Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 *
5 * Copyright (C) 2008-2012 ST-Ericsson AB
6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 *
8 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 *
10 * Initial version inspired by:
11 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12 * Initial adoption to PL022 by:
13 * Sachin Verma <sachin.verma@st.com>
14 */
15
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/device.h>
19#include <linux/ioport.h>
20#include <linux/errno.h>
21#include <linux/interrupt.h>
22#include <linux/spi/spi.h>
23#include <linux/delay.h>
24#include <linux/clk.h>
25#include <linux/err.h>
26#include <linux/amba/bus.h>
27#include <linux/amba/pl022.h>
28#include <linux/io.h>
29#include <linux/slab.h>
30#include <linux/dmaengine.h>
31#include <linux/dma-mapping.h>
32#include <linux/scatterlist.h>
33#include <linux/pm_runtime.h>
34#include <linux/of.h>
35#include <linux/pinctrl/consumer.h>
36
37/*
38 * This macro is used to define some register default values.
39 * reg is masked with mask, the OR:ed with an (again masked)
40 * val shifted sb steps to the left.
41 */
42#define SSP_WRITE_BITS(reg, val, mask, sb) \
43 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
44
45/*
46 * This macro is also used to define some default values.
47 * It will just shift val by sb steps to the left and mask
48 * the result with mask.
49 */
50#define GEN_MASK_BITS(val, mask, sb) \
51 (((val)<<(sb)) & (mask))
52
53#define DRIVE_TX 0
54#define DO_NOT_DRIVE_TX 1
55
56#define DO_NOT_QUEUE_DMA 0
57#define QUEUE_DMA 1
58
59#define RX_TRANSFER 1
60#define TX_TRANSFER 2
61
62/*
63 * Macros to access SSP Registers with their offsets
64 */
65#define SSP_CR0(r) (r + 0x000)
66#define SSP_CR1(r) (r + 0x004)
67#define SSP_DR(r) (r + 0x008)
68#define SSP_SR(r) (r + 0x00C)
69#define SSP_CPSR(r) (r + 0x010)
70#define SSP_IMSC(r) (r + 0x014)
71#define SSP_RIS(r) (r + 0x018)
72#define SSP_MIS(r) (r + 0x01C)
73#define SSP_ICR(r) (r + 0x020)
74#define SSP_DMACR(r) (r + 0x024)
75#define SSP_CSR(r) (r + 0x030) /* vendor extension */
76#define SSP_ITCR(r) (r + 0x080)
77#define SSP_ITIP(r) (r + 0x084)
78#define SSP_ITOP(r) (r + 0x088)
79#define SSP_TDR(r) (r + 0x08C)
80
81#define SSP_PID0(r) (r + 0xFE0)
82#define SSP_PID1(r) (r + 0xFE4)
83#define SSP_PID2(r) (r + 0xFE8)
84#define SSP_PID3(r) (r + 0xFEC)
85
86#define SSP_CID0(r) (r + 0xFF0)
87#define SSP_CID1(r) (r + 0xFF4)
88#define SSP_CID2(r) (r + 0xFF8)
89#define SSP_CID3(r) (r + 0xFFC)
90
91/*
92 * SSP Control Register 0 - SSP_CR0
93 */
94#define SSP_CR0_MASK_DSS (0x0FUL << 0)
95#define SSP_CR0_MASK_FRF (0x3UL << 4)
96#define SSP_CR0_MASK_SPO (0x1UL << 6)
97#define SSP_CR0_MASK_SPH (0x1UL << 7)
98#define SSP_CR0_MASK_SCR (0xFFUL << 8)
99
100/*
101 * The ST version of this block moves som bits
102 * in SSP_CR0 and extends it to 32 bits
103 */
104#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
105#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
106#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
107#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
108
109/*
110 * SSP Control Register 0 - SSP_CR1
111 */
112#define SSP_CR1_MASK_LBM (0x1UL << 0)
113#define SSP_CR1_MASK_SSE (0x1UL << 1)
114#define SSP_CR1_MASK_MS (0x1UL << 2)
115#define SSP_CR1_MASK_SOD (0x1UL << 3)
116
117/*
118 * The ST version of this block adds some bits
119 * in SSP_CR1
120 */
121#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
122#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
123#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
124#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
125#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
126/* This one is only in the PL023 variant */
127#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
128
129/*
130 * SSP Status Register - SSP_SR
131 */
132#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
133#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
134#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
135#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
136#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
137
138/*
139 * SSP Clock Prescale Register - SSP_CPSR
140 */
141#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
142
143/*
144 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
145 */
146#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
147#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
148#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
149#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
150
151/*
152 * SSP Raw Interrupt Status Register - SSP_RIS
153 */
154/* Receive Overrun Raw Interrupt status */
155#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
156/* Receive Timeout Raw Interrupt status */
157#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
158/* Receive FIFO Raw Interrupt status */
159#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
160/* Transmit FIFO Raw Interrupt status */
161#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
162
163/*
164 * SSP Masked Interrupt Status Register - SSP_MIS
165 */
166/* Receive Overrun Masked Interrupt status */
167#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
168/* Receive Timeout Masked Interrupt status */
169#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
170/* Receive FIFO Masked Interrupt status */
171#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
172/* Transmit FIFO Masked Interrupt status */
173#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
174
175/*
176 * SSP Interrupt Clear Register - SSP_ICR
177 */
178/* Receive Overrun Raw Clear Interrupt bit */
179#define SSP_ICR_MASK_RORIC (0x1UL << 0)
180/* Receive Timeout Clear Interrupt bit */
181#define SSP_ICR_MASK_RTIC (0x1UL << 1)
182
183/*
184 * SSP DMA Control Register - SSP_DMACR
185 */
186/* Receive DMA Enable bit */
187#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
188/* Transmit DMA Enable bit */
189#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
190
191/*
192 * SSP Chip Select Control Register - SSP_CSR
193 * (vendor extension)
194 */
195#define SSP_CSR_CSVALUE_MASK (0x1FUL << 0)
196
197/*
198 * SSP Integration Test control Register - SSP_ITCR
199 */
200#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
201#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
202
203/*
204 * SSP Integration Test Input Register - SSP_ITIP
205 */
206#define ITIP_MASK_SSPRXD (0x1UL << 0)
207#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
208#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
209#define ITIP_MASK_RXDMAC (0x1UL << 3)
210#define ITIP_MASK_TXDMAC (0x1UL << 4)
211#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
212
213/*
214 * SSP Integration Test output Register - SSP_ITOP
215 */
216#define ITOP_MASK_SSPTXD (0x1UL << 0)
217#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
218#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
219#define ITOP_MASK_SSPOEn (0x1UL << 3)
220#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
221#define ITOP_MASK_RORINTR (0x1UL << 5)
222#define ITOP_MASK_RTINTR (0x1UL << 6)
223#define ITOP_MASK_RXINTR (0x1UL << 7)
224#define ITOP_MASK_TXINTR (0x1UL << 8)
225#define ITOP_MASK_INTR (0x1UL << 9)
226#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
227#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
228#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
229#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
230
231/*
232 * SSP Test Data Register - SSP_TDR
233 */
234#define TDR_MASK_TESTDATA (0xFFFFFFFF)
235
236/*
237 * Message State
238 * we use the spi_message.state (void *) pointer to
239 * hold a single state value, that's why all this
240 * (void *) casting is done here.
241 */
242#define STATE_START ((void *) 0)
243#define STATE_RUNNING ((void *) 1)
244#define STATE_DONE ((void *) 2)
245#define STATE_ERROR ((void *) -1)
246#define STATE_TIMEOUT ((void *) -2)
247
248/*
249 * SSP State - Whether Enabled or Disabled
250 */
251#define SSP_DISABLED (0)
252#define SSP_ENABLED (1)
253
254/*
255 * SSP DMA State - Whether DMA Enabled or Disabled
256 */
257#define SSP_DMA_DISABLED (0)
258#define SSP_DMA_ENABLED (1)
259
260/*
261 * SSP Clock Defaults
262 */
263#define SSP_DEFAULT_CLKRATE 0x2
264#define SSP_DEFAULT_PRESCALE 0x40
265
266/*
267 * SSP Clock Parameter ranges
268 */
269#define CPSDVR_MIN 0x02
270#define CPSDVR_MAX 0xFE
271#define SCR_MIN 0x00
272#define SCR_MAX 0xFF
273
274/*
275 * SSP Interrupt related Macros
276 */
277#define DEFAULT_SSP_REG_IMSC 0x0UL
278#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279#define ENABLE_ALL_INTERRUPTS ( \
280 SSP_IMSC_MASK_RORIM | \
281 SSP_IMSC_MASK_RTIM | \
282 SSP_IMSC_MASK_RXIM | \
283 SSP_IMSC_MASK_TXIM \
284)
285
286#define CLEAR_ALL_INTERRUPTS 0x3
287
288#define SPI_POLLING_TIMEOUT 1000
289
290/*
291 * The type of reading going on this chip
292 */
293enum ssp_reading {
294 READING_NULL,
295 READING_U8,
296 READING_U16,
297 READING_U32
298};
299
300/*
301 * The type of writing going on this chip
302 */
303enum ssp_writing {
304 WRITING_NULL,
305 WRITING_U8,
306 WRITING_U16,
307 WRITING_U32
308};
309
310/**
311 * struct vendor_data - vendor-specific config parameters
312 * for PL022 derivates
313 * @fifodepth: depth of FIFOs (both)
314 * @max_bpw: maximum number of bits per word
315 * @unidir: supports unidirection transfers
316 * @extended_cr: 32 bit wide control register 0 with extra
317 * features and extra features in CR1 as found in the ST variants
318 * @pl023: supports a subset of the ST extensions called "PL023"
319 * @loopback: supports loopback mode
320 * @internal_cs_ctrl: supports chip select control register
321 */
322struct vendor_data {
323 int fifodepth;
324 int max_bpw;
325 bool unidir;
326 bool extended_cr;
327 bool pl023;
328 bool loopback;
329 bool internal_cs_ctrl;
330};
331
332/**
333 * struct pl022 - This is the private SSP driver data structure
334 * @adev: AMBA device model hookup
335 * @vendor: vendor data for the IP block
336 * @phybase: the physical memory where the SSP device resides
337 * @virtbase: the virtual memory where the SSP is mapped
338 * @clk: outgoing clock "SPICLK" for the SPI bus
339 * @host: SPI framework hookup
340 * @host_info: controller-specific data from machine setup
341 * @cur_transfer: Pointer to current spi_transfer
342 * @cur_chip: pointer to current clients chip(assigned from controller_state)
343 * @tx: current position in TX buffer to be read
344 * @tx_end: end position in TX buffer to be read
345 * @rx: current position in RX buffer to be written
346 * @rx_end: end position in RX buffer to be written
347 * @read: the type of read currently going on
348 * @write: the type of write currently going on
349 * @exp_fifo_level: expected FIFO level
350 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
351 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
352 * @dma_rx_channel: optional channel for RX DMA
353 * @dma_tx_channel: optional channel for TX DMA
354 * @sgt_rx: scattertable for the RX transfer
355 * @sgt_tx: scattertable for the TX transfer
356 * @dummypage: a dummy page used for driving data on the bus with DMA
357 * @dma_running: indicates whether DMA is in operation
358 * @cur_cs: current chip select index
359 */
360struct pl022 {
361 struct amba_device *adev;
362 struct vendor_data *vendor;
363 resource_size_t phybase;
364 void __iomem *virtbase;
365 struct clk *clk;
366 struct spi_controller *host;
367 struct pl022_ssp_controller *host_info;
368 struct spi_transfer *cur_transfer;
369 struct chip_data *cur_chip;
370 void *tx;
371 void *tx_end;
372 void *rx;
373 void *rx_end;
374 enum ssp_reading read;
375 enum ssp_writing write;
376 u32 exp_fifo_level;
377 enum ssp_rx_level_trig rx_lev_trig;
378 enum ssp_tx_level_trig tx_lev_trig;
379 /* DMA settings */
380#ifdef CONFIG_DMA_ENGINE
381 struct dma_chan *dma_rx_channel;
382 struct dma_chan *dma_tx_channel;
383 struct sg_table sgt_rx;
384 struct sg_table sgt_tx;
385 char *dummypage;
386 bool dma_running;
387#endif
388 int cur_cs;
389};
390
391/**
392 * struct chip_data - To maintain runtime state of SSP for each client chip
393 * @cr0: Value of control register CR0 of SSP - on later ST variants this
394 * register is 32 bits wide rather than just 16
395 * @cr1: Value of control register CR1 of SSP
396 * @dmacr: Value of DMA control Register of SSP
397 * @cpsr: Value of Clock prescale register
398 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
399 * @enable_dma: Whether to enable DMA or not
400 * @read: function ptr to be used to read when doing xfer for this chip
401 * @write: function ptr to be used to write when doing xfer for this chip
402 * @xfer_type: polling/interrupt/DMA
403 *
404 * Runtime state of the SSP controller, maintained per chip,
405 * This would be set according to the current message that would be served
406 */
407struct chip_data {
408 u32 cr0;
409 u16 cr1;
410 u16 dmacr;
411 u16 cpsr;
412 u8 n_bytes;
413 bool enable_dma;
414 enum ssp_reading read;
415 enum ssp_writing write;
416 int xfer_type;
417};
418
419/**
420 * internal_cs_control - Control chip select signals via SSP_CSR.
421 * @pl022: SSP driver private data structure
422 * @enable: select/delect the chip
423 *
424 * Used on controller with internal chip select control via SSP_CSR register
425 * (vendor extension). Each of the 5 LSB in the register controls one chip
426 * select signal.
427 */
428static void internal_cs_control(struct pl022 *pl022, bool enable)
429{
430 u32 tmp;
431
432 tmp = readw(SSP_CSR(pl022->virtbase));
433 if (enable)
434 tmp &= ~BIT(pl022->cur_cs);
435 else
436 tmp |= BIT(pl022->cur_cs);
437 writew(tmp, SSP_CSR(pl022->virtbase));
438}
439
440static void pl022_cs_control(struct spi_device *spi, bool enable)
441{
442 struct pl022 *pl022 = spi_controller_get_devdata(spi->controller);
443 if (pl022->vendor->internal_cs_ctrl)
444 internal_cs_control(pl022, enable);
445}
446
447/**
448 * flush - flush the FIFO to reach a clean state
449 * @pl022: SSP driver private data structure
450 */
451static int flush(struct pl022 *pl022)
452{
453 unsigned long limit = loops_per_jiffy << 1;
454
455 dev_dbg(&pl022->adev->dev, "flush\n");
456 do {
457 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
458 readw(SSP_DR(pl022->virtbase));
459 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
460
461 pl022->exp_fifo_level = 0;
462
463 return limit;
464}
465
466/**
467 * restore_state - Load configuration of current chip
468 * @pl022: SSP driver private data structure
469 */
470static void restore_state(struct pl022 *pl022)
471{
472 struct chip_data *chip = pl022->cur_chip;
473
474 if (pl022->vendor->extended_cr)
475 writel(chip->cr0, SSP_CR0(pl022->virtbase));
476 else
477 writew(chip->cr0, SSP_CR0(pl022->virtbase));
478 writew(chip->cr1, SSP_CR1(pl022->virtbase));
479 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
480 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
481 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
482 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
483}
484
485/*
486 * Default SSP Register Values
487 */
488#define DEFAULT_SSP_REG_CR0 ( \
489 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
490 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
491 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
492 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
493 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
494)
495
496/* ST versions have slightly different bit layout */
497#define DEFAULT_SSP_REG_CR0_ST ( \
498 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
499 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
500 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
501 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
502 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
503 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
504 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
505)
506
507/* The PL023 version is slightly different again */
508#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
509 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
510 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
511 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
512 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
513)
514
515#define DEFAULT_SSP_REG_CR1 ( \
516 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
517 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
518 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
519 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
520)
521
522/* ST versions extend this register to use all 16 bits */
523#define DEFAULT_SSP_REG_CR1_ST ( \
524 DEFAULT_SSP_REG_CR1 | \
525 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
526 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
527 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
528 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
529 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
530)
531
532/*
533 * The PL023 variant has further differences: no loopback mode, no microwire
534 * support, and a new clock feedback delay setting.
535 */
536#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
537 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
538 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
539 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
540 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
541 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
542 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
543 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
544 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
545)
546
547#define DEFAULT_SSP_REG_CPSR ( \
548 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
549)
550
551#define DEFAULT_SSP_REG_DMACR (\
552 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
553 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
554)
555
556/**
557 * load_ssp_default_config - Load default configuration for SSP
558 * @pl022: SSP driver private data structure
559 */
560static void load_ssp_default_config(struct pl022 *pl022)
561{
562 if (pl022->vendor->pl023) {
563 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
564 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
565 } else if (pl022->vendor->extended_cr) {
566 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
567 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
568 } else {
569 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
570 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
571 }
572 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
573 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
574 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
575 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
576}
577
578/*
579 * This will write to TX and read from RX according to the parameters
580 * set in pl022.
581 */
582static void readwriter(struct pl022 *pl022)
583{
584
585 /*
586 * The FIFO depth is different between primecell variants.
587 * I believe filling in too much in the FIFO might cause
588 * errons in 8bit wide transfers on ARM variants (just 8 words
589 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
590 *
591 * To prevent this issue, the TX FIFO is only filled to the
592 * unused RX FIFO fill length, regardless of what the TX
593 * FIFO status flag indicates.
594 */
595 dev_dbg(&pl022->adev->dev,
596 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
597 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
598
599 /* Read as much as you can */
600 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
601 && (pl022->rx < pl022->rx_end)) {
602 switch (pl022->read) {
603 case READING_NULL:
604 readw(SSP_DR(pl022->virtbase));
605 break;
606 case READING_U8:
607 *(u8 *) (pl022->rx) =
608 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
609 break;
610 case READING_U16:
611 *(u16 *) (pl022->rx) =
612 (u16) readw(SSP_DR(pl022->virtbase));
613 break;
614 case READING_U32:
615 *(u32 *) (pl022->rx) =
616 readl(SSP_DR(pl022->virtbase));
617 break;
618 }
619 pl022->rx += (pl022->cur_chip->n_bytes);
620 pl022->exp_fifo_level--;
621 }
622 /*
623 * Write as much as possible up to the RX FIFO size
624 */
625 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
626 && (pl022->tx < pl022->tx_end)) {
627 switch (pl022->write) {
628 case WRITING_NULL:
629 writew(0x0, SSP_DR(pl022->virtbase));
630 break;
631 case WRITING_U8:
632 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
633 break;
634 case WRITING_U16:
635 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
636 break;
637 case WRITING_U32:
638 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
639 break;
640 }
641 pl022->tx += (pl022->cur_chip->n_bytes);
642 pl022->exp_fifo_level++;
643 /*
644 * This inner reader takes care of things appearing in the RX
645 * FIFO as we're transmitting. This will happen a lot since the
646 * clock starts running when you put things into the TX FIFO,
647 * and then things are continuously clocked into the RX FIFO.
648 */
649 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
650 && (pl022->rx < pl022->rx_end)) {
651 switch (pl022->read) {
652 case READING_NULL:
653 readw(SSP_DR(pl022->virtbase));
654 break;
655 case READING_U8:
656 *(u8 *) (pl022->rx) =
657 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
658 break;
659 case READING_U16:
660 *(u16 *) (pl022->rx) =
661 (u16) readw(SSP_DR(pl022->virtbase));
662 break;
663 case READING_U32:
664 *(u32 *) (pl022->rx) =
665 readl(SSP_DR(pl022->virtbase));
666 break;
667 }
668 pl022->rx += (pl022->cur_chip->n_bytes);
669 pl022->exp_fifo_level--;
670 }
671 }
672 /*
673 * When we exit here the TX FIFO should be full and the RX FIFO
674 * should be empty
675 */
676}
677
678/*
679 * This DMA functionality is only compiled in if we have
680 * access to the generic DMA devices/DMA engine.
681 */
682#ifdef CONFIG_DMA_ENGINE
683static void unmap_free_dma_scatter(struct pl022 *pl022)
684{
685 /* Unmap and free the SG tables */
686 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
687 pl022->sgt_tx.nents, DMA_TO_DEVICE);
688 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
689 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
690 sg_free_table(&pl022->sgt_rx);
691 sg_free_table(&pl022->sgt_tx);
692}
693
694static void dma_callback(void *data)
695{
696 struct pl022 *pl022 = data;
697
698 BUG_ON(!pl022->sgt_rx.sgl);
699
700#ifdef VERBOSE_DEBUG
701 /*
702 * Optionally dump out buffers to inspect contents, this is
703 * good if you want to convince yourself that the loopback
704 * read/write contents are the same, when adopting to a new
705 * DMA engine.
706 */
707 {
708 struct scatterlist *sg;
709 unsigned int i;
710
711 dma_sync_sg_for_cpu(&pl022->adev->dev,
712 pl022->sgt_rx.sgl,
713 pl022->sgt_rx.nents,
714 DMA_FROM_DEVICE);
715
716 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
717 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
718 print_hex_dump(KERN_ERR, "SPI RX: ",
719 DUMP_PREFIX_OFFSET,
720 16,
721 1,
722 sg_virt(sg),
723 sg_dma_len(sg),
724 1);
725 }
726 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
727 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
728 print_hex_dump(KERN_ERR, "SPI TX: ",
729 DUMP_PREFIX_OFFSET,
730 16,
731 1,
732 sg_virt(sg),
733 sg_dma_len(sg),
734 1);
735 }
736 }
737#endif
738
739 unmap_free_dma_scatter(pl022);
740
741 spi_finalize_current_transfer(pl022->host);
742}
743
744static void setup_dma_scatter(struct pl022 *pl022,
745 void *buffer,
746 unsigned int length,
747 struct sg_table *sgtab)
748{
749 struct scatterlist *sg;
750 int bytesleft = length;
751 void *bufp = buffer;
752 int mapbytes;
753 int i;
754
755 if (buffer) {
756 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
757 /*
758 * If there are less bytes left than what fits
759 * in the current page (plus page alignment offset)
760 * we just feed in this, else we stuff in as much
761 * as we can.
762 */
763 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
764 mapbytes = bytesleft;
765 else
766 mapbytes = PAGE_SIZE - offset_in_page(bufp);
767 sg_set_page(sg, virt_to_page(bufp),
768 mapbytes, offset_in_page(bufp));
769 bufp += mapbytes;
770 bytesleft -= mapbytes;
771 dev_dbg(&pl022->adev->dev,
772 "set RX/TX target page @ %p, %d bytes, %d left\n",
773 bufp, mapbytes, bytesleft);
774 }
775 } else {
776 /* Map the dummy buffer on every page */
777 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
778 if (bytesleft < PAGE_SIZE)
779 mapbytes = bytesleft;
780 else
781 mapbytes = PAGE_SIZE;
782 sg_set_page(sg, virt_to_page(pl022->dummypage),
783 mapbytes, 0);
784 bytesleft -= mapbytes;
785 dev_dbg(&pl022->adev->dev,
786 "set RX/TX to dummy page %d bytes, %d left\n",
787 mapbytes, bytesleft);
788
789 }
790 }
791 BUG_ON(bytesleft);
792}
793
794/**
795 * configure_dma - configures the channels for the next transfer
796 * @pl022: SSP driver's private data structure
797 */
798static int configure_dma(struct pl022 *pl022)
799{
800 struct dma_slave_config rx_conf = {
801 .src_addr = SSP_DR(pl022->phybase),
802 .direction = DMA_DEV_TO_MEM,
803 .device_fc = false,
804 };
805 struct dma_slave_config tx_conf = {
806 .dst_addr = SSP_DR(pl022->phybase),
807 .direction = DMA_MEM_TO_DEV,
808 .device_fc = false,
809 };
810 unsigned int pages;
811 int ret;
812 int rx_sglen, tx_sglen;
813 struct dma_chan *rxchan = pl022->dma_rx_channel;
814 struct dma_chan *txchan = pl022->dma_tx_channel;
815 struct dma_async_tx_descriptor *rxdesc;
816 struct dma_async_tx_descriptor *txdesc;
817
818 /* Check that the channels are available */
819 if (!rxchan || !txchan)
820 return -ENODEV;
821
822 /*
823 * If supplied, the DMA burstsize should equal the FIFO trigger level.
824 * Notice that the DMA engine uses one-to-one mapping. Since we can
825 * not trigger on 2 elements this needs explicit mapping rather than
826 * calculation.
827 */
828 switch (pl022->rx_lev_trig) {
829 case SSP_RX_1_OR_MORE_ELEM:
830 rx_conf.src_maxburst = 1;
831 break;
832 case SSP_RX_4_OR_MORE_ELEM:
833 rx_conf.src_maxburst = 4;
834 break;
835 case SSP_RX_8_OR_MORE_ELEM:
836 rx_conf.src_maxburst = 8;
837 break;
838 case SSP_RX_16_OR_MORE_ELEM:
839 rx_conf.src_maxburst = 16;
840 break;
841 case SSP_RX_32_OR_MORE_ELEM:
842 rx_conf.src_maxburst = 32;
843 break;
844 default:
845 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
846 break;
847 }
848
849 switch (pl022->tx_lev_trig) {
850 case SSP_TX_1_OR_MORE_EMPTY_LOC:
851 tx_conf.dst_maxburst = 1;
852 break;
853 case SSP_TX_4_OR_MORE_EMPTY_LOC:
854 tx_conf.dst_maxburst = 4;
855 break;
856 case SSP_TX_8_OR_MORE_EMPTY_LOC:
857 tx_conf.dst_maxburst = 8;
858 break;
859 case SSP_TX_16_OR_MORE_EMPTY_LOC:
860 tx_conf.dst_maxburst = 16;
861 break;
862 case SSP_TX_32_OR_MORE_EMPTY_LOC:
863 tx_conf.dst_maxburst = 32;
864 break;
865 default:
866 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
867 break;
868 }
869
870 switch (pl022->read) {
871 case READING_NULL:
872 /* Use the same as for writing */
873 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
874 break;
875 case READING_U8:
876 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
877 break;
878 case READING_U16:
879 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
880 break;
881 case READING_U32:
882 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
883 break;
884 }
885
886 switch (pl022->write) {
887 case WRITING_NULL:
888 /* Use the same as for reading */
889 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
890 break;
891 case WRITING_U8:
892 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
893 break;
894 case WRITING_U16:
895 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
896 break;
897 case WRITING_U32:
898 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
899 break;
900 }
901
902 /* SPI pecularity: we need to read and write the same width */
903 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
904 rx_conf.src_addr_width = tx_conf.dst_addr_width;
905 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
906 tx_conf.dst_addr_width = rx_conf.src_addr_width;
907 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
908
909 dmaengine_slave_config(rxchan, &rx_conf);
910 dmaengine_slave_config(txchan, &tx_conf);
911
912 /* Create sglists for the transfers */
913 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
914 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
915
916 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
917 if (ret)
918 goto err_alloc_rx_sg;
919
920 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
921 if (ret)
922 goto err_alloc_tx_sg;
923
924 /* Fill in the scatterlists for the RX+TX buffers */
925 setup_dma_scatter(pl022, pl022->rx,
926 pl022->cur_transfer->len, &pl022->sgt_rx);
927 setup_dma_scatter(pl022, pl022->tx,
928 pl022->cur_transfer->len, &pl022->sgt_tx);
929
930 /* Map DMA buffers */
931 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
932 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
933 if (!rx_sglen)
934 goto err_rx_sgmap;
935
936 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
937 pl022->sgt_tx.nents, DMA_TO_DEVICE);
938 if (!tx_sglen)
939 goto err_tx_sgmap;
940
941 /* Send both scatterlists */
942 rxdesc = dmaengine_prep_slave_sg(rxchan,
943 pl022->sgt_rx.sgl,
944 rx_sglen,
945 DMA_DEV_TO_MEM,
946 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
947 if (!rxdesc)
948 goto err_rxdesc;
949
950 txdesc = dmaengine_prep_slave_sg(txchan,
951 pl022->sgt_tx.sgl,
952 tx_sglen,
953 DMA_MEM_TO_DEV,
954 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
955 if (!txdesc)
956 goto err_txdesc;
957
958 /* Put the callback on the RX transfer only, that should finish last */
959 rxdesc->callback = dma_callback;
960 rxdesc->callback_param = pl022;
961
962 /* Submit and fire RX and TX with TX last so we're ready to read! */
963 dmaengine_submit(rxdesc);
964 dmaengine_submit(txdesc);
965 dma_async_issue_pending(rxchan);
966 dma_async_issue_pending(txchan);
967 pl022->dma_running = true;
968
969 return 0;
970
971err_txdesc:
972 dmaengine_terminate_all(txchan);
973err_rxdesc:
974 dmaengine_terminate_all(rxchan);
975 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
976 pl022->sgt_tx.nents, DMA_TO_DEVICE);
977err_tx_sgmap:
978 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
979 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
980err_rx_sgmap:
981 sg_free_table(&pl022->sgt_tx);
982err_alloc_tx_sg:
983 sg_free_table(&pl022->sgt_rx);
984err_alloc_rx_sg:
985 return -ENOMEM;
986}
987
988static int pl022_dma_probe(struct pl022 *pl022)
989{
990 dma_cap_mask_t mask;
991
992 /* Try to acquire a generic DMA engine slave channel */
993 dma_cap_zero(mask);
994 dma_cap_set(DMA_SLAVE, mask);
995 /*
996 * We need both RX and TX channels to do DMA, else do none
997 * of them.
998 */
999 pl022->dma_rx_channel = dma_request_channel(mask,
1000 pl022->host_info->dma_filter,
1001 pl022->host_info->dma_rx_param);
1002 if (!pl022->dma_rx_channel) {
1003 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1004 goto err_no_rxchan;
1005 }
1006
1007 pl022->dma_tx_channel = dma_request_channel(mask,
1008 pl022->host_info->dma_filter,
1009 pl022->host_info->dma_tx_param);
1010 if (!pl022->dma_tx_channel) {
1011 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1012 goto err_no_txchan;
1013 }
1014
1015 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1016 if (!pl022->dummypage)
1017 goto err_no_dummypage;
1018
1019 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1020 dma_chan_name(pl022->dma_rx_channel),
1021 dma_chan_name(pl022->dma_tx_channel));
1022
1023 return 0;
1024
1025err_no_dummypage:
1026 dma_release_channel(pl022->dma_tx_channel);
1027err_no_txchan:
1028 dma_release_channel(pl022->dma_rx_channel);
1029 pl022->dma_rx_channel = NULL;
1030err_no_rxchan:
1031 dev_err(&pl022->adev->dev,
1032 "Failed to work in dma mode, work without dma!\n");
1033 return -ENODEV;
1034}
1035
1036static int pl022_dma_autoprobe(struct pl022 *pl022)
1037{
1038 struct device *dev = &pl022->adev->dev;
1039 struct dma_chan *chan;
1040 int err;
1041
1042 /* automatically configure DMA channels from platform, normally using DT */
1043 chan = dma_request_chan(dev, "rx");
1044 if (IS_ERR(chan)) {
1045 err = PTR_ERR(chan);
1046 goto err_no_rxchan;
1047 }
1048
1049 pl022->dma_rx_channel = chan;
1050
1051 chan = dma_request_chan(dev, "tx");
1052 if (IS_ERR(chan)) {
1053 err = PTR_ERR(chan);
1054 goto err_no_txchan;
1055 }
1056
1057 pl022->dma_tx_channel = chan;
1058
1059 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1060 if (!pl022->dummypage) {
1061 err = -ENOMEM;
1062 goto err_no_dummypage;
1063 }
1064
1065 return 0;
1066
1067err_no_dummypage:
1068 dma_release_channel(pl022->dma_tx_channel);
1069 pl022->dma_tx_channel = NULL;
1070err_no_txchan:
1071 dma_release_channel(pl022->dma_rx_channel);
1072 pl022->dma_rx_channel = NULL;
1073err_no_rxchan:
1074 return err;
1075}
1076
1077static void terminate_dma(struct pl022 *pl022)
1078{
1079 if (!pl022->dma_running)
1080 return;
1081
1082 struct dma_chan *rxchan = pl022->dma_rx_channel;
1083 struct dma_chan *txchan = pl022->dma_tx_channel;
1084
1085 dmaengine_terminate_all(rxchan);
1086 dmaengine_terminate_all(txchan);
1087 unmap_free_dma_scatter(pl022);
1088 pl022->dma_running = false;
1089}
1090
1091static void pl022_dma_remove(struct pl022 *pl022)
1092{
1093 terminate_dma(pl022);
1094 if (pl022->dma_tx_channel)
1095 dma_release_channel(pl022->dma_tx_channel);
1096 if (pl022->dma_rx_channel)
1097 dma_release_channel(pl022->dma_rx_channel);
1098 kfree(pl022->dummypage);
1099}
1100
1101#else
1102static inline int configure_dma(struct pl022 *pl022)
1103{
1104 return -ENODEV;
1105}
1106
1107static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1108{
1109 return 0;
1110}
1111
1112static inline int pl022_dma_probe(struct pl022 *pl022)
1113{
1114 return 0;
1115}
1116
1117static inline void terminate_dma(struct pl022 *pl022)
1118{
1119}
1120
1121static inline void pl022_dma_remove(struct pl022 *pl022)
1122{
1123}
1124#endif
1125
1126/**
1127 * pl022_interrupt_handler - Interrupt handler for SSP controller
1128 * @irq: IRQ number
1129 * @dev_id: Local device data
1130 *
1131 * This function handles interrupts generated for an interrupt based transfer.
1132 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1133 * current message's state as STATE_ERROR and schedule the tasklet
1134 * pump_transfers which will do the postprocessing of the current message by
1135 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1136 * more data, and writes data in TX FIFO till it is not full. If we complete
1137 * the transfer we move to the next transfer and schedule the tasklet.
1138 */
1139static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1140{
1141 struct pl022 *pl022 = dev_id;
1142 u16 irq_status = 0;
1143 /* Read the Interrupt Status Register */
1144 irq_status = readw(SSP_MIS(pl022->virtbase));
1145
1146 if (unlikely(!irq_status))
1147 return IRQ_NONE;
1148
1149 /*
1150 * This handles the FIFO interrupts, the timeout
1151 * interrupts are flatly ignored, they cannot be
1152 * trusted.
1153 */
1154 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1155 /*
1156 * Overrun interrupt - bail out since our Data has been
1157 * corrupted
1158 */
1159 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1160 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1161 dev_err(&pl022->adev->dev,
1162 "RXFIFO is full\n");
1163
1164 /*
1165 * Disable and clear interrupts, disable SSP,
1166 * mark message with bad status so it can be
1167 * retried.
1168 */
1169 writew(DISABLE_ALL_INTERRUPTS,
1170 SSP_IMSC(pl022->virtbase));
1171 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1172 writew((readw(SSP_CR1(pl022->virtbase)) &
1173 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1174 pl022->cur_transfer->error |= SPI_TRANS_FAIL_IO;
1175 spi_finalize_current_transfer(pl022->host);
1176 return IRQ_HANDLED;
1177 }
1178
1179 readwriter(pl022);
1180
1181 if (pl022->tx == pl022->tx_end) {
1182 /* Disable Transmit interrupt, enable receive interrupt */
1183 writew((readw(SSP_IMSC(pl022->virtbase)) &
1184 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1185 SSP_IMSC(pl022->virtbase));
1186 }
1187
1188 /*
1189 * Since all transactions must write as much as shall be read,
1190 * we can conclude the entire transaction once RX is complete.
1191 * At this point, all TX will always be finished.
1192 */
1193 if (pl022->rx >= pl022->rx_end) {
1194 writew(DISABLE_ALL_INTERRUPTS,
1195 SSP_IMSC(pl022->virtbase));
1196 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1197 if (unlikely(pl022->rx > pl022->rx_end)) {
1198 dev_warn(&pl022->adev->dev, "read %u surplus "
1199 "bytes (did you request an odd "
1200 "number of bytes on a 16bit bus?)\n",
1201 (u32) (pl022->rx - pl022->rx_end));
1202 }
1203 spi_finalize_current_transfer(pl022->host);
1204 return IRQ_HANDLED;
1205 }
1206
1207 return IRQ_HANDLED;
1208}
1209
1210/*
1211 * This sets up the pointers to memory for the next message to
1212 * send out on the SPI bus.
1213 */
1214static int set_up_next_transfer(struct pl022 *pl022,
1215 struct spi_transfer *transfer)
1216{
1217 int residue;
1218
1219 /* Sanity check the message for this bus width */
1220 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1221 if (unlikely(residue != 0)) {
1222 dev_err(&pl022->adev->dev,
1223 "message of %u bytes to transmit but the current "
1224 "chip bus has a data width of %u bytes!\n",
1225 pl022->cur_transfer->len,
1226 pl022->cur_chip->n_bytes);
1227 dev_err(&pl022->adev->dev, "skipping this message\n");
1228 return -EIO;
1229 }
1230 pl022->tx = (void *)transfer->tx_buf;
1231 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1232 pl022->rx = (void *)transfer->rx_buf;
1233 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1234 pl022->write =
1235 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1236 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1237 return 0;
1238}
1239
1240static int do_interrupt_dma_transfer(struct pl022 *pl022)
1241{
1242 int ret;
1243
1244 /*
1245 * Default is to enable all interrupts except RX -
1246 * this will be enabled once TX is complete
1247 */
1248 u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1249
1250 ret = set_up_next_transfer(pl022, pl022->cur_transfer);
1251 if (ret)
1252 return ret;
1253
1254 /* If we're using DMA, set up DMA here */
1255 if (pl022->cur_chip->enable_dma) {
1256 /* Configure DMA transfer */
1257 if (configure_dma(pl022)) {
1258 dev_dbg(&pl022->adev->dev,
1259 "configuration of DMA failed, fall back to interrupt mode\n");
1260 goto err_config_dma;
1261 }
1262 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1263 irqflags = DISABLE_ALL_INTERRUPTS;
1264 }
1265err_config_dma:
1266 /* Enable SSP, turn on interrupts */
1267 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1268 SSP_CR1(pl022->virtbase));
1269 writew(irqflags, SSP_IMSC(pl022->virtbase));
1270 return 1;
1271}
1272
1273static void print_current_status(struct pl022 *pl022)
1274{
1275 u32 read_cr0;
1276 u16 read_cr1, read_dmacr, read_sr;
1277
1278 if (pl022->vendor->extended_cr)
1279 read_cr0 = readl(SSP_CR0(pl022->virtbase));
1280 else
1281 read_cr0 = readw(SSP_CR0(pl022->virtbase));
1282 read_cr1 = readw(SSP_CR1(pl022->virtbase));
1283 read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1284 read_sr = readw(SSP_SR(pl022->virtbase));
1285
1286 dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1287 dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1288 dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1289 dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1290 dev_warn(&pl022->adev->dev,
1291 "spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1292 pl022->exp_fifo_level,
1293 pl022->vendor->fifodepth);
1294
1295}
1296
1297static int do_polling_transfer(struct pl022 *pl022)
1298{
1299 int ret;
1300 unsigned long time, timeout;
1301
1302 /* Configuration Changing Per Transfer */
1303 ret = set_up_next_transfer(pl022, pl022->cur_transfer);
1304 if (ret)
1305 return ret;
1306 /* Flush FIFOs and enable SSP */
1307 flush(pl022);
1308 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1309 SSP_CR1(pl022->virtbase));
1310
1311 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1312
1313 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1314 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1315 time = jiffies;
1316 readwriter(pl022);
1317 if (time_after(time, timeout)) {
1318 dev_warn(&pl022->adev->dev,
1319 "%s: timeout!\n", __func__);
1320 print_current_status(pl022);
1321 return -ETIMEDOUT;
1322 }
1323 cpu_relax();
1324 }
1325
1326 return 0;
1327}
1328
1329static int pl022_transfer_one(struct spi_controller *host, struct spi_device *spi,
1330 struct spi_transfer *transfer)
1331{
1332 struct pl022 *pl022 = spi_controller_get_devdata(host);
1333
1334 pl022->cur_transfer = transfer;
1335
1336 /* Setup the SPI using the per chip configuration */
1337 pl022->cur_chip = spi_get_ctldata(spi);
1338 pl022->cur_cs = spi_get_chipselect(spi, 0);
1339
1340 restore_state(pl022);
1341 flush(pl022);
1342
1343 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1344 return do_polling_transfer(pl022);
1345 else
1346 return do_interrupt_dma_transfer(pl022);
1347}
1348
1349static void pl022_handle_err(struct spi_controller *ctlr, struct spi_message *message)
1350{
1351 struct pl022 *pl022 = spi_controller_get_devdata(ctlr);
1352
1353 terminate_dma(pl022);
1354 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1355 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1356}
1357
1358static int pl022_unprepare_transfer_hardware(struct spi_controller *host)
1359{
1360 struct pl022 *pl022 = spi_controller_get_devdata(host);
1361
1362 /* nothing more to do - disable spi/ssp and power off */
1363 writew((readw(SSP_CR1(pl022->virtbase)) &
1364 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1365
1366 return 0;
1367}
1368
1369static int verify_controller_parameters(struct pl022 *pl022,
1370 struct pl022_config_chip const *chip_info)
1371{
1372 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1373 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1374 dev_err(&pl022->adev->dev,
1375 "interface is configured incorrectly\n");
1376 return -EINVAL;
1377 }
1378 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1379 (!pl022->vendor->unidir)) {
1380 dev_err(&pl022->adev->dev,
1381 "unidirectional mode not supported in this "
1382 "hardware version\n");
1383 return -EINVAL;
1384 }
1385 if ((chip_info->hierarchy != SSP_MASTER)
1386 && (chip_info->hierarchy != SSP_SLAVE)) {
1387 dev_err(&pl022->adev->dev,
1388 "hierarchy is configured incorrectly\n");
1389 return -EINVAL;
1390 }
1391 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1392 && (chip_info->com_mode != DMA_TRANSFER)
1393 && (chip_info->com_mode != POLLING_TRANSFER)) {
1394 dev_err(&pl022->adev->dev,
1395 "Communication mode is configured incorrectly\n");
1396 return -EINVAL;
1397 }
1398 switch (chip_info->rx_lev_trig) {
1399 case SSP_RX_1_OR_MORE_ELEM:
1400 case SSP_RX_4_OR_MORE_ELEM:
1401 case SSP_RX_8_OR_MORE_ELEM:
1402 /* These are always OK, all variants can handle this */
1403 break;
1404 case SSP_RX_16_OR_MORE_ELEM:
1405 if (pl022->vendor->fifodepth < 16) {
1406 dev_err(&pl022->adev->dev,
1407 "RX FIFO Trigger Level is configured incorrectly\n");
1408 return -EINVAL;
1409 }
1410 break;
1411 case SSP_RX_32_OR_MORE_ELEM:
1412 if (pl022->vendor->fifodepth < 32) {
1413 dev_err(&pl022->adev->dev,
1414 "RX FIFO Trigger Level is configured incorrectly\n");
1415 return -EINVAL;
1416 }
1417 break;
1418 default:
1419 dev_err(&pl022->adev->dev,
1420 "RX FIFO Trigger Level is configured incorrectly\n");
1421 return -EINVAL;
1422 }
1423 switch (chip_info->tx_lev_trig) {
1424 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1425 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1426 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1427 /* These are always OK, all variants can handle this */
1428 break;
1429 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1430 if (pl022->vendor->fifodepth < 16) {
1431 dev_err(&pl022->adev->dev,
1432 "TX FIFO Trigger Level is configured incorrectly\n");
1433 return -EINVAL;
1434 }
1435 break;
1436 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1437 if (pl022->vendor->fifodepth < 32) {
1438 dev_err(&pl022->adev->dev,
1439 "TX FIFO Trigger Level is configured incorrectly\n");
1440 return -EINVAL;
1441 }
1442 break;
1443 default:
1444 dev_err(&pl022->adev->dev,
1445 "TX FIFO Trigger Level is configured incorrectly\n");
1446 return -EINVAL;
1447 }
1448 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1449 if ((chip_info->ctrl_len < SSP_BITS_4)
1450 || (chip_info->ctrl_len > SSP_BITS_32)) {
1451 dev_err(&pl022->adev->dev,
1452 "CTRL LEN is configured incorrectly\n");
1453 return -EINVAL;
1454 }
1455 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1456 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1457 dev_err(&pl022->adev->dev,
1458 "Wait State is configured incorrectly\n");
1459 return -EINVAL;
1460 }
1461 /* Half duplex is only available in the ST Micro version */
1462 if (pl022->vendor->extended_cr) {
1463 if ((chip_info->duplex !=
1464 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1465 && (chip_info->duplex !=
1466 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1467 dev_err(&pl022->adev->dev,
1468 "Microwire duplex mode is configured incorrectly\n");
1469 return -EINVAL;
1470 }
1471 } else {
1472 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) {
1473 dev_err(&pl022->adev->dev,
1474 "Microwire half duplex mode requested,"
1475 " but this is only available in the"
1476 " ST version of PL022\n");
1477 return -EINVAL;
1478 }
1479 }
1480 }
1481 return 0;
1482}
1483
1484static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1485{
1486 return rate / (cpsdvsr * (1 + scr));
1487}
1488
1489static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1490 ssp_clock_params * clk_freq)
1491{
1492 /* Lets calculate the frequency parameters */
1493 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1494 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1495 best_scr = 0, tmp, found = 0;
1496
1497 rate = clk_get_rate(pl022->clk);
1498 /* cpsdvscr = 2 & scr 0 */
1499 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1500 /* cpsdvsr = 254 & scr = 255 */
1501 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1502
1503 if (freq > max_tclk)
1504 dev_warn(&pl022->adev->dev,
1505 "Max speed that can be programmed is %d Hz, you requested %d\n",
1506 max_tclk, freq);
1507
1508 if (freq < min_tclk) {
1509 dev_err(&pl022->adev->dev,
1510 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1511 freq, min_tclk);
1512 return -EINVAL;
1513 }
1514
1515 /*
1516 * best_freq will give closest possible available rate (<= requested
1517 * freq) for all values of scr & cpsdvsr.
1518 */
1519 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1520 while (scr <= SCR_MAX) {
1521 tmp = spi_rate(rate, cpsdvsr, scr);
1522
1523 if (tmp > freq) {
1524 /* we need lower freq */
1525 scr++;
1526 continue;
1527 }
1528
1529 /*
1530 * If found exact value, mark found and break.
1531 * If found more closer value, update and break.
1532 */
1533 if (tmp > best_freq) {
1534 best_freq = tmp;
1535 best_cpsdvsr = cpsdvsr;
1536 best_scr = scr;
1537
1538 if (tmp == freq)
1539 found = 1;
1540 }
1541 /*
1542 * increased scr will give lower rates, which are not
1543 * required
1544 */
1545 break;
1546 }
1547 cpsdvsr += 2;
1548 scr = SCR_MIN;
1549 }
1550
1551 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1552 freq);
1553
1554 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1555 clk_freq->scr = (u8) (best_scr & 0xFF);
1556 dev_dbg(&pl022->adev->dev,
1557 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1558 freq, best_freq);
1559 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1560 clk_freq->cpsdvsr, clk_freq->scr);
1561
1562 return 0;
1563}
1564
1565/*
1566 * A piece of default chip info unless the platform
1567 * supplies it.
1568 */
1569static const struct pl022_config_chip pl022_default_chip_info = {
1570 .com_mode = INTERRUPT_TRANSFER,
1571 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1572 .hierarchy = SSP_MASTER,
1573 .slave_tx_disable = DO_NOT_DRIVE_TX,
1574 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1575 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1576 .ctrl_len = SSP_BITS_8,
1577 .wait_state = SSP_MWIRE_WAIT_ZERO,
1578 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1579};
1580
1581/**
1582 * pl022_setup - setup function registered to SPI host framework
1583 * @spi: spi device which is requesting setup
1584 *
1585 * This function is registered to the SPI framework for this SPI host
1586 * controller. If it is the first time when setup is called by this device,
1587 * this function will initialize the runtime state for this chip and save
1588 * the same in the device structure. Else it will update the runtime info
1589 * with the updated chip info. Nothing is really being written to the
1590 * controller hardware here, that is not done until the actual transfer
1591 * commence.
1592 */
1593static int pl022_setup(struct spi_device *spi)
1594{
1595 struct pl022_config_chip const *chip_info;
1596 struct pl022_config_chip chip_info_dt;
1597 struct chip_data *chip;
1598 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1599 int status = 0;
1600 struct pl022 *pl022 = spi_controller_get_devdata(spi->controller);
1601 unsigned int bits = spi->bits_per_word;
1602 u32 tmp;
1603 struct device_node *np = spi->dev.of_node;
1604
1605 if (!spi->max_speed_hz)
1606 return -EINVAL;
1607
1608 /* Get controller_state if one is supplied */
1609 chip = spi_get_ctldata(spi);
1610
1611 if (chip == NULL) {
1612 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1613 if (!chip)
1614 return -ENOMEM;
1615 dev_dbg(&spi->dev,
1616 "allocated memory for controller's runtime state\n");
1617 }
1618
1619 /* Get controller data if one is supplied */
1620 chip_info = spi->controller_data;
1621
1622 if (chip_info == NULL) {
1623 if (np) {
1624 chip_info_dt = pl022_default_chip_info;
1625
1626 chip_info_dt.hierarchy = SSP_MASTER;
1627 of_property_read_u32(np, "pl022,interface",
1628 &chip_info_dt.iface);
1629 of_property_read_u32(np, "pl022,com-mode",
1630 &chip_info_dt.com_mode);
1631 of_property_read_u32(np, "pl022,rx-level-trig",
1632 &chip_info_dt.rx_lev_trig);
1633 of_property_read_u32(np, "pl022,tx-level-trig",
1634 &chip_info_dt.tx_lev_trig);
1635 of_property_read_u32(np, "pl022,ctrl-len",
1636 &chip_info_dt.ctrl_len);
1637 of_property_read_u32(np, "pl022,wait-state",
1638 &chip_info_dt.wait_state);
1639 of_property_read_u32(np, "pl022,duplex",
1640 &chip_info_dt.duplex);
1641
1642 chip_info = &chip_info_dt;
1643 } else {
1644 chip_info = &pl022_default_chip_info;
1645 /* spi_board_info.controller_data not is supplied */
1646 dev_dbg(&spi->dev,
1647 "using default controller_data settings\n");
1648 }
1649 } else
1650 dev_dbg(&spi->dev,
1651 "using user supplied controller_data settings\n");
1652
1653 /*
1654 * We can override with custom divisors, else we use the board
1655 * frequency setting
1656 */
1657 if ((0 == chip_info->clk_freq.cpsdvsr)
1658 && (0 == chip_info->clk_freq.scr)) {
1659 status = calculate_effective_freq(pl022,
1660 spi->max_speed_hz,
1661 &clk_freq);
1662 if (status < 0)
1663 goto err_config_params;
1664 } else {
1665 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1666 if ((clk_freq.cpsdvsr % 2) != 0)
1667 clk_freq.cpsdvsr =
1668 clk_freq.cpsdvsr - 1;
1669 }
1670 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1671 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1672 status = -EINVAL;
1673 dev_err(&spi->dev,
1674 "cpsdvsr is configured incorrectly\n");
1675 goto err_config_params;
1676 }
1677
1678 status = verify_controller_parameters(pl022, chip_info);
1679 if (status) {
1680 dev_err(&spi->dev, "controller data is incorrect");
1681 goto err_config_params;
1682 }
1683
1684 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1685 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1686
1687 /* Now set controller state based on controller data */
1688 chip->xfer_type = chip_info->com_mode;
1689
1690 /* Check bits per word with vendor specific range */
1691 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1692 status = -ENOTSUPP;
1693 dev_err(&spi->dev, "illegal data size for this controller!\n");
1694 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1695 pl022->vendor->max_bpw);
1696 goto err_config_params;
1697 } else if (bits <= 8) {
1698 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1699 chip->n_bytes = 1;
1700 chip->read = READING_U8;
1701 chip->write = WRITING_U8;
1702 } else if (bits <= 16) {
1703 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1704 chip->n_bytes = 2;
1705 chip->read = READING_U16;
1706 chip->write = WRITING_U16;
1707 } else {
1708 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1709 chip->n_bytes = 4;
1710 chip->read = READING_U32;
1711 chip->write = WRITING_U32;
1712 }
1713
1714 /* Now Initialize all register settings required for this chip */
1715 chip->cr0 = 0;
1716 chip->cr1 = 0;
1717 chip->dmacr = 0;
1718 chip->cpsr = 0;
1719 if ((chip_info->com_mode == DMA_TRANSFER)
1720 && ((pl022->host_info)->enable_dma)) {
1721 chip->enable_dma = true;
1722 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1723 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1724 SSP_DMACR_MASK_RXDMAE, 0);
1725 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1726 SSP_DMACR_MASK_TXDMAE, 1);
1727 } else {
1728 chip->enable_dma = false;
1729 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1730 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1731 SSP_DMACR_MASK_RXDMAE, 0);
1732 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1733 SSP_DMACR_MASK_TXDMAE, 1);
1734 }
1735
1736 chip->cpsr = clk_freq.cpsdvsr;
1737
1738 /* Special setup for the ST micro extended control registers */
1739 if (pl022->vendor->extended_cr) {
1740 u32 etx;
1741
1742 if (pl022->vendor->pl023) {
1743 /* These bits are only in the PL023 */
1744 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1745 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1746 } else {
1747 /* These bits are in the PL022 but not PL023 */
1748 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1749 SSP_CR0_MASK_HALFDUP_ST, 5);
1750 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1751 SSP_CR0_MASK_CSS_ST, 16);
1752 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1753 SSP_CR0_MASK_FRF_ST, 21);
1754 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1755 SSP_CR1_MASK_MWAIT_ST, 6);
1756 }
1757 SSP_WRITE_BITS(chip->cr0, bits - 1,
1758 SSP_CR0_MASK_DSS_ST, 0);
1759
1760 if (spi->mode & SPI_LSB_FIRST) {
1761 tmp = SSP_RX_LSB;
1762 etx = SSP_TX_LSB;
1763 } else {
1764 tmp = SSP_RX_MSB;
1765 etx = SSP_TX_MSB;
1766 }
1767 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1768 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1769 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1770 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1771 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1772 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1773 } else {
1774 SSP_WRITE_BITS(chip->cr0, bits - 1,
1775 SSP_CR0_MASK_DSS, 0);
1776 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1777 SSP_CR0_MASK_FRF, 4);
1778 }
1779
1780 /* Stuff that is common for all versions */
1781 if (spi->mode & SPI_CPOL)
1782 tmp = SSP_CLK_POL_IDLE_HIGH;
1783 else
1784 tmp = SSP_CLK_POL_IDLE_LOW;
1785 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1786
1787 if (spi->mode & SPI_CPHA)
1788 tmp = SSP_CLK_SECOND_EDGE;
1789 else
1790 tmp = SSP_CLK_FIRST_EDGE;
1791 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1792
1793 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1794 /* Loopback is available on all versions except PL023 */
1795 if (pl022->vendor->loopback) {
1796 if (spi->mode & SPI_LOOP)
1797 tmp = LOOPBACK_ENABLED;
1798 else
1799 tmp = LOOPBACK_DISABLED;
1800 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1801 }
1802 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1803 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1804 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
1805 3);
1806
1807 /* Save controller_state */
1808 spi_set_ctldata(spi, chip);
1809 return status;
1810 err_config_params:
1811 spi_set_ctldata(spi, NULL);
1812 kfree(chip);
1813 return status;
1814}
1815
1816/**
1817 * pl022_cleanup - cleanup function registered to SPI host framework
1818 * @spi: spi device which is requesting cleanup
1819 *
1820 * This function is registered to the SPI framework for this SPI host
1821 * controller. It will free the runtime state of chip.
1822 */
1823static void pl022_cleanup(struct spi_device *spi)
1824{
1825 struct chip_data *chip = spi_get_ctldata(spi);
1826
1827 spi_set_ctldata(spi, NULL);
1828 kfree(chip);
1829}
1830
1831static struct pl022_ssp_controller *
1832pl022_platform_data_dt_get(struct device *dev)
1833{
1834 struct device_node *np = dev->of_node;
1835 struct pl022_ssp_controller *pd;
1836
1837 if (!np) {
1838 dev_err(dev, "no dt node defined\n");
1839 return NULL;
1840 }
1841
1842 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
1843 if (!pd)
1844 return NULL;
1845
1846 pd->bus_id = -1;
1847 of_property_read_u32(np, "pl022,autosuspend-delay",
1848 &pd->autosuspend_delay);
1849 pd->rt = of_property_read_bool(np, "pl022,rt");
1850
1851 return pd;
1852}
1853
1854static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
1855{
1856 struct device *dev = &adev->dev;
1857 struct pl022_ssp_controller *platform_info =
1858 dev_get_platdata(&adev->dev);
1859 struct spi_controller *host;
1860 struct pl022 *pl022 = NULL; /*Data for this driver */
1861 int status = 0;
1862
1863 dev_info(&adev->dev,
1864 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
1865 if (!platform_info && IS_ENABLED(CONFIG_OF))
1866 platform_info = pl022_platform_data_dt_get(dev);
1867
1868 if (!platform_info) {
1869 dev_err(dev, "probe: no platform data defined\n");
1870 return -ENODEV;
1871 }
1872
1873 /* Allocate host with space for data */
1874 host = spi_alloc_host(dev, sizeof(struct pl022));
1875 if (host == NULL) {
1876 dev_err(&adev->dev, "probe - cannot alloc SPI host\n");
1877 return -ENOMEM;
1878 }
1879
1880 pl022 = spi_controller_get_devdata(host);
1881 pl022->host = host;
1882 pl022->host_info = platform_info;
1883 pl022->adev = adev;
1884 pl022->vendor = id->data;
1885
1886 /*
1887 * Bus Number Which has been Assigned to this SSP controller
1888 * on this board
1889 */
1890 host->bus_num = platform_info->bus_id;
1891 host->cleanup = pl022_cleanup;
1892 host->setup = pl022_setup;
1893 host->auto_runtime_pm = true;
1894 host->transfer_one = pl022_transfer_one;
1895 host->set_cs = pl022_cs_control;
1896 host->handle_err = pl022_handle_err;
1897 host->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
1898 host->rt = platform_info->rt;
1899 host->dev.of_node = dev->of_node;
1900 host->use_gpio_descriptors = true;
1901
1902 /*
1903 * Supports mode 0-3, loopback, and active low CS. Transfers are
1904 * always MS bit first on the original pl022.
1905 */
1906 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1907 if (pl022->vendor->extended_cr)
1908 host->mode_bits |= SPI_LSB_FIRST;
1909
1910 dev_dbg(&adev->dev, "BUSNO: %d\n", host->bus_num);
1911
1912 status = amba_request_regions(adev, NULL);
1913 if (status)
1914 goto err_no_ioregion;
1915
1916 pl022->phybase = adev->res.start;
1917 pl022->virtbase = devm_ioremap(dev, adev->res.start,
1918 resource_size(&adev->res));
1919 if (pl022->virtbase == NULL) {
1920 status = -ENOMEM;
1921 goto err_no_ioremap;
1922 }
1923 dev_info(&adev->dev, "mapped registers from %pa to %p\n",
1924 &adev->res.start, pl022->virtbase);
1925
1926 pl022->clk = devm_clk_get_enabled(&adev->dev, NULL);
1927 if (IS_ERR(pl022->clk)) {
1928 status = PTR_ERR(pl022->clk);
1929 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
1930 goto err_no_clk;
1931 }
1932
1933 /* Disable SSP */
1934 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
1935 SSP_CR1(pl022->virtbase));
1936 load_ssp_default_config(pl022);
1937
1938 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
1939 0, "pl022", pl022);
1940 if (status < 0) {
1941 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
1942 goto err_no_irq;
1943 }
1944
1945 /* Get DMA channels, try autoconfiguration first */
1946 status = pl022_dma_autoprobe(pl022);
1947 if (status == -EPROBE_DEFER) {
1948 dev_dbg(dev, "deferring probe to get DMA channel\n");
1949 goto err_no_irq;
1950 }
1951
1952 /* If that failed, use channels from platform_info */
1953 if (status == 0)
1954 platform_info->enable_dma = 1;
1955 else if (platform_info->enable_dma) {
1956 status = pl022_dma_probe(pl022);
1957 if (status != 0)
1958 platform_info->enable_dma = 0;
1959 }
1960
1961 /* Register with the SPI framework */
1962 amba_set_drvdata(adev, pl022);
1963 status = devm_spi_register_controller(&adev->dev, host);
1964 if (status != 0) {
1965 dev_err_probe(&adev->dev, status,
1966 "problem registering spi host\n");
1967 goto err_spi_register;
1968 }
1969 dev_dbg(dev, "probe succeeded\n");
1970
1971 /* let runtime pm put suspend */
1972 if (platform_info->autosuspend_delay > 0) {
1973 dev_info(&adev->dev,
1974 "will use autosuspend for runtime pm, delay %dms\n",
1975 platform_info->autosuspend_delay);
1976 pm_runtime_set_autosuspend_delay(dev,
1977 platform_info->autosuspend_delay);
1978 pm_runtime_use_autosuspend(dev);
1979 }
1980 pm_runtime_put(dev);
1981
1982 return 0;
1983
1984 err_spi_register:
1985 if (platform_info->enable_dma)
1986 pl022_dma_remove(pl022);
1987 err_no_irq:
1988 err_no_clk:
1989 err_no_ioremap:
1990 amba_release_regions(adev);
1991 err_no_ioregion:
1992 spi_controller_put(host);
1993 return status;
1994}
1995
1996static void
1997pl022_remove(struct amba_device *adev)
1998{
1999 struct pl022 *pl022 = amba_get_drvdata(adev);
2000
2001 if (!pl022)
2002 return;
2003
2004 /*
2005 * undo pm_runtime_put() in probe. I assume that we're not
2006 * accessing the primecell here.
2007 */
2008 pm_runtime_get_noresume(&adev->dev);
2009
2010 load_ssp_default_config(pl022);
2011 if (pl022->host_info->enable_dma)
2012 pl022_dma_remove(pl022);
2013
2014 amba_release_regions(adev);
2015}
2016
2017#ifdef CONFIG_PM_SLEEP
2018static int pl022_suspend(struct device *dev)
2019{
2020 struct pl022 *pl022 = dev_get_drvdata(dev);
2021 int ret;
2022
2023 ret = spi_controller_suspend(pl022->host);
2024 if (ret)
2025 return ret;
2026
2027 ret = pm_runtime_force_suspend(dev);
2028 if (ret) {
2029 spi_controller_resume(pl022->host);
2030 return ret;
2031 }
2032
2033 pinctrl_pm_select_sleep_state(dev);
2034
2035 dev_dbg(dev, "suspended\n");
2036 return 0;
2037}
2038
2039static int pl022_resume(struct device *dev)
2040{
2041 struct pl022 *pl022 = dev_get_drvdata(dev);
2042 int ret;
2043
2044 ret = pm_runtime_force_resume(dev);
2045 if (ret)
2046 dev_err(dev, "problem resuming\n");
2047
2048 /* Start the queue running */
2049 ret = spi_controller_resume(pl022->host);
2050 if (!ret)
2051 dev_dbg(dev, "resumed\n");
2052
2053 return ret;
2054}
2055#endif
2056
2057#ifdef CONFIG_PM
2058static int pl022_runtime_suspend(struct device *dev)
2059{
2060 struct pl022 *pl022 = dev_get_drvdata(dev);
2061
2062 clk_disable_unprepare(pl022->clk);
2063 pinctrl_pm_select_idle_state(dev);
2064
2065 return 0;
2066}
2067
2068static int pl022_runtime_resume(struct device *dev)
2069{
2070 struct pl022 *pl022 = dev_get_drvdata(dev);
2071
2072 pinctrl_pm_select_default_state(dev);
2073 clk_prepare_enable(pl022->clk);
2074
2075 return 0;
2076}
2077#endif
2078
2079static const struct dev_pm_ops pl022_dev_pm_ops = {
2080 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2081 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2082};
2083
2084static struct vendor_data vendor_arm = {
2085 .fifodepth = 8,
2086 .max_bpw = 16,
2087 .unidir = false,
2088 .extended_cr = false,
2089 .pl023 = false,
2090 .loopback = true,
2091 .internal_cs_ctrl = false,
2092};
2093
2094static struct vendor_data vendor_st = {
2095 .fifodepth = 32,
2096 .max_bpw = 32,
2097 .unidir = false,
2098 .extended_cr = true,
2099 .pl023 = false,
2100 .loopback = true,
2101 .internal_cs_ctrl = false,
2102};
2103
2104static struct vendor_data vendor_st_pl023 = {
2105 .fifodepth = 32,
2106 .max_bpw = 32,
2107 .unidir = false,
2108 .extended_cr = true,
2109 .pl023 = true,
2110 .loopback = false,
2111 .internal_cs_ctrl = false,
2112};
2113
2114static struct vendor_data vendor_lsi = {
2115 .fifodepth = 8,
2116 .max_bpw = 16,
2117 .unidir = false,
2118 .extended_cr = false,
2119 .pl023 = false,
2120 .loopback = true,
2121 .internal_cs_ctrl = true,
2122};
2123
2124static const struct amba_id pl022_ids[] = {
2125 {
2126 /*
2127 * ARM PL022 variant, this has a 16bit wide
2128 * and 8 locations deep TX/RX FIFO
2129 */
2130 .id = 0x00041022,
2131 .mask = 0x000fffff,
2132 .data = &vendor_arm,
2133 },
2134 {
2135 /*
2136 * ST Micro derivative, this has 32bit wide
2137 * and 32 locations deep TX/RX FIFO
2138 */
2139 .id = 0x01080022,
2140 .mask = 0xffffffff,
2141 .data = &vendor_st,
2142 },
2143 {
2144 /*
2145 * ST-Ericsson derivative "PL023" (this is not
2146 * an official ARM number), this is a PL022 SSP block
2147 * stripped to SPI mode only, it has 32bit wide
2148 * and 32 locations deep TX/RX FIFO but no extended
2149 * CR0/CR1 register
2150 */
2151 .id = 0x00080023,
2152 .mask = 0xffffffff,
2153 .data = &vendor_st_pl023,
2154 },
2155 {
2156 /*
2157 * PL022 variant that has a chip select control register whih
2158 * allows control of 5 output signals nCS[0:4].
2159 */
2160 .id = 0x000b6022,
2161 .mask = 0x000fffff,
2162 .data = &vendor_lsi,
2163 },
2164 { 0, 0 },
2165};
2166
2167MODULE_DEVICE_TABLE(amba, pl022_ids);
2168
2169static struct amba_driver pl022_driver = {
2170 .drv = {
2171 .name = "ssp-pl022",
2172 .pm = &pl022_dev_pm_ops,
2173 },
2174 .id_table = pl022_ids,
2175 .probe = pl022_probe,
2176 .remove = pl022_remove,
2177};
2178
2179static int __init pl022_init(void)
2180{
2181 return amba_driver_register(&pl022_driver);
2182}
2183subsys_initcall(pl022_init);
2184
2185static void __exit pl022_exit(void)
2186{
2187 amba_driver_unregister(&pl022_driver);
2188}
2189module_exit(pl022_exit);
2190
2191MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2192MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2193MODULE_LICENSE("GPL");
1/*
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3 *
4 * Copyright (C) 2008-2009 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6 *
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 *
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/ioport.h>
29#include <linux/errno.h>
30#include <linux/interrupt.h>
31#include <linux/spi/spi.h>
32#include <linux/workqueue.h>
33#include <linux/delay.h>
34#include <linux/clk.h>
35#include <linux/err.h>
36#include <linux/amba/bus.h>
37#include <linux/amba/pl022.h>
38#include <linux/io.h>
39#include <linux/slab.h>
40#include <linux/dmaengine.h>
41#include <linux/dma-mapping.h>
42#include <linux/scatterlist.h>
43#include <linux/pm_runtime.h>
44
45/*
46 * This macro is used to define some register default values.
47 * reg is masked with mask, the OR:ed with an (again masked)
48 * val shifted sb steps to the left.
49 */
50#define SSP_WRITE_BITS(reg, val, mask, sb) \
51 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
52
53/*
54 * This macro is also used to define some default values.
55 * It will just shift val by sb steps to the left and mask
56 * the result with mask.
57 */
58#define GEN_MASK_BITS(val, mask, sb) \
59 (((val)<<(sb)) & (mask))
60
61#define DRIVE_TX 0
62#define DO_NOT_DRIVE_TX 1
63
64#define DO_NOT_QUEUE_DMA 0
65#define QUEUE_DMA 1
66
67#define RX_TRANSFER 1
68#define TX_TRANSFER 2
69
70/*
71 * Macros to access SSP Registers with their offsets
72 */
73#define SSP_CR0(r) (r + 0x000)
74#define SSP_CR1(r) (r + 0x004)
75#define SSP_DR(r) (r + 0x008)
76#define SSP_SR(r) (r + 0x00C)
77#define SSP_CPSR(r) (r + 0x010)
78#define SSP_IMSC(r) (r + 0x014)
79#define SSP_RIS(r) (r + 0x018)
80#define SSP_MIS(r) (r + 0x01C)
81#define SSP_ICR(r) (r + 0x020)
82#define SSP_DMACR(r) (r + 0x024)
83#define SSP_ITCR(r) (r + 0x080)
84#define SSP_ITIP(r) (r + 0x084)
85#define SSP_ITOP(r) (r + 0x088)
86#define SSP_TDR(r) (r + 0x08C)
87
88#define SSP_PID0(r) (r + 0xFE0)
89#define SSP_PID1(r) (r + 0xFE4)
90#define SSP_PID2(r) (r + 0xFE8)
91#define SSP_PID3(r) (r + 0xFEC)
92
93#define SSP_CID0(r) (r + 0xFF0)
94#define SSP_CID1(r) (r + 0xFF4)
95#define SSP_CID2(r) (r + 0xFF8)
96#define SSP_CID3(r) (r + 0xFFC)
97
98/*
99 * SSP Control Register 0 - SSP_CR0
100 */
101#define SSP_CR0_MASK_DSS (0x0FUL << 0)
102#define SSP_CR0_MASK_FRF (0x3UL << 4)
103#define SSP_CR0_MASK_SPO (0x1UL << 6)
104#define SSP_CR0_MASK_SPH (0x1UL << 7)
105#define SSP_CR0_MASK_SCR (0xFFUL << 8)
106
107/*
108 * The ST version of this block moves som bits
109 * in SSP_CR0 and extends it to 32 bits
110 */
111#define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
112#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
113#define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
114#define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
115
116
117/*
118 * SSP Control Register 0 - SSP_CR1
119 */
120#define SSP_CR1_MASK_LBM (0x1UL << 0)
121#define SSP_CR1_MASK_SSE (0x1UL << 1)
122#define SSP_CR1_MASK_MS (0x1UL << 2)
123#define SSP_CR1_MASK_SOD (0x1UL << 3)
124
125/*
126 * The ST version of this block adds some bits
127 * in SSP_CR1
128 */
129#define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
130#define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
131#define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
132#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
133#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
134/* This one is only in the PL023 variant */
135#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
136
137/*
138 * SSP Status Register - SSP_SR
139 */
140#define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
141#define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
142#define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
143#define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
144#define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
145
146/*
147 * SSP Clock Prescale Register - SSP_CPSR
148 */
149#define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
150
151/*
152 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
153 */
154#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
155#define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
156#define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
157#define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
158
159/*
160 * SSP Raw Interrupt Status Register - SSP_RIS
161 */
162/* Receive Overrun Raw Interrupt status */
163#define SSP_RIS_MASK_RORRIS (0x1UL << 0)
164/* Receive Timeout Raw Interrupt status */
165#define SSP_RIS_MASK_RTRIS (0x1UL << 1)
166/* Receive FIFO Raw Interrupt status */
167#define SSP_RIS_MASK_RXRIS (0x1UL << 2)
168/* Transmit FIFO Raw Interrupt status */
169#define SSP_RIS_MASK_TXRIS (0x1UL << 3)
170
171/*
172 * SSP Masked Interrupt Status Register - SSP_MIS
173 */
174/* Receive Overrun Masked Interrupt status */
175#define SSP_MIS_MASK_RORMIS (0x1UL << 0)
176/* Receive Timeout Masked Interrupt status */
177#define SSP_MIS_MASK_RTMIS (0x1UL << 1)
178/* Receive FIFO Masked Interrupt status */
179#define SSP_MIS_MASK_RXMIS (0x1UL << 2)
180/* Transmit FIFO Masked Interrupt status */
181#define SSP_MIS_MASK_TXMIS (0x1UL << 3)
182
183/*
184 * SSP Interrupt Clear Register - SSP_ICR
185 */
186/* Receive Overrun Raw Clear Interrupt bit */
187#define SSP_ICR_MASK_RORIC (0x1UL << 0)
188/* Receive Timeout Clear Interrupt bit */
189#define SSP_ICR_MASK_RTIC (0x1UL << 1)
190
191/*
192 * SSP DMA Control Register - SSP_DMACR
193 */
194/* Receive DMA Enable bit */
195#define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
196/* Transmit DMA Enable bit */
197#define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
198
199/*
200 * SSP Integration Test control Register - SSP_ITCR
201 */
202#define SSP_ITCR_MASK_ITEN (0x1UL << 0)
203#define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
204
205/*
206 * SSP Integration Test Input Register - SSP_ITIP
207 */
208#define ITIP_MASK_SSPRXD (0x1UL << 0)
209#define ITIP_MASK_SSPFSSIN (0x1UL << 1)
210#define ITIP_MASK_SSPCLKIN (0x1UL << 2)
211#define ITIP_MASK_RXDMAC (0x1UL << 3)
212#define ITIP_MASK_TXDMAC (0x1UL << 4)
213#define ITIP_MASK_SSPTXDIN (0x1UL << 5)
214
215/*
216 * SSP Integration Test output Register - SSP_ITOP
217 */
218#define ITOP_MASK_SSPTXD (0x1UL << 0)
219#define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
220#define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
221#define ITOP_MASK_SSPOEn (0x1UL << 3)
222#define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
223#define ITOP_MASK_RORINTR (0x1UL << 5)
224#define ITOP_MASK_RTINTR (0x1UL << 6)
225#define ITOP_MASK_RXINTR (0x1UL << 7)
226#define ITOP_MASK_TXINTR (0x1UL << 8)
227#define ITOP_MASK_INTR (0x1UL << 9)
228#define ITOP_MASK_RXDMABREQ (0x1UL << 10)
229#define ITOP_MASK_RXDMASREQ (0x1UL << 11)
230#define ITOP_MASK_TXDMABREQ (0x1UL << 12)
231#define ITOP_MASK_TXDMASREQ (0x1UL << 13)
232
233/*
234 * SSP Test Data Register - SSP_TDR
235 */
236#define TDR_MASK_TESTDATA (0xFFFFFFFF)
237
238/*
239 * Message State
240 * we use the spi_message.state (void *) pointer to
241 * hold a single state value, that's why all this
242 * (void *) casting is done here.
243 */
244#define STATE_START ((void *) 0)
245#define STATE_RUNNING ((void *) 1)
246#define STATE_DONE ((void *) 2)
247#define STATE_ERROR ((void *) -1)
248
249/*
250 * SSP State - Whether Enabled or Disabled
251 */
252#define SSP_DISABLED (0)
253#define SSP_ENABLED (1)
254
255/*
256 * SSP DMA State - Whether DMA Enabled or Disabled
257 */
258#define SSP_DMA_DISABLED (0)
259#define SSP_DMA_ENABLED (1)
260
261/*
262 * SSP Clock Defaults
263 */
264#define SSP_DEFAULT_CLKRATE 0x2
265#define SSP_DEFAULT_PRESCALE 0x40
266
267/*
268 * SSP Clock Parameter ranges
269 */
270#define CPSDVR_MIN 0x02
271#define CPSDVR_MAX 0xFE
272#define SCR_MIN 0x00
273#define SCR_MAX 0xFF
274
275/*
276 * SSP Interrupt related Macros
277 */
278#define DEFAULT_SSP_REG_IMSC 0x0UL
279#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
280#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
281
282#define CLEAR_ALL_INTERRUPTS 0x3
283
284#define SPI_POLLING_TIMEOUT 1000
285
286
287/*
288 * The type of reading going on on this chip
289 */
290enum ssp_reading {
291 READING_NULL,
292 READING_U8,
293 READING_U16,
294 READING_U32
295};
296
297/**
298 * The type of writing going on on this chip
299 */
300enum ssp_writing {
301 WRITING_NULL,
302 WRITING_U8,
303 WRITING_U16,
304 WRITING_U32
305};
306
307/**
308 * struct vendor_data - vendor-specific config parameters
309 * for PL022 derivates
310 * @fifodepth: depth of FIFOs (both)
311 * @max_bpw: maximum number of bits per word
312 * @unidir: supports unidirection transfers
313 * @extended_cr: 32 bit wide control register 0 with extra
314 * features and extra features in CR1 as found in the ST variants
315 * @pl023: supports a subset of the ST extensions called "PL023"
316 */
317struct vendor_data {
318 int fifodepth;
319 int max_bpw;
320 bool unidir;
321 bool extended_cr;
322 bool pl023;
323 bool loopback;
324};
325
326/**
327 * struct pl022 - This is the private SSP driver data structure
328 * @adev: AMBA device model hookup
329 * @vendor: vendor data for the IP block
330 * @phybase: the physical memory where the SSP device resides
331 * @virtbase: the virtual memory where the SSP is mapped
332 * @clk: outgoing clock "SPICLK" for the SPI bus
333 * @master: SPI framework hookup
334 * @master_info: controller-specific data from machine setup
335 * @workqueue: a workqueue on which any spi_message request is queued
336 * @pump_messages: work struct for scheduling work to the workqueue
337 * @queue_lock: spinlock to syncronise access to message queue
338 * @queue: message queue
339 * @busy: workqueue is busy
340 * @running: workqueue is running
341 * @pump_transfers: Tasklet used in Interrupt Transfer mode
342 * @cur_msg: Pointer to current spi_message being processed
343 * @cur_transfer: Pointer to current spi_transfer
344 * @cur_chip: pointer to current clients chip(assigned from controller_state)
345 * @tx: current position in TX buffer to be read
346 * @tx_end: end position in TX buffer to be read
347 * @rx: current position in RX buffer to be written
348 * @rx_end: end position in RX buffer to be written
349 * @read: the type of read currently going on
350 * @write: the type of write currently going on
351 * @exp_fifo_level: expected FIFO level
352 * @dma_rx_channel: optional channel for RX DMA
353 * @dma_tx_channel: optional channel for TX DMA
354 * @sgt_rx: scattertable for the RX transfer
355 * @sgt_tx: scattertable for the TX transfer
356 * @dummypage: a dummy page used for driving data on the bus with DMA
357 */
358struct pl022 {
359 struct amba_device *adev;
360 struct vendor_data *vendor;
361 resource_size_t phybase;
362 void __iomem *virtbase;
363 struct clk *clk;
364 struct spi_master *master;
365 struct pl022_ssp_controller *master_info;
366 /* Driver message queue */
367 struct workqueue_struct *workqueue;
368 struct work_struct pump_messages;
369 spinlock_t queue_lock;
370 struct list_head queue;
371 bool busy;
372 bool running;
373 /* Message transfer pump */
374 struct tasklet_struct pump_transfers;
375 struct spi_message *cur_msg;
376 struct spi_transfer *cur_transfer;
377 struct chip_data *cur_chip;
378 void *tx;
379 void *tx_end;
380 void *rx;
381 void *rx_end;
382 enum ssp_reading read;
383 enum ssp_writing write;
384 u32 exp_fifo_level;
385 enum ssp_rx_level_trig rx_lev_trig;
386 enum ssp_tx_level_trig tx_lev_trig;
387 /* DMA settings */
388#ifdef CONFIG_DMA_ENGINE
389 struct dma_chan *dma_rx_channel;
390 struct dma_chan *dma_tx_channel;
391 struct sg_table sgt_rx;
392 struct sg_table sgt_tx;
393 char *dummypage;
394#endif
395};
396
397/**
398 * struct chip_data - To maintain runtime state of SSP for each client chip
399 * @cr0: Value of control register CR0 of SSP - on later ST variants this
400 * register is 32 bits wide rather than just 16
401 * @cr1: Value of control register CR1 of SSP
402 * @dmacr: Value of DMA control Register of SSP
403 * @cpsr: Value of Clock prescale register
404 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
405 * @enable_dma: Whether to enable DMA or not
406 * @read: function ptr to be used to read when doing xfer for this chip
407 * @write: function ptr to be used to write when doing xfer for this chip
408 * @cs_control: chip select callback provided by chip
409 * @xfer_type: polling/interrupt/DMA
410 *
411 * Runtime state of the SSP controller, maintained per chip,
412 * This would be set according to the current message that would be served
413 */
414struct chip_data {
415 u32 cr0;
416 u16 cr1;
417 u16 dmacr;
418 u16 cpsr;
419 u8 n_bytes;
420 bool enable_dma;
421 enum ssp_reading read;
422 enum ssp_writing write;
423 void (*cs_control) (u32 command);
424 int xfer_type;
425};
426
427/**
428 * null_cs_control - Dummy chip select function
429 * @command: select/delect the chip
430 *
431 * If no chip select function is provided by client this is used as dummy
432 * chip select
433 */
434static void null_cs_control(u32 command)
435{
436 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
437}
438
439/**
440 * giveback - current spi_message is over, schedule next message and call
441 * callback of this message. Assumes that caller already
442 * set message->status; dma and pio irqs are blocked
443 * @pl022: SSP driver private data structure
444 */
445static void giveback(struct pl022 *pl022)
446{
447 struct spi_transfer *last_transfer;
448 unsigned long flags;
449 struct spi_message *msg;
450 void (*curr_cs_control) (u32 command);
451
452 /*
453 * This local reference to the chip select function
454 * is needed because we set curr_chip to NULL
455 * as a step toward termininating the message.
456 */
457 curr_cs_control = pl022->cur_chip->cs_control;
458 spin_lock_irqsave(&pl022->queue_lock, flags);
459 msg = pl022->cur_msg;
460 pl022->cur_msg = NULL;
461 pl022->cur_transfer = NULL;
462 pl022->cur_chip = NULL;
463 queue_work(pl022->workqueue, &pl022->pump_messages);
464 spin_unlock_irqrestore(&pl022->queue_lock, flags);
465
466 last_transfer = list_entry(msg->transfers.prev,
467 struct spi_transfer,
468 transfer_list);
469
470 /* Delay if requested before any change in chip select */
471 if (last_transfer->delay_usecs)
472 /*
473 * FIXME: This runs in interrupt context.
474 * Is this really smart?
475 */
476 udelay(last_transfer->delay_usecs);
477
478 /*
479 * Drop chip select UNLESS cs_change is true or we are returning
480 * a message with an error, or next message is for another chip
481 */
482 if (!last_transfer->cs_change)
483 curr_cs_control(SSP_CHIP_DESELECT);
484 else {
485 struct spi_message *next_msg;
486
487 /* Holding of cs was hinted, but we need to make sure
488 * the next message is for the same chip. Don't waste
489 * time with the following tests unless this was hinted.
490 *
491 * We cannot postpone this until pump_messages, because
492 * after calling msg->complete (below) the driver that
493 * sent the current message could be unloaded, which
494 * could invalidate the cs_control() callback...
495 */
496
497 /* get a pointer to the next message, if any */
498 spin_lock_irqsave(&pl022->queue_lock, flags);
499 if (list_empty(&pl022->queue))
500 next_msg = NULL;
501 else
502 next_msg = list_entry(pl022->queue.next,
503 struct spi_message, queue);
504 spin_unlock_irqrestore(&pl022->queue_lock, flags);
505
506 /* see if the next and current messages point
507 * to the same chip
508 */
509 if (next_msg && next_msg->spi != msg->spi)
510 next_msg = NULL;
511 if (!next_msg || msg->state == STATE_ERROR)
512 curr_cs_control(SSP_CHIP_DESELECT);
513 }
514 msg->state = NULL;
515 if (msg->complete)
516 msg->complete(msg->context);
517 /* This message is completed, so let's turn off the clocks & power */
518 clk_disable(pl022->clk);
519 amba_pclk_disable(pl022->adev);
520 amba_vcore_disable(pl022->adev);
521 pm_runtime_put(&pl022->adev->dev);
522}
523
524/**
525 * flush - flush the FIFO to reach a clean state
526 * @pl022: SSP driver private data structure
527 */
528static int flush(struct pl022 *pl022)
529{
530 unsigned long limit = loops_per_jiffy << 1;
531
532 dev_dbg(&pl022->adev->dev, "flush\n");
533 do {
534 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
535 readw(SSP_DR(pl022->virtbase));
536 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
537
538 pl022->exp_fifo_level = 0;
539
540 return limit;
541}
542
543/**
544 * restore_state - Load configuration of current chip
545 * @pl022: SSP driver private data structure
546 */
547static void restore_state(struct pl022 *pl022)
548{
549 struct chip_data *chip = pl022->cur_chip;
550
551 if (pl022->vendor->extended_cr)
552 writel(chip->cr0, SSP_CR0(pl022->virtbase));
553 else
554 writew(chip->cr0, SSP_CR0(pl022->virtbase));
555 writew(chip->cr1, SSP_CR1(pl022->virtbase));
556 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
557 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
558 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
559 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
560}
561
562/*
563 * Default SSP Register Values
564 */
565#define DEFAULT_SSP_REG_CR0 ( \
566 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
567 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
568 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
569 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
570 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
571)
572
573/* ST versions have slightly different bit layout */
574#define DEFAULT_SSP_REG_CR0_ST ( \
575 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
576 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
577 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
578 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
579 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
580 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
581 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
582)
583
584/* The PL023 version is slightly different again */
585#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
586 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
587 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
588 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
589 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
590)
591
592#define DEFAULT_SSP_REG_CR1 ( \
593 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
594 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
595 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
596 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
597)
598
599/* ST versions extend this register to use all 16 bits */
600#define DEFAULT_SSP_REG_CR1_ST ( \
601 DEFAULT_SSP_REG_CR1 | \
602 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
603 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
604 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
605 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
606 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
607)
608
609/*
610 * The PL023 variant has further differences: no loopback mode, no microwire
611 * support, and a new clock feedback delay setting.
612 */
613#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
614 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
615 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
616 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
617 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
618 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
619 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
620 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
621 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
622)
623
624#define DEFAULT_SSP_REG_CPSR ( \
625 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
626)
627
628#define DEFAULT_SSP_REG_DMACR (\
629 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
630 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
631)
632
633/**
634 * load_ssp_default_config - Load default configuration for SSP
635 * @pl022: SSP driver private data structure
636 */
637static void load_ssp_default_config(struct pl022 *pl022)
638{
639 if (pl022->vendor->pl023) {
640 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
641 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
642 } else if (pl022->vendor->extended_cr) {
643 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
644 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
645 } else {
646 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
647 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
648 }
649 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
650 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
651 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
652 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
653}
654
655/**
656 * This will write to TX and read from RX according to the parameters
657 * set in pl022.
658 */
659static void readwriter(struct pl022 *pl022)
660{
661
662 /*
663 * The FIFO depth is different between primecell variants.
664 * I believe filling in too much in the FIFO might cause
665 * errons in 8bit wide transfers on ARM variants (just 8 words
666 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
667 *
668 * To prevent this issue, the TX FIFO is only filled to the
669 * unused RX FIFO fill length, regardless of what the TX
670 * FIFO status flag indicates.
671 */
672 dev_dbg(&pl022->adev->dev,
673 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
674 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
675
676 /* Read as much as you can */
677 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
678 && (pl022->rx < pl022->rx_end)) {
679 switch (pl022->read) {
680 case READING_NULL:
681 readw(SSP_DR(pl022->virtbase));
682 break;
683 case READING_U8:
684 *(u8 *) (pl022->rx) =
685 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
686 break;
687 case READING_U16:
688 *(u16 *) (pl022->rx) =
689 (u16) readw(SSP_DR(pl022->virtbase));
690 break;
691 case READING_U32:
692 *(u32 *) (pl022->rx) =
693 readl(SSP_DR(pl022->virtbase));
694 break;
695 }
696 pl022->rx += (pl022->cur_chip->n_bytes);
697 pl022->exp_fifo_level--;
698 }
699 /*
700 * Write as much as possible up to the RX FIFO size
701 */
702 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
703 && (pl022->tx < pl022->tx_end)) {
704 switch (pl022->write) {
705 case WRITING_NULL:
706 writew(0x0, SSP_DR(pl022->virtbase));
707 break;
708 case WRITING_U8:
709 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
710 break;
711 case WRITING_U16:
712 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
713 break;
714 case WRITING_U32:
715 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
716 break;
717 }
718 pl022->tx += (pl022->cur_chip->n_bytes);
719 pl022->exp_fifo_level++;
720 /*
721 * This inner reader takes care of things appearing in the RX
722 * FIFO as we're transmitting. This will happen a lot since the
723 * clock starts running when you put things into the TX FIFO,
724 * and then things are continuously clocked into the RX FIFO.
725 */
726 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
727 && (pl022->rx < pl022->rx_end)) {
728 switch (pl022->read) {
729 case READING_NULL:
730 readw(SSP_DR(pl022->virtbase));
731 break;
732 case READING_U8:
733 *(u8 *) (pl022->rx) =
734 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
735 break;
736 case READING_U16:
737 *(u16 *) (pl022->rx) =
738 (u16) readw(SSP_DR(pl022->virtbase));
739 break;
740 case READING_U32:
741 *(u32 *) (pl022->rx) =
742 readl(SSP_DR(pl022->virtbase));
743 break;
744 }
745 pl022->rx += (pl022->cur_chip->n_bytes);
746 pl022->exp_fifo_level--;
747 }
748 }
749 /*
750 * When we exit here the TX FIFO should be full and the RX FIFO
751 * should be empty
752 */
753}
754
755
756/**
757 * next_transfer - Move to the Next transfer in the current spi message
758 * @pl022: SSP driver private data structure
759 *
760 * This function moves though the linked list of spi transfers in the
761 * current spi message and returns with the state of current spi
762 * message i.e whether its last transfer is done(STATE_DONE) or
763 * Next transfer is ready(STATE_RUNNING)
764 */
765static void *next_transfer(struct pl022 *pl022)
766{
767 struct spi_message *msg = pl022->cur_msg;
768 struct spi_transfer *trans = pl022->cur_transfer;
769
770 /* Move to next transfer */
771 if (trans->transfer_list.next != &msg->transfers) {
772 pl022->cur_transfer =
773 list_entry(trans->transfer_list.next,
774 struct spi_transfer, transfer_list);
775 return STATE_RUNNING;
776 }
777 return STATE_DONE;
778}
779
780/*
781 * This DMA functionality is only compiled in if we have
782 * access to the generic DMA devices/DMA engine.
783 */
784#ifdef CONFIG_DMA_ENGINE
785static void unmap_free_dma_scatter(struct pl022 *pl022)
786{
787 /* Unmap and free the SG tables */
788 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
789 pl022->sgt_tx.nents, DMA_TO_DEVICE);
790 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
791 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
792 sg_free_table(&pl022->sgt_rx);
793 sg_free_table(&pl022->sgt_tx);
794}
795
796static void dma_callback(void *data)
797{
798 struct pl022 *pl022 = data;
799 struct spi_message *msg = pl022->cur_msg;
800
801 BUG_ON(!pl022->sgt_rx.sgl);
802
803#ifdef VERBOSE_DEBUG
804 /*
805 * Optionally dump out buffers to inspect contents, this is
806 * good if you want to convince yourself that the loopback
807 * read/write contents are the same, when adopting to a new
808 * DMA engine.
809 */
810 {
811 struct scatterlist *sg;
812 unsigned int i;
813
814 dma_sync_sg_for_cpu(&pl022->adev->dev,
815 pl022->sgt_rx.sgl,
816 pl022->sgt_rx.nents,
817 DMA_FROM_DEVICE);
818
819 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
820 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
821 print_hex_dump(KERN_ERR, "SPI RX: ",
822 DUMP_PREFIX_OFFSET,
823 16,
824 1,
825 sg_virt(sg),
826 sg_dma_len(sg),
827 1);
828 }
829 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
830 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
831 print_hex_dump(KERN_ERR, "SPI TX: ",
832 DUMP_PREFIX_OFFSET,
833 16,
834 1,
835 sg_virt(sg),
836 sg_dma_len(sg),
837 1);
838 }
839 }
840#endif
841
842 unmap_free_dma_scatter(pl022);
843
844 /* Update total bytes transferred */
845 msg->actual_length += pl022->cur_transfer->len;
846 if (pl022->cur_transfer->cs_change)
847 pl022->cur_chip->
848 cs_control(SSP_CHIP_DESELECT);
849
850 /* Move to next transfer */
851 msg->state = next_transfer(pl022);
852 tasklet_schedule(&pl022->pump_transfers);
853}
854
855static void setup_dma_scatter(struct pl022 *pl022,
856 void *buffer,
857 unsigned int length,
858 struct sg_table *sgtab)
859{
860 struct scatterlist *sg;
861 int bytesleft = length;
862 void *bufp = buffer;
863 int mapbytes;
864 int i;
865
866 if (buffer) {
867 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
868 /*
869 * If there are less bytes left than what fits
870 * in the current page (plus page alignment offset)
871 * we just feed in this, else we stuff in as much
872 * as we can.
873 */
874 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
875 mapbytes = bytesleft;
876 else
877 mapbytes = PAGE_SIZE - offset_in_page(bufp);
878 sg_set_page(sg, virt_to_page(bufp),
879 mapbytes, offset_in_page(bufp));
880 bufp += mapbytes;
881 bytesleft -= mapbytes;
882 dev_dbg(&pl022->adev->dev,
883 "set RX/TX target page @ %p, %d bytes, %d left\n",
884 bufp, mapbytes, bytesleft);
885 }
886 } else {
887 /* Map the dummy buffer on every page */
888 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
889 if (bytesleft < PAGE_SIZE)
890 mapbytes = bytesleft;
891 else
892 mapbytes = PAGE_SIZE;
893 sg_set_page(sg, virt_to_page(pl022->dummypage),
894 mapbytes, 0);
895 bytesleft -= mapbytes;
896 dev_dbg(&pl022->adev->dev,
897 "set RX/TX to dummy page %d bytes, %d left\n",
898 mapbytes, bytesleft);
899
900 }
901 }
902 BUG_ON(bytesleft);
903}
904
905/**
906 * configure_dma - configures the channels for the next transfer
907 * @pl022: SSP driver's private data structure
908 */
909static int configure_dma(struct pl022 *pl022)
910{
911 struct dma_slave_config rx_conf = {
912 .src_addr = SSP_DR(pl022->phybase),
913 .direction = DMA_FROM_DEVICE,
914 };
915 struct dma_slave_config tx_conf = {
916 .dst_addr = SSP_DR(pl022->phybase),
917 .direction = DMA_TO_DEVICE,
918 };
919 unsigned int pages;
920 int ret;
921 int rx_sglen, tx_sglen;
922 struct dma_chan *rxchan = pl022->dma_rx_channel;
923 struct dma_chan *txchan = pl022->dma_tx_channel;
924 struct dma_async_tx_descriptor *rxdesc;
925 struct dma_async_tx_descriptor *txdesc;
926
927 /* Check that the channels are available */
928 if (!rxchan || !txchan)
929 return -ENODEV;
930
931 /*
932 * If supplied, the DMA burstsize should equal the FIFO trigger level.
933 * Notice that the DMA engine uses one-to-one mapping. Since we can
934 * not trigger on 2 elements this needs explicit mapping rather than
935 * calculation.
936 */
937 switch (pl022->rx_lev_trig) {
938 case SSP_RX_1_OR_MORE_ELEM:
939 rx_conf.src_maxburst = 1;
940 break;
941 case SSP_RX_4_OR_MORE_ELEM:
942 rx_conf.src_maxburst = 4;
943 break;
944 case SSP_RX_8_OR_MORE_ELEM:
945 rx_conf.src_maxburst = 8;
946 break;
947 case SSP_RX_16_OR_MORE_ELEM:
948 rx_conf.src_maxburst = 16;
949 break;
950 case SSP_RX_32_OR_MORE_ELEM:
951 rx_conf.src_maxburst = 32;
952 break;
953 default:
954 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
955 break;
956 }
957
958 switch (pl022->tx_lev_trig) {
959 case SSP_TX_1_OR_MORE_EMPTY_LOC:
960 tx_conf.dst_maxburst = 1;
961 break;
962 case SSP_TX_4_OR_MORE_EMPTY_LOC:
963 tx_conf.dst_maxburst = 4;
964 break;
965 case SSP_TX_8_OR_MORE_EMPTY_LOC:
966 tx_conf.dst_maxburst = 8;
967 break;
968 case SSP_TX_16_OR_MORE_EMPTY_LOC:
969 tx_conf.dst_maxburst = 16;
970 break;
971 case SSP_TX_32_OR_MORE_EMPTY_LOC:
972 tx_conf.dst_maxburst = 32;
973 break;
974 default:
975 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
976 break;
977 }
978
979 switch (pl022->read) {
980 case READING_NULL:
981 /* Use the same as for writing */
982 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
983 break;
984 case READING_U8:
985 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
986 break;
987 case READING_U16:
988 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
989 break;
990 case READING_U32:
991 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
992 break;
993 }
994
995 switch (pl022->write) {
996 case WRITING_NULL:
997 /* Use the same as for reading */
998 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
999 break;
1000 case WRITING_U8:
1001 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1002 break;
1003 case WRITING_U16:
1004 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1005 break;
1006 case WRITING_U32:
1007 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1008 break;
1009 }
1010
1011 /* SPI pecularity: we need to read and write the same width */
1012 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1013 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1014 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1015 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1016 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1017
1018 dmaengine_slave_config(rxchan, &rx_conf);
1019 dmaengine_slave_config(txchan, &tx_conf);
1020
1021 /* Create sglists for the transfers */
1022 pages = (pl022->cur_transfer->len >> PAGE_SHIFT) + 1;
1023 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1024
1025 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_KERNEL);
1026 if (ret)
1027 goto err_alloc_rx_sg;
1028
1029 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_KERNEL);
1030 if (ret)
1031 goto err_alloc_tx_sg;
1032
1033 /* Fill in the scatterlists for the RX+TX buffers */
1034 setup_dma_scatter(pl022, pl022->rx,
1035 pl022->cur_transfer->len, &pl022->sgt_rx);
1036 setup_dma_scatter(pl022, pl022->tx,
1037 pl022->cur_transfer->len, &pl022->sgt_tx);
1038
1039 /* Map DMA buffers */
1040 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1041 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1042 if (!rx_sglen)
1043 goto err_rx_sgmap;
1044
1045 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1046 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1047 if (!tx_sglen)
1048 goto err_tx_sgmap;
1049
1050 /* Send both scatterlists */
1051 rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
1052 pl022->sgt_rx.sgl,
1053 rx_sglen,
1054 DMA_FROM_DEVICE,
1055 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1056 if (!rxdesc)
1057 goto err_rxdesc;
1058
1059 txdesc = txchan->device->device_prep_slave_sg(txchan,
1060 pl022->sgt_tx.sgl,
1061 tx_sglen,
1062 DMA_TO_DEVICE,
1063 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1064 if (!txdesc)
1065 goto err_txdesc;
1066
1067 /* Put the callback on the RX transfer only, that should finish last */
1068 rxdesc->callback = dma_callback;
1069 rxdesc->callback_param = pl022;
1070
1071 /* Submit and fire RX and TX with TX last so we're ready to read! */
1072 dmaengine_submit(rxdesc);
1073 dmaengine_submit(txdesc);
1074 dma_async_issue_pending(rxchan);
1075 dma_async_issue_pending(txchan);
1076
1077 return 0;
1078
1079err_txdesc:
1080 dmaengine_terminate_all(txchan);
1081err_rxdesc:
1082 dmaengine_terminate_all(rxchan);
1083 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1084 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1085err_tx_sgmap:
1086 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1087 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1088err_rx_sgmap:
1089 sg_free_table(&pl022->sgt_tx);
1090err_alloc_tx_sg:
1091 sg_free_table(&pl022->sgt_rx);
1092err_alloc_rx_sg:
1093 return -ENOMEM;
1094}
1095
1096static int __init pl022_dma_probe(struct pl022 *pl022)
1097{
1098 dma_cap_mask_t mask;
1099
1100 /* Try to acquire a generic DMA engine slave channel */
1101 dma_cap_zero(mask);
1102 dma_cap_set(DMA_SLAVE, mask);
1103 /*
1104 * We need both RX and TX channels to do DMA, else do none
1105 * of them.
1106 */
1107 pl022->dma_rx_channel = dma_request_channel(mask,
1108 pl022->master_info->dma_filter,
1109 pl022->master_info->dma_rx_param);
1110 if (!pl022->dma_rx_channel) {
1111 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1112 goto err_no_rxchan;
1113 }
1114
1115 pl022->dma_tx_channel = dma_request_channel(mask,
1116 pl022->master_info->dma_filter,
1117 pl022->master_info->dma_tx_param);
1118 if (!pl022->dma_tx_channel) {
1119 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1120 goto err_no_txchan;
1121 }
1122
1123 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1124 if (!pl022->dummypage) {
1125 dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1126 goto err_no_dummypage;
1127 }
1128
1129 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1130 dma_chan_name(pl022->dma_rx_channel),
1131 dma_chan_name(pl022->dma_tx_channel));
1132
1133 return 0;
1134
1135err_no_dummypage:
1136 dma_release_channel(pl022->dma_tx_channel);
1137err_no_txchan:
1138 dma_release_channel(pl022->dma_rx_channel);
1139 pl022->dma_rx_channel = NULL;
1140err_no_rxchan:
1141 dev_err(&pl022->adev->dev,
1142 "Failed to work in dma mode, work without dma!\n");
1143 return -ENODEV;
1144}
1145
1146static void terminate_dma(struct pl022 *pl022)
1147{
1148 struct dma_chan *rxchan = pl022->dma_rx_channel;
1149 struct dma_chan *txchan = pl022->dma_tx_channel;
1150
1151 dmaengine_terminate_all(rxchan);
1152 dmaengine_terminate_all(txchan);
1153 unmap_free_dma_scatter(pl022);
1154}
1155
1156static void pl022_dma_remove(struct pl022 *pl022)
1157{
1158 if (pl022->busy)
1159 terminate_dma(pl022);
1160 if (pl022->dma_tx_channel)
1161 dma_release_channel(pl022->dma_tx_channel);
1162 if (pl022->dma_rx_channel)
1163 dma_release_channel(pl022->dma_rx_channel);
1164 kfree(pl022->dummypage);
1165}
1166
1167#else
1168static inline int configure_dma(struct pl022 *pl022)
1169{
1170 return -ENODEV;
1171}
1172
1173static inline int pl022_dma_probe(struct pl022 *pl022)
1174{
1175 return 0;
1176}
1177
1178static inline void pl022_dma_remove(struct pl022 *pl022)
1179{
1180}
1181#endif
1182
1183/**
1184 * pl022_interrupt_handler - Interrupt handler for SSP controller
1185 *
1186 * This function handles interrupts generated for an interrupt based transfer.
1187 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1188 * current message's state as STATE_ERROR and schedule the tasklet
1189 * pump_transfers which will do the postprocessing of the current message by
1190 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1191 * more data, and writes data in TX FIFO till it is not full. If we complete
1192 * the transfer we move to the next transfer and schedule the tasklet.
1193 */
1194static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1195{
1196 struct pl022 *pl022 = dev_id;
1197 struct spi_message *msg = pl022->cur_msg;
1198 u16 irq_status = 0;
1199 u16 flag = 0;
1200
1201 if (unlikely(!msg)) {
1202 dev_err(&pl022->adev->dev,
1203 "bad message state in interrupt handler");
1204 /* Never fail */
1205 return IRQ_HANDLED;
1206 }
1207
1208 /* Read the Interrupt Status Register */
1209 irq_status = readw(SSP_MIS(pl022->virtbase));
1210
1211 if (unlikely(!irq_status))
1212 return IRQ_NONE;
1213
1214 /*
1215 * This handles the FIFO interrupts, the timeout
1216 * interrupts are flatly ignored, they cannot be
1217 * trusted.
1218 */
1219 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1220 /*
1221 * Overrun interrupt - bail out since our Data has been
1222 * corrupted
1223 */
1224 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1225 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1226 dev_err(&pl022->adev->dev,
1227 "RXFIFO is full\n");
1228 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1229 dev_err(&pl022->adev->dev,
1230 "TXFIFO is full\n");
1231
1232 /*
1233 * Disable and clear interrupts, disable SSP,
1234 * mark message with bad status so it can be
1235 * retried.
1236 */
1237 writew(DISABLE_ALL_INTERRUPTS,
1238 SSP_IMSC(pl022->virtbase));
1239 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1240 writew((readw(SSP_CR1(pl022->virtbase)) &
1241 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1242 msg->state = STATE_ERROR;
1243
1244 /* Schedule message queue handler */
1245 tasklet_schedule(&pl022->pump_transfers);
1246 return IRQ_HANDLED;
1247 }
1248
1249 readwriter(pl022);
1250
1251 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1252 flag = 1;
1253 /* Disable Transmit interrupt */
1254 writew(readw(SSP_IMSC(pl022->virtbase)) &
1255 (~SSP_IMSC_MASK_TXIM),
1256 SSP_IMSC(pl022->virtbase));
1257 }
1258
1259 /*
1260 * Since all transactions must write as much as shall be read,
1261 * we can conclude the entire transaction once RX is complete.
1262 * At this point, all TX will always be finished.
1263 */
1264 if (pl022->rx >= pl022->rx_end) {
1265 writew(DISABLE_ALL_INTERRUPTS,
1266 SSP_IMSC(pl022->virtbase));
1267 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1268 if (unlikely(pl022->rx > pl022->rx_end)) {
1269 dev_warn(&pl022->adev->dev, "read %u surplus "
1270 "bytes (did you request an odd "
1271 "number of bytes on a 16bit bus?)\n",
1272 (u32) (pl022->rx - pl022->rx_end));
1273 }
1274 /* Update total bytes transferred */
1275 msg->actual_length += pl022->cur_transfer->len;
1276 if (pl022->cur_transfer->cs_change)
1277 pl022->cur_chip->
1278 cs_control(SSP_CHIP_DESELECT);
1279 /* Move to next transfer */
1280 msg->state = next_transfer(pl022);
1281 tasklet_schedule(&pl022->pump_transfers);
1282 return IRQ_HANDLED;
1283 }
1284
1285 return IRQ_HANDLED;
1286}
1287
1288/**
1289 * This sets up the pointers to memory for the next message to
1290 * send out on the SPI bus.
1291 */
1292static int set_up_next_transfer(struct pl022 *pl022,
1293 struct spi_transfer *transfer)
1294{
1295 int residue;
1296
1297 /* Sanity check the message for this bus width */
1298 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1299 if (unlikely(residue != 0)) {
1300 dev_err(&pl022->adev->dev,
1301 "message of %u bytes to transmit but the current "
1302 "chip bus has a data width of %u bytes!\n",
1303 pl022->cur_transfer->len,
1304 pl022->cur_chip->n_bytes);
1305 dev_err(&pl022->adev->dev, "skipping this message\n");
1306 return -EIO;
1307 }
1308 pl022->tx = (void *)transfer->tx_buf;
1309 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1310 pl022->rx = (void *)transfer->rx_buf;
1311 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1312 pl022->write =
1313 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1314 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1315 return 0;
1316}
1317
1318/**
1319 * pump_transfers - Tasklet function which schedules next transfer
1320 * when running in interrupt or DMA transfer mode.
1321 * @data: SSP driver private data structure
1322 *
1323 */
1324static void pump_transfers(unsigned long data)
1325{
1326 struct pl022 *pl022 = (struct pl022 *) data;
1327 struct spi_message *message = NULL;
1328 struct spi_transfer *transfer = NULL;
1329 struct spi_transfer *previous = NULL;
1330
1331 /* Get current state information */
1332 message = pl022->cur_msg;
1333 transfer = pl022->cur_transfer;
1334
1335 /* Handle for abort */
1336 if (message->state == STATE_ERROR) {
1337 message->status = -EIO;
1338 giveback(pl022);
1339 return;
1340 }
1341
1342 /* Handle end of message */
1343 if (message->state == STATE_DONE) {
1344 message->status = 0;
1345 giveback(pl022);
1346 return;
1347 }
1348
1349 /* Delay if requested at end of transfer before CS change */
1350 if (message->state == STATE_RUNNING) {
1351 previous = list_entry(transfer->transfer_list.prev,
1352 struct spi_transfer,
1353 transfer_list);
1354 if (previous->delay_usecs)
1355 /*
1356 * FIXME: This runs in interrupt context.
1357 * Is this really smart?
1358 */
1359 udelay(previous->delay_usecs);
1360
1361 /* Drop chip select only if cs_change is requested */
1362 if (previous->cs_change)
1363 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1364 } else {
1365 /* STATE_START */
1366 message->state = STATE_RUNNING;
1367 }
1368
1369 if (set_up_next_transfer(pl022, transfer)) {
1370 message->state = STATE_ERROR;
1371 message->status = -EIO;
1372 giveback(pl022);
1373 return;
1374 }
1375 /* Flush the FIFOs and let's go! */
1376 flush(pl022);
1377
1378 if (pl022->cur_chip->enable_dma) {
1379 if (configure_dma(pl022)) {
1380 dev_dbg(&pl022->adev->dev,
1381 "configuration of DMA failed, fall back to interrupt mode\n");
1382 goto err_config_dma;
1383 }
1384 return;
1385 }
1386
1387err_config_dma:
1388 writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1389}
1390
1391static void do_interrupt_dma_transfer(struct pl022 *pl022)
1392{
1393 u32 irqflags = ENABLE_ALL_INTERRUPTS;
1394
1395 /* Enable target chip */
1396 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1397 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1398 /* Error path */
1399 pl022->cur_msg->state = STATE_ERROR;
1400 pl022->cur_msg->status = -EIO;
1401 giveback(pl022);
1402 return;
1403 }
1404 /* If we're using DMA, set up DMA here */
1405 if (pl022->cur_chip->enable_dma) {
1406 /* Configure DMA transfer */
1407 if (configure_dma(pl022)) {
1408 dev_dbg(&pl022->adev->dev,
1409 "configuration of DMA failed, fall back to interrupt mode\n");
1410 goto err_config_dma;
1411 }
1412 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1413 irqflags = DISABLE_ALL_INTERRUPTS;
1414 }
1415err_config_dma:
1416 /* Enable SSP, turn on interrupts */
1417 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1418 SSP_CR1(pl022->virtbase));
1419 writew(irqflags, SSP_IMSC(pl022->virtbase));
1420}
1421
1422static void do_polling_transfer(struct pl022 *pl022)
1423{
1424 struct spi_message *message = NULL;
1425 struct spi_transfer *transfer = NULL;
1426 struct spi_transfer *previous = NULL;
1427 struct chip_data *chip;
1428 unsigned long time, timeout;
1429
1430 chip = pl022->cur_chip;
1431 message = pl022->cur_msg;
1432
1433 while (message->state != STATE_DONE) {
1434 /* Handle for abort */
1435 if (message->state == STATE_ERROR)
1436 break;
1437 transfer = pl022->cur_transfer;
1438
1439 /* Delay if requested at end of transfer */
1440 if (message->state == STATE_RUNNING) {
1441 previous =
1442 list_entry(transfer->transfer_list.prev,
1443 struct spi_transfer, transfer_list);
1444 if (previous->delay_usecs)
1445 udelay(previous->delay_usecs);
1446 if (previous->cs_change)
1447 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1448 } else {
1449 /* STATE_START */
1450 message->state = STATE_RUNNING;
1451 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1452 }
1453
1454 /* Configuration Changing Per Transfer */
1455 if (set_up_next_transfer(pl022, transfer)) {
1456 /* Error path */
1457 message->state = STATE_ERROR;
1458 break;
1459 }
1460 /* Flush FIFOs and enable SSP */
1461 flush(pl022);
1462 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1463 SSP_CR1(pl022->virtbase));
1464
1465 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1466
1467 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1468 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1469 time = jiffies;
1470 readwriter(pl022);
1471 if (time_after(time, timeout)) {
1472 dev_warn(&pl022->adev->dev,
1473 "%s: timeout!\n", __func__);
1474 message->state = STATE_ERROR;
1475 goto out;
1476 }
1477 cpu_relax();
1478 }
1479
1480 /* Update total byte transferred */
1481 message->actual_length += pl022->cur_transfer->len;
1482 if (pl022->cur_transfer->cs_change)
1483 pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1484 /* Move to next transfer */
1485 message->state = next_transfer(pl022);
1486 }
1487out:
1488 /* Handle end of message */
1489 if (message->state == STATE_DONE)
1490 message->status = 0;
1491 else
1492 message->status = -EIO;
1493
1494 giveback(pl022);
1495 return;
1496}
1497
1498/**
1499 * pump_messages - Workqueue function which processes spi message queue
1500 * @data: pointer to private data of SSP driver
1501 *
1502 * This function checks if there is any spi message in the queue that
1503 * needs processing and delegate control to appropriate function
1504 * do_polling_transfer()/do_interrupt_dma_transfer()
1505 * based on the kind of the transfer
1506 *
1507 */
1508static void pump_messages(struct work_struct *work)
1509{
1510 struct pl022 *pl022 =
1511 container_of(work, struct pl022, pump_messages);
1512 unsigned long flags;
1513
1514 /* Lock queue and check for queue work */
1515 spin_lock_irqsave(&pl022->queue_lock, flags);
1516 if (list_empty(&pl022->queue) || !pl022->running) {
1517 pl022->busy = false;
1518 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1519 return;
1520 }
1521 /* Make sure we are not already running a message */
1522 if (pl022->cur_msg) {
1523 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1524 return;
1525 }
1526 /* Extract head of queue */
1527 pl022->cur_msg =
1528 list_entry(pl022->queue.next, struct spi_message, queue);
1529
1530 list_del_init(&pl022->cur_msg->queue);
1531 pl022->busy = true;
1532 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1533
1534 /* Initial message state */
1535 pl022->cur_msg->state = STATE_START;
1536 pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
1537 struct spi_transfer,
1538 transfer_list);
1539
1540 /* Setup the SPI using the per chip configuration */
1541 pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
1542 /*
1543 * We enable the core voltage and clocks here, then the clocks
1544 * and core will be disabled when giveback() is called in each method
1545 * (poll/interrupt/DMA)
1546 */
1547 pm_runtime_get_sync(&pl022->adev->dev);
1548 amba_vcore_enable(pl022->adev);
1549 amba_pclk_enable(pl022->adev);
1550 clk_enable(pl022->clk);
1551 restore_state(pl022);
1552 flush(pl022);
1553
1554 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1555 do_polling_transfer(pl022);
1556 else
1557 do_interrupt_dma_transfer(pl022);
1558}
1559
1560
1561static int __init init_queue(struct pl022 *pl022)
1562{
1563 INIT_LIST_HEAD(&pl022->queue);
1564 spin_lock_init(&pl022->queue_lock);
1565
1566 pl022->running = false;
1567 pl022->busy = false;
1568
1569 tasklet_init(&pl022->pump_transfers,
1570 pump_transfers, (unsigned long)pl022);
1571
1572 INIT_WORK(&pl022->pump_messages, pump_messages);
1573 pl022->workqueue = create_singlethread_workqueue(
1574 dev_name(pl022->master->dev.parent));
1575 if (pl022->workqueue == NULL)
1576 return -EBUSY;
1577
1578 return 0;
1579}
1580
1581
1582static int start_queue(struct pl022 *pl022)
1583{
1584 unsigned long flags;
1585
1586 spin_lock_irqsave(&pl022->queue_lock, flags);
1587
1588 if (pl022->running || pl022->busy) {
1589 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1590 return -EBUSY;
1591 }
1592
1593 pl022->running = true;
1594 pl022->cur_msg = NULL;
1595 pl022->cur_transfer = NULL;
1596 pl022->cur_chip = NULL;
1597 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1598
1599 queue_work(pl022->workqueue, &pl022->pump_messages);
1600
1601 return 0;
1602}
1603
1604
1605static int stop_queue(struct pl022 *pl022)
1606{
1607 unsigned long flags;
1608 unsigned limit = 500;
1609 int status = 0;
1610
1611 spin_lock_irqsave(&pl022->queue_lock, flags);
1612
1613 /* This is a bit lame, but is optimized for the common execution path.
1614 * A wait_queue on the pl022->busy could be used, but then the common
1615 * execution path (pump_messages) would be required to call wake_up or
1616 * friends on every SPI message. Do this instead */
1617 while ((!list_empty(&pl022->queue) || pl022->busy) && limit--) {
1618 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1619 msleep(10);
1620 spin_lock_irqsave(&pl022->queue_lock, flags);
1621 }
1622
1623 if (!list_empty(&pl022->queue) || pl022->busy)
1624 status = -EBUSY;
1625 else
1626 pl022->running = false;
1627
1628 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1629
1630 return status;
1631}
1632
1633static int destroy_queue(struct pl022 *pl022)
1634{
1635 int status;
1636
1637 status = stop_queue(pl022);
1638 /* we are unloading the module or failing to load (only two calls
1639 * to this routine), and neither call can handle a return value.
1640 * However, destroy_workqueue calls flush_workqueue, and that will
1641 * block until all work is done. If the reason that stop_queue
1642 * timed out is that the work will never finish, then it does no
1643 * good to call destroy_workqueue, so return anyway. */
1644 if (status != 0)
1645 return status;
1646
1647 destroy_workqueue(pl022->workqueue);
1648
1649 return 0;
1650}
1651
1652static int verify_controller_parameters(struct pl022 *pl022,
1653 struct pl022_config_chip const *chip_info)
1654{
1655 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1656 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1657 dev_err(&pl022->adev->dev,
1658 "interface is configured incorrectly\n");
1659 return -EINVAL;
1660 }
1661 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1662 (!pl022->vendor->unidir)) {
1663 dev_err(&pl022->adev->dev,
1664 "unidirectional mode not supported in this "
1665 "hardware version\n");
1666 return -EINVAL;
1667 }
1668 if ((chip_info->hierarchy != SSP_MASTER)
1669 && (chip_info->hierarchy != SSP_SLAVE)) {
1670 dev_err(&pl022->adev->dev,
1671 "hierarchy is configured incorrectly\n");
1672 return -EINVAL;
1673 }
1674 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1675 && (chip_info->com_mode != DMA_TRANSFER)
1676 && (chip_info->com_mode != POLLING_TRANSFER)) {
1677 dev_err(&pl022->adev->dev,
1678 "Communication mode is configured incorrectly\n");
1679 return -EINVAL;
1680 }
1681 switch (chip_info->rx_lev_trig) {
1682 case SSP_RX_1_OR_MORE_ELEM:
1683 case SSP_RX_4_OR_MORE_ELEM:
1684 case SSP_RX_8_OR_MORE_ELEM:
1685 /* These are always OK, all variants can handle this */
1686 break;
1687 case SSP_RX_16_OR_MORE_ELEM:
1688 if (pl022->vendor->fifodepth < 16) {
1689 dev_err(&pl022->adev->dev,
1690 "RX FIFO Trigger Level is configured incorrectly\n");
1691 return -EINVAL;
1692 }
1693 break;
1694 case SSP_RX_32_OR_MORE_ELEM:
1695 if (pl022->vendor->fifodepth < 32) {
1696 dev_err(&pl022->adev->dev,
1697 "RX FIFO Trigger Level is configured incorrectly\n");
1698 return -EINVAL;
1699 }
1700 break;
1701 default:
1702 dev_err(&pl022->adev->dev,
1703 "RX FIFO Trigger Level is configured incorrectly\n");
1704 return -EINVAL;
1705 break;
1706 }
1707 switch (chip_info->tx_lev_trig) {
1708 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1709 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1710 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1711 /* These are always OK, all variants can handle this */
1712 break;
1713 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1714 if (pl022->vendor->fifodepth < 16) {
1715 dev_err(&pl022->adev->dev,
1716 "TX FIFO Trigger Level is configured incorrectly\n");
1717 return -EINVAL;
1718 }
1719 break;
1720 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1721 if (pl022->vendor->fifodepth < 32) {
1722 dev_err(&pl022->adev->dev,
1723 "TX FIFO Trigger Level is configured incorrectly\n");
1724 return -EINVAL;
1725 }
1726 break;
1727 default:
1728 dev_err(&pl022->adev->dev,
1729 "TX FIFO Trigger Level is configured incorrectly\n");
1730 return -EINVAL;
1731 break;
1732 }
1733 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1734 if ((chip_info->ctrl_len < SSP_BITS_4)
1735 || (chip_info->ctrl_len > SSP_BITS_32)) {
1736 dev_err(&pl022->adev->dev,
1737 "CTRL LEN is configured incorrectly\n");
1738 return -EINVAL;
1739 }
1740 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1741 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1742 dev_err(&pl022->adev->dev,
1743 "Wait State is configured incorrectly\n");
1744 return -EINVAL;
1745 }
1746 /* Half duplex is only available in the ST Micro version */
1747 if (pl022->vendor->extended_cr) {
1748 if ((chip_info->duplex !=
1749 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1750 && (chip_info->duplex !=
1751 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1752 dev_err(&pl022->adev->dev,
1753 "Microwire duplex mode is configured incorrectly\n");
1754 return -EINVAL;
1755 }
1756 } else {
1757 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1758 dev_err(&pl022->adev->dev,
1759 "Microwire half duplex mode requested,"
1760 " but this is only available in the"
1761 " ST version of PL022\n");
1762 return -EINVAL;
1763 }
1764 }
1765 return 0;
1766}
1767
1768/**
1769 * pl022_transfer - transfer function registered to SPI master framework
1770 * @spi: spi device which is requesting transfer
1771 * @msg: spi message which is to handled is queued to driver queue
1772 *
1773 * This function is registered to the SPI framework for this SPI master
1774 * controller. It will queue the spi_message in the queue of driver if
1775 * the queue is not stopped and return.
1776 */
1777static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
1778{
1779 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1780 unsigned long flags;
1781
1782 spin_lock_irqsave(&pl022->queue_lock, flags);
1783
1784 if (!pl022->running) {
1785 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1786 return -ESHUTDOWN;
1787 }
1788 msg->actual_length = 0;
1789 msg->status = -EINPROGRESS;
1790 msg->state = STATE_START;
1791
1792 list_add_tail(&msg->queue, &pl022->queue);
1793 if (pl022->running && !pl022->busy)
1794 queue_work(pl022->workqueue, &pl022->pump_messages);
1795
1796 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1797 return 0;
1798}
1799
1800static int calculate_effective_freq(struct pl022 *pl022,
1801 int freq,
1802 struct ssp_clock_params *clk_freq)
1803{
1804 /* Lets calculate the frequency parameters */
1805 u16 cpsdvsr = 2;
1806 u16 scr = 0;
1807 bool freq_found = false;
1808 u32 rate;
1809 u32 max_tclk;
1810 u32 min_tclk;
1811
1812 rate = clk_get_rate(pl022->clk);
1813 /* cpsdvscr = 2 & scr 0 */
1814 max_tclk = (rate / (CPSDVR_MIN * (1 + SCR_MIN)));
1815 /* cpsdvsr = 254 & scr = 255 */
1816 min_tclk = (rate / (CPSDVR_MAX * (1 + SCR_MAX)));
1817
1818 if ((freq <= max_tclk) && (freq >= min_tclk)) {
1819 while (cpsdvsr <= CPSDVR_MAX && !freq_found) {
1820 while (scr <= SCR_MAX && !freq_found) {
1821 if ((rate /
1822 (cpsdvsr * (1 + scr))) > freq)
1823 scr += 1;
1824 else {
1825 /*
1826 * This bool is made true when
1827 * effective frequency >=
1828 * target frequency is found
1829 */
1830 freq_found = true;
1831 if ((rate /
1832 (cpsdvsr * (1 + scr))) != freq) {
1833 if (scr == SCR_MIN) {
1834 cpsdvsr -= 2;
1835 scr = SCR_MAX;
1836 } else
1837 scr -= 1;
1838 }
1839 }
1840 }
1841 if (!freq_found) {
1842 cpsdvsr += 2;
1843 scr = SCR_MIN;
1844 }
1845 }
1846 if (cpsdvsr != 0) {
1847 dev_dbg(&pl022->adev->dev,
1848 "SSP Effective Frequency is %u\n",
1849 (rate / (cpsdvsr * (1 + scr))));
1850 clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF);
1851 clk_freq->scr = (u8) (scr & 0xFF);
1852 dev_dbg(&pl022->adev->dev,
1853 "SSP cpsdvsr = %d, scr = %d\n",
1854 clk_freq->cpsdvsr, clk_freq->scr);
1855 }
1856 } else {
1857 dev_err(&pl022->adev->dev,
1858 "controller data is incorrect: out of range frequency");
1859 return -EINVAL;
1860 }
1861 return 0;
1862}
1863
1864
1865/*
1866 * A piece of default chip info unless the platform
1867 * supplies it.
1868 */
1869static const struct pl022_config_chip pl022_default_chip_info = {
1870 .com_mode = POLLING_TRANSFER,
1871 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1872 .hierarchy = SSP_SLAVE,
1873 .slave_tx_disable = DO_NOT_DRIVE_TX,
1874 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1875 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1876 .ctrl_len = SSP_BITS_8,
1877 .wait_state = SSP_MWIRE_WAIT_ZERO,
1878 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1879 .cs_control = null_cs_control,
1880};
1881
1882
1883/**
1884 * pl022_setup - setup function registered to SPI master framework
1885 * @spi: spi device which is requesting setup
1886 *
1887 * This function is registered to the SPI framework for this SPI master
1888 * controller. If it is the first time when setup is called by this device,
1889 * this function will initialize the runtime state for this chip and save
1890 * the same in the device structure. Else it will update the runtime info
1891 * with the updated chip info. Nothing is really being written to the
1892 * controller hardware here, that is not done until the actual transfer
1893 * commence.
1894 */
1895static int pl022_setup(struct spi_device *spi)
1896{
1897 struct pl022_config_chip const *chip_info;
1898 struct chip_data *chip;
1899 struct ssp_clock_params clk_freq = {0, };
1900 int status = 0;
1901 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1902 unsigned int bits = spi->bits_per_word;
1903 u32 tmp;
1904
1905 if (!spi->max_speed_hz)
1906 return -EINVAL;
1907
1908 /* Get controller_state if one is supplied */
1909 chip = spi_get_ctldata(spi);
1910
1911 if (chip == NULL) {
1912 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1913 if (!chip) {
1914 dev_err(&spi->dev,
1915 "cannot allocate controller state\n");
1916 return -ENOMEM;
1917 }
1918 dev_dbg(&spi->dev,
1919 "allocated memory for controller's runtime state\n");
1920 }
1921
1922 /* Get controller data if one is supplied */
1923 chip_info = spi->controller_data;
1924
1925 if (chip_info == NULL) {
1926 chip_info = &pl022_default_chip_info;
1927 /* spi_board_info.controller_data not is supplied */
1928 dev_dbg(&spi->dev,
1929 "using default controller_data settings\n");
1930 } else
1931 dev_dbg(&spi->dev,
1932 "using user supplied controller_data settings\n");
1933
1934 /*
1935 * We can override with custom divisors, else we use the board
1936 * frequency setting
1937 */
1938 if ((0 == chip_info->clk_freq.cpsdvsr)
1939 && (0 == chip_info->clk_freq.scr)) {
1940 status = calculate_effective_freq(pl022,
1941 spi->max_speed_hz,
1942 &clk_freq);
1943 if (status < 0)
1944 goto err_config_params;
1945 } else {
1946 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1947 if ((clk_freq.cpsdvsr % 2) != 0)
1948 clk_freq.cpsdvsr =
1949 clk_freq.cpsdvsr - 1;
1950 }
1951 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1952 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1953 status = -EINVAL;
1954 dev_err(&spi->dev,
1955 "cpsdvsr is configured incorrectly\n");
1956 goto err_config_params;
1957 }
1958
1959
1960 status = verify_controller_parameters(pl022, chip_info);
1961 if (status) {
1962 dev_err(&spi->dev, "controller data is incorrect");
1963 goto err_config_params;
1964 }
1965
1966 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1967 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1968
1969 /* Now set controller state based on controller data */
1970 chip->xfer_type = chip_info->com_mode;
1971 if (!chip_info->cs_control) {
1972 chip->cs_control = null_cs_control;
1973 dev_warn(&spi->dev,
1974 "chip select function is NULL for this chip\n");
1975 } else
1976 chip->cs_control = chip_info->cs_control;
1977
1978 if (bits <= 3) {
1979 /* PL022 doesn't support less than 4-bits */
1980 status = -ENOTSUPP;
1981 goto err_config_params;
1982 } else if (bits <= 8) {
1983 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1984 chip->n_bytes = 1;
1985 chip->read = READING_U8;
1986 chip->write = WRITING_U8;
1987 } else if (bits <= 16) {
1988 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1989 chip->n_bytes = 2;
1990 chip->read = READING_U16;
1991 chip->write = WRITING_U16;
1992 } else {
1993 if (pl022->vendor->max_bpw >= 32) {
1994 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1995 chip->n_bytes = 4;
1996 chip->read = READING_U32;
1997 chip->write = WRITING_U32;
1998 } else {
1999 dev_err(&spi->dev,
2000 "illegal data size for this controller!\n");
2001 dev_err(&spi->dev,
2002 "a standard pl022 can only handle "
2003 "1 <= n <= 16 bit words\n");
2004 status = -ENOTSUPP;
2005 goto err_config_params;
2006 }
2007 }
2008
2009 /* Now Initialize all register settings required for this chip */
2010 chip->cr0 = 0;
2011 chip->cr1 = 0;
2012 chip->dmacr = 0;
2013 chip->cpsr = 0;
2014 if ((chip_info->com_mode == DMA_TRANSFER)
2015 && ((pl022->master_info)->enable_dma)) {
2016 chip->enable_dma = true;
2017 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
2018 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2019 SSP_DMACR_MASK_RXDMAE, 0);
2020 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2021 SSP_DMACR_MASK_TXDMAE, 1);
2022 } else {
2023 chip->enable_dma = false;
2024 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
2025 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2026 SSP_DMACR_MASK_RXDMAE, 0);
2027 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2028 SSP_DMACR_MASK_TXDMAE, 1);
2029 }
2030
2031 chip->cpsr = clk_freq.cpsdvsr;
2032
2033 /* Special setup for the ST micro extended control registers */
2034 if (pl022->vendor->extended_cr) {
2035 u32 etx;
2036
2037 if (pl022->vendor->pl023) {
2038 /* These bits are only in the PL023 */
2039 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2040 SSP_CR1_MASK_FBCLKDEL_ST, 13);
2041 } else {
2042 /* These bits are in the PL022 but not PL023 */
2043 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2044 SSP_CR0_MASK_HALFDUP_ST, 5);
2045 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2046 SSP_CR0_MASK_CSS_ST, 16);
2047 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2048 SSP_CR0_MASK_FRF_ST, 21);
2049 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2050 SSP_CR1_MASK_MWAIT_ST, 6);
2051 }
2052 SSP_WRITE_BITS(chip->cr0, bits - 1,
2053 SSP_CR0_MASK_DSS_ST, 0);
2054
2055 if (spi->mode & SPI_LSB_FIRST) {
2056 tmp = SSP_RX_LSB;
2057 etx = SSP_TX_LSB;
2058 } else {
2059 tmp = SSP_RX_MSB;
2060 etx = SSP_TX_MSB;
2061 }
2062 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2063 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2064 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2065 SSP_CR1_MASK_RXIFLSEL_ST, 7);
2066 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2067 SSP_CR1_MASK_TXIFLSEL_ST, 10);
2068 } else {
2069 SSP_WRITE_BITS(chip->cr0, bits - 1,
2070 SSP_CR0_MASK_DSS, 0);
2071 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2072 SSP_CR0_MASK_FRF, 4);
2073 }
2074
2075 /* Stuff that is common for all versions */
2076 if (spi->mode & SPI_CPOL)
2077 tmp = SSP_CLK_POL_IDLE_HIGH;
2078 else
2079 tmp = SSP_CLK_POL_IDLE_LOW;
2080 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2081
2082 if (spi->mode & SPI_CPHA)
2083 tmp = SSP_CLK_SECOND_EDGE;
2084 else
2085 tmp = SSP_CLK_FIRST_EDGE;
2086 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2087
2088 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2089 /* Loopback is available on all versions except PL023 */
2090 if (pl022->vendor->loopback) {
2091 if (spi->mode & SPI_LOOP)
2092 tmp = LOOPBACK_ENABLED;
2093 else
2094 tmp = LOOPBACK_DISABLED;
2095 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2096 }
2097 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2098 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2099 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 3);
2100
2101 /* Save controller_state */
2102 spi_set_ctldata(spi, chip);
2103 return status;
2104 err_config_params:
2105 spi_set_ctldata(spi, NULL);
2106 kfree(chip);
2107 return status;
2108}
2109
2110/**
2111 * pl022_cleanup - cleanup function registered to SPI master framework
2112 * @spi: spi device which is requesting cleanup
2113 *
2114 * This function is registered to the SPI framework for this SPI master
2115 * controller. It will free the runtime state of chip.
2116 */
2117static void pl022_cleanup(struct spi_device *spi)
2118{
2119 struct chip_data *chip = spi_get_ctldata(spi);
2120
2121 spi_set_ctldata(spi, NULL);
2122 kfree(chip);
2123}
2124
2125
2126static int __devinit
2127pl022_probe(struct amba_device *adev, const struct amba_id *id)
2128{
2129 struct device *dev = &adev->dev;
2130 struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2131 struct spi_master *master;
2132 struct pl022 *pl022 = NULL; /*Data for this driver */
2133 int status = 0;
2134
2135 dev_info(&adev->dev,
2136 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2137 if (platform_info == NULL) {
2138 dev_err(&adev->dev, "probe - no platform data supplied\n");
2139 status = -ENODEV;
2140 goto err_no_pdata;
2141 }
2142
2143 /* Allocate master with space for data */
2144 master = spi_alloc_master(dev, sizeof(struct pl022));
2145 if (master == NULL) {
2146 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2147 status = -ENOMEM;
2148 goto err_no_master;
2149 }
2150
2151 pl022 = spi_master_get_devdata(master);
2152 pl022->master = master;
2153 pl022->master_info = platform_info;
2154 pl022->adev = adev;
2155 pl022->vendor = id->data;
2156
2157 /*
2158 * Bus Number Which has been Assigned to this SSP controller
2159 * on this board
2160 */
2161 master->bus_num = platform_info->bus_id;
2162 master->num_chipselect = platform_info->num_chipselect;
2163 master->cleanup = pl022_cleanup;
2164 master->setup = pl022_setup;
2165 master->transfer = pl022_transfer;
2166
2167 /*
2168 * Supports mode 0-3, loopback, and active low CS. Transfers are
2169 * always MS bit first on the original pl022.
2170 */
2171 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2172 if (pl022->vendor->extended_cr)
2173 master->mode_bits |= SPI_LSB_FIRST;
2174
2175 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2176
2177 status = amba_request_regions(adev, NULL);
2178 if (status)
2179 goto err_no_ioregion;
2180
2181 pl022->phybase = adev->res.start;
2182 pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2183 if (pl022->virtbase == NULL) {
2184 status = -ENOMEM;
2185 goto err_no_ioremap;
2186 }
2187 printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2188 adev->res.start, pl022->virtbase);
2189 pm_runtime_enable(dev);
2190 pm_runtime_resume(dev);
2191
2192 pl022->clk = clk_get(&adev->dev, NULL);
2193 if (IS_ERR(pl022->clk)) {
2194 status = PTR_ERR(pl022->clk);
2195 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2196 goto err_no_clk;
2197 }
2198
2199 /* Disable SSP */
2200 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2201 SSP_CR1(pl022->virtbase));
2202 load_ssp_default_config(pl022);
2203
2204 status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2205 pl022);
2206 if (status < 0) {
2207 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2208 goto err_no_irq;
2209 }
2210
2211 /* Get DMA channels */
2212 if (platform_info->enable_dma) {
2213 status = pl022_dma_probe(pl022);
2214 if (status != 0)
2215 platform_info->enable_dma = 0;
2216 }
2217
2218 /* Initialize and start queue */
2219 status = init_queue(pl022);
2220 if (status != 0) {
2221 dev_err(&adev->dev, "probe - problem initializing queue\n");
2222 goto err_init_queue;
2223 }
2224 status = start_queue(pl022);
2225 if (status != 0) {
2226 dev_err(&adev->dev, "probe - problem starting queue\n");
2227 goto err_start_queue;
2228 }
2229 /* Register with the SPI framework */
2230 amba_set_drvdata(adev, pl022);
2231 status = spi_register_master(master);
2232 if (status != 0) {
2233 dev_err(&adev->dev,
2234 "probe - problem registering spi master\n");
2235 goto err_spi_register;
2236 }
2237 dev_dbg(dev, "probe succeeded\n");
2238 /*
2239 * Disable the silicon block pclk and any voltage domain and just
2240 * power it up and clock it when it's needed
2241 */
2242 amba_pclk_disable(adev);
2243 amba_vcore_disable(adev);
2244 return 0;
2245
2246 err_spi_register:
2247 err_start_queue:
2248 err_init_queue:
2249 destroy_queue(pl022);
2250 pl022_dma_remove(pl022);
2251 free_irq(adev->irq[0], pl022);
2252 pm_runtime_disable(&adev->dev);
2253 err_no_irq:
2254 clk_put(pl022->clk);
2255 err_no_clk:
2256 iounmap(pl022->virtbase);
2257 err_no_ioremap:
2258 amba_release_regions(adev);
2259 err_no_ioregion:
2260 spi_master_put(master);
2261 err_no_master:
2262 err_no_pdata:
2263 return status;
2264}
2265
2266static int __devexit
2267pl022_remove(struct amba_device *adev)
2268{
2269 struct pl022 *pl022 = amba_get_drvdata(adev);
2270
2271 if (!pl022)
2272 return 0;
2273
2274 /* Remove the queue */
2275 if (destroy_queue(pl022) != 0)
2276 dev_err(&adev->dev, "queue remove failed\n");
2277 load_ssp_default_config(pl022);
2278 pl022_dma_remove(pl022);
2279 free_irq(adev->irq[0], pl022);
2280 clk_disable(pl022->clk);
2281 clk_put(pl022->clk);
2282 iounmap(pl022->virtbase);
2283 amba_release_regions(adev);
2284 tasklet_disable(&pl022->pump_transfers);
2285 spi_unregister_master(pl022->master);
2286 spi_master_put(pl022->master);
2287 amba_set_drvdata(adev, NULL);
2288 return 0;
2289}
2290
2291#ifdef CONFIG_PM
2292static int pl022_suspend(struct amba_device *adev, pm_message_t state)
2293{
2294 struct pl022 *pl022 = amba_get_drvdata(adev);
2295 int status = 0;
2296
2297 status = stop_queue(pl022);
2298 if (status) {
2299 dev_warn(&adev->dev, "suspend cannot stop queue\n");
2300 return status;
2301 }
2302
2303 amba_vcore_enable(adev);
2304 amba_pclk_enable(adev);
2305 load_ssp_default_config(pl022);
2306 amba_pclk_disable(adev);
2307 amba_vcore_disable(adev);
2308 dev_dbg(&adev->dev, "suspended\n");
2309 return 0;
2310}
2311
2312static int pl022_resume(struct amba_device *adev)
2313{
2314 struct pl022 *pl022 = amba_get_drvdata(adev);
2315 int status = 0;
2316
2317 /* Start the queue running */
2318 status = start_queue(pl022);
2319 if (status)
2320 dev_err(&adev->dev, "problem starting queue (%d)\n", status);
2321 else
2322 dev_dbg(&adev->dev, "resumed\n");
2323
2324 return status;
2325}
2326#else
2327#define pl022_suspend NULL
2328#define pl022_resume NULL
2329#endif /* CONFIG_PM */
2330
2331static struct vendor_data vendor_arm = {
2332 .fifodepth = 8,
2333 .max_bpw = 16,
2334 .unidir = false,
2335 .extended_cr = false,
2336 .pl023 = false,
2337 .loopback = true,
2338};
2339
2340
2341static struct vendor_data vendor_st = {
2342 .fifodepth = 32,
2343 .max_bpw = 32,
2344 .unidir = false,
2345 .extended_cr = true,
2346 .pl023 = false,
2347 .loopback = true,
2348};
2349
2350static struct vendor_data vendor_st_pl023 = {
2351 .fifodepth = 32,
2352 .max_bpw = 32,
2353 .unidir = false,
2354 .extended_cr = true,
2355 .pl023 = true,
2356 .loopback = false,
2357};
2358
2359static struct vendor_data vendor_db5500_pl023 = {
2360 .fifodepth = 32,
2361 .max_bpw = 32,
2362 .unidir = false,
2363 .extended_cr = true,
2364 .pl023 = true,
2365 .loopback = true,
2366};
2367
2368static struct amba_id pl022_ids[] = {
2369 {
2370 /*
2371 * ARM PL022 variant, this has a 16bit wide
2372 * and 8 locations deep TX/RX FIFO
2373 */
2374 .id = 0x00041022,
2375 .mask = 0x000fffff,
2376 .data = &vendor_arm,
2377 },
2378 {
2379 /*
2380 * ST Micro derivative, this has 32bit wide
2381 * and 32 locations deep TX/RX FIFO
2382 */
2383 .id = 0x01080022,
2384 .mask = 0xffffffff,
2385 .data = &vendor_st,
2386 },
2387 {
2388 /*
2389 * ST-Ericsson derivative "PL023" (this is not
2390 * an official ARM number), this is a PL022 SSP block
2391 * stripped to SPI mode only, it has 32bit wide
2392 * and 32 locations deep TX/RX FIFO but no extended
2393 * CR0/CR1 register
2394 */
2395 .id = 0x00080023,
2396 .mask = 0xffffffff,
2397 .data = &vendor_st_pl023,
2398 },
2399 {
2400 .id = 0x10080023,
2401 .mask = 0xffffffff,
2402 .data = &vendor_db5500_pl023,
2403 },
2404 { 0, 0 },
2405};
2406
2407static struct amba_driver pl022_driver = {
2408 .drv = {
2409 .name = "ssp-pl022",
2410 },
2411 .id_table = pl022_ids,
2412 .probe = pl022_probe,
2413 .remove = __devexit_p(pl022_remove),
2414 .suspend = pl022_suspend,
2415 .resume = pl022_resume,
2416};
2417
2418
2419static int __init pl022_init(void)
2420{
2421 return amba_driver_register(&pl022_driver);
2422}
2423
2424subsys_initcall(pl022_init);
2425
2426static void __exit pl022_exit(void)
2427{
2428 amba_driver_unregister(&pl022_driver);
2429}
2430
2431module_exit(pl022_exit);
2432
2433MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2434MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2435MODULE_LICENSE("GPL");