Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 *
5 * Copyright (C) 2008-2012 ST-Ericsson AB
6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 *
8 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 *
10 * Initial version inspired by:
11 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12 * Initial adoption to PL022 by:
13 * Sachin Verma <sachin.verma@st.com>
14 */
15
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/device.h>
19#include <linux/ioport.h>
20#include <linux/errno.h>
21#include <linux/interrupt.h>
22#include <linux/spi/spi.h>
23#include <linux/delay.h>
24#include <linux/clk.h>
25#include <linux/err.h>
26#include <linux/amba/bus.h>
27#include <linux/amba/pl022.h>
28#include <linux/io.h>
29#include <linux/slab.h>
30#include <linux/dmaengine.h>
31#include <linux/dma-mapping.h>
32#include <linux/scatterlist.h>
33#include <linux/pm_runtime.h>
34#include <linux/of.h>
35#include <linux/pinctrl/consumer.h>
36
37/*
38 * This macro is used to define some register default values.
39 * reg is masked with mask, the OR:ed with an (again masked)
40 * val shifted sb steps to the left.
41 */
42#define SSP_WRITE_BITS(reg, val, mask, sb) \
43 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
44
45/*
46 * This macro is also used to define some default values.
47 * It will just shift val by sb steps to the left and mask
48 * the result with mask.
49 */
50#define GEN_MASK_BITS(val, mask, sb) \
51 (((val)<<(sb)) & (mask))
52
53#define DRIVE_TX 0
54#define DO_NOT_DRIVE_TX 1
55
56#define DO_NOT_QUEUE_DMA 0
57#define QUEUE_DMA 1
58
59#define RX_TRANSFER 1
60#define TX_TRANSFER 2
61
62/*
63 * Macros to access SSP Registers with their offsets
64 */
65#define SSP_CR0(r) (r + 0x000)
66#define SSP_CR1(r) (r + 0x004)
67#define SSP_DR(r) (r + 0x008)
68#define SSP_SR(r) (r + 0x00C)
69#define SSP_CPSR(r) (r + 0x010)
70#define SSP_IMSC(r) (r + 0x014)
71#define SSP_RIS(r) (r + 0x018)
72#define SSP_MIS(r) (r + 0x01C)
73#define SSP_ICR(r) (r + 0x020)
74#define SSP_DMACR(r) (r + 0x024)
75#define SSP_CSR(r) (r + 0x030) /* vendor extension */
76#define SSP_ITCR(r) (r + 0x080)
77#define SSP_ITIP(r) (r + 0x084)
78#define SSP_ITOP(r) (r + 0x088)
79#define SSP_TDR(r) (r + 0x08C)
80
81#define SSP_PID0(r) (r + 0xFE0)
82#define SSP_PID1(r) (r + 0xFE4)
83#define SSP_PID2(r) (r + 0xFE8)
84#define SSP_PID3(r) (r + 0xFEC)
85
86#define SSP_CID0(r) (r + 0xFF0)
87#define SSP_CID1(r) (r + 0xFF4)
88#define SSP_CID2(r) (r + 0xFF8)
89#define SSP_CID3(r) (r + 0xFFC)
90
91/*
92 * SSP Control Register 0 - SSP_CR0
93 */
94#define SSP_CR0_MASK_DSS (0x0FUL << 0)
95#define SSP_CR0_MASK_FRF (0x3UL << 4)
96#define SSP_CR0_MASK_SPO (0x1UL << 6)
97#define SSP_CR0_MASK_SPH (0x1UL << 7)
98#define SSP_CR0_MASK_SCR (0xFFUL << 8)
99
100/*
101 * The ST version of this block moves som bits
102 * in SSP_CR0 and extends it to 32 bits
103 */
104#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
105#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
106#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
107#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
108
109/*
110 * SSP Control Register 0 - SSP_CR1
111 */
112#define SSP_CR1_MASK_LBM (0x1UL << 0)
113#define SSP_CR1_MASK_SSE (0x1UL << 1)
114#define SSP_CR1_MASK_MS (0x1UL << 2)
115#define SSP_CR1_MASK_SOD (0x1UL << 3)
116
117/*
118 * The ST version of this block adds some bits
119 * in SSP_CR1
120 */
121#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
122#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
123#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
124#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
125#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
126/* This one is only in the PL023 variant */
127#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
128
129/*
130 * SSP Status Register - SSP_SR
131 */
132#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
133#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
134#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
135#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
136#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
137
138/*
139 * SSP Clock Prescale Register - SSP_CPSR
140 */
141#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
142
143/*
144 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
145 */
146#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
147#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
148#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
149#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
150
151/*
152 * SSP Raw Interrupt Status Register - SSP_RIS
153 */
154/* Receive Overrun Raw Interrupt status */
155#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
156/* Receive Timeout Raw Interrupt status */
157#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
158/* Receive FIFO Raw Interrupt status */
159#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
160/* Transmit FIFO Raw Interrupt status */
161#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
162
163/*
164 * SSP Masked Interrupt Status Register - SSP_MIS
165 */
166/* Receive Overrun Masked Interrupt status */
167#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
168/* Receive Timeout Masked Interrupt status */
169#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
170/* Receive FIFO Masked Interrupt status */
171#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
172/* Transmit FIFO Masked Interrupt status */
173#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
174
175/*
176 * SSP Interrupt Clear Register - SSP_ICR
177 */
178/* Receive Overrun Raw Clear Interrupt bit */
179#define SSP_ICR_MASK_RORIC (0x1UL << 0)
180/* Receive Timeout Clear Interrupt bit */
181#define SSP_ICR_MASK_RTIC (0x1UL << 1)
182
183/*
184 * SSP DMA Control Register - SSP_DMACR
185 */
186/* Receive DMA Enable bit */
187#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
188/* Transmit DMA Enable bit */
189#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
190
191/*
192 * SSP Chip Select Control Register - SSP_CSR
193 * (vendor extension)
194 */
195#define SSP_CSR_CSVALUE_MASK (0x1FUL << 0)
196
197/*
198 * SSP Integration Test control Register - SSP_ITCR
199 */
200#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
201#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
202
203/*
204 * SSP Integration Test Input Register - SSP_ITIP
205 */
206#define ITIP_MASK_SSPRXD (0x1UL << 0)
207#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
208#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
209#define ITIP_MASK_RXDMAC (0x1UL << 3)
210#define ITIP_MASK_TXDMAC (0x1UL << 4)
211#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
212
213/*
214 * SSP Integration Test output Register - SSP_ITOP
215 */
216#define ITOP_MASK_SSPTXD (0x1UL << 0)
217#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
218#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
219#define ITOP_MASK_SSPOEn (0x1UL << 3)
220#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
221#define ITOP_MASK_RORINTR (0x1UL << 5)
222#define ITOP_MASK_RTINTR (0x1UL << 6)
223#define ITOP_MASK_RXINTR (0x1UL << 7)
224#define ITOP_MASK_TXINTR (0x1UL << 8)
225#define ITOP_MASK_INTR (0x1UL << 9)
226#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
227#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
228#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
229#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
230
231/*
232 * SSP Test Data Register - SSP_TDR
233 */
234#define TDR_MASK_TESTDATA (0xFFFFFFFF)
235
236/*
237 * Message State
238 * we use the spi_message.state (void *) pointer to
239 * hold a single state value, that's why all this
240 * (void *) casting is done here.
241 */
242#define STATE_START ((void *) 0)
243#define STATE_RUNNING ((void *) 1)
244#define STATE_DONE ((void *) 2)
245#define STATE_ERROR ((void *) -1)
246#define STATE_TIMEOUT ((void *) -2)
247
248/*
249 * SSP State - Whether Enabled or Disabled
250 */
251#define SSP_DISABLED (0)
252#define SSP_ENABLED (1)
253
254/*
255 * SSP DMA State - Whether DMA Enabled or Disabled
256 */
257#define SSP_DMA_DISABLED (0)
258#define SSP_DMA_ENABLED (1)
259
260/*
261 * SSP Clock Defaults
262 */
263#define SSP_DEFAULT_CLKRATE 0x2
264#define SSP_DEFAULT_PRESCALE 0x40
265
266/*
267 * SSP Clock Parameter ranges
268 */
269#define CPSDVR_MIN 0x02
270#define CPSDVR_MAX 0xFE
271#define SCR_MIN 0x00
272#define SCR_MAX 0xFF
273
274/*
275 * SSP Interrupt related Macros
276 */
277#define DEFAULT_SSP_REG_IMSC 0x0UL
278#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279#define ENABLE_ALL_INTERRUPTS ( \
280 SSP_IMSC_MASK_RORIM | \
281 SSP_IMSC_MASK_RTIM | \
282 SSP_IMSC_MASK_RXIM | \
283 SSP_IMSC_MASK_TXIM \
284)
285
286#define CLEAR_ALL_INTERRUPTS 0x3
287
288#define SPI_POLLING_TIMEOUT 1000
289
290/*
291 * The type of reading going on this chip
292 */
293enum ssp_reading {
294 READING_NULL,
295 READING_U8,
296 READING_U16,
297 READING_U32
298};
299
300/*
301 * The type of writing going on this chip
302 */
303enum ssp_writing {
304 WRITING_NULL,
305 WRITING_U8,
306 WRITING_U16,
307 WRITING_U32
308};
309
310/**
311 * struct vendor_data - vendor-specific config parameters
312 * for PL022 derivates
313 * @fifodepth: depth of FIFOs (both)
314 * @max_bpw: maximum number of bits per word
315 * @unidir: supports unidirection transfers
316 * @extended_cr: 32 bit wide control register 0 with extra
317 * features and extra features in CR1 as found in the ST variants
318 * @pl023: supports a subset of the ST extensions called "PL023"
319 * @loopback: supports loopback mode
320 * @internal_cs_ctrl: supports chip select control register
321 */
322struct vendor_data {
323 int fifodepth;
324 int max_bpw;
325 bool unidir;
326 bool extended_cr;
327 bool pl023;
328 bool loopback;
329 bool internal_cs_ctrl;
330};
331
332/**
333 * struct pl022 - This is the private SSP driver data structure
334 * @adev: AMBA device model hookup
335 * @vendor: vendor data for the IP block
336 * @phybase: the physical memory where the SSP device resides
337 * @virtbase: the virtual memory where the SSP is mapped
338 * @clk: outgoing clock "SPICLK" for the SPI bus
339 * @host: SPI framework hookup
340 * @host_info: controller-specific data from machine setup
341 * @cur_transfer: Pointer to current spi_transfer
342 * @cur_chip: pointer to current clients chip(assigned from controller_state)
343 * @tx: current position in TX buffer to be read
344 * @tx_end: end position in TX buffer to be read
345 * @rx: current position in RX buffer to be written
346 * @rx_end: end position in RX buffer to be written
347 * @read: the type of read currently going on
348 * @write: the type of write currently going on
349 * @exp_fifo_level: expected FIFO level
350 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
351 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
352 * @dma_rx_channel: optional channel for RX DMA
353 * @dma_tx_channel: optional channel for TX DMA
354 * @sgt_rx: scattertable for the RX transfer
355 * @sgt_tx: scattertable for the TX transfer
356 * @dummypage: a dummy page used for driving data on the bus with DMA
357 * @dma_running: indicates whether DMA is in operation
358 * @cur_cs: current chip select index
359 */
360struct pl022 {
361 struct amba_device *adev;
362 struct vendor_data *vendor;
363 resource_size_t phybase;
364 void __iomem *virtbase;
365 struct clk *clk;
366 struct spi_controller *host;
367 struct pl022_ssp_controller *host_info;
368 struct spi_transfer *cur_transfer;
369 struct chip_data *cur_chip;
370 void *tx;
371 void *tx_end;
372 void *rx;
373 void *rx_end;
374 enum ssp_reading read;
375 enum ssp_writing write;
376 u32 exp_fifo_level;
377 enum ssp_rx_level_trig rx_lev_trig;
378 enum ssp_tx_level_trig tx_lev_trig;
379 /* DMA settings */
380#ifdef CONFIG_DMA_ENGINE
381 struct dma_chan *dma_rx_channel;
382 struct dma_chan *dma_tx_channel;
383 struct sg_table sgt_rx;
384 struct sg_table sgt_tx;
385 char *dummypage;
386 bool dma_running;
387#endif
388 int cur_cs;
389};
390
391/**
392 * struct chip_data - To maintain runtime state of SSP for each client chip
393 * @cr0: Value of control register CR0 of SSP - on later ST variants this
394 * register is 32 bits wide rather than just 16
395 * @cr1: Value of control register CR1 of SSP
396 * @dmacr: Value of DMA control Register of SSP
397 * @cpsr: Value of Clock prescale register
398 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
399 * @enable_dma: Whether to enable DMA or not
400 * @read: function ptr to be used to read when doing xfer for this chip
401 * @write: function ptr to be used to write when doing xfer for this chip
402 * @xfer_type: polling/interrupt/DMA
403 *
404 * Runtime state of the SSP controller, maintained per chip,
405 * This would be set according to the current message that would be served
406 */
407struct chip_data {
408 u32 cr0;
409 u16 cr1;
410 u16 dmacr;
411 u16 cpsr;
412 u8 n_bytes;
413 bool enable_dma;
414 enum ssp_reading read;
415 enum ssp_writing write;
416 int xfer_type;
417};
418
419/**
420 * internal_cs_control - Control chip select signals via SSP_CSR.
421 * @pl022: SSP driver private data structure
422 * @enable: select/delect the chip
423 *
424 * Used on controller with internal chip select control via SSP_CSR register
425 * (vendor extension). Each of the 5 LSB in the register controls one chip
426 * select signal.
427 */
428static void internal_cs_control(struct pl022 *pl022, bool enable)
429{
430 u32 tmp;
431
432 tmp = readw(SSP_CSR(pl022->virtbase));
433 if (enable)
434 tmp &= ~BIT(pl022->cur_cs);
435 else
436 tmp |= BIT(pl022->cur_cs);
437 writew(tmp, SSP_CSR(pl022->virtbase));
438}
439
440static void pl022_cs_control(struct spi_device *spi, bool enable)
441{
442 struct pl022 *pl022 = spi_controller_get_devdata(spi->controller);
443 if (pl022->vendor->internal_cs_ctrl)
444 internal_cs_control(pl022, enable);
445}
446
447/**
448 * flush - flush the FIFO to reach a clean state
449 * @pl022: SSP driver private data structure
450 */
451static int flush(struct pl022 *pl022)
452{
453 unsigned long limit = loops_per_jiffy << 1;
454
455 dev_dbg(&pl022->adev->dev, "flush\n");
456 do {
457 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
458 readw(SSP_DR(pl022->virtbase));
459 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
460
461 pl022->exp_fifo_level = 0;
462
463 return limit;
464}
465
466/**
467 * restore_state - Load configuration of current chip
468 * @pl022: SSP driver private data structure
469 */
470static void restore_state(struct pl022 *pl022)
471{
472 struct chip_data *chip = pl022->cur_chip;
473
474 if (pl022->vendor->extended_cr)
475 writel(chip->cr0, SSP_CR0(pl022->virtbase));
476 else
477 writew(chip->cr0, SSP_CR0(pl022->virtbase));
478 writew(chip->cr1, SSP_CR1(pl022->virtbase));
479 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
480 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
481 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
482 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
483}
484
485/*
486 * Default SSP Register Values
487 */
488#define DEFAULT_SSP_REG_CR0 ( \
489 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
490 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
491 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
492 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
493 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
494)
495
496/* ST versions have slightly different bit layout */
497#define DEFAULT_SSP_REG_CR0_ST ( \
498 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
499 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
500 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
501 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
502 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
503 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
504 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
505)
506
507/* The PL023 version is slightly different again */
508#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
509 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
510 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
511 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
512 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
513)
514
515#define DEFAULT_SSP_REG_CR1 ( \
516 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
517 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
518 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
519 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
520)
521
522/* ST versions extend this register to use all 16 bits */
523#define DEFAULT_SSP_REG_CR1_ST ( \
524 DEFAULT_SSP_REG_CR1 | \
525 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
526 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
527 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
528 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
529 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
530)
531
532/*
533 * The PL023 variant has further differences: no loopback mode, no microwire
534 * support, and a new clock feedback delay setting.
535 */
536#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
537 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
538 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
539 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
540 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
541 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
542 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
543 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
544 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
545)
546
547#define DEFAULT_SSP_REG_CPSR ( \
548 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
549)
550
551#define DEFAULT_SSP_REG_DMACR (\
552 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
553 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
554)
555
556/**
557 * load_ssp_default_config - Load default configuration for SSP
558 * @pl022: SSP driver private data structure
559 */
560static void load_ssp_default_config(struct pl022 *pl022)
561{
562 if (pl022->vendor->pl023) {
563 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
564 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
565 } else if (pl022->vendor->extended_cr) {
566 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
567 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
568 } else {
569 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
570 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
571 }
572 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
573 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
574 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
575 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
576}
577
578/*
579 * This will write to TX and read from RX according to the parameters
580 * set in pl022.
581 */
582static void readwriter(struct pl022 *pl022)
583{
584
585 /*
586 * The FIFO depth is different between primecell variants.
587 * I believe filling in too much in the FIFO might cause
588 * errons in 8bit wide transfers on ARM variants (just 8 words
589 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
590 *
591 * To prevent this issue, the TX FIFO is only filled to the
592 * unused RX FIFO fill length, regardless of what the TX
593 * FIFO status flag indicates.
594 */
595 dev_dbg(&pl022->adev->dev,
596 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
597 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
598
599 /* Read as much as you can */
600 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
601 && (pl022->rx < pl022->rx_end)) {
602 switch (pl022->read) {
603 case READING_NULL:
604 readw(SSP_DR(pl022->virtbase));
605 break;
606 case READING_U8:
607 *(u8 *) (pl022->rx) =
608 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
609 break;
610 case READING_U16:
611 *(u16 *) (pl022->rx) =
612 (u16) readw(SSP_DR(pl022->virtbase));
613 break;
614 case READING_U32:
615 *(u32 *) (pl022->rx) =
616 readl(SSP_DR(pl022->virtbase));
617 break;
618 }
619 pl022->rx += (pl022->cur_chip->n_bytes);
620 pl022->exp_fifo_level--;
621 }
622 /*
623 * Write as much as possible up to the RX FIFO size
624 */
625 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
626 && (pl022->tx < pl022->tx_end)) {
627 switch (pl022->write) {
628 case WRITING_NULL:
629 writew(0x0, SSP_DR(pl022->virtbase));
630 break;
631 case WRITING_U8:
632 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
633 break;
634 case WRITING_U16:
635 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
636 break;
637 case WRITING_U32:
638 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
639 break;
640 }
641 pl022->tx += (pl022->cur_chip->n_bytes);
642 pl022->exp_fifo_level++;
643 /*
644 * This inner reader takes care of things appearing in the RX
645 * FIFO as we're transmitting. This will happen a lot since the
646 * clock starts running when you put things into the TX FIFO,
647 * and then things are continuously clocked into the RX FIFO.
648 */
649 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
650 && (pl022->rx < pl022->rx_end)) {
651 switch (pl022->read) {
652 case READING_NULL:
653 readw(SSP_DR(pl022->virtbase));
654 break;
655 case READING_U8:
656 *(u8 *) (pl022->rx) =
657 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
658 break;
659 case READING_U16:
660 *(u16 *) (pl022->rx) =
661 (u16) readw(SSP_DR(pl022->virtbase));
662 break;
663 case READING_U32:
664 *(u32 *) (pl022->rx) =
665 readl(SSP_DR(pl022->virtbase));
666 break;
667 }
668 pl022->rx += (pl022->cur_chip->n_bytes);
669 pl022->exp_fifo_level--;
670 }
671 }
672 /*
673 * When we exit here the TX FIFO should be full and the RX FIFO
674 * should be empty
675 */
676}
677
678/*
679 * This DMA functionality is only compiled in if we have
680 * access to the generic DMA devices/DMA engine.
681 */
682#ifdef CONFIG_DMA_ENGINE
683static void unmap_free_dma_scatter(struct pl022 *pl022)
684{
685 /* Unmap and free the SG tables */
686 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
687 pl022->sgt_tx.nents, DMA_TO_DEVICE);
688 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
689 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
690 sg_free_table(&pl022->sgt_rx);
691 sg_free_table(&pl022->sgt_tx);
692}
693
694static void dma_callback(void *data)
695{
696 struct pl022 *pl022 = data;
697
698 BUG_ON(!pl022->sgt_rx.sgl);
699
700#ifdef VERBOSE_DEBUG
701 /*
702 * Optionally dump out buffers to inspect contents, this is
703 * good if you want to convince yourself that the loopback
704 * read/write contents are the same, when adopting to a new
705 * DMA engine.
706 */
707 {
708 struct scatterlist *sg;
709 unsigned int i;
710
711 dma_sync_sg_for_cpu(&pl022->adev->dev,
712 pl022->sgt_rx.sgl,
713 pl022->sgt_rx.nents,
714 DMA_FROM_DEVICE);
715
716 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
717 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
718 print_hex_dump(KERN_ERR, "SPI RX: ",
719 DUMP_PREFIX_OFFSET,
720 16,
721 1,
722 sg_virt(sg),
723 sg_dma_len(sg),
724 1);
725 }
726 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
727 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
728 print_hex_dump(KERN_ERR, "SPI TX: ",
729 DUMP_PREFIX_OFFSET,
730 16,
731 1,
732 sg_virt(sg),
733 sg_dma_len(sg),
734 1);
735 }
736 }
737#endif
738
739 unmap_free_dma_scatter(pl022);
740
741 spi_finalize_current_transfer(pl022->host);
742}
743
744static void setup_dma_scatter(struct pl022 *pl022,
745 void *buffer,
746 unsigned int length,
747 struct sg_table *sgtab)
748{
749 struct scatterlist *sg;
750 int bytesleft = length;
751 void *bufp = buffer;
752 int mapbytes;
753 int i;
754
755 if (buffer) {
756 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
757 /*
758 * If there are less bytes left than what fits
759 * in the current page (plus page alignment offset)
760 * we just feed in this, else we stuff in as much
761 * as we can.
762 */
763 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
764 mapbytes = bytesleft;
765 else
766 mapbytes = PAGE_SIZE - offset_in_page(bufp);
767 sg_set_page(sg, virt_to_page(bufp),
768 mapbytes, offset_in_page(bufp));
769 bufp += mapbytes;
770 bytesleft -= mapbytes;
771 dev_dbg(&pl022->adev->dev,
772 "set RX/TX target page @ %p, %d bytes, %d left\n",
773 bufp, mapbytes, bytesleft);
774 }
775 } else {
776 /* Map the dummy buffer on every page */
777 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
778 if (bytesleft < PAGE_SIZE)
779 mapbytes = bytesleft;
780 else
781 mapbytes = PAGE_SIZE;
782 sg_set_page(sg, virt_to_page(pl022->dummypage),
783 mapbytes, 0);
784 bytesleft -= mapbytes;
785 dev_dbg(&pl022->adev->dev,
786 "set RX/TX to dummy page %d bytes, %d left\n",
787 mapbytes, bytesleft);
788
789 }
790 }
791 BUG_ON(bytesleft);
792}
793
794/**
795 * configure_dma - configures the channels for the next transfer
796 * @pl022: SSP driver's private data structure
797 */
798static int configure_dma(struct pl022 *pl022)
799{
800 struct dma_slave_config rx_conf = {
801 .src_addr = SSP_DR(pl022->phybase),
802 .direction = DMA_DEV_TO_MEM,
803 .device_fc = false,
804 };
805 struct dma_slave_config tx_conf = {
806 .dst_addr = SSP_DR(pl022->phybase),
807 .direction = DMA_MEM_TO_DEV,
808 .device_fc = false,
809 };
810 unsigned int pages;
811 int ret;
812 int rx_sglen, tx_sglen;
813 struct dma_chan *rxchan = pl022->dma_rx_channel;
814 struct dma_chan *txchan = pl022->dma_tx_channel;
815 struct dma_async_tx_descriptor *rxdesc;
816 struct dma_async_tx_descriptor *txdesc;
817
818 /* Check that the channels are available */
819 if (!rxchan || !txchan)
820 return -ENODEV;
821
822 /*
823 * If supplied, the DMA burstsize should equal the FIFO trigger level.
824 * Notice that the DMA engine uses one-to-one mapping. Since we can
825 * not trigger on 2 elements this needs explicit mapping rather than
826 * calculation.
827 */
828 switch (pl022->rx_lev_trig) {
829 case SSP_RX_1_OR_MORE_ELEM:
830 rx_conf.src_maxburst = 1;
831 break;
832 case SSP_RX_4_OR_MORE_ELEM:
833 rx_conf.src_maxburst = 4;
834 break;
835 case SSP_RX_8_OR_MORE_ELEM:
836 rx_conf.src_maxburst = 8;
837 break;
838 case SSP_RX_16_OR_MORE_ELEM:
839 rx_conf.src_maxburst = 16;
840 break;
841 case SSP_RX_32_OR_MORE_ELEM:
842 rx_conf.src_maxburst = 32;
843 break;
844 default:
845 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
846 break;
847 }
848
849 switch (pl022->tx_lev_trig) {
850 case SSP_TX_1_OR_MORE_EMPTY_LOC:
851 tx_conf.dst_maxburst = 1;
852 break;
853 case SSP_TX_4_OR_MORE_EMPTY_LOC:
854 tx_conf.dst_maxburst = 4;
855 break;
856 case SSP_TX_8_OR_MORE_EMPTY_LOC:
857 tx_conf.dst_maxburst = 8;
858 break;
859 case SSP_TX_16_OR_MORE_EMPTY_LOC:
860 tx_conf.dst_maxburst = 16;
861 break;
862 case SSP_TX_32_OR_MORE_EMPTY_LOC:
863 tx_conf.dst_maxburst = 32;
864 break;
865 default:
866 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
867 break;
868 }
869
870 switch (pl022->read) {
871 case READING_NULL:
872 /* Use the same as for writing */
873 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
874 break;
875 case READING_U8:
876 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
877 break;
878 case READING_U16:
879 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
880 break;
881 case READING_U32:
882 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
883 break;
884 }
885
886 switch (pl022->write) {
887 case WRITING_NULL:
888 /* Use the same as for reading */
889 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
890 break;
891 case WRITING_U8:
892 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
893 break;
894 case WRITING_U16:
895 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
896 break;
897 case WRITING_U32:
898 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
899 break;
900 }
901
902 /* SPI pecularity: we need to read and write the same width */
903 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
904 rx_conf.src_addr_width = tx_conf.dst_addr_width;
905 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
906 tx_conf.dst_addr_width = rx_conf.src_addr_width;
907 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
908
909 dmaengine_slave_config(rxchan, &rx_conf);
910 dmaengine_slave_config(txchan, &tx_conf);
911
912 /* Create sglists for the transfers */
913 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
914 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
915
916 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
917 if (ret)
918 goto err_alloc_rx_sg;
919
920 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
921 if (ret)
922 goto err_alloc_tx_sg;
923
924 /* Fill in the scatterlists for the RX+TX buffers */
925 setup_dma_scatter(pl022, pl022->rx,
926 pl022->cur_transfer->len, &pl022->sgt_rx);
927 setup_dma_scatter(pl022, pl022->tx,
928 pl022->cur_transfer->len, &pl022->sgt_tx);
929
930 /* Map DMA buffers */
931 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
932 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
933 if (!rx_sglen)
934 goto err_rx_sgmap;
935
936 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
937 pl022->sgt_tx.nents, DMA_TO_DEVICE);
938 if (!tx_sglen)
939 goto err_tx_sgmap;
940
941 /* Send both scatterlists */
942 rxdesc = dmaengine_prep_slave_sg(rxchan,
943 pl022->sgt_rx.sgl,
944 rx_sglen,
945 DMA_DEV_TO_MEM,
946 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
947 if (!rxdesc)
948 goto err_rxdesc;
949
950 txdesc = dmaengine_prep_slave_sg(txchan,
951 pl022->sgt_tx.sgl,
952 tx_sglen,
953 DMA_MEM_TO_DEV,
954 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
955 if (!txdesc)
956 goto err_txdesc;
957
958 /* Put the callback on the RX transfer only, that should finish last */
959 rxdesc->callback = dma_callback;
960 rxdesc->callback_param = pl022;
961
962 /* Submit and fire RX and TX with TX last so we're ready to read! */
963 dmaengine_submit(rxdesc);
964 dmaengine_submit(txdesc);
965 dma_async_issue_pending(rxchan);
966 dma_async_issue_pending(txchan);
967 pl022->dma_running = true;
968
969 return 0;
970
971err_txdesc:
972 dmaengine_terminate_all(txchan);
973err_rxdesc:
974 dmaengine_terminate_all(rxchan);
975 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
976 pl022->sgt_tx.nents, DMA_TO_DEVICE);
977err_tx_sgmap:
978 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
979 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
980err_rx_sgmap:
981 sg_free_table(&pl022->sgt_tx);
982err_alloc_tx_sg:
983 sg_free_table(&pl022->sgt_rx);
984err_alloc_rx_sg:
985 return -ENOMEM;
986}
987
988static int pl022_dma_probe(struct pl022 *pl022)
989{
990 dma_cap_mask_t mask;
991
992 /* Try to acquire a generic DMA engine slave channel */
993 dma_cap_zero(mask);
994 dma_cap_set(DMA_SLAVE, mask);
995 /*
996 * We need both RX and TX channels to do DMA, else do none
997 * of them.
998 */
999 pl022->dma_rx_channel = dma_request_channel(mask,
1000 pl022->host_info->dma_filter,
1001 pl022->host_info->dma_rx_param);
1002 if (!pl022->dma_rx_channel) {
1003 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1004 goto err_no_rxchan;
1005 }
1006
1007 pl022->dma_tx_channel = dma_request_channel(mask,
1008 pl022->host_info->dma_filter,
1009 pl022->host_info->dma_tx_param);
1010 if (!pl022->dma_tx_channel) {
1011 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1012 goto err_no_txchan;
1013 }
1014
1015 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1016 if (!pl022->dummypage)
1017 goto err_no_dummypage;
1018
1019 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1020 dma_chan_name(pl022->dma_rx_channel),
1021 dma_chan_name(pl022->dma_tx_channel));
1022
1023 return 0;
1024
1025err_no_dummypage:
1026 dma_release_channel(pl022->dma_tx_channel);
1027err_no_txchan:
1028 dma_release_channel(pl022->dma_rx_channel);
1029 pl022->dma_rx_channel = NULL;
1030err_no_rxchan:
1031 dev_err(&pl022->adev->dev,
1032 "Failed to work in dma mode, work without dma!\n");
1033 return -ENODEV;
1034}
1035
1036static int pl022_dma_autoprobe(struct pl022 *pl022)
1037{
1038 struct device *dev = &pl022->adev->dev;
1039 struct dma_chan *chan;
1040 int err;
1041
1042 /* automatically configure DMA channels from platform, normally using DT */
1043 chan = dma_request_chan(dev, "rx");
1044 if (IS_ERR(chan)) {
1045 err = PTR_ERR(chan);
1046 goto err_no_rxchan;
1047 }
1048
1049 pl022->dma_rx_channel = chan;
1050
1051 chan = dma_request_chan(dev, "tx");
1052 if (IS_ERR(chan)) {
1053 err = PTR_ERR(chan);
1054 goto err_no_txchan;
1055 }
1056
1057 pl022->dma_tx_channel = chan;
1058
1059 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1060 if (!pl022->dummypage) {
1061 err = -ENOMEM;
1062 goto err_no_dummypage;
1063 }
1064
1065 return 0;
1066
1067err_no_dummypage:
1068 dma_release_channel(pl022->dma_tx_channel);
1069 pl022->dma_tx_channel = NULL;
1070err_no_txchan:
1071 dma_release_channel(pl022->dma_rx_channel);
1072 pl022->dma_rx_channel = NULL;
1073err_no_rxchan:
1074 return err;
1075}
1076
1077static void terminate_dma(struct pl022 *pl022)
1078{
1079 if (!pl022->dma_running)
1080 return;
1081
1082 struct dma_chan *rxchan = pl022->dma_rx_channel;
1083 struct dma_chan *txchan = pl022->dma_tx_channel;
1084
1085 dmaengine_terminate_all(rxchan);
1086 dmaengine_terminate_all(txchan);
1087 unmap_free_dma_scatter(pl022);
1088 pl022->dma_running = false;
1089}
1090
1091static void pl022_dma_remove(struct pl022 *pl022)
1092{
1093 terminate_dma(pl022);
1094 if (pl022->dma_tx_channel)
1095 dma_release_channel(pl022->dma_tx_channel);
1096 if (pl022->dma_rx_channel)
1097 dma_release_channel(pl022->dma_rx_channel);
1098 kfree(pl022->dummypage);
1099}
1100
1101#else
1102static inline int configure_dma(struct pl022 *pl022)
1103{
1104 return -ENODEV;
1105}
1106
1107static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1108{
1109 return 0;
1110}
1111
1112static inline int pl022_dma_probe(struct pl022 *pl022)
1113{
1114 return 0;
1115}
1116
1117static inline void terminate_dma(struct pl022 *pl022)
1118{
1119}
1120
1121static inline void pl022_dma_remove(struct pl022 *pl022)
1122{
1123}
1124#endif
1125
1126/**
1127 * pl022_interrupt_handler - Interrupt handler for SSP controller
1128 * @irq: IRQ number
1129 * @dev_id: Local device data
1130 *
1131 * This function handles interrupts generated for an interrupt based transfer.
1132 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1133 * current message's state as STATE_ERROR and schedule the tasklet
1134 * pump_transfers which will do the postprocessing of the current message by
1135 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1136 * more data, and writes data in TX FIFO till it is not full. If we complete
1137 * the transfer we move to the next transfer and schedule the tasklet.
1138 */
1139static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1140{
1141 struct pl022 *pl022 = dev_id;
1142 u16 irq_status = 0;
1143 /* Read the Interrupt Status Register */
1144 irq_status = readw(SSP_MIS(pl022->virtbase));
1145
1146 if (unlikely(!irq_status))
1147 return IRQ_NONE;
1148
1149 /*
1150 * This handles the FIFO interrupts, the timeout
1151 * interrupts are flatly ignored, they cannot be
1152 * trusted.
1153 */
1154 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1155 /*
1156 * Overrun interrupt - bail out since our Data has been
1157 * corrupted
1158 */
1159 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1160 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1161 dev_err(&pl022->adev->dev,
1162 "RXFIFO is full\n");
1163
1164 /*
1165 * Disable and clear interrupts, disable SSP,
1166 * mark message with bad status so it can be
1167 * retried.
1168 */
1169 writew(DISABLE_ALL_INTERRUPTS,
1170 SSP_IMSC(pl022->virtbase));
1171 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1172 writew((readw(SSP_CR1(pl022->virtbase)) &
1173 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1174 pl022->cur_transfer->error |= SPI_TRANS_FAIL_IO;
1175 spi_finalize_current_transfer(pl022->host);
1176 return IRQ_HANDLED;
1177 }
1178
1179 readwriter(pl022);
1180
1181 if (pl022->tx == pl022->tx_end) {
1182 /* Disable Transmit interrupt, enable receive interrupt */
1183 writew((readw(SSP_IMSC(pl022->virtbase)) &
1184 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1185 SSP_IMSC(pl022->virtbase));
1186 }
1187
1188 /*
1189 * Since all transactions must write as much as shall be read,
1190 * we can conclude the entire transaction once RX is complete.
1191 * At this point, all TX will always be finished.
1192 */
1193 if (pl022->rx >= pl022->rx_end) {
1194 writew(DISABLE_ALL_INTERRUPTS,
1195 SSP_IMSC(pl022->virtbase));
1196 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1197 if (unlikely(pl022->rx > pl022->rx_end)) {
1198 dev_warn(&pl022->adev->dev, "read %u surplus "
1199 "bytes (did you request an odd "
1200 "number of bytes on a 16bit bus?)\n",
1201 (u32) (pl022->rx - pl022->rx_end));
1202 }
1203 spi_finalize_current_transfer(pl022->host);
1204 return IRQ_HANDLED;
1205 }
1206
1207 return IRQ_HANDLED;
1208}
1209
1210/*
1211 * This sets up the pointers to memory for the next message to
1212 * send out on the SPI bus.
1213 */
1214static int set_up_next_transfer(struct pl022 *pl022,
1215 struct spi_transfer *transfer)
1216{
1217 int residue;
1218
1219 /* Sanity check the message for this bus width */
1220 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1221 if (unlikely(residue != 0)) {
1222 dev_err(&pl022->adev->dev,
1223 "message of %u bytes to transmit but the current "
1224 "chip bus has a data width of %u bytes!\n",
1225 pl022->cur_transfer->len,
1226 pl022->cur_chip->n_bytes);
1227 dev_err(&pl022->adev->dev, "skipping this message\n");
1228 return -EIO;
1229 }
1230 pl022->tx = (void *)transfer->tx_buf;
1231 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1232 pl022->rx = (void *)transfer->rx_buf;
1233 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1234 pl022->write =
1235 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1236 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1237 return 0;
1238}
1239
1240static int do_interrupt_dma_transfer(struct pl022 *pl022)
1241{
1242 int ret;
1243
1244 /*
1245 * Default is to enable all interrupts except RX -
1246 * this will be enabled once TX is complete
1247 */
1248 u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1249
1250 ret = set_up_next_transfer(pl022, pl022->cur_transfer);
1251 if (ret)
1252 return ret;
1253
1254 /* If we're using DMA, set up DMA here */
1255 if (pl022->cur_chip->enable_dma) {
1256 /* Configure DMA transfer */
1257 if (configure_dma(pl022)) {
1258 dev_dbg(&pl022->adev->dev,
1259 "configuration of DMA failed, fall back to interrupt mode\n");
1260 goto err_config_dma;
1261 }
1262 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1263 irqflags = DISABLE_ALL_INTERRUPTS;
1264 }
1265err_config_dma:
1266 /* Enable SSP, turn on interrupts */
1267 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1268 SSP_CR1(pl022->virtbase));
1269 writew(irqflags, SSP_IMSC(pl022->virtbase));
1270 return 1;
1271}
1272
1273static void print_current_status(struct pl022 *pl022)
1274{
1275 u32 read_cr0;
1276 u16 read_cr1, read_dmacr, read_sr;
1277
1278 if (pl022->vendor->extended_cr)
1279 read_cr0 = readl(SSP_CR0(pl022->virtbase));
1280 else
1281 read_cr0 = readw(SSP_CR0(pl022->virtbase));
1282 read_cr1 = readw(SSP_CR1(pl022->virtbase));
1283 read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1284 read_sr = readw(SSP_SR(pl022->virtbase));
1285
1286 dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1287 dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1288 dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1289 dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1290 dev_warn(&pl022->adev->dev,
1291 "spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1292 pl022->exp_fifo_level,
1293 pl022->vendor->fifodepth);
1294
1295}
1296
1297static int do_polling_transfer(struct pl022 *pl022)
1298{
1299 int ret;
1300 unsigned long time, timeout;
1301
1302 /* Configuration Changing Per Transfer */
1303 ret = set_up_next_transfer(pl022, pl022->cur_transfer);
1304 if (ret)
1305 return ret;
1306 /* Flush FIFOs and enable SSP */
1307 flush(pl022);
1308 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1309 SSP_CR1(pl022->virtbase));
1310
1311 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1312
1313 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1314 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1315 time = jiffies;
1316 readwriter(pl022);
1317 if (time_after(time, timeout)) {
1318 dev_warn(&pl022->adev->dev,
1319 "%s: timeout!\n", __func__);
1320 print_current_status(pl022);
1321 return -ETIMEDOUT;
1322 }
1323 cpu_relax();
1324 }
1325
1326 return 0;
1327}
1328
1329static int pl022_transfer_one(struct spi_controller *host, struct spi_device *spi,
1330 struct spi_transfer *transfer)
1331{
1332 struct pl022 *pl022 = spi_controller_get_devdata(host);
1333
1334 pl022->cur_transfer = transfer;
1335
1336 /* Setup the SPI using the per chip configuration */
1337 pl022->cur_chip = spi_get_ctldata(spi);
1338 pl022->cur_cs = spi_get_chipselect(spi, 0);
1339
1340 restore_state(pl022);
1341 flush(pl022);
1342
1343 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1344 return do_polling_transfer(pl022);
1345 else
1346 return do_interrupt_dma_transfer(pl022);
1347}
1348
1349static void pl022_handle_err(struct spi_controller *ctlr, struct spi_message *message)
1350{
1351 struct pl022 *pl022 = spi_controller_get_devdata(ctlr);
1352
1353 terminate_dma(pl022);
1354 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1355 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1356}
1357
1358static int pl022_unprepare_transfer_hardware(struct spi_controller *host)
1359{
1360 struct pl022 *pl022 = spi_controller_get_devdata(host);
1361
1362 /* nothing more to do - disable spi/ssp and power off */
1363 writew((readw(SSP_CR1(pl022->virtbase)) &
1364 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1365
1366 return 0;
1367}
1368
1369static int verify_controller_parameters(struct pl022 *pl022,
1370 struct pl022_config_chip const *chip_info)
1371{
1372 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1373 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1374 dev_err(&pl022->adev->dev,
1375 "interface is configured incorrectly\n");
1376 return -EINVAL;
1377 }
1378 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1379 (!pl022->vendor->unidir)) {
1380 dev_err(&pl022->adev->dev,
1381 "unidirectional mode not supported in this "
1382 "hardware version\n");
1383 return -EINVAL;
1384 }
1385 if ((chip_info->hierarchy != SSP_MASTER)
1386 && (chip_info->hierarchy != SSP_SLAVE)) {
1387 dev_err(&pl022->adev->dev,
1388 "hierarchy is configured incorrectly\n");
1389 return -EINVAL;
1390 }
1391 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1392 && (chip_info->com_mode != DMA_TRANSFER)
1393 && (chip_info->com_mode != POLLING_TRANSFER)) {
1394 dev_err(&pl022->adev->dev,
1395 "Communication mode is configured incorrectly\n");
1396 return -EINVAL;
1397 }
1398 switch (chip_info->rx_lev_trig) {
1399 case SSP_RX_1_OR_MORE_ELEM:
1400 case SSP_RX_4_OR_MORE_ELEM:
1401 case SSP_RX_8_OR_MORE_ELEM:
1402 /* These are always OK, all variants can handle this */
1403 break;
1404 case SSP_RX_16_OR_MORE_ELEM:
1405 if (pl022->vendor->fifodepth < 16) {
1406 dev_err(&pl022->adev->dev,
1407 "RX FIFO Trigger Level is configured incorrectly\n");
1408 return -EINVAL;
1409 }
1410 break;
1411 case SSP_RX_32_OR_MORE_ELEM:
1412 if (pl022->vendor->fifodepth < 32) {
1413 dev_err(&pl022->adev->dev,
1414 "RX FIFO Trigger Level is configured incorrectly\n");
1415 return -EINVAL;
1416 }
1417 break;
1418 default:
1419 dev_err(&pl022->adev->dev,
1420 "RX FIFO Trigger Level is configured incorrectly\n");
1421 return -EINVAL;
1422 }
1423 switch (chip_info->tx_lev_trig) {
1424 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1425 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1426 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1427 /* These are always OK, all variants can handle this */
1428 break;
1429 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1430 if (pl022->vendor->fifodepth < 16) {
1431 dev_err(&pl022->adev->dev,
1432 "TX FIFO Trigger Level is configured incorrectly\n");
1433 return -EINVAL;
1434 }
1435 break;
1436 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1437 if (pl022->vendor->fifodepth < 32) {
1438 dev_err(&pl022->adev->dev,
1439 "TX FIFO Trigger Level is configured incorrectly\n");
1440 return -EINVAL;
1441 }
1442 break;
1443 default:
1444 dev_err(&pl022->adev->dev,
1445 "TX FIFO Trigger Level is configured incorrectly\n");
1446 return -EINVAL;
1447 }
1448 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1449 if ((chip_info->ctrl_len < SSP_BITS_4)
1450 || (chip_info->ctrl_len > SSP_BITS_32)) {
1451 dev_err(&pl022->adev->dev,
1452 "CTRL LEN is configured incorrectly\n");
1453 return -EINVAL;
1454 }
1455 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1456 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1457 dev_err(&pl022->adev->dev,
1458 "Wait State is configured incorrectly\n");
1459 return -EINVAL;
1460 }
1461 /* Half duplex is only available in the ST Micro version */
1462 if (pl022->vendor->extended_cr) {
1463 if ((chip_info->duplex !=
1464 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1465 && (chip_info->duplex !=
1466 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1467 dev_err(&pl022->adev->dev,
1468 "Microwire duplex mode is configured incorrectly\n");
1469 return -EINVAL;
1470 }
1471 } else {
1472 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) {
1473 dev_err(&pl022->adev->dev,
1474 "Microwire half duplex mode requested,"
1475 " but this is only available in the"
1476 " ST version of PL022\n");
1477 return -EINVAL;
1478 }
1479 }
1480 }
1481 return 0;
1482}
1483
1484static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1485{
1486 return rate / (cpsdvsr * (1 + scr));
1487}
1488
1489static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1490 ssp_clock_params * clk_freq)
1491{
1492 /* Lets calculate the frequency parameters */
1493 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1494 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1495 best_scr = 0, tmp, found = 0;
1496
1497 rate = clk_get_rate(pl022->clk);
1498 /* cpsdvscr = 2 & scr 0 */
1499 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1500 /* cpsdvsr = 254 & scr = 255 */
1501 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1502
1503 if (freq > max_tclk)
1504 dev_warn(&pl022->adev->dev,
1505 "Max speed that can be programmed is %d Hz, you requested %d\n",
1506 max_tclk, freq);
1507
1508 if (freq < min_tclk) {
1509 dev_err(&pl022->adev->dev,
1510 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1511 freq, min_tclk);
1512 return -EINVAL;
1513 }
1514
1515 /*
1516 * best_freq will give closest possible available rate (<= requested
1517 * freq) for all values of scr & cpsdvsr.
1518 */
1519 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1520 while (scr <= SCR_MAX) {
1521 tmp = spi_rate(rate, cpsdvsr, scr);
1522
1523 if (tmp > freq) {
1524 /* we need lower freq */
1525 scr++;
1526 continue;
1527 }
1528
1529 /*
1530 * If found exact value, mark found and break.
1531 * If found more closer value, update and break.
1532 */
1533 if (tmp > best_freq) {
1534 best_freq = tmp;
1535 best_cpsdvsr = cpsdvsr;
1536 best_scr = scr;
1537
1538 if (tmp == freq)
1539 found = 1;
1540 }
1541 /*
1542 * increased scr will give lower rates, which are not
1543 * required
1544 */
1545 break;
1546 }
1547 cpsdvsr += 2;
1548 scr = SCR_MIN;
1549 }
1550
1551 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1552 freq);
1553
1554 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1555 clk_freq->scr = (u8) (best_scr & 0xFF);
1556 dev_dbg(&pl022->adev->dev,
1557 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1558 freq, best_freq);
1559 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1560 clk_freq->cpsdvsr, clk_freq->scr);
1561
1562 return 0;
1563}
1564
1565/*
1566 * A piece of default chip info unless the platform
1567 * supplies it.
1568 */
1569static const struct pl022_config_chip pl022_default_chip_info = {
1570 .com_mode = INTERRUPT_TRANSFER,
1571 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1572 .hierarchy = SSP_MASTER,
1573 .slave_tx_disable = DO_NOT_DRIVE_TX,
1574 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1575 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1576 .ctrl_len = SSP_BITS_8,
1577 .wait_state = SSP_MWIRE_WAIT_ZERO,
1578 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1579};
1580
1581/**
1582 * pl022_setup - setup function registered to SPI host framework
1583 * @spi: spi device which is requesting setup
1584 *
1585 * This function is registered to the SPI framework for this SPI host
1586 * controller. If it is the first time when setup is called by this device,
1587 * this function will initialize the runtime state for this chip and save
1588 * the same in the device structure. Else it will update the runtime info
1589 * with the updated chip info. Nothing is really being written to the
1590 * controller hardware here, that is not done until the actual transfer
1591 * commence.
1592 */
1593static int pl022_setup(struct spi_device *spi)
1594{
1595 struct pl022_config_chip const *chip_info;
1596 struct pl022_config_chip chip_info_dt;
1597 struct chip_data *chip;
1598 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1599 int status = 0;
1600 struct pl022 *pl022 = spi_controller_get_devdata(spi->controller);
1601 unsigned int bits = spi->bits_per_word;
1602 u32 tmp;
1603 struct device_node *np = spi->dev.of_node;
1604
1605 if (!spi->max_speed_hz)
1606 return -EINVAL;
1607
1608 /* Get controller_state if one is supplied */
1609 chip = spi_get_ctldata(spi);
1610
1611 if (chip == NULL) {
1612 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1613 if (!chip)
1614 return -ENOMEM;
1615 dev_dbg(&spi->dev,
1616 "allocated memory for controller's runtime state\n");
1617 }
1618
1619 /* Get controller data if one is supplied */
1620 chip_info = spi->controller_data;
1621
1622 if (chip_info == NULL) {
1623 if (np) {
1624 chip_info_dt = pl022_default_chip_info;
1625
1626 chip_info_dt.hierarchy = SSP_MASTER;
1627 of_property_read_u32(np, "pl022,interface",
1628 &chip_info_dt.iface);
1629 of_property_read_u32(np, "pl022,com-mode",
1630 &chip_info_dt.com_mode);
1631 of_property_read_u32(np, "pl022,rx-level-trig",
1632 &chip_info_dt.rx_lev_trig);
1633 of_property_read_u32(np, "pl022,tx-level-trig",
1634 &chip_info_dt.tx_lev_trig);
1635 of_property_read_u32(np, "pl022,ctrl-len",
1636 &chip_info_dt.ctrl_len);
1637 of_property_read_u32(np, "pl022,wait-state",
1638 &chip_info_dt.wait_state);
1639 of_property_read_u32(np, "pl022,duplex",
1640 &chip_info_dt.duplex);
1641
1642 chip_info = &chip_info_dt;
1643 } else {
1644 chip_info = &pl022_default_chip_info;
1645 /* spi_board_info.controller_data not is supplied */
1646 dev_dbg(&spi->dev,
1647 "using default controller_data settings\n");
1648 }
1649 } else
1650 dev_dbg(&spi->dev,
1651 "using user supplied controller_data settings\n");
1652
1653 /*
1654 * We can override with custom divisors, else we use the board
1655 * frequency setting
1656 */
1657 if ((0 == chip_info->clk_freq.cpsdvsr)
1658 && (0 == chip_info->clk_freq.scr)) {
1659 status = calculate_effective_freq(pl022,
1660 spi->max_speed_hz,
1661 &clk_freq);
1662 if (status < 0)
1663 goto err_config_params;
1664 } else {
1665 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1666 if ((clk_freq.cpsdvsr % 2) != 0)
1667 clk_freq.cpsdvsr =
1668 clk_freq.cpsdvsr - 1;
1669 }
1670 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1671 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1672 status = -EINVAL;
1673 dev_err(&spi->dev,
1674 "cpsdvsr is configured incorrectly\n");
1675 goto err_config_params;
1676 }
1677
1678 status = verify_controller_parameters(pl022, chip_info);
1679 if (status) {
1680 dev_err(&spi->dev, "controller data is incorrect");
1681 goto err_config_params;
1682 }
1683
1684 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1685 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1686
1687 /* Now set controller state based on controller data */
1688 chip->xfer_type = chip_info->com_mode;
1689
1690 /* Check bits per word with vendor specific range */
1691 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1692 status = -ENOTSUPP;
1693 dev_err(&spi->dev, "illegal data size for this controller!\n");
1694 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1695 pl022->vendor->max_bpw);
1696 goto err_config_params;
1697 } else if (bits <= 8) {
1698 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1699 chip->n_bytes = 1;
1700 chip->read = READING_U8;
1701 chip->write = WRITING_U8;
1702 } else if (bits <= 16) {
1703 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1704 chip->n_bytes = 2;
1705 chip->read = READING_U16;
1706 chip->write = WRITING_U16;
1707 } else {
1708 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1709 chip->n_bytes = 4;
1710 chip->read = READING_U32;
1711 chip->write = WRITING_U32;
1712 }
1713
1714 /* Now Initialize all register settings required for this chip */
1715 chip->cr0 = 0;
1716 chip->cr1 = 0;
1717 chip->dmacr = 0;
1718 chip->cpsr = 0;
1719 if ((chip_info->com_mode == DMA_TRANSFER)
1720 && ((pl022->host_info)->enable_dma)) {
1721 chip->enable_dma = true;
1722 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1723 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1724 SSP_DMACR_MASK_RXDMAE, 0);
1725 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1726 SSP_DMACR_MASK_TXDMAE, 1);
1727 } else {
1728 chip->enable_dma = false;
1729 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1730 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1731 SSP_DMACR_MASK_RXDMAE, 0);
1732 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1733 SSP_DMACR_MASK_TXDMAE, 1);
1734 }
1735
1736 chip->cpsr = clk_freq.cpsdvsr;
1737
1738 /* Special setup for the ST micro extended control registers */
1739 if (pl022->vendor->extended_cr) {
1740 u32 etx;
1741
1742 if (pl022->vendor->pl023) {
1743 /* These bits are only in the PL023 */
1744 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1745 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1746 } else {
1747 /* These bits are in the PL022 but not PL023 */
1748 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1749 SSP_CR0_MASK_HALFDUP_ST, 5);
1750 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1751 SSP_CR0_MASK_CSS_ST, 16);
1752 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1753 SSP_CR0_MASK_FRF_ST, 21);
1754 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1755 SSP_CR1_MASK_MWAIT_ST, 6);
1756 }
1757 SSP_WRITE_BITS(chip->cr0, bits - 1,
1758 SSP_CR0_MASK_DSS_ST, 0);
1759
1760 if (spi->mode & SPI_LSB_FIRST) {
1761 tmp = SSP_RX_LSB;
1762 etx = SSP_TX_LSB;
1763 } else {
1764 tmp = SSP_RX_MSB;
1765 etx = SSP_TX_MSB;
1766 }
1767 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1768 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1769 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1770 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1771 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1772 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1773 } else {
1774 SSP_WRITE_BITS(chip->cr0, bits - 1,
1775 SSP_CR0_MASK_DSS, 0);
1776 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1777 SSP_CR0_MASK_FRF, 4);
1778 }
1779
1780 /* Stuff that is common for all versions */
1781 if (spi->mode & SPI_CPOL)
1782 tmp = SSP_CLK_POL_IDLE_HIGH;
1783 else
1784 tmp = SSP_CLK_POL_IDLE_LOW;
1785 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1786
1787 if (spi->mode & SPI_CPHA)
1788 tmp = SSP_CLK_SECOND_EDGE;
1789 else
1790 tmp = SSP_CLK_FIRST_EDGE;
1791 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1792
1793 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1794 /* Loopback is available on all versions except PL023 */
1795 if (pl022->vendor->loopback) {
1796 if (spi->mode & SPI_LOOP)
1797 tmp = LOOPBACK_ENABLED;
1798 else
1799 tmp = LOOPBACK_DISABLED;
1800 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1801 }
1802 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1803 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1804 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
1805 3);
1806
1807 /* Save controller_state */
1808 spi_set_ctldata(spi, chip);
1809 return status;
1810 err_config_params:
1811 spi_set_ctldata(spi, NULL);
1812 kfree(chip);
1813 return status;
1814}
1815
1816/**
1817 * pl022_cleanup - cleanup function registered to SPI host framework
1818 * @spi: spi device which is requesting cleanup
1819 *
1820 * This function is registered to the SPI framework for this SPI host
1821 * controller. It will free the runtime state of chip.
1822 */
1823static void pl022_cleanup(struct spi_device *spi)
1824{
1825 struct chip_data *chip = spi_get_ctldata(spi);
1826
1827 spi_set_ctldata(spi, NULL);
1828 kfree(chip);
1829}
1830
1831static struct pl022_ssp_controller *
1832pl022_platform_data_dt_get(struct device *dev)
1833{
1834 struct device_node *np = dev->of_node;
1835 struct pl022_ssp_controller *pd;
1836
1837 if (!np) {
1838 dev_err(dev, "no dt node defined\n");
1839 return NULL;
1840 }
1841
1842 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
1843 if (!pd)
1844 return NULL;
1845
1846 pd->bus_id = -1;
1847 of_property_read_u32(np, "pl022,autosuspend-delay",
1848 &pd->autosuspend_delay);
1849 pd->rt = of_property_read_bool(np, "pl022,rt");
1850
1851 return pd;
1852}
1853
1854static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
1855{
1856 struct device *dev = &adev->dev;
1857 struct pl022_ssp_controller *platform_info =
1858 dev_get_platdata(&adev->dev);
1859 struct spi_controller *host;
1860 struct pl022 *pl022 = NULL; /*Data for this driver */
1861 int status = 0;
1862
1863 dev_info(&adev->dev,
1864 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
1865 if (!platform_info && IS_ENABLED(CONFIG_OF))
1866 platform_info = pl022_platform_data_dt_get(dev);
1867
1868 if (!platform_info) {
1869 dev_err(dev, "probe: no platform data defined\n");
1870 return -ENODEV;
1871 }
1872
1873 /* Allocate host with space for data */
1874 host = spi_alloc_host(dev, sizeof(struct pl022));
1875 if (host == NULL) {
1876 dev_err(&adev->dev, "probe - cannot alloc SPI host\n");
1877 return -ENOMEM;
1878 }
1879
1880 pl022 = spi_controller_get_devdata(host);
1881 pl022->host = host;
1882 pl022->host_info = platform_info;
1883 pl022->adev = adev;
1884 pl022->vendor = id->data;
1885
1886 /*
1887 * Bus Number Which has been Assigned to this SSP controller
1888 * on this board
1889 */
1890 host->bus_num = platform_info->bus_id;
1891 host->cleanup = pl022_cleanup;
1892 host->setup = pl022_setup;
1893 host->auto_runtime_pm = true;
1894 host->transfer_one = pl022_transfer_one;
1895 host->set_cs = pl022_cs_control;
1896 host->handle_err = pl022_handle_err;
1897 host->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
1898 host->rt = platform_info->rt;
1899 host->dev.of_node = dev->of_node;
1900 host->use_gpio_descriptors = true;
1901
1902 /*
1903 * Supports mode 0-3, loopback, and active low CS. Transfers are
1904 * always MS bit first on the original pl022.
1905 */
1906 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1907 if (pl022->vendor->extended_cr)
1908 host->mode_bits |= SPI_LSB_FIRST;
1909
1910 dev_dbg(&adev->dev, "BUSNO: %d\n", host->bus_num);
1911
1912 status = amba_request_regions(adev, NULL);
1913 if (status)
1914 goto err_no_ioregion;
1915
1916 pl022->phybase = adev->res.start;
1917 pl022->virtbase = devm_ioremap(dev, adev->res.start,
1918 resource_size(&adev->res));
1919 if (pl022->virtbase == NULL) {
1920 status = -ENOMEM;
1921 goto err_no_ioremap;
1922 }
1923 dev_info(&adev->dev, "mapped registers from %pa to %p\n",
1924 &adev->res.start, pl022->virtbase);
1925
1926 pl022->clk = devm_clk_get_enabled(&adev->dev, NULL);
1927 if (IS_ERR(pl022->clk)) {
1928 status = PTR_ERR(pl022->clk);
1929 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
1930 goto err_no_clk;
1931 }
1932
1933 /* Disable SSP */
1934 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
1935 SSP_CR1(pl022->virtbase));
1936 load_ssp_default_config(pl022);
1937
1938 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
1939 0, "pl022", pl022);
1940 if (status < 0) {
1941 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
1942 goto err_no_irq;
1943 }
1944
1945 /* Get DMA channels, try autoconfiguration first */
1946 status = pl022_dma_autoprobe(pl022);
1947 if (status == -EPROBE_DEFER) {
1948 dev_dbg(dev, "deferring probe to get DMA channel\n");
1949 goto err_no_irq;
1950 }
1951
1952 /* If that failed, use channels from platform_info */
1953 if (status == 0)
1954 platform_info->enable_dma = 1;
1955 else if (platform_info->enable_dma) {
1956 status = pl022_dma_probe(pl022);
1957 if (status != 0)
1958 platform_info->enable_dma = 0;
1959 }
1960
1961 /* Register with the SPI framework */
1962 amba_set_drvdata(adev, pl022);
1963 status = devm_spi_register_controller(&adev->dev, host);
1964 if (status != 0) {
1965 dev_err_probe(&adev->dev, status,
1966 "problem registering spi host\n");
1967 goto err_spi_register;
1968 }
1969 dev_dbg(dev, "probe succeeded\n");
1970
1971 /* let runtime pm put suspend */
1972 if (platform_info->autosuspend_delay > 0) {
1973 dev_info(&adev->dev,
1974 "will use autosuspend for runtime pm, delay %dms\n",
1975 platform_info->autosuspend_delay);
1976 pm_runtime_set_autosuspend_delay(dev,
1977 platform_info->autosuspend_delay);
1978 pm_runtime_use_autosuspend(dev);
1979 }
1980 pm_runtime_put(dev);
1981
1982 return 0;
1983
1984 err_spi_register:
1985 if (platform_info->enable_dma)
1986 pl022_dma_remove(pl022);
1987 err_no_irq:
1988 err_no_clk:
1989 err_no_ioremap:
1990 amba_release_regions(adev);
1991 err_no_ioregion:
1992 spi_controller_put(host);
1993 return status;
1994}
1995
1996static void
1997pl022_remove(struct amba_device *adev)
1998{
1999 struct pl022 *pl022 = amba_get_drvdata(adev);
2000
2001 if (!pl022)
2002 return;
2003
2004 /*
2005 * undo pm_runtime_put() in probe. I assume that we're not
2006 * accessing the primecell here.
2007 */
2008 pm_runtime_get_noresume(&adev->dev);
2009
2010 load_ssp_default_config(pl022);
2011 if (pl022->host_info->enable_dma)
2012 pl022_dma_remove(pl022);
2013
2014 amba_release_regions(adev);
2015}
2016
2017#ifdef CONFIG_PM_SLEEP
2018static int pl022_suspend(struct device *dev)
2019{
2020 struct pl022 *pl022 = dev_get_drvdata(dev);
2021 int ret;
2022
2023 ret = spi_controller_suspend(pl022->host);
2024 if (ret)
2025 return ret;
2026
2027 ret = pm_runtime_force_suspend(dev);
2028 if (ret) {
2029 spi_controller_resume(pl022->host);
2030 return ret;
2031 }
2032
2033 pinctrl_pm_select_sleep_state(dev);
2034
2035 dev_dbg(dev, "suspended\n");
2036 return 0;
2037}
2038
2039static int pl022_resume(struct device *dev)
2040{
2041 struct pl022 *pl022 = dev_get_drvdata(dev);
2042 int ret;
2043
2044 ret = pm_runtime_force_resume(dev);
2045 if (ret)
2046 dev_err(dev, "problem resuming\n");
2047
2048 /* Start the queue running */
2049 ret = spi_controller_resume(pl022->host);
2050 if (!ret)
2051 dev_dbg(dev, "resumed\n");
2052
2053 return ret;
2054}
2055#endif
2056
2057#ifdef CONFIG_PM
2058static int pl022_runtime_suspend(struct device *dev)
2059{
2060 struct pl022 *pl022 = dev_get_drvdata(dev);
2061
2062 clk_disable_unprepare(pl022->clk);
2063 pinctrl_pm_select_idle_state(dev);
2064
2065 return 0;
2066}
2067
2068static int pl022_runtime_resume(struct device *dev)
2069{
2070 struct pl022 *pl022 = dev_get_drvdata(dev);
2071
2072 pinctrl_pm_select_default_state(dev);
2073 clk_prepare_enable(pl022->clk);
2074
2075 return 0;
2076}
2077#endif
2078
2079static const struct dev_pm_ops pl022_dev_pm_ops = {
2080 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2081 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2082};
2083
2084static struct vendor_data vendor_arm = {
2085 .fifodepth = 8,
2086 .max_bpw = 16,
2087 .unidir = false,
2088 .extended_cr = false,
2089 .pl023 = false,
2090 .loopback = true,
2091 .internal_cs_ctrl = false,
2092};
2093
2094static struct vendor_data vendor_st = {
2095 .fifodepth = 32,
2096 .max_bpw = 32,
2097 .unidir = false,
2098 .extended_cr = true,
2099 .pl023 = false,
2100 .loopback = true,
2101 .internal_cs_ctrl = false,
2102};
2103
2104static struct vendor_data vendor_st_pl023 = {
2105 .fifodepth = 32,
2106 .max_bpw = 32,
2107 .unidir = false,
2108 .extended_cr = true,
2109 .pl023 = true,
2110 .loopback = false,
2111 .internal_cs_ctrl = false,
2112};
2113
2114static struct vendor_data vendor_lsi = {
2115 .fifodepth = 8,
2116 .max_bpw = 16,
2117 .unidir = false,
2118 .extended_cr = false,
2119 .pl023 = false,
2120 .loopback = true,
2121 .internal_cs_ctrl = true,
2122};
2123
2124static const struct amba_id pl022_ids[] = {
2125 {
2126 /*
2127 * ARM PL022 variant, this has a 16bit wide
2128 * and 8 locations deep TX/RX FIFO
2129 */
2130 .id = 0x00041022,
2131 .mask = 0x000fffff,
2132 .data = &vendor_arm,
2133 },
2134 {
2135 /*
2136 * ST Micro derivative, this has 32bit wide
2137 * and 32 locations deep TX/RX FIFO
2138 */
2139 .id = 0x01080022,
2140 .mask = 0xffffffff,
2141 .data = &vendor_st,
2142 },
2143 {
2144 /*
2145 * ST-Ericsson derivative "PL023" (this is not
2146 * an official ARM number), this is a PL022 SSP block
2147 * stripped to SPI mode only, it has 32bit wide
2148 * and 32 locations deep TX/RX FIFO but no extended
2149 * CR0/CR1 register
2150 */
2151 .id = 0x00080023,
2152 .mask = 0xffffffff,
2153 .data = &vendor_st_pl023,
2154 },
2155 {
2156 /*
2157 * PL022 variant that has a chip select control register whih
2158 * allows control of 5 output signals nCS[0:4].
2159 */
2160 .id = 0x000b6022,
2161 .mask = 0x000fffff,
2162 .data = &vendor_lsi,
2163 },
2164 { 0, 0 },
2165};
2166
2167MODULE_DEVICE_TABLE(amba, pl022_ids);
2168
2169static struct amba_driver pl022_driver = {
2170 .drv = {
2171 .name = "ssp-pl022",
2172 .pm = &pl022_dev_pm_ops,
2173 },
2174 .id_table = pl022_ids,
2175 .probe = pl022_probe,
2176 .remove = pl022_remove,
2177};
2178
2179static int __init pl022_init(void)
2180{
2181 return amba_driver_register(&pl022_driver);
2182}
2183subsys_initcall(pl022_init);
2184
2185static void __exit pl022_exit(void)
2186{
2187 amba_driver_unregister(&pl022_driver);
2188}
2189module_exit(pl022_exit);
2190
2191MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2192MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2193MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 *
5 * Copyright (C) 2008-2012 ST-Ericsson AB
6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 *
8 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 *
10 * Initial version inspired by:
11 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12 * Initial adoption to PL022 by:
13 * Sachin Verma <sachin.verma@st.com>
14 */
15
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/device.h>
19#include <linux/ioport.h>
20#include <linux/errno.h>
21#include <linux/interrupt.h>
22#include <linux/spi/spi.h>
23#include <linux/delay.h>
24#include <linux/clk.h>
25#include <linux/err.h>
26#include <linux/amba/bus.h>
27#include <linux/amba/pl022.h>
28#include <linux/io.h>
29#include <linux/slab.h>
30#include <linux/dmaengine.h>
31#include <linux/dma-mapping.h>
32#include <linux/scatterlist.h>
33#include <linux/pm_runtime.h>
34#include <linux/gpio.h>
35#include <linux/of_gpio.h>
36#include <linux/pinctrl/consumer.h>
37
38/*
39 * This macro is used to define some register default values.
40 * reg is masked with mask, the OR:ed with an (again masked)
41 * val shifted sb steps to the left.
42 */
43#define SSP_WRITE_BITS(reg, val, mask, sb) \
44 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
45
46/*
47 * This macro is also used to define some default values.
48 * It will just shift val by sb steps to the left and mask
49 * the result with mask.
50 */
51#define GEN_MASK_BITS(val, mask, sb) \
52 (((val)<<(sb)) & (mask))
53
54#define DRIVE_TX 0
55#define DO_NOT_DRIVE_TX 1
56
57#define DO_NOT_QUEUE_DMA 0
58#define QUEUE_DMA 1
59
60#define RX_TRANSFER 1
61#define TX_TRANSFER 2
62
63/*
64 * Macros to access SSP Registers with their offsets
65 */
66#define SSP_CR0(r) (r + 0x000)
67#define SSP_CR1(r) (r + 0x004)
68#define SSP_DR(r) (r + 0x008)
69#define SSP_SR(r) (r + 0x00C)
70#define SSP_CPSR(r) (r + 0x010)
71#define SSP_IMSC(r) (r + 0x014)
72#define SSP_RIS(r) (r + 0x018)
73#define SSP_MIS(r) (r + 0x01C)
74#define SSP_ICR(r) (r + 0x020)
75#define SSP_DMACR(r) (r + 0x024)
76#define SSP_CSR(r) (r + 0x030) /* vendor extension */
77#define SSP_ITCR(r) (r + 0x080)
78#define SSP_ITIP(r) (r + 0x084)
79#define SSP_ITOP(r) (r + 0x088)
80#define SSP_TDR(r) (r + 0x08C)
81
82#define SSP_PID0(r) (r + 0xFE0)
83#define SSP_PID1(r) (r + 0xFE4)
84#define SSP_PID2(r) (r + 0xFE8)
85#define SSP_PID3(r) (r + 0xFEC)
86
87#define SSP_CID0(r) (r + 0xFF0)
88#define SSP_CID1(r) (r + 0xFF4)
89#define SSP_CID2(r) (r + 0xFF8)
90#define SSP_CID3(r) (r + 0xFFC)
91
92/*
93 * SSP Control Register 0 - SSP_CR0
94 */
95#define SSP_CR0_MASK_DSS (0x0FUL << 0)
96#define SSP_CR0_MASK_FRF (0x3UL << 4)
97#define SSP_CR0_MASK_SPO (0x1UL << 6)
98#define SSP_CR0_MASK_SPH (0x1UL << 7)
99#define SSP_CR0_MASK_SCR (0xFFUL << 8)
100
101/*
102 * The ST version of this block moves som bits
103 * in SSP_CR0 and extends it to 32 bits
104 */
105#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
106#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
107#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
108#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
109
110/*
111 * SSP Control Register 0 - SSP_CR1
112 */
113#define SSP_CR1_MASK_LBM (0x1UL << 0)
114#define SSP_CR1_MASK_SSE (0x1UL << 1)
115#define SSP_CR1_MASK_MS (0x1UL << 2)
116#define SSP_CR1_MASK_SOD (0x1UL << 3)
117
118/*
119 * The ST version of this block adds some bits
120 * in SSP_CR1
121 */
122#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
123#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
124#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
125#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
126#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
127/* This one is only in the PL023 variant */
128#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
129
130/*
131 * SSP Status Register - SSP_SR
132 */
133#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
134#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
135#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
136#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
137#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
138
139/*
140 * SSP Clock Prescale Register - SSP_CPSR
141 */
142#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
143
144/*
145 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
146 */
147#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
148#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
149#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
150#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
151
152/*
153 * SSP Raw Interrupt Status Register - SSP_RIS
154 */
155/* Receive Overrun Raw Interrupt status */
156#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
157/* Receive Timeout Raw Interrupt status */
158#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
159/* Receive FIFO Raw Interrupt status */
160#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
161/* Transmit FIFO Raw Interrupt status */
162#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
163
164/*
165 * SSP Masked Interrupt Status Register - SSP_MIS
166 */
167/* Receive Overrun Masked Interrupt status */
168#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
169/* Receive Timeout Masked Interrupt status */
170#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
171/* Receive FIFO Masked Interrupt status */
172#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
173/* Transmit FIFO Masked Interrupt status */
174#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
175
176/*
177 * SSP Interrupt Clear Register - SSP_ICR
178 */
179/* Receive Overrun Raw Clear Interrupt bit */
180#define SSP_ICR_MASK_RORIC (0x1UL << 0)
181/* Receive Timeout Clear Interrupt bit */
182#define SSP_ICR_MASK_RTIC (0x1UL << 1)
183
184/*
185 * SSP DMA Control Register - SSP_DMACR
186 */
187/* Receive DMA Enable bit */
188#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
189/* Transmit DMA Enable bit */
190#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
191
192/*
193 * SSP Chip Select Control Register - SSP_CSR
194 * (vendor extension)
195 */
196#define SSP_CSR_CSVALUE_MASK (0x1FUL << 0)
197
198/*
199 * SSP Integration Test control Register - SSP_ITCR
200 */
201#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
202#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
203
204/*
205 * SSP Integration Test Input Register - SSP_ITIP
206 */
207#define ITIP_MASK_SSPRXD (0x1UL << 0)
208#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
209#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
210#define ITIP_MASK_RXDMAC (0x1UL << 3)
211#define ITIP_MASK_TXDMAC (0x1UL << 4)
212#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
213
214/*
215 * SSP Integration Test output Register - SSP_ITOP
216 */
217#define ITOP_MASK_SSPTXD (0x1UL << 0)
218#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
219#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
220#define ITOP_MASK_SSPOEn (0x1UL << 3)
221#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
222#define ITOP_MASK_RORINTR (0x1UL << 5)
223#define ITOP_MASK_RTINTR (0x1UL << 6)
224#define ITOP_MASK_RXINTR (0x1UL << 7)
225#define ITOP_MASK_TXINTR (0x1UL << 8)
226#define ITOP_MASK_INTR (0x1UL << 9)
227#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
228#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
229#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
230#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
231
232/*
233 * SSP Test Data Register - SSP_TDR
234 */
235#define TDR_MASK_TESTDATA (0xFFFFFFFF)
236
237/*
238 * Message State
239 * we use the spi_message.state (void *) pointer to
240 * hold a single state value, that's why all this
241 * (void *) casting is done here.
242 */
243#define STATE_START ((void *) 0)
244#define STATE_RUNNING ((void *) 1)
245#define STATE_DONE ((void *) 2)
246#define STATE_ERROR ((void *) -1)
247#define STATE_TIMEOUT ((void *) -2)
248
249/*
250 * SSP State - Whether Enabled or Disabled
251 */
252#define SSP_DISABLED (0)
253#define SSP_ENABLED (1)
254
255/*
256 * SSP DMA State - Whether DMA Enabled or Disabled
257 */
258#define SSP_DMA_DISABLED (0)
259#define SSP_DMA_ENABLED (1)
260
261/*
262 * SSP Clock Defaults
263 */
264#define SSP_DEFAULT_CLKRATE 0x2
265#define SSP_DEFAULT_PRESCALE 0x40
266
267/*
268 * SSP Clock Parameter ranges
269 */
270#define CPSDVR_MIN 0x02
271#define CPSDVR_MAX 0xFE
272#define SCR_MIN 0x00
273#define SCR_MAX 0xFF
274
275/*
276 * SSP Interrupt related Macros
277 */
278#define DEFAULT_SSP_REG_IMSC 0x0UL
279#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
280#define ENABLE_ALL_INTERRUPTS ( \
281 SSP_IMSC_MASK_RORIM | \
282 SSP_IMSC_MASK_RTIM | \
283 SSP_IMSC_MASK_RXIM | \
284 SSP_IMSC_MASK_TXIM \
285)
286
287#define CLEAR_ALL_INTERRUPTS 0x3
288
289#define SPI_POLLING_TIMEOUT 1000
290
291/*
292 * The type of reading going on on this chip
293 */
294enum ssp_reading {
295 READING_NULL,
296 READING_U8,
297 READING_U16,
298 READING_U32
299};
300
301/*
302 * The type of writing going on on this chip
303 */
304enum ssp_writing {
305 WRITING_NULL,
306 WRITING_U8,
307 WRITING_U16,
308 WRITING_U32
309};
310
311/**
312 * struct vendor_data - vendor-specific config parameters
313 * for PL022 derivates
314 * @fifodepth: depth of FIFOs (both)
315 * @max_bpw: maximum number of bits per word
316 * @unidir: supports unidirection transfers
317 * @extended_cr: 32 bit wide control register 0 with extra
318 * features and extra features in CR1 as found in the ST variants
319 * @pl023: supports a subset of the ST extensions called "PL023"
320 * @loopback: supports loopback mode
321 * @internal_cs_ctrl: supports chip select control register
322 */
323struct vendor_data {
324 int fifodepth;
325 int max_bpw;
326 bool unidir;
327 bool extended_cr;
328 bool pl023;
329 bool loopback;
330 bool internal_cs_ctrl;
331};
332
333/**
334 * struct pl022 - This is the private SSP driver data structure
335 * @adev: AMBA device model hookup
336 * @vendor: vendor data for the IP block
337 * @phybase: the physical memory where the SSP device resides
338 * @virtbase: the virtual memory where the SSP is mapped
339 * @clk: outgoing clock "SPICLK" for the SPI bus
340 * @master: SPI framework hookup
341 * @master_info: controller-specific data from machine setup
342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
343 * @cur_msg: Pointer to current spi_message being processed
344 * @cur_transfer: Pointer to current spi_transfer
345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
346 * @next_msg_cs_active: the next message in the queue has been examined
347 * and it was found that it uses the same chip select as the previous
348 * message, so we left it active after the previous transfer, and it's
349 * active already.
350 * @tx: current position in TX buffer to be read
351 * @tx_end: end position in TX buffer to be read
352 * @rx: current position in RX buffer to be written
353 * @rx_end: end position in RX buffer to be written
354 * @read: the type of read currently going on
355 * @write: the type of write currently going on
356 * @exp_fifo_level: expected FIFO level
357 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
358 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
359 * @dma_rx_channel: optional channel for RX DMA
360 * @dma_tx_channel: optional channel for TX DMA
361 * @sgt_rx: scattertable for the RX transfer
362 * @sgt_tx: scattertable for the TX transfer
363 * @dummypage: a dummy page used for driving data on the bus with DMA
364 * @dma_running: indicates whether DMA is in operation
365 * @cur_cs: current chip select (gpio)
366 * @chipselects: list of chipselects (gpios)
367 */
368struct pl022 {
369 struct amba_device *adev;
370 struct vendor_data *vendor;
371 resource_size_t phybase;
372 void __iomem *virtbase;
373 struct clk *clk;
374 struct spi_master *master;
375 struct pl022_ssp_controller *master_info;
376 /* Message per-transfer pump */
377 struct tasklet_struct pump_transfers;
378 struct spi_message *cur_msg;
379 struct spi_transfer *cur_transfer;
380 struct chip_data *cur_chip;
381 bool next_msg_cs_active;
382 void *tx;
383 void *tx_end;
384 void *rx;
385 void *rx_end;
386 enum ssp_reading read;
387 enum ssp_writing write;
388 u32 exp_fifo_level;
389 enum ssp_rx_level_trig rx_lev_trig;
390 enum ssp_tx_level_trig tx_lev_trig;
391 /* DMA settings */
392#ifdef CONFIG_DMA_ENGINE
393 struct dma_chan *dma_rx_channel;
394 struct dma_chan *dma_tx_channel;
395 struct sg_table sgt_rx;
396 struct sg_table sgt_tx;
397 char *dummypage;
398 bool dma_running;
399#endif
400 int cur_cs;
401 int *chipselects;
402};
403
404/**
405 * struct chip_data - To maintain runtime state of SSP for each client chip
406 * @cr0: Value of control register CR0 of SSP - on later ST variants this
407 * register is 32 bits wide rather than just 16
408 * @cr1: Value of control register CR1 of SSP
409 * @dmacr: Value of DMA control Register of SSP
410 * @cpsr: Value of Clock prescale register
411 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
412 * @enable_dma: Whether to enable DMA or not
413 * @read: function ptr to be used to read when doing xfer for this chip
414 * @write: function ptr to be used to write when doing xfer for this chip
415 * @cs_control: chip select callback provided by chip
416 * @xfer_type: polling/interrupt/DMA
417 *
418 * Runtime state of the SSP controller, maintained per chip,
419 * This would be set according to the current message that would be served
420 */
421struct chip_data {
422 u32 cr0;
423 u16 cr1;
424 u16 dmacr;
425 u16 cpsr;
426 u8 n_bytes;
427 bool enable_dma;
428 enum ssp_reading read;
429 enum ssp_writing write;
430 void (*cs_control) (u32 command);
431 int xfer_type;
432};
433
434/**
435 * null_cs_control - Dummy chip select function
436 * @command: select/delect the chip
437 *
438 * If no chip select function is provided by client this is used as dummy
439 * chip select
440 */
441static void null_cs_control(u32 command)
442{
443 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
444}
445
446/**
447 * internal_cs_control - Control chip select signals via SSP_CSR.
448 * @pl022: SSP driver private data structure
449 * @command: select/delect the chip
450 *
451 * Used on controller with internal chip select control via SSP_CSR register
452 * (vendor extension). Each of the 5 LSB in the register controls one chip
453 * select signal.
454 */
455static void internal_cs_control(struct pl022 *pl022, u32 command)
456{
457 u32 tmp;
458
459 tmp = readw(SSP_CSR(pl022->virtbase));
460 if (command == SSP_CHIP_SELECT)
461 tmp &= ~BIT(pl022->cur_cs);
462 else
463 tmp |= BIT(pl022->cur_cs);
464 writew(tmp, SSP_CSR(pl022->virtbase));
465}
466
467static void pl022_cs_control(struct pl022 *pl022, u32 command)
468{
469 if (pl022->vendor->internal_cs_ctrl)
470 internal_cs_control(pl022, command);
471 else if (gpio_is_valid(pl022->cur_cs))
472 gpio_set_value(pl022->cur_cs, command);
473 else
474 pl022->cur_chip->cs_control(command);
475}
476
477/**
478 * giveback - current spi_message is over, schedule next message and call
479 * callback of this message. Assumes that caller already
480 * set message->status; dma and pio irqs are blocked
481 * @pl022: SSP driver private data structure
482 */
483static void giveback(struct pl022 *pl022)
484{
485 struct spi_transfer *last_transfer;
486 pl022->next_msg_cs_active = false;
487
488 last_transfer = list_last_entry(&pl022->cur_msg->transfers,
489 struct spi_transfer, transfer_list);
490
491 /* Delay if requested before any change in chip select */
492 /*
493 * FIXME: This runs in interrupt context.
494 * Is this really smart?
495 */
496 spi_transfer_delay_exec(last_transfer);
497
498 if (!last_transfer->cs_change) {
499 struct spi_message *next_msg;
500
501 /*
502 * cs_change was not set. We can keep the chip select
503 * enabled if there is message in the queue and it is
504 * for the same spi device.
505 *
506 * We cannot postpone this until pump_messages, because
507 * after calling msg->complete (below) the driver that
508 * sent the current message could be unloaded, which
509 * could invalidate the cs_control() callback...
510 */
511 /* get a pointer to the next message, if any */
512 next_msg = spi_get_next_queued_message(pl022->master);
513
514 /*
515 * see if the next and current messages point
516 * to the same spi device.
517 */
518 if (next_msg && next_msg->spi != pl022->cur_msg->spi)
519 next_msg = NULL;
520 if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
521 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
522 else
523 pl022->next_msg_cs_active = true;
524
525 }
526
527 pl022->cur_msg = NULL;
528 pl022->cur_transfer = NULL;
529 pl022->cur_chip = NULL;
530
531 /* disable the SPI/SSP operation */
532 writew((readw(SSP_CR1(pl022->virtbase)) &
533 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
534
535 spi_finalize_current_message(pl022->master);
536}
537
538/**
539 * flush - flush the FIFO to reach a clean state
540 * @pl022: SSP driver private data structure
541 */
542static int flush(struct pl022 *pl022)
543{
544 unsigned long limit = loops_per_jiffy << 1;
545
546 dev_dbg(&pl022->adev->dev, "flush\n");
547 do {
548 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
549 readw(SSP_DR(pl022->virtbase));
550 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
551
552 pl022->exp_fifo_level = 0;
553
554 return limit;
555}
556
557/**
558 * restore_state - Load configuration of current chip
559 * @pl022: SSP driver private data structure
560 */
561static void restore_state(struct pl022 *pl022)
562{
563 struct chip_data *chip = pl022->cur_chip;
564
565 if (pl022->vendor->extended_cr)
566 writel(chip->cr0, SSP_CR0(pl022->virtbase));
567 else
568 writew(chip->cr0, SSP_CR0(pl022->virtbase));
569 writew(chip->cr1, SSP_CR1(pl022->virtbase));
570 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
571 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
572 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
573 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
574}
575
576/*
577 * Default SSP Register Values
578 */
579#define DEFAULT_SSP_REG_CR0 ( \
580 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
581 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
582 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
583 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
584 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
585)
586
587/* ST versions have slightly different bit layout */
588#define DEFAULT_SSP_REG_CR0_ST ( \
589 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
590 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
591 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
592 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
593 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
594 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
595 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
596)
597
598/* The PL023 version is slightly different again */
599#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
600 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
601 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
602 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
603 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
604)
605
606#define DEFAULT_SSP_REG_CR1 ( \
607 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
608 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
609 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
610 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
611)
612
613/* ST versions extend this register to use all 16 bits */
614#define DEFAULT_SSP_REG_CR1_ST ( \
615 DEFAULT_SSP_REG_CR1 | \
616 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
617 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
618 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
619 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
620 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
621)
622
623/*
624 * The PL023 variant has further differences: no loopback mode, no microwire
625 * support, and a new clock feedback delay setting.
626 */
627#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
628 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
629 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
630 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
631 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
632 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
633 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
634 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
635 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
636)
637
638#define DEFAULT_SSP_REG_CPSR ( \
639 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
640)
641
642#define DEFAULT_SSP_REG_DMACR (\
643 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
644 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
645)
646
647/**
648 * load_ssp_default_config - Load default configuration for SSP
649 * @pl022: SSP driver private data structure
650 */
651static void load_ssp_default_config(struct pl022 *pl022)
652{
653 if (pl022->vendor->pl023) {
654 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
655 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
656 } else if (pl022->vendor->extended_cr) {
657 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
658 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
659 } else {
660 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
661 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
662 }
663 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
664 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
665 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
666 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
667}
668
669/*
670 * This will write to TX and read from RX according to the parameters
671 * set in pl022.
672 */
673static void readwriter(struct pl022 *pl022)
674{
675
676 /*
677 * The FIFO depth is different between primecell variants.
678 * I believe filling in too much in the FIFO might cause
679 * errons in 8bit wide transfers on ARM variants (just 8 words
680 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
681 *
682 * To prevent this issue, the TX FIFO is only filled to the
683 * unused RX FIFO fill length, regardless of what the TX
684 * FIFO status flag indicates.
685 */
686 dev_dbg(&pl022->adev->dev,
687 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
688 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
689
690 /* Read as much as you can */
691 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
692 && (pl022->rx < pl022->rx_end)) {
693 switch (pl022->read) {
694 case READING_NULL:
695 readw(SSP_DR(pl022->virtbase));
696 break;
697 case READING_U8:
698 *(u8 *) (pl022->rx) =
699 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
700 break;
701 case READING_U16:
702 *(u16 *) (pl022->rx) =
703 (u16) readw(SSP_DR(pl022->virtbase));
704 break;
705 case READING_U32:
706 *(u32 *) (pl022->rx) =
707 readl(SSP_DR(pl022->virtbase));
708 break;
709 }
710 pl022->rx += (pl022->cur_chip->n_bytes);
711 pl022->exp_fifo_level--;
712 }
713 /*
714 * Write as much as possible up to the RX FIFO size
715 */
716 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
717 && (pl022->tx < pl022->tx_end)) {
718 switch (pl022->write) {
719 case WRITING_NULL:
720 writew(0x0, SSP_DR(pl022->virtbase));
721 break;
722 case WRITING_U8:
723 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
724 break;
725 case WRITING_U16:
726 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
727 break;
728 case WRITING_U32:
729 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
730 break;
731 }
732 pl022->tx += (pl022->cur_chip->n_bytes);
733 pl022->exp_fifo_level++;
734 /*
735 * This inner reader takes care of things appearing in the RX
736 * FIFO as we're transmitting. This will happen a lot since the
737 * clock starts running when you put things into the TX FIFO,
738 * and then things are continuously clocked into the RX FIFO.
739 */
740 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
741 && (pl022->rx < pl022->rx_end)) {
742 switch (pl022->read) {
743 case READING_NULL:
744 readw(SSP_DR(pl022->virtbase));
745 break;
746 case READING_U8:
747 *(u8 *) (pl022->rx) =
748 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
749 break;
750 case READING_U16:
751 *(u16 *) (pl022->rx) =
752 (u16) readw(SSP_DR(pl022->virtbase));
753 break;
754 case READING_U32:
755 *(u32 *) (pl022->rx) =
756 readl(SSP_DR(pl022->virtbase));
757 break;
758 }
759 pl022->rx += (pl022->cur_chip->n_bytes);
760 pl022->exp_fifo_level--;
761 }
762 }
763 /*
764 * When we exit here the TX FIFO should be full and the RX FIFO
765 * should be empty
766 */
767}
768
769/**
770 * next_transfer - Move to the Next transfer in the current spi message
771 * @pl022: SSP driver private data structure
772 *
773 * This function moves though the linked list of spi transfers in the
774 * current spi message and returns with the state of current spi
775 * message i.e whether its last transfer is done(STATE_DONE) or
776 * Next transfer is ready(STATE_RUNNING)
777 */
778static void *next_transfer(struct pl022 *pl022)
779{
780 struct spi_message *msg = pl022->cur_msg;
781 struct spi_transfer *trans = pl022->cur_transfer;
782
783 /* Move to next transfer */
784 if (trans->transfer_list.next != &msg->transfers) {
785 pl022->cur_transfer =
786 list_entry(trans->transfer_list.next,
787 struct spi_transfer, transfer_list);
788 return STATE_RUNNING;
789 }
790 return STATE_DONE;
791}
792
793/*
794 * This DMA functionality is only compiled in if we have
795 * access to the generic DMA devices/DMA engine.
796 */
797#ifdef CONFIG_DMA_ENGINE
798static void unmap_free_dma_scatter(struct pl022 *pl022)
799{
800 /* Unmap and free the SG tables */
801 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
802 pl022->sgt_tx.nents, DMA_TO_DEVICE);
803 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
804 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
805 sg_free_table(&pl022->sgt_rx);
806 sg_free_table(&pl022->sgt_tx);
807}
808
809static void dma_callback(void *data)
810{
811 struct pl022 *pl022 = data;
812 struct spi_message *msg = pl022->cur_msg;
813
814 BUG_ON(!pl022->sgt_rx.sgl);
815
816#ifdef VERBOSE_DEBUG
817 /*
818 * Optionally dump out buffers to inspect contents, this is
819 * good if you want to convince yourself that the loopback
820 * read/write contents are the same, when adopting to a new
821 * DMA engine.
822 */
823 {
824 struct scatterlist *sg;
825 unsigned int i;
826
827 dma_sync_sg_for_cpu(&pl022->adev->dev,
828 pl022->sgt_rx.sgl,
829 pl022->sgt_rx.nents,
830 DMA_FROM_DEVICE);
831
832 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
833 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
834 print_hex_dump(KERN_ERR, "SPI RX: ",
835 DUMP_PREFIX_OFFSET,
836 16,
837 1,
838 sg_virt(sg),
839 sg_dma_len(sg),
840 1);
841 }
842 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
843 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
844 print_hex_dump(KERN_ERR, "SPI TX: ",
845 DUMP_PREFIX_OFFSET,
846 16,
847 1,
848 sg_virt(sg),
849 sg_dma_len(sg),
850 1);
851 }
852 }
853#endif
854
855 unmap_free_dma_scatter(pl022);
856
857 /* Update total bytes transferred */
858 msg->actual_length += pl022->cur_transfer->len;
859 /* Move to next transfer */
860 msg->state = next_transfer(pl022);
861 if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
862 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
863 tasklet_schedule(&pl022->pump_transfers);
864}
865
866static void setup_dma_scatter(struct pl022 *pl022,
867 void *buffer,
868 unsigned int length,
869 struct sg_table *sgtab)
870{
871 struct scatterlist *sg;
872 int bytesleft = length;
873 void *bufp = buffer;
874 int mapbytes;
875 int i;
876
877 if (buffer) {
878 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
879 /*
880 * If there are less bytes left than what fits
881 * in the current page (plus page alignment offset)
882 * we just feed in this, else we stuff in as much
883 * as we can.
884 */
885 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
886 mapbytes = bytesleft;
887 else
888 mapbytes = PAGE_SIZE - offset_in_page(bufp);
889 sg_set_page(sg, virt_to_page(bufp),
890 mapbytes, offset_in_page(bufp));
891 bufp += mapbytes;
892 bytesleft -= mapbytes;
893 dev_dbg(&pl022->adev->dev,
894 "set RX/TX target page @ %p, %d bytes, %d left\n",
895 bufp, mapbytes, bytesleft);
896 }
897 } else {
898 /* Map the dummy buffer on every page */
899 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
900 if (bytesleft < PAGE_SIZE)
901 mapbytes = bytesleft;
902 else
903 mapbytes = PAGE_SIZE;
904 sg_set_page(sg, virt_to_page(pl022->dummypage),
905 mapbytes, 0);
906 bytesleft -= mapbytes;
907 dev_dbg(&pl022->adev->dev,
908 "set RX/TX to dummy page %d bytes, %d left\n",
909 mapbytes, bytesleft);
910
911 }
912 }
913 BUG_ON(bytesleft);
914}
915
916/**
917 * configure_dma - configures the channels for the next transfer
918 * @pl022: SSP driver's private data structure
919 */
920static int configure_dma(struct pl022 *pl022)
921{
922 struct dma_slave_config rx_conf = {
923 .src_addr = SSP_DR(pl022->phybase),
924 .direction = DMA_DEV_TO_MEM,
925 .device_fc = false,
926 };
927 struct dma_slave_config tx_conf = {
928 .dst_addr = SSP_DR(pl022->phybase),
929 .direction = DMA_MEM_TO_DEV,
930 .device_fc = false,
931 };
932 unsigned int pages;
933 int ret;
934 int rx_sglen, tx_sglen;
935 struct dma_chan *rxchan = pl022->dma_rx_channel;
936 struct dma_chan *txchan = pl022->dma_tx_channel;
937 struct dma_async_tx_descriptor *rxdesc;
938 struct dma_async_tx_descriptor *txdesc;
939
940 /* Check that the channels are available */
941 if (!rxchan || !txchan)
942 return -ENODEV;
943
944 /*
945 * If supplied, the DMA burstsize should equal the FIFO trigger level.
946 * Notice that the DMA engine uses one-to-one mapping. Since we can
947 * not trigger on 2 elements this needs explicit mapping rather than
948 * calculation.
949 */
950 switch (pl022->rx_lev_trig) {
951 case SSP_RX_1_OR_MORE_ELEM:
952 rx_conf.src_maxburst = 1;
953 break;
954 case SSP_RX_4_OR_MORE_ELEM:
955 rx_conf.src_maxburst = 4;
956 break;
957 case SSP_RX_8_OR_MORE_ELEM:
958 rx_conf.src_maxburst = 8;
959 break;
960 case SSP_RX_16_OR_MORE_ELEM:
961 rx_conf.src_maxburst = 16;
962 break;
963 case SSP_RX_32_OR_MORE_ELEM:
964 rx_conf.src_maxburst = 32;
965 break;
966 default:
967 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
968 break;
969 }
970
971 switch (pl022->tx_lev_trig) {
972 case SSP_TX_1_OR_MORE_EMPTY_LOC:
973 tx_conf.dst_maxburst = 1;
974 break;
975 case SSP_TX_4_OR_MORE_EMPTY_LOC:
976 tx_conf.dst_maxburst = 4;
977 break;
978 case SSP_TX_8_OR_MORE_EMPTY_LOC:
979 tx_conf.dst_maxburst = 8;
980 break;
981 case SSP_TX_16_OR_MORE_EMPTY_LOC:
982 tx_conf.dst_maxburst = 16;
983 break;
984 case SSP_TX_32_OR_MORE_EMPTY_LOC:
985 tx_conf.dst_maxburst = 32;
986 break;
987 default:
988 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
989 break;
990 }
991
992 switch (pl022->read) {
993 case READING_NULL:
994 /* Use the same as for writing */
995 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
996 break;
997 case READING_U8:
998 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
999 break;
1000 case READING_U16:
1001 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1002 break;
1003 case READING_U32:
1004 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1005 break;
1006 }
1007
1008 switch (pl022->write) {
1009 case WRITING_NULL:
1010 /* Use the same as for reading */
1011 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1012 break;
1013 case WRITING_U8:
1014 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1015 break;
1016 case WRITING_U16:
1017 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1018 break;
1019 case WRITING_U32:
1020 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1021 break;
1022 }
1023
1024 /* SPI pecularity: we need to read and write the same width */
1025 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1026 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1027 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1028 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1029 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1030
1031 dmaengine_slave_config(rxchan, &rx_conf);
1032 dmaengine_slave_config(txchan, &tx_conf);
1033
1034 /* Create sglists for the transfers */
1035 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1036 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1037
1038 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1039 if (ret)
1040 goto err_alloc_rx_sg;
1041
1042 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1043 if (ret)
1044 goto err_alloc_tx_sg;
1045
1046 /* Fill in the scatterlists for the RX+TX buffers */
1047 setup_dma_scatter(pl022, pl022->rx,
1048 pl022->cur_transfer->len, &pl022->sgt_rx);
1049 setup_dma_scatter(pl022, pl022->tx,
1050 pl022->cur_transfer->len, &pl022->sgt_tx);
1051
1052 /* Map DMA buffers */
1053 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1054 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1055 if (!rx_sglen)
1056 goto err_rx_sgmap;
1057
1058 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1059 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1060 if (!tx_sglen)
1061 goto err_tx_sgmap;
1062
1063 /* Send both scatterlists */
1064 rxdesc = dmaengine_prep_slave_sg(rxchan,
1065 pl022->sgt_rx.sgl,
1066 rx_sglen,
1067 DMA_DEV_TO_MEM,
1068 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1069 if (!rxdesc)
1070 goto err_rxdesc;
1071
1072 txdesc = dmaengine_prep_slave_sg(txchan,
1073 pl022->sgt_tx.sgl,
1074 tx_sglen,
1075 DMA_MEM_TO_DEV,
1076 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1077 if (!txdesc)
1078 goto err_txdesc;
1079
1080 /* Put the callback on the RX transfer only, that should finish last */
1081 rxdesc->callback = dma_callback;
1082 rxdesc->callback_param = pl022;
1083
1084 /* Submit and fire RX and TX with TX last so we're ready to read! */
1085 dmaengine_submit(rxdesc);
1086 dmaengine_submit(txdesc);
1087 dma_async_issue_pending(rxchan);
1088 dma_async_issue_pending(txchan);
1089 pl022->dma_running = true;
1090
1091 return 0;
1092
1093err_txdesc:
1094 dmaengine_terminate_all(txchan);
1095err_rxdesc:
1096 dmaengine_terminate_all(rxchan);
1097 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1098 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1099err_tx_sgmap:
1100 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1101 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1102err_rx_sgmap:
1103 sg_free_table(&pl022->sgt_tx);
1104err_alloc_tx_sg:
1105 sg_free_table(&pl022->sgt_rx);
1106err_alloc_rx_sg:
1107 return -ENOMEM;
1108}
1109
1110static int pl022_dma_probe(struct pl022 *pl022)
1111{
1112 dma_cap_mask_t mask;
1113
1114 /* Try to acquire a generic DMA engine slave channel */
1115 dma_cap_zero(mask);
1116 dma_cap_set(DMA_SLAVE, mask);
1117 /*
1118 * We need both RX and TX channels to do DMA, else do none
1119 * of them.
1120 */
1121 pl022->dma_rx_channel = dma_request_channel(mask,
1122 pl022->master_info->dma_filter,
1123 pl022->master_info->dma_rx_param);
1124 if (!pl022->dma_rx_channel) {
1125 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1126 goto err_no_rxchan;
1127 }
1128
1129 pl022->dma_tx_channel = dma_request_channel(mask,
1130 pl022->master_info->dma_filter,
1131 pl022->master_info->dma_tx_param);
1132 if (!pl022->dma_tx_channel) {
1133 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1134 goto err_no_txchan;
1135 }
1136
1137 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1138 if (!pl022->dummypage)
1139 goto err_no_dummypage;
1140
1141 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1142 dma_chan_name(pl022->dma_rx_channel),
1143 dma_chan_name(pl022->dma_tx_channel));
1144
1145 return 0;
1146
1147err_no_dummypage:
1148 dma_release_channel(pl022->dma_tx_channel);
1149err_no_txchan:
1150 dma_release_channel(pl022->dma_rx_channel);
1151 pl022->dma_rx_channel = NULL;
1152err_no_rxchan:
1153 dev_err(&pl022->adev->dev,
1154 "Failed to work in dma mode, work without dma!\n");
1155 return -ENODEV;
1156}
1157
1158static int pl022_dma_autoprobe(struct pl022 *pl022)
1159{
1160 struct device *dev = &pl022->adev->dev;
1161 struct dma_chan *chan;
1162 int err;
1163
1164 /* automatically configure DMA channels from platform, normally using DT */
1165 chan = dma_request_chan(dev, "rx");
1166 if (IS_ERR(chan)) {
1167 err = PTR_ERR(chan);
1168 goto err_no_rxchan;
1169 }
1170
1171 pl022->dma_rx_channel = chan;
1172
1173 chan = dma_request_chan(dev, "tx");
1174 if (IS_ERR(chan)) {
1175 err = PTR_ERR(chan);
1176 goto err_no_txchan;
1177 }
1178
1179 pl022->dma_tx_channel = chan;
1180
1181 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1182 if (!pl022->dummypage) {
1183 err = -ENOMEM;
1184 goto err_no_dummypage;
1185 }
1186
1187 return 0;
1188
1189err_no_dummypage:
1190 dma_release_channel(pl022->dma_tx_channel);
1191 pl022->dma_tx_channel = NULL;
1192err_no_txchan:
1193 dma_release_channel(pl022->dma_rx_channel);
1194 pl022->dma_rx_channel = NULL;
1195err_no_rxchan:
1196 return err;
1197}
1198
1199static void terminate_dma(struct pl022 *pl022)
1200{
1201 struct dma_chan *rxchan = pl022->dma_rx_channel;
1202 struct dma_chan *txchan = pl022->dma_tx_channel;
1203
1204 dmaengine_terminate_all(rxchan);
1205 dmaengine_terminate_all(txchan);
1206 unmap_free_dma_scatter(pl022);
1207 pl022->dma_running = false;
1208}
1209
1210static void pl022_dma_remove(struct pl022 *pl022)
1211{
1212 if (pl022->dma_running)
1213 terminate_dma(pl022);
1214 if (pl022->dma_tx_channel)
1215 dma_release_channel(pl022->dma_tx_channel);
1216 if (pl022->dma_rx_channel)
1217 dma_release_channel(pl022->dma_rx_channel);
1218 kfree(pl022->dummypage);
1219}
1220
1221#else
1222static inline int configure_dma(struct pl022 *pl022)
1223{
1224 return -ENODEV;
1225}
1226
1227static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1228{
1229 return 0;
1230}
1231
1232static inline int pl022_dma_probe(struct pl022 *pl022)
1233{
1234 return 0;
1235}
1236
1237static inline void pl022_dma_remove(struct pl022 *pl022)
1238{
1239}
1240#endif
1241
1242/**
1243 * pl022_interrupt_handler - Interrupt handler for SSP controller
1244 * @irq: IRQ number
1245 * @dev_id: Local device data
1246 *
1247 * This function handles interrupts generated for an interrupt based transfer.
1248 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1249 * current message's state as STATE_ERROR and schedule the tasklet
1250 * pump_transfers which will do the postprocessing of the current message by
1251 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1252 * more data, and writes data in TX FIFO till it is not full. If we complete
1253 * the transfer we move to the next transfer and schedule the tasklet.
1254 */
1255static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1256{
1257 struct pl022 *pl022 = dev_id;
1258 struct spi_message *msg = pl022->cur_msg;
1259 u16 irq_status = 0;
1260
1261 if (unlikely(!msg)) {
1262 dev_err(&pl022->adev->dev,
1263 "bad message state in interrupt handler");
1264 /* Never fail */
1265 return IRQ_HANDLED;
1266 }
1267
1268 /* Read the Interrupt Status Register */
1269 irq_status = readw(SSP_MIS(pl022->virtbase));
1270
1271 if (unlikely(!irq_status))
1272 return IRQ_NONE;
1273
1274 /*
1275 * This handles the FIFO interrupts, the timeout
1276 * interrupts are flatly ignored, they cannot be
1277 * trusted.
1278 */
1279 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1280 /*
1281 * Overrun interrupt - bail out since our Data has been
1282 * corrupted
1283 */
1284 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1285 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1286 dev_err(&pl022->adev->dev,
1287 "RXFIFO is full\n");
1288
1289 /*
1290 * Disable and clear interrupts, disable SSP,
1291 * mark message with bad status so it can be
1292 * retried.
1293 */
1294 writew(DISABLE_ALL_INTERRUPTS,
1295 SSP_IMSC(pl022->virtbase));
1296 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1297 writew((readw(SSP_CR1(pl022->virtbase)) &
1298 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1299 msg->state = STATE_ERROR;
1300
1301 /* Schedule message queue handler */
1302 tasklet_schedule(&pl022->pump_transfers);
1303 return IRQ_HANDLED;
1304 }
1305
1306 readwriter(pl022);
1307
1308 if (pl022->tx == pl022->tx_end) {
1309 /* Disable Transmit interrupt, enable receive interrupt */
1310 writew((readw(SSP_IMSC(pl022->virtbase)) &
1311 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1312 SSP_IMSC(pl022->virtbase));
1313 }
1314
1315 /*
1316 * Since all transactions must write as much as shall be read,
1317 * we can conclude the entire transaction once RX is complete.
1318 * At this point, all TX will always be finished.
1319 */
1320 if (pl022->rx >= pl022->rx_end) {
1321 writew(DISABLE_ALL_INTERRUPTS,
1322 SSP_IMSC(pl022->virtbase));
1323 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1324 if (unlikely(pl022->rx > pl022->rx_end)) {
1325 dev_warn(&pl022->adev->dev, "read %u surplus "
1326 "bytes (did you request an odd "
1327 "number of bytes on a 16bit bus?)\n",
1328 (u32) (pl022->rx - pl022->rx_end));
1329 }
1330 /* Update total bytes transferred */
1331 msg->actual_length += pl022->cur_transfer->len;
1332 /* Move to next transfer */
1333 msg->state = next_transfer(pl022);
1334 if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1335 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1336 tasklet_schedule(&pl022->pump_transfers);
1337 return IRQ_HANDLED;
1338 }
1339
1340 return IRQ_HANDLED;
1341}
1342
1343/*
1344 * This sets up the pointers to memory for the next message to
1345 * send out on the SPI bus.
1346 */
1347static int set_up_next_transfer(struct pl022 *pl022,
1348 struct spi_transfer *transfer)
1349{
1350 int residue;
1351
1352 /* Sanity check the message for this bus width */
1353 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1354 if (unlikely(residue != 0)) {
1355 dev_err(&pl022->adev->dev,
1356 "message of %u bytes to transmit but the current "
1357 "chip bus has a data width of %u bytes!\n",
1358 pl022->cur_transfer->len,
1359 pl022->cur_chip->n_bytes);
1360 dev_err(&pl022->adev->dev, "skipping this message\n");
1361 return -EIO;
1362 }
1363 pl022->tx = (void *)transfer->tx_buf;
1364 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1365 pl022->rx = (void *)transfer->rx_buf;
1366 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1367 pl022->write =
1368 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1369 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1370 return 0;
1371}
1372
1373/**
1374 * pump_transfers - Tasklet function which schedules next transfer
1375 * when running in interrupt or DMA transfer mode.
1376 * @data: SSP driver private data structure
1377 *
1378 */
1379static void pump_transfers(unsigned long data)
1380{
1381 struct pl022 *pl022 = (struct pl022 *) data;
1382 struct spi_message *message = NULL;
1383 struct spi_transfer *transfer = NULL;
1384 struct spi_transfer *previous = NULL;
1385
1386 /* Get current state information */
1387 message = pl022->cur_msg;
1388 transfer = pl022->cur_transfer;
1389
1390 /* Handle for abort */
1391 if (message->state == STATE_ERROR) {
1392 message->status = -EIO;
1393 giveback(pl022);
1394 return;
1395 }
1396
1397 /* Handle end of message */
1398 if (message->state == STATE_DONE) {
1399 message->status = 0;
1400 giveback(pl022);
1401 return;
1402 }
1403
1404 /* Delay if requested at end of transfer before CS change */
1405 if (message->state == STATE_RUNNING) {
1406 previous = list_entry(transfer->transfer_list.prev,
1407 struct spi_transfer,
1408 transfer_list);
1409 /*
1410 * FIXME: This runs in interrupt context.
1411 * Is this really smart?
1412 */
1413 spi_transfer_delay_exec(previous);
1414
1415 /* Reselect chip select only if cs_change was requested */
1416 if (previous->cs_change)
1417 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1418 } else {
1419 /* STATE_START */
1420 message->state = STATE_RUNNING;
1421 }
1422
1423 if (set_up_next_transfer(pl022, transfer)) {
1424 message->state = STATE_ERROR;
1425 message->status = -EIO;
1426 giveback(pl022);
1427 return;
1428 }
1429 /* Flush the FIFOs and let's go! */
1430 flush(pl022);
1431
1432 if (pl022->cur_chip->enable_dma) {
1433 if (configure_dma(pl022)) {
1434 dev_dbg(&pl022->adev->dev,
1435 "configuration of DMA failed, fall back to interrupt mode\n");
1436 goto err_config_dma;
1437 }
1438 return;
1439 }
1440
1441err_config_dma:
1442 /* enable all interrupts except RX */
1443 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1444}
1445
1446static void do_interrupt_dma_transfer(struct pl022 *pl022)
1447{
1448 /*
1449 * Default is to enable all interrupts except RX -
1450 * this will be enabled once TX is complete
1451 */
1452 u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1453
1454 /* Enable target chip, if not already active */
1455 if (!pl022->next_msg_cs_active)
1456 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1457
1458 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1459 /* Error path */
1460 pl022->cur_msg->state = STATE_ERROR;
1461 pl022->cur_msg->status = -EIO;
1462 giveback(pl022);
1463 return;
1464 }
1465 /* If we're using DMA, set up DMA here */
1466 if (pl022->cur_chip->enable_dma) {
1467 /* Configure DMA transfer */
1468 if (configure_dma(pl022)) {
1469 dev_dbg(&pl022->adev->dev,
1470 "configuration of DMA failed, fall back to interrupt mode\n");
1471 goto err_config_dma;
1472 }
1473 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1474 irqflags = DISABLE_ALL_INTERRUPTS;
1475 }
1476err_config_dma:
1477 /* Enable SSP, turn on interrupts */
1478 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1479 SSP_CR1(pl022->virtbase));
1480 writew(irqflags, SSP_IMSC(pl022->virtbase));
1481}
1482
1483static void print_current_status(struct pl022 *pl022)
1484{
1485 u32 read_cr0;
1486 u16 read_cr1, read_dmacr, read_sr;
1487
1488 if (pl022->vendor->extended_cr)
1489 read_cr0 = readl(SSP_CR0(pl022->virtbase));
1490 else
1491 read_cr0 = readw(SSP_CR0(pl022->virtbase));
1492 read_cr1 = readw(SSP_CR1(pl022->virtbase));
1493 read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1494 read_sr = readw(SSP_SR(pl022->virtbase));
1495
1496 dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1497 dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1498 dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1499 dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1500 dev_warn(&pl022->adev->dev,
1501 "spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1502 pl022->exp_fifo_level,
1503 pl022->vendor->fifodepth);
1504
1505}
1506
1507static void do_polling_transfer(struct pl022 *pl022)
1508{
1509 struct spi_message *message = NULL;
1510 struct spi_transfer *transfer = NULL;
1511 struct spi_transfer *previous = NULL;
1512 unsigned long time, timeout;
1513
1514 message = pl022->cur_msg;
1515
1516 while (message->state != STATE_DONE) {
1517 /* Handle for abort */
1518 if (message->state == STATE_ERROR)
1519 break;
1520 transfer = pl022->cur_transfer;
1521
1522 /* Delay if requested at end of transfer */
1523 if (message->state == STATE_RUNNING) {
1524 previous =
1525 list_entry(transfer->transfer_list.prev,
1526 struct spi_transfer, transfer_list);
1527 spi_transfer_delay_exec(previous);
1528 if (previous->cs_change)
1529 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1530 } else {
1531 /* STATE_START */
1532 message->state = STATE_RUNNING;
1533 if (!pl022->next_msg_cs_active)
1534 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1535 }
1536
1537 /* Configuration Changing Per Transfer */
1538 if (set_up_next_transfer(pl022, transfer)) {
1539 /* Error path */
1540 message->state = STATE_ERROR;
1541 break;
1542 }
1543 /* Flush FIFOs and enable SSP */
1544 flush(pl022);
1545 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1546 SSP_CR1(pl022->virtbase));
1547
1548 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1549
1550 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1551 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1552 time = jiffies;
1553 readwriter(pl022);
1554 if (time_after(time, timeout)) {
1555 dev_warn(&pl022->adev->dev,
1556 "%s: timeout!\n", __func__);
1557 message->state = STATE_TIMEOUT;
1558 print_current_status(pl022);
1559 goto out;
1560 }
1561 cpu_relax();
1562 }
1563
1564 /* Update total byte transferred */
1565 message->actual_length += pl022->cur_transfer->len;
1566 /* Move to next transfer */
1567 message->state = next_transfer(pl022);
1568 if (message->state != STATE_DONE
1569 && pl022->cur_transfer->cs_change)
1570 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1571 }
1572out:
1573 /* Handle end of message */
1574 if (message->state == STATE_DONE)
1575 message->status = 0;
1576 else if (message->state == STATE_TIMEOUT)
1577 message->status = -EAGAIN;
1578 else
1579 message->status = -EIO;
1580
1581 giveback(pl022);
1582 return;
1583}
1584
1585static int pl022_transfer_one_message(struct spi_master *master,
1586 struct spi_message *msg)
1587{
1588 struct pl022 *pl022 = spi_master_get_devdata(master);
1589
1590 /* Initial message state */
1591 pl022->cur_msg = msg;
1592 msg->state = STATE_START;
1593
1594 pl022->cur_transfer = list_entry(msg->transfers.next,
1595 struct spi_transfer, transfer_list);
1596
1597 /* Setup the SPI using the per chip configuration */
1598 pl022->cur_chip = spi_get_ctldata(msg->spi);
1599 pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1600
1601 restore_state(pl022);
1602 flush(pl022);
1603
1604 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1605 do_polling_transfer(pl022);
1606 else
1607 do_interrupt_dma_transfer(pl022);
1608
1609 return 0;
1610}
1611
1612static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1613{
1614 struct pl022 *pl022 = spi_master_get_devdata(master);
1615
1616 /* nothing more to do - disable spi/ssp and power off */
1617 writew((readw(SSP_CR1(pl022->virtbase)) &
1618 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1619
1620 return 0;
1621}
1622
1623static int verify_controller_parameters(struct pl022 *pl022,
1624 struct pl022_config_chip const *chip_info)
1625{
1626 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1627 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1628 dev_err(&pl022->adev->dev,
1629 "interface is configured incorrectly\n");
1630 return -EINVAL;
1631 }
1632 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1633 (!pl022->vendor->unidir)) {
1634 dev_err(&pl022->adev->dev,
1635 "unidirectional mode not supported in this "
1636 "hardware version\n");
1637 return -EINVAL;
1638 }
1639 if ((chip_info->hierarchy != SSP_MASTER)
1640 && (chip_info->hierarchy != SSP_SLAVE)) {
1641 dev_err(&pl022->adev->dev,
1642 "hierarchy is configured incorrectly\n");
1643 return -EINVAL;
1644 }
1645 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1646 && (chip_info->com_mode != DMA_TRANSFER)
1647 && (chip_info->com_mode != POLLING_TRANSFER)) {
1648 dev_err(&pl022->adev->dev,
1649 "Communication mode is configured incorrectly\n");
1650 return -EINVAL;
1651 }
1652 switch (chip_info->rx_lev_trig) {
1653 case SSP_RX_1_OR_MORE_ELEM:
1654 case SSP_RX_4_OR_MORE_ELEM:
1655 case SSP_RX_8_OR_MORE_ELEM:
1656 /* These are always OK, all variants can handle this */
1657 break;
1658 case SSP_RX_16_OR_MORE_ELEM:
1659 if (pl022->vendor->fifodepth < 16) {
1660 dev_err(&pl022->adev->dev,
1661 "RX FIFO Trigger Level is configured incorrectly\n");
1662 return -EINVAL;
1663 }
1664 break;
1665 case SSP_RX_32_OR_MORE_ELEM:
1666 if (pl022->vendor->fifodepth < 32) {
1667 dev_err(&pl022->adev->dev,
1668 "RX FIFO Trigger Level is configured incorrectly\n");
1669 return -EINVAL;
1670 }
1671 break;
1672 default:
1673 dev_err(&pl022->adev->dev,
1674 "RX FIFO Trigger Level is configured incorrectly\n");
1675 return -EINVAL;
1676 }
1677 switch (chip_info->tx_lev_trig) {
1678 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1679 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1680 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1681 /* These are always OK, all variants can handle this */
1682 break;
1683 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1684 if (pl022->vendor->fifodepth < 16) {
1685 dev_err(&pl022->adev->dev,
1686 "TX FIFO Trigger Level is configured incorrectly\n");
1687 return -EINVAL;
1688 }
1689 break;
1690 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1691 if (pl022->vendor->fifodepth < 32) {
1692 dev_err(&pl022->adev->dev,
1693 "TX FIFO Trigger Level is configured incorrectly\n");
1694 return -EINVAL;
1695 }
1696 break;
1697 default:
1698 dev_err(&pl022->adev->dev,
1699 "TX FIFO Trigger Level is configured incorrectly\n");
1700 return -EINVAL;
1701 }
1702 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1703 if ((chip_info->ctrl_len < SSP_BITS_4)
1704 || (chip_info->ctrl_len > SSP_BITS_32)) {
1705 dev_err(&pl022->adev->dev,
1706 "CTRL LEN is configured incorrectly\n");
1707 return -EINVAL;
1708 }
1709 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1710 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1711 dev_err(&pl022->adev->dev,
1712 "Wait State is configured incorrectly\n");
1713 return -EINVAL;
1714 }
1715 /* Half duplex is only available in the ST Micro version */
1716 if (pl022->vendor->extended_cr) {
1717 if ((chip_info->duplex !=
1718 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1719 && (chip_info->duplex !=
1720 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1721 dev_err(&pl022->adev->dev,
1722 "Microwire duplex mode is configured incorrectly\n");
1723 return -EINVAL;
1724 }
1725 } else {
1726 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1727 dev_err(&pl022->adev->dev,
1728 "Microwire half duplex mode requested,"
1729 " but this is only available in the"
1730 " ST version of PL022\n");
1731 return -EINVAL;
1732 }
1733 }
1734 return 0;
1735}
1736
1737static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1738{
1739 return rate / (cpsdvsr * (1 + scr));
1740}
1741
1742static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1743 ssp_clock_params * clk_freq)
1744{
1745 /* Lets calculate the frequency parameters */
1746 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1747 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1748 best_scr = 0, tmp, found = 0;
1749
1750 rate = clk_get_rate(pl022->clk);
1751 /* cpsdvscr = 2 & scr 0 */
1752 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1753 /* cpsdvsr = 254 & scr = 255 */
1754 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1755
1756 if (freq > max_tclk)
1757 dev_warn(&pl022->adev->dev,
1758 "Max speed that can be programmed is %d Hz, you requested %d\n",
1759 max_tclk, freq);
1760
1761 if (freq < min_tclk) {
1762 dev_err(&pl022->adev->dev,
1763 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1764 freq, min_tclk);
1765 return -EINVAL;
1766 }
1767
1768 /*
1769 * best_freq will give closest possible available rate (<= requested
1770 * freq) for all values of scr & cpsdvsr.
1771 */
1772 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1773 while (scr <= SCR_MAX) {
1774 tmp = spi_rate(rate, cpsdvsr, scr);
1775
1776 if (tmp > freq) {
1777 /* we need lower freq */
1778 scr++;
1779 continue;
1780 }
1781
1782 /*
1783 * If found exact value, mark found and break.
1784 * If found more closer value, update and break.
1785 */
1786 if (tmp > best_freq) {
1787 best_freq = tmp;
1788 best_cpsdvsr = cpsdvsr;
1789 best_scr = scr;
1790
1791 if (tmp == freq)
1792 found = 1;
1793 }
1794 /*
1795 * increased scr will give lower rates, which are not
1796 * required
1797 */
1798 break;
1799 }
1800 cpsdvsr += 2;
1801 scr = SCR_MIN;
1802 }
1803
1804 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1805 freq);
1806
1807 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1808 clk_freq->scr = (u8) (best_scr & 0xFF);
1809 dev_dbg(&pl022->adev->dev,
1810 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1811 freq, best_freq);
1812 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1813 clk_freq->cpsdvsr, clk_freq->scr);
1814
1815 return 0;
1816}
1817
1818/*
1819 * A piece of default chip info unless the platform
1820 * supplies it.
1821 */
1822static const struct pl022_config_chip pl022_default_chip_info = {
1823 .com_mode = POLLING_TRANSFER,
1824 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1825 .hierarchy = SSP_SLAVE,
1826 .slave_tx_disable = DO_NOT_DRIVE_TX,
1827 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1828 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1829 .ctrl_len = SSP_BITS_8,
1830 .wait_state = SSP_MWIRE_WAIT_ZERO,
1831 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1832 .cs_control = null_cs_control,
1833};
1834
1835/**
1836 * pl022_setup - setup function registered to SPI master framework
1837 * @spi: spi device which is requesting setup
1838 *
1839 * This function is registered to the SPI framework for this SPI master
1840 * controller. If it is the first time when setup is called by this device,
1841 * this function will initialize the runtime state for this chip and save
1842 * the same in the device structure. Else it will update the runtime info
1843 * with the updated chip info. Nothing is really being written to the
1844 * controller hardware here, that is not done until the actual transfer
1845 * commence.
1846 */
1847static int pl022_setup(struct spi_device *spi)
1848{
1849 struct pl022_config_chip const *chip_info;
1850 struct pl022_config_chip chip_info_dt;
1851 struct chip_data *chip;
1852 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1853 int status = 0;
1854 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1855 unsigned int bits = spi->bits_per_word;
1856 u32 tmp;
1857 struct device_node *np = spi->dev.of_node;
1858
1859 if (!spi->max_speed_hz)
1860 return -EINVAL;
1861
1862 /* Get controller_state if one is supplied */
1863 chip = spi_get_ctldata(spi);
1864
1865 if (chip == NULL) {
1866 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1867 if (!chip)
1868 return -ENOMEM;
1869 dev_dbg(&spi->dev,
1870 "allocated memory for controller's runtime state\n");
1871 }
1872
1873 /* Get controller data if one is supplied */
1874 chip_info = spi->controller_data;
1875
1876 if (chip_info == NULL) {
1877 if (np) {
1878 chip_info_dt = pl022_default_chip_info;
1879
1880 chip_info_dt.hierarchy = SSP_MASTER;
1881 of_property_read_u32(np, "pl022,interface",
1882 &chip_info_dt.iface);
1883 of_property_read_u32(np, "pl022,com-mode",
1884 &chip_info_dt.com_mode);
1885 of_property_read_u32(np, "pl022,rx-level-trig",
1886 &chip_info_dt.rx_lev_trig);
1887 of_property_read_u32(np, "pl022,tx-level-trig",
1888 &chip_info_dt.tx_lev_trig);
1889 of_property_read_u32(np, "pl022,ctrl-len",
1890 &chip_info_dt.ctrl_len);
1891 of_property_read_u32(np, "pl022,wait-state",
1892 &chip_info_dt.wait_state);
1893 of_property_read_u32(np, "pl022,duplex",
1894 &chip_info_dt.duplex);
1895
1896 chip_info = &chip_info_dt;
1897 } else {
1898 chip_info = &pl022_default_chip_info;
1899 /* spi_board_info.controller_data not is supplied */
1900 dev_dbg(&spi->dev,
1901 "using default controller_data settings\n");
1902 }
1903 } else
1904 dev_dbg(&spi->dev,
1905 "using user supplied controller_data settings\n");
1906
1907 /*
1908 * We can override with custom divisors, else we use the board
1909 * frequency setting
1910 */
1911 if ((0 == chip_info->clk_freq.cpsdvsr)
1912 && (0 == chip_info->clk_freq.scr)) {
1913 status = calculate_effective_freq(pl022,
1914 spi->max_speed_hz,
1915 &clk_freq);
1916 if (status < 0)
1917 goto err_config_params;
1918 } else {
1919 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1920 if ((clk_freq.cpsdvsr % 2) != 0)
1921 clk_freq.cpsdvsr =
1922 clk_freq.cpsdvsr - 1;
1923 }
1924 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1925 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1926 status = -EINVAL;
1927 dev_err(&spi->dev,
1928 "cpsdvsr is configured incorrectly\n");
1929 goto err_config_params;
1930 }
1931
1932 status = verify_controller_parameters(pl022, chip_info);
1933 if (status) {
1934 dev_err(&spi->dev, "controller data is incorrect");
1935 goto err_config_params;
1936 }
1937
1938 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1939 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1940
1941 /* Now set controller state based on controller data */
1942 chip->xfer_type = chip_info->com_mode;
1943 if (!chip_info->cs_control) {
1944 chip->cs_control = null_cs_control;
1945 if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1946 dev_warn(&spi->dev,
1947 "invalid chip select\n");
1948 } else
1949 chip->cs_control = chip_info->cs_control;
1950
1951 /* Check bits per word with vendor specific range */
1952 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1953 status = -ENOTSUPP;
1954 dev_err(&spi->dev, "illegal data size for this controller!\n");
1955 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1956 pl022->vendor->max_bpw);
1957 goto err_config_params;
1958 } else if (bits <= 8) {
1959 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1960 chip->n_bytes = 1;
1961 chip->read = READING_U8;
1962 chip->write = WRITING_U8;
1963 } else if (bits <= 16) {
1964 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1965 chip->n_bytes = 2;
1966 chip->read = READING_U16;
1967 chip->write = WRITING_U16;
1968 } else {
1969 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1970 chip->n_bytes = 4;
1971 chip->read = READING_U32;
1972 chip->write = WRITING_U32;
1973 }
1974
1975 /* Now Initialize all register settings required for this chip */
1976 chip->cr0 = 0;
1977 chip->cr1 = 0;
1978 chip->dmacr = 0;
1979 chip->cpsr = 0;
1980 if ((chip_info->com_mode == DMA_TRANSFER)
1981 && ((pl022->master_info)->enable_dma)) {
1982 chip->enable_dma = true;
1983 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1984 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1985 SSP_DMACR_MASK_RXDMAE, 0);
1986 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1987 SSP_DMACR_MASK_TXDMAE, 1);
1988 } else {
1989 chip->enable_dma = false;
1990 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1991 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1992 SSP_DMACR_MASK_RXDMAE, 0);
1993 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1994 SSP_DMACR_MASK_TXDMAE, 1);
1995 }
1996
1997 chip->cpsr = clk_freq.cpsdvsr;
1998
1999 /* Special setup for the ST micro extended control registers */
2000 if (pl022->vendor->extended_cr) {
2001 u32 etx;
2002
2003 if (pl022->vendor->pl023) {
2004 /* These bits are only in the PL023 */
2005 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2006 SSP_CR1_MASK_FBCLKDEL_ST, 13);
2007 } else {
2008 /* These bits are in the PL022 but not PL023 */
2009 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2010 SSP_CR0_MASK_HALFDUP_ST, 5);
2011 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2012 SSP_CR0_MASK_CSS_ST, 16);
2013 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2014 SSP_CR0_MASK_FRF_ST, 21);
2015 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2016 SSP_CR1_MASK_MWAIT_ST, 6);
2017 }
2018 SSP_WRITE_BITS(chip->cr0, bits - 1,
2019 SSP_CR0_MASK_DSS_ST, 0);
2020
2021 if (spi->mode & SPI_LSB_FIRST) {
2022 tmp = SSP_RX_LSB;
2023 etx = SSP_TX_LSB;
2024 } else {
2025 tmp = SSP_RX_MSB;
2026 etx = SSP_TX_MSB;
2027 }
2028 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2029 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2030 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2031 SSP_CR1_MASK_RXIFLSEL_ST, 7);
2032 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2033 SSP_CR1_MASK_TXIFLSEL_ST, 10);
2034 } else {
2035 SSP_WRITE_BITS(chip->cr0, bits - 1,
2036 SSP_CR0_MASK_DSS, 0);
2037 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2038 SSP_CR0_MASK_FRF, 4);
2039 }
2040
2041 /* Stuff that is common for all versions */
2042 if (spi->mode & SPI_CPOL)
2043 tmp = SSP_CLK_POL_IDLE_HIGH;
2044 else
2045 tmp = SSP_CLK_POL_IDLE_LOW;
2046 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2047
2048 if (spi->mode & SPI_CPHA)
2049 tmp = SSP_CLK_SECOND_EDGE;
2050 else
2051 tmp = SSP_CLK_FIRST_EDGE;
2052 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2053
2054 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2055 /* Loopback is available on all versions except PL023 */
2056 if (pl022->vendor->loopback) {
2057 if (spi->mode & SPI_LOOP)
2058 tmp = LOOPBACK_ENABLED;
2059 else
2060 tmp = LOOPBACK_DISABLED;
2061 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2062 }
2063 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2064 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2065 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2066 3);
2067
2068 /* Save controller_state */
2069 spi_set_ctldata(spi, chip);
2070 return status;
2071 err_config_params:
2072 spi_set_ctldata(spi, NULL);
2073 kfree(chip);
2074 return status;
2075}
2076
2077/**
2078 * pl022_cleanup - cleanup function registered to SPI master framework
2079 * @spi: spi device which is requesting cleanup
2080 *
2081 * This function is registered to the SPI framework for this SPI master
2082 * controller. It will free the runtime state of chip.
2083 */
2084static void pl022_cleanup(struct spi_device *spi)
2085{
2086 struct chip_data *chip = spi_get_ctldata(spi);
2087
2088 spi_set_ctldata(spi, NULL);
2089 kfree(chip);
2090}
2091
2092static struct pl022_ssp_controller *
2093pl022_platform_data_dt_get(struct device *dev)
2094{
2095 struct device_node *np = dev->of_node;
2096 struct pl022_ssp_controller *pd;
2097 u32 tmp = 0;
2098
2099 if (!np) {
2100 dev_err(dev, "no dt node defined\n");
2101 return NULL;
2102 }
2103
2104 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2105 if (!pd)
2106 return NULL;
2107
2108 pd->bus_id = -1;
2109 pd->enable_dma = 1;
2110 of_property_read_u32(np, "num-cs", &tmp);
2111 pd->num_chipselect = tmp;
2112 of_property_read_u32(np, "pl022,autosuspend-delay",
2113 &pd->autosuspend_delay);
2114 pd->rt = of_property_read_bool(np, "pl022,rt");
2115
2116 return pd;
2117}
2118
2119static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2120{
2121 struct device *dev = &adev->dev;
2122 struct pl022_ssp_controller *platform_info =
2123 dev_get_platdata(&adev->dev);
2124 struct spi_master *master;
2125 struct pl022 *pl022 = NULL; /*Data for this driver */
2126 struct device_node *np = adev->dev.of_node;
2127 int status = 0, i, num_cs;
2128
2129 dev_info(&adev->dev,
2130 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2131 if (!platform_info && IS_ENABLED(CONFIG_OF))
2132 platform_info = pl022_platform_data_dt_get(dev);
2133
2134 if (!platform_info) {
2135 dev_err(dev, "probe: no platform data defined\n");
2136 return -ENODEV;
2137 }
2138
2139 if (platform_info->num_chipselect) {
2140 num_cs = platform_info->num_chipselect;
2141 } else {
2142 dev_err(dev, "probe: no chip select defined\n");
2143 return -ENODEV;
2144 }
2145
2146 /* Allocate master with space for data */
2147 master = spi_alloc_master(dev, sizeof(struct pl022));
2148 if (master == NULL) {
2149 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2150 return -ENOMEM;
2151 }
2152
2153 pl022 = spi_master_get_devdata(master);
2154 pl022->master = master;
2155 pl022->master_info = platform_info;
2156 pl022->adev = adev;
2157 pl022->vendor = id->data;
2158 pl022->chipselects = devm_kcalloc(dev, num_cs, sizeof(int),
2159 GFP_KERNEL);
2160 if (!pl022->chipselects) {
2161 status = -ENOMEM;
2162 goto err_no_mem;
2163 }
2164
2165 /*
2166 * Bus Number Which has been Assigned to this SSP controller
2167 * on this board
2168 */
2169 master->bus_num = platform_info->bus_id;
2170 master->num_chipselect = num_cs;
2171 master->cleanup = pl022_cleanup;
2172 master->setup = pl022_setup;
2173 master->auto_runtime_pm = true;
2174 master->transfer_one_message = pl022_transfer_one_message;
2175 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2176 master->rt = platform_info->rt;
2177 master->dev.of_node = dev->of_node;
2178
2179 if (platform_info->num_chipselect && platform_info->chipselects) {
2180 for (i = 0; i < num_cs; i++)
2181 pl022->chipselects[i] = platform_info->chipselects[i];
2182 } else if (pl022->vendor->internal_cs_ctrl) {
2183 for (i = 0; i < num_cs; i++)
2184 pl022->chipselects[i] = i;
2185 } else if (IS_ENABLED(CONFIG_OF)) {
2186 for (i = 0; i < num_cs; i++) {
2187 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2188
2189 if (cs_gpio == -EPROBE_DEFER) {
2190 status = -EPROBE_DEFER;
2191 goto err_no_gpio;
2192 }
2193
2194 pl022->chipselects[i] = cs_gpio;
2195
2196 if (gpio_is_valid(cs_gpio)) {
2197 if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2198 dev_err(&adev->dev,
2199 "could not request %d gpio\n",
2200 cs_gpio);
2201 else if (gpio_direction_output(cs_gpio, 1))
2202 dev_err(&adev->dev,
2203 "could not set gpio %d as output\n",
2204 cs_gpio);
2205 }
2206 }
2207 }
2208
2209 /*
2210 * Supports mode 0-3, loopback, and active low CS. Transfers are
2211 * always MS bit first on the original pl022.
2212 */
2213 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2214 if (pl022->vendor->extended_cr)
2215 master->mode_bits |= SPI_LSB_FIRST;
2216
2217 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2218
2219 status = amba_request_regions(adev, NULL);
2220 if (status)
2221 goto err_no_ioregion;
2222
2223 pl022->phybase = adev->res.start;
2224 pl022->virtbase = devm_ioremap(dev, adev->res.start,
2225 resource_size(&adev->res));
2226 if (pl022->virtbase == NULL) {
2227 status = -ENOMEM;
2228 goto err_no_ioremap;
2229 }
2230 dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2231 &adev->res.start, pl022->virtbase);
2232
2233 pl022->clk = devm_clk_get(&adev->dev, NULL);
2234 if (IS_ERR(pl022->clk)) {
2235 status = PTR_ERR(pl022->clk);
2236 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2237 goto err_no_clk;
2238 }
2239
2240 status = clk_prepare_enable(pl022->clk);
2241 if (status) {
2242 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2243 goto err_no_clk_en;
2244 }
2245
2246 /* Initialize transfer pump */
2247 tasklet_init(&pl022->pump_transfers, pump_transfers,
2248 (unsigned long)pl022);
2249
2250 /* Disable SSP */
2251 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2252 SSP_CR1(pl022->virtbase));
2253 load_ssp_default_config(pl022);
2254
2255 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2256 0, "pl022", pl022);
2257 if (status < 0) {
2258 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2259 goto err_no_irq;
2260 }
2261
2262 /* Get DMA channels, try autoconfiguration first */
2263 status = pl022_dma_autoprobe(pl022);
2264 if (status == -EPROBE_DEFER) {
2265 dev_dbg(dev, "deferring probe to get DMA channel\n");
2266 goto err_no_irq;
2267 }
2268
2269 /* If that failed, use channels from platform_info */
2270 if (status == 0)
2271 platform_info->enable_dma = 1;
2272 else if (platform_info->enable_dma) {
2273 status = pl022_dma_probe(pl022);
2274 if (status != 0)
2275 platform_info->enable_dma = 0;
2276 }
2277
2278 /* Register with the SPI framework */
2279 amba_set_drvdata(adev, pl022);
2280 status = devm_spi_register_master(&adev->dev, master);
2281 if (status != 0) {
2282 dev_err(&adev->dev,
2283 "probe - problem registering spi master\n");
2284 goto err_spi_register;
2285 }
2286 dev_dbg(dev, "probe succeeded\n");
2287
2288 /* let runtime pm put suspend */
2289 if (platform_info->autosuspend_delay > 0) {
2290 dev_info(&adev->dev,
2291 "will use autosuspend for runtime pm, delay %dms\n",
2292 platform_info->autosuspend_delay);
2293 pm_runtime_set_autosuspend_delay(dev,
2294 platform_info->autosuspend_delay);
2295 pm_runtime_use_autosuspend(dev);
2296 }
2297 pm_runtime_put(dev);
2298
2299 return 0;
2300
2301 err_spi_register:
2302 if (platform_info->enable_dma)
2303 pl022_dma_remove(pl022);
2304 err_no_irq:
2305 clk_disable_unprepare(pl022->clk);
2306 err_no_clk_en:
2307 err_no_clk:
2308 err_no_ioremap:
2309 amba_release_regions(adev);
2310 err_no_ioregion:
2311 err_no_gpio:
2312 err_no_mem:
2313 spi_master_put(master);
2314 return status;
2315}
2316
2317static int
2318pl022_remove(struct amba_device *adev)
2319{
2320 struct pl022 *pl022 = amba_get_drvdata(adev);
2321
2322 if (!pl022)
2323 return 0;
2324
2325 /*
2326 * undo pm_runtime_put() in probe. I assume that we're not
2327 * accessing the primecell here.
2328 */
2329 pm_runtime_get_noresume(&adev->dev);
2330
2331 load_ssp_default_config(pl022);
2332 if (pl022->master_info->enable_dma)
2333 pl022_dma_remove(pl022);
2334
2335 clk_disable_unprepare(pl022->clk);
2336 amba_release_regions(adev);
2337 tasklet_disable(&pl022->pump_transfers);
2338 return 0;
2339}
2340
2341#ifdef CONFIG_PM_SLEEP
2342static int pl022_suspend(struct device *dev)
2343{
2344 struct pl022 *pl022 = dev_get_drvdata(dev);
2345 int ret;
2346
2347 ret = spi_master_suspend(pl022->master);
2348 if (ret)
2349 return ret;
2350
2351 ret = pm_runtime_force_suspend(dev);
2352 if (ret) {
2353 spi_master_resume(pl022->master);
2354 return ret;
2355 }
2356
2357 pinctrl_pm_select_sleep_state(dev);
2358
2359 dev_dbg(dev, "suspended\n");
2360 return 0;
2361}
2362
2363static int pl022_resume(struct device *dev)
2364{
2365 struct pl022 *pl022 = dev_get_drvdata(dev);
2366 int ret;
2367
2368 ret = pm_runtime_force_resume(dev);
2369 if (ret)
2370 dev_err(dev, "problem resuming\n");
2371
2372 /* Start the queue running */
2373 ret = spi_master_resume(pl022->master);
2374 if (!ret)
2375 dev_dbg(dev, "resumed\n");
2376
2377 return ret;
2378}
2379#endif
2380
2381#ifdef CONFIG_PM
2382static int pl022_runtime_suspend(struct device *dev)
2383{
2384 struct pl022 *pl022 = dev_get_drvdata(dev);
2385
2386 clk_disable_unprepare(pl022->clk);
2387 pinctrl_pm_select_idle_state(dev);
2388
2389 return 0;
2390}
2391
2392static int pl022_runtime_resume(struct device *dev)
2393{
2394 struct pl022 *pl022 = dev_get_drvdata(dev);
2395
2396 pinctrl_pm_select_default_state(dev);
2397 clk_prepare_enable(pl022->clk);
2398
2399 return 0;
2400}
2401#endif
2402
2403static const struct dev_pm_ops pl022_dev_pm_ops = {
2404 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2405 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2406};
2407
2408static struct vendor_data vendor_arm = {
2409 .fifodepth = 8,
2410 .max_bpw = 16,
2411 .unidir = false,
2412 .extended_cr = false,
2413 .pl023 = false,
2414 .loopback = true,
2415 .internal_cs_ctrl = false,
2416};
2417
2418static struct vendor_data vendor_st = {
2419 .fifodepth = 32,
2420 .max_bpw = 32,
2421 .unidir = false,
2422 .extended_cr = true,
2423 .pl023 = false,
2424 .loopback = true,
2425 .internal_cs_ctrl = false,
2426};
2427
2428static struct vendor_data vendor_st_pl023 = {
2429 .fifodepth = 32,
2430 .max_bpw = 32,
2431 .unidir = false,
2432 .extended_cr = true,
2433 .pl023 = true,
2434 .loopback = false,
2435 .internal_cs_ctrl = false,
2436};
2437
2438static struct vendor_data vendor_lsi = {
2439 .fifodepth = 8,
2440 .max_bpw = 16,
2441 .unidir = false,
2442 .extended_cr = false,
2443 .pl023 = false,
2444 .loopback = true,
2445 .internal_cs_ctrl = true,
2446};
2447
2448static const struct amba_id pl022_ids[] = {
2449 {
2450 /*
2451 * ARM PL022 variant, this has a 16bit wide
2452 * and 8 locations deep TX/RX FIFO
2453 */
2454 .id = 0x00041022,
2455 .mask = 0x000fffff,
2456 .data = &vendor_arm,
2457 },
2458 {
2459 /*
2460 * ST Micro derivative, this has 32bit wide
2461 * and 32 locations deep TX/RX FIFO
2462 */
2463 .id = 0x01080022,
2464 .mask = 0xffffffff,
2465 .data = &vendor_st,
2466 },
2467 {
2468 /*
2469 * ST-Ericsson derivative "PL023" (this is not
2470 * an official ARM number), this is a PL022 SSP block
2471 * stripped to SPI mode only, it has 32bit wide
2472 * and 32 locations deep TX/RX FIFO but no extended
2473 * CR0/CR1 register
2474 */
2475 .id = 0x00080023,
2476 .mask = 0xffffffff,
2477 .data = &vendor_st_pl023,
2478 },
2479 {
2480 /*
2481 * PL022 variant that has a chip select control register whih
2482 * allows control of 5 output signals nCS[0:4].
2483 */
2484 .id = 0x000b6022,
2485 .mask = 0x000fffff,
2486 .data = &vendor_lsi,
2487 },
2488 { 0, 0 },
2489};
2490
2491MODULE_DEVICE_TABLE(amba, pl022_ids);
2492
2493static struct amba_driver pl022_driver = {
2494 .drv = {
2495 .name = "ssp-pl022",
2496 .pm = &pl022_dev_pm_ops,
2497 },
2498 .id_table = pl022_ids,
2499 .probe = pl022_probe,
2500 .remove = pl022_remove,
2501};
2502
2503static int __init pl022_init(void)
2504{
2505 return amba_driver_register(&pl022_driver);
2506}
2507subsys_initcall(pl022_init);
2508
2509static void __exit pl022_exit(void)
2510{
2511 amba_driver_unregister(&pl022_driver);
2512}
2513module_exit(pl022_exit);
2514
2515MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2516MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2517MODULE_LICENSE("GPL");