->qh_scan_next == qh)
3091		fotg210->qh_scan_next = qh->qh_next.qh;
3092}
3093
3094static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3095{
3096	/*
3097	 * Do nothing if an IAA cycle is already running or
3098	 * if one will be started shortly.
3099	 */
3100	if (fotg210->async_iaa || fotg210->async_unlinking)
3101		return;
3102
3103	/* Do all the waiting QHs at once */
3104	fotg210->async_iaa = fotg210->async_unlink;
3105	fotg210->async_unlink = NULL;
3106
3107	/* If the controller isn't running, we don't have to wait for it */
3108	if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3109		if (!nested)		/* Avoid recursion */
3110			end_unlink_async(fotg210);
3111
3112	/* Otherwise start a new IAA cycle */
3113	} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3114		/* Make sure the unlinks are all visible to the hardware */
3115		wmb();
3116
3117		fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3118				&fotg210->regs->command);
3119		fotg210_readl(fotg210, &fotg210->regs->command);
3120		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3121				true);
3122	}
3123}
3124
3125/* the async qh for the qtds being unlinked are now gone from the HC */
3126
3127static void end_unlink_async(struct fotg210_hcd *fotg210)
3128{
3129	struct fotg210_qh *qh;
3130
3131	/* Process the idle QHs */
3132restart:
3133	fotg210->async_unlinking = true;
3134	while (fotg210->async_iaa) {
3135		qh = fotg210->async_iaa;
3136		fotg210->async_iaa = qh->unlink_next;
3137		qh->unlink_next = NULL;
3138
3139		qh->qh_state = QH_STATE_IDLE;
3140		qh->qh_next.qh = NULL;
3141
3142		qh_completions(fotg210, qh);
3143		if (!list_empty(&qh->qtd_list) &&
3144				fotg210->rh_state == FOTG210_RH_RUNNING)
3145			qh_link_async(fotg210, qh);
3146		disable_async(fotg210);
3147	}
3148	fotg210->async_unlinking = false;
3149
3150	/* Start a new IAA cycle if any QHs are waiting for it */
3151	if (fotg210->async_unlink) {
3152		start_iaa_cycle(fotg210, true);
3153		if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3154			goto restart;
3155	}
3156}
3157
3158static void unlink_empty_async(struct fotg210_hcd *fotg210)
3159{
3160	struct fotg210_qh *qh, *next;
3161	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3162	bool check_unlinks_later = false;
3163
3164	/* Unlink all the async QHs that have been empty for a timer cycle */
3165	next = fotg210->async->qh_next.qh;
3166	while (next) {
3167		qh = next;
3168		next = qh->qh_next.qh;
3169
3170		if (list_empty(&qh->qtd_list) &&
3171				qh->qh_state == QH_STATE_LINKED) {
3172			if (!stopped && qh->unlink_cycle ==
3173					fotg210->async_unlink_cycle)
3174				check_unlinks_later = true;
3175			else
3176				single_unlink_async(fotg210, qh);
3177		}
3178	}
3179
3180	/* Start a new IAA cycle if any QHs are waiting for it */
3181	if (fotg210->async_unlink)
3182		start_iaa_cycle(fotg210, false);
3183
3184	/* QHs that haven't been empty for long enough will be handled later */
3185	if (check_unlinks_later) {
3186		fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3187				true);
3188		++fotg210->async_unlink_cycle;
3189	}
3190}
3191
3192/* makes sure the async qh will become idle */
3193/* caller must own fotg210->lock */
3194
3195static void start_unlink_async(struct fotg210_hcd *fotg210,
3196		struct fotg210_qh *qh)
3197{
3198	/*
3199	 * If the QH isn't linked then there's nothing we can do
3200	 * unless we were called during a giveback, in which case
3201	 * qh_completions() has to deal with it.
3202	 */
3203	if (qh->qh_state != QH_STATE_LINKED) {
3204		if (qh->qh_state == QH_STATE_COMPLETING)
3205			qh->needs_rescan = 1;
3206		return;
3207	}
3208
3209	single_unlink_async(fotg210, qh);
3210	start_iaa_cycle(fotg210, false);
3211}
3212
3213static void scan_async(struct fotg210_hcd *fotg210)
3214{
3215	struct fotg210_qh *qh;
3216	bool check_unlinks_later = false;
3217
3218	fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3219	while (fotg210->qh_scan_next) {
3220		qh = fotg210->qh_scan_next;
3221		fotg210->qh_scan_next = qh->qh_next.qh;
3222rescan:
3223		/* clean any finished work for this qh */
3224		if (!list_empty(&qh->qtd_list)) {
3225			int temp;
3226
3227			/*
3228			 * Unlinks could happen here; completion reporting
3229			 * drops the lock.  That's why fotg210->qh_scan_next
3230			 * always holds the next qh to scan; if the next qh
3231			 * gets unlinked then fotg210->qh_scan_next is adjusted
3232			 * in single_unlink_async().
3233			 */
3234			temp = qh_completions(fotg210, qh);
3235			if (qh->needs_rescan) {
3236				start_unlink_async(fotg210, qh);
3237			} else if (list_empty(&qh->qtd_list)
3238					&& qh->qh_state == QH_STATE_LINKED) {
3239				qh->unlink_cycle = fotg210->async_unlink_cycle;
3240				check_unlinks_later = true;
3241			} else if (temp != 0)
3242				goto rescan;
3243		}
3244	}
3245
3246	/*
3247	 * Unlink empty entries, reducing DMA usage as well
3248	 * as HCD schedule-scanning costs.  Delay for any qh
3249	 * we just scanned, there's a not-unusual case that it
3250	 * doesn't stay idle for long.
3251	 */
3252	if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3253			!(fotg210->enabled_hrtimer_events &
3254			BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3255		fotg210_enable_event(fotg210,
3256				FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3257		++fotg210->async_unlink_cycle;
3258	}
3259}
3260/* EHCI scheduled transaction support:  interrupt, iso, split iso
3261 * These are called "periodic" transactions in the EHCI spec.
3262 *
3263 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3264 * with the "asynchronous" transaction support (control/bulk transfers).
3265 * The only real difference is in how interrupt transfers are scheduled.
3266 *
3267 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3268 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3269 * pre-calculated schedule data to make appending to the queue be quick.
3270 */
3271static int fotg210_get_frame(struct usb_hcd *hcd);
3272
3273/* periodic_next_shadow - return "next" pointer on shadow list
3274 * @periodic: host pointer to qh/itd
3275 * @tag: hardware tag for type of this record
3276 */
3277static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3278		union fotg210_shadow *periodic, __hc32 tag)
3279{
3280	switch (hc32_to_cpu(fotg210, tag)) {
3281	case Q_TYPE_QH:
3282		return &periodic->qh->qh_next;
3283	case Q_TYPE_FSTN:
3284		return &periodic->fstn->fstn_next;
3285	default:
3286		return &periodic->itd->itd_next;
3287	}
3288}
3289
3290static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3291		union fotg210_shadow *periodic, __hc32 tag)
3292{
3293	switch (hc32_to_cpu(fotg210, tag)) {
3294	/* our fotg210_shadow.qh is actually software part */
3295	case Q_TYPE_QH:
3296		return &periodic->qh->hw->hw_next;
3297	/* others are hw parts */
3298	default:
3299		return periodic->hw_next;
3300	}
3301}
3302
3303/* caller must hold fotg210->lock */
3304static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3305		void *ptr)
3306{
3307	union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3308	__hc32 *hw_p = &fotg210->periodic[frame];
3309	union fotg210_shadow here = *prev_p;
3310
3311	/* find predecessor of "ptr"; hw and shadow lists are in sync */
3312	while (here.ptr && here.ptr != ptr) {
3313		prev_p = periodic_next_shadow(fotg210, prev_p,
3314				Q_NEXT_TYPE(fotg210, *hw_p));
3315		hw_p = shadow_next_periodic(fotg210, &here,
3316				Q_NEXT_TYPE(fotg210, *hw_p));
3317		here = *prev_p;
3318	}
3319	/* an interrupt entry (at list end) could have been shared */
3320	if (!here.ptr)
3321		return;
3322
3323	/* update shadow and hardware lists ... the old "next" pointers
3324	 * from ptr may still be in use, the caller updates them.
3325	 */
3326	*prev_p = *periodic_next_shadow(fotg210, &here,
3327			Q_NEXT_TYPE(fotg210, *hw_p));
3328
3329	*hw_p = *shadow_next_periodic(fotg210, &here,
3330			Q_NEXT_TYPE(fotg210, *hw_p));
3331}
3332
3333/* how many of the uframe's 125 usecs are allocated? */
3334static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3335		unsigned frame, unsigned uframe)
3336{
3337	__hc32 *hw_p = &fotg210->periodic[frame];
3338	union fotg210_shadow *q = &fotg210->pshadow[frame];
3339	unsigned usecs = 0;
3340	struct fotg210_qh_hw *hw;
3341
3342	while (q->ptr) {
3343		switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3344		case Q_TYPE_QH:
3345			hw = q->qh->hw;
3346			/* is it in the S-mask? */
3347			if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3348				usecs += q->qh->usecs;
3349			/* ... or C-mask? */
3350			if (hw->hw_info2 & cpu_to_hc32(fotg210,
3351					1 << (8 + uframe)))
3352				usecs += q->qh->c_usecs;
3353			hw_p = &hw->hw_next;
3354			q = &q->qh->qh_next;
3355			break;
3356		/* case Q_TYPE_FSTN: */
3357		default:
3358			/* for "save place" FSTNs, count the relevant INTR
3359			 * bandwidth from the previous frame
3360			 */
3361			if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3362				fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3363
3364			hw_p = &q->fstn->hw_next;
3365			q = &q->fstn->fstn_next;
3366			break;
3367		case Q_TYPE_ITD:
3368			if (q->itd->hw_transaction[uframe])
3369				usecs += q->itd->stream->usecs;
3370			hw_p = &q->itd->hw_next;
3371			q = &q->itd->itd_next;
3372			break;
3373		}
3374	}
3375	if (usecs > fotg210->uframe_periodic_max)
3376		fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3377				frame * 8 + uframe, usecs);
3378	return usecs;
3379}
3380
3381static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3382{
3383	if (!dev1->tt || !dev2->tt)
3384		return 0;
3385	if (dev1->tt != dev2->tt)
3386		return 0;
3387	if (dev1->tt->multi)
3388		return dev1->ttport == dev2->ttport;
3389	else
3390		return 1;
3391}
3392
3393/* return true iff the device's transaction translator is available
3394 * for a periodic transfer starting at the specified frame, using
3395 * all the uframes in the mask.
3396 */
3397static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3398		struct usb_device *dev, unsigned frame, u32 uf_mask)
3399{
3400	if (period == 0)	/* error */
3401		return 0;
3402
3403	/* note bandwidth wastage:  split never follows csplit
3404	 * (different dev or endpoint) until the next uframe.
3405	 * calling convention doesn't make that distinction.
3406	 */
3407	for (; frame < fotg210->periodic_size; frame += period) {
3408		union fotg210_shadow here;
3409		__hc32 type;
3410		struct fotg210_qh_hw *hw;
3411
3412		here = fotg210->pshadow[frame];
3413		type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3414		while (here.ptr) {
3415			switch (hc32_to_cpu(fotg210, type)) {
3416			case Q_TYPE_ITD:
3417				type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3418				here = here.itd->itd_next;
3419				continue;
3420			case Q_TYPE_QH:
3421				hw = here.qh->hw;
3422				if (same_tt(dev, here.qh->dev)) {
3423					u32 mask;
3424
3425					mask = hc32_to_cpu(fotg210,
3426							hw->hw_info2);
3427					/* "knows" no gap is needed */
3428					mask |= mask >> 8;
3429					if (mask & uf_mask)
3430						break;
3431				}
3432				type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3433				here = here.qh->qh_next;
3434				continue;
3435			/* case Q_TYPE_FSTN: */
3436			default:
3437				fotg210_dbg(fotg210,
3438						"periodic frame %d bogus type %d\n",
3439						frame, type);
3440			}
3441
3442			/* collision or error */
3443			return 0;
3444		}
3445	}
3446
3447	/* no collision */
3448	return 1;
3449}
3450
3451static void enable_periodic(struct fotg210_hcd *fotg210)
3452{
3453	if (fotg210->periodic_count++)
3454		return;
3455
3456	/* Stop waiting to turn off the periodic schedule */
3457	fotg210->enabled_hrtimer_events &=
3458		~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3459
3460	/* Don't start the schedule until PSS is 0 */
3461	fotg210_poll_PSS(fotg210);
3462	turn_on_io_watchdog(fotg210);
3463}
3464
3465static void disable_periodic(struct fotg210_hcd *fotg210)
3466{
3467	if (--fotg210->periodic_count)
3468		return;
3469
3470	/* Don't turn off the schedule until PSS is 1 */
3471	fotg210_poll_PSS(fotg210);
3472}
3473
3474/* periodic schedule slots have iso tds (normal or split) first, then a
3475 * sparse tree for active interrupt transfers.
3476 *
3477 * this just links in a qh; caller guarantees uframe masks are set right.
3478 * no FSTN support (yet; fotg210 0.96+)
3479 */
3480static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3481{
3482	unsigned i;
3483	unsigned period = qh->period;
3484
3485	dev_dbg(&qh->dev->dev,
3486			"link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3487			hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3488			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3489			qh->c_usecs);
3490
3491	/* high bandwidth, or otherwise every microframe */
3492	if (period == 0)
3493		period = 1;
3494
3495	for (i = qh->start; i < fotg210->periodic_size; i += period) {
3496		union fotg210_shadow *prev = &fotg210->pshadow[i];
3497		__hc32 *hw_p = &fotg210->periodic[i];
3498		union fotg210_shadow here = *prev;
3499		__hc32 type = 0;
3500
3501		/* skip the iso nodes at list head */
3502		while (here.ptr) {
3503			type = Q_NEXT_TYPE(fotg210, *hw_p);
3504			if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3505				break;
3506			prev = periodic_next_shadow(fotg210, prev, type);
3507			hw_p = shadow_next_periodic(fotg210, &here, type);
3508			here = *prev;
3509		}
3510
3511		/* sorting each branch by period (slow-->fast)
3512		 * enables sharing interior tree nodes
3513		 */
3514		while (here.ptr && qh != here.qh) {
3515			if (qh->period > here.qh->period)
3516				break;
3517			prev = &here.qh->qh_next;
3518			hw_p = &here.qh->hw->hw_next;
3519			here = *prev;
3520		}
3521		/* link in this qh, unless some earlier pass did that */
3522		if (qh != here.qh) {
3523			qh->qh_next = here;
3524			if (here.qh)
3525				qh->hw->hw_next = *hw_p;
3526			wmb();
3527			prev->qh = qh;
3528			*hw_p = QH_NEXT(fotg210, qh->qh_dma);
3529		}
3530	}
3531	qh->qh_state = QH_STATE_LINKED;
3532	qh->xacterrs = 0;
3533
3534	/* update per-qh bandwidth for usbfs */
3535	fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3536		? ((qh->usecs + qh->c_usecs) / qh->period)
3537		: (qh->usecs * 8);
3538
3539	list_add(&qh->intr_node, &fotg210->intr_qh_list);
3540
3541	/* maybe enable periodic schedule processing */
3542	++fotg210->intr_count;
3543	enable_periodic(fotg210);
3544}
3545
3546static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3547		struct fotg210_qh *qh)
3548{
3549	unsigned i;
3550	unsigned period;
3551
3552	/*
3553	 * If qh is for a low/full-speed device, simply unlinking it
3554	 * could interfere with an ongoing split transaction.  To unlink
3555	 * it safely would require setting the QH_INACTIVATE bit and
3556	 * waiting at least one frame, as described in EHCI 4.12.2.5.
3557	 *
3558	 * We won't bother with any of this.  Instead, we assume that the
3559	 * only reason for unlinking an interrupt QH while the current URB
3560	 * is still active is to dequeue all the URBs (flush the whole
3561	 * endpoint queue).
3562	 *
3563	 * If rebalancing the periodic schedule is ever implemented, this
3564	 * approach will no longer be valid.
3565	 */
3566
3567	/* high bandwidth, or otherwise part of every microframe */
3568	period = qh->period;
3569	if (!period)
3570		period = 1;
3571
3572	for (i = qh->start; i < fotg210->periodic_size; i += period)
3573		periodic_unlink(fotg210, i, qh);
3574
3575	/* update per-qh bandwidth for usbfs */
3576	fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3577		? ((qh->usecs + qh->c_usecs) / qh->period)
3578		: (qh->usecs * 8);
3579
3580	dev_dbg(&qh->dev->dev,
3581			"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3582			qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3583			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3584			qh->c_usecs);
3585
3586	/* qh->qh_next still "live" to HC */
3587	qh->qh_state = QH_STATE_UNLINK;
3588	qh->qh_next.ptr = NULL;
3589
3590	if (fotg210->qh_scan_next == qh)
3591		fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3592				struct fotg210_qh, intr_node);
3593	list_del(&qh->intr_node);
3594}
3595
3596static void start_unlink_intr(struct fotg210_hcd *fotg210,
3597		struct fotg210_qh *qh)
3598{
3599	/* If the QH isn't linked then there's nothing we can do
3600	 * unless we were called during a giveback, in which case
3601	 * qh_completions() has to deal with it.
3602	 */
3603	if (qh->qh_state != QH_STATE_LINKED) {
3604		if (qh->qh_state == QH_STATE_COMPLETING)
3605			qh->needs_rescan = 1;
3606		return;
3607	}
3608
3609	qh_unlink_periodic(fotg210, qh);
3610
3611	/* Make sure the unlinks are visible before starting the timer */
3612	wmb();
3613
3614	/*
3615	 * The EHCI spec doesn't say how long it takes the controller to
3616	 * stop accessing an unlinked interrupt QH.  The timer delay is
3617	 * 9 uframes; presumably that will be long enough.
3618	 */
3619	qh->unlink_cycle = fotg210->intr_unlink_cycle;
3620
3621	/* New entries go at the end of the intr_unlink list */
3622	if (fotg210->intr_unlink)
3623		fotg210->intr_unlink_last->unlink_next = qh;
3624	else
3625		fotg210->intr_unlink = qh;
3626	fotg210->intr_unlink_last = qh;
3627
3628	if (fotg210->intr_unlinking)
3629		;	/* Avoid recursive calls */
3630	else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3631		fotg210_handle_intr_unlinks(fotg210);
3632	else if (fotg210->intr_unlink == qh) {
3633		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3634				true);
3635		++fotg210->intr_unlink_cycle;
3636	}
3637}
3638
3639static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3640{
3641	struct fotg210_qh_hw *hw = qh->hw;
3642	int rc;
3643
3644	qh->qh_state = QH_STATE_IDLE;
3645	hw->hw_next = FOTG210_LIST_END(fotg210);
3646
3647	qh_completions(fotg210, qh);
3648
3649	/* reschedule QH iff another request is queued */
3650	if (!list_empty(&qh->qtd_list) &&
3651			fotg210->rh_state == FOTG210_RH_RUNNING) {
3652		rc = qh_schedule(fotg210, qh);
3653
3654		/* An error here likely indicates handshake failure
3655		 * or no space left in the schedule.  Neither fault
3656		 * should happen often ...
3657		 *
3658		 * FIXME kill the now-dysfunctional queued urbs
3659		 */
3660		if (rc != 0)
3661			fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3662					qh, rc);
3663	}
3664
3665	/* maybe turn off periodic schedule */
3666	--fotg210->intr_count;
3667	disable_periodic(fotg210);
3668}
3669
3670static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3671		unsigned uframe, unsigned period, unsigned usecs)
3672{
3673	int claimed;
3674
3675	/* complete split running into next frame?
3676	 * given FSTN support, we could sometimes check...
3677	 */
3678	if (uframe >= 8)
3679		return 0;
3680
3681	/* convert "usecs we need" to "max already claimed" */
3682	usecs = fotg210->uframe_periodic_max - usecs;
3683
3684	/* we "know" 2 and 4 uframe intervals were rejected; so
3685	 * for period 0, check _every_ microframe in the schedule.
3686	 */
3687	if (unlikely(period == 0)) {
3688		do {
3689			for (uframe = 0; uframe < 7; uframe++) {
3690				claimed = periodic_usecs(fotg210, frame,
3691						uframe);
3692				if (claimed > usecs)
3693					return 0;
3694			}
3695		} while ((frame += 1) < fotg210->periodic_size);
3696
3697	/* just check the specified uframe, at that period */
3698	} else {
3699		do {
3700			claimed = periodic_usecs(fotg210, frame, uframe);
3701			if (claimed > usecs)
3702				return 0;
3703		} while ((frame += period) < fotg210->periodic_size);
3704	}
3705
3706	/* success! */
3707	return 1;
3708}
3709
3710static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3711		unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3712{
3713	int retval = -ENOSPC;
3714	u8 mask = 0;
3715
3716	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
3717		goto done;
3718
3719	if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3720		goto done;
3721	if (!qh->c_usecs) {
3722		retval = 0;
3723		*c_maskp = 0;
3724		goto done;
3725	}
3726
3727	/* Make sure this tt's buffer is also available for CSPLITs.
3728	 * We pessimize a bit; probably the typical full speed case
3729	 * doesn't need the second CSPLIT.
3730	 *
3731	 * NOTE:  both SPLIT and CSPLIT could be checked in just
3732	 * one smart pass...
3733	 */
3734	mask = 0x03 << (uframe + qh->gap_uf);
3735	*c_maskp = cpu_to_hc32(fotg210, mask << 8);
3736
3737	mask |= 1 << uframe;
3738	if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3739		if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3740				qh->period, qh->c_usecs))
3741			goto done;
3742		if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3743				qh->period, qh->c_usecs))
3744			goto done;
3745		retval = 0;
3746	}
3747done:
3748	return retval;
3749}
3750
3751/* "first fit" scheduling policy used the first time through,
3752 * or when the previous schedule slot can't be re-used.
3753 */
3754static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3755{
3756	int status;
3757	unsigned uframe;
3758	__hc32 c_mask;
3759	unsigned frame;	/* 0..(qh->period - 1), or NO_FRAME */
3760	struct fotg210_qh_hw *hw = qh->hw;
3761
3762	qh_refresh(fotg210, qh);
3763	hw->hw_next = FOTG210_LIST_END(fotg210);
3764	frame = qh->start;
3765
3766	/* reuse the previous schedule slots, if we can */
3767	if (frame < qh->period) {
3768		uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3769		status = check_intr_schedule(fotg210, frame, --uframe,
3770				qh, &c_mask);
3771	} else {
3772		uframe = 0;
3773		c_mask = 0;
3774		status = -ENOSPC;
3775	}
3776
3777	/* else scan the schedule to find a group of slots such that all
3778	 * uframes have enough periodic bandwidth available.
3779	 */
3780	if (status) {
3781		/* "normal" case, uframing flexible except with splits */
3782		if (qh->period) {
3783			int i;
3784
3785			for (i = qh->period; status && i > 0; --i) {
3786				frame = ++fotg210->random_frame % qh->period;
3787				for (uframe = 0; uframe < 8; uframe++) {
3788					status = check_intr_schedule(fotg210,
3789							frame, uframe, qh,
3790							&c_mask);
3791					if (status == 0)
3792						break;
3793				}
3794			}
3795
3796		/* qh->period == 0 means every uframe */
3797		} else {
3798			frame = 0;
3799			status = check_intr_schedule(fotg210, 0, 0, qh,
3800					&c_mask);
3801		}
3802		if (status)
3803			goto done;
3804		qh->start = frame;
3805
3806		/* reset S-frame and (maybe) C-frame masks */
3807		hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3808		hw->hw_info2 |= qh->period
3809			? cpu_to_hc32(fotg210, 1 << uframe)
3810			: cpu_to_hc32(fotg210, QH_SMASK);
3811		hw->hw_info2 |= c_mask;
3812	} else
3813		fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3814
3815	/* stuff into the periodic schedule */
3816	qh_link_periodic(fotg210, qh);
3817done:
3818	return status;
3819}
3820
3821static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3822		struct list_head *qtd_list, gfp_t mem_flags)
3823{
3824	unsigned epnum;
3825	unsigned long flags;
3826	struct fotg210_qh *qh;
3827	int status;
3828	struct list_head empty;
3829
3830	/* get endpoint and transfer/schedule data */
3831	epnum = urb->ep->desc.bEndpointAddress;
3832
3833	spin_lock_irqsave(&fotg210->lock, flags);
3834
3835	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3836		status = -ESHUTDOWN;
3837		goto done_not_linked;
3838	}
3839	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3840	if (unlikely(status))
3841		goto done_not_linked;
3842
3843	/* get qh and force any scheduling errors */
3844	INIT_LIST_HEAD(&empty);
3845	qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3846	if (qh == NULL) {
3847		status = -ENOMEM;
3848		goto done;
3849	}
3850	if (qh->qh_state == QH_STATE_IDLE) {
3851		status = qh_schedule(fotg210, qh);
3852		if (status)
3853			goto done;
3854	}
3855
3856	/* then queue the urb's tds to the qh */
3857	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3858	BUG_ON(qh == NULL);
3859
3860	/* ... update usbfs periodic stats */
3861	fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3862
3863done:
3864	if (unlikely(status))
3865		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3866done_not_linked:
3867	spin_unlock_irqrestore(&fotg210->lock, flags);
3868	if (status)
3869		qtd_list_free(fotg210, urb, qtd_list);
3870
3871	return status;
3872}
3873
3874static void scan_intr(struct fotg210_hcd *fotg210)
3875{
3876	struct fotg210_qh *qh;
3877
3878	list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3879			&fotg210->intr_qh_list, intr_node) {
3880rescan:
3881		/* clean any finished work for this qh */
3882		if (!list_empty(&qh->qtd_list)) {
3883			int temp;
3884
3885			/*
3886			 * Unlinks could happen here; completion reporting
3887			 * drops the lock.  That's why fotg210->qh_scan_next
3888			 * always holds the next qh to scan; if the next qh
3889			 * gets unlinked then fotg210->qh_scan_next is adjusted
3890			 * in qh_unlink_periodic().
3891			 */
3892			temp = qh_completions(fotg210, qh);
3893			if (unlikely(qh->needs_rescan ||
3894					(list_empty(&qh->qtd_list) &&
3895					qh->qh_state == QH_STATE_LINKED)))
3896				start_unlink_intr(fotg210, qh);
3897			else if (temp != 0)
3898				goto rescan;
3899		}
3900	}
3901}
3902
3903/* fotg210_iso_stream ops work with both ITD and SITD */
3904
3905static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3906{
3907	struct fotg210_iso_stream *stream;
3908
3909	stream = kzalloc(sizeof(*stream), mem_flags);
3910	if (likely(stream != NULL)) {
3911		INIT_LIST_HEAD(&stream->td_list);
3912		INIT_LIST_HEAD(&stream->free_list);
3913		stream->next_uframe = -1;
3914	}
3915	return stream;
3916}
3917
3918static void iso_stream_init(struct fotg210_hcd *fotg210,
3919		struct fotg210_iso_stream *stream, struct usb_device *dev,
3920		int pipe, unsigned interval)
3921{
3922	u32 buf1;
3923	unsigned epnum, maxp;
3924	int is_input;
3925	long bandwidth;
3926	unsigned multi;
3927	struct usb_host_endpoint *ep;
3928
3929	/*
3930	 * this might be a "high bandwidth" highspeed endpoint,
3931	 * as encoded in the ep descriptor's wMaxPacket field
3932	 */
3933	epnum = usb_pipeendpoint(pipe);
3934	is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3935	ep = usb_pipe_endpoint(dev, pipe);
3936	maxp = usb_endpoint_maxp(&ep->desc);
3937	if (is_input)
3938		buf1 = (1 << 11);
3939	else
3940		buf1 = 0;
3941
3942	multi = usb_endpoint_maxp_mult(&ep->desc);
3943	buf1 |= maxp;
3944	maxp *= multi;
3945
3946	stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3947	stream->buf1 = cpu_to_hc32(fotg210, buf1);
3948	stream->buf2 = cpu_to_hc32(fotg210, multi);
3949
3950	/* usbfs wants to report the average usecs per frame tied up
3951	 * when transfers on this endpoint are scheduled ...
3952	 */
3953	if (dev->speed == USB_SPEED_FULL) {
3954		interval <<= 3;
3955		stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3956				is_input, 1, maxp));
3957		stream->usecs /= 8;
3958	} else {
3959		stream->highspeed = 1;
3960		stream->usecs = HS_USECS_ISO(maxp);
3961	}
3962	bandwidth = stream->usecs * 8;
3963	bandwidth /= interval;
3964
3965	stream->bandwidth = bandwidth;
3966	stream->udev = dev;
3967	stream->bEndpointAddress = is_input | epnum;
3968	stream->interval = interval;
3969	stream->maxp = maxp;
3970}
3971
3972static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3973		struct urb *urb)
3974{
3975	unsigned epnum;
3976	struct fotg210_iso_stream *stream;
3977	struct usb_host_endpoint *ep;
3978	unsigned long flags;
3979
3980	epnum = usb_pipeendpoint(urb->pipe);
3981	if (usb_pipein(urb->pipe))
3982		ep = urb->dev->ep_in[epnum];
3983	else
3984		ep = urb->dev->ep_out[epnum];
3985
3986	spin_lock_irqsave(&fotg210->lock, flags);
3987	stream = ep->hcpriv;
3988
3989	if (unlikely(stream == NULL)) {
3990		stream = iso_stream_alloc(GFP_ATOMIC);
3991		if (likely(stream != NULL)) {
3992			ep->hcpriv = stream;
3993			stream->ep = ep;
3994			iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3995					urb->interval);
3996		}
3997
3998	/* if dev->ep[epnum] is a QH, hw is set */
3999	} else if (unlikely(stream->hw != NULL)) {
4000		fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4001				urb->dev->devpath, epnum,
4002				usb_pipein(urb->pipe) ? "in" : "out");
4003		stream = NULL;
4004	}
4005
4006	spin_unlock_irqrestore(&fotg210->lock, flags);
4007	return stream;
4008}
4009
4010/* fotg210_iso_sched ops can be ITD-only or SITD-only */
4011
4012static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4013		gfp_t mem_flags)
4014{
4015	struct fotg210_iso_sched *iso_sched;
4016	int size = sizeof(*iso_sched);
4017
4018	size += packets * sizeof(struct fotg210_iso_packet);
4019	iso_sched = kzalloc(size, mem_flags);
4020	if (likely(iso_sched != NULL))
4021		INIT_LIST_HEAD(&iso_sched->td_list);
4022
4023	return iso_sched;
4024}
4025
4026static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4027		struct fotg210_iso_sched *iso_sched,
4028		struct fotg210_iso_stream *stream, struct urb *urb)
4029{
4030	unsigned i;
4031	dma_addr_t dma = urb->transfer_dma;
4032
4033	/* how many uframes are needed for these transfers */
4034	iso_sched->span = urb->number_of_packets * stream->interval;
4035
4036	/* figure out per-uframe itd fields that we'll need later
4037	 * when we fit new itds into the schedule.
4038	 */
4039	for (i = 0; i < urb->number_of_packets; i++) {
4040		struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4041		unsigned length;
4042		dma_addr_t buf;
4043		u32 trans;
4044
4045		length = urb->iso_frame_desc[i].length;
4046		buf = dma + urb->iso_frame_desc[i].offset;
4047
4048		trans = FOTG210_ISOC_ACTIVE;
4049		trans |= buf & 0x0fff;
4050		if (unlikely(((i + 1) == urb->number_of_packets))
4051				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
4052			trans |= FOTG210_ITD_IOC;
4053		trans |= length << 16;
4054		uframe->transaction = cpu_to_hc32(fotg210, trans);
4055
4056		/* might need to cross a buffer page within a uframe */
4057		uframe->bufp = (buf & ~(u64)0x0fff);
4058		buf += length;
4059		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4060			uframe->cross = 1;
4061	}
4062}
4063
4064static void iso_sched_free(struct fotg210_iso_stream *stream,
4065		struct fotg210_iso_sched *iso_sched)
4066{
4067	if (!iso_sched)
4068		return;
4069	/* caller must hold fotg210->lock!*/
4070	list_splice(&iso_sched->td_list, &stream->free_list);
4071	kfree(iso_sched);
4072}
4073
4074static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4075		struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4076{
4077	struct fotg210_itd *itd;
4078	dma_addr_t itd_dma;
4079	int i;
4080	unsigned num_itds;
4081	struct fotg210_iso_sched *sched;
4082	unsigned long flags;
4083
4084	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4085	if (unlikely(sched == NULL))
4086		return -ENOMEM;
4087
4088	itd_sched_init(fotg210, sched, stream, urb);
4089
4090	if (urb->interval < 8)
4091		num_itds = 1 + (sched->span + 7) / 8;
4092	else
4093		num_itds = urb->number_of_packets;
4094
4095	/* allocate/init ITDs */
4096	spin_lock_irqsave(&fotg210->lock, flags);
4097	for (i = 0; i < num_itds; i++) {
4098
4099		/*
4100		 * Use iTDs from the free list, but not iTDs that may
4101		 * still be in use by the hardware.
4102		 */
4103		if (likely(!list_empty(&stream->free_list))) {
4104			itd = list_first_entry(&stream->free_list,
4105					struct fotg210_itd, itd_list);
4106			if (itd->frame == fotg210->now_frame)
4107				goto alloc_itd;
4108			list_del(&itd->itd_list);
4109			itd_dma = itd->itd_dma;
4110		} else {
4111alloc_itd:
4112			spin_unlock_irqrestore(&fotg210->lock, flags);
4113			itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4114					&itd_dma);
4115			spin_lock_irqsave(&fotg210->lock, flags);
4116			if (!itd) {
4117				iso_sched_free(stream, sched);
4118				spin_unlock_irqrestore(&fotg210->lock, flags);
4119				return -ENOMEM;
4120			}
4121		}
4122
4123		itd->itd_dma = itd_dma;
4124		list_add(&itd->itd_list, &sched->td_list);
4125	}
4126	spin_unlock_irqrestore(&fotg210->lock, flags);
4127
4128	/* temporarily store schedule info in hcpriv */
4129	urb->hcpriv = sched;
4130	urb->error_count = 0;
4131	return 0;
4132}
4133
4134static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4135		u8 usecs, u32 period)
4136{
4137	uframe %= period;
4138	do {
4139		/* can't commit more than uframe_periodic_max usec */
4140		if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4141				> (fotg210->uframe_periodic_max - usecs))
4142			return 0;
4143
4144		/* we know urb->interval is 2^N uframes */
4145		uframe += period;
4146	} while (uframe < mod);
4147	return 1;
4148}
4149
4150/* This scheduler plans almost as far into the future as it has actual
4151 * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4152 * "as small as possible" to be cache-friendlier.)  That limits the size
4153 * transfers you can stream reliably; avoid more than 64 msec per urb.
4154 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4155 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4156 * and other factors); or more than about 230 msec total (for portability,
4157 * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4158 */
4159
4160#define SCHEDULE_SLOP 80 /* microframes */
4161
4162static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4163		struct fotg210_iso_stream *stream)
4164{
4165	u32 now, next, start, period, span;
4166	int status;
4167	unsigned mod = fotg210->periodic_size << 3;
4168	struct fotg210_iso_sched *sched = urb->hcpriv;
4169
4170	period = urb->interval;
4171	span = sched->span;
4172
4173	if (span > mod - SCHEDULE_SLOP) {
4174		fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4175		status = -EFBIG;
4176		goto fail;
4177	}
4178
4179	now = fotg210_read_frame_index(fotg210) & (mod - 1);
4180
4181	/* Typical case: reuse current schedule, stream is still active.
4182	 * Hopefully there are no gaps from the host falling behind
4183	 * (irq delays etc), but if there are we'll take the next
4184	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4185	 */
4186	if (likely(!list_empty(&stream->td_list))) {
4187		u32 excess;
4188
4189		/* For high speed devices, allow scheduling within the
4190		 * isochronous scheduling threshold.  For full speed devices
4191		 * and Intel PCI-based controllers, don't (work around for
4192		 * Intel ICH9 bug).
4193		 */
4194		if (!stream->highspeed && fotg210->fs_i_thresh)
4195			next = now + fotg210->i_thresh;
4196		else
4197			next = now;
4198
4199		/* Fell behind (by up to twice the slop amount)?
4200		 * We decide based on the time of the last currently-scheduled
4201		 * slot, not the time of the next available slot.
4202		 */
4203		excess = (stream->next_uframe - period - next) & (mod - 1);
4204		if (excess >= mod - 2 * SCHEDULE_SLOP)
4205			start = next + excess - mod + period *
4206					DIV_ROUND_UP(mod - excess, period);
4207		else
4208			start = next + excess + period;
4209		if (start - now >= mod) {
4210			fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4211					urb, start - now - period, period,
4212					mod);
4213			status = -EFBIG;
4214			goto fail;
4215		}
4216	}
4217
4218	/* need to schedule; when's the next (u)frame we could start?
4219	 * this is bigger than fotg210->i_thresh allows; scheduling itself
4220	 * isn't free, the slop should handle reasonably slow cpus.  it
4221	 * can also help high bandwidth if the dma and irq loads don't
4222	 * jump until after the queue is primed.
4223	 */
4224	else {
4225		int done = 0;
4226
4227		start = SCHEDULE_SLOP + (now & ~0x07);
4228
4229		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4230
4231		/* find a uframe slot with enough bandwidth.
4232		 * Early uframes are more precious because full-speed
4233		 * iso IN transfers can't use late uframes,
4234		 * and therefore they should be allocated last.
4235		 */
4236		next = start;
4237		start += period;
4238		do {
4239			start--;
4240			/* check schedule: enough space? */
4241			if (itd_slot_ok(fotg210, mod, start,
4242					stream->usecs, period))
4243				done = 1;
4244		} while (start > next && !done);
4245
4246		/* no room in the schedule */
4247		if (!done) {
4248			fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4249					urb, now, now + mod);
4250			status = -ENOSPC;
4251			goto fail;
4252		}
4253	}
4254
4255	/* Tried to schedule too far into the future? */
4256	if (unlikely(start - now + span - period >=
4257			mod - 2 * SCHEDULE_SLOP)) {
4258		fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4259				urb, start - now, span - period,
4260				mod - 2 * SCHEDULE_SLOP);
4261		status = -EFBIG;
4262		goto fail;
4263	}
4264
4265	stream->next_uframe = start & (mod - 1);
4266
4267	/* report high speed start in uframes; full speed, in frames */
4268	urb->start_frame = stream->next_uframe;
4269	if (!stream->highspeed)
4270		urb->start_frame >>= 3;
4271
4272	/* Make sure scan_isoc() sees these */
4273	if (fotg210->isoc_count == 0)
4274		fotg210->next_frame = now >> 3;
4275	return 0;
4276
4277fail:
4278	iso_sched_free(stream, sched);
4279	urb->hcpriv = NULL;
4280	return status;
4281}
4282
4283static inline void itd_init(struct fotg210_hcd *fotg210,
4284		struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4285{
4286	int i;
4287
4288	/* it's been recently zeroed */
4289	itd->hw_next = FOTG210_LIST_END(fotg210);
4290	itd->hw_bufp[0] = stream->buf0;
4291	itd->hw_bufp[1] = stream->buf1;
4292	itd->hw_bufp[2] = stream->buf2;
4293
4294	for (i = 0; i < 8; i++)
4295		itd->index[i] = -1;
4296
4297	/* All other fields are filled when scheduling */
4298}
4299
4300static inline void itd_patch(struct fotg210_hcd *fotg210,
4301		struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4302		unsigned index, u16 uframe)
4303{
4304	struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4305	unsigned pg = itd->pg;
4306
4307	uframe &= 0x07;
4308	itd->index[uframe] = index;
4309
4310	itd->hw_transaction[uframe] = uf->transaction;
4311	itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4312	itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4313	itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4314
4315	/* iso_frame_desc[].offset must be strictly increasing */
4316	if (unlikely(uf->cross)) {
4317		u64 bufp = uf->bufp + 4096;
4318
4319		itd->pg = ++pg;
4320		itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4321		itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4322	}
4323}
4324
4325static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4326		struct fotg210_itd *itd)
4327{
4328	union fotg210_shadow *prev = &fotg210->pshadow[frame];
4329	__hc32 *hw_p = &fotg210->periodic[frame];
4330	union fotg210_shadow here = *prev;
4331	__hc32 type = 0;
4332
4333	/* skip any iso nodes which might belong to previous microframes */
4334	while (here.ptr) {
4335		type = Q_NEXT_TYPE(fotg210, *hw_p);
4336		if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4337			break;
4338		prev = periodic_next_shadow(fotg210, prev, type);
4339		hw_p = shadow_next_periodic(fotg210, &here, type);
4340		here = *prev;
4341	}
4342
4343	itd->itd_next = here;
4344	itd->hw_next = *hw_p;
4345	prev->itd = itd;
4346	itd->frame = frame;
4347	wmb();
4348	*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4349}
4350
4351/* fit urb's itds into the selected schedule slot; activate as needed */
4352static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4353		unsigned mod, struct fotg210_iso_stream *stream)
4354{
4355	int packet;
4356	unsigned next_uframe, uframe, frame;
4357	struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4358	struct fotg210_itd *itd;
4359
4360	next_uframe = stream->next_uframe & (mod - 1);
4361
4362	if (unlikely(list_empty(&stream->td_list))) {
4363		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4364				+= stream->bandwidth;
4365		fotg210_dbg(fotg210,
4366			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4367			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4368			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4369			urb->interval,
4370			next_uframe >> 3, next_uframe & 0x7);
4371	}
4372
4373	/* fill iTDs uframe by uframe */
4374	for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4375		if (itd == NULL) {
4376			/* ASSERT:  we have all necessary itds */
4377
4378			/* ASSERT:  no itds for this endpoint in this uframe */
4379
4380			itd = list_entry(iso_sched->td_list.next,
4381					struct fotg210_itd, itd_list);
4382			list_move_tail(&itd->itd_list, &stream->td_list);
4383			itd->stream = stream;
4384			itd->urb = urb;
4385			itd_init(fotg210, stream, itd);
4386		}
4387
4388		uframe = next_uframe & 0x07;
4389		frame = next_uframe >> 3;
4390
4391		itd_patch(fotg210, itd, iso_sched, packet, uframe);
4392
4393		next_uframe += stream->interval;
4394		next_uframe &= mod - 1;
4395		packet++;
4396
4397		/* link completed itds into the schedule */
4398		if (((next_uframe >> 3) != frame)
4399				|| packet == urb->number_of_packets) {
4400			itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4401					itd);
4402			itd = NULL;
4403		}
4404	}
4405	stream->next_uframe = next_uframe;
4406
4407	/* don't need that schedule data any more */
4408	iso_sched_free(stream, iso_sched);
4409	urb->hcpriv = NULL;
4410
4411	++fotg210->isoc_count;
4412	enable_periodic(fotg210);
4413}
4414
4415#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4416		FOTG210_ISOC_XACTERR)
4417
4418/* Process and recycle a completed ITD.  Return true iff its urb completed,
4419 * and hence its completion callback probably added things to the hardware
4420 * schedule.
4421 *
4422 * Note that we carefully avoid recycling this descriptor until after any
4423 * completion callback runs, so that it won't be reused quickly.  That is,
4424 * assuming (a) no more than two urbs per frame on this endpoint, and also
4425 * (b) only this endpoint's completions submit URBs.  It seems some silicon
4426 * corrupts things if you reuse completed descriptors very quickly...
4427 */
4428static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4429{
4430	struct urb *urb = itd->urb;
4431	struct usb_iso_packet_descriptor *desc;
4432	u32 t;
4433	unsigned uframe;
4434	int urb_index = -1;
4435	struct fotg210_iso_stream *stream = itd->stream;
4436	struct usb_device *dev;
4437	bool retval = false;
4438
4439	/* for each uframe with a packet */
4440	for (uframe = 0; uframe < 8; uframe++) {
4441		if (likely(itd->index[uframe] == -1))
4442			continue;
4443		urb_index = itd->index[uframe];
4444		desc = &urb->iso_frame_desc[urb_index];
4445
4446		t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4447		itd->hw_transaction[uframe] = 0;
4448
4449		/* report transfer status */
4450		if (unlikely(t & ISO_ERRS)) {
4451			urb->error_count++;
4452			if (t & FOTG210_ISOC_BUF_ERR)
4453				desc->status = usb_pipein(urb->pipe)
4454					? -ENOSR  /* hc couldn't read */
4455					: -ECOMM; /* hc couldn't write */
4456			else if (t & FOTG210_ISOC_BABBLE)
4457				desc->status = -EOVERFLOW;
4458			else /* (t & FOTG210_ISOC_XACTERR) */
4459				desc->status = -EPROTO;
4460
4461			/* HC need not update length with this error */
4462			if (!(t & FOTG210_ISOC_BABBLE)) {
4463				desc->actual_length = FOTG210_ITD_LENGTH(t);
4464				urb->actual_length += desc->actual_length;
4465			}
4466		} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4467			desc->status = 0;
4468			desc->actual_length = FOTG210_ITD_LENGTH(t);
4469			urb->actual_length += desc->actual_length;
4470		} else {
4471			/* URB was too late */
4472			desc->status = -EXDEV;
4473		}
4474	}
4475
4476	/* handle completion now? */
4477	if (likely((urb_index + 1) != urb->number_of_packets))
4478		goto done;
4479
4480	/* ASSERT: it's really the last itd for this urb
4481	 * list_for_each_entry (itd, &stream->td_list, itd_list)
4482	 *	BUG_ON (itd->urb == urb);
4483	 */
4484
4485	/* give urb back to the driver; completion often (re)submits */
4486	dev = urb->dev;
4487	fotg210_urb_done(fotg210, urb, 0);
4488	retval = true;
4489	urb = NULL;
4490
4491	--fotg210->isoc_count;
4492	disable_periodic(fotg210);
4493
4494	if (unlikely(list_is_singular(&stream->td_list))) {
4495		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4496				-= stream->bandwidth;
4497		fotg210_dbg(fotg210,
4498			"deschedule devp %s ep%d%s-iso\n",
4499			dev->devpath, stream->bEndpointAddress & 0x0f,
4500			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4501	}
4502
4503done:
4504	itd->urb = NULL;
4505
4506	/* Add to the end of the free list for later reuse */
4507	list_move_tail(&itd->itd_list, &stream->free_list);
4508
4509	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4510	if (list_empty(&stream->td_list)) {
4511		list_splice_tail_init(&stream->free_list,
4512				&fotg210->cached_itd_list);
4513		start_free_itds(fotg210);
4514	}
4515
4516	return retval;
4517}
4518
4519static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4520		gfp_t mem_flags)
4521{
4522	int status = -EINVAL;
4523	unsigned long flags;
4524	struct fotg210_iso_stream *stream;
4525
4526	/* Get iso_stream head */
4527	stream = iso_stream_find(fotg210, urb);
4528	if (unlikely(stream == NULL)) {
4529		fotg210_dbg(fotg210, "can't get iso stream\n");
4530		return -ENOMEM;
4531	}
4532	if (unlikely(urb->interval != stream->interval &&
4533			fotg210_port_speed(fotg210, 0) ==
4534			USB_PORT_STAT_HIGH_SPEED)) {
4535		fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4536				stream->interval, urb->interval);
4537		goto done;
4538	}
4539
4540#ifdef FOTG210_URB_TRACE
4541	fotg210_dbg(fotg210,
4542			"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4543			__func__, urb->dev->devpath, urb,
4544			usb_pipeendpoint(urb->pipe),
4545			usb_pipein(urb->pipe) ? "in" : "out",
4546			urb->transfer_buffer_length,
4547			urb->number_of_packets, urb->interval,
4548			stream);
4549#endif
4550
4551	/* allocate ITDs w/o locking anything */
4552	status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4553	if (unlikely(status < 0)) {
4554		fotg210_dbg(fotg210, "can't init itds\n");
4555		goto done;
4556	}
4557
4558	/* schedule ... need to lock */
4559	spin_lock_irqsave(&fotg210->lock, flags);
4560	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4561		status = -ESHUTDOWN;
4562		goto done_not_linked;
4563	}
4564	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4565	if (unlikely(status))
4566		goto done_not_linked;
4567	status = iso_stream_schedule(fotg210, urb, stream);
4568	if (likely(status == 0))
4569		itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4570	else
4571		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4572done_not_linked:
4573	spin_unlock_irqrestore(&fotg210->lock, flags);
4574done:
4575	return status;
4576}
4577
4578static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4579		unsigned now_frame, bool live)
4580{
4581	unsigned uf;
4582	bool modified;
4583	union fotg210_shadow q, *q_p;
4584	__hc32 type, *hw_p;
4585
4586	/* scan each element in frame's queue for completions */
4587	q_p = &fotg210->pshadow[frame];
4588	hw_p = &fotg210->periodic[frame];
4589	q.ptr = q_p->ptr;
4590	type = Q_NEXT_TYPE(fotg210, *hw_p);
4591	modified = false;
4592
4593	while (q.ptr) {
4594		switch (hc32_to_cpu(fotg210, type)) {
4595		case Q_TYPE_ITD:
4596			/* If this ITD is still active, leave it for
4597			 * later processing ... check the next entry.
4598			 * No need to check for activity unless the
4599			 * frame is current.
4600			 */
4601			if (frame == now_frame && live) {
4602				rmb();
4603				for (uf = 0; uf < 8; uf++) {
4604					if (q.itd->hw_transaction[uf] &
4605							ITD_ACTIVE(fotg210))
4606						break;
4607				}
4608				if (uf < 8) {
4609					q_p = &q.itd->itd_next;
4610					hw_p = &q.itd->hw_next;
4611					type = Q_NEXT_TYPE(fotg210,
4612							q.itd->hw_next);
4613					q = *q_p;
4614					break;
4615				}
4616			}
4617
4618			/* Take finished ITDs out of the schedule
4619			 * and process them:  recycle, maybe report
4620			 * URB completion.  HC won't cache the
4621			 * pointer for much longer, if at all.
4622			 */
4623			*q_p = q.itd->itd_next;
4624			*hw_p = q.itd->hw_next;
4625			type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4626			wmb();
4627			modified = itd_complete(fotg210, q.itd);
4628			q = *q_p;
4629			break;
4630		default:
4631			fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4632					type, frame, q.ptr);
4633			fallthrough;
4634		case Q_TYPE_QH:
4635		case Q_TYPE_FSTN:
4636			/* End of the iTDs and siTDs */
4637			q.ptr = NULL;
4638			break;
4639		}
4640
4641		/* assume completion callbacks modify the queue */
4642		if (unlikely(modified && fotg210->isoc_count > 0))
4643			return -EINVAL;
4644	}
4645	return 0;
4646}
4647
4648static void scan_isoc(struct fotg210_hcd *fotg210)
4649{
4650	unsigned uf, now_frame, frame, ret;
4651	unsigned fmask = fotg210->periodic_size - 1;
4652	bool live;
4653
4654	/*
4655	 * When running, scan from last scan point up to "now"
4656	 * else clean up by scanning everything that's left.
4657	 * Touches as few pages as possible:  cache-friendly.
4658	 */
4659	if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4660		uf = fotg210_read_frame_index(fotg210);
4661		now_frame = (uf >> 3) & fmask;
4662		live = true;
4663	} else  {
4664		now_frame = (fotg210->next_frame - 1) & fmask;
4665		live = false;
4666	}
4667	fotg210->now_frame = now_frame;
4668
4669	frame = fotg210->next_frame;
4670	for (;;) {
4671		ret = 1;
4672		while (ret != 0)
4673			ret = scan_frame_queue(fotg210, frame,
4674					now_frame, live);
4675
4676		/* Stop when we have reached the current frame */
4677		if (frame == now_frame)
4678			break;
4679		frame = (frame + 1) & fmask;
4680	}
4681	fotg210->next_frame = now_frame;
4682}
4683
4684/* Display / Set uframe_periodic_max
4685 */
4686static ssize_t uframe_periodic_max_show(struct device *dev,
4687		struct device_attribute *attr, char *buf)
4688{
4689	struct fotg210_hcd *fotg210;
4690	int n;
4691
4692	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4693	n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4694	return n;
4695}
4696
4697
4698static ssize_t uframe_periodic_max_store(struct device *dev,
4699		struct device_attribute *attr, const char *buf, size_t count)
4700{
4701	struct fotg210_hcd *fotg210;
4702	unsigned uframe_periodic_max;
4703	unsigned frame, uframe;
4704	unsigned short allocated_max;
4705	unsigned long flags;
4706	ssize_t ret;
4707
4708	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4709	if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4710		return -EINVAL;
4711
4712	if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4713		fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4714				uframe_periodic_max);
4715		return -EINVAL;
4716	}
4717
4718	ret = -EINVAL;
4719
4720	/*
4721	 * lock, so that our checking does not race with possible periodic
4722	 * bandwidth allocation through submitting new urbs.
4723	 */
4724	spin_lock_irqsave(&fotg210->lock, flags);
4725
4726	/*
4727	 * for request to decrease max periodic bandwidth, we have to check
4728	 * every microframe in the schedule to see whether the decrease is
4729	 * possible.
4730	 */
4731	if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4732		allocated_max = 0;
4733
4734		for (frame = 0; frame < fotg210->periodic_size; ++frame)
4735			for (uframe = 0; uframe < 7; ++uframe)
4736				allocated_max = max(allocated_max,
4737						periodic_usecs(fotg210, frame,
4738						uframe));
4739
4740		if (allocated_max > uframe_periodic_max) {
4741			fotg210_info(fotg210,
4742					"cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4743					allocated_max, uframe_periodic_max);
4744			goto out_unlock;
4745		}
4746	}
4747
4748	/* increasing is always ok */
4749
4750	fotg210_info(fotg210,
4751			"setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4752			100 * uframe_periodic_max/125, uframe_periodic_max);
4753
4754	if (uframe_periodic_max != 100)
4755		fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4756
4757	fotg210->uframe_periodic_max = uframe_periodic_max;
4758	ret = count;
4759
4760out_unlock:
4761	spin_unlock_irqrestore(&fotg210->lock, flags);
4762	return ret;
4763}
4764
4765static DEVICE_ATTR_RW(uframe_periodic_max);
4766
4767static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4768{
4769	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4770
4771	return device_create_file(controller, &dev_attr_uframe_periodic_max);
4772}
4773
4774static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4775{
4776	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4777
4778	device_remove_file(controller, &dev_attr_uframe_periodic_max);
4779}
4780/* On some systems, leaving remote wakeup enabled prevents system shutdown.
4781 * The firmware seems to think that powering off is a wakeup event!
4782 * This routine turns off remote wakeup and everything else, on all ports.
4783 */
4784static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4785{
4786	u32 __iomem *status_reg = &fotg210->regs->port_status;
4787
4788	fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4789}
4790
4791/* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4792 * Must be called with interrupts enabled and the lock not held.
4793 */
4794static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4795{
4796	fotg210_halt(fotg210);
4797
4798	spin_lock_irq(&fotg210->lock);
4799	fotg210->rh_state = FOTG210_RH_HALTED;
4800	fotg210_turn_off_all_ports(fotg210);
4801	spin_unlock_irq(&fotg210->lock);
4802}
4803
4804/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4805 * This forcibly disables dma and IRQs, helping kexec and other cases
4806 * where the next system software may expect clean state.
4807 */
4808static void fotg210_shutdown(struct usb_hcd *hcd)
4809{
4810	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4811
4812	spin_lock_irq(&fotg210->lock);
4813	fotg210->shutdown = true;
4814	fotg210->rh_state = FOTG210_RH_STOPPING;
4815	fotg210->enabled_hrtimer_events = 0;
4816	spin_unlock_irq(&fotg210->lock);
4817
4818	fotg210_silence_controller(fotg210);
4819
4820	hrtimer_cancel(&fotg210->hrtimer);
4821}
4822
4823/* fotg210_work is called from some interrupts, timers, and so on.
4824 * it calls driver completion functions, after dropping fotg210->lock.
4825 */
4826static void fotg210_work(struct fotg210_hcd *fotg210)
4827{
4828	/* another CPU may drop fotg210->lock during a schedule scan while
4829	 * it reports urb completions.  this flag guards against bogus
4830	 * attempts at re-entrant schedule scanning.
4831	 */
4832	if (fotg210->scanning) {
4833		fotg210->need_rescan = true;
4834		return;
4835	}
4836	fotg210->scanning = true;
4837
4838rescan:
4839	fotg210->need_rescan = false;
4840	if (fotg210->async_count)
4841		scan_async(fotg210);
4842	if (fotg210->intr_count > 0)
4843		scan_intr(fotg210);
4844	if (fotg210->isoc_count > 0)
4845		scan_isoc(fotg210);
4846	if (fotg210->need_rescan)
4847		goto rescan;
4848	fotg210->scanning = false;
4849
4850	/* the IO watchdog guards against hardware or driver bugs that
4851	 * misplace IRQs, and should let us run completely without IRQs.
4852	 * such lossage has been observed on both VT6202 and VT8235.
4853	 */
4854	turn_on_io_watchdog(fotg210);
4855}
4856
4857/* Called when the fotg210_hcd module is removed.
4858 */
4859static void fotg210_stop(struct usb_hcd *hcd)
4860{
4861	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4862
4863	fotg210_dbg(fotg210, "stop\n");
4864
4865	/* no more interrupts ... */
4866
4867	spin_lock_irq(&fotg210->lock);
4868	fotg210->enabled_hrtimer_events = 0;
4869	spin_unlock_irq(&fotg210->lock);
4870
4871	fotg210_quiesce(fotg210);
4872	fotg210_silence_controller(fotg210);
4873	fotg210_reset(fotg210);
4874
4875	hrtimer_cancel(&fotg210->hrtimer);
4876	remove_sysfs_files(fotg210);
4877	remove_debug_files(fotg210);
4878
4879	/* root hub is shut down separately (first, when possible) */
4880	spin_lock_irq(&fotg210->lock);
4881	end_free_itds(fotg210);
4882	spin_unlock_irq(&fotg210->lock);
4883	fotg210_mem_cleanup(fotg210);
4884
4885#ifdef FOTG210_STATS
4886	fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4887			fotg210->stats.normal, fotg210->stats.error,
4888			fotg210->stats.iaa, fotg210->stats.lost_iaa);
4889	fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4890			fotg210->stats.complete, fotg210->stats.unlink);
4891#endif
4892
4893	dbg_status(fotg210, "fotg210_stop completed",
4894			fotg210_readl(fotg210, &fotg210->regs->status));
4895}
4896
4897/* one-time init, only for memory state */
4898static int hcd_fotg210_init(struct usb_hcd *hcd)
4899{
4900	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4901	u32 temp;
4902	int retval;
4903	u32 hcc_params;
4904	struct fotg210_qh_hw *hw;
4905
4906	spin_lock_init(&fotg210->lock);
4907
4908	/*
4909	 * keep io watchdog by default, those good HCDs could turn off it later
4910	 */
4911	fotg210->need_io_watchdog = 1;
4912
4913	hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4914	fotg210->hrtimer.function = fotg210_hrtimer_func;
4915	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4916
4917	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4918
4919	/*
4920	 * by default set standard 80% (== 100 usec/uframe) max periodic
4921	 * bandwidth as required by USB 2.0
4922	 */
4923	fotg210->uframe_periodic_max = 100;
4924
4925	/*
4926	 * hw default: 1K periodic list heads, one per frame.
4927	 * periodic_size can shrink by USBCMD update if hcc_params allows.
4928	 */
4929	fotg210->periodic_size = DEFAULT_I_TDPS;
4930	INIT_LIST_HEAD(&fotg210->intr_qh_list);
4931	INIT_LIST_HEAD(&fotg210->cached_itd_list);
4932
4933	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4934		/* periodic schedule size can be smaller than default */
4935		switch (FOTG210_TUNE_FLS) {
4936		case 0:
4937			fotg210->periodic_size = 1024;
4938			break;
4939		case 1:
4940			fotg210->periodic_size = 512;
4941			break;
4942		case 2:
4943			fotg210->periodic_size = 256;
4944			break;
4945		default:
4946			BUG();
4947		}
4948	}
4949	retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4950	if (retval < 0)
4951		return retval;
4952
4953	/* controllers may cache some of the periodic schedule ... */
4954	fotg210->i_thresh = 2;
4955
4956	/*
4957	 * dedicate a qh for the async ring head, since we couldn't unlink
4958	 * a 'real' qh without stopping the async schedule [4.8].  use it
4959	 * as the 'reclamation list head' too.
4960	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4961	 * from automatically advancing to the next td after short reads.
4962	 */
4963	fotg210->async->qh_next.qh = NULL;
4964	hw = fotg210->async->hw;
4965	hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4966	hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4967	hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4968	hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4969	fotg210->async->qh_state = QH_STATE_LINKED;
4970	hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4971
4972	/* clear interrupt enables, set irq latency */
4973	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4974		log2_irq_thresh = 0;
4975	temp = 1 << (16 + log2_irq_thresh);
4976	if (HCC_CANPARK(hcc_params)) {
4977		/* HW default park == 3, on hardware that supports it (like
4978		 * NVidia and ALI silicon), maximizes throughput on the async
4979		 * schedule by avoiding QH fetches between transfers.
4980		 *
4981		 * With fast usb storage devices and NForce2, "park" seems to
4982		 * make problems:  throughput reduction (!), data errors...
4983		 */
4984		if (park) {
4985			park = min_t(unsigned, park, 3);
4986			temp |= CMD_PARK;
4987			temp |= park << 8;
4988		}
4989		fotg210_dbg(fotg210, "park %d\n", park);
4990	}
4991	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4992		/* periodic schedule size can be smaller than default */
4993		temp &= ~(3 << 2);
4994		temp |= (FOTG210_TUNE_FLS << 2);
4995	}
4996	fotg210->command = temp;
4997
4998	/* Accept arbitrarily long scatter-gather lists */
4999	if (!hcd->localmem_pool)
5000		hcd->self.sg_tablesize = ~0;
5001	return 0;
5002}
5003
5004/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5005static int fotg210_run(struct usb_hcd *hcd)
5006{
5007	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5008	u32 temp;
5009
5010	hcd->uses_new_polling = 1;
5011
5012	/* EHCI spec section 4.1 */
5013
5014	fotg210_writel(fotg210, fotg210->periodic_dma,
5015			&fotg210->regs->frame_list);
5016	fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5017			&fotg210->regs->async_next);
5018
5019	/*
5020	 * hcc_params controls whether fotg210->regs->segment must (!!!)
5021	 * be used; it constrains QH/ITD/SITD and QTD locations.
5022	 * dma_pool consistent memory always uses segment zero.
5023	 * streaming mappings for I/O buffers, like pci_map_single(),
5024	 * can return segments above 4GB, if the device allows.
5025	 *
5026	 * NOTE:  the dma mask is visible through dev->dma_mask, so
5027	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5028	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5029	 * host side drivers though.
5030	 */
5031	fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5032
5033	/*
5034	 * Philips, Intel, and maybe others need CMD_RUN before the
5035	 * root hub will detect new devices (why?); NEC doesn't
5036	 */
5037	fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5038	fotg210->command |= CMD_RUN;
5039	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5040	dbg_cmd(fotg210, "init", fotg210->command);
5041
5042	/*
5043	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5044	 * are explicitly handed to companion controller(s), so no TT is
5045	 * involved with the root hub.  (Except where one is integrated,
5046	 * and there's no companion controller unless maybe for USB OTG.)
5047	 *
5048	 * Turning on the CF flag will transfer ownership of all ports
5049	 * from the companions to the EHCI controller.  If any of the
5050	 * companions are in the middle of a port reset at the time, it
5051	 * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5052	 * guarantees that no resets are in progress.  After we set CF,
5053	 * a short delay lets the hardware catch up; new resets shouldn't
5054	 * be started before the port switching actions could complete.
5055	 */
5056	down_write(&ehci_cf_port_reset_rwsem);
5057	fotg210->rh_state = FOTG210_RH_RUNNING;
5058	/* unblock posted writes */
5059	fotg210_readl(fotg210, &fotg210->regs->command);
5060	usleep_range(5000, 10000);
5061	up_write(&ehci_cf_port_reset_rwsem);
5062	fotg210->last_periodic_enable = ktime_get_real();
5063
5064	temp = HC_VERSION(fotg210,
5065			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5066	fotg210_info(fotg210,
5067			"USB %x.%x started, EHCI %x.%02x\n",
5068			((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5069			temp >> 8, temp & 0xff);
5070
5071	fotg210_writel(fotg210, INTR_MASK,
5072			&fotg210->regs->intr_enable); /* Turn On Interrupts */
5073
5074	/* GRR this is run-once init(), being done every time the HC starts.
5075	 * So long as they're part of class devices, we can't do it init()
5076	 * since the class device isn't created that early.
5077	 */
5078	create_debug_files(fotg210);
5079	create_sysfs_files(fotg210);
5080
5081	return 0;
5082}
5083
5084static int fotg210_setup(struct usb_hcd *hcd)
5085{
5086	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5087	int retval;
5088
5089	fotg210->regs = (void __iomem *)fotg210->caps +
5090			HC_LENGTH(fotg210,
5091			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5092	dbg_hcs_params(fotg210, "reset");
5093	dbg_hcc_params(fotg210, "reset");
5094
5095	/* cache this readonly data; minimize chip reads */
5096	fotg210->hcs_params = fotg210_readl(fotg210,
5097			&fotg210->caps->hcs_params);
5098
5099	fotg210->sbrn = HCD_USB2;
5100
5101	/* data structure init */
5102	retval = hcd_fotg210_init(hcd);
5103	if (retval)
5104		return retval;
5105
5106	retval = fotg210_halt(fotg210);
5107	if (retval)
5108		return retval;
5109
5110	fotg210_reset(fotg210);
5111
5112	return 0;
5113}
5114
5115static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5116{
5117	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5118	u32 status, masked_status, pcd_status = 0, cmd;
5119	int bh;
5120
5121	spin_lock(&fotg210->lock);
5122
5123	status = fotg210_readl(fotg210, &fotg210->regs->status);
5124
5125	/* e.g. cardbus physical eject */
5126	if (status == ~(u32) 0) {
5127		fotg210_dbg(fotg210, "device removed\n");
5128		goto dead;
5129	}
5130
5131	/*
5132	 * We don't use STS_FLR, but some controllers don't like it to
5133	 * remain on, so mask it out along with the other status bits.
5134	 */
5135	masked_status = status & (INTR_MASK | STS_FLR);
5136
5137	/* Shared IRQ? */
5138	if (!masked_status ||
5139			unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5140		spin_unlock(&fotg210->lock);
5141		return IRQ_NONE;
5142	}
5143
5144	/* clear (just) interrupts */
5145	fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5146	cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5147	bh = 0;
5148
5149	/* unrequested/ignored: Frame List Rollover */
5150	dbg_status(fotg210, "irq", status);
5151
5152	/* INT, ERR, and IAA interrupt rates can be throttled */
5153
5154	/* normal [4.15.1.2] or error [4.15.1.1] completion */
5155	if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5156		if (likely((status & STS_ERR) == 0))
5157			INCR(fotg210->stats.normal);
5158		else
5159			INCR(fotg210->stats.error);
5160		bh = 1;
5161	}
5162
5163	/* complete the unlinking of some qh [4.15.2.3] */
5164	if (status & STS_IAA) {
5165
5166		/* Turn off the IAA watchdog */
5167		fotg210->enabled_hrtimer_events &=
5168			~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5169
5170		/*
5171		 * Mild optimization: Allow another IAAD to reset the
5172		 * hrtimer, if one occurs before the next expiration.
5173		 * In theory we could always cancel the hrtimer, but
5174		 * tests show that about half the time it will be reset
5175		 * for some other event anyway.
5176		 */
5177		if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5178			++fotg210->next_hrtimer_event;
5179
5180		/* guard against (alleged) silicon errata */
5181		if (cmd & CMD_IAAD)
5182			fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5183		if (fotg210->async_iaa) {
5184			INCR(fotg210->stats.iaa);
5185			end_unlink_async(fotg210);
5186		} else
5187			fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5188	}
5189
5190	/* remote wakeup [4.3.1] */
5191	if (status & STS_PCD) {
5192		int pstatus;
5193		u32 __iomem *status_reg = &fotg210->regs->port_status;
5194
5195		/* kick root hub later */
5196		pcd_status = status;
5197
5198		/* resume root hub? */
5199		if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5200			usb_hcd_resume_root_hub(hcd);
5201
5202		pstatus = fotg210_readl(fotg210, status_reg);
5203
5204		if (test_bit(0, &fotg210->suspended_ports) &&
5205				((pstatus & PORT_RESUME) ||
5206				!(pstatus & PORT_SUSPEND)) &&
5207				(pstatus & PORT_PE) &&
5208				fotg210->reset_done[0] == 0) {
5209
5210			/* start 20 msec resume signaling from this port,
5211			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5212			 * stop that signaling.  Use 5 ms extra for safety,
5213			 * like usb_port_resume() does.
5214			 */
5215			fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5216			set_bit(0, &fotg210->resuming_ports);
5217			fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5218			mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5219		}
5220	}
5221
5222	/* PCI errors [4.15.2.4] */
5223	if (unlikely((status & STS_FATAL) != 0)) {
5224		fotg210_err(fotg210, "fatal error\n");
5225		dbg_cmd(fotg210, "fatal", cmd);
5226		dbg_status(fotg210, "fatal", status);
5227dead:
5228		usb_hc_died(hcd);
5229
5230		/* Don't let the controller do anything more */
5231		fotg210->shutdown = true;
5232		fotg210->rh_state = FOTG210_RH_STOPPING;
5233		fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5234		fotg210_writel(fotg210, fotg210->command,
5235				&fotg210->regs->command);
5236		fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5237		fotg210_handle_controller_death(fotg210);
5238
5239		/* Handle completions when the controller stops */
5240		bh = 0;
5241	}
5242
5243	if (bh)
5244		fotg210_work(fotg210);
5245	spin_unlock(&fotg210->lock);
5246	if (pcd_status)
5247		usb_hcd_poll_rh_status(hcd);
5248	return IRQ_HANDLED;
5249}
5250
5251/* non-error returns are a promise to giveback() the urb later
5252 * we drop ownership so next owner (or urb unlink) can get it
5253 *
5254 * urb + dev is in hcd.self.controller.urb_list
5255 * we're queueing TDs onto software and hardware lists
5256 *
5257 * hcd-specific init for hcpriv hasn't been done yet
5258 *
5259 * NOTE:  control, bulk, and interrupt share the same code to append TDs
5260 * to a (possibly active) QH, and the same QH scanning code.
5261 */
5262static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5263		gfp_t mem_flags)
5264{
5265	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5266	struct list_head qtd_list;
5267
5268	INIT_LIST_HEAD(&qtd_list);
5269
5270	switch (usb_pipetype(urb->pipe)) {
5271	case PIPE_CONTROL:
5272		/* qh_completions() code doesn't handle all the fault cases
5273		 * in multi-TD control transfers.  Even 1KB is rare anyway.
5274		 */
5275		if (urb->transfer_buffer_length > (16 * 1024))
5276			return -EMSGSIZE;
5277		fallthrough;
5278	/* case PIPE_BULK: */
5279	default:
5280		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5281			return -ENOMEM;
5282		return submit_async(fotg210, urb, &qtd_list, mem_flags);
5283
5284	case PIPE_INTERRUPT:
5285		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5286			return -ENOMEM;
5287		return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5288
5289	case PIPE_ISOCHRONOUS:
5290		return itd_submit(fotg210, urb, mem_flags);
5291	}
5292}
5293
5294/* remove from hardware lists
5295 * completions normally happen asynchronously
5296 */
5297
5298static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5299{
5300	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5301	struct fotg210_qh *qh;
5302	unsigned long flags;
5303	int rc;
5304
5305	spin_lock_irqsave(&fotg210->lock, flags);
5306	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5307	if (rc)
5308		goto done;
5309
5310	switch (usb_pipetype(urb->pipe)) {
5311	/* case PIPE_CONTROL: */
5312	/* case PIPE_BULK:*/
5313	default:
5314		qh = (struct fotg210_qh *) urb->hcpriv;
5315		if (!qh)
5316			break;
5317		switch (qh->qh_state) {
5318		case QH_STATE_LINKED:
5319		case QH_STATE_COMPLETING:
5320			start_unlink_async(fotg210, qh);
5321			break;
5322		case QH_STATE_UNLINK:
5323		case QH_STATE_UNLINK_WAIT:
5324			/* already started */
5325			break;
5326		case QH_STATE_IDLE:
5327			/* QH might be waiting for a Clear-TT-Buffer */
5328			qh_completions(fotg210, qh);
5329			break;
5330		}
5331		break;
5332
5333	case PIPE_INTERRUPT:
5334		qh = (struct fotg210_qh *) urb->hcpriv;
5335		if (!qh)
5336			break;
5337		switch (qh->qh_state) {
5338		case QH_STATE_LINKED:
5339		case QH_STATE_COMPLETING:
5340			start_unlink_intr(fotg210, qh);
5341			break;
5342		case QH_STATE_IDLE:
5343			qh_completions(fotg210, qh);
5344			break;
5345		default:
5346			fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5347					qh, qh->qh_state);
5348			goto done;
5349		}
5350		break;
5351
5352	case PIPE_ISOCHRONOUS:
5353		/* itd... */
5354
5355		/* wait till next completion, do it then. */
5356		/* completion irqs can wait up to 1024 msec, */
5357		break;
5358	}
5359done:
5360	spin_unlock_irqrestore(&fotg210->lock, flags);
5361	return rc;
5362}
5363
5364/* bulk qh holds the data toggle */
5365
5366static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5367		struct usb_host_endpoint *ep)
5368{
5369	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5370	unsigned long flags;
5371	struct fotg210_qh *qh, *tmp;
5372
5373	/* ASSERT:  any requests/urbs are being unlinked */
5374	/* ASSERT:  nobody can be submitting urbs for this any more */
5375
5376rescan:
5377	spin_lock_irqsave(&fotg210->lock, flags);
5378	qh = ep->hcpriv;
5379	if (!qh)
5380		goto done;
5381
5382	/* endpoints can be iso streams.  for now, we don't
5383	 * accelerate iso completions ... so spin a while.
5384	 */
5385	if (qh->hw == NULL) {
5386		struct fotg210_iso_stream *stream = ep->hcpriv;
5387
5388		if (!list_empty(&stream->td_list))
5389			goto idle_timeout;
5390
5391		/* BUG_ON(!list_empty(&stream->free_list)); */
5392		kfree(stream);
5393		goto done;
5394	}
5395
5396	if (fotg210->rh_state < FOTG210_RH_RUNNING)
5397		qh->qh_state = QH_STATE_IDLE;
5398	switch (qh->qh_state) {
5399	case QH_STATE_LINKED:
5400	case QH_STATE_COMPLETING:
5401		for (tmp = fotg210->async->qh_next.qh;
5402				tmp && tmp != qh;
5403				tmp = tmp->qh_next.qh)
5404			continue;
5405		/* periodic qh self-unlinks on empty, and a COMPLETING qh
5406		 * may already be unlinked.
5407		 */
5408		if (tmp)
5409			start_unlink_async(fotg210, qh);
5410		fallthrough;
5411	case QH_STATE_UNLINK:		/* wait for hw to finish? */
5412	case QH_STATE_UNLINK_WAIT:
5413idle_timeout:
5414		spin_unlock_irqrestore(&fotg210->lock, flags);
5415		schedule_timeout_uninterruptible(1);
5416		goto rescan;
5417	case QH_STATE_IDLE:		/* fully unlinked */
5418		if (qh->clearing_tt)
5419			goto idle_timeout;
5420		if (list_empty(&qh->qtd_list)) {
5421			qh_destroy(fotg210, qh);
5422			break;
5423		}
5424		fallthrough;
5425	default:
5426		/* caller was supposed to have unlinked any requests;
5427		 * that's not our job.  just leak this memory.
5428		 */
5429		fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5430				qh, ep->desc.bEndpointAddress, qh->qh_state,
5431				list_empty(&qh->qtd_list) ? "" : "(has tds)");
5432		break;
5433	}
5434done:
5435	ep->hcpriv = NULL;
5436	spin_unlock_irqrestore(&fotg210->lock, flags);
5437}
5438
5439static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5440		struct usb_host_endpoint *ep)
5441{
5442	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5443	struct fotg210_qh *qh;
5444	int eptype = usb_endpoint_type(&ep->desc);
5445	int epnum = usb_endpoint_num(&ep->desc);
5446	int is_out = usb_endpoint_dir_out(&ep->desc);
5447	unsigned long flags;
5448
5449	if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5450		return;
5451
5452	spin_lock_irqsave(&fotg210->lock, flags);
5453	qh = ep->hcpriv;
5454
5455	/* For Bulk and Interrupt endpoints we maintain the toggle state
5456	 * in the hardware; the toggle bits in udev aren't used at all.
5457	 * When an endpoint is reset by usb_clear_halt() we must reset
5458	 * the toggle bit in the QH.
5459	 */
5460	if (qh) {
5461		usb_settoggle(qh->dev, epnum, is_out, 0);
5462		if (!list_empty(&qh->qtd_list)) {
5463			WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5464		} else if (qh->qh_state == QH_STATE_LINKED ||
5465				qh->qh_state == QH_STATE_COMPLETING) {
5466
5467			/* The toggle value in the QH can't be updated
5468			 * while the QH is active.  Unlink it now;
5469			 * re-linking will call qh_refresh().
5470			 */
5471			if (eptype == USB_ENDPOINT_XFER_BULK)
5472				start_unlink_async(fotg210, qh);
5473			else
5474				start_unlink_intr(fotg210, qh);
5475		}
5476	}
5477	spin_unlock_irqrestore(&fotg210->lock, flags);
5478}
5479
5480static int fotg210_get_frame(struct usb_hcd *hcd)
5481{
5482	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5483
5484	return (fotg210_read_frame_index(fotg210) >> 3) %
5485		fotg210->periodic_size;
5486}
5487
5488/* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5489 * because its registers (and irq) are shared between host/gadget/otg
5490 * functions  and in order to facilitate role switching we cannot
5491 * give the fotg210 driver exclusive access to those.
5492 */
5493MODULE_DESCRIPTION(DRIVER_DESC);
5494MODULE_AUTHOR(DRIVER_AUTHOR);
5495MODULE_LICENSE("GPL");
5496
5497static const struct hc_driver fotg210_fotg210_hc_driver = {
5498	.description		= hcd_name,
5499	.product_desc		= "Faraday USB2.0 Host Controller",
5500	.hcd_priv_size		= sizeof(struct fotg210_hcd),
5501
5502	/*
5503	 * generic hardware linkage
5504	 */
5505	.irq			= fotg210_irq,
5506	.flags			= HCD_MEMORY | HCD_DMA | HCD_USB2,
5507
5508	/*
5509	 * basic lifecycle operations
5510	 */
5511	.reset			= hcd_fotg210_init,
5512	.start			= fotg210_run,
5513	.stop			= fotg210_stop,
5514	.shutdown		= fotg210_shutdown,
5515
5516	/*
5517	 * managing i/o requests and associated device resources
5518	 */
5519	.urb_enqueue		= fotg210_urb_enqueue,
5520	.urb_dequeue		= fotg210_urb_dequeue,
5521	.endpoint_disable	= fotg210_endpoint_disable,
5522	.endpoint_reset		= fotg210_endpoint_reset,
5523
5524	/*
5525	 * scheduling support
5526	 */
5527	.get_frame_number	= fotg210_get_frame,
5528
5529	/*
5530	 * root hub support
5531	 */
5532	.hub_status_data	= fotg210_hub_status_data,
5533	.hub_control		= fotg210_hub_control,
5534	.bus_suspend		= fotg210_bus_suspend,
5535	.bus_resume		= fotg210_bus_resume,
5536
5537	.relinquish_port	= fotg210_relinquish_port,
5538	.port_handed_over	= fotg210_port_handed_over,
5539
5540	.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5541};
5542
5543static void fotg210_init(struct fotg210_hcd *fotg210)
5544{
5545	u32 value;
5546
5547	iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5548			&fotg210->regs->gmir);
5549
5550	value = ioread32(&fotg210->regs->otgcsr);
5551	value &= ~OTGCSR_A_BUS_DROP;
5552	value |= OTGCSR_A_BUS_REQ;
5553	iowrite32(value, &fotg210->regs->otgcsr);
5554}
5555
5556/*
5557 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5558 *
5559 * Allocates basic resources for this USB host controller, and
5560 * then invokes the start() method for the HCD associated with it
5561 * through the hotplug entry's driver_data.
5562 */
5563static int fotg210_hcd_probe(struct platform_device *pdev)
5564{
5565	struct device *dev = &pdev->dev;
5566	struct usb_hcd *hcd;
5567	struct resource *res;
5568	int irq;
5569	int retval;
5570	struct fotg210_hcd *fotg210;
5571
5572	if (usb_disabled())
5573		return -ENODEV;
5574
5575	pdev->dev.power.power_state = PMSG_ON;
5576
5577	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5578	if (!res) {
5579		dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5580				dev_name(dev));
5581		return -ENODEV;
5582	}
5583
5584	irq = res->start;
5585
5586	hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5587			dev_name(dev));
5588	if (!hcd) {
5589		dev_err(dev, "failed to create hcd\n");
5590		retval = -ENOMEM;
5591		goto fail_create_hcd;
5592	}
5593
5594	hcd->has_tt = 1;
5595
5596	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5597	hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5598	if (IS_ERR(hcd->regs)) {
5599		retval = PTR_ERR(hcd->regs);
5600		goto failed_put_hcd;
5601	}
5602
5603	hcd->rsrc_start = res->start;
5604	hcd->rsrc_len = resource_size(res);
5605
5606	fotg210 = hcd_to_fotg210(hcd);
5607
5608	fotg210->caps = hcd->regs;
5609
5610	/* It's OK not to supply this clock */
5611	fotg210->pclk = clk_get(dev, "PCLK");
5612	if (!IS_ERR(fotg210->pclk)) {
5613		retval = clk_prepare_enable(fotg210->pclk);
5614		if (retval) {
5615			dev_err(dev, "failed to enable PCLK\n");
5616			goto failed_put_hcd;
5617		}
5618	} else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
5619		/*
5620		 * Percolate deferrals, for anything else,
5621		 * just live without the clocking.
5622		 */
5623		retval = PTR_ERR(fotg210->pclk);
5624		goto failed_dis_clk;
5625	}
5626
5627	retval = fotg210_setup(hcd);
5628	if (retval)
5629		goto failed_dis_clk;
5630
5631	fotg210_init(fotg210);
5632
5633	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5634	if (retval) {
5635		dev_err(dev, "failed to add hcd with err %d\n", retval);
5636		goto failed_dis_clk;
5637	}
5638	device_wakeup_enable(hcd->self.controller);
5639	platform_set_drvdata(pdev, hcd);
5640
5641	return retval;
5642
5643failed_dis_clk:
5644	if (!IS_ERR(fotg210->pclk)) {
5645		clk_disable_unprepare(fotg210->pclk);
5646		clk_put(fotg210->pclk);
5647	}
5648failed_put_hcd:
5649	usb_put_hcd(hcd);
5650fail_create_hcd:
5651	dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5652	return retval;
5653}
5654
5655/*
5656 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5657 * @dev: USB Host Controller being removed
5658 *
5659 */
5660static int fotg210_hcd_remove(struct platform_device *pdev)
5661{
5662	struct usb_hcd *hcd = platform_get_drvdata(pdev);
5663	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5664
5665	if (!IS_ERR(fotg210->pclk)) {
5666		clk_disable_unprepare(fotg210->pclk);
5667		clk_put(fotg210->pclk);
5668	}
5669
5670	usb_remove_hcd(hcd);
5671	usb_put_hcd(hcd);
5672
5673	return 0;
5674}
5675
5676#ifdef CONFIG_OF
5677static const struct of_device_id fotg210_of_match[] = {
5678	{ .compatible = "faraday,fotg210" },
5679	{},
5680};
5681MODULE_DEVICE_TABLE(of, fotg210_of_match);
5682#endif
5683
5684static struct platform_driver fotg210_hcd_driver = {
5685	.driver = {
5686		.name   = "fotg210-hcd",
5687		.of_match_table = of_match_ptr(fotg210_of_match),
5688	},
5689	.probe  = fotg210_hcd_probe,
5690	.remove = fotg210_hcd_remove,
5691};
5692
5693static int __init fotg210_hcd_init(void)
5694{
5695	int retval = 0;
5696
5697	if (usb_disabled())
5698		return -ENODEV;
5699
5700	pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5701	set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5702	if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5703			test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5704		pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5705
5706	pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5707			hcd_name, sizeof(struct fotg210_qh),
5708			sizeof(struct fotg210_qtd),
5709			sizeof(struct fotg210_itd));
5710
5711	fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5712
5713	retval = platform_driver_register(&fotg210_hcd_driver);
5714	if (retval < 0)
5715		goto clean;
5716	return retval;
5717
5718clean:
5719	debugfs_remove(fotg210_debug_root);
5720	fotg210_debug_root = NULL;
5721
5722	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5723	return retval;
5724}
5725module_init(fotg210_hcd_init);
5726
5727static void __exit fotg210_hcd_cleanup(void)
5728{
5729	platform_driver_unregister(&fotg210_hcd_driver);
5730	debugfs_remove(fotg210_debug_root);
5731	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5732}
5733module_exit(fotg210_hcd_cleanup);