Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
   4 *
   5 * Copyright (C) 2008-2012 ST-Ericsson AB
   6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
   7 *
   8 * Author: Linus Walleij <linus.walleij@stericsson.com>
   9 *
  10 * Initial version inspired by:
  11 *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  12 * Initial adoption to PL022 by:
  13 *      Sachin Verma <sachin.verma@st.com>
  14 */
  15
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/device.h>
  19#include <linux/ioport.h>
  20#include <linux/errno.h>
  21#include <linux/interrupt.h>
  22#include <linux/spi/spi.h>
  23#include <linux/delay.h>
  24#include <linux/clk.h>
  25#include <linux/err.h>
  26#include <linux/amba/bus.h>
  27#include <linux/amba/pl022.h>
  28#include <linux/io.h>
  29#include <linux/slab.h>
  30#include <linux/dmaengine.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/scatterlist.h>
  33#include <linux/pm_runtime.h>
  34#include <linux/of.h>
 
  35#include <linux/pinctrl/consumer.h>
  36
  37/*
  38 * This macro is used to define some register default values.
  39 * reg is masked with mask, the OR:ed with an (again masked)
  40 * val shifted sb steps to the left.
  41 */
  42#define SSP_WRITE_BITS(reg, val, mask, sb) \
  43 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  44
  45/*
  46 * This macro is also used to define some default values.
  47 * It will just shift val by sb steps to the left and mask
  48 * the result with mask.
  49 */
  50#define GEN_MASK_BITS(val, mask, sb) \
  51 (((val)<<(sb)) & (mask))
  52
  53#define DRIVE_TX		0
  54#define DO_NOT_DRIVE_TX		1
  55
  56#define DO_NOT_QUEUE_DMA	0
  57#define QUEUE_DMA		1
  58
  59#define RX_TRANSFER		1
  60#define TX_TRANSFER		2
  61
  62/*
  63 * Macros to access SSP Registers with their offsets
  64 */
  65#define SSP_CR0(r)	(r + 0x000)
  66#define SSP_CR1(r)	(r + 0x004)
  67#define SSP_DR(r)	(r + 0x008)
  68#define SSP_SR(r)	(r + 0x00C)
  69#define SSP_CPSR(r)	(r + 0x010)
  70#define SSP_IMSC(r)	(r + 0x014)
  71#define SSP_RIS(r)	(r + 0x018)
  72#define SSP_MIS(r)	(r + 0x01C)
  73#define SSP_ICR(r)	(r + 0x020)
  74#define SSP_DMACR(r)	(r + 0x024)
  75#define SSP_CSR(r)	(r + 0x030) /* vendor extension */
  76#define SSP_ITCR(r)	(r + 0x080)
  77#define SSP_ITIP(r)	(r + 0x084)
  78#define SSP_ITOP(r)	(r + 0x088)
  79#define SSP_TDR(r)	(r + 0x08C)
  80
  81#define SSP_PID0(r)	(r + 0xFE0)
  82#define SSP_PID1(r)	(r + 0xFE4)
  83#define SSP_PID2(r)	(r + 0xFE8)
  84#define SSP_PID3(r)	(r + 0xFEC)
  85
  86#define SSP_CID0(r)	(r + 0xFF0)
  87#define SSP_CID1(r)	(r + 0xFF4)
  88#define SSP_CID2(r)	(r + 0xFF8)
  89#define SSP_CID3(r)	(r + 0xFFC)
  90
  91/*
  92 * SSP Control Register 0  - SSP_CR0
  93 */
  94#define SSP_CR0_MASK_DSS	(0x0FUL << 0)
  95#define SSP_CR0_MASK_FRF	(0x3UL << 4)
  96#define SSP_CR0_MASK_SPO	(0x1UL << 6)
  97#define SSP_CR0_MASK_SPH	(0x1UL << 7)
  98#define SSP_CR0_MASK_SCR	(0xFFUL << 8)
  99
 100/*
 101 * The ST version of this block moves som bits
 102 * in SSP_CR0 and extends it to 32 bits
 103 */
 104#define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
 105#define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
 106#define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
 107#define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
 108
 109/*
 110 * SSP Control Register 0  - SSP_CR1
 111 */
 112#define SSP_CR1_MASK_LBM	(0x1UL << 0)
 113#define SSP_CR1_MASK_SSE	(0x1UL << 1)
 114#define SSP_CR1_MASK_MS		(0x1UL << 2)
 115#define SSP_CR1_MASK_SOD	(0x1UL << 3)
 116
 117/*
 118 * The ST version of this block adds some bits
 119 * in SSP_CR1
 120 */
 121#define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
 122#define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
 123#define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
 124#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
 125#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
 126/* This one is only in the PL023 variant */
 127#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
 128
 129/*
 130 * SSP Status Register - SSP_SR
 131 */
 132#define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
 133#define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
 134#define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
 135#define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
 136#define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
 137
 138/*
 139 * SSP Clock Prescale Register  - SSP_CPSR
 140 */
 141#define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
 142
 143/*
 144 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 145 */
 146#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
 147#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
 148#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
 149#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
 150
 151/*
 152 * SSP Raw Interrupt Status Register - SSP_RIS
 153 */
 154/* Receive Overrun Raw Interrupt status */
 155#define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
 156/* Receive Timeout Raw Interrupt status */
 157#define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
 158/* Receive FIFO Raw Interrupt status */
 159#define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
 160/* Transmit FIFO Raw Interrupt status */
 161#define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
 162
 163/*
 164 * SSP Masked Interrupt Status Register - SSP_MIS
 165 */
 166/* Receive Overrun Masked Interrupt status */
 167#define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
 168/* Receive Timeout Masked Interrupt status */
 169#define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
 170/* Receive FIFO Masked Interrupt status */
 171#define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
 172/* Transmit FIFO Masked Interrupt status */
 173#define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
 174
 175/*
 176 * SSP Interrupt Clear Register - SSP_ICR
 177 */
 178/* Receive Overrun Raw Clear Interrupt bit */
 179#define SSP_ICR_MASK_RORIC		(0x1UL << 0)
 180/* Receive Timeout Clear Interrupt bit */
 181#define SSP_ICR_MASK_RTIC		(0x1UL << 1)
 182
 183/*
 184 * SSP DMA Control Register - SSP_DMACR
 185 */
 186/* Receive DMA Enable bit */
 187#define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
 188/* Transmit DMA Enable bit */
 189#define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
 190
 191/*
 192 * SSP Chip Select Control Register - SSP_CSR
 193 * (vendor extension)
 194 */
 195#define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
 196
 197/*
 198 * SSP Integration Test control Register - SSP_ITCR
 199 */
 200#define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
 201#define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
 202
 203/*
 204 * SSP Integration Test Input Register - SSP_ITIP
 205 */
 206#define ITIP_MASK_SSPRXD		 (0x1UL << 0)
 207#define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
 208#define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
 209#define ITIP_MASK_RXDMAC		 (0x1UL << 3)
 210#define ITIP_MASK_TXDMAC		 (0x1UL << 4)
 211#define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
 212
 213/*
 214 * SSP Integration Test output Register - SSP_ITOP
 215 */
 216#define ITOP_MASK_SSPTXD		 (0x1UL << 0)
 217#define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
 218#define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
 219#define ITOP_MASK_SSPOEn		 (0x1UL << 3)
 220#define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
 221#define ITOP_MASK_RORINTR		 (0x1UL << 5)
 222#define ITOP_MASK_RTINTR		 (0x1UL << 6)
 223#define ITOP_MASK_RXINTR		 (0x1UL << 7)
 224#define ITOP_MASK_TXINTR		 (0x1UL << 8)
 225#define ITOP_MASK_INTR			 (0x1UL << 9)
 226#define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
 227#define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
 228#define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
 229#define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
 230
 231/*
 232 * SSP Test Data Register - SSP_TDR
 233 */
 234#define TDR_MASK_TESTDATA		(0xFFFFFFFF)
 235
 236/*
 237 * Message State
 238 * we use the spi_message.state (void *) pointer to
 239 * hold a single state value, that's why all this
 240 * (void *) casting is done here.
 241 */
 242#define STATE_START			((void *) 0)
 243#define STATE_RUNNING			((void *) 1)
 244#define STATE_DONE			((void *) 2)
 245#define STATE_ERROR			((void *) -1)
 246#define STATE_TIMEOUT			((void *) -2)
 247
 248/*
 249 * SSP State - Whether Enabled or Disabled
 250 */
 251#define SSP_DISABLED			(0)
 252#define SSP_ENABLED			(1)
 253
 254/*
 255 * SSP DMA State - Whether DMA Enabled or Disabled
 256 */
 257#define SSP_DMA_DISABLED		(0)
 258#define SSP_DMA_ENABLED			(1)
 259
 260/*
 261 * SSP Clock Defaults
 262 */
 263#define SSP_DEFAULT_CLKRATE 0x2
 264#define SSP_DEFAULT_PRESCALE 0x40
 265
 266/*
 267 * SSP Clock Parameter ranges
 268 */
 269#define CPSDVR_MIN 0x02
 270#define CPSDVR_MAX 0xFE
 271#define SCR_MIN 0x00
 272#define SCR_MAX 0xFF
 273
 274/*
 275 * SSP Interrupt related Macros
 276 */
 277#define DEFAULT_SSP_REG_IMSC  0x0UL
 278#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
 279#define ENABLE_ALL_INTERRUPTS ( \
 280	SSP_IMSC_MASK_RORIM | \
 281	SSP_IMSC_MASK_RTIM | \
 282	SSP_IMSC_MASK_RXIM | \
 283	SSP_IMSC_MASK_TXIM \
 284)
 285
 286#define CLEAR_ALL_INTERRUPTS  0x3
 287
 288#define SPI_POLLING_TIMEOUT 1000
 289
 290/*
 291 * The type of reading going on this chip
 292 */
 293enum ssp_reading {
 294	READING_NULL,
 295	READING_U8,
 296	READING_U16,
 297	READING_U32
 298};
 299
 300/*
 301 * The type of writing going on this chip
 302 */
 303enum ssp_writing {
 304	WRITING_NULL,
 305	WRITING_U8,
 306	WRITING_U16,
 307	WRITING_U32
 308};
 309
 310/**
 311 * struct vendor_data - vendor-specific config parameters
 312 * for PL022 derivates
 313 * @fifodepth: depth of FIFOs (both)
 314 * @max_bpw: maximum number of bits per word
 315 * @unidir: supports unidirection transfers
 316 * @extended_cr: 32 bit wide control register 0 with extra
 317 * features and extra features in CR1 as found in the ST variants
 318 * @pl023: supports a subset of the ST extensions called "PL023"
 319 * @loopback: supports loopback mode
 320 * @internal_cs_ctrl: supports chip select control register
 321 */
 322struct vendor_data {
 323	int fifodepth;
 324	int max_bpw;
 325	bool unidir;
 326	bool extended_cr;
 327	bool pl023;
 328	bool loopback;
 329	bool internal_cs_ctrl;
 330};
 331
 332/**
 333 * struct pl022 - This is the private SSP driver data structure
 334 * @adev: AMBA device model hookup
 335 * @vendor: vendor data for the IP block
 336 * @phybase: the physical memory where the SSP device resides
 337 * @virtbase: the virtual memory where the SSP is mapped
 338 * @clk: outgoing clock "SPICLK" for the SPI bus
 339 * @host: SPI framework hookup
 340 * @host_info: controller-specific data from machine setup
 
 
 341 * @cur_transfer: Pointer to current spi_transfer
 342 * @cur_chip: pointer to current clients chip(assigned from controller_state)
 
 
 
 
 343 * @tx: current position in TX buffer to be read
 344 * @tx_end: end position in TX buffer to be read
 345 * @rx: current position in RX buffer to be written
 346 * @rx_end: end position in RX buffer to be written
 347 * @read: the type of read currently going on
 348 * @write: the type of write currently going on
 349 * @exp_fifo_level: expected FIFO level
 350 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
 351 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
 352 * @dma_rx_channel: optional channel for RX DMA
 353 * @dma_tx_channel: optional channel for TX DMA
 354 * @sgt_rx: scattertable for the RX transfer
 355 * @sgt_tx: scattertable for the TX transfer
 356 * @dummypage: a dummy page used for driving data on the bus with DMA
 357 * @dma_running: indicates whether DMA is in operation
 358 * @cur_cs: current chip select index
 
 359 */
 360struct pl022 {
 361	struct amba_device		*adev;
 362	struct vendor_data		*vendor;
 363	resource_size_t			phybase;
 364	void __iomem			*virtbase;
 365	struct clk			*clk;
 366	struct spi_controller		*host;
 367	struct pl022_ssp_controller	*host_info;
 
 
 
 368	struct spi_transfer		*cur_transfer;
 369	struct chip_data		*cur_chip;
 
 370	void				*tx;
 371	void				*tx_end;
 372	void				*rx;
 373	void				*rx_end;
 374	enum ssp_reading		read;
 375	enum ssp_writing		write;
 376	u32				exp_fifo_level;
 377	enum ssp_rx_level_trig		rx_lev_trig;
 378	enum ssp_tx_level_trig		tx_lev_trig;
 379	/* DMA settings */
 380#ifdef CONFIG_DMA_ENGINE
 381	struct dma_chan			*dma_rx_channel;
 382	struct dma_chan			*dma_tx_channel;
 383	struct sg_table			sgt_rx;
 384	struct sg_table			sgt_tx;
 385	char				*dummypage;
 386	bool				dma_running;
 387#endif
 388	int cur_cs;
 
 389};
 390
 391/**
 392 * struct chip_data - To maintain runtime state of SSP for each client chip
 393 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 394 *       register is 32 bits wide rather than just 16
 395 * @cr1: Value of control register CR1 of SSP
 396 * @dmacr: Value of DMA control Register of SSP
 397 * @cpsr: Value of Clock prescale register
 398 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 399 * @enable_dma: Whether to enable DMA or not
 400 * @read: function ptr to be used to read when doing xfer for this chip
 401 * @write: function ptr to be used to write when doing xfer for this chip
 
 402 * @xfer_type: polling/interrupt/DMA
 403 *
 404 * Runtime state of the SSP controller, maintained per chip,
 405 * This would be set according to the current message that would be served
 406 */
 407struct chip_data {
 408	u32 cr0;
 409	u16 cr1;
 410	u16 dmacr;
 411	u16 cpsr;
 412	u8 n_bytes;
 413	bool enable_dma;
 414	enum ssp_reading read;
 415	enum ssp_writing write;
 
 416	int xfer_type;
 417};
 418
 419/**
 
 
 
 
 
 
 
 
 
 
 
 
 420 * internal_cs_control - Control chip select signals via SSP_CSR.
 421 * @pl022: SSP driver private data structure
 422 * @enable: select/delect the chip
 423 *
 424 * Used on controller with internal chip select control via SSP_CSR register
 425 * (vendor extension). Each of the 5 LSB in the register controls one chip
 426 * select signal.
 427 */
 428static void internal_cs_control(struct pl022 *pl022, bool enable)
 429{
 430	u32 tmp;
 431
 432	tmp = readw(SSP_CSR(pl022->virtbase));
 433	if (enable)
 434		tmp &= ~BIT(pl022->cur_cs);
 435	else
 436		tmp |= BIT(pl022->cur_cs);
 437	writew(tmp, SSP_CSR(pl022->virtbase));
 438}
 439
 440static void pl022_cs_control(struct spi_device *spi, bool enable)
 441{
 442	struct pl022 *pl022 = spi_controller_get_devdata(spi->controller);
 443	if (pl022->vendor->internal_cs_ctrl)
 444		internal_cs_control(pl022, enable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445}
 446
 447/**
 448 * flush - flush the FIFO to reach a clean state
 449 * @pl022: SSP driver private data structure
 450 */
 451static int flush(struct pl022 *pl022)
 452{
 453	unsigned long limit = loops_per_jiffy << 1;
 454
 455	dev_dbg(&pl022->adev->dev, "flush\n");
 456	do {
 457		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 458			readw(SSP_DR(pl022->virtbase));
 459	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
 460
 461	pl022->exp_fifo_level = 0;
 462
 463	return limit;
 464}
 465
 466/**
 467 * restore_state - Load configuration of current chip
 468 * @pl022: SSP driver private data structure
 469 */
 470static void restore_state(struct pl022 *pl022)
 471{
 472	struct chip_data *chip = pl022->cur_chip;
 473
 474	if (pl022->vendor->extended_cr)
 475		writel(chip->cr0, SSP_CR0(pl022->virtbase));
 476	else
 477		writew(chip->cr0, SSP_CR0(pl022->virtbase));
 478	writew(chip->cr1, SSP_CR1(pl022->virtbase));
 479	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
 480	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
 481	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 482	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 483}
 484
 485/*
 486 * Default SSP Register Values
 487 */
 488#define DEFAULT_SSP_REG_CR0 ( \
 489	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
 490	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
 491	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 492	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 493	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 494)
 495
 496/* ST versions have slightly different bit layout */
 497#define DEFAULT_SSP_REG_CR0_ST ( \
 498	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
 499	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
 500	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 501	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 502	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
 503	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
 504	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
 505)
 506
 507/* The PL023 version is slightly different again */
 508#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
 509	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
 510	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 511	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 512	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 513)
 514
 515#define DEFAULT_SSP_REG_CR1 ( \
 516	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
 517	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 518	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 519	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
 520)
 521
 522/* ST versions extend this register to use all 16 bits */
 523#define DEFAULT_SSP_REG_CR1_ST ( \
 524	DEFAULT_SSP_REG_CR1 | \
 525	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 526	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 527	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
 528	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 529	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
 530)
 531
 532/*
 533 * The PL023 variant has further differences: no loopback mode, no microwire
 534 * support, and a new clock feedback delay setting.
 535 */
 536#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
 537	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 538	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 539	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
 540	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 541	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 542	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 543	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
 544	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
 545)
 546
 547#define DEFAULT_SSP_REG_CPSR ( \
 548	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
 549)
 550
 551#define DEFAULT_SSP_REG_DMACR (\
 552	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
 553	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
 554)
 555
 556/**
 557 * load_ssp_default_config - Load default configuration for SSP
 558 * @pl022: SSP driver private data structure
 559 */
 560static void load_ssp_default_config(struct pl022 *pl022)
 561{
 562	if (pl022->vendor->pl023) {
 563		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
 564		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
 565	} else if (pl022->vendor->extended_cr) {
 566		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
 567		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
 568	} else {
 569		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
 570		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
 571	}
 572	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
 573	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
 574	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 575	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 576}
 577
 578/*
 579 * This will write to TX and read from RX according to the parameters
 580 * set in pl022.
 581 */
 582static void readwriter(struct pl022 *pl022)
 583{
 584
 585	/*
 586	 * The FIFO depth is different between primecell variants.
 587	 * I believe filling in too much in the FIFO might cause
 588	 * errons in 8bit wide transfers on ARM variants (just 8 words
 589	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
 590	 *
 591	 * To prevent this issue, the TX FIFO is only filled to the
 592	 * unused RX FIFO fill length, regardless of what the TX
 593	 * FIFO status flag indicates.
 594	 */
 595	dev_dbg(&pl022->adev->dev,
 596		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
 597		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
 598
 599	/* Read as much as you can */
 600	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 601	       && (pl022->rx < pl022->rx_end)) {
 602		switch (pl022->read) {
 603		case READING_NULL:
 604			readw(SSP_DR(pl022->virtbase));
 605			break;
 606		case READING_U8:
 607			*(u8 *) (pl022->rx) =
 608				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 609			break;
 610		case READING_U16:
 611			*(u16 *) (pl022->rx) =
 612				(u16) readw(SSP_DR(pl022->virtbase));
 613			break;
 614		case READING_U32:
 615			*(u32 *) (pl022->rx) =
 616				readl(SSP_DR(pl022->virtbase));
 617			break;
 618		}
 619		pl022->rx += (pl022->cur_chip->n_bytes);
 620		pl022->exp_fifo_level--;
 621	}
 622	/*
 623	 * Write as much as possible up to the RX FIFO size
 624	 */
 625	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
 626	       && (pl022->tx < pl022->tx_end)) {
 627		switch (pl022->write) {
 628		case WRITING_NULL:
 629			writew(0x0, SSP_DR(pl022->virtbase));
 630			break;
 631		case WRITING_U8:
 632			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
 633			break;
 634		case WRITING_U16:
 635			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
 636			break;
 637		case WRITING_U32:
 638			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
 639			break;
 640		}
 641		pl022->tx += (pl022->cur_chip->n_bytes);
 642		pl022->exp_fifo_level++;
 643		/*
 644		 * This inner reader takes care of things appearing in the RX
 645		 * FIFO as we're transmitting. This will happen a lot since the
 646		 * clock starts running when you put things into the TX FIFO,
 647		 * and then things are continuously clocked into the RX FIFO.
 648		 */
 649		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 650		       && (pl022->rx < pl022->rx_end)) {
 651			switch (pl022->read) {
 652			case READING_NULL:
 653				readw(SSP_DR(pl022->virtbase));
 654				break;
 655			case READING_U8:
 656				*(u8 *) (pl022->rx) =
 657					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 658				break;
 659			case READING_U16:
 660				*(u16 *) (pl022->rx) =
 661					(u16) readw(SSP_DR(pl022->virtbase));
 662				break;
 663			case READING_U32:
 664				*(u32 *) (pl022->rx) =
 665					readl(SSP_DR(pl022->virtbase));
 666				break;
 667			}
 668			pl022->rx += (pl022->cur_chip->n_bytes);
 669			pl022->exp_fifo_level--;
 670		}
 671	}
 672	/*
 673	 * When we exit here the TX FIFO should be full and the RX FIFO
 674	 * should be empty
 675	 */
 676}
 677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 678/*
 679 * This DMA functionality is only compiled in if we have
 680 * access to the generic DMA devices/DMA engine.
 681 */
 682#ifdef CONFIG_DMA_ENGINE
 683static void unmap_free_dma_scatter(struct pl022 *pl022)
 684{
 685	/* Unmap and free the SG tables */
 686	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
 687		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 688	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
 689		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 690	sg_free_table(&pl022->sgt_rx);
 691	sg_free_table(&pl022->sgt_tx);
 692}
 693
 694static void dma_callback(void *data)
 695{
 696	struct pl022 *pl022 = data;
 
 697
 698	BUG_ON(!pl022->sgt_rx.sgl);
 699
 700#ifdef VERBOSE_DEBUG
 701	/*
 702	 * Optionally dump out buffers to inspect contents, this is
 703	 * good if you want to convince yourself that the loopback
 704	 * read/write contents are the same, when adopting to a new
 705	 * DMA engine.
 706	 */
 707	{
 708		struct scatterlist *sg;
 709		unsigned int i;
 710
 711		dma_sync_sg_for_cpu(&pl022->adev->dev,
 712				    pl022->sgt_rx.sgl,
 713				    pl022->sgt_rx.nents,
 714				    DMA_FROM_DEVICE);
 715
 716		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
 717			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
 718			print_hex_dump(KERN_ERR, "SPI RX: ",
 719				       DUMP_PREFIX_OFFSET,
 720				       16,
 721				       1,
 722				       sg_virt(sg),
 723				       sg_dma_len(sg),
 724				       1);
 725		}
 726		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
 727			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
 728			print_hex_dump(KERN_ERR, "SPI TX: ",
 729				       DUMP_PREFIX_OFFSET,
 730				       16,
 731				       1,
 732				       sg_virt(sg),
 733				       sg_dma_len(sg),
 734				       1);
 735		}
 736	}
 737#endif
 738
 739	unmap_free_dma_scatter(pl022);
 740
 741	spi_finalize_current_transfer(pl022->host);
 
 
 
 
 
 
 742}
 743
 744static void setup_dma_scatter(struct pl022 *pl022,
 745			      void *buffer,
 746			      unsigned int length,
 747			      struct sg_table *sgtab)
 748{
 749	struct scatterlist *sg;
 750	int bytesleft = length;
 751	void *bufp = buffer;
 752	int mapbytes;
 753	int i;
 754
 755	if (buffer) {
 756		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 757			/*
 758			 * If there are less bytes left than what fits
 759			 * in the current page (plus page alignment offset)
 760			 * we just feed in this, else we stuff in as much
 761			 * as we can.
 762			 */
 763			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
 764				mapbytes = bytesleft;
 765			else
 766				mapbytes = PAGE_SIZE - offset_in_page(bufp);
 767			sg_set_page(sg, virt_to_page(bufp),
 768				    mapbytes, offset_in_page(bufp));
 769			bufp += mapbytes;
 770			bytesleft -= mapbytes;
 771			dev_dbg(&pl022->adev->dev,
 772				"set RX/TX target page @ %p, %d bytes, %d left\n",
 773				bufp, mapbytes, bytesleft);
 774		}
 775	} else {
 776		/* Map the dummy buffer on every page */
 777		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 778			if (bytesleft < PAGE_SIZE)
 779				mapbytes = bytesleft;
 780			else
 781				mapbytes = PAGE_SIZE;
 782			sg_set_page(sg, virt_to_page(pl022->dummypage),
 783				    mapbytes, 0);
 784			bytesleft -= mapbytes;
 785			dev_dbg(&pl022->adev->dev,
 786				"set RX/TX to dummy page %d bytes, %d left\n",
 787				mapbytes, bytesleft);
 788
 789		}
 790	}
 791	BUG_ON(bytesleft);
 792}
 793
 794/**
 795 * configure_dma - configures the channels for the next transfer
 796 * @pl022: SSP driver's private data structure
 797 */
 798static int configure_dma(struct pl022 *pl022)
 799{
 800	struct dma_slave_config rx_conf = {
 801		.src_addr = SSP_DR(pl022->phybase),
 802		.direction = DMA_DEV_TO_MEM,
 803		.device_fc = false,
 804	};
 805	struct dma_slave_config tx_conf = {
 806		.dst_addr = SSP_DR(pl022->phybase),
 807		.direction = DMA_MEM_TO_DEV,
 808		.device_fc = false,
 809	};
 810	unsigned int pages;
 811	int ret;
 812	int rx_sglen, tx_sglen;
 813	struct dma_chan *rxchan = pl022->dma_rx_channel;
 814	struct dma_chan *txchan = pl022->dma_tx_channel;
 815	struct dma_async_tx_descriptor *rxdesc;
 816	struct dma_async_tx_descriptor *txdesc;
 817
 818	/* Check that the channels are available */
 819	if (!rxchan || !txchan)
 820		return -ENODEV;
 821
 822	/*
 823	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
 824	 * Notice that the DMA engine uses one-to-one mapping. Since we can
 825	 * not trigger on 2 elements this needs explicit mapping rather than
 826	 * calculation.
 827	 */
 828	switch (pl022->rx_lev_trig) {
 829	case SSP_RX_1_OR_MORE_ELEM:
 830		rx_conf.src_maxburst = 1;
 831		break;
 832	case SSP_RX_4_OR_MORE_ELEM:
 833		rx_conf.src_maxburst = 4;
 834		break;
 835	case SSP_RX_8_OR_MORE_ELEM:
 836		rx_conf.src_maxburst = 8;
 837		break;
 838	case SSP_RX_16_OR_MORE_ELEM:
 839		rx_conf.src_maxburst = 16;
 840		break;
 841	case SSP_RX_32_OR_MORE_ELEM:
 842		rx_conf.src_maxburst = 32;
 843		break;
 844	default:
 845		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
 846		break;
 847	}
 848
 849	switch (pl022->tx_lev_trig) {
 850	case SSP_TX_1_OR_MORE_EMPTY_LOC:
 851		tx_conf.dst_maxburst = 1;
 852		break;
 853	case SSP_TX_4_OR_MORE_EMPTY_LOC:
 854		tx_conf.dst_maxburst = 4;
 855		break;
 856	case SSP_TX_8_OR_MORE_EMPTY_LOC:
 857		tx_conf.dst_maxburst = 8;
 858		break;
 859	case SSP_TX_16_OR_MORE_EMPTY_LOC:
 860		tx_conf.dst_maxburst = 16;
 861		break;
 862	case SSP_TX_32_OR_MORE_EMPTY_LOC:
 863		tx_conf.dst_maxburst = 32;
 864		break;
 865	default:
 866		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
 867		break;
 868	}
 869
 870	switch (pl022->read) {
 871	case READING_NULL:
 872		/* Use the same as for writing */
 873		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 874		break;
 875	case READING_U8:
 876		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 877		break;
 878	case READING_U16:
 879		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 880		break;
 881	case READING_U32:
 882		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 883		break;
 884	}
 885
 886	switch (pl022->write) {
 887	case WRITING_NULL:
 888		/* Use the same as for reading */
 889		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 890		break;
 891	case WRITING_U8:
 892		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 893		break;
 894	case WRITING_U16:
 895		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 896		break;
 897	case WRITING_U32:
 898		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 899		break;
 900	}
 901
 902	/* SPI pecularity: we need to read and write the same width */
 903	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
 904		rx_conf.src_addr_width = tx_conf.dst_addr_width;
 905	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
 906		tx_conf.dst_addr_width = rx_conf.src_addr_width;
 907	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
 908
 909	dmaengine_slave_config(rxchan, &rx_conf);
 910	dmaengine_slave_config(txchan, &tx_conf);
 911
 912	/* Create sglists for the transfers */
 913	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
 914	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
 915
 916	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
 917	if (ret)
 918		goto err_alloc_rx_sg;
 919
 920	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
 921	if (ret)
 922		goto err_alloc_tx_sg;
 923
 924	/* Fill in the scatterlists for the RX+TX buffers */
 925	setup_dma_scatter(pl022, pl022->rx,
 926			  pl022->cur_transfer->len, &pl022->sgt_rx);
 927	setup_dma_scatter(pl022, pl022->tx,
 928			  pl022->cur_transfer->len, &pl022->sgt_tx);
 929
 930	/* Map DMA buffers */
 931	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
 932			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 933	if (!rx_sglen)
 934		goto err_rx_sgmap;
 935
 936	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
 937			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
 938	if (!tx_sglen)
 939		goto err_tx_sgmap;
 940
 941	/* Send both scatterlists */
 942	rxdesc = dmaengine_prep_slave_sg(rxchan,
 943				      pl022->sgt_rx.sgl,
 944				      rx_sglen,
 945				      DMA_DEV_TO_MEM,
 946				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 947	if (!rxdesc)
 948		goto err_rxdesc;
 949
 950	txdesc = dmaengine_prep_slave_sg(txchan,
 951				      pl022->sgt_tx.sgl,
 952				      tx_sglen,
 953				      DMA_MEM_TO_DEV,
 954				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 955	if (!txdesc)
 956		goto err_txdesc;
 957
 958	/* Put the callback on the RX transfer only, that should finish last */
 959	rxdesc->callback = dma_callback;
 960	rxdesc->callback_param = pl022;
 961
 962	/* Submit and fire RX and TX with TX last so we're ready to read! */
 963	dmaengine_submit(rxdesc);
 964	dmaengine_submit(txdesc);
 965	dma_async_issue_pending(rxchan);
 966	dma_async_issue_pending(txchan);
 967	pl022->dma_running = true;
 968
 969	return 0;
 970
 971err_txdesc:
 972	dmaengine_terminate_all(txchan);
 973err_rxdesc:
 974	dmaengine_terminate_all(rxchan);
 975	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
 976		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 977err_tx_sgmap:
 978	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
 979		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 980err_rx_sgmap:
 981	sg_free_table(&pl022->sgt_tx);
 982err_alloc_tx_sg:
 983	sg_free_table(&pl022->sgt_rx);
 984err_alloc_rx_sg:
 985	return -ENOMEM;
 986}
 987
 988static int pl022_dma_probe(struct pl022 *pl022)
 989{
 990	dma_cap_mask_t mask;
 991
 992	/* Try to acquire a generic DMA engine slave channel */
 993	dma_cap_zero(mask);
 994	dma_cap_set(DMA_SLAVE, mask);
 995	/*
 996	 * We need both RX and TX channels to do DMA, else do none
 997	 * of them.
 998	 */
 999	pl022->dma_rx_channel = dma_request_channel(mask,
1000					    pl022->host_info->dma_filter,
1001					    pl022->host_info->dma_rx_param);
1002	if (!pl022->dma_rx_channel) {
1003		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1004		goto err_no_rxchan;
1005	}
1006
1007	pl022->dma_tx_channel = dma_request_channel(mask,
1008					    pl022->host_info->dma_filter,
1009					    pl022->host_info->dma_tx_param);
1010	if (!pl022->dma_tx_channel) {
1011		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1012		goto err_no_txchan;
1013	}
1014
1015	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1016	if (!pl022->dummypage)
1017		goto err_no_dummypage;
1018
1019	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1020		 dma_chan_name(pl022->dma_rx_channel),
1021		 dma_chan_name(pl022->dma_tx_channel));
1022
1023	return 0;
1024
1025err_no_dummypage:
1026	dma_release_channel(pl022->dma_tx_channel);
1027err_no_txchan:
1028	dma_release_channel(pl022->dma_rx_channel);
1029	pl022->dma_rx_channel = NULL;
1030err_no_rxchan:
1031	dev_err(&pl022->adev->dev,
1032			"Failed to work in dma mode, work without dma!\n");
1033	return -ENODEV;
1034}
1035
1036static int pl022_dma_autoprobe(struct pl022 *pl022)
1037{
1038	struct device *dev = &pl022->adev->dev;
1039	struct dma_chan *chan;
1040	int err;
1041
1042	/* automatically configure DMA channels from platform, normally using DT */
1043	chan = dma_request_chan(dev, "rx");
1044	if (IS_ERR(chan)) {
1045		err = PTR_ERR(chan);
1046		goto err_no_rxchan;
1047	}
1048
1049	pl022->dma_rx_channel = chan;
1050
1051	chan = dma_request_chan(dev, "tx");
1052	if (IS_ERR(chan)) {
1053		err = PTR_ERR(chan);
1054		goto err_no_txchan;
1055	}
1056
1057	pl022->dma_tx_channel = chan;
1058
1059	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1060	if (!pl022->dummypage) {
1061		err = -ENOMEM;
1062		goto err_no_dummypage;
1063	}
1064
1065	return 0;
1066
1067err_no_dummypage:
1068	dma_release_channel(pl022->dma_tx_channel);
1069	pl022->dma_tx_channel = NULL;
1070err_no_txchan:
1071	dma_release_channel(pl022->dma_rx_channel);
1072	pl022->dma_rx_channel = NULL;
1073err_no_rxchan:
1074	return err;
1075}
1076
1077static void terminate_dma(struct pl022 *pl022)
1078{
1079	if (!pl022->dma_running)
1080		return;
1081
1082	struct dma_chan *rxchan = pl022->dma_rx_channel;
1083	struct dma_chan *txchan = pl022->dma_tx_channel;
1084
1085	dmaengine_terminate_all(rxchan);
1086	dmaengine_terminate_all(txchan);
1087	unmap_free_dma_scatter(pl022);
1088	pl022->dma_running = false;
1089}
1090
1091static void pl022_dma_remove(struct pl022 *pl022)
1092{
1093	terminate_dma(pl022);
 
1094	if (pl022->dma_tx_channel)
1095		dma_release_channel(pl022->dma_tx_channel);
1096	if (pl022->dma_rx_channel)
1097		dma_release_channel(pl022->dma_rx_channel);
1098	kfree(pl022->dummypage);
1099}
1100
1101#else
1102static inline int configure_dma(struct pl022 *pl022)
1103{
1104	return -ENODEV;
1105}
1106
1107static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1108{
1109	return 0;
1110}
1111
1112static inline int pl022_dma_probe(struct pl022 *pl022)
1113{
1114	return 0;
1115}
1116
1117static inline void terminate_dma(struct pl022 *pl022)
1118{
1119}
1120
1121static inline void pl022_dma_remove(struct pl022 *pl022)
1122{
1123}
1124#endif
1125
1126/**
1127 * pl022_interrupt_handler - Interrupt handler for SSP controller
1128 * @irq: IRQ number
1129 * @dev_id: Local device data
1130 *
1131 * This function handles interrupts generated for an interrupt based transfer.
1132 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1133 * current message's state as STATE_ERROR and schedule the tasklet
1134 * pump_transfers which will do the postprocessing of the current message by
1135 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1136 * more data, and writes data in TX FIFO till it is not full. If we complete
1137 * the transfer we move to the next transfer and schedule the tasklet.
1138 */
1139static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1140{
1141	struct pl022 *pl022 = dev_id;
 
1142	u16 irq_status = 0;
 
 
 
 
 
 
 
 
1143	/* Read the Interrupt Status Register */
1144	irq_status = readw(SSP_MIS(pl022->virtbase));
1145
1146	if (unlikely(!irq_status))
1147		return IRQ_NONE;
1148
1149	/*
1150	 * This handles the FIFO interrupts, the timeout
1151	 * interrupts are flatly ignored, they cannot be
1152	 * trusted.
1153	 */
1154	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1155		/*
1156		 * Overrun interrupt - bail out since our Data has been
1157		 * corrupted
1158		 */
1159		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1160		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1161			dev_err(&pl022->adev->dev,
1162				"RXFIFO is full\n");
1163
1164		/*
1165		 * Disable and clear interrupts, disable SSP,
1166		 * mark message with bad status so it can be
1167		 * retried.
1168		 */
1169		writew(DISABLE_ALL_INTERRUPTS,
1170		       SSP_IMSC(pl022->virtbase));
1171		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1172		writew((readw(SSP_CR1(pl022->virtbase)) &
1173			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1174		pl022->cur_transfer->error |= SPI_TRANS_FAIL_IO;
1175		spi_finalize_current_transfer(pl022->host);
 
 
1176		return IRQ_HANDLED;
1177	}
1178
1179	readwriter(pl022);
1180
1181	if (pl022->tx == pl022->tx_end) {
1182		/* Disable Transmit interrupt, enable receive interrupt */
1183		writew((readw(SSP_IMSC(pl022->virtbase)) &
1184		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1185		       SSP_IMSC(pl022->virtbase));
1186	}
1187
1188	/*
1189	 * Since all transactions must write as much as shall be read,
1190	 * we can conclude the entire transaction once RX is complete.
1191	 * At this point, all TX will always be finished.
1192	 */
1193	if (pl022->rx >= pl022->rx_end) {
1194		writew(DISABLE_ALL_INTERRUPTS,
1195		       SSP_IMSC(pl022->virtbase));
1196		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1197		if (unlikely(pl022->rx > pl022->rx_end)) {
1198			dev_warn(&pl022->adev->dev, "read %u surplus "
1199				 "bytes (did you request an odd "
1200				 "number of bytes on a 16bit bus?)\n",
1201				 (u32) (pl022->rx - pl022->rx_end));
1202		}
1203		spi_finalize_current_transfer(pl022->host);
 
 
 
 
 
 
1204		return IRQ_HANDLED;
1205	}
1206
1207	return IRQ_HANDLED;
1208}
1209
1210/*
1211 * This sets up the pointers to memory for the next message to
1212 * send out on the SPI bus.
1213 */
1214static int set_up_next_transfer(struct pl022 *pl022,
1215				struct spi_transfer *transfer)
1216{
1217	int residue;
1218
1219	/* Sanity check the message for this bus width */
1220	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1221	if (unlikely(residue != 0)) {
1222		dev_err(&pl022->adev->dev,
1223			"message of %u bytes to transmit but the current "
1224			"chip bus has a data width of %u bytes!\n",
1225			pl022->cur_transfer->len,
1226			pl022->cur_chip->n_bytes);
1227		dev_err(&pl022->adev->dev, "skipping this message\n");
1228		return -EIO;
1229	}
1230	pl022->tx = (void *)transfer->tx_buf;
1231	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1232	pl022->rx = (void *)transfer->rx_buf;
1233	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1234	pl022->write =
1235	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1236	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1237	return 0;
1238}
1239
1240static int do_interrupt_dma_transfer(struct pl022 *pl022)
 
 
 
 
 
 
1241{
1242	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244	/*
1245	 * Default is to enable all interrupts except RX -
1246	 * this will be enabled once TX is complete
1247	 */
1248	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1249
1250	ret = set_up_next_transfer(pl022, pl022->cur_transfer);
1251	if (ret)
1252		return ret;
1253
 
 
 
 
 
 
 
1254	/* If we're using DMA, set up DMA here */
1255	if (pl022->cur_chip->enable_dma) {
1256		/* Configure DMA transfer */
1257		if (configure_dma(pl022)) {
1258			dev_dbg(&pl022->adev->dev,
1259				"configuration of DMA failed, fall back to interrupt mode\n");
1260			goto err_config_dma;
1261		}
1262		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1263		irqflags = DISABLE_ALL_INTERRUPTS;
1264	}
1265err_config_dma:
1266	/* Enable SSP, turn on interrupts */
1267	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1268	       SSP_CR1(pl022->virtbase));
1269	writew(irqflags, SSP_IMSC(pl022->virtbase));
1270	return 1;
1271}
1272
1273static void print_current_status(struct pl022 *pl022)
1274{
1275	u32 read_cr0;
1276	u16 read_cr1, read_dmacr, read_sr;
1277
1278	if (pl022->vendor->extended_cr)
1279		read_cr0 = readl(SSP_CR0(pl022->virtbase));
1280	else
1281		read_cr0 = readw(SSP_CR0(pl022->virtbase));
1282	read_cr1 = readw(SSP_CR1(pl022->virtbase));
1283	read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1284	read_sr = readw(SSP_SR(pl022->virtbase));
1285
1286	dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1287	dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1288	dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1289	dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1290	dev_warn(&pl022->adev->dev,
1291			"spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1292			pl022->exp_fifo_level,
1293			pl022->vendor->fifodepth);
1294
1295}
1296
1297static int do_polling_transfer(struct pl022 *pl022)
1298{
1299	int ret;
 
 
1300	unsigned long time, timeout;
1301
1302	/* Configuration Changing Per Transfer */
1303	ret = set_up_next_transfer(pl022, pl022->cur_transfer);
1304	if (ret)
1305		return ret;
1306	/* Flush FIFOs and enable SSP */
1307	flush(pl022);
1308	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1309		SSP_CR1(pl022->virtbase));
1310
1311	dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
 
 
 
 
1312
1313	timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1314	while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1315		time = jiffies;
1316		readwriter(pl022);
1317		if (time_after(time, timeout)) {
1318			dev_warn(&pl022->adev->dev,
1319			"%s: timeout!\n", __func__);
1320			print_current_status(pl022);
1321			return -ETIMEDOUT;
 
 
 
 
1322		}
1323		cpu_relax();
1324	}
1325
1326	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1327}
1328
1329static int pl022_transfer_one(struct spi_controller *host, struct spi_device *spi,
1330			      struct spi_transfer *transfer)
1331{
1332	struct pl022 *pl022 = spi_controller_get_devdata(host);
1333
1334	pl022->cur_transfer = transfer;
 
 
 
 
 
1335
1336	/* Setup the SPI using the per chip configuration */
1337	pl022->cur_chip = spi_get_ctldata(spi);
1338	pl022->cur_cs = spi_get_chipselect(spi, 0);
1339
1340	restore_state(pl022);
1341	flush(pl022);
1342
1343	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1344		return do_polling_transfer(pl022);
1345	else
1346		return do_interrupt_dma_transfer(pl022);
1347}
1348
1349static void pl022_handle_err(struct spi_controller *ctlr, struct spi_message *message)
1350{
1351	struct pl022 *pl022 = spi_controller_get_devdata(ctlr);
1352
1353	terminate_dma(pl022);
1354	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1355	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1356}
1357
1358static int pl022_unprepare_transfer_hardware(struct spi_controller *host)
1359{
1360	struct pl022 *pl022 = spi_controller_get_devdata(host);
1361
1362	/* nothing more to do - disable spi/ssp and power off */
1363	writew((readw(SSP_CR1(pl022->virtbase)) &
1364		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1365
1366	return 0;
1367}
1368
1369static int verify_controller_parameters(struct pl022 *pl022,
1370				struct pl022_config_chip const *chip_info)
1371{
1372	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1373	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1374		dev_err(&pl022->adev->dev,
1375			"interface is configured incorrectly\n");
1376		return -EINVAL;
1377	}
1378	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1379	    (!pl022->vendor->unidir)) {
1380		dev_err(&pl022->adev->dev,
1381			"unidirectional mode not supported in this "
1382			"hardware version\n");
1383		return -EINVAL;
1384	}
1385	if ((chip_info->hierarchy != SSP_MASTER)
1386	    && (chip_info->hierarchy != SSP_SLAVE)) {
1387		dev_err(&pl022->adev->dev,
1388			"hierarchy is configured incorrectly\n");
1389		return -EINVAL;
1390	}
1391	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1392	    && (chip_info->com_mode != DMA_TRANSFER)
1393	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1394		dev_err(&pl022->adev->dev,
1395			"Communication mode is configured incorrectly\n");
1396		return -EINVAL;
1397	}
1398	switch (chip_info->rx_lev_trig) {
1399	case SSP_RX_1_OR_MORE_ELEM:
1400	case SSP_RX_4_OR_MORE_ELEM:
1401	case SSP_RX_8_OR_MORE_ELEM:
1402		/* These are always OK, all variants can handle this */
1403		break;
1404	case SSP_RX_16_OR_MORE_ELEM:
1405		if (pl022->vendor->fifodepth < 16) {
1406			dev_err(&pl022->adev->dev,
1407			"RX FIFO Trigger Level is configured incorrectly\n");
1408			return -EINVAL;
1409		}
1410		break;
1411	case SSP_RX_32_OR_MORE_ELEM:
1412		if (pl022->vendor->fifodepth < 32) {
1413			dev_err(&pl022->adev->dev,
1414			"RX FIFO Trigger Level is configured incorrectly\n");
1415			return -EINVAL;
1416		}
1417		break;
1418	default:
1419		dev_err(&pl022->adev->dev,
1420			"RX FIFO Trigger Level is configured incorrectly\n");
1421		return -EINVAL;
1422	}
1423	switch (chip_info->tx_lev_trig) {
1424	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1425	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1426	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1427		/* These are always OK, all variants can handle this */
1428		break;
1429	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1430		if (pl022->vendor->fifodepth < 16) {
1431			dev_err(&pl022->adev->dev,
1432			"TX FIFO Trigger Level is configured incorrectly\n");
1433			return -EINVAL;
1434		}
1435		break;
1436	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1437		if (pl022->vendor->fifodepth < 32) {
1438			dev_err(&pl022->adev->dev,
1439			"TX FIFO Trigger Level is configured incorrectly\n");
1440			return -EINVAL;
1441		}
1442		break;
1443	default:
1444		dev_err(&pl022->adev->dev,
1445			"TX FIFO Trigger Level is configured incorrectly\n");
1446		return -EINVAL;
1447	}
1448	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1449		if ((chip_info->ctrl_len < SSP_BITS_4)
1450		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1451			dev_err(&pl022->adev->dev,
1452				"CTRL LEN is configured incorrectly\n");
1453			return -EINVAL;
1454		}
1455		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1456		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1457			dev_err(&pl022->adev->dev,
1458				"Wait State is configured incorrectly\n");
1459			return -EINVAL;
1460		}
1461		/* Half duplex is only available in the ST Micro version */
1462		if (pl022->vendor->extended_cr) {
1463			if ((chip_info->duplex !=
1464			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1465			    && (chip_info->duplex !=
1466				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1467				dev_err(&pl022->adev->dev,
1468					"Microwire duplex mode is configured incorrectly\n");
1469				return -EINVAL;
1470			}
1471		} else {
1472			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) {
1473				dev_err(&pl022->adev->dev,
1474					"Microwire half duplex mode requested,"
1475					" but this is only available in the"
1476					" ST version of PL022\n");
1477				return -EINVAL;
1478			}
1479		}
1480	}
1481	return 0;
1482}
1483
1484static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1485{
1486	return rate / (cpsdvsr * (1 + scr));
1487}
1488
1489static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1490				    ssp_clock_params * clk_freq)
1491{
1492	/* Lets calculate the frequency parameters */
1493	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1494	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1495		best_scr = 0, tmp, found = 0;
1496
1497	rate = clk_get_rate(pl022->clk);
1498	/* cpsdvscr = 2 & scr 0 */
1499	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1500	/* cpsdvsr = 254 & scr = 255 */
1501	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1502
1503	if (freq > max_tclk)
1504		dev_warn(&pl022->adev->dev,
1505			"Max speed that can be programmed is %d Hz, you requested %d\n",
1506			max_tclk, freq);
1507
1508	if (freq < min_tclk) {
1509		dev_err(&pl022->adev->dev,
1510			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1511			freq, min_tclk);
1512		return -EINVAL;
1513	}
1514
1515	/*
1516	 * best_freq will give closest possible available rate (<= requested
1517	 * freq) for all values of scr & cpsdvsr.
1518	 */
1519	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1520		while (scr <= SCR_MAX) {
1521			tmp = spi_rate(rate, cpsdvsr, scr);
1522
1523			if (tmp > freq) {
1524				/* we need lower freq */
1525				scr++;
1526				continue;
1527			}
1528
1529			/*
1530			 * If found exact value, mark found and break.
1531			 * If found more closer value, update and break.
1532			 */
1533			if (tmp > best_freq) {
1534				best_freq = tmp;
1535				best_cpsdvsr = cpsdvsr;
1536				best_scr = scr;
1537
1538				if (tmp == freq)
1539					found = 1;
1540			}
1541			/*
1542			 * increased scr will give lower rates, which are not
1543			 * required
1544			 */
1545			break;
1546		}
1547		cpsdvsr += 2;
1548		scr = SCR_MIN;
1549	}
1550
1551	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1552			freq);
1553
1554	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1555	clk_freq->scr = (u8) (best_scr & 0xFF);
1556	dev_dbg(&pl022->adev->dev,
1557		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1558		freq, best_freq);
1559	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1560		clk_freq->cpsdvsr, clk_freq->scr);
1561
1562	return 0;
1563}
1564
1565/*
1566 * A piece of default chip info unless the platform
1567 * supplies it.
1568 */
1569static const struct pl022_config_chip pl022_default_chip_info = {
1570	.com_mode = INTERRUPT_TRANSFER,
1571	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1572	.hierarchy = SSP_MASTER,
1573	.slave_tx_disable = DO_NOT_DRIVE_TX,
1574	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1575	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1576	.ctrl_len = SSP_BITS_8,
1577	.wait_state = SSP_MWIRE_WAIT_ZERO,
1578	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
 
1579};
1580
1581/**
1582 * pl022_setup - setup function registered to SPI host framework
1583 * @spi: spi device which is requesting setup
1584 *
1585 * This function is registered to the SPI framework for this SPI host
1586 * controller. If it is the first time when setup is called by this device,
1587 * this function will initialize the runtime state for this chip and save
1588 * the same in the device structure. Else it will update the runtime info
1589 * with the updated chip info. Nothing is really being written to the
1590 * controller hardware here, that is not done until the actual transfer
1591 * commence.
1592 */
1593static int pl022_setup(struct spi_device *spi)
1594{
1595	struct pl022_config_chip const *chip_info;
1596	struct pl022_config_chip chip_info_dt;
1597	struct chip_data *chip;
1598	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1599	int status = 0;
1600	struct pl022 *pl022 = spi_controller_get_devdata(spi->controller);
1601	unsigned int bits = spi->bits_per_word;
1602	u32 tmp;
1603	struct device_node *np = spi->dev.of_node;
1604
1605	if (!spi->max_speed_hz)
1606		return -EINVAL;
1607
1608	/* Get controller_state if one is supplied */
1609	chip = spi_get_ctldata(spi);
1610
1611	if (chip == NULL) {
1612		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1613		if (!chip)
1614			return -ENOMEM;
1615		dev_dbg(&spi->dev,
1616			"allocated memory for controller's runtime state\n");
1617	}
1618
1619	/* Get controller data if one is supplied */
1620	chip_info = spi->controller_data;
1621
1622	if (chip_info == NULL) {
1623		if (np) {
1624			chip_info_dt = pl022_default_chip_info;
1625
1626			chip_info_dt.hierarchy = SSP_MASTER;
1627			of_property_read_u32(np, "pl022,interface",
1628				&chip_info_dt.iface);
1629			of_property_read_u32(np, "pl022,com-mode",
1630				&chip_info_dt.com_mode);
1631			of_property_read_u32(np, "pl022,rx-level-trig",
1632				&chip_info_dt.rx_lev_trig);
1633			of_property_read_u32(np, "pl022,tx-level-trig",
1634				&chip_info_dt.tx_lev_trig);
1635			of_property_read_u32(np, "pl022,ctrl-len",
1636				&chip_info_dt.ctrl_len);
1637			of_property_read_u32(np, "pl022,wait-state",
1638				&chip_info_dt.wait_state);
1639			of_property_read_u32(np, "pl022,duplex",
1640				&chip_info_dt.duplex);
1641
1642			chip_info = &chip_info_dt;
1643		} else {
1644			chip_info = &pl022_default_chip_info;
1645			/* spi_board_info.controller_data not is supplied */
1646			dev_dbg(&spi->dev,
1647				"using default controller_data settings\n");
1648		}
1649	} else
1650		dev_dbg(&spi->dev,
1651			"using user supplied controller_data settings\n");
1652
1653	/*
1654	 * We can override with custom divisors, else we use the board
1655	 * frequency setting
1656	 */
1657	if ((0 == chip_info->clk_freq.cpsdvsr)
1658	    && (0 == chip_info->clk_freq.scr)) {
1659		status = calculate_effective_freq(pl022,
1660						  spi->max_speed_hz,
1661						  &clk_freq);
1662		if (status < 0)
1663			goto err_config_params;
1664	} else {
1665		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1666		if ((clk_freq.cpsdvsr % 2) != 0)
1667			clk_freq.cpsdvsr =
1668				clk_freq.cpsdvsr - 1;
1669	}
1670	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1671	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1672		status = -EINVAL;
1673		dev_err(&spi->dev,
1674			"cpsdvsr is configured incorrectly\n");
1675		goto err_config_params;
1676	}
1677
1678	status = verify_controller_parameters(pl022, chip_info);
1679	if (status) {
1680		dev_err(&spi->dev, "controller data is incorrect");
1681		goto err_config_params;
1682	}
1683
1684	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1685	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1686
1687	/* Now set controller state based on controller data */
1688	chip->xfer_type = chip_info->com_mode;
 
 
 
 
 
 
 
1689
1690	/* Check bits per word with vendor specific range */
1691	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1692		status = -ENOTSUPP;
1693		dev_err(&spi->dev, "illegal data size for this controller!\n");
1694		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1695				pl022->vendor->max_bpw);
1696		goto err_config_params;
1697	} else if (bits <= 8) {
1698		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1699		chip->n_bytes = 1;
1700		chip->read = READING_U8;
1701		chip->write = WRITING_U8;
1702	} else if (bits <= 16) {
1703		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1704		chip->n_bytes = 2;
1705		chip->read = READING_U16;
1706		chip->write = WRITING_U16;
1707	} else {
1708		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1709		chip->n_bytes = 4;
1710		chip->read = READING_U32;
1711		chip->write = WRITING_U32;
1712	}
1713
1714	/* Now Initialize all register settings required for this chip */
1715	chip->cr0 = 0;
1716	chip->cr1 = 0;
1717	chip->dmacr = 0;
1718	chip->cpsr = 0;
1719	if ((chip_info->com_mode == DMA_TRANSFER)
1720	    && ((pl022->host_info)->enable_dma)) {
1721		chip->enable_dma = true;
1722		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1723		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1724			       SSP_DMACR_MASK_RXDMAE, 0);
1725		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1726			       SSP_DMACR_MASK_TXDMAE, 1);
1727	} else {
1728		chip->enable_dma = false;
1729		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1730		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1731			       SSP_DMACR_MASK_RXDMAE, 0);
1732		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1733			       SSP_DMACR_MASK_TXDMAE, 1);
1734	}
1735
1736	chip->cpsr = clk_freq.cpsdvsr;
1737
1738	/* Special setup for the ST micro extended control registers */
1739	if (pl022->vendor->extended_cr) {
1740		u32 etx;
1741
1742		if (pl022->vendor->pl023) {
1743			/* These bits are only in the PL023 */
1744			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1745				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1746		} else {
1747			/* These bits are in the PL022 but not PL023 */
1748			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1749				       SSP_CR0_MASK_HALFDUP_ST, 5);
1750			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1751				       SSP_CR0_MASK_CSS_ST, 16);
1752			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1753				       SSP_CR0_MASK_FRF_ST, 21);
1754			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1755				       SSP_CR1_MASK_MWAIT_ST, 6);
1756		}
1757		SSP_WRITE_BITS(chip->cr0, bits - 1,
1758			       SSP_CR0_MASK_DSS_ST, 0);
1759
1760		if (spi->mode & SPI_LSB_FIRST) {
1761			tmp = SSP_RX_LSB;
1762			etx = SSP_TX_LSB;
1763		} else {
1764			tmp = SSP_RX_MSB;
1765			etx = SSP_TX_MSB;
1766		}
1767		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1768		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1769		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1770			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
1771		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1772			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
1773	} else {
1774		SSP_WRITE_BITS(chip->cr0, bits - 1,
1775			       SSP_CR0_MASK_DSS, 0);
1776		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1777			       SSP_CR0_MASK_FRF, 4);
1778	}
1779
1780	/* Stuff that is common for all versions */
1781	if (spi->mode & SPI_CPOL)
1782		tmp = SSP_CLK_POL_IDLE_HIGH;
1783	else
1784		tmp = SSP_CLK_POL_IDLE_LOW;
1785	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1786
1787	if (spi->mode & SPI_CPHA)
1788		tmp = SSP_CLK_SECOND_EDGE;
1789	else
1790		tmp = SSP_CLK_FIRST_EDGE;
1791	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1792
1793	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1794	/* Loopback is available on all versions except PL023 */
1795	if (pl022->vendor->loopback) {
1796		if (spi->mode & SPI_LOOP)
1797			tmp = LOOPBACK_ENABLED;
1798		else
1799			tmp = LOOPBACK_DISABLED;
1800		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1801	}
1802	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1803	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1804	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
1805		3);
1806
1807	/* Save controller_state */
1808	spi_set_ctldata(spi, chip);
1809	return status;
1810 err_config_params:
1811	spi_set_ctldata(spi, NULL);
1812	kfree(chip);
1813	return status;
1814}
1815
1816/**
1817 * pl022_cleanup - cleanup function registered to SPI host framework
1818 * @spi: spi device which is requesting cleanup
1819 *
1820 * This function is registered to the SPI framework for this SPI host
1821 * controller. It will free the runtime state of chip.
1822 */
1823static void pl022_cleanup(struct spi_device *spi)
1824{
1825	struct chip_data *chip = spi_get_ctldata(spi);
1826
1827	spi_set_ctldata(spi, NULL);
1828	kfree(chip);
1829}
1830
1831static struct pl022_ssp_controller *
1832pl022_platform_data_dt_get(struct device *dev)
1833{
1834	struct device_node *np = dev->of_node;
1835	struct pl022_ssp_controller *pd;
 
1836
1837	if (!np) {
1838		dev_err(dev, "no dt node defined\n");
1839		return NULL;
1840	}
1841
1842	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
1843	if (!pd)
1844		return NULL;
1845
1846	pd->bus_id = -1;
 
 
 
1847	of_property_read_u32(np, "pl022,autosuspend-delay",
1848			     &pd->autosuspend_delay);
1849	pd->rt = of_property_read_bool(np, "pl022,rt");
1850
1851	return pd;
1852}
1853
1854static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
1855{
1856	struct device *dev = &adev->dev;
1857	struct pl022_ssp_controller *platform_info =
1858			dev_get_platdata(&adev->dev);
1859	struct spi_controller *host;
1860	struct pl022 *pl022 = NULL;	/*Data for this driver */
1861	int status = 0;
 
1862
1863	dev_info(&adev->dev,
1864		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
1865	if (!platform_info && IS_ENABLED(CONFIG_OF))
1866		platform_info = pl022_platform_data_dt_get(dev);
1867
1868	if (!platform_info) {
1869		dev_err(dev, "probe: no platform data defined\n");
1870		return -ENODEV;
1871	}
1872
1873	/* Allocate host with space for data */
1874	host = spi_alloc_host(dev, sizeof(struct pl022));
1875	if (host == NULL) {
1876		dev_err(&adev->dev, "probe - cannot alloc SPI host\n");
 
 
 
 
 
 
 
1877		return -ENOMEM;
1878	}
1879
1880	pl022 = spi_controller_get_devdata(host);
1881	pl022->host = host;
1882	pl022->host_info = platform_info;
1883	pl022->adev = adev;
1884	pl022->vendor = id->data;
 
 
 
 
 
 
1885
1886	/*
1887	 * Bus Number Which has been Assigned to this SSP controller
1888	 * on this board
1889	 */
1890	host->bus_num = platform_info->bus_id;
1891	host->cleanup = pl022_cleanup;
1892	host->setup = pl022_setup;
1893	host->auto_runtime_pm = true;
1894	host->transfer_one = pl022_transfer_one;
1895	host->set_cs = pl022_cs_control;
1896	host->handle_err = pl022_handle_err;
1897	host->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
1898	host->rt = platform_info->rt;
1899	host->dev.of_node = dev->of_node;
1900	host->use_gpio_descriptors = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1901
1902	/*
1903	 * Supports mode 0-3, loopback, and active low CS. Transfers are
1904	 * always MS bit first on the original pl022.
1905	 */
1906	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1907	if (pl022->vendor->extended_cr)
1908		host->mode_bits |= SPI_LSB_FIRST;
1909
1910	dev_dbg(&adev->dev, "BUSNO: %d\n", host->bus_num);
1911
1912	status = amba_request_regions(adev, NULL);
1913	if (status)
1914		goto err_no_ioregion;
1915
1916	pl022->phybase = adev->res.start;
1917	pl022->virtbase = devm_ioremap(dev, adev->res.start,
1918				       resource_size(&adev->res));
1919	if (pl022->virtbase == NULL) {
1920		status = -ENOMEM;
1921		goto err_no_ioremap;
1922	}
1923	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
1924		&adev->res.start, pl022->virtbase);
1925
1926	pl022->clk = devm_clk_get_enabled(&adev->dev, NULL);
1927	if (IS_ERR(pl022->clk)) {
1928		status = PTR_ERR(pl022->clk);
1929		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
1930		goto err_no_clk;
1931	}
1932
 
 
 
 
 
 
 
 
 
 
1933	/* Disable SSP */
1934	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
1935	       SSP_CR1(pl022->virtbase));
1936	load_ssp_default_config(pl022);
1937
1938	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
1939				  0, "pl022", pl022);
1940	if (status < 0) {
1941		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
1942		goto err_no_irq;
1943	}
1944
1945	/* Get DMA channels, try autoconfiguration first */
1946	status = pl022_dma_autoprobe(pl022);
1947	if (status == -EPROBE_DEFER) {
1948		dev_dbg(dev, "deferring probe to get DMA channel\n");
1949		goto err_no_irq;
1950	}
1951
1952	/* If that failed, use channels from platform_info */
1953	if (status == 0)
1954		platform_info->enable_dma = 1;
1955	else if (platform_info->enable_dma) {
1956		status = pl022_dma_probe(pl022);
1957		if (status != 0)
1958			platform_info->enable_dma = 0;
1959	}
1960
1961	/* Register with the SPI framework */
1962	amba_set_drvdata(adev, pl022);
1963	status = devm_spi_register_controller(&adev->dev, host);
1964	if (status != 0) {
1965		dev_err_probe(&adev->dev, status,
1966			      "problem registering spi host\n");
1967		goto err_spi_register;
1968	}
1969	dev_dbg(dev, "probe succeeded\n");
1970
1971	/* let runtime pm put suspend */
1972	if (platform_info->autosuspend_delay > 0) {
1973		dev_info(&adev->dev,
1974			"will use autosuspend for runtime pm, delay %dms\n",
1975			platform_info->autosuspend_delay);
1976		pm_runtime_set_autosuspend_delay(dev,
1977			platform_info->autosuspend_delay);
1978		pm_runtime_use_autosuspend(dev);
1979	}
1980	pm_runtime_put(dev);
1981
1982	return 0;
1983
1984 err_spi_register:
1985	if (platform_info->enable_dma)
1986		pl022_dma_remove(pl022);
1987 err_no_irq:
 
 
1988 err_no_clk:
1989 err_no_ioremap:
1990	amba_release_regions(adev);
1991 err_no_ioregion:
1992	spi_controller_put(host);
 
 
1993	return status;
1994}
1995
1996static void
1997pl022_remove(struct amba_device *adev)
1998{
1999	struct pl022 *pl022 = amba_get_drvdata(adev);
2000
2001	if (!pl022)
2002		return;
2003
2004	/*
2005	 * undo pm_runtime_put() in probe.  I assume that we're not
2006	 * accessing the primecell here.
2007	 */
2008	pm_runtime_get_noresume(&adev->dev);
2009
2010	load_ssp_default_config(pl022);
2011	if (pl022->host_info->enable_dma)
2012		pl022_dma_remove(pl022);
2013
 
2014	amba_release_regions(adev);
 
 
2015}
2016
2017#ifdef CONFIG_PM_SLEEP
2018static int pl022_suspend(struct device *dev)
2019{
2020	struct pl022 *pl022 = dev_get_drvdata(dev);
2021	int ret;
2022
2023	ret = spi_controller_suspend(pl022->host);
2024	if (ret)
2025		return ret;
2026
2027	ret = pm_runtime_force_suspend(dev);
2028	if (ret) {
2029		spi_controller_resume(pl022->host);
2030		return ret;
2031	}
2032
2033	pinctrl_pm_select_sleep_state(dev);
2034
2035	dev_dbg(dev, "suspended\n");
2036	return 0;
2037}
2038
2039static int pl022_resume(struct device *dev)
2040{
2041	struct pl022 *pl022 = dev_get_drvdata(dev);
2042	int ret;
2043
2044	ret = pm_runtime_force_resume(dev);
2045	if (ret)
2046		dev_err(dev, "problem resuming\n");
2047
2048	/* Start the queue running */
2049	ret = spi_controller_resume(pl022->host);
2050	if (!ret)
2051		dev_dbg(dev, "resumed\n");
2052
2053	return ret;
2054}
2055#endif
2056
2057#ifdef CONFIG_PM
2058static int pl022_runtime_suspend(struct device *dev)
2059{
2060	struct pl022 *pl022 = dev_get_drvdata(dev);
2061
2062	clk_disable_unprepare(pl022->clk);
2063	pinctrl_pm_select_idle_state(dev);
2064
2065	return 0;
2066}
2067
2068static int pl022_runtime_resume(struct device *dev)
2069{
2070	struct pl022 *pl022 = dev_get_drvdata(dev);
2071
2072	pinctrl_pm_select_default_state(dev);
2073	clk_prepare_enable(pl022->clk);
2074
2075	return 0;
2076}
2077#endif
2078
2079static const struct dev_pm_ops pl022_dev_pm_ops = {
2080	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2081	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2082};
2083
2084static struct vendor_data vendor_arm = {
2085	.fifodepth = 8,
2086	.max_bpw = 16,
2087	.unidir = false,
2088	.extended_cr = false,
2089	.pl023 = false,
2090	.loopback = true,
2091	.internal_cs_ctrl = false,
2092};
2093
2094static struct vendor_data vendor_st = {
2095	.fifodepth = 32,
2096	.max_bpw = 32,
2097	.unidir = false,
2098	.extended_cr = true,
2099	.pl023 = false,
2100	.loopback = true,
2101	.internal_cs_ctrl = false,
2102};
2103
2104static struct vendor_data vendor_st_pl023 = {
2105	.fifodepth = 32,
2106	.max_bpw = 32,
2107	.unidir = false,
2108	.extended_cr = true,
2109	.pl023 = true,
2110	.loopback = false,
2111	.internal_cs_ctrl = false,
2112};
2113
2114static struct vendor_data vendor_lsi = {
2115	.fifodepth = 8,
2116	.max_bpw = 16,
2117	.unidir = false,
2118	.extended_cr = false,
2119	.pl023 = false,
2120	.loopback = true,
2121	.internal_cs_ctrl = true,
2122};
2123
2124static const struct amba_id pl022_ids[] = {
2125	{
2126		/*
2127		 * ARM PL022 variant, this has a 16bit wide
2128		 * and 8 locations deep TX/RX FIFO
2129		 */
2130		.id	= 0x00041022,
2131		.mask	= 0x000fffff,
2132		.data	= &vendor_arm,
2133	},
2134	{
2135		/*
2136		 * ST Micro derivative, this has 32bit wide
2137		 * and 32 locations deep TX/RX FIFO
2138		 */
2139		.id	= 0x01080022,
2140		.mask	= 0xffffffff,
2141		.data	= &vendor_st,
2142	},
2143	{
2144		/*
2145		 * ST-Ericsson derivative "PL023" (this is not
2146		 * an official ARM number), this is a PL022 SSP block
2147		 * stripped to SPI mode only, it has 32bit wide
2148		 * and 32 locations deep TX/RX FIFO but no extended
2149		 * CR0/CR1 register
2150		 */
2151		.id	= 0x00080023,
2152		.mask	= 0xffffffff,
2153		.data	= &vendor_st_pl023,
2154	},
2155	{
2156		/*
2157		 * PL022 variant that has a chip select control register whih
2158		 * allows control of 5 output signals nCS[0:4].
2159		 */
2160		.id	= 0x000b6022,
2161		.mask	= 0x000fffff,
2162		.data	= &vendor_lsi,
2163	},
2164	{ 0, 0 },
2165};
2166
2167MODULE_DEVICE_TABLE(amba, pl022_ids);
2168
2169static struct amba_driver pl022_driver = {
2170	.drv = {
2171		.name	= "ssp-pl022",
2172		.pm	= &pl022_dev_pm_ops,
2173	},
2174	.id_table	= pl022_ids,
2175	.probe		= pl022_probe,
2176	.remove		= pl022_remove,
2177};
2178
2179static int __init pl022_init(void)
2180{
2181	return amba_driver_register(&pl022_driver);
2182}
2183subsys_initcall(pl022_init);
2184
2185static void __exit pl022_exit(void)
2186{
2187	amba_driver_unregister(&pl022_driver);
2188}
2189module_exit(pl022_exit);
2190
2191MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2192MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2193MODULE_LICENSE("GPL");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
   4 *
   5 * Copyright (C) 2008-2012 ST-Ericsson AB
   6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
   7 *
   8 * Author: Linus Walleij <linus.walleij@stericsson.com>
   9 *
  10 * Initial version inspired by:
  11 *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  12 * Initial adoption to PL022 by:
  13 *      Sachin Verma <sachin.verma@st.com>
  14 */
  15
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/device.h>
  19#include <linux/ioport.h>
  20#include <linux/errno.h>
  21#include <linux/interrupt.h>
  22#include <linux/spi/spi.h>
  23#include <linux/delay.h>
  24#include <linux/clk.h>
  25#include <linux/err.h>
  26#include <linux/amba/bus.h>
  27#include <linux/amba/pl022.h>
  28#include <linux/io.h>
  29#include <linux/slab.h>
  30#include <linux/dmaengine.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/scatterlist.h>
  33#include <linux/pm_runtime.h>
  34#include <linux/gpio.h>
  35#include <linux/of_gpio.h>
  36#include <linux/pinctrl/consumer.h>
  37
  38/*
  39 * This macro is used to define some register default values.
  40 * reg is masked with mask, the OR:ed with an (again masked)
  41 * val shifted sb steps to the left.
  42 */
  43#define SSP_WRITE_BITS(reg, val, mask, sb) \
  44 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  45
  46/*
  47 * This macro is also used to define some default values.
  48 * It will just shift val by sb steps to the left and mask
  49 * the result with mask.
  50 */
  51#define GEN_MASK_BITS(val, mask, sb) \
  52 (((val)<<(sb)) & (mask))
  53
  54#define DRIVE_TX		0
  55#define DO_NOT_DRIVE_TX		1
  56
  57#define DO_NOT_QUEUE_DMA	0
  58#define QUEUE_DMA		1
  59
  60#define RX_TRANSFER		1
  61#define TX_TRANSFER		2
  62
  63/*
  64 * Macros to access SSP Registers with their offsets
  65 */
  66#define SSP_CR0(r)	(r + 0x000)
  67#define SSP_CR1(r)	(r + 0x004)
  68#define SSP_DR(r)	(r + 0x008)
  69#define SSP_SR(r)	(r + 0x00C)
  70#define SSP_CPSR(r)	(r + 0x010)
  71#define SSP_IMSC(r)	(r + 0x014)
  72#define SSP_RIS(r)	(r + 0x018)
  73#define SSP_MIS(r)	(r + 0x01C)
  74#define SSP_ICR(r)	(r + 0x020)
  75#define SSP_DMACR(r)	(r + 0x024)
  76#define SSP_CSR(r)	(r + 0x030) /* vendor extension */
  77#define SSP_ITCR(r)	(r + 0x080)
  78#define SSP_ITIP(r)	(r + 0x084)
  79#define SSP_ITOP(r)	(r + 0x088)
  80#define SSP_TDR(r)	(r + 0x08C)
  81
  82#define SSP_PID0(r)	(r + 0xFE0)
  83#define SSP_PID1(r)	(r + 0xFE4)
  84#define SSP_PID2(r)	(r + 0xFE8)
  85#define SSP_PID3(r)	(r + 0xFEC)
  86
  87#define SSP_CID0(r)	(r + 0xFF0)
  88#define SSP_CID1(r)	(r + 0xFF4)
  89#define SSP_CID2(r)	(r + 0xFF8)
  90#define SSP_CID3(r)	(r + 0xFFC)
  91
  92/*
  93 * SSP Control Register 0  - SSP_CR0
  94 */
  95#define SSP_CR0_MASK_DSS	(0x0FUL << 0)
  96#define SSP_CR0_MASK_FRF	(0x3UL << 4)
  97#define SSP_CR0_MASK_SPO	(0x1UL << 6)
  98#define SSP_CR0_MASK_SPH	(0x1UL << 7)
  99#define SSP_CR0_MASK_SCR	(0xFFUL << 8)
 100
 101/*
 102 * The ST version of this block moves som bits
 103 * in SSP_CR0 and extends it to 32 bits
 104 */
 105#define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
 106#define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
 107#define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
 108#define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
 109
 110/*
 111 * SSP Control Register 0  - SSP_CR1
 112 */
 113#define SSP_CR1_MASK_LBM	(0x1UL << 0)
 114#define SSP_CR1_MASK_SSE	(0x1UL << 1)
 115#define SSP_CR1_MASK_MS		(0x1UL << 2)
 116#define SSP_CR1_MASK_SOD	(0x1UL << 3)
 117
 118/*
 119 * The ST version of this block adds some bits
 120 * in SSP_CR1
 121 */
 122#define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
 123#define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
 124#define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
 125#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
 126#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
 127/* This one is only in the PL023 variant */
 128#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
 129
 130/*
 131 * SSP Status Register - SSP_SR
 132 */
 133#define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
 134#define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
 135#define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
 136#define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
 137#define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
 138
 139/*
 140 * SSP Clock Prescale Register  - SSP_CPSR
 141 */
 142#define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
 143
 144/*
 145 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 146 */
 147#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
 148#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
 149#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
 150#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
 151
 152/*
 153 * SSP Raw Interrupt Status Register - SSP_RIS
 154 */
 155/* Receive Overrun Raw Interrupt status */
 156#define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
 157/* Receive Timeout Raw Interrupt status */
 158#define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
 159/* Receive FIFO Raw Interrupt status */
 160#define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
 161/* Transmit FIFO Raw Interrupt status */
 162#define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
 163
 164/*
 165 * SSP Masked Interrupt Status Register - SSP_MIS
 166 */
 167/* Receive Overrun Masked Interrupt status */
 168#define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
 169/* Receive Timeout Masked Interrupt status */
 170#define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
 171/* Receive FIFO Masked Interrupt status */
 172#define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
 173/* Transmit FIFO Masked Interrupt status */
 174#define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
 175
 176/*
 177 * SSP Interrupt Clear Register - SSP_ICR
 178 */
 179/* Receive Overrun Raw Clear Interrupt bit */
 180#define SSP_ICR_MASK_RORIC		(0x1UL << 0)
 181/* Receive Timeout Clear Interrupt bit */
 182#define SSP_ICR_MASK_RTIC		(0x1UL << 1)
 183
 184/*
 185 * SSP DMA Control Register - SSP_DMACR
 186 */
 187/* Receive DMA Enable bit */
 188#define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
 189/* Transmit DMA Enable bit */
 190#define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
 191
 192/*
 193 * SSP Chip Select Control Register - SSP_CSR
 194 * (vendor extension)
 195 */
 196#define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
 197
 198/*
 199 * SSP Integration Test control Register - SSP_ITCR
 200 */
 201#define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
 202#define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
 203
 204/*
 205 * SSP Integration Test Input Register - SSP_ITIP
 206 */
 207#define ITIP_MASK_SSPRXD		 (0x1UL << 0)
 208#define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
 209#define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
 210#define ITIP_MASK_RXDMAC		 (0x1UL << 3)
 211#define ITIP_MASK_TXDMAC		 (0x1UL << 4)
 212#define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
 213
 214/*
 215 * SSP Integration Test output Register - SSP_ITOP
 216 */
 217#define ITOP_MASK_SSPTXD		 (0x1UL << 0)
 218#define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
 219#define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
 220#define ITOP_MASK_SSPOEn		 (0x1UL << 3)
 221#define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
 222#define ITOP_MASK_RORINTR		 (0x1UL << 5)
 223#define ITOP_MASK_RTINTR		 (0x1UL << 6)
 224#define ITOP_MASK_RXINTR		 (0x1UL << 7)
 225#define ITOP_MASK_TXINTR		 (0x1UL << 8)
 226#define ITOP_MASK_INTR			 (0x1UL << 9)
 227#define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
 228#define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
 229#define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
 230#define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
 231
 232/*
 233 * SSP Test Data Register - SSP_TDR
 234 */
 235#define TDR_MASK_TESTDATA		(0xFFFFFFFF)
 236
 237/*
 238 * Message State
 239 * we use the spi_message.state (void *) pointer to
 240 * hold a single state value, that's why all this
 241 * (void *) casting is done here.
 242 */
 243#define STATE_START			((void *) 0)
 244#define STATE_RUNNING			((void *) 1)
 245#define STATE_DONE			((void *) 2)
 246#define STATE_ERROR			((void *) -1)
 247#define STATE_TIMEOUT			((void *) -2)
 248
 249/*
 250 * SSP State - Whether Enabled or Disabled
 251 */
 252#define SSP_DISABLED			(0)
 253#define SSP_ENABLED			(1)
 254
 255/*
 256 * SSP DMA State - Whether DMA Enabled or Disabled
 257 */
 258#define SSP_DMA_DISABLED		(0)
 259#define SSP_DMA_ENABLED			(1)
 260
 261/*
 262 * SSP Clock Defaults
 263 */
 264#define SSP_DEFAULT_CLKRATE 0x2
 265#define SSP_DEFAULT_PRESCALE 0x40
 266
 267/*
 268 * SSP Clock Parameter ranges
 269 */
 270#define CPSDVR_MIN 0x02
 271#define CPSDVR_MAX 0xFE
 272#define SCR_MIN 0x00
 273#define SCR_MAX 0xFF
 274
 275/*
 276 * SSP Interrupt related Macros
 277 */
 278#define DEFAULT_SSP_REG_IMSC  0x0UL
 279#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
 280#define ENABLE_ALL_INTERRUPTS ( \
 281	SSP_IMSC_MASK_RORIM | \
 282	SSP_IMSC_MASK_RTIM | \
 283	SSP_IMSC_MASK_RXIM | \
 284	SSP_IMSC_MASK_TXIM \
 285)
 286
 287#define CLEAR_ALL_INTERRUPTS  0x3
 288
 289#define SPI_POLLING_TIMEOUT 1000
 290
 291/*
 292 * The type of reading going on on this chip
 293 */
 294enum ssp_reading {
 295	READING_NULL,
 296	READING_U8,
 297	READING_U16,
 298	READING_U32
 299};
 300
 301/*
 302 * The type of writing going on on this chip
 303 */
 304enum ssp_writing {
 305	WRITING_NULL,
 306	WRITING_U8,
 307	WRITING_U16,
 308	WRITING_U32
 309};
 310
 311/**
 312 * struct vendor_data - vendor-specific config parameters
 313 * for PL022 derivates
 314 * @fifodepth: depth of FIFOs (both)
 315 * @max_bpw: maximum number of bits per word
 316 * @unidir: supports unidirection transfers
 317 * @extended_cr: 32 bit wide control register 0 with extra
 318 * features and extra features in CR1 as found in the ST variants
 319 * @pl023: supports a subset of the ST extensions called "PL023"
 320 * @loopback: supports loopback mode
 321 * @internal_cs_ctrl: supports chip select control register
 322 */
 323struct vendor_data {
 324	int fifodepth;
 325	int max_bpw;
 326	bool unidir;
 327	bool extended_cr;
 328	bool pl023;
 329	bool loopback;
 330	bool internal_cs_ctrl;
 331};
 332
 333/**
 334 * struct pl022 - This is the private SSP driver data structure
 335 * @adev: AMBA device model hookup
 336 * @vendor: vendor data for the IP block
 337 * @phybase: the physical memory where the SSP device resides
 338 * @virtbase: the virtual memory where the SSP is mapped
 339 * @clk: outgoing clock "SPICLK" for the SPI bus
 340 * @master: SPI framework hookup
 341 * @master_info: controller-specific data from machine setup
 342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 343 * @cur_msg: Pointer to current spi_message being processed
 344 * @cur_transfer: Pointer to current spi_transfer
 345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
 346 * @next_msg_cs_active: the next message in the queue has been examined
 347 *  and it was found that it uses the same chip select as the previous
 348 *  message, so we left it active after the previous transfer, and it's
 349 *  active already.
 350 * @tx: current position in TX buffer to be read
 351 * @tx_end: end position in TX buffer to be read
 352 * @rx: current position in RX buffer to be written
 353 * @rx_end: end position in RX buffer to be written
 354 * @read: the type of read currently going on
 355 * @write: the type of write currently going on
 356 * @exp_fifo_level: expected FIFO level
 357 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
 358 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
 359 * @dma_rx_channel: optional channel for RX DMA
 360 * @dma_tx_channel: optional channel for TX DMA
 361 * @sgt_rx: scattertable for the RX transfer
 362 * @sgt_tx: scattertable for the TX transfer
 363 * @dummypage: a dummy page used for driving data on the bus with DMA
 364 * @dma_running: indicates whether DMA is in operation
 365 * @cur_cs: current chip select (gpio)
 366 * @chipselects: list of chipselects (gpios)
 367 */
 368struct pl022 {
 369	struct amba_device		*adev;
 370	struct vendor_data		*vendor;
 371	resource_size_t			phybase;
 372	void __iomem			*virtbase;
 373	struct clk			*clk;
 374	struct spi_master		*master;
 375	struct pl022_ssp_controller	*master_info;
 376	/* Message per-transfer pump */
 377	struct tasklet_struct		pump_transfers;
 378	struct spi_message		*cur_msg;
 379	struct spi_transfer		*cur_transfer;
 380	struct chip_data		*cur_chip;
 381	bool				next_msg_cs_active;
 382	void				*tx;
 383	void				*tx_end;
 384	void				*rx;
 385	void				*rx_end;
 386	enum ssp_reading		read;
 387	enum ssp_writing		write;
 388	u32				exp_fifo_level;
 389	enum ssp_rx_level_trig		rx_lev_trig;
 390	enum ssp_tx_level_trig		tx_lev_trig;
 391	/* DMA settings */
 392#ifdef CONFIG_DMA_ENGINE
 393	struct dma_chan			*dma_rx_channel;
 394	struct dma_chan			*dma_tx_channel;
 395	struct sg_table			sgt_rx;
 396	struct sg_table			sgt_tx;
 397	char				*dummypage;
 398	bool				dma_running;
 399#endif
 400	int cur_cs;
 401	int *chipselects;
 402};
 403
 404/**
 405 * struct chip_data - To maintain runtime state of SSP for each client chip
 406 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 407 *       register is 32 bits wide rather than just 16
 408 * @cr1: Value of control register CR1 of SSP
 409 * @dmacr: Value of DMA control Register of SSP
 410 * @cpsr: Value of Clock prescale register
 411 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 412 * @enable_dma: Whether to enable DMA or not
 413 * @read: function ptr to be used to read when doing xfer for this chip
 414 * @write: function ptr to be used to write when doing xfer for this chip
 415 * @cs_control: chip select callback provided by chip
 416 * @xfer_type: polling/interrupt/DMA
 417 *
 418 * Runtime state of the SSP controller, maintained per chip,
 419 * This would be set according to the current message that would be served
 420 */
 421struct chip_data {
 422	u32 cr0;
 423	u16 cr1;
 424	u16 dmacr;
 425	u16 cpsr;
 426	u8 n_bytes;
 427	bool enable_dma;
 428	enum ssp_reading read;
 429	enum ssp_writing write;
 430	void (*cs_control) (u32 command);
 431	int xfer_type;
 432};
 433
 434/**
 435 * null_cs_control - Dummy chip select function
 436 * @command: select/delect the chip
 437 *
 438 * If no chip select function is provided by client this is used as dummy
 439 * chip select
 440 */
 441static void null_cs_control(u32 command)
 442{
 443	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
 444}
 445
 446/**
 447 * internal_cs_control - Control chip select signals via SSP_CSR.
 448 * @pl022: SSP driver private data structure
 449 * @command: select/delect the chip
 450 *
 451 * Used on controller with internal chip select control via SSP_CSR register
 452 * (vendor extension). Each of the 5 LSB in the register controls one chip
 453 * select signal.
 454 */
 455static void internal_cs_control(struct pl022 *pl022, u32 command)
 456{
 457	u32 tmp;
 458
 459	tmp = readw(SSP_CSR(pl022->virtbase));
 460	if (command == SSP_CHIP_SELECT)
 461		tmp &= ~BIT(pl022->cur_cs);
 462	else
 463		tmp |= BIT(pl022->cur_cs);
 464	writew(tmp, SSP_CSR(pl022->virtbase));
 465}
 466
 467static void pl022_cs_control(struct pl022 *pl022, u32 command)
 468{
 
 469	if (pl022->vendor->internal_cs_ctrl)
 470		internal_cs_control(pl022, command);
 471	else if (gpio_is_valid(pl022->cur_cs))
 472		gpio_set_value(pl022->cur_cs, command);
 473	else
 474		pl022->cur_chip->cs_control(command);
 475}
 476
 477/**
 478 * giveback - current spi_message is over, schedule next message and call
 479 * callback of this message. Assumes that caller already
 480 * set message->status; dma and pio irqs are blocked
 481 * @pl022: SSP driver private data structure
 482 */
 483static void giveback(struct pl022 *pl022)
 484{
 485	struct spi_transfer *last_transfer;
 486	pl022->next_msg_cs_active = false;
 487
 488	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
 489					struct spi_transfer, transfer_list);
 490
 491	/* Delay if requested before any change in chip select */
 492	/*
 493	 * FIXME: This runs in interrupt context.
 494	 * Is this really smart?
 495	 */
 496	spi_transfer_delay_exec(last_transfer);
 497
 498	if (!last_transfer->cs_change) {
 499		struct spi_message *next_msg;
 500
 501		/*
 502		 * cs_change was not set. We can keep the chip select
 503		 * enabled if there is message in the queue and it is
 504		 * for the same spi device.
 505		 *
 506		 * We cannot postpone this until pump_messages, because
 507		 * after calling msg->complete (below) the driver that
 508		 * sent the current message could be unloaded, which
 509		 * could invalidate the cs_control() callback...
 510		 */
 511		/* get a pointer to the next message, if any */
 512		next_msg = spi_get_next_queued_message(pl022->master);
 513
 514		/*
 515		 * see if the next and current messages point
 516		 * to the same spi device.
 517		 */
 518		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
 519			next_msg = NULL;
 520		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
 521			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 522		else
 523			pl022->next_msg_cs_active = true;
 524
 525	}
 526
 527	pl022->cur_msg = NULL;
 528	pl022->cur_transfer = NULL;
 529	pl022->cur_chip = NULL;
 530
 531	/* disable the SPI/SSP operation */
 532	writew((readw(SSP_CR1(pl022->virtbase)) &
 533		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
 534
 535	spi_finalize_current_message(pl022->master);
 536}
 537
 538/**
 539 * flush - flush the FIFO to reach a clean state
 540 * @pl022: SSP driver private data structure
 541 */
 542static int flush(struct pl022 *pl022)
 543{
 544	unsigned long limit = loops_per_jiffy << 1;
 545
 546	dev_dbg(&pl022->adev->dev, "flush\n");
 547	do {
 548		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 549			readw(SSP_DR(pl022->virtbase));
 550	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
 551
 552	pl022->exp_fifo_level = 0;
 553
 554	return limit;
 555}
 556
 557/**
 558 * restore_state - Load configuration of current chip
 559 * @pl022: SSP driver private data structure
 560 */
 561static void restore_state(struct pl022 *pl022)
 562{
 563	struct chip_data *chip = pl022->cur_chip;
 564
 565	if (pl022->vendor->extended_cr)
 566		writel(chip->cr0, SSP_CR0(pl022->virtbase));
 567	else
 568		writew(chip->cr0, SSP_CR0(pl022->virtbase));
 569	writew(chip->cr1, SSP_CR1(pl022->virtbase));
 570	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
 571	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
 572	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 573	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 574}
 575
 576/*
 577 * Default SSP Register Values
 578 */
 579#define DEFAULT_SSP_REG_CR0 ( \
 580	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
 581	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
 582	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 583	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 584	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 585)
 586
 587/* ST versions have slightly different bit layout */
 588#define DEFAULT_SSP_REG_CR0_ST ( \
 589	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
 590	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
 591	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 592	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 593	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
 594	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
 595	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
 596)
 597
 598/* The PL023 version is slightly different again */
 599#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
 600	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
 601	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 602	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 603	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 604)
 605
 606#define DEFAULT_SSP_REG_CR1 ( \
 607	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
 608	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 609	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 610	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
 611)
 612
 613/* ST versions extend this register to use all 16 bits */
 614#define DEFAULT_SSP_REG_CR1_ST ( \
 615	DEFAULT_SSP_REG_CR1 | \
 616	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 617	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 618	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
 619	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 620	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
 621)
 622
 623/*
 624 * The PL023 variant has further differences: no loopback mode, no microwire
 625 * support, and a new clock feedback delay setting.
 626 */
 627#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
 628	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 629	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 630	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
 631	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 632	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 633	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 634	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
 635	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
 636)
 637
 638#define DEFAULT_SSP_REG_CPSR ( \
 639	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
 640)
 641
 642#define DEFAULT_SSP_REG_DMACR (\
 643	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
 644	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
 645)
 646
 647/**
 648 * load_ssp_default_config - Load default configuration for SSP
 649 * @pl022: SSP driver private data structure
 650 */
 651static void load_ssp_default_config(struct pl022 *pl022)
 652{
 653	if (pl022->vendor->pl023) {
 654		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
 655		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
 656	} else if (pl022->vendor->extended_cr) {
 657		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
 658		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
 659	} else {
 660		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
 661		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
 662	}
 663	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
 664	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
 665	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 666	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 667}
 668
 669/*
 670 * This will write to TX and read from RX according to the parameters
 671 * set in pl022.
 672 */
 673static void readwriter(struct pl022 *pl022)
 674{
 675
 676	/*
 677	 * The FIFO depth is different between primecell variants.
 678	 * I believe filling in too much in the FIFO might cause
 679	 * errons in 8bit wide transfers on ARM variants (just 8 words
 680	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
 681	 *
 682	 * To prevent this issue, the TX FIFO is only filled to the
 683	 * unused RX FIFO fill length, regardless of what the TX
 684	 * FIFO status flag indicates.
 685	 */
 686	dev_dbg(&pl022->adev->dev,
 687		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
 688		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
 689
 690	/* Read as much as you can */
 691	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 692	       && (pl022->rx < pl022->rx_end)) {
 693		switch (pl022->read) {
 694		case READING_NULL:
 695			readw(SSP_DR(pl022->virtbase));
 696			break;
 697		case READING_U8:
 698			*(u8 *) (pl022->rx) =
 699				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 700			break;
 701		case READING_U16:
 702			*(u16 *) (pl022->rx) =
 703				(u16) readw(SSP_DR(pl022->virtbase));
 704			break;
 705		case READING_U32:
 706			*(u32 *) (pl022->rx) =
 707				readl(SSP_DR(pl022->virtbase));
 708			break;
 709		}
 710		pl022->rx += (pl022->cur_chip->n_bytes);
 711		pl022->exp_fifo_level--;
 712	}
 713	/*
 714	 * Write as much as possible up to the RX FIFO size
 715	 */
 716	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
 717	       && (pl022->tx < pl022->tx_end)) {
 718		switch (pl022->write) {
 719		case WRITING_NULL:
 720			writew(0x0, SSP_DR(pl022->virtbase));
 721			break;
 722		case WRITING_U8:
 723			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
 724			break;
 725		case WRITING_U16:
 726			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
 727			break;
 728		case WRITING_U32:
 729			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
 730			break;
 731		}
 732		pl022->tx += (pl022->cur_chip->n_bytes);
 733		pl022->exp_fifo_level++;
 734		/*
 735		 * This inner reader takes care of things appearing in the RX
 736		 * FIFO as we're transmitting. This will happen a lot since the
 737		 * clock starts running when you put things into the TX FIFO,
 738		 * and then things are continuously clocked into the RX FIFO.
 739		 */
 740		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 741		       && (pl022->rx < pl022->rx_end)) {
 742			switch (pl022->read) {
 743			case READING_NULL:
 744				readw(SSP_DR(pl022->virtbase));
 745				break;
 746			case READING_U8:
 747				*(u8 *) (pl022->rx) =
 748					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 749				break;
 750			case READING_U16:
 751				*(u16 *) (pl022->rx) =
 752					(u16) readw(SSP_DR(pl022->virtbase));
 753				break;
 754			case READING_U32:
 755				*(u32 *) (pl022->rx) =
 756					readl(SSP_DR(pl022->virtbase));
 757				break;
 758			}
 759			pl022->rx += (pl022->cur_chip->n_bytes);
 760			pl022->exp_fifo_level--;
 761		}
 762	}
 763	/*
 764	 * When we exit here the TX FIFO should be full and the RX FIFO
 765	 * should be empty
 766	 */
 767}
 768
 769/**
 770 * next_transfer - Move to the Next transfer in the current spi message
 771 * @pl022: SSP driver private data structure
 772 *
 773 * This function moves though the linked list of spi transfers in the
 774 * current spi message and returns with the state of current spi
 775 * message i.e whether its last transfer is done(STATE_DONE) or
 776 * Next transfer is ready(STATE_RUNNING)
 777 */
 778static void *next_transfer(struct pl022 *pl022)
 779{
 780	struct spi_message *msg = pl022->cur_msg;
 781	struct spi_transfer *trans = pl022->cur_transfer;
 782
 783	/* Move to next transfer */
 784	if (trans->transfer_list.next != &msg->transfers) {
 785		pl022->cur_transfer =
 786		    list_entry(trans->transfer_list.next,
 787			       struct spi_transfer, transfer_list);
 788		return STATE_RUNNING;
 789	}
 790	return STATE_DONE;
 791}
 792
 793/*
 794 * This DMA functionality is only compiled in if we have
 795 * access to the generic DMA devices/DMA engine.
 796 */
 797#ifdef CONFIG_DMA_ENGINE
 798static void unmap_free_dma_scatter(struct pl022 *pl022)
 799{
 800	/* Unmap and free the SG tables */
 801	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
 802		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 803	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
 804		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 805	sg_free_table(&pl022->sgt_rx);
 806	sg_free_table(&pl022->sgt_tx);
 807}
 808
 809static void dma_callback(void *data)
 810{
 811	struct pl022 *pl022 = data;
 812	struct spi_message *msg = pl022->cur_msg;
 813
 814	BUG_ON(!pl022->sgt_rx.sgl);
 815
 816#ifdef VERBOSE_DEBUG
 817	/*
 818	 * Optionally dump out buffers to inspect contents, this is
 819	 * good if you want to convince yourself that the loopback
 820	 * read/write contents are the same, when adopting to a new
 821	 * DMA engine.
 822	 */
 823	{
 824		struct scatterlist *sg;
 825		unsigned int i;
 826
 827		dma_sync_sg_for_cpu(&pl022->adev->dev,
 828				    pl022->sgt_rx.sgl,
 829				    pl022->sgt_rx.nents,
 830				    DMA_FROM_DEVICE);
 831
 832		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
 833			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
 834			print_hex_dump(KERN_ERR, "SPI RX: ",
 835				       DUMP_PREFIX_OFFSET,
 836				       16,
 837				       1,
 838				       sg_virt(sg),
 839				       sg_dma_len(sg),
 840				       1);
 841		}
 842		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
 843			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
 844			print_hex_dump(KERN_ERR, "SPI TX: ",
 845				       DUMP_PREFIX_OFFSET,
 846				       16,
 847				       1,
 848				       sg_virt(sg),
 849				       sg_dma_len(sg),
 850				       1);
 851		}
 852	}
 853#endif
 854
 855	unmap_free_dma_scatter(pl022);
 856
 857	/* Update total bytes transferred */
 858	msg->actual_length += pl022->cur_transfer->len;
 859	/* Move to next transfer */
 860	msg->state = next_transfer(pl022);
 861	if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
 862		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 863	tasklet_schedule(&pl022->pump_transfers);
 864}
 865
 866static void setup_dma_scatter(struct pl022 *pl022,
 867			      void *buffer,
 868			      unsigned int length,
 869			      struct sg_table *sgtab)
 870{
 871	struct scatterlist *sg;
 872	int bytesleft = length;
 873	void *bufp = buffer;
 874	int mapbytes;
 875	int i;
 876
 877	if (buffer) {
 878		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 879			/*
 880			 * If there are less bytes left than what fits
 881			 * in the current page (plus page alignment offset)
 882			 * we just feed in this, else we stuff in as much
 883			 * as we can.
 884			 */
 885			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
 886				mapbytes = bytesleft;
 887			else
 888				mapbytes = PAGE_SIZE - offset_in_page(bufp);
 889			sg_set_page(sg, virt_to_page(bufp),
 890				    mapbytes, offset_in_page(bufp));
 891			bufp += mapbytes;
 892			bytesleft -= mapbytes;
 893			dev_dbg(&pl022->adev->dev,
 894				"set RX/TX target page @ %p, %d bytes, %d left\n",
 895				bufp, mapbytes, bytesleft);
 896		}
 897	} else {
 898		/* Map the dummy buffer on every page */
 899		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 900			if (bytesleft < PAGE_SIZE)
 901				mapbytes = bytesleft;
 902			else
 903				mapbytes = PAGE_SIZE;
 904			sg_set_page(sg, virt_to_page(pl022->dummypage),
 905				    mapbytes, 0);
 906			bytesleft -= mapbytes;
 907			dev_dbg(&pl022->adev->dev,
 908				"set RX/TX to dummy page %d bytes, %d left\n",
 909				mapbytes, bytesleft);
 910
 911		}
 912	}
 913	BUG_ON(bytesleft);
 914}
 915
 916/**
 917 * configure_dma - configures the channels for the next transfer
 918 * @pl022: SSP driver's private data structure
 919 */
 920static int configure_dma(struct pl022 *pl022)
 921{
 922	struct dma_slave_config rx_conf = {
 923		.src_addr = SSP_DR(pl022->phybase),
 924		.direction = DMA_DEV_TO_MEM,
 925		.device_fc = false,
 926	};
 927	struct dma_slave_config tx_conf = {
 928		.dst_addr = SSP_DR(pl022->phybase),
 929		.direction = DMA_MEM_TO_DEV,
 930		.device_fc = false,
 931	};
 932	unsigned int pages;
 933	int ret;
 934	int rx_sglen, tx_sglen;
 935	struct dma_chan *rxchan = pl022->dma_rx_channel;
 936	struct dma_chan *txchan = pl022->dma_tx_channel;
 937	struct dma_async_tx_descriptor *rxdesc;
 938	struct dma_async_tx_descriptor *txdesc;
 939
 940	/* Check that the channels are available */
 941	if (!rxchan || !txchan)
 942		return -ENODEV;
 943
 944	/*
 945	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
 946	 * Notice that the DMA engine uses one-to-one mapping. Since we can
 947	 * not trigger on 2 elements this needs explicit mapping rather than
 948	 * calculation.
 949	 */
 950	switch (pl022->rx_lev_trig) {
 951	case SSP_RX_1_OR_MORE_ELEM:
 952		rx_conf.src_maxburst = 1;
 953		break;
 954	case SSP_RX_4_OR_MORE_ELEM:
 955		rx_conf.src_maxburst = 4;
 956		break;
 957	case SSP_RX_8_OR_MORE_ELEM:
 958		rx_conf.src_maxburst = 8;
 959		break;
 960	case SSP_RX_16_OR_MORE_ELEM:
 961		rx_conf.src_maxburst = 16;
 962		break;
 963	case SSP_RX_32_OR_MORE_ELEM:
 964		rx_conf.src_maxburst = 32;
 965		break;
 966	default:
 967		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
 968		break;
 969	}
 970
 971	switch (pl022->tx_lev_trig) {
 972	case SSP_TX_1_OR_MORE_EMPTY_LOC:
 973		tx_conf.dst_maxburst = 1;
 974		break;
 975	case SSP_TX_4_OR_MORE_EMPTY_LOC:
 976		tx_conf.dst_maxburst = 4;
 977		break;
 978	case SSP_TX_8_OR_MORE_EMPTY_LOC:
 979		tx_conf.dst_maxburst = 8;
 980		break;
 981	case SSP_TX_16_OR_MORE_EMPTY_LOC:
 982		tx_conf.dst_maxburst = 16;
 983		break;
 984	case SSP_TX_32_OR_MORE_EMPTY_LOC:
 985		tx_conf.dst_maxburst = 32;
 986		break;
 987	default:
 988		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
 989		break;
 990	}
 991
 992	switch (pl022->read) {
 993	case READING_NULL:
 994		/* Use the same as for writing */
 995		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 996		break;
 997	case READING_U8:
 998		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 999		break;
1000	case READING_U16:
1001		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1002		break;
1003	case READING_U32:
1004		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1005		break;
1006	}
1007
1008	switch (pl022->write) {
1009	case WRITING_NULL:
1010		/* Use the same as for reading */
1011		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1012		break;
1013	case WRITING_U8:
1014		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1015		break;
1016	case WRITING_U16:
1017		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1018		break;
1019	case WRITING_U32:
1020		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1021		break;
1022	}
1023
1024	/* SPI pecularity: we need to read and write the same width */
1025	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1026		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1027	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1028		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1029	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1030
1031	dmaengine_slave_config(rxchan, &rx_conf);
1032	dmaengine_slave_config(txchan, &tx_conf);
1033
1034	/* Create sglists for the transfers */
1035	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1036	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1037
1038	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1039	if (ret)
1040		goto err_alloc_rx_sg;
1041
1042	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1043	if (ret)
1044		goto err_alloc_tx_sg;
1045
1046	/* Fill in the scatterlists for the RX+TX buffers */
1047	setup_dma_scatter(pl022, pl022->rx,
1048			  pl022->cur_transfer->len, &pl022->sgt_rx);
1049	setup_dma_scatter(pl022, pl022->tx,
1050			  pl022->cur_transfer->len, &pl022->sgt_tx);
1051
1052	/* Map DMA buffers */
1053	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1054			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1055	if (!rx_sglen)
1056		goto err_rx_sgmap;
1057
1058	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1059			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1060	if (!tx_sglen)
1061		goto err_tx_sgmap;
1062
1063	/* Send both scatterlists */
1064	rxdesc = dmaengine_prep_slave_sg(rxchan,
1065				      pl022->sgt_rx.sgl,
1066				      rx_sglen,
1067				      DMA_DEV_TO_MEM,
1068				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1069	if (!rxdesc)
1070		goto err_rxdesc;
1071
1072	txdesc = dmaengine_prep_slave_sg(txchan,
1073				      pl022->sgt_tx.sgl,
1074				      tx_sglen,
1075				      DMA_MEM_TO_DEV,
1076				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1077	if (!txdesc)
1078		goto err_txdesc;
1079
1080	/* Put the callback on the RX transfer only, that should finish last */
1081	rxdesc->callback = dma_callback;
1082	rxdesc->callback_param = pl022;
1083
1084	/* Submit and fire RX and TX with TX last so we're ready to read! */
1085	dmaengine_submit(rxdesc);
1086	dmaengine_submit(txdesc);
1087	dma_async_issue_pending(rxchan);
1088	dma_async_issue_pending(txchan);
1089	pl022->dma_running = true;
1090
1091	return 0;
1092
1093err_txdesc:
1094	dmaengine_terminate_all(txchan);
1095err_rxdesc:
1096	dmaengine_terminate_all(rxchan);
1097	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1098		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1099err_tx_sgmap:
1100	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1101		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1102err_rx_sgmap:
1103	sg_free_table(&pl022->sgt_tx);
1104err_alloc_tx_sg:
1105	sg_free_table(&pl022->sgt_rx);
1106err_alloc_rx_sg:
1107	return -ENOMEM;
1108}
1109
1110static int pl022_dma_probe(struct pl022 *pl022)
1111{
1112	dma_cap_mask_t mask;
1113
1114	/* Try to acquire a generic DMA engine slave channel */
1115	dma_cap_zero(mask);
1116	dma_cap_set(DMA_SLAVE, mask);
1117	/*
1118	 * We need both RX and TX channels to do DMA, else do none
1119	 * of them.
1120	 */
1121	pl022->dma_rx_channel = dma_request_channel(mask,
1122					    pl022->master_info->dma_filter,
1123					    pl022->master_info->dma_rx_param);
1124	if (!pl022->dma_rx_channel) {
1125		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1126		goto err_no_rxchan;
1127	}
1128
1129	pl022->dma_tx_channel = dma_request_channel(mask,
1130					    pl022->master_info->dma_filter,
1131					    pl022->master_info->dma_tx_param);
1132	if (!pl022->dma_tx_channel) {
1133		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1134		goto err_no_txchan;
1135	}
1136
1137	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1138	if (!pl022->dummypage)
1139		goto err_no_dummypage;
1140
1141	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1142		 dma_chan_name(pl022->dma_rx_channel),
1143		 dma_chan_name(pl022->dma_tx_channel));
1144
1145	return 0;
1146
1147err_no_dummypage:
1148	dma_release_channel(pl022->dma_tx_channel);
1149err_no_txchan:
1150	dma_release_channel(pl022->dma_rx_channel);
1151	pl022->dma_rx_channel = NULL;
1152err_no_rxchan:
1153	dev_err(&pl022->adev->dev,
1154			"Failed to work in dma mode, work without dma!\n");
1155	return -ENODEV;
1156}
1157
1158static int pl022_dma_autoprobe(struct pl022 *pl022)
1159{
1160	struct device *dev = &pl022->adev->dev;
1161	struct dma_chan *chan;
1162	int err;
1163
1164	/* automatically configure DMA channels from platform, normally using DT */
1165	chan = dma_request_chan(dev, "rx");
1166	if (IS_ERR(chan)) {
1167		err = PTR_ERR(chan);
1168		goto err_no_rxchan;
1169	}
1170
1171	pl022->dma_rx_channel = chan;
1172
1173	chan = dma_request_chan(dev, "tx");
1174	if (IS_ERR(chan)) {
1175		err = PTR_ERR(chan);
1176		goto err_no_txchan;
1177	}
1178
1179	pl022->dma_tx_channel = chan;
1180
1181	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1182	if (!pl022->dummypage) {
1183		err = -ENOMEM;
1184		goto err_no_dummypage;
1185	}
1186
1187	return 0;
1188
1189err_no_dummypage:
1190	dma_release_channel(pl022->dma_tx_channel);
1191	pl022->dma_tx_channel = NULL;
1192err_no_txchan:
1193	dma_release_channel(pl022->dma_rx_channel);
1194	pl022->dma_rx_channel = NULL;
1195err_no_rxchan:
1196	return err;
1197}
1198		
1199static void terminate_dma(struct pl022 *pl022)
1200{
 
 
 
1201	struct dma_chan *rxchan = pl022->dma_rx_channel;
1202	struct dma_chan *txchan = pl022->dma_tx_channel;
1203
1204	dmaengine_terminate_all(rxchan);
1205	dmaengine_terminate_all(txchan);
1206	unmap_free_dma_scatter(pl022);
1207	pl022->dma_running = false;
1208}
1209
1210static void pl022_dma_remove(struct pl022 *pl022)
1211{
1212	if (pl022->dma_running)
1213		terminate_dma(pl022);
1214	if (pl022->dma_tx_channel)
1215		dma_release_channel(pl022->dma_tx_channel);
1216	if (pl022->dma_rx_channel)
1217		dma_release_channel(pl022->dma_rx_channel);
1218	kfree(pl022->dummypage);
1219}
1220
1221#else
1222static inline int configure_dma(struct pl022 *pl022)
1223{
1224	return -ENODEV;
1225}
1226
1227static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1228{
1229	return 0;
1230}
1231
1232static inline int pl022_dma_probe(struct pl022 *pl022)
1233{
1234	return 0;
1235}
1236
 
 
 
 
1237static inline void pl022_dma_remove(struct pl022 *pl022)
1238{
1239}
1240#endif
1241
1242/**
1243 * pl022_interrupt_handler - Interrupt handler for SSP controller
1244 * @irq: IRQ number
1245 * @dev_id: Local device data
1246 *
1247 * This function handles interrupts generated for an interrupt based transfer.
1248 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1249 * current message's state as STATE_ERROR and schedule the tasklet
1250 * pump_transfers which will do the postprocessing of the current message by
1251 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1252 * more data, and writes data in TX FIFO till it is not full. If we complete
1253 * the transfer we move to the next transfer and schedule the tasklet.
1254 */
1255static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1256{
1257	struct pl022 *pl022 = dev_id;
1258	struct spi_message *msg = pl022->cur_msg;
1259	u16 irq_status = 0;
1260
1261	if (unlikely(!msg)) {
1262		dev_err(&pl022->adev->dev,
1263			"bad message state in interrupt handler");
1264		/* Never fail */
1265		return IRQ_HANDLED;
1266	}
1267
1268	/* Read the Interrupt Status Register */
1269	irq_status = readw(SSP_MIS(pl022->virtbase));
1270
1271	if (unlikely(!irq_status))
1272		return IRQ_NONE;
1273
1274	/*
1275	 * This handles the FIFO interrupts, the timeout
1276	 * interrupts are flatly ignored, they cannot be
1277	 * trusted.
1278	 */
1279	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1280		/*
1281		 * Overrun interrupt - bail out since our Data has been
1282		 * corrupted
1283		 */
1284		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1285		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1286			dev_err(&pl022->adev->dev,
1287				"RXFIFO is full\n");
1288
1289		/*
1290		 * Disable and clear interrupts, disable SSP,
1291		 * mark message with bad status so it can be
1292		 * retried.
1293		 */
1294		writew(DISABLE_ALL_INTERRUPTS,
1295		       SSP_IMSC(pl022->virtbase));
1296		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1297		writew((readw(SSP_CR1(pl022->virtbase)) &
1298			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1299		msg->state = STATE_ERROR;
1300
1301		/* Schedule message queue handler */
1302		tasklet_schedule(&pl022->pump_transfers);
1303		return IRQ_HANDLED;
1304	}
1305
1306	readwriter(pl022);
1307
1308	if (pl022->tx == pl022->tx_end) {
1309		/* Disable Transmit interrupt, enable receive interrupt */
1310		writew((readw(SSP_IMSC(pl022->virtbase)) &
1311		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1312		       SSP_IMSC(pl022->virtbase));
1313	}
1314
1315	/*
1316	 * Since all transactions must write as much as shall be read,
1317	 * we can conclude the entire transaction once RX is complete.
1318	 * At this point, all TX will always be finished.
1319	 */
1320	if (pl022->rx >= pl022->rx_end) {
1321		writew(DISABLE_ALL_INTERRUPTS,
1322		       SSP_IMSC(pl022->virtbase));
1323		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1324		if (unlikely(pl022->rx > pl022->rx_end)) {
1325			dev_warn(&pl022->adev->dev, "read %u surplus "
1326				 "bytes (did you request an odd "
1327				 "number of bytes on a 16bit bus?)\n",
1328				 (u32) (pl022->rx - pl022->rx_end));
1329		}
1330		/* Update total bytes transferred */
1331		msg->actual_length += pl022->cur_transfer->len;
1332		/* Move to next transfer */
1333		msg->state = next_transfer(pl022);
1334		if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1335			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1336		tasklet_schedule(&pl022->pump_transfers);
1337		return IRQ_HANDLED;
1338	}
1339
1340	return IRQ_HANDLED;
1341}
1342
1343/*
1344 * This sets up the pointers to memory for the next message to
1345 * send out on the SPI bus.
1346 */
1347static int set_up_next_transfer(struct pl022 *pl022,
1348				struct spi_transfer *transfer)
1349{
1350	int residue;
1351
1352	/* Sanity check the message for this bus width */
1353	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1354	if (unlikely(residue != 0)) {
1355		dev_err(&pl022->adev->dev,
1356			"message of %u bytes to transmit but the current "
1357			"chip bus has a data width of %u bytes!\n",
1358			pl022->cur_transfer->len,
1359			pl022->cur_chip->n_bytes);
1360		dev_err(&pl022->adev->dev, "skipping this message\n");
1361		return -EIO;
1362	}
1363	pl022->tx = (void *)transfer->tx_buf;
1364	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1365	pl022->rx = (void *)transfer->rx_buf;
1366	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1367	pl022->write =
1368	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1369	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1370	return 0;
1371}
1372
1373/**
1374 * pump_transfers - Tasklet function which schedules next transfer
1375 * when running in interrupt or DMA transfer mode.
1376 * @data: SSP driver private data structure
1377 *
1378 */
1379static void pump_transfers(unsigned long data)
1380{
1381	struct pl022 *pl022 = (struct pl022 *) data;
1382	struct spi_message *message = NULL;
1383	struct spi_transfer *transfer = NULL;
1384	struct spi_transfer *previous = NULL;
1385
1386	/* Get current state information */
1387	message = pl022->cur_msg;
1388	transfer = pl022->cur_transfer;
1389
1390	/* Handle for abort */
1391	if (message->state == STATE_ERROR) {
1392		message->status = -EIO;
1393		giveback(pl022);
1394		return;
1395	}
1396
1397	/* Handle end of message */
1398	if (message->state == STATE_DONE) {
1399		message->status = 0;
1400		giveback(pl022);
1401		return;
1402	}
1403
1404	/* Delay if requested at end of transfer before CS change */
1405	if (message->state == STATE_RUNNING) {
1406		previous = list_entry(transfer->transfer_list.prev,
1407					struct spi_transfer,
1408					transfer_list);
1409		/*
1410		 * FIXME: This runs in interrupt context.
1411		 * Is this really smart?
1412		 */
1413		spi_transfer_delay_exec(previous);
1414
1415		/* Reselect chip select only if cs_change was requested */
1416		if (previous->cs_change)
1417			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1418	} else {
1419		/* STATE_START */
1420		message->state = STATE_RUNNING;
1421	}
1422
1423	if (set_up_next_transfer(pl022, transfer)) {
1424		message->state = STATE_ERROR;
1425		message->status = -EIO;
1426		giveback(pl022);
1427		return;
1428	}
1429	/* Flush the FIFOs and let's go! */
1430	flush(pl022);
1431
1432	if (pl022->cur_chip->enable_dma) {
1433		if (configure_dma(pl022)) {
1434			dev_dbg(&pl022->adev->dev,
1435				"configuration of DMA failed, fall back to interrupt mode\n");
1436			goto err_config_dma;
1437		}
1438		return;
1439	}
1440
1441err_config_dma:
1442	/* enable all interrupts except RX */
1443	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1444}
1445
1446static void do_interrupt_dma_transfer(struct pl022 *pl022)
1447{
1448	/*
1449	 * Default is to enable all interrupts except RX -
1450	 * this will be enabled once TX is complete
1451	 */
1452	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1453
1454	/* Enable target chip, if not already active */
1455	if (!pl022->next_msg_cs_active)
1456		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1457
1458	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1459		/* Error path */
1460		pl022->cur_msg->state = STATE_ERROR;
1461		pl022->cur_msg->status = -EIO;
1462		giveback(pl022);
1463		return;
1464	}
1465	/* If we're using DMA, set up DMA here */
1466	if (pl022->cur_chip->enable_dma) {
1467		/* Configure DMA transfer */
1468		if (configure_dma(pl022)) {
1469			dev_dbg(&pl022->adev->dev,
1470				"configuration of DMA failed, fall back to interrupt mode\n");
1471			goto err_config_dma;
1472		}
1473		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1474		irqflags = DISABLE_ALL_INTERRUPTS;
1475	}
1476err_config_dma:
1477	/* Enable SSP, turn on interrupts */
1478	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1479	       SSP_CR1(pl022->virtbase));
1480	writew(irqflags, SSP_IMSC(pl022->virtbase));
 
1481}
1482
1483static void print_current_status(struct pl022 *pl022)
1484{
1485	u32 read_cr0;
1486	u16 read_cr1, read_dmacr, read_sr;
1487
1488	if (pl022->vendor->extended_cr)
1489		read_cr0 = readl(SSP_CR0(pl022->virtbase));
1490	else
1491		read_cr0 = readw(SSP_CR0(pl022->virtbase));
1492	read_cr1 = readw(SSP_CR1(pl022->virtbase));
1493	read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1494	read_sr = readw(SSP_SR(pl022->virtbase));
1495
1496	dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1497	dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1498	dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1499	dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1500	dev_warn(&pl022->adev->dev,
1501			"spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1502			pl022->exp_fifo_level,
1503			pl022->vendor->fifodepth);
1504
1505}
1506
1507static void do_polling_transfer(struct pl022 *pl022)
1508{
1509	struct spi_message *message = NULL;
1510	struct spi_transfer *transfer = NULL;
1511	struct spi_transfer *previous = NULL;
1512	unsigned long time, timeout;
1513
1514	message = pl022->cur_msg;
 
 
 
 
 
 
 
1515
1516	while (message->state != STATE_DONE) {
1517		/* Handle for abort */
1518		if (message->state == STATE_ERROR)
1519			break;
1520		transfer = pl022->cur_transfer;
1521
1522		/* Delay if requested at end of transfer */
1523		if (message->state == STATE_RUNNING) {
1524			previous =
1525			    list_entry(transfer->transfer_list.prev,
1526				       struct spi_transfer, transfer_list);
1527			spi_transfer_delay_exec(previous);
1528			if (previous->cs_change)
1529				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1530		} else {
1531			/* STATE_START */
1532			message->state = STATE_RUNNING;
1533			if (!pl022->next_msg_cs_active)
1534				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1535		}
 
 
1536
1537		/* Configuration Changing Per Transfer */
1538		if (set_up_next_transfer(pl022, transfer)) {
1539			/* Error path */
1540			message->state = STATE_ERROR;
1541			break;
1542		}
1543		/* Flush FIFOs and enable SSP */
1544		flush(pl022);
1545		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1546		       SSP_CR1(pl022->virtbase));
1547
1548		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1549
1550		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1551		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1552			time = jiffies;
1553			readwriter(pl022);
1554			if (time_after(time, timeout)) {
1555				dev_warn(&pl022->adev->dev,
1556				"%s: timeout!\n", __func__);
1557				message->state = STATE_TIMEOUT;
1558				print_current_status(pl022);
1559				goto out;
1560			}
1561			cpu_relax();
1562		}
1563
1564		/* Update total byte transferred */
1565		message->actual_length += pl022->cur_transfer->len;
1566		/* Move to next transfer */
1567		message->state = next_transfer(pl022);
1568		if (message->state != STATE_DONE
1569		    && pl022->cur_transfer->cs_change)
1570			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1571	}
1572out:
1573	/* Handle end of message */
1574	if (message->state == STATE_DONE)
1575		message->status = 0;
1576	else if (message->state == STATE_TIMEOUT)
1577		message->status = -EAGAIN;
1578	else
1579		message->status = -EIO;
1580
1581	giveback(pl022);
1582	return;
1583}
1584
1585static int pl022_transfer_one_message(struct spi_master *master,
1586				      struct spi_message *msg)
1587{
1588	struct pl022 *pl022 = spi_master_get_devdata(master);
1589
1590	/* Initial message state */
1591	pl022->cur_msg = msg;
1592	msg->state = STATE_START;
1593
1594	pl022->cur_transfer = list_entry(msg->transfers.next,
1595					 struct spi_transfer, transfer_list);
1596
1597	/* Setup the SPI using the per chip configuration */
1598	pl022->cur_chip = spi_get_ctldata(msg->spi);
1599	pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1600
1601	restore_state(pl022);
1602	flush(pl022);
1603
1604	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1605		do_polling_transfer(pl022);
1606	else
1607		do_interrupt_dma_transfer(pl022);
 
1608
1609	return 0;
 
 
 
 
 
 
1610}
1611
1612static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1613{
1614	struct pl022 *pl022 = spi_master_get_devdata(master);
1615
1616	/* nothing more to do - disable spi/ssp and power off */
1617	writew((readw(SSP_CR1(pl022->virtbase)) &
1618		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1619
1620	return 0;
1621}
1622
1623static int verify_controller_parameters(struct pl022 *pl022,
1624				struct pl022_config_chip const *chip_info)
1625{
1626	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1627	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1628		dev_err(&pl022->adev->dev,
1629			"interface is configured incorrectly\n");
1630		return -EINVAL;
1631	}
1632	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1633	    (!pl022->vendor->unidir)) {
1634		dev_err(&pl022->adev->dev,
1635			"unidirectional mode not supported in this "
1636			"hardware version\n");
1637		return -EINVAL;
1638	}
1639	if ((chip_info->hierarchy != SSP_MASTER)
1640	    && (chip_info->hierarchy != SSP_SLAVE)) {
1641		dev_err(&pl022->adev->dev,
1642			"hierarchy is configured incorrectly\n");
1643		return -EINVAL;
1644	}
1645	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1646	    && (chip_info->com_mode != DMA_TRANSFER)
1647	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1648		dev_err(&pl022->adev->dev,
1649			"Communication mode is configured incorrectly\n");
1650		return -EINVAL;
1651	}
1652	switch (chip_info->rx_lev_trig) {
1653	case SSP_RX_1_OR_MORE_ELEM:
1654	case SSP_RX_4_OR_MORE_ELEM:
1655	case SSP_RX_8_OR_MORE_ELEM:
1656		/* These are always OK, all variants can handle this */
1657		break;
1658	case SSP_RX_16_OR_MORE_ELEM:
1659		if (pl022->vendor->fifodepth < 16) {
1660			dev_err(&pl022->adev->dev,
1661			"RX FIFO Trigger Level is configured incorrectly\n");
1662			return -EINVAL;
1663		}
1664		break;
1665	case SSP_RX_32_OR_MORE_ELEM:
1666		if (pl022->vendor->fifodepth < 32) {
1667			dev_err(&pl022->adev->dev,
1668			"RX FIFO Trigger Level is configured incorrectly\n");
1669			return -EINVAL;
1670		}
1671		break;
1672	default:
1673		dev_err(&pl022->adev->dev,
1674			"RX FIFO Trigger Level is configured incorrectly\n");
1675		return -EINVAL;
1676	}
1677	switch (chip_info->tx_lev_trig) {
1678	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1679	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1680	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1681		/* These are always OK, all variants can handle this */
1682		break;
1683	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1684		if (pl022->vendor->fifodepth < 16) {
1685			dev_err(&pl022->adev->dev,
1686			"TX FIFO Trigger Level is configured incorrectly\n");
1687			return -EINVAL;
1688		}
1689		break;
1690	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1691		if (pl022->vendor->fifodepth < 32) {
1692			dev_err(&pl022->adev->dev,
1693			"TX FIFO Trigger Level is configured incorrectly\n");
1694			return -EINVAL;
1695		}
1696		break;
1697	default:
1698		dev_err(&pl022->adev->dev,
1699			"TX FIFO Trigger Level is configured incorrectly\n");
1700		return -EINVAL;
1701	}
1702	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1703		if ((chip_info->ctrl_len < SSP_BITS_4)
1704		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1705			dev_err(&pl022->adev->dev,
1706				"CTRL LEN is configured incorrectly\n");
1707			return -EINVAL;
1708		}
1709		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1710		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1711			dev_err(&pl022->adev->dev,
1712				"Wait State is configured incorrectly\n");
1713			return -EINVAL;
1714		}
1715		/* Half duplex is only available in the ST Micro version */
1716		if (pl022->vendor->extended_cr) {
1717			if ((chip_info->duplex !=
1718			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1719			    && (chip_info->duplex !=
1720				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1721				dev_err(&pl022->adev->dev,
1722					"Microwire duplex mode is configured incorrectly\n");
1723				return -EINVAL;
1724			}
1725		} else {
1726			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1727				dev_err(&pl022->adev->dev,
1728					"Microwire half duplex mode requested,"
1729					" but this is only available in the"
1730					" ST version of PL022\n");
1731			return -EINVAL;
 
1732		}
1733	}
1734	return 0;
1735}
1736
1737static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1738{
1739	return rate / (cpsdvsr * (1 + scr));
1740}
1741
1742static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1743				    ssp_clock_params * clk_freq)
1744{
1745	/* Lets calculate the frequency parameters */
1746	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1747	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1748		best_scr = 0, tmp, found = 0;
1749
1750	rate = clk_get_rate(pl022->clk);
1751	/* cpsdvscr = 2 & scr 0 */
1752	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1753	/* cpsdvsr = 254 & scr = 255 */
1754	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1755
1756	if (freq > max_tclk)
1757		dev_warn(&pl022->adev->dev,
1758			"Max speed that can be programmed is %d Hz, you requested %d\n",
1759			max_tclk, freq);
1760
1761	if (freq < min_tclk) {
1762		dev_err(&pl022->adev->dev,
1763			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1764			freq, min_tclk);
1765		return -EINVAL;
1766	}
1767
1768	/*
1769	 * best_freq will give closest possible available rate (<= requested
1770	 * freq) for all values of scr & cpsdvsr.
1771	 */
1772	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1773		while (scr <= SCR_MAX) {
1774			tmp = spi_rate(rate, cpsdvsr, scr);
1775
1776			if (tmp > freq) {
1777				/* we need lower freq */
1778				scr++;
1779				continue;
1780			}
1781
1782			/*
1783			 * If found exact value, mark found and break.
1784			 * If found more closer value, update and break.
1785			 */
1786			if (tmp > best_freq) {
1787				best_freq = tmp;
1788				best_cpsdvsr = cpsdvsr;
1789				best_scr = scr;
1790
1791				if (tmp == freq)
1792					found = 1;
1793			}
1794			/*
1795			 * increased scr will give lower rates, which are not
1796			 * required
1797			 */
1798			break;
1799		}
1800		cpsdvsr += 2;
1801		scr = SCR_MIN;
1802	}
1803
1804	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1805			freq);
1806
1807	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1808	clk_freq->scr = (u8) (best_scr & 0xFF);
1809	dev_dbg(&pl022->adev->dev,
1810		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1811		freq, best_freq);
1812	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1813		clk_freq->cpsdvsr, clk_freq->scr);
1814
1815	return 0;
1816}
1817
1818/*
1819 * A piece of default chip info unless the platform
1820 * supplies it.
1821 */
1822static const struct pl022_config_chip pl022_default_chip_info = {
1823	.com_mode = POLLING_TRANSFER,
1824	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1825	.hierarchy = SSP_SLAVE,
1826	.slave_tx_disable = DO_NOT_DRIVE_TX,
1827	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1828	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1829	.ctrl_len = SSP_BITS_8,
1830	.wait_state = SSP_MWIRE_WAIT_ZERO,
1831	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1832	.cs_control = null_cs_control,
1833};
1834
1835/**
1836 * pl022_setup - setup function registered to SPI master framework
1837 * @spi: spi device which is requesting setup
1838 *
1839 * This function is registered to the SPI framework for this SPI master
1840 * controller. If it is the first time when setup is called by this device,
1841 * this function will initialize the runtime state for this chip and save
1842 * the same in the device structure. Else it will update the runtime info
1843 * with the updated chip info. Nothing is really being written to the
1844 * controller hardware here, that is not done until the actual transfer
1845 * commence.
1846 */
1847static int pl022_setup(struct spi_device *spi)
1848{
1849	struct pl022_config_chip const *chip_info;
1850	struct pl022_config_chip chip_info_dt;
1851	struct chip_data *chip;
1852	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1853	int status = 0;
1854	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1855	unsigned int bits = spi->bits_per_word;
1856	u32 tmp;
1857	struct device_node *np = spi->dev.of_node;
1858
1859	if (!spi->max_speed_hz)
1860		return -EINVAL;
1861
1862	/* Get controller_state if one is supplied */
1863	chip = spi_get_ctldata(spi);
1864
1865	if (chip == NULL) {
1866		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1867		if (!chip)
1868			return -ENOMEM;
1869		dev_dbg(&spi->dev,
1870			"allocated memory for controller's runtime state\n");
1871	}
1872
1873	/* Get controller data if one is supplied */
1874	chip_info = spi->controller_data;
1875
1876	if (chip_info == NULL) {
1877		if (np) {
1878			chip_info_dt = pl022_default_chip_info;
1879
1880			chip_info_dt.hierarchy = SSP_MASTER;
1881			of_property_read_u32(np, "pl022,interface",
1882				&chip_info_dt.iface);
1883			of_property_read_u32(np, "pl022,com-mode",
1884				&chip_info_dt.com_mode);
1885			of_property_read_u32(np, "pl022,rx-level-trig",
1886				&chip_info_dt.rx_lev_trig);
1887			of_property_read_u32(np, "pl022,tx-level-trig",
1888				&chip_info_dt.tx_lev_trig);
1889			of_property_read_u32(np, "pl022,ctrl-len",
1890				&chip_info_dt.ctrl_len);
1891			of_property_read_u32(np, "pl022,wait-state",
1892				&chip_info_dt.wait_state);
1893			of_property_read_u32(np, "pl022,duplex",
1894				&chip_info_dt.duplex);
1895
1896			chip_info = &chip_info_dt;
1897		} else {
1898			chip_info = &pl022_default_chip_info;
1899			/* spi_board_info.controller_data not is supplied */
1900			dev_dbg(&spi->dev,
1901				"using default controller_data settings\n");
1902		}
1903	} else
1904		dev_dbg(&spi->dev,
1905			"using user supplied controller_data settings\n");
1906
1907	/*
1908	 * We can override with custom divisors, else we use the board
1909	 * frequency setting
1910	 */
1911	if ((0 == chip_info->clk_freq.cpsdvsr)
1912	    && (0 == chip_info->clk_freq.scr)) {
1913		status = calculate_effective_freq(pl022,
1914						  spi->max_speed_hz,
1915						  &clk_freq);
1916		if (status < 0)
1917			goto err_config_params;
1918	} else {
1919		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1920		if ((clk_freq.cpsdvsr % 2) != 0)
1921			clk_freq.cpsdvsr =
1922				clk_freq.cpsdvsr - 1;
1923	}
1924	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1925	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1926		status = -EINVAL;
1927		dev_err(&spi->dev,
1928			"cpsdvsr is configured incorrectly\n");
1929		goto err_config_params;
1930	}
1931
1932	status = verify_controller_parameters(pl022, chip_info);
1933	if (status) {
1934		dev_err(&spi->dev, "controller data is incorrect");
1935		goto err_config_params;
1936	}
1937
1938	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1939	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1940
1941	/* Now set controller state based on controller data */
1942	chip->xfer_type = chip_info->com_mode;
1943	if (!chip_info->cs_control) {
1944		chip->cs_control = null_cs_control;
1945		if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1946			dev_warn(&spi->dev,
1947				 "invalid chip select\n");
1948	} else
1949		chip->cs_control = chip_info->cs_control;
1950
1951	/* Check bits per word with vendor specific range */
1952	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1953		status = -ENOTSUPP;
1954		dev_err(&spi->dev, "illegal data size for this controller!\n");
1955		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1956				pl022->vendor->max_bpw);
1957		goto err_config_params;
1958	} else if (bits <= 8) {
1959		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1960		chip->n_bytes = 1;
1961		chip->read = READING_U8;
1962		chip->write = WRITING_U8;
1963	} else if (bits <= 16) {
1964		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1965		chip->n_bytes = 2;
1966		chip->read = READING_U16;
1967		chip->write = WRITING_U16;
1968	} else {
1969		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1970		chip->n_bytes = 4;
1971		chip->read = READING_U32;
1972		chip->write = WRITING_U32;
1973	}
1974
1975	/* Now Initialize all register settings required for this chip */
1976	chip->cr0 = 0;
1977	chip->cr1 = 0;
1978	chip->dmacr = 0;
1979	chip->cpsr = 0;
1980	if ((chip_info->com_mode == DMA_TRANSFER)
1981	    && ((pl022->master_info)->enable_dma)) {
1982		chip->enable_dma = true;
1983		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1984		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1985			       SSP_DMACR_MASK_RXDMAE, 0);
1986		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1987			       SSP_DMACR_MASK_TXDMAE, 1);
1988	} else {
1989		chip->enable_dma = false;
1990		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1991		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1992			       SSP_DMACR_MASK_RXDMAE, 0);
1993		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1994			       SSP_DMACR_MASK_TXDMAE, 1);
1995	}
1996
1997	chip->cpsr = clk_freq.cpsdvsr;
1998
1999	/* Special setup for the ST micro extended control registers */
2000	if (pl022->vendor->extended_cr) {
2001		u32 etx;
2002
2003		if (pl022->vendor->pl023) {
2004			/* These bits are only in the PL023 */
2005			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2006				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
2007		} else {
2008			/* These bits are in the PL022 but not PL023 */
2009			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2010				       SSP_CR0_MASK_HALFDUP_ST, 5);
2011			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2012				       SSP_CR0_MASK_CSS_ST, 16);
2013			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2014				       SSP_CR0_MASK_FRF_ST, 21);
2015			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2016				       SSP_CR1_MASK_MWAIT_ST, 6);
2017		}
2018		SSP_WRITE_BITS(chip->cr0, bits - 1,
2019			       SSP_CR0_MASK_DSS_ST, 0);
2020
2021		if (spi->mode & SPI_LSB_FIRST) {
2022			tmp = SSP_RX_LSB;
2023			etx = SSP_TX_LSB;
2024		} else {
2025			tmp = SSP_RX_MSB;
2026			etx = SSP_TX_MSB;
2027		}
2028		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2029		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2030		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2031			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2032		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2033			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2034	} else {
2035		SSP_WRITE_BITS(chip->cr0, bits - 1,
2036			       SSP_CR0_MASK_DSS, 0);
2037		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2038			       SSP_CR0_MASK_FRF, 4);
2039	}
2040
2041	/* Stuff that is common for all versions */
2042	if (spi->mode & SPI_CPOL)
2043		tmp = SSP_CLK_POL_IDLE_HIGH;
2044	else
2045		tmp = SSP_CLK_POL_IDLE_LOW;
2046	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2047
2048	if (spi->mode & SPI_CPHA)
2049		tmp = SSP_CLK_SECOND_EDGE;
2050	else
2051		tmp = SSP_CLK_FIRST_EDGE;
2052	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2053
2054	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2055	/* Loopback is available on all versions except PL023 */
2056	if (pl022->vendor->loopback) {
2057		if (spi->mode & SPI_LOOP)
2058			tmp = LOOPBACK_ENABLED;
2059		else
2060			tmp = LOOPBACK_DISABLED;
2061		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2062	}
2063	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2064	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2065	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2066		3);
2067
2068	/* Save controller_state */
2069	spi_set_ctldata(spi, chip);
2070	return status;
2071 err_config_params:
2072	spi_set_ctldata(spi, NULL);
2073	kfree(chip);
2074	return status;
2075}
2076
2077/**
2078 * pl022_cleanup - cleanup function registered to SPI master framework
2079 * @spi: spi device which is requesting cleanup
2080 *
2081 * This function is registered to the SPI framework for this SPI master
2082 * controller. It will free the runtime state of chip.
2083 */
2084static void pl022_cleanup(struct spi_device *spi)
2085{
2086	struct chip_data *chip = spi_get_ctldata(spi);
2087
2088	spi_set_ctldata(spi, NULL);
2089	kfree(chip);
2090}
2091
2092static struct pl022_ssp_controller *
2093pl022_platform_data_dt_get(struct device *dev)
2094{
2095	struct device_node *np = dev->of_node;
2096	struct pl022_ssp_controller *pd;
2097	u32 tmp = 0;
2098
2099	if (!np) {
2100		dev_err(dev, "no dt node defined\n");
2101		return NULL;
2102	}
2103
2104	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2105	if (!pd)
2106		return NULL;
2107
2108	pd->bus_id = -1;
2109	pd->enable_dma = 1;
2110	of_property_read_u32(np, "num-cs", &tmp);
2111	pd->num_chipselect = tmp;
2112	of_property_read_u32(np, "pl022,autosuspend-delay",
2113			     &pd->autosuspend_delay);
2114	pd->rt = of_property_read_bool(np, "pl022,rt");
2115
2116	return pd;
2117}
2118
2119static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2120{
2121	struct device *dev = &adev->dev;
2122	struct pl022_ssp_controller *platform_info =
2123			dev_get_platdata(&adev->dev);
2124	struct spi_master *master;
2125	struct pl022 *pl022 = NULL;	/*Data for this driver */
2126	struct device_node *np = adev->dev.of_node;
2127	int status = 0, i, num_cs;
2128
2129	dev_info(&adev->dev,
2130		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2131	if (!platform_info && IS_ENABLED(CONFIG_OF))
2132		platform_info = pl022_platform_data_dt_get(dev);
2133
2134	if (!platform_info) {
2135		dev_err(dev, "probe: no platform data defined\n");
2136		return -ENODEV;
2137	}
2138
2139	if (platform_info->num_chipselect) {
2140		num_cs = platform_info->num_chipselect;
2141	} else {
2142		dev_err(dev, "probe: no chip select defined\n");
2143		return -ENODEV;
2144	}
2145
2146	/* Allocate master with space for data */
2147	master = spi_alloc_master(dev, sizeof(struct pl022));
2148	if (master == NULL) {
2149		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2150		return -ENOMEM;
2151	}
2152
2153	pl022 = spi_master_get_devdata(master);
2154	pl022->master = master;
2155	pl022->master_info = platform_info;
2156	pl022->adev = adev;
2157	pl022->vendor = id->data;
2158	pl022->chipselects = devm_kcalloc(dev, num_cs, sizeof(int),
2159					  GFP_KERNEL);
2160	if (!pl022->chipselects) {
2161		status = -ENOMEM;
2162		goto err_no_mem;
2163	}
2164
2165	/*
2166	 * Bus Number Which has been Assigned to this SSP controller
2167	 * on this board
2168	 */
2169	master->bus_num = platform_info->bus_id;
2170	master->num_chipselect = num_cs;
2171	master->cleanup = pl022_cleanup;
2172	master->setup = pl022_setup;
2173	master->auto_runtime_pm = true;
2174	master->transfer_one_message = pl022_transfer_one_message;
2175	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2176	master->rt = platform_info->rt;
2177	master->dev.of_node = dev->of_node;
2178
2179	if (platform_info->num_chipselect && platform_info->chipselects) {
2180		for (i = 0; i < num_cs; i++)
2181			pl022->chipselects[i] = platform_info->chipselects[i];
2182	} else if (pl022->vendor->internal_cs_ctrl) {
2183		for (i = 0; i < num_cs; i++)
2184			pl022->chipselects[i] = i;
2185	} else if (IS_ENABLED(CONFIG_OF)) {
2186		for (i = 0; i < num_cs; i++) {
2187			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2188
2189			if (cs_gpio == -EPROBE_DEFER) {
2190				status = -EPROBE_DEFER;
2191				goto err_no_gpio;
2192			}
2193
2194			pl022->chipselects[i] = cs_gpio;
2195
2196			if (gpio_is_valid(cs_gpio)) {
2197				if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2198					dev_err(&adev->dev,
2199						"could not request %d gpio\n",
2200						cs_gpio);
2201				else if (gpio_direction_output(cs_gpio, 1))
2202					dev_err(&adev->dev,
2203						"could not set gpio %d as output\n",
2204						cs_gpio);
2205			}
2206		}
2207	}
2208
2209	/*
2210	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2211	 * always MS bit first on the original pl022.
2212	 */
2213	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2214	if (pl022->vendor->extended_cr)
2215		master->mode_bits |= SPI_LSB_FIRST;
2216
2217	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2218
2219	status = amba_request_regions(adev, NULL);
2220	if (status)
2221		goto err_no_ioregion;
2222
2223	pl022->phybase = adev->res.start;
2224	pl022->virtbase = devm_ioremap(dev, adev->res.start,
2225				       resource_size(&adev->res));
2226	if (pl022->virtbase == NULL) {
2227		status = -ENOMEM;
2228		goto err_no_ioremap;
2229	}
2230	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2231		&adev->res.start, pl022->virtbase);
2232
2233	pl022->clk = devm_clk_get(&adev->dev, NULL);
2234	if (IS_ERR(pl022->clk)) {
2235		status = PTR_ERR(pl022->clk);
2236		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2237		goto err_no_clk;
2238	}
2239
2240	status = clk_prepare_enable(pl022->clk);
2241	if (status) {
2242		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2243		goto err_no_clk_en;
2244	}
2245
2246	/* Initialize transfer pump */
2247	tasklet_init(&pl022->pump_transfers, pump_transfers,
2248		     (unsigned long)pl022);
2249
2250	/* Disable SSP */
2251	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2252	       SSP_CR1(pl022->virtbase));
2253	load_ssp_default_config(pl022);
2254
2255	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2256				  0, "pl022", pl022);
2257	if (status < 0) {
2258		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2259		goto err_no_irq;
2260	}
2261
2262	/* Get DMA channels, try autoconfiguration first */
2263	status = pl022_dma_autoprobe(pl022);
2264	if (status == -EPROBE_DEFER) {
2265		dev_dbg(dev, "deferring probe to get DMA channel\n");
2266		goto err_no_irq;
2267	}
2268
2269	/* If that failed, use channels from platform_info */
2270	if (status == 0)
2271		platform_info->enable_dma = 1;
2272	else if (platform_info->enable_dma) {
2273		status = pl022_dma_probe(pl022);
2274		if (status != 0)
2275			platform_info->enable_dma = 0;
2276	}
2277
2278	/* Register with the SPI framework */
2279	amba_set_drvdata(adev, pl022);
2280	status = devm_spi_register_master(&adev->dev, master);
2281	if (status != 0) {
2282		dev_err(&adev->dev,
2283			"probe - problem registering spi master\n");
2284		goto err_spi_register;
2285	}
2286	dev_dbg(dev, "probe succeeded\n");
2287
2288	/* let runtime pm put suspend */
2289	if (platform_info->autosuspend_delay > 0) {
2290		dev_info(&adev->dev,
2291			"will use autosuspend for runtime pm, delay %dms\n",
2292			platform_info->autosuspend_delay);
2293		pm_runtime_set_autosuspend_delay(dev,
2294			platform_info->autosuspend_delay);
2295		pm_runtime_use_autosuspend(dev);
2296	}
2297	pm_runtime_put(dev);
2298
2299	return 0;
2300
2301 err_spi_register:
2302	if (platform_info->enable_dma)
2303		pl022_dma_remove(pl022);
2304 err_no_irq:
2305	clk_disable_unprepare(pl022->clk);
2306 err_no_clk_en:
2307 err_no_clk:
2308 err_no_ioremap:
2309	amba_release_regions(adev);
2310 err_no_ioregion:
2311 err_no_gpio:
2312 err_no_mem:
2313	spi_master_put(master);
2314	return status;
2315}
2316
2317static int
2318pl022_remove(struct amba_device *adev)
2319{
2320	struct pl022 *pl022 = amba_get_drvdata(adev);
2321
2322	if (!pl022)
2323		return 0;
2324
2325	/*
2326	 * undo pm_runtime_put() in probe.  I assume that we're not
2327	 * accessing the primecell here.
2328	 */
2329	pm_runtime_get_noresume(&adev->dev);
2330
2331	load_ssp_default_config(pl022);
2332	if (pl022->master_info->enable_dma)
2333		pl022_dma_remove(pl022);
2334
2335	clk_disable_unprepare(pl022->clk);
2336	amba_release_regions(adev);
2337	tasklet_disable(&pl022->pump_transfers);
2338	return 0;
2339}
2340
2341#ifdef CONFIG_PM_SLEEP
2342static int pl022_suspend(struct device *dev)
2343{
2344	struct pl022 *pl022 = dev_get_drvdata(dev);
2345	int ret;
2346
2347	ret = spi_master_suspend(pl022->master);
2348	if (ret)
2349		return ret;
2350
2351	ret = pm_runtime_force_suspend(dev);
2352	if (ret) {
2353		spi_master_resume(pl022->master);
2354		return ret;
2355	}
2356
2357	pinctrl_pm_select_sleep_state(dev);
2358
2359	dev_dbg(dev, "suspended\n");
2360	return 0;
2361}
2362
2363static int pl022_resume(struct device *dev)
2364{
2365	struct pl022 *pl022 = dev_get_drvdata(dev);
2366	int ret;
2367
2368	ret = pm_runtime_force_resume(dev);
2369	if (ret)
2370		dev_err(dev, "problem resuming\n");
2371
2372	/* Start the queue running */
2373	ret = spi_master_resume(pl022->master);
2374	if (!ret)
2375		dev_dbg(dev, "resumed\n");
2376
2377	return ret;
2378}
2379#endif
2380
2381#ifdef CONFIG_PM
2382static int pl022_runtime_suspend(struct device *dev)
2383{
2384	struct pl022 *pl022 = dev_get_drvdata(dev);
2385
2386	clk_disable_unprepare(pl022->clk);
2387	pinctrl_pm_select_idle_state(dev);
2388
2389	return 0;
2390}
2391
2392static int pl022_runtime_resume(struct device *dev)
2393{
2394	struct pl022 *pl022 = dev_get_drvdata(dev);
2395
2396	pinctrl_pm_select_default_state(dev);
2397	clk_prepare_enable(pl022->clk);
2398
2399	return 0;
2400}
2401#endif
2402
2403static const struct dev_pm_ops pl022_dev_pm_ops = {
2404	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2405	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2406};
2407
2408static struct vendor_data vendor_arm = {
2409	.fifodepth = 8,
2410	.max_bpw = 16,
2411	.unidir = false,
2412	.extended_cr = false,
2413	.pl023 = false,
2414	.loopback = true,
2415	.internal_cs_ctrl = false,
2416};
2417
2418static struct vendor_data vendor_st = {
2419	.fifodepth = 32,
2420	.max_bpw = 32,
2421	.unidir = false,
2422	.extended_cr = true,
2423	.pl023 = false,
2424	.loopback = true,
2425	.internal_cs_ctrl = false,
2426};
2427
2428static struct vendor_data vendor_st_pl023 = {
2429	.fifodepth = 32,
2430	.max_bpw = 32,
2431	.unidir = false,
2432	.extended_cr = true,
2433	.pl023 = true,
2434	.loopback = false,
2435	.internal_cs_ctrl = false,
2436};
2437
2438static struct vendor_data vendor_lsi = {
2439	.fifodepth = 8,
2440	.max_bpw = 16,
2441	.unidir = false,
2442	.extended_cr = false,
2443	.pl023 = false,
2444	.loopback = true,
2445	.internal_cs_ctrl = true,
2446};
2447
2448static const struct amba_id pl022_ids[] = {
2449	{
2450		/*
2451		 * ARM PL022 variant, this has a 16bit wide
2452		 * and 8 locations deep TX/RX FIFO
2453		 */
2454		.id	= 0x00041022,
2455		.mask	= 0x000fffff,
2456		.data	= &vendor_arm,
2457	},
2458	{
2459		/*
2460		 * ST Micro derivative, this has 32bit wide
2461		 * and 32 locations deep TX/RX FIFO
2462		 */
2463		.id	= 0x01080022,
2464		.mask	= 0xffffffff,
2465		.data	= &vendor_st,
2466	},
2467	{
2468		/*
2469		 * ST-Ericsson derivative "PL023" (this is not
2470		 * an official ARM number), this is a PL022 SSP block
2471		 * stripped to SPI mode only, it has 32bit wide
2472		 * and 32 locations deep TX/RX FIFO but no extended
2473		 * CR0/CR1 register
2474		 */
2475		.id	= 0x00080023,
2476		.mask	= 0xffffffff,
2477		.data	= &vendor_st_pl023,
2478	},
2479	{
2480		/*
2481		 * PL022 variant that has a chip select control register whih
2482		 * allows control of 5 output signals nCS[0:4].
2483		 */
2484		.id	= 0x000b6022,
2485		.mask	= 0x000fffff,
2486		.data	= &vendor_lsi,
2487	},
2488	{ 0, 0 },
2489};
2490
2491MODULE_DEVICE_TABLE(amba, pl022_ids);
2492
2493static struct amba_driver pl022_driver = {
2494	.drv = {
2495		.name	= "ssp-pl022",
2496		.pm	= &pl022_dev_pm_ops,
2497	},
2498	.id_table	= pl022_ids,
2499	.probe		= pl022_probe,
2500	.remove		= pl022_remove,
2501};
2502
2503static int __init pl022_init(void)
2504{
2505	return amba_driver_register(&pl022_driver);
2506}
2507subsys_initcall(pl022_init);
2508
2509static void __exit pl022_exit(void)
2510{
2511	amba_driver_unregister(&pl022_driver);
2512}
2513module_exit(pl022_exit);
2514
2515MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2516MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2517MODULE_LICENSE("GPL");