Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright(c) 2007 Intel Corporation. All rights reserved.
   4 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
   5 * Copyright(c) 2008 Mike Christie
   6 *
   7 * Maintained at www.Open-FCoE.org
   8 */
   9
  10/*
  11 * Fibre Channel exchange and sequence handling.
  12 */
  13
  14#include <linux/timer.h>
  15#include <linux/slab.h>
  16#include <linux/err.h>
  17#include <linux/export.h>
  18#include <linux/log2.h>
  19
  20#include <scsi/fc/fc_fc2.h>
  21
  22#include <scsi/libfc.h>
 
  23
  24#include "fc_libfc.h"
  25
  26u16	fc_cpu_mask;		/* cpu mask for possible cpus */
  27EXPORT_SYMBOL(fc_cpu_mask);
  28static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
  29static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
  30static struct workqueue_struct *fc_exch_workqueue;
  31
  32/*
  33 * Structure and function definitions for managing Fibre Channel Exchanges
  34 * and Sequences.
  35 *
  36 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
  37 *
  38 * fc_exch_mgr holds the exchange state for an N port
  39 *
  40 * fc_exch holds state for one exchange and links to its active sequence.
  41 *
  42 * fc_seq holds the state for an individual sequence.
  43 */
  44
  45/**
  46 * struct fc_exch_pool - Per cpu exchange pool
  47 * @next_index:	  Next possible free exchange index
  48 * @total_exches: Total allocated exchanges
  49 * @lock:	  Exch pool lock
  50 * @ex_list:	  List of exchanges
  51 * @left:	  Cache of free slot in exch array
  52 * @right:	  Cache of free slot in exch array
  53 *
  54 * This structure manages per cpu exchanges in array of exchange pointers.
  55 * This array is allocated followed by struct fc_exch_pool memory for
  56 * assigned range of exchanges to per cpu pool.
  57 */
  58struct fc_exch_pool {
  59	spinlock_t	 lock;
  60	struct list_head ex_list;
  61	u16		 next_index;
  62	u16		 total_exches;
  63
  64	u16		 left;
  65	u16		 right;
  66} ____cacheline_aligned_in_smp;
  67
  68/**
  69 * struct fc_exch_mgr - The Exchange Manager (EM).
  70 * @class:	    Default class for new sequences
  71 * @kref:	    Reference counter
  72 * @min_xid:	    Minimum exchange ID
  73 * @max_xid:	    Maximum exchange ID
  74 * @ep_pool:	    Reserved exchange pointers
  75 * @pool_max_index: Max exch array index in exch pool
  76 * @pool:	    Per cpu exch pool
  77 * @lport:	    Local exchange port
  78 * @stats:	    Statistics structure
  79 *
  80 * This structure is the center for creating exchanges and sequences.
  81 * It manages the allocation of exchange IDs.
  82 */
  83struct fc_exch_mgr {
  84	struct fc_exch_pool __percpu *pool;
  85	mempool_t	*ep_pool;
  86	struct fc_lport	*lport;
  87	enum fc_class	class;
  88	struct kref	kref;
  89	u16		min_xid;
  90	u16		max_xid;
  91	u16		pool_max_index;
  92
  93	struct {
  94		atomic_t no_free_exch;
  95		atomic_t no_free_exch_xid;
  96		atomic_t xid_not_found;
  97		atomic_t xid_busy;
  98		atomic_t seq_not_found;
  99		atomic_t non_bls_resp;
 100	} stats;
 101};
 102
 103/**
 104 * struct fc_exch_mgr_anchor - primary structure for list of EMs
 105 * @ema_list: Exchange Manager Anchor list
 106 * @mp:	      Exchange Manager associated with this anchor
 107 * @match:    Routine to determine if this anchor's EM should be used
 108 *
 109 * When walking the list of anchors the match routine will be called
 110 * for each anchor to determine if that EM should be used. The last
 111 * anchor in the list will always match to handle any exchanges not
 112 * handled by other EMs. The non-default EMs would be added to the
 113 * anchor list by HW that provides offloads.
 114 */
 115struct fc_exch_mgr_anchor {
 116	struct list_head ema_list;
 117	struct fc_exch_mgr *mp;
 118	bool (*match)(struct fc_frame *);
 119};
 120
 121static void fc_exch_rrq(struct fc_exch *);
 122static void fc_seq_ls_acc(struct fc_frame *);
 123static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
 124			  enum fc_els_rjt_explan);
 125static void fc_exch_els_rec(struct fc_frame *);
 126static void fc_exch_els_rrq(struct fc_frame *);
 127
 128/*
 129 * Internal implementation notes.
 130 *
 131 * The exchange manager is one by default in libfc but LLD may choose
 132 * to have one per CPU. The sequence manager is one per exchange manager
 133 * and currently never separated.
 134 *
 135 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
 136 * assigned by the Sequence Initiator that shall be unique for a specific
 137 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
 138 * qualified by exchange ID, which one might think it would be.
 139 * In practice this limits the number of open sequences and exchanges to 256
 140 * per session.	 For most targets we could treat this limit as per exchange.
 141 *
 142 * The exchange and its sequence are freed when the last sequence is received.
 143 * It's possible for the remote port to leave an exchange open without
 144 * sending any sequences.
 145 *
 146 * Notes on reference counts:
 147 *
 148 * Exchanges are reference counted and exchange gets freed when the reference
 149 * count becomes zero.
 150 *
 151 * Timeouts:
 152 * Sequences are timed out for E_D_TOV and R_A_TOV.
 153 *
 154 * Sequence event handling:
 155 *
 156 * The following events may occur on initiator sequences:
 157 *
 158 *	Send.
 159 *	    For now, the whole thing is sent.
 160 *	Receive ACK
 161 *	    This applies only to class F.
 162 *	    The sequence is marked complete.
 163 *	ULP completion.
 164 *	    The upper layer calls fc_exch_done() when done
 165 *	    with exchange and sequence tuple.
 166 *	RX-inferred completion.
 167 *	    When we receive the next sequence on the same exchange, we can
 168 *	    retire the previous sequence ID.  (XXX not implemented).
 169 *	Timeout.
 170 *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
 171 *	    E_D_TOV causes abort and calls upper layer response handler
 172 *	    with FC_EX_TIMEOUT error.
 173 *	Receive RJT
 174 *	    XXX defer.
 175 *	Send ABTS
 176 *	    On timeout.
 177 *
 178 * The following events may occur on recipient sequences:
 179 *
 180 *	Receive
 181 *	    Allocate sequence for first frame received.
 182 *	    Hold during receive handler.
 183 *	    Release when final frame received.
 184 *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
 185 *	Receive ABTS
 186 *	    Deallocate sequence
 187 *	Send RJT
 188 *	    Deallocate
 189 *
 190 * For now, we neglect conditions where only part of a sequence was
 191 * received or transmitted, or where out-of-order receipt is detected.
 192 */
 193
 194/*
 195 * Locking notes:
 196 *
 197 * The EM code run in a per-CPU worker thread.
 198 *
 199 * To protect against concurrency between a worker thread code and timers,
 200 * sequence allocation and deallocation must be locked.
 201 *  - exchange refcnt can be done atomicly without locks.
 202 *  - sequence allocation must be locked by exch lock.
 203 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
 204 *    EM pool lock must be taken before the ex_lock.
 205 */
 206
 207/*
 208 * opcode names for debugging.
 209 */
 210static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
 211
 212/**
 213 * fc_exch_name_lookup() - Lookup name by opcode
 214 * @op:	       Opcode to be looked up
 215 * @table:     Opcode/name table
 216 * @max_index: Index not to be exceeded
 217 *
 218 * This routine is used to determine a human-readable string identifying
 219 * a R_CTL opcode.
 220 */
 221static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
 222					      unsigned int max_index)
 223{
 224	const char *name = NULL;
 225
 226	if (op < max_index)
 227		name = table[op];
 228	if (!name)
 229		name = "unknown";
 230	return name;
 231}
 232
 233/**
 234 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
 235 * @op: The opcode to be looked up
 236 */
 237static const char *fc_exch_rctl_name(unsigned int op)
 238{
 239	return fc_exch_name_lookup(op, fc_exch_rctl_names,
 240				   ARRAY_SIZE(fc_exch_rctl_names));
 241}
 242
 243/**
 244 * fc_exch_hold() - Increment an exchange's reference count
 245 * @ep: Echange to be held
 246 */
 247static inline void fc_exch_hold(struct fc_exch *ep)
 248{
 249	atomic_inc(&ep->ex_refcnt);
 250}
 251
 252/**
 253 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
 254 *			 and determine SOF and EOF.
 255 * @ep:	   The exchange to that will use the header
 256 * @fp:	   The frame whose header is to be modified
 257 * @f_ctl: F_CTL bits that will be used for the frame header
 258 *
 259 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
 260 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
 261 */
 262static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
 263			      u32 f_ctl)
 264{
 265	struct fc_frame_header *fh = fc_frame_header_get(fp);
 266	u16 fill;
 267
 268	fr_sof(fp) = ep->class;
 269	if (ep->seq.cnt)
 270		fr_sof(fp) = fc_sof_normal(ep->class);
 271
 272	if (f_ctl & FC_FC_END_SEQ) {
 273		fr_eof(fp) = FC_EOF_T;
 274		if (fc_sof_needs_ack((enum fc_sof)ep->class))
 275			fr_eof(fp) = FC_EOF_N;
 276		/*
 277		 * From F_CTL.
 278		 * The number of fill bytes to make the length a 4-byte
 279		 * multiple is the low order 2-bits of the f_ctl.
 280		 * The fill itself will have been cleared by the frame
 281		 * allocation.
 282		 * After this, the length will be even, as expected by
 283		 * the transport.
 284		 */
 285		fill = fr_len(fp) & 3;
 286		if (fill) {
 287			fill = 4 - fill;
 288			/* TODO, this may be a problem with fragmented skb */
 289			skb_put(fp_skb(fp), fill);
 290			hton24(fh->fh_f_ctl, f_ctl | fill);
 291		}
 292	} else {
 293		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
 294		fr_eof(fp) = FC_EOF_N;
 295	}
 296
 297	/* Initialize remaining fh fields from fc_fill_fc_hdr */
 298	fh->fh_ox_id = htons(ep->oxid);
 299	fh->fh_rx_id = htons(ep->rxid);
 300	fh->fh_seq_id = ep->seq.id;
 301	fh->fh_seq_cnt = htons(ep->seq.cnt);
 302}
 303
 304/**
 305 * fc_exch_release() - Decrement an exchange's reference count
 306 * @ep: Exchange to be released
 307 *
 308 * If the reference count reaches zero and the exchange is complete,
 309 * it is freed.
 310 */
 311static void fc_exch_release(struct fc_exch *ep)
 312{
 313	struct fc_exch_mgr *mp;
 314
 315	if (atomic_dec_and_test(&ep->ex_refcnt)) {
 316		mp = ep->em;
 317		if (ep->destructor)
 318			ep->destructor(&ep->seq, ep->arg);
 319		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
 320		mempool_free(ep, mp->ep_pool);
 321	}
 322}
 323
 324/**
 325 * fc_exch_timer_cancel() - cancel exch timer
 326 * @ep:		The exchange whose timer to be canceled
 327 */
 328static inline void fc_exch_timer_cancel(struct fc_exch *ep)
 329{
 330	if (cancel_delayed_work(&ep->timeout_work)) {
 331		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
 332		atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
 333	}
 334}
 335
 336/**
 337 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
 338 *				the exchange lock held
 339 * @ep:		The exchange whose timer will start
 340 * @timer_msec: The timeout period
 341 *
 342 * Used for upper level protocols to time out the exchange.
 343 * The timer is cancelled when it fires or when the exchange completes.
 344 */
 345static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
 346					    unsigned int timer_msec)
 347{
 348	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 349		return;
 350
 351	FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
 352
 353	fc_exch_hold(ep);		/* hold for timer */
 354	if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
 355				msecs_to_jiffies(timer_msec))) {
 356		FC_EXCH_DBG(ep, "Exchange already queued\n");
 357		fc_exch_release(ep);
 358	}
 359}
 360
 361/**
 362 * fc_exch_timer_set() - Lock the exchange and set the timer
 363 * @ep:		The exchange whose timer will start
 364 * @timer_msec: The timeout period
 365 */
 366static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
 367{
 368	spin_lock_bh(&ep->ex_lock);
 369	fc_exch_timer_set_locked(ep, timer_msec);
 370	spin_unlock_bh(&ep->ex_lock);
 371}
 372
 373/**
 374 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
 375 * @ep: The exchange that is complete
 376 *
 377 * Note: May sleep if invoked from outside a response handler.
 378 */
 379static int fc_exch_done_locked(struct fc_exch *ep)
 380{
 381	int rc = 1;
 382
 383	/*
 384	 * We must check for completion in case there are two threads
 385	 * tyring to complete this. But the rrq code will reuse the
 386	 * ep, and in that case we only clear the resp and set it as
 387	 * complete, so it can be reused by the timer to send the rrq.
 388	 */
 389	if (ep->state & FC_EX_DONE)
 390		return rc;
 391	ep->esb_stat |= ESB_ST_COMPLETE;
 392
 393	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
 394		ep->state |= FC_EX_DONE;
 395		fc_exch_timer_cancel(ep);
 396		rc = 0;
 397	}
 398	return rc;
 399}
 400
 401static struct fc_exch fc_quarantine_exch;
 402
 403/**
 404 * fc_exch_ptr_get() - Return an exchange from an exchange pool
 405 * @pool:  Exchange Pool to get an exchange from
 406 * @index: Index of the exchange within the pool
 407 *
 408 * Use the index to get an exchange from within an exchange pool. exches
 409 * will point to an array of exchange pointers. The index will select
 410 * the exchange within the array.
 411 */
 412static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
 413					      u16 index)
 414{
 415	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
 416	return exches[index];
 417}
 418
 419/**
 420 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
 421 * @pool:  The pool to assign the exchange to
 422 * @index: The index in the pool where the exchange will be assigned
 423 * @ep:	   The exchange to assign to the pool
 424 */
 425static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
 426				   struct fc_exch *ep)
 427{
 428	((struct fc_exch **)(pool + 1))[index] = ep;
 429}
 430
 431/**
 432 * fc_exch_delete() - Delete an exchange
 433 * @ep: The exchange to be deleted
 434 */
 435static void fc_exch_delete(struct fc_exch *ep)
 436{
 437	struct fc_exch_pool *pool;
 438	u16 index;
 439
 440	pool = ep->pool;
 441	spin_lock_bh(&pool->lock);
 442	WARN_ON(pool->total_exches <= 0);
 443	pool->total_exches--;
 444
 445	/* update cache of free slot */
 446	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
 447	if (!(ep->state & FC_EX_QUARANTINE)) {
 448		if (pool->left == FC_XID_UNKNOWN)
 449			pool->left = index;
 450		else if (pool->right == FC_XID_UNKNOWN)
 451			pool->right = index;
 452		else
 453			pool->next_index = index;
 454		fc_exch_ptr_set(pool, index, NULL);
 455	} else {
 456		fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
 457	}
 458	list_del(&ep->ex_list);
 459	spin_unlock_bh(&pool->lock);
 460	fc_exch_release(ep);	/* drop hold for exch in mp */
 461}
 462
 463static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
 464			      struct fc_frame *fp)
 465{
 466	struct fc_exch *ep;
 467	struct fc_frame_header *fh = fc_frame_header_get(fp);
 468	int error = -ENXIO;
 469	u32 f_ctl;
 470	u8 fh_type = fh->fh_type;
 471
 472	ep = fc_seq_exch(sp);
 473
 474	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
 475		fc_frame_free(fp);
 476		goto out;
 477	}
 478
 479	WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
 480
 481	f_ctl = ntoh24(fh->fh_f_ctl);
 482	fc_exch_setup_hdr(ep, fp, f_ctl);
 483	fr_encaps(fp) = ep->encaps;
 484
 485	/*
 486	 * update sequence count if this frame is carrying
 487	 * multiple FC frames when sequence offload is enabled
 488	 * by LLD.
 489	 */
 490	if (fr_max_payload(fp))
 491		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
 492					fr_max_payload(fp));
 493	else
 494		sp->cnt++;
 495
 496	/*
 497	 * Send the frame.
 498	 */
 499	error = lport->tt.frame_send(lport, fp);
 500
 501	if (fh_type == FC_TYPE_BLS)
 502		goto out;
 503
 504	/*
 505	 * Update the exchange and sequence flags,
 506	 * assuming all frames for the sequence have been sent.
 507	 * We can only be called to send once for each sequence.
 508	 */
 509	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
 510	if (f_ctl & FC_FC_SEQ_INIT)
 511		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
 512out:
 513	return error;
 514}
 515
 516/**
 517 * fc_seq_send() - Send a frame using existing sequence/exchange pair
 518 * @lport: The local port that the exchange will be sent on
 519 * @sp:	   The sequence to be sent
 520 * @fp:	   The frame to be sent on the exchange
 521 *
 522 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
 523 * or indirectly by calling libfc_function_template.frame_send().
 524 */
 525int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
 526{
 527	struct fc_exch *ep;
 528	int error;
 529	ep = fc_seq_exch(sp);
 530	spin_lock_bh(&ep->ex_lock);
 531	error = fc_seq_send_locked(lport, sp, fp);
 532	spin_unlock_bh(&ep->ex_lock);
 533	return error;
 534}
 535EXPORT_SYMBOL(fc_seq_send);
 536
 537/**
 538 * fc_seq_alloc() - Allocate a sequence for a given exchange
 539 * @ep:	    The exchange to allocate a new sequence for
 540 * @seq_id: The sequence ID to be used
 541 *
 542 * We don't support multiple originated sequences on the same exchange.
 543 * By implication, any previously originated sequence on this exchange
 544 * is complete, and we reallocate the same sequence.
 545 */
 546static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
 547{
 548	struct fc_seq *sp;
 549
 550	sp = &ep->seq;
 551	sp->ssb_stat = 0;
 552	sp->cnt = 0;
 553	sp->id = seq_id;
 554	return sp;
 555}
 556
 557/**
 558 * fc_seq_start_next_locked() - Allocate a new sequence on the same
 559 *				exchange as the supplied sequence
 560 * @sp: The sequence/exchange to get a new sequence for
 561 */
 562static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
 563{
 564	struct fc_exch *ep = fc_seq_exch(sp);
 565
 566	sp = fc_seq_alloc(ep, ep->seq_id++);
 567	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
 568		    ep->f_ctl, sp->id);
 569	return sp;
 570}
 571
 572/**
 573 * fc_seq_start_next() - Lock the exchange and get a new sequence
 574 *			 for a given sequence/exchange pair
 575 * @sp: The sequence/exchange to get a new exchange for
 576 */
 577struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
 578{
 579	struct fc_exch *ep = fc_seq_exch(sp);
 580
 581	spin_lock_bh(&ep->ex_lock);
 582	sp = fc_seq_start_next_locked(sp);
 583	spin_unlock_bh(&ep->ex_lock);
 584
 585	return sp;
 586}
 587EXPORT_SYMBOL(fc_seq_start_next);
 588
 589/*
 590 * Set the response handler for the exchange associated with a sequence.
 591 *
 592 * Note: May sleep if invoked from outside a response handler.
 593 */
 594void fc_seq_set_resp(struct fc_seq *sp,
 595		     void (*resp)(struct fc_seq *, struct fc_frame *, void *),
 596		     void *arg)
 597{
 598	struct fc_exch *ep = fc_seq_exch(sp);
 599	DEFINE_WAIT(wait);
 600
 601	spin_lock_bh(&ep->ex_lock);
 602	while (ep->resp_active && ep->resp_task != current) {
 603		prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
 604		spin_unlock_bh(&ep->ex_lock);
 605
 606		schedule();
 607
 608		spin_lock_bh(&ep->ex_lock);
 609	}
 610	finish_wait(&ep->resp_wq, &wait);
 611	ep->resp = resp;
 612	ep->arg = arg;
 613	spin_unlock_bh(&ep->ex_lock);
 614}
 615EXPORT_SYMBOL(fc_seq_set_resp);
 616
 617/**
 618 * fc_exch_abort_locked() - Abort an exchange
 619 * @ep:	The exchange to be aborted
 620 * @timer_msec: The period of time to wait before aborting
 621 *
 622 * Abort an exchange and sequence. Generally called because of a
 623 * exchange timeout or an abort from the upper layer.
 624 *
 625 * A timer_msec can be specified for abort timeout, if non-zero
 626 * timer_msec value is specified then exchange resp handler
 627 * will be called with timeout error if no response to abort.
 628 *
 629 * Locking notes:  Called with exch lock held
 630 *
 631 * Return value: 0 on success else error code
 632 */
 633static int fc_exch_abort_locked(struct fc_exch *ep,
 634				unsigned int timer_msec)
 635{
 636	struct fc_seq *sp;
 637	struct fc_frame *fp;
 638	int error;
 639
 640	FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
 641	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
 642	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
 643		FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
 644			    ep->esb_stat, ep->state);
 645		return -ENXIO;
 646	}
 647
 648	/*
 649	 * Send the abort on a new sequence if possible.
 650	 */
 651	sp = fc_seq_start_next_locked(&ep->seq);
 652	if (!sp)
 653		return -ENOMEM;
 654
 655	if (timer_msec)
 656		fc_exch_timer_set_locked(ep, timer_msec);
 657
 658	if (ep->sid) {
 659		/*
 660		 * Send an abort for the sequence that timed out.
 661		 */
 662		fp = fc_frame_alloc(ep->lp, 0);
 663		if (fp) {
 664			ep->esb_stat |= ESB_ST_SEQ_INIT;
 665			fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
 666				       FC_TYPE_BLS, FC_FC_END_SEQ |
 667				       FC_FC_SEQ_INIT, 0);
 668			error = fc_seq_send_locked(ep->lp, sp, fp);
 669		} else {
 670			error = -ENOBUFS;
 671		}
 672	} else {
 673		/*
 674		 * If not logged into the fabric, don't send ABTS but leave
 675		 * sequence active until next timeout.
 676		 */
 677		error = 0;
 678	}
 679	ep->esb_stat |= ESB_ST_ABNORMAL;
 680	return error;
 681}
 682
 683/**
 684 * fc_seq_exch_abort() - Abort an exchange and sequence
 685 * @req_sp:	The sequence to be aborted
 686 * @timer_msec: The period of time to wait before aborting
 687 *
 688 * Generally called because of a timeout or an abort from the upper layer.
 689 *
 690 * Return value: 0 on success else error code
 691 */
 692int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
 693{
 694	struct fc_exch *ep;
 695	int error;
 696
 697	ep = fc_seq_exch(req_sp);
 698	spin_lock_bh(&ep->ex_lock);
 699	error = fc_exch_abort_locked(ep, timer_msec);
 700	spin_unlock_bh(&ep->ex_lock);
 701	return error;
 702}
 703
 704/**
 705 * fc_invoke_resp() - invoke ep->resp()
 706 * @ep:	   The exchange to be operated on
 707 * @fp:	   The frame pointer to pass through to ->resp()
 708 * @sp:	   The sequence pointer to pass through to ->resp()
 709 *
 710 * Notes:
 711 * It is assumed that after initialization finished (this means the
 712 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
 713 * modified only via fc_seq_set_resp(). This guarantees that none of these
 714 * two variables changes if ep->resp_active > 0.
 715 *
 716 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
 717 * this function is invoked, the first spin_lock_bh() call in this function
 718 * will wait until fc_seq_set_resp() has finished modifying these variables.
 719 *
 720 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
 721 * ep->resp() won't be invoked after fc_exch_done() has returned.
 722 *
 723 * The response handler itself may invoke fc_exch_done(), which will clear the
 724 * ep->resp pointer.
 725 *
 726 * Return value:
 727 * Returns true if and only if ep->resp has been invoked.
 728 */
 729static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
 730			   struct fc_frame *fp)
 731{
 732	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
 733	void *arg;
 734	bool res = false;
 735
 736	spin_lock_bh(&ep->ex_lock);
 737	ep->resp_active++;
 738	if (ep->resp_task != current)
 739		ep->resp_task = !ep->resp_task ? current : NULL;
 740	resp = ep->resp;
 741	arg = ep->arg;
 742	spin_unlock_bh(&ep->ex_lock);
 743
 744	if (resp) {
 745		resp(sp, fp, arg);
 746		res = true;
 747	}
 748
 749	spin_lock_bh(&ep->ex_lock);
 750	if (--ep->resp_active == 0)
 751		ep->resp_task = NULL;
 752	spin_unlock_bh(&ep->ex_lock);
 753
 754	if (ep->resp_active == 0)
 755		wake_up(&ep->resp_wq);
 756
 757	return res;
 758}
 759
 760/**
 761 * fc_exch_timeout() - Handle exchange timer expiration
 762 * @work: The work_struct identifying the exchange that timed out
 763 */
 764static void fc_exch_timeout(struct work_struct *work)
 765{
 766	struct fc_exch *ep = container_of(work, struct fc_exch,
 767					  timeout_work.work);
 768	struct fc_seq *sp = &ep->seq;
 769	u32 e_stat;
 770	int rc = 1;
 771
 772	FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
 773
 774	spin_lock_bh(&ep->ex_lock);
 775	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 776		goto unlock;
 777
 778	e_stat = ep->esb_stat;
 779	if (e_stat & ESB_ST_COMPLETE) {
 780		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
 781		spin_unlock_bh(&ep->ex_lock);
 782		if (e_stat & ESB_ST_REC_QUAL)
 783			fc_exch_rrq(ep);
 784		goto done;
 785	} else {
 786		if (e_stat & ESB_ST_ABNORMAL)
 787			rc = fc_exch_done_locked(ep);
 788		spin_unlock_bh(&ep->ex_lock);
 789		if (!rc)
 790			fc_exch_delete(ep);
 791		fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
 792		fc_seq_set_resp(sp, NULL, ep->arg);
 793		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
 794		goto done;
 795	}
 796unlock:
 797	spin_unlock_bh(&ep->ex_lock);
 798done:
 799	/*
 800	 * This release matches the hold taken when the timer was set.
 801	 */
 802	fc_exch_release(ep);
 803}
 804
 805/**
 806 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
 807 * @lport: The local port that the exchange is for
 808 * @mp:	   The exchange manager that will allocate the exchange
 809 *
 810 * Returns pointer to allocated fc_exch with exch lock held.
 811 */
 812static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
 813					struct fc_exch_mgr *mp)
 814{
 815	struct fc_exch *ep;
 816	unsigned int cpu;
 817	u16 index;
 818	struct fc_exch_pool *pool;
 819
 820	/* allocate memory for exchange */
 821	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
 822	if (!ep) {
 823		atomic_inc(&mp->stats.no_free_exch);
 824		goto out;
 825	}
 826	memset(ep, 0, sizeof(*ep));
 827
 828	cpu = raw_smp_processor_id();
 829	pool = per_cpu_ptr(mp->pool, cpu);
 830	spin_lock_bh(&pool->lock);
 
 831
 832	/* peek cache of free slot */
 833	if (pool->left != FC_XID_UNKNOWN) {
 834		if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
 835			index = pool->left;
 836			pool->left = FC_XID_UNKNOWN;
 837			goto hit;
 838		}
 839	}
 840	if (pool->right != FC_XID_UNKNOWN) {
 841		if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
 842			index = pool->right;
 843			pool->right = FC_XID_UNKNOWN;
 844			goto hit;
 845		}
 846	}
 847
 848	index = pool->next_index;
 849	/* allocate new exch from pool */
 850	while (fc_exch_ptr_get(pool, index)) {
 851		index = index == mp->pool_max_index ? 0 : index + 1;
 852		if (index == pool->next_index)
 853			goto err;
 854	}
 855	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
 856hit:
 857	fc_exch_hold(ep);	/* hold for exch in mp */
 858	spin_lock_init(&ep->ex_lock);
 859	/*
 860	 * Hold exch lock for caller to prevent fc_exch_reset()
 861	 * from releasing exch	while fc_exch_alloc() caller is
 862	 * still working on exch.
 863	 */
 864	spin_lock_bh(&ep->ex_lock);
 865
 866	fc_exch_ptr_set(pool, index, ep);
 867	list_add_tail(&ep->ex_list, &pool->ex_list);
 868	fc_seq_alloc(ep, ep->seq_id++);
 869	pool->total_exches++;
 870	spin_unlock_bh(&pool->lock);
 871
 872	/*
 873	 *  update exchange
 874	 */
 875	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
 876	ep->em = mp;
 877	ep->pool = pool;
 878	ep->lp = lport;
 879	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
 880	ep->rxid = FC_XID_UNKNOWN;
 881	ep->class = mp->class;
 882	ep->resp_active = 0;
 883	init_waitqueue_head(&ep->resp_wq);
 884	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
 885out:
 886	return ep;
 887err:
 888	spin_unlock_bh(&pool->lock);
 889	atomic_inc(&mp->stats.no_free_exch_xid);
 890	mempool_free(ep, mp->ep_pool);
 891	return NULL;
 892}
 893
 894/**
 895 * fc_exch_alloc() - Allocate an exchange from an EM on a
 896 *		     local port's list of EMs.
 897 * @lport: The local port that will own the exchange
 898 * @fp:	   The FC frame that the exchange will be for
 899 *
 900 * This function walks the list of exchange manager(EM)
 901 * anchors to select an EM for a new exchange allocation. The
 902 * EM is selected when a NULL match function pointer is encountered
 903 * or when a call to a match function returns true.
 904 */
 905static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
 906				     struct fc_frame *fp)
 907{
 908	struct fc_exch_mgr_anchor *ema;
 909	struct fc_exch *ep;
 910
 911	list_for_each_entry(ema, &lport->ema_list, ema_list) {
 912		if (!ema->match || ema->match(fp)) {
 913			ep = fc_exch_em_alloc(lport, ema->mp);
 914			if (ep)
 915				return ep;
 916		}
 917	}
 918	return NULL;
 919}
 920
 921/**
 922 * fc_exch_find() - Lookup and hold an exchange
 923 * @mp:	 The exchange manager to lookup the exchange from
 924 * @xid: The XID of the exchange to look up
 925 */
 926static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
 927{
 928	struct fc_lport *lport = mp->lport;
 929	struct fc_exch_pool *pool;
 930	struct fc_exch *ep = NULL;
 931	u16 cpu = xid & fc_cpu_mask;
 932
 933	if (xid == FC_XID_UNKNOWN)
 934		return NULL;
 935
 936	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 937		pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
 938		       lport->host->host_no, lport->port_id, xid, cpu);
 939		return NULL;
 940	}
 941
 942	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
 943		pool = per_cpu_ptr(mp->pool, cpu);
 944		spin_lock_bh(&pool->lock);
 945		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
 946		if (ep == &fc_quarantine_exch) {
 947			FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
 948			ep = NULL;
 949		}
 950		if (ep) {
 951			WARN_ON(ep->xid != xid);
 952			fc_exch_hold(ep);
 953		}
 954		spin_unlock_bh(&pool->lock);
 955	}
 956	return ep;
 957}
 958
 959
 960/**
 961 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
 962 *		    the memory allocated for the related objects may be freed.
 963 * @sp: The sequence that has completed
 964 *
 965 * Note: May sleep if invoked from outside a response handler.
 966 */
 967void fc_exch_done(struct fc_seq *sp)
 968{
 969	struct fc_exch *ep = fc_seq_exch(sp);
 970	int rc;
 971
 972	spin_lock_bh(&ep->ex_lock);
 973	rc = fc_exch_done_locked(ep);
 974	spin_unlock_bh(&ep->ex_lock);
 975
 976	fc_seq_set_resp(sp, NULL, ep->arg);
 977	if (!rc)
 978		fc_exch_delete(ep);
 979}
 980EXPORT_SYMBOL(fc_exch_done);
 981
 982/**
 983 * fc_exch_resp() - Allocate a new exchange for a response frame
 984 * @lport: The local port that the exchange was for
 985 * @mp:	   The exchange manager to allocate the exchange from
 986 * @fp:	   The response frame
 987 *
 988 * Sets the responder ID in the frame header.
 989 */
 990static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
 991				    struct fc_exch_mgr *mp,
 992				    struct fc_frame *fp)
 993{
 994	struct fc_exch *ep;
 995	struct fc_frame_header *fh;
 996
 997	ep = fc_exch_alloc(lport, fp);
 998	if (ep) {
 999		ep->class = fc_frame_class(fp);
1000
1001		/*
1002		 * Set EX_CTX indicating we're responding on this exchange.
1003		 */
1004		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
1005		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
1006		fh = fc_frame_header_get(fp);
1007		ep->sid = ntoh24(fh->fh_d_id);
1008		ep->did = ntoh24(fh->fh_s_id);
1009		ep->oid = ep->did;
1010
1011		/*
1012		 * Allocated exchange has placed the XID in the
1013		 * originator field. Move it to the responder field,
1014		 * and set the originator XID from the frame.
1015		 */
1016		ep->rxid = ep->xid;
1017		ep->oxid = ntohs(fh->fh_ox_id);
1018		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1019		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1020			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1021
1022		fc_exch_hold(ep);	/* hold for caller */
1023		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
1024	}
1025	return ep;
1026}
1027
1028/**
1029 * fc_seq_lookup_recip() - Find a sequence where the other end
1030 *			   originated the sequence
1031 * @lport: The local port that the frame was sent to
1032 * @mp:	   The Exchange Manager to lookup the exchange from
1033 * @fp:	   The frame associated with the sequence we're looking for
1034 *
1035 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1036 * on the ep that should be released by the caller.
1037 */
1038static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1039						 struct fc_exch_mgr *mp,
1040						 struct fc_frame *fp)
1041{
1042	struct fc_frame_header *fh = fc_frame_header_get(fp);
1043	struct fc_exch *ep = NULL;
1044	struct fc_seq *sp = NULL;
1045	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1046	u32 f_ctl;
1047	u16 xid;
1048
1049	f_ctl = ntoh24(fh->fh_f_ctl);
1050	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1051
1052	/*
1053	 * Lookup or create the exchange if we will be creating the sequence.
1054	 */
1055	if (f_ctl & FC_FC_EX_CTX) {
1056		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
1057		ep = fc_exch_find(mp, xid);
1058		if (!ep) {
1059			atomic_inc(&mp->stats.xid_not_found);
1060			reject = FC_RJT_OX_ID;
1061			goto out;
1062		}
1063		if (ep->rxid == FC_XID_UNKNOWN)
1064			ep->rxid = ntohs(fh->fh_rx_id);
1065		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1066			reject = FC_RJT_OX_ID;
1067			goto rel;
1068		}
1069	} else {
1070		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
1071
1072		/*
1073		 * Special case for MDS issuing an ELS TEST with a
1074		 * bad rxid of 0.
1075		 * XXX take this out once we do the proper reject.
1076		 */
1077		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1078		    fc_frame_payload_op(fp) == ELS_TEST) {
1079			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1080			xid = FC_XID_UNKNOWN;
1081		}
1082
1083		/*
1084		 * new sequence - find the exchange
1085		 */
1086		ep = fc_exch_find(mp, xid);
1087		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1088			if (ep) {
1089				atomic_inc(&mp->stats.xid_busy);
1090				reject = FC_RJT_RX_ID;
1091				goto rel;
1092			}
1093			ep = fc_exch_resp(lport, mp, fp);
1094			if (!ep) {
1095				reject = FC_RJT_EXCH_EST;	/* XXX */
1096				goto out;
1097			}
1098			xid = ep->xid;	/* get our XID */
1099		} else if (!ep) {
1100			atomic_inc(&mp->stats.xid_not_found);
1101			reject = FC_RJT_RX_ID;	/* XID not found */
1102			goto out;
1103		}
1104	}
1105
1106	spin_lock_bh(&ep->ex_lock);
1107	/*
1108	 * At this point, we have the exchange held.
1109	 * Find or create the sequence.
1110	 */
1111	if (fc_sof_is_init(fr_sof(fp))) {
1112		sp = &ep->seq;
1113		sp->ssb_stat |= SSB_ST_RESP;
1114		sp->id = fh->fh_seq_id;
1115	} else {
1116		sp = &ep->seq;
1117		if (sp->id != fh->fh_seq_id) {
1118			atomic_inc(&mp->stats.seq_not_found);
1119			if (f_ctl & FC_FC_END_SEQ) {
1120				/*
1121				 * Update sequence_id based on incoming last
1122				 * frame of sequence exchange. This is needed
1123				 * for FC target where DDP has been used
1124				 * on target where, stack is indicated only
1125				 * about last frame's (payload _header) header.
1126				 * Whereas "seq_id" which is part of
1127				 * frame_header is allocated by initiator
1128				 * which is totally different from "seq_id"
1129				 * allocated when XFER_RDY was sent by target.
1130				 * To avoid false -ve which results into not
1131				 * sending RSP, hence write request on other
1132				 * end never finishes.
1133				 */
1134				sp->ssb_stat |= SSB_ST_RESP;
1135				sp->id = fh->fh_seq_id;
1136			} else {
1137				spin_unlock_bh(&ep->ex_lock);
1138
1139				/* sequence/exch should exist */
1140				reject = FC_RJT_SEQ_ID;
1141				goto rel;
1142			}
1143		}
1144	}
1145	WARN_ON(ep != fc_seq_exch(sp));
1146
1147	if (f_ctl & FC_FC_SEQ_INIT)
1148		ep->esb_stat |= ESB_ST_SEQ_INIT;
1149	spin_unlock_bh(&ep->ex_lock);
1150
1151	fr_seq(fp) = sp;
1152out:
1153	return reject;
1154rel:
1155	fc_exch_done(&ep->seq);
1156	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1157	return reject;
1158}
1159
1160/**
1161 * fc_seq_lookup_orig() - Find a sequence where this end
1162 *			  originated the sequence
1163 * @mp:	   The Exchange Manager to lookup the exchange from
1164 * @fp:	   The frame associated with the sequence we're looking for
1165 *
1166 * Does not hold the sequence for the caller.
1167 */
1168static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1169					 struct fc_frame *fp)
1170{
1171	struct fc_frame_header *fh = fc_frame_header_get(fp);
1172	struct fc_exch *ep;
1173	struct fc_seq *sp = NULL;
1174	u32 f_ctl;
1175	u16 xid;
1176
1177	f_ctl = ntoh24(fh->fh_f_ctl);
1178	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1179	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1180	ep = fc_exch_find(mp, xid);
1181	if (!ep)
1182		return NULL;
1183	if (ep->seq.id == fh->fh_seq_id) {
1184		/*
1185		 * Save the RX_ID if we didn't previously know it.
1186		 */
1187		sp = &ep->seq;
1188		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1189		    ep->rxid == FC_XID_UNKNOWN) {
1190			ep->rxid = ntohs(fh->fh_rx_id);
1191		}
1192	}
1193	fc_exch_release(ep);
1194	return sp;
1195}
1196
1197/**
1198 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1199 * @ep:	     The exchange to set the addresses for
1200 * @orig_id: The originator's ID
1201 * @resp_id: The responder's ID
1202 *
1203 * Note this must be done before the first sequence of the exchange is sent.
1204 */
1205static void fc_exch_set_addr(struct fc_exch *ep,
1206			     u32 orig_id, u32 resp_id)
1207{
1208	ep->oid = orig_id;
1209	if (ep->esb_stat & ESB_ST_RESP) {
1210		ep->sid = resp_id;
1211		ep->did = orig_id;
1212	} else {
1213		ep->sid = orig_id;
1214		ep->did = resp_id;
1215	}
1216}
1217
1218/**
1219 * fc_seq_els_rsp_send() - Send an ELS response using information from
1220 *			   the existing sequence/exchange.
1221 * @fp:	      The received frame
1222 * @els_cmd:  The ELS command to be sent
1223 * @els_data: The ELS data to be sent
1224 *
1225 * The received frame is not freed.
1226 */
1227void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1228			 struct fc_seq_els_data *els_data)
1229{
1230	switch (els_cmd) {
1231	case ELS_LS_RJT:
1232		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1233		break;
1234	case ELS_LS_ACC:
1235		fc_seq_ls_acc(fp);
1236		break;
1237	case ELS_RRQ:
1238		fc_exch_els_rrq(fp);
1239		break;
1240	case ELS_REC:
1241		fc_exch_els_rec(fp);
1242		break;
1243	default:
1244		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1245	}
1246}
1247EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1248
1249/**
1250 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1251 * @sp:	     The sequence that is to be sent
1252 * @fp:	     The frame that will be sent on the sequence
1253 * @rctl:    The R_CTL information to be sent
1254 * @fh_type: The frame header type
1255 */
1256static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1257			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1258{
1259	u32 f_ctl;
1260	struct fc_exch *ep = fc_seq_exch(sp);
1261
1262	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1263	f_ctl |= ep->f_ctl;
1264	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1265	fc_seq_send_locked(ep->lp, sp, fp);
1266}
1267
1268/**
1269 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1270 * @sp:	   The sequence to send the ACK on
1271 * @rx_fp: The received frame that is being acknoledged
1272 *
1273 * Send ACK_1 (or equiv.) indicating we received something.
1274 */
1275static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1276{
1277	struct fc_frame *fp;
1278	struct fc_frame_header *rx_fh;
1279	struct fc_frame_header *fh;
1280	struct fc_exch *ep = fc_seq_exch(sp);
1281	struct fc_lport *lport = ep->lp;
1282	unsigned int f_ctl;
1283
1284	/*
1285	 * Don't send ACKs for class 3.
1286	 */
1287	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1288		fp = fc_frame_alloc(lport, 0);
1289		if (!fp) {
1290			FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1291			return;
1292		}
1293
1294		fh = fc_frame_header_get(fp);
1295		fh->fh_r_ctl = FC_RCTL_ACK_1;
1296		fh->fh_type = FC_TYPE_BLS;
1297
1298		/*
1299		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1300		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1301		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1302		 * Last ACK uses bits 7-6 (continue sequence),
1303		 * bits 5-4 are meaningful (what kind of ACK to use).
1304		 */
1305		rx_fh = fc_frame_header_get(rx_fp);
1306		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1307		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1308			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1309			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1310			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1311		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1312		hton24(fh->fh_f_ctl, f_ctl);
1313
1314		fc_exch_setup_hdr(ep, fp, f_ctl);
1315		fh->fh_seq_id = rx_fh->fh_seq_id;
1316		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1317		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1318
1319		fr_sof(fp) = fr_sof(rx_fp);
1320		if (f_ctl & FC_FC_END_SEQ)
1321			fr_eof(fp) = FC_EOF_T;
1322		else
1323			fr_eof(fp) = FC_EOF_N;
1324
1325		lport->tt.frame_send(lport, fp);
1326	}
1327}
1328
1329/**
1330 * fc_exch_send_ba_rjt() - Send BLS Reject
1331 * @rx_fp:  The frame being rejected
1332 * @reason: The reason the frame is being rejected
1333 * @explan: The explanation for the rejection
1334 *
1335 * This is for rejecting BA_ABTS only.
1336 */
1337static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1338				enum fc_ba_rjt_reason reason,
1339				enum fc_ba_rjt_explan explan)
1340{
1341	struct fc_frame *fp;
1342	struct fc_frame_header *rx_fh;
1343	struct fc_frame_header *fh;
1344	struct fc_ba_rjt *rp;
1345	struct fc_seq *sp;
1346	struct fc_lport *lport;
1347	unsigned int f_ctl;
1348
1349	lport = fr_dev(rx_fp);
1350	sp = fr_seq(rx_fp);
1351	fp = fc_frame_alloc(lport, sizeof(*rp));
1352	if (!fp) {
1353		FC_EXCH_DBG(fc_seq_exch(sp),
1354			     "Drop BA_RJT request, out of memory\n");
1355		return;
1356	}
1357	fh = fc_frame_header_get(fp);
1358	rx_fh = fc_frame_header_get(rx_fp);
1359
1360	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1361
1362	rp = fc_frame_payload_get(fp, sizeof(*rp));
1363	rp->br_reason = reason;
1364	rp->br_explan = explan;
1365
1366	/*
1367	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1368	 */
1369	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1370	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1371	fh->fh_ox_id = rx_fh->fh_ox_id;
1372	fh->fh_rx_id = rx_fh->fh_rx_id;
1373	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1374	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1375	fh->fh_type = FC_TYPE_BLS;
1376
1377	/*
1378	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1379	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1380	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1381	 * Last ACK uses bits 7-6 (continue sequence),
1382	 * bits 5-4 are meaningful (what kind of ACK to use).
1383	 * Always set LAST_SEQ, END_SEQ.
1384	 */
1385	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1386	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1387		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1388		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1389	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1390	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1391	f_ctl &= ~FC_FC_FIRST_SEQ;
1392	hton24(fh->fh_f_ctl, f_ctl);
1393
1394	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1395	fr_eof(fp) = FC_EOF_T;
1396	if (fc_sof_needs_ack(fr_sof(fp)))
1397		fr_eof(fp) = FC_EOF_N;
1398
1399	lport->tt.frame_send(lport, fp);
1400}
1401
1402/**
1403 * fc_exch_recv_abts() - Handle an incoming ABTS
1404 * @ep:	   The exchange the abort was on
1405 * @rx_fp: The ABTS frame
1406 *
1407 * This would be for target mode usually, but could be due to lost
1408 * FCP transfer ready, confirm or RRQ. We always handle this as an
1409 * exchange abort, ignoring the parameter.
1410 */
1411static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1412{
1413	struct fc_frame *fp;
1414	struct fc_ba_acc *ap;
1415	struct fc_frame_header *fh;
1416	struct fc_seq *sp;
1417
1418	if (!ep)
1419		goto reject;
1420
1421	FC_EXCH_DBG(ep, "exch: ABTS received\n");
1422	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1423	if (!fp) {
1424		FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1425		goto free;
1426	}
1427
1428	spin_lock_bh(&ep->ex_lock);
1429	if (ep->esb_stat & ESB_ST_COMPLETE) {
1430		spin_unlock_bh(&ep->ex_lock);
1431		FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1432		fc_frame_free(fp);
1433		goto reject;
1434	}
1435	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1436		ep->esb_stat |= ESB_ST_REC_QUAL;
1437		fc_exch_hold(ep);		/* hold for REC_QUAL */
1438	}
1439	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1440	fh = fc_frame_header_get(fp);
1441	ap = fc_frame_payload_get(fp, sizeof(*ap));
1442	memset(ap, 0, sizeof(*ap));
1443	sp = &ep->seq;
1444	ap->ba_high_seq_cnt = htons(0xffff);
1445	if (sp->ssb_stat & SSB_ST_RESP) {
1446		ap->ba_seq_id = sp->id;
1447		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1448		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1449		ap->ba_low_seq_cnt = htons(sp->cnt);
1450	}
1451	sp = fc_seq_start_next_locked(sp);
1452	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1453	ep->esb_stat |= ESB_ST_ABNORMAL;
1454	spin_unlock_bh(&ep->ex_lock);
1455
1456free:
1457	fc_frame_free(rx_fp);
1458	return;
1459
1460reject:
1461	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1462	goto free;
1463}
1464
1465/**
1466 * fc_seq_assign() - Assign exchange and sequence for incoming request
1467 * @lport: The local port that received the request
1468 * @fp:    The request frame
1469 *
1470 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1471 * A reference will be held on the exchange/sequence for the caller, which
1472 * must call fc_seq_release().
1473 */
1474struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1475{
1476	struct fc_exch_mgr_anchor *ema;
1477
1478	WARN_ON(lport != fr_dev(fp));
1479	WARN_ON(fr_seq(fp));
1480	fr_seq(fp) = NULL;
1481
1482	list_for_each_entry(ema, &lport->ema_list, ema_list)
1483		if ((!ema->match || ema->match(fp)) &&
1484		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1485			break;
1486	return fr_seq(fp);
1487}
1488EXPORT_SYMBOL(fc_seq_assign);
1489
1490/**
1491 * fc_seq_release() - Release the hold
1492 * @sp:    The sequence.
1493 */
1494void fc_seq_release(struct fc_seq *sp)
1495{
1496	fc_exch_release(fc_seq_exch(sp));
1497}
1498EXPORT_SYMBOL(fc_seq_release);
1499
1500/**
1501 * fc_exch_recv_req() - Handler for an incoming request
1502 * @lport: The local port that received the request
1503 * @mp:	   The EM that the exchange is on
1504 * @fp:	   The request frame
1505 *
1506 * This is used when the other end is originating the exchange
1507 * and the sequence.
1508 */
1509static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1510			     struct fc_frame *fp)
1511{
1512	struct fc_frame_header *fh = fc_frame_header_get(fp);
1513	struct fc_seq *sp = NULL;
1514	struct fc_exch *ep = NULL;
1515	enum fc_pf_rjt_reason reject;
1516
1517	/* We can have the wrong fc_lport at this point with NPIV, which is a
1518	 * problem now that we know a new exchange needs to be allocated
1519	 */
1520	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1521	if (!lport) {
1522		fc_frame_free(fp);
1523		return;
1524	}
1525	fr_dev(fp) = lport;
1526
1527	BUG_ON(fr_seq(fp));		/* XXX remove later */
1528
1529	/*
1530	 * If the RX_ID is 0xffff, don't allocate an exchange.
1531	 * The upper-level protocol may request one later, if needed.
1532	 */
1533	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1534		return fc_lport_recv(lport, fp);
1535
1536	reject = fc_seq_lookup_recip(lport, mp, fp);
1537	if (reject == FC_RJT_NONE) {
1538		sp = fr_seq(fp);	/* sequence will be held */
1539		ep = fc_seq_exch(sp);
1540		fc_seq_send_ack(sp, fp);
1541		ep->encaps = fr_encaps(fp);
1542
1543		/*
1544		 * Call the receive function.
1545		 *
1546		 * The receive function may allocate a new sequence
1547		 * over the old one, so we shouldn't change the
1548		 * sequence after this.
1549		 *
1550		 * The frame will be freed by the receive function.
1551		 * If new exch resp handler is valid then call that
1552		 * first.
1553		 */
1554		if (!fc_invoke_resp(ep, sp, fp))
1555			fc_lport_recv(lport, fp);
1556		fc_exch_release(ep);	/* release from lookup */
1557	} else {
1558		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1559			     reject);
1560		fc_frame_free(fp);
1561	}
1562}
1563
1564/**
1565 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1566 *			     end is the originator of the sequence that is a
1567 *			     response to our initial exchange
1568 * @mp: The EM that the exchange is on
1569 * @fp: The response frame
1570 */
1571static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1572{
1573	struct fc_frame_header *fh = fc_frame_header_get(fp);
1574	struct fc_seq *sp;
1575	struct fc_exch *ep;
1576	enum fc_sof sof;
1577	u32 f_ctl;
1578	int rc;
1579
1580	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1581	if (!ep) {
1582		atomic_inc(&mp->stats.xid_not_found);
1583		goto out;
1584	}
1585	if (ep->esb_stat & ESB_ST_COMPLETE) {
1586		atomic_inc(&mp->stats.xid_not_found);
1587		goto rel;
1588	}
1589	if (ep->rxid == FC_XID_UNKNOWN)
1590		ep->rxid = ntohs(fh->fh_rx_id);
1591	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1592		atomic_inc(&mp->stats.xid_not_found);
1593		goto rel;
1594	}
1595	if (ep->did != ntoh24(fh->fh_s_id) &&
1596	    ep->did != FC_FID_FLOGI) {
1597		atomic_inc(&mp->stats.xid_not_found);
1598		goto rel;
1599	}
1600	sof = fr_sof(fp);
1601	sp = &ep->seq;
1602	if (fc_sof_is_init(sof)) {
1603		sp->ssb_stat |= SSB_ST_RESP;
1604		sp->id = fh->fh_seq_id;
1605	}
1606
1607	f_ctl = ntoh24(fh->fh_f_ctl);
1608	fr_seq(fp) = sp;
1609
1610	spin_lock_bh(&ep->ex_lock);
1611	if (f_ctl & FC_FC_SEQ_INIT)
1612		ep->esb_stat |= ESB_ST_SEQ_INIT;
1613	spin_unlock_bh(&ep->ex_lock);
1614
1615	if (fc_sof_needs_ack(sof))
1616		fc_seq_send_ack(sp, fp);
1617
1618	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1619	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1620	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1621		spin_lock_bh(&ep->ex_lock);
1622		rc = fc_exch_done_locked(ep);
1623		WARN_ON(fc_seq_exch(sp) != ep);
1624		spin_unlock_bh(&ep->ex_lock);
1625		if (!rc) {
1626			fc_exch_delete(ep);
1627		} else {
1628			FC_EXCH_DBG(ep, "ep is completed already,"
1629					"hence skip calling the resp\n");
1630			goto skip_resp;
1631		}
1632	}
1633
1634	/*
1635	 * Call the receive function.
1636	 * The sequence is held (has a refcnt) for us,
1637	 * but not for the receive function.
1638	 *
1639	 * The receive function may allocate a new sequence
1640	 * over the old one, so we shouldn't change the
1641	 * sequence after this.
1642	 *
1643	 * The frame will be freed by the receive function.
1644	 * If new exch resp handler is valid then call that
1645	 * first.
1646	 */
1647	if (!fc_invoke_resp(ep, sp, fp))
1648		fc_frame_free(fp);
1649
1650skip_resp:
1651	fc_exch_release(ep);
1652	return;
1653rel:
1654	fc_exch_release(ep);
1655out:
1656	fc_frame_free(fp);
1657}
1658
1659/**
1660 * fc_exch_recv_resp() - Handler for a sequence where other end is
1661 *			 responding to our sequence
1662 * @mp: The EM that the exchange is on
1663 * @fp: The response frame
1664 */
1665static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1666{
1667	struct fc_seq *sp;
1668
1669	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1670
1671	if (!sp)
1672		atomic_inc(&mp->stats.xid_not_found);
1673	else
1674		atomic_inc(&mp->stats.non_bls_resp);
1675
1676	fc_frame_free(fp);
1677}
1678
1679/**
1680 * fc_exch_abts_resp() - Handler for a response to an ABT
1681 * @ep: The exchange that the frame is on
1682 * @fp: The response frame
1683 *
1684 * This response would be to an ABTS cancelling an exchange or sequence.
1685 * The response can be either BA_ACC or BA_RJT
1686 */
1687static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1688{
1689	struct fc_frame_header *fh;
1690	struct fc_ba_acc *ap;
1691	struct fc_seq *sp;
1692	u16 low;
1693	u16 high;
1694	int rc = 1, has_rec = 0;
1695
1696	fh = fc_frame_header_get(fp);
1697	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1698		    fc_exch_rctl_name(fh->fh_r_ctl));
1699
1700	if (cancel_delayed_work_sync(&ep->timeout_work)) {
1701		FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1702		fc_exch_release(ep);	/* release from pending timer hold */
1703		return;
1704	}
1705
1706	spin_lock_bh(&ep->ex_lock);
1707	switch (fh->fh_r_ctl) {
1708	case FC_RCTL_BA_ACC:
1709		ap = fc_frame_payload_get(fp, sizeof(*ap));
1710		if (!ap)
1711			break;
1712
1713		/*
1714		 * Decide whether to establish a Recovery Qualifier.
1715		 * We do this if there is a non-empty SEQ_CNT range and
1716		 * SEQ_ID is the same as the one we aborted.
1717		 */
1718		low = ntohs(ap->ba_low_seq_cnt);
1719		high = ntohs(ap->ba_high_seq_cnt);
1720		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1721		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1722		     ap->ba_seq_id == ep->seq_id) && low != high) {
1723			ep->esb_stat |= ESB_ST_REC_QUAL;
1724			fc_exch_hold(ep);  /* hold for recovery qualifier */
1725			has_rec = 1;
1726		}
1727		break;
1728	case FC_RCTL_BA_RJT:
1729		break;
1730	default:
1731		break;
1732	}
1733
1734	/* do we need to do some other checks here. Can we reuse more of
1735	 * fc_exch_recv_seq_resp
1736	 */
1737	sp = &ep->seq;
1738	/*
1739	 * do we want to check END_SEQ as well as LAST_SEQ here?
1740	 */
1741	if (ep->fh_type != FC_TYPE_FCP &&
1742	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1743		rc = fc_exch_done_locked(ep);
1744	spin_unlock_bh(&ep->ex_lock);
1745
1746	fc_exch_hold(ep);
1747	if (!rc)
1748		fc_exch_delete(ep);
1749	if (!fc_invoke_resp(ep, sp, fp))
1750		fc_frame_free(fp);
1751	if (has_rec)
1752		fc_exch_timer_set(ep, ep->r_a_tov);
1753	fc_exch_release(ep);
1754}
1755
1756/**
1757 * fc_exch_recv_bls() - Handler for a BLS sequence
1758 * @mp: The EM that the exchange is on
1759 * @fp: The request frame
1760 *
1761 * The BLS frame is always a sequence initiated by the remote side.
1762 * We may be either the originator or recipient of the exchange.
1763 */
1764static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1765{
1766	struct fc_frame_header *fh;
1767	struct fc_exch *ep;
1768	u32 f_ctl;
1769
1770	fh = fc_frame_header_get(fp);
1771	f_ctl = ntoh24(fh->fh_f_ctl);
1772	fr_seq(fp) = NULL;
1773
1774	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1775			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1776	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1777		spin_lock_bh(&ep->ex_lock);
1778		ep->esb_stat |= ESB_ST_SEQ_INIT;
1779		spin_unlock_bh(&ep->ex_lock);
1780	}
1781	if (f_ctl & FC_FC_SEQ_CTX) {
1782		/*
1783		 * A response to a sequence we initiated.
1784		 * This should only be ACKs for class 2 or F.
1785		 */
1786		switch (fh->fh_r_ctl) {
1787		case FC_RCTL_ACK_1:
1788		case FC_RCTL_ACK_0:
1789			break;
1790		default:
1791			if (ep)
1792				FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1793					    fh->fh_r_ctl,
1794					    fc_exch_rctl_name(fh->fh_r_ctl));
1795			break;
1796		}
1797		fc_frame_free(fp);
1798	} else {
1799		switch (fh->fh_r_ctl) {
1800		case FC_RCTL_BA_RJT:
1801		case FC_RCTL_BA_ACC:
1802			if (ep)
1803				fc_exch_abts_resp(ep, fp);
1804			else
1805				fc_frame_free(fp);
1806			break;
1807		case FC_RCTL_BA_ABTS:
1808			if (ep)
1809				fc_exch_recv_abts(ep, fp);
1810			else
1811				fc_frame_free(fp);
1812			break;
1813		default:			/* ignore junk */
1814			fc_frame_free(fp);
1815			break;
1816		}
1817	}
1818	if (ep)
1819		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1820}
1821
1822/**
1823 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1824 * @rx_fp: The received frame, not freed here.
1825 *
1826 * If this fails due to allocation or transmit congestion, assume the
1827 * originator will repeat the sequence.
1828 */
1829static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1830{
1831	struct fc_lport *lport;
1832	struct fc_els_ls_acc *acc;
1833	struct fc_frame *fp;
1834	struct fc_seq *sp;
1835
1836	lport = fr_dev(rx_fp);
1837	sp = fr_seq(rx_fp);
1838	fp = fc_frame_alloc(lport, sizeof(*acc));
1839	if (!fp) {
1840		FC_EXCH_DBG(fc_seq_exch(sp),
1841			    "exch: drop LS_ACC, out of memory\n");
1842		return;
1843	}
1844	acc = fc_frame_payload_get(fp, sizeof(*acc));
1845	memset(acc, 0, sizeof(*acc));
1846	acc->la_cmd = ELS_LS_ACC;
1847	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1848	lport->tt.frame_send(lport, fp);
1849}
1850
1851/**
1852 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1853 * @rx_fp: The received frame, not freed here.
1854 * @reason: The reason the sequence is being rejected
1855 * @explan: The explanation for the rejection
1856 *
1857 * If this fails due to allocation or transmit congestion, assume the
1858 * originator will repeat the sequence.
1859 */
1860static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1861			  enum fc_els_rjt_explan explan)
1862{
1863	struct fc_lport *lport;
1864	struct fc_els_ls_rjt *rjt;
1865	struct fc_frame *fp;
1866	struct fc_seq *sp;
1867
1868	lport = fr_dev(rx_fp);
1869	sp = fr_seq(rx_fp);
1870	fp = fc_frame_alloc(lport, sizeof(*rjt));
1871	if (!fp) {
1872		FC_EXCH_DBG(fc_seq_exch(sp),
1873			    "exch: drop LS_ACC, out of memory\n");
1874		return;
1875	}
1876	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1877	memset(rjt, 0, sizeof(*rjt));
1878	rjt->er_cmd = ELS_LS_RJT;
1879	rjt->er_reason = reason;
1880	rjt->er_explan = explan;
1881	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1882	lport->tt.frame_send(lport, fp);
1883}
1884
1885/**
1886 * fc_exch_reset() - Reset an exchange
1887 * @ep: The exchange to be reset
1888 *
1889 * Note: May sleep if invoked from outside a response handler.
1890 */
1891static void fc_exch_reset(struct fc_exch *ep)
1892{
1893	struct fc_seq *sp;
1894	int rc = 1;
1895
1896	spin_lock_bh(&ep->ex_lock);
1897	ep->state |= FC_EX_RST_CLEANUP;
1898	fc_exch_timer_cancel(ep);
1899	if (ep->esb_stat & ESB_ST_REC_QUAL)
1900		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1901	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1902	sp = &ep->seq;
1903	rc = fc_exch_done_locked(ep);
1904	spin_unlock_bh(&ep->ex_lock);
1905
1906	fc_exch_hold(ep);
1907
1908	if (!rc) {
1909		fc_exch_delete(ep);
1910	} else {
1911		FC_EXCH_DBG(ep, "ep is completed already,"
1912				"hence skip calling the resp\n");
1913		goto skip_resp;
1914	}
1915
1916	fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1917skip_resp:
1918	fc_seq_set_resp(sp, NULL, ep->arg);
1919	fc_exch_release(ep);
1920}
1921
1922/**
1923 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1924 * @lport: The local port that the exchange pool is on
1925 * @pool:  The exchange pool to be reset
1926 * @sid:   The source ID
1927 * @did:   The destination ID
1928 *
1929 * Resets a per cpu exches pool, releasing all of its sequences
1930 * and exchanges. If sid is non-zero then reset only exchanges
1931 * we sourced from the local port's FID. If did is non-zero then
1932 * only reset exchanges destined for the local port's FID.
1933 */
1934static void fc_exch_pool_reset(struct fc_lport *lport,
1935			       struct fc_exch_pool *pool,
1936			       u32 sid, u32 did)
1937{
1938	struct fc_exch *ep;
1939	struct fc_exch *next;
1940
1941	spin_lock_bh(&pool->lock);
1942restart:
1943	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1944		if ((lport == ep->lp) &&
1945		    (sid == 0 || sid == ep->sid) &&
1946		    (did == 0 || did == ep->did)) {
1947			fc_exch_hold(ep);
1948			spin_unlock_bh(&pool->lock);
1949
1950			fc_exch_reset(ep);
1951
1952			fc_exch_release(ep);
1953			spin_lock_bh(&pool->lock);
1954
1955			/*
1956			 * must restart loop incase while lock
1957			 * was down multiple eps were released.
1958			 */
1959			goto restart;
1960		}
1961	}
1962	pool->next_index = 0;
1963	pool->left = FC_XID_UNKNOWN;
1964	pool->right = FC_XID_UNKNOWN;
1965	spin_unlock_bh(&pool->lock);
1966}
1967
1968/**
1969 * fc_exch_mgr_reset() - Reset all EMs of a local port
1970 * @lport: The local port whose EMs are to be reset
1971 * @sid:   The source ID
1972 * @did:   The destination ID
1973 *
1974 * Reset all EMs associated with a given local port. Release all
1975 * sequences and exchanges. If sid is non-zero then reset only the
1976 * exchanges sent from the local port's FID. If did is non-zero then
1977 * reset only exchanges destined for the local port's FID.
1978 */
1979void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1980{
1981	struct fc_exch_mgr_anchor *ema;
1982	unsigned int cpu;
1983
1984	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1985		for_each_possible_cpu(cpu)
1986			fc_exch_pool_reset(lport,
1987					   per_cpu_ptr(ema->mp->pool, cpu),
1988					   sid, did);
1989	}
1990}
1991EXPORT_SYMBOL(fc_exch_mgr_reset);
1992
1993/**
1994 * fc_exch_lookup() - find an exchange
1995 * @lport: The local port
1996 * @xid: The exchange ID
1997 *
1998 * Returns exchange pointer with hold for caller, or NULL if not found.
1999 */
2000static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
2001{
2002	struct fc_exch_mgr_anchor *ema;
2003
2004	list_for_each_entry(ema, &lport->ema_list, ema_list)
2005		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
2006			return fc_exch_find(ema->mp, xid);
2007	return NULL;
2008}
2009
2010/**
2011 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
2012 * @rfp: The REC frame, not freed here.
2013 *
2014 * Note that the requesting port may be different than the S_ID in the request.
2015 */
2016static void fc_exch_els_rec(struct fc_frame *rfp)
2017{
2018	struct fc_lport *lport;
2019	struct fc_frame *fp;
2020	struct fc_exch *ep;
2021	struct fc_els_rec *rp;
2022	struct fc_els_rec_acc *acc;
2023	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2024	enum fc_els_rjt_explan explan;
2025	u32 sid;
2026	u16 xid, rxid, oxid;
2027
2028	lport = fr_dev(rfp);
2029	rp = fc_frame_payload_get(rfp, sizeof(*rp));
2030	explan = ELS_EXPL_INV_LEN;
2031	if (!rp)
2032		goto reject;
2033	sid = ntoh24(rp->rec_s_id);
2034	rxid = ntohs(rp->rec_rx_id);
2035	oxid = ntohs(rp->rec_ox_id);
2036
2037	explan = ELS_EXPL_OXID_RXID;
2038	if (sid == fc_host_port_id(lport->host))
2039		xid = oxid;
2040	else
2041		xid = rxid;
2042	if (xid == FC_XID_UNKNOWN) {
2043		FC_LPORT_DBG(lport,
2044			     "REC request from %x: invalid rxid %x oxid %x\n",
2045			     sid, rxid, oxid);
2046		goto reject;
2047	}
2048	ep = fc_exch_lookup(lport, xid);
2049	if (!ep) {
2050		FC_LPORT_DBG(lport,
2051			     "REC request from %x: rxid %x oxid %x not found\n",
2052			     sid, rxid, oxid);
2053		goto reject;
2054	}
2055	FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2056		    sid, rxid, oxid);
2057	if (ep->oid != sid || oxid != ep->oxid)
2058		goto rel;
2059	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2060		goto rel;
2061	fp = fc_frame_alloc(lport, sizeof(*acc));
2062	if (!fp) {
2063		FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2064		goto out;
2065	}
2066
2067	acc = fc_frame_payload_get(fp, sizeof(*acc));
2068	memset(acc, 0, sizeof(*acc));
2069	acc->reca_cmd = ELS_LS_ACC;
2070	acc->reca_ox_id = rp->rec_ox_id;
2071	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2072	acc->reca_rx_id = htons(ep->rxid);
2073	if (ep->sid == ep->oid)
2074		hton24(acc->reca_rfid, ep->did);
2075	else
2076		hton24(acc->reca_rfid, ep->sid);
2077	acc->reca_fc4value = htonl(ep->seq.rec_data);
2078	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2079						 ESB_ST_SEQ_INIT |
2080						 ESB_ST_COMPLETE));
2081	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2082	lport->tt.frame_send(lport, fp);
2083out:
2084	fc_exch_release(ep);
2085	return;
2086
2087rel:
2088	fc_exch_release(ep);
2089reject:
2090	fc_seq_ls_rjt(rfp, reason, explan);
2091}
2092
2093/**
2094 * fc_exch_rrq_resp() - Handler for RRQ responses
2095 * @sp:	 The sequence that the RRQ is on
2096 * @fp:	 The RRQ frame
2097 * @arg: The exchange that the RRQ is on
2098 *
2099 * TODO: fix error handler.
2100 */
2101static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2102{
2103	struct fc_exch *aborted_ep = arg;
2104	unsigned int op;
2105
2106	if (IS_ERR(fp)) {
2107		int err = PTR_ERR(fp);
2108
2109		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2110			goto cleanup;
2111		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2112			    "frame error %d\n", err);
2113		return;
2114	}
2115
2116	op = fc_frame_payload_op(fp);
2117	fc_frame_free(fp);
2118
2119	switch (op) {
2120	case ELS_LS_RJT:
2121		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2122		fallthrough;
2123	case ELS_LS_ACC:
2124		goto cleanup;
2125	default:
2126		FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2127			    op);
2128		return;
2129	}
2130
2131cleanup:
2132	fc_exch_done(&aborted_ep->seq);
2133	/* drop hold for rec qual */
2134	fc_exch_release(aborted_ep);
2135}
2136
2137
2138/**
2139 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2140 * @lport:	The local port to send the frame on
2141 * @fp:		The frame to be sent
2142 * @resp:	The response handler for this request
2143 * @destructor: The destructor for the exchange
2144 * @arg:	The argument to be passed to the response handler
2145 * @timer_msec: The timeout period for the exchange
2146 *
2147 * The exchange response handler is set in this routine to resp()
2148 * function pointer. It can be called in two scenarios: if a timeout
2149 * occurs or if a response frame is received for the exchange. The
2150 * fc_frame pointer in response handler will also indicate timeout
2151 * as error using IS_ERR related macros.
2152 *
2153 * The exchange destructor handler is also set in this routine.
2154 * The destructor handler is invoked by EM layer when exchange
2155 * is about to free, this can be used by caller to free its
2156 * resources along with exchange free.
2157 *
2158 * The arg is passed back to resp and destructor handler.
2159 *
2160 * The timeout value (in msec) for an exchange is set if non zero
2161 * timer_msec argument is specified. The timer is canceled when
2162 * it fires or when the exchange is done. The exchange timeout handler
2163 * is registered by EM layer.
2164 *
2165 * The frame pointer with some of the header's fields must be
2166 * filled before calling this routine, those fields are:
2167 *
2168 * - routing control
2169 * - FC port did
2170 * - FC port sid
2171 * - FC header type
2172 * - frame control
2173 * - parameter or relative offset
2174 */
2175struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2176				struct fc_frame *fp,
2177				void (*resp)(struct fc_seq *,
2178					     struct fc_frame *fp,
2179					     void *arg),
2180				void (*destructor)(struct fc_seq *, void *),
2181				void *arg, u32 timer_msec)
2182{
2183	struct fc_exch *ep;
2184	struct fc_seq *sp = NULL;
2185	struct fc_frame_header *fh;
2186	struct fc_fcp_pkt *fsp = NULL;
2187	int rc = 1;
2188
2189	ep = fc_exch_alloc(lport, fp);
2190	if (!ep) {
2191		fc_frame_free(fp);
2192		return NULL;
2193	}
2194	ep->esb_stat |= ESB_ST_SEQ_INIT;
2195	fh = fc_frame_header_get(fp);
2196	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2197	ep->resp = resp;
2198	ep->destructor = destructor;
2199	ep->arg = arg;
2200	ep->r_a_tov = lport->r_a_tov;
2201	ep->lp = lport;
2202	sp = &ep->seq;
2203
2204	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2205	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2206	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2207	sp->cnt++;
2208
2209	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2210		fsp = fr_fsp(fp);
2211		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2212	}
2213
2214	if (unlikely(lport->tt.frame_send(lport, fp)))
2215		goto err;
2216
2217	if (timer_msec)
2218		fc_exch_timer_set_locked(ep, timer_msec);
2219	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2220
2221	if (ep->f_ctl & FC_FC_SEQ_INIT)
2222		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2223	spin_unlock_bh(&ep->ex_lock);
2224	return sp;
2225err:
2226	if (fsp)
2227		fc_fcp_ddp_done(fsp);
2228	rc = fc_exch_done_locked(ep);
2229	spin_unlock_bh(&ep->ex_lock);
2230	if (!rc)
2231		fc_exch_delete(ep);
2232	return NULL;
2233}
2234EXPORT_SYMBOL(fc_exch_seq_send);
2235
2236/**
2237 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2238 * @ep: The exchange to send the RRQ on
2239 *
2240 * This tells the remote port to stop blocking the use of
2241 * the exchange and the seq_cnt range.
2242 */
2243static void fc_exch_rrq(struct fc_exch *ep)
2244{
2245	struct fc_lport *lport;
2246	struct fc_els_rrq *rrq;
2247	struct fc_frame *fp;
2248	u32 did;
2249
2250	lport = ep->lp;
2251
2252	fp = fc_frame_alloc(lport, sizeof(*rrq));
2253	if (!fp)
2254		goto retry;
2255
2256	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2257	memset(rrq, 0, sizeof(*rrq));
2258	rrq->rrq_cmd = ELS_RRQ;
2259	hton24(rrq->rrq_s_id, ep->sid);
2260	rrq->rrq_ox_id = htons(ep->oxid);
2261	rrq->rrq_rx_id = htons(ep->rxid);
2262
2263	did = ep->did;
2264	if (ep->esb_stat & ESB_ST_RESP)
2265		did = ep->sid;
2266
2267	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2268		       lport->port_id, FC_TYPE_ELS,
2269		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2270
2271	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2272			     lport->e_d_tov))
2273		return;
2274
2275retry:
2276	FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2277	spin_lock_bh(&ep->ex_lock);
2278	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2279		spin_unlock_bh(&ep->ex_lock);
2280		/* drop hold for rec qual */
2281		fc_exch_release(ep);
2282		return;
2283	}
2284	ep->esb_stat |= ESB_ST_REC_QUAL;
2285	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2286	spin_unlock_bh(&ep->ex_lock);
2287}
2288
2289/**
2290 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2291 * @fp: The RRQ frame, not freed here.
2292 */
2293static void fc_exch_els_rrq(struct fc_frame *fp)
2294{
2295	struct fc_lport *lport;
2296	struct fc_exch *ep = NULL;	/* request or subject exchange */
2297	struct fc_els_rrq *rp;
2298	u32 sid;
2299	u16 xid;
2300	enum fc_els_rjt_explan explan;
2301
2302	lport = fr_dev(fp);
2303	rp = fc_frame_payload_get(fp, sizeof(*rp));
2304	explan = ELS_EXPL_INV_LEN;
2305	if (!rp)
2306		goto reject;
2307
2308	/*
2309	 * lookup subject exchange.
2310	 */
2311	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2312	xid = fc_host_port_id(lport->host) == sid ?
2313			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2314	ep = fc_exch_lookup(lport, xid);
2315	explan = ELS_EXPL_OXID_RXID;
2316	if (!ep)
2317		goto reject;
2318	spin_lock_bh(&ep->ex_lock);
2319	FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2320		    sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2321	if (ep->oxid != ntohs(rp->rrq_ox_id))
2322		goto unlock_reject;
2323	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2324	    ep->rxid != FC_XID_UNKNOWN)
2325		goto unlock_reject;
2326	explan = ELS_EXPL_SID;
2327	if (ep->sid != sid)
2328		goto unlock_reject;
2329
2330	/*
2331	 * Clear Recovery Qualifier state, and cancel timer if complete.
2332	 */
2333	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2334		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2335		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2336	}
2337	if (ep->esb_stat & ESB_ST_COMPLETE)
2338		fc_exch_timer_cancel(ep);
2339
2340	spin_unlock_bh(&ep->ex_lock);
2341
2342	/*
2343	 * Send LS_ACC.
2344	 */
2345	fc_seq_ls_acc(fp);
2346	goto out;
2347
2348unlock_reject:
2349	spin_unlock_bh(&ep->ex_lock);
2350reject:
2351	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2352out:
2353	if (ep)
2354		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2355}
2356
2357/**
2358 * fc_exch_update_stats() - update exches stats to lport
2359 * @lport: The local port to update exchange manager stats
2360 */
2361void fc_exch_update_stats(struct fc_lport *lport)
2362{
2363	struct fc_host_statistics *st;
2364	struct fc_exch_mgr_anchor *ema;
2365	struct fc_exch_mgr *mp;
2366
2367	st = &lport->host_stats;
2368
2369	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2370		mp = ema->mp;
2371		st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2372		st->fc_no_free_exch_xid +=
2373				atomic_read(&mp->stats.no_free_exch_xid);
2374		st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2375		st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2376		st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2377		st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2378	}
2379}
2380EXPORT_SYMBOL(fc_exch_update_stats);
2381
2382/**
2383 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2384 * @lport: The local port to add the exchange manager to
2385 * @mp:	   The exchange manager to be added to the local port
2386 * @match: The match routine that indicates when this EM should be used
2387 */
2388struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2389					   struct fc_exch_mgr *mp,
2390					   bool (*match)(struct fc_frame *))
2391{
2392	struct fc_exch_mgr_anchor *ema;
2393
2394	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2395	if (!ema)
2396		return ema;
2397
2398	ema->mp = mp;
2399	ema->match = match;
2400	/* add EM anchor to EM anchors list */
2401	list_add_tail(&ema->ema_list, &lport->ema_list);
2402	kref_get(&mp->kref);
2403	return ema;
2404}
2405EXPORT_SYMBOL(fc_exch_mgr_add);
2406
2407/**
2408 * fc_exch_mgr_destroy() - Destroy an exchange manager
2409 * @kref: The reference to the EM to be destroyed
2410 */
2411static void fc_exch_mgr_destroy(struct kref *kref)
2412{
2413	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2414
2415	mempool_destroy(mp->ep_pool);
2416	free_percpu(mp->pool);
2417	kfree(mp);
2418}
2419
2420/**
2421 * fc_exch_mgr_del() - Delete an EM from a local port's list
2422 * @ema: The exchange manager anchor identifying the EM to be deleted
2423 */
2424void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2425{
2426	/* remove EM anchor from EM anchors list */
2427	list_del(&ema->ema_list);
2428	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2429	kfree(ema);
2430}
2431EXPORT_SYMBOL(fc_exch_mgr_del);
2432
2433/**
2434 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2435 * @src: Source lport to clone exchange managers from
2436 * @dst: New lport that takes references to all the exchange managers
2437 */
2438int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2439{
2440	struct fc_exch_mgr_anchor *ema, *tmp;
2441
2442	list_for_each_entry(ema, &src->ema_list, ema_list) {
2443		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2444			goto err;
2445	}
2446	return 0;
2447err:
2448	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2449		fc_exch_mgr_del(ema);
2450	return -ENOMEM;
2451}
2452EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2453
2454/**
2455 * fc_exch_mgr_alloc() - Allocate an exchange manager
2456 * @lport:   The local port that the new EM will be associated with
2457 * @class:   The default FC class for new exchanges
2458 * @min_xid: The minimum XID for exchanges from the new EM
2459 * @max_xid: The maximum XID for exchanges from the new EM
2460 * @match:   The match routine for the new EM
2461 */
2462struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2463				      enum fc_class class,
2464				      u16 min_xid, u16 max_xid,
2465				      bool (*match)(struct fc_frame *))
2466{
2467	struct fc_exch_mgr *mp;
2468	u16 pool_exch_range;
2469	size_t pool_size;
2470	unsigned int cpu;
2471	struct fc_exch_pool *pool;
2472
2473	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2474	    (min_xid & fc_cpu_mask) != 0) {
2475		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2476			     min_xid, max_xid);
2477		return NULL;
2478	}
2479
2480	/*
2481	 * allocate memory for EM
2482	 */
2483	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2484	if (!mp)
2485		return NULL;
2486
2487	mp->class = class;
2488	mp->lport = lport;
2489	/* adjust em exch xid range for offload */
2490	mp->min_xid = min_xid;
2491
2492       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2493	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2494		sizeof(struct fc_exch *);
2495	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2496		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2497			min_xid - 1;
2498	} else {
2499		mp->max_xid = max_xid;
2500		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2501			(fc_cpu_mask + 1);
2502	}
2503
2504	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2505	if (!mp->ep_pool)
2506		goto free_mp;
2507
2508	/*
2509	 * Setup per cpu exch pool with entire exchange id range equally
2510	 * divided across all cpus. The exch pointers array memory is
2511	 * allocated for exch range per pool.
2512	 */
2513	mp->pool_max_index = pool_exch_range - 1;
2514
2515	/*
2516	 * Allocate and initialize per cpu exch pool
2517	 */
2518	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2519	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2520	if (!mp->pool)
2521		goto free_mempool;
2522	for_each_possible_cpu(cpu) {
2523		pool = per_cpu_ptr(mp->pool, cpu);
2524		pool->next_index = 0;
2525		pool->left = FC_XID_UNKNOWN;
2526		pool->right = FC_XID_UNKNOWN;
2527		spin_lock_init(&pool->lock);
2528		INIT_LIST_HEAD(&pool->ex_list);
2529	}
2530
2531	kref_init(&mp->kref);
2532	if (!fc_exch_mgr_add(lport, mp, match)) {
2533		free_percpu(mp->pool);
2534		goto free_mempool;
2535	}
2536
2537	/*
2538	 * Above kref_init() sets mp->kref to 1 and then
2539	 * call to fc_exch_mgr_add incremented mp->kref again,
2540	 * so adjust that extra increment.
2541	 */
2542	kref_put(&mp->kref, fc_exch_mgr_destroy);
2543	return mp;
2544
2545free_mempool:
2546	mempool_destroy(mp->ep_pool);
2547free_mp:
2548	kfree(mp);
2549	return NULL;
2550}
2551EXPORT_SYMBOL(fc_exch_mgr_alloc);
2552
2553/**
2554 * fc_exch_mgr_free() - Free all exchange managers on a local port
2555 * @lport: The local port whose EMs are to be freed
2556 */
2557void fc_exch_mgr_free(struct fc_lport *lport)
2558{
2559	struct fc_exch_mgr_anchor *ema, *next;
2560
2561	flush_workqueue(fc_exch_workqueue);
2562	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2563		fc_exch_mgr_del(ema);
2564}
2565EXPORT_SYMBOL(fc_exch_mgr_free);
2566
2567/**
2568 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2569 * upon 'xid'.
2570 * @f_ctl: f_ctl
2571 * @lport: The local port the frame was received on
2572 * @fh: The received frame header
2573 */
2574static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2575					      struct fc_lport *lport,
2576					      struct fc_frame_header *fh)
2577{
2578	struct fc_exch_mgr_anchor *ema;
2579	u16 xid;
2580
2581	if (f_ctl & FC_FC_EX_CTX)
2582		xid = ntohs(fh->fh_ox_id);
2583	else {
2584		xid = ntohs(fh->fh_rx_id);
2585		if (xid == FC_XID_UNKNOWN)
2586			return list_entry(lport->ema_list.prev,
2587					  typeof(*ema), ema_list);
2588	}
2589
2590	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2591		if ((xid >= ema->mp->min_xid) &&
2592		    (xid <= ema->mp->max_xid))
2593			return ema;
2594	}
2595	return NULL;
2596}
2597/**
2598 * fc_exch_recv() - Handler for received frames
2599 * @lport: The local port the frame was received on
2600 * @fp:	The received frame
2601 */
2602void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2603{
2604	struct fc_frame_header *fh = fc_frame_header_get(fp);
2605	struct fc_exch_mgr_anchor *ema;
2606	u32 f_ctl;
2607
2608	/* lport lock ? */
2609	if (!lport || lport->state == LPORT_ST_DISABLED) {
2610		FC_LIBFC_DBG("Receiving frames for an lport that "
2611			     "has not been initialized correctly\n");
2612		fc_frame_free(fp);
2613		return;
2614	}
2615
2616	f_ctl = ntoh24(fh->fh_f_ctl);
2617	ema = fc_find_ema(f_ctl, lport, fh);
2618	if (!ema) {
2619		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2620				    "fc_ctl <0x%x>, xid <0x%x>\n",
2621				     f_ctl,
2622				     (f_ctl & FC_FC_EX_CTX) ?
2623				     ntohs(fh->fh_ox_id) :
2624				     ntohs(fh->fh_rx_id));
2625		fc_frame_free(fp);
2626		return;
2627	}
2628
2629	/*
2630	 * If frame is marked invalid, just drop it.
2631	 */
2632	switch (fr_eof(fp)) {
2633	case FC_EOF_T:
2634		if (f_ctl & FC_FC_END_SEQ)
2635			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2636		fallthrough;
2637	case FC_EOF_N:
2638		if (fh->fh_type == FC_TYPE_BLS)
2639			fc_exch_recv_bls(ema->mp, fp);
2640		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2641			 FC_FC_EX_CTX)
2642			fc_exch_recv_seq_resp(ema->mp, fp);
2643		else if (f_ctl & FC_FC_SEQ_CTX)
2644			fc_exch_recv_resp(ema->mp, fp);
2645		else	/* no EX_CTX and no SEQ_CTX */
2646			fc_exch_recv_req(lport, ema->mp, fp);
2647		break;
2648	default:
2649		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2650			     fr_eof(fp));
2651		fc_frame_free(fp);
2652	}
2653}
2654EXPORT_SYMBOL(fc_exch_recv);
2655
2656/**
2657 * fc_exch_init() - Initialize the exchange layer for a local port
2658 * @lport: The local port to initialize the exchange layer for
2659 */
2660int fc_exch_init(struct fc_lport *lport)
2661{
2662	if (!lport->tt.exch_mgr_reset)
2663		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2664
2665	return 0;
2666}
2667EXPORT_SYMBOL(fc_exch_init);
2668
2669/**
2670 * fc_setup_exch_mgr() - Setup an exchange manager
2671 */
2672int fc_setup_exch_mgr(void)
2673{
2674	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2675					 0, SLAB_HWCACHE_ALIGN, NULL);
2676	if (!fc_em_cachep)
2677		return -ENOMEM;
2678
2679	/*
2680	 * Initialize fc_cpu_mask and fc_cpu_order. The
2681	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2682	 * to order of 2's * power and order is stored
2683	 * in fc_cpu_order as this is later required in
2684	 * mapping between an exch id and exch array index
2685	 * in per cpu exch pool.
2686	 *
2687	 * This round up is required to align fc_cpu_mask
2688	 * to exchange id's lower bits such that all incoming
2689	 * frames of an exchange gets delivered to the same
2690	 * cpu on which exchange originated by simple bitwise
2691	 * AND operation between fc_cpu_mask and exchange id.
2692	 */
2693	fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2694	fc_cpu_mask = (1 << fc_cpu_order) - 1;
2695
2696	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2697	if (!fc_exch_workqueue)
2698		goto err;
2699	return 0;
2700err:
2701	kmem_cache_destroy(fc_em_cachep);
2702	return -ENOMEM;
2703}
2704
2705/**
2706 * fc_destroy_exch_mgr() - Destroy an exchange manager
2707 */
2708void fc_destroy_exch_mgr(void)
2709{
2710	destroy_workqueue(fc_exch_workqueue);
2711	kmem_cache_destroy(fc_em_cachep);
2712}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright(c) 2007 Intel Corporation. All rights reserved.
   4 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
   5 * Copyright(c) 2008 Mike Christie
   6 *
   7 * Maintained at www.Open-FCoE.org
   8 */
   9
  10/*
  11 * Fibre Channel exchange and sequence handling.
  12 */
  13
  14#include <linux/timer.h>
  15#include <linux/slab.h>
  16#include <linux/err.h>
  17#include <linux/export.h>
  18#include <linux/log2.h>
  19
  20#include <scsi/fc/fc_fc2.h>
  21
  22#include <scsi/libfc.h>
  23#include <scsi/fc_encode.h>
  24
  25#include "fc_libfc.h"
  26
  27u16	fc_cpu_mask;		/* cpu mask for possible cpus */
  28EXPORT_SYMBOL(fc_cpu_mask);
  29static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
  30static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
  31static struct workqueue_struct *fc_exch_workqueue;
  32
  33/*
  34 * Structure and function definitions for managing Fibre Channel Exchanges
  35 * and Sequences.
  36 *
  37 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
  38 *
  39 * fc_exch_mgr holds the exchange state for an N port
  40 *
  41 * fc_exch holds state for one exchange and links to its active sequence.
  42 *
  43 * fc_seq holds the state for an individual sequence.
  44 */
  45
  46/**
  47 * struct fc_exch_pool - Per cpu exchange pool
  48 * @next_index:	  Next possible free exchange index
  49 * @total_exches: Total allocated exchanges
  50 * @lock:	  Exch pool lock
  51 * @ex_list:	  List of exchanges
  52 * @left:	  Cache of free slot in exch array
  53 * @right:	  Cache of free slot in exch array
  54 *
  55 * This structure manages per cpu exchanges in array of exchange pointers.
  56 * This array is allocated followed by struct fc_exch_pool memory for
  57 * assigned range of exchanges to per cpu pool.
  58 */
  59struct fc_exch_pool {
  60	spinlock_t	 lock;
  61	struct list_head ex_list;
  62	u16		 next_index;
  63	u16		 total_exches;
  64
  65	u16		 left;
  66	u16		 right;
  67} ____cacheline_aligned_in_smp;
  68
  69/**
  70 * struct fc_exch_mgr - The Exchange Manager (EM).
  71 * @class:	    Default class for new sequences
  72 * @kref:	    Reference counter
  73 * @min_xid:	    Minimum exchange ID
  74 * @max_xid:	    Maximum exchange ID
  75 * @ep_pool:	    Reserved exchange pointers
  76 * @pool_max_index: Max exch array index in exch pool
  77 * @pool:	    Per cpu exch pool
  78 * @lport:	    Local exchange port
  79 * @stats:	    Statistics structure
  80 *
  81 * This structure is the center for creating exchanges and sequences.
  82 * It manages the allocation of exchange IDs.
  83 */
  84struct fc_exch_mgr {
  85	struct fc_exch_pool __percpu *pool;
  86	mempool_t	*ep_pool;
  87	struct fc_lport	*lport;
  88	enum fc_class	class;
  89	struct kref	kref;
  90	u16		min_xid;
  91	u16		max_xid;
  92	u16		pool_max_index;
  93
  94	struct {
  95		atomic_t no_free_exch;
  96		atomic_t no_free_exch_xid;
  97		atomic_t xid_not_found;
  98		atomic_t xid_busy;
  99		atomic_t seq_not_found;
 100		atomic_t non_bls_resp;
 101	} stats;
 102};
 103
 104/**
 105 * struct fc_exch_mgr_anchor - primary structure for list of EMs
 106 * @ema_list: Exchange Manager Anchor list
 107 * @mp:	      Exchange Manager associated with this anchor
 108 * @match:    Routine to determine if this anchor's EM should be used
 109 *
 110 * When walking the list of anchors the match routine will be called
 111 * for each anchor to determine if that EM should be used. The last
 112 * anchor in the list will always match to handle any exchanges not
 113 * handled by other EMs. The non-default EMs would be added to the
 114 * anchor list by HW that provides offloads.
 115 */
 116struct fc_exch_mgr_anchor {
 117	struct list_head ema_list;
 118	struct fc_exch_mgr *mp;
 119	bool (*match)(struct fc_frame *);
 120};
 121
 122static void fc_exch_rrq(struct fc_exch *);
 123static void fc_seq_ls_acc(struct fc_frame *);
 124static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
 125			  enum fc_els_rjt_explan);
 126static void fc_exch_els_rec(struct fc_frame *);
 127static void fc_exch_els_rrq(struct fc_frame *);
 128
 129/*
 130 * Internal implementation notes.
 131 *
 132 * The exchange manager is one by default in libfc but LLD may choose
 133 * to have one per CPU. The sequence manager is one per exchange manager
 134 * and currently never separated.
 135 *
 136 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
 137 * assigned by the Sequence Initiator that shall be unique for a specific
 138 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
 139 * qualified by exchange ID, which one might think it would be.
 140 * In practice this limits the number of open sequences and exchanges to 256
 141 * per session.	 For most targets we could treat this limit as per exchange.
 142 *
 143 * The exchange and its sequence are freed when the last sequence is received.
 144 * It's possible for the remote port to leave an exchange open without
 145 * sending any sequences.
 146 *
 147 * Notes on reference counts:
 148 *
 149 * Exchanges are reference counted and exchange gets freed when the reference
 150 * count becomes zero.
 151 *
 152 * Timeouts:
 153 * Sequences are timed out for E_D_TOV and R_A_TOV.
 154 *
 155 * Sequence event handling:
 156 *
 157 * The following events may occur on initiator sequences:
 158 *
 159 *	Send.
 160 *	    For now, the whole thing is sent.
 161 *	Receive ACK
 162 *	    This applies only to class F.
 163 *	    The sequence is marked complete.
 164 *	ULP completion.
 165 *	    The upper layer calls fc_exch_done() when done
 166 *	    with exchange and sequence tuple.
 167 *	RX-inferred completion.
 168 *	    When we receive the next sequence on the same exchange, we can
 169 *	    retire the previous sequence ID.  (XXX not implemented).
 170 *	Timeout.
 171 *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
 172 *	    E_D_TOV causes abort and calls upper layer response handler
 173 *	    with FC_EX_TIMEOUT error.
 174 *	Receive RJT
 175 *	    XXX defer.
 176 *	Send ABTS
 177 *	    On timeout.
 178 *
 179 * The following events may occur on recipient sequences:
 180 *
 181 *	Receive
 182 *	    Allocate sequence for first frame received.
 183 *	    Hold during receive handler.
 184 *	    Release when final frame received.
 185 *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
 186 *	Receive ABTS
 187 *	    Deallocate sequence
 188 *	Send RJT
 189 *	    Deallocate
 190 *
 191 * For now, we neglect conditions where only part of a sequence was
 192 * received or transmitted, or where out-of-order receipt is detected.
 193 */
 194
 195/*
 196 * Locking notes:
 197 *
 198 * The EM code run in a per-CPU worker thread.
 199 *
 200 * To protect against concurrency between a worker thread code and timers,
 201 * sequence allocation and deallocation must be locked.
 202 *  - exchange refcnt can be done atomicly without locks.
 203 *  - sequence allocation must be locked by exch lock.
 204 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
 205 *    EM pool lock must be taken before the ex_lock.
 206 */
 207
 208/*
 209 * opcode names for debugging.
 210 */
 211static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
 212
 213/**
 214 * fc_exch_name_lookup() - Lookup name by opcode
 215 * @op:	       Opcode to be looked up
 216 * @table:     Opcode/name table
 217 * @max_index: Index not to be exceeded
 218 *
 219 * This routine is used to determine a human-readable string identifying
 220 * a R_CTL opcode.
 221 */
 222static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
 223					      unsigned int max_index)
 224{
 225	const char *name = NULL;
 226
 227	if (op < max_index)
 228		name = table[op];
 229	if (!name)
 230		name = "unknown";
 231	return name;
 232}
 233
 234/**
 235 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
 236 * @op: The opcode to be looked up
 237 */
 238static const char *fc_exch_rctl_name(unsigned int op)
 239{
 240	return fc_exch_name_lookup(op, fc_exch_rctl_names,
 241				   ARRAY_SIZE(fc_exch_rctl_names));
 242}
 243
 244/**
 245 * fc_exch_hold() - Increment an exchange's reference count
 246 * @ep: Echange to be held
 247 */
 248static inline void fc_exch_hold(struct fc_exch *ep)
 249{
 250	atomic_inc(&ep->ex_refcnt);
 251}
 252
 253/**
 254 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
 255 *			 and determine SOF and EOF.
 256 * @ep:	   The exchange to that will use the header
 257 * @fp:	   The frame whose header is to be modified
 258 * @f_ctl: F_CTL bits that will be used for the frame header
 259 *
 260 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
 261 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
 262 */
 263static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
 264			      u32 f_ctl)
 265{
 266	struct fc_frame_header *fh = fc_frame_header_get(fp);
 267	u16 fill;
 268
 269	fr_sof(fp) = ep->class;
 270	if (ep->seq.cnt)
 271		fr_sof(fp) = fc_sof_normal(ep->class);
 272
 273	if (f_ctl & FC_FC_END_SEQ) {
 274		fr_eof(fp) = FC_EOF_T;
 275		if (fc_sof_needs_ack(ep->class))
 276			fr_eof(fp) = FC_EOF_N;
 277		/*
 278		 * From F_CTL.
 279		 * The number of fill bytes to make the length a 4-byte
 280		 * multiple is the low order 2-bits of the f_ctl.
 281		 * The fill itself will have been cleared by the frame
 282		 * allocation.
 283		 * After this, the length will be even, as expected by
 284		 * the transport.
 285		 */
 286		fill = fr_len(fp) & 3;
 287		if (fill) {
 288			fill = 4 - fill;
 289			/* TODO, this may be a problem with fragmented skb */
 290			skb_put(fp_skb(fp), fill);
 291			hton24(fh->fh_f_ctl, f_ctl | fill);
 292		}
 293	} else {
 294		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
 295		fr_eof(fp) = FC_EOF_N;
 296	}
 297
 298	/* Initialize remaining fh fields from fc_fill_fc_hdr */
 299	fh->fh_ox_id = htons(ep->oxid);
 300	fh->fh_rx_id = htons(ep->rxid);
 301	fh->fh_seq_id = ep->seq.id;
 302	fh->fh_seq_cnt = htons(ep->seq.cnt);
 303}
 304
 305/**
 306 * fc_exch_release() - Decrement an exchange's reference count
 307 * @ep: Exchange to be released
 308 *
 309 * If the reference count reaches zero and the exchange is complete,
 310 * it is freed.
 311 */
 312static void fc_exch_release(struct fc_exch *ep)
 313{
 314	struct fc_exch_mgr *mp;
 315
 316	if (atomic_dec_and_test(&ep->ex_refcnt)) {
 317		mp = ep->em;
 318		if (ep->destructor)
 319			ep->destructor(&ep->seq, ep->arg);
 320		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
 321		mempool_free(ep, mp->ep_pool);
 322	}
 323}
 324
 325/**
 326 * fc_exch_timer_cancel() - cancel exch timer
 327 * @ep:		The exchange whose timer to be canceled
 328 */
 329static inline void fc_exch_timer_cancel(struct fc_exch *ep)
 330{
 331	if (cancel_delayed_work(&ep->timeout_work)) {
 332		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
 333		atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
 334	}
 335}
 336
 337/**
 338 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
 339 *				the exchange lock held
 340 * @ep:		The exchange whose timer will start
 341 * @timer_msec: The timeout period
 342 *
 343 * Used for upper level protocols to time out the exchange.
 344 * The timer is cancelled when it fires or when the exchange completes.
 345 */
 346static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
 347					    unsigned int timer_msec)
 348{
 349	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 350		return;
 351
 352	FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
 353
 354	fc_exch_hold(ep);		/* hold for timer */
 355	if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
 356				msecs_to_jiffies(timer_msec))) {
 357		FC_EXCH_DBG(ep, "Exchange already queued\n");
 358		fc_exch_release(ep);
 359	}
 360}
 361
 362/**
 363 * fc_exch_timer_set() - Lock the exchange and set the timer
 364 * @ep:		The exchange whose timer will start
 365 * @timer_msec: The timeout period
 366 */
 367static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
 368{
 369	spin_lock_bh(&ep->ex_lock);
 370	fc_exch_timer_set_locked(ep, timer_msec);
 371	spin_unlock_bh(&ep->ex_lock);
 372}
 373
 374/**
 375 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
 376 * @ep: The exchange that is complete
 377 *
 378 * Note: May sleep if invoked from outside a response handler.
 379 */
 380static int fc_exch_done_locked(struct fc_exch *ep)
 381{
 382	int rc = 1;
 383
 384	/*
 385	 * We must check for completion in case there are two threads
 386	 * tyring to complete this. But the rrq code will reuse the
 387	 * ep, and in that case we only clear the resp and set it as
 388	 * complete, so it can be reused by the timer to send the rrq.
 389	 */
 390	if (ep->state & FC_EX_DONE)
 391		return rc;
 392	ep->esb_stat |= ESB_ST_COMPLETE;
 393
 394	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
 395		ep->state |= FC_EX_DONE;
 396		fc_exch_timer_cancel(ep);
 397		rc = 0;
 398	}
 399	return rc;
 400}
 401
 402static struct fc_exch fc_quarantine_exch;
 403
 404/**
 405 * fc_exch_ptr_get() - Return an exchange from an exchange pool
 406 * @pool:  Exchange Pool to get an exchange from
 407 * @index: Index of the exchange within the pool
 408 *
 409 * Use the index to get an exchange from within an exchange pool. exches
 410 * will point to an array of exchange pointers. The index will select
 411 * the exchange within the array.
 412 */
 413static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
 414					      u16 index)
 415{
 416	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
 417	return exches[index];
 418}
 419
 420/**
 421 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
 422 * @pool:  The pool to assign the exchange to
 423 * @index: The index in the pool where the exchange will be assigned
 424 * @ep:	   The exchange to assign to the pool
 425 */
 426static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
 427				   struct fc_exch *ep)
 428{
 429	((struct fc_exch **)(pool + 1))[index] = ep;
 430}
 431
 432/**
 433 * fc_exch_delete() - Delete an exchange
 434 * @ep: The exchange to be deleted
 435 */
 436static void fc_exch_delete(struct fc_exch *ep)
 437{
 438	struct fc_exch_pool *pool;
 439	u16 index;
 440
 441	pool = ep->pool;
 442	spin_lock_bh(&pool->lock);
 443	WARN_ON(pool->total_exches <= 0);
 444	pool->total_exches--;
 445
 446	/* update cache of free slot */
 447	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
 448	if (!(ep->state & FC_EX_QUARANTINE)) {
 449		if (pool->left == FC_XID_UNKNOWN)
 450			pool->left = index;
 451		else if (pool->right == FC_XID_UNKNOWN)
 452			pool->right = index;
 453		else
 454			pool->next_index = index;
 455		fc_exch_ptr_set(pool, index, NULL);
 456	} else {
 457		fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
 458	}
 459	list_del(&ep->ex_list);
 460	spin_unlock_bh(&pool->lock);
 461	fc_exch_release(ep);	/* drop hold for exch in mp */
 462}
 463
 464static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
 465			      struct fc_frame *fp)
 466{
 467	struct fc_exch *ep;
 468	struct fc_frame_header *fh = fc_frame_header_get(fp);
 469	int error = -ENXIO;
 470	u32 f_ctl;
 471	u8 fh_type = fh->fh_type;
 472
 473	ep = fc_seq_exch(sp);
 474
 475	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
 476		fc_frame_free(fp);
 477		goto out;
 478	}
 479
 480	WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
 481
 482	f_ctl = ntoh24(fh->fh_f_ctl);
 483	fc_exch_setup_hdr(ep, fp, f_ctl);
 484	fr_encaps(fp) = ep->encaps;
 485
 486	/*
 487	 * update sequence count if this frame is carrying
 488	 * multiple FC frames when sequence offload is enabled
 489	 * by LLD.
 490	 */
 491	if (fr_max_payload(fp))
 492		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
 493					fr_max_payload(fp));
 494	else
 495		sp->cnt++;
 496
 497	/*
 498	 * Send the frame.
 499	 */
 500	error = lport->tt.frame_send(lport, fp);
 501
 502	if (fh_type == FC_TYPE_BLS)
 503		goto out;
 504
 505	/*
 506	 * Update the exchange and sequence flags,
 507	 * assuming all frames for the sequence have been sent.
 508	 * We can only be called to send once for each sequence.
 509	 */
 510	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
 511	if (f_ctl & FC_FC_SEQ_INIT)
 512		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
 513out:
 514	return error;
 515}
 516
 517/**
 518 * fc_seq_send() - Send a frame using existing sequence/exchange pair
 519 * @lport: The local port that the exchange will be sent on
 520 * @sp:	   The sequence to be sent
 521 * @fp:	   The frame to be sent on the exchange
 522 *
 523 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
 524 * or indirectly by calling libfc_function_template.frame_send().
 525 */
 526int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
 527{
 528	struct fc_exch *ep;
 529	int error;
 530	ep = fc_seq_exch(sp);
 531	spin_lock_bh(&ep->ex_lock);
 532	error = fc_seq_send_locked(lport, sp, fp);
 533	spin_unlock_bh(&ep->ex_lock);
 534	return error;
 535}
 536EXPORT_SYMBOL(fc_seq_send);
 537
 538/**
 539 * fc_seq_alloc() - Allocate a sequence for a given exchange
 540 * @ep:	    The exchange to allocate a new sequence for
 541 * @seq_id: The sequence ID to be used
 542 *
 543 * We don't support multiple originated sequences on the same exchange.
 544 * By implication, any previously originated sequence on this exchange
 545 * is complete, and we reallocate the same sequence.
 546 */
 547static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
 548{
 549	struct fc_seq *sp;
 550
 551	sp = &ep->seq;
 552	sp->ssb_stat = 0;
 553	sp->cnt = 0;
 554	sp->id = seq_id;
 555	return sp;
 556}
 557
 558/**
 559 * fc_seq_start_next_locked() - Allocate a new sequence on the same
 560 *				exchange as the supplied sequence
 561 * @sp: The sequence/exchange to get a new sequence for
 562 */
 563static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
 564{
 565	struct fc_exch *ep = fc_seq_exch(sp);
 566
 567	sp = fc_seq_alloc(ep, ep->seq_id++);
 568	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
 569		    ep->f_ctl, sp->id);
 570	return sp;
 571}
 572
 573/**
 574 * fc_seq_start_next() - Lock the exchange and get a new sequence
 575 *			 for a given sequence/exchange pair
 576 * @sp: The sequence/exchange to get a new exchange for
 577 */
 578struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
 579{
 580	struct fc_exch *ep = fc_seq_exch(sp);
 581
 582	spin_lock_bh(&ep->ex_lock);
 583	sp = fc_seq_start_next_locked(sp);
 584	spin_unlock_bh(&ep->ex_lock);
 585
 586	return sp;
 587}
 588EXPORT_SYMBOL(fc_seq_start_next);
 589
 590/*
 591 * Set the response handler for the exchange associated with a sequence.
 592 *
 593 * Note: May sleep if invoked from outside a response handler.
 594 */
 595void fc_seq_set_resp(struct fc_seq *sp,
 596		     void (*resp)(struct fc_seq *, struct fc_frame *, void *),
 597		     void *arg)
 598{
 599	struct fc_exch *ep = fc_seq_exch(sp);
 600	DEFINE_WAIT(wait);
 601
 602	spin_lock_bh(&ep->ex_lock);
 603	while (ep->resp_active && ep->resp_task != current) {
 604		prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
 605		spin_unlock_bh(&ep->ex_lock);
 606
 607		schedule();
 608
 609		spin_lock_bh(&ep->ex_lock);
 610	}
 611	finish_wait(&ep->resp_wq, &wait);
 612	ep->resp = resp;
 613	ep->arg = arg;
 614	spin_unlock_bh(&ep->ex_lock);
 615}
 616EXPORT_SYMBOL(fc_seq_set_resp);
 617
 618/**
 619 * fc_exch_abort_locked() - Abort an exchange
 620 * @ep:	The exchange to be aborted
 621 * @timer_msec: The period of time to wait before aborting
 622 *
 623 * Abort an exchange and sequence. Generally called because of a
 624 * exchange timeout or an abort from the upper layer.
 625 *
 626 * A timer_msec can be specified for abort timeout, if non-zero
 627 * timer_msec value is specified then exchange resp handler
 628 * will be called with timeout error if no response to abort.
 629 *
 630 * Locking notes:  Called with exch lock held
 631 *
 632 * Return value: 0 on success else error code
 633 */
 634static int fc_exch_abort_locked(struct fc_exch *ep,
 635				unsigned int timer_msec)
 636{
 637	struct fc_seq *sp;
 638	struct fc_frame *fp;
 639	int error;
 640
 641	FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
 642	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
 643	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
 644		FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
 645			    ep->esb_stat, ep->state);
 646		return -ENXIO;
 647	}
 648
 649	/*
 650	 * Send the abort on a new sequence if possible.
 651	 */
 652	sp = fc_seq_start_next_locked(&ep->seq);
 653	if (!sp)
 654		return -ENOMEM;
 655
 656	if (timer_msec)
 657		fc_exch_timer_set_locked(ep, timer_msec);
 658
 659	if (ep->sid) {
 660		/*
 661		 * Send an abort for the sequence that timed out.
 662		 */
 663		fp = fc_frame_alloc(ep->lp, 0);
 664		if (fp) {
 665			ep->esb_stat |= ESB_ST_SEQ_INIT;
 666			fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
 667				       FC_TYPE_BLS, FC_FC_END_SEQ |
 668				       FC_FC_SEQ_INIT, 0);
 669			error = fc_seq_send_locked(ep->lp, sp, fp);
 670		} else {
 671			error = -ENOBUFS;
 672		}
 673	} else {
 674		/*
 675		 * If not logged into the fabric, don't send ABTS but leave
 676		 * sequence active until next timeout.
 677		 */
 678		error = 0;
 679	}
 680	ep->esb_stat |= ESB_ST_ABNORMAL;
 681	return error;
 682}
 683
 684/**
 685 * fc_seq_exch_abort() - Abort an exchange and sequence
 686 * @req_sp:	The sequence to be aborted
 687 * @timer_msec: The period of time to wait before aborting
 688 *
 689 * Generally called because of a timeout or an abort from the upper layer.
 690 *
 691 * Return value: 0 on success else error code
 692 */
 693int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
 694{
 695	struct fc_exch *ep;
 696	int error;
 697
 698	ep = fc_seq_exch(req_sp);
 699	spin_lock_bh(&ep->ex_lock);
 700	error = fc_exch_abort_locked(ep, timer_msec);
 701	spin_unlock_bh(&ep->ex_lock);
 702	return error;
 703}
 704
 705/**
 706 * fc_invoke_resp() - invoke ep->resp()
 707 * @ep:	   The exchange to be operated on
 708 * @fp:	   The frame pointer to pass through to ->resp()
 709 * @sp:	   The sequence pointer to pass through to ->resp()
 710 *
 711 * Notes:
 712 * It is assumed that after initialization finished (this means the
 713 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
 714 * modified only via fc_seq_set_resp(). This guarantees that none of these
 715 * two variables changes if ep->resp_active > 0.
 716 *
 717 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
 718 * this function is invoked, the first spin_lock_bh() call in this function
 719 * will wait until fc_seq_set_resp() has finished modifying these variables.
 720 *
 721 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
 722 * ep->resp() won't be invoked after fc_exch_done() has returned.
 723 *
 724 * The response handler itself may invoke fc_exch_done(), which will clear the
 725 * ep->resp pointer.
 726 *
 727 * Return value:
 728 * Returns true if and only if ep->resp has been invoked.
 729 */
 730static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
 731			   struct fc_frame *fp)
 732{
 733	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
 734	void *arg;
 735	bool res = false;
 736
 737	spin_lock_bh(&ep->ex_lock);
 738	ep->resp_active++;
 739	if (ep->resp_task != current)
 740		ep->resp_task = !ep->resp_task ? current : NULL;
 741	resp = ep->resp;
 742	arg = ep->arg;
 743	spin_unlock_bh(&ep->ex_lock);
 744
 745	if (resp) {
 746		resp(sp, fp, arg);
 747		res = true;
 748	}
 749
 750	spin_lock_bh(&ep->ex_lock);
 751	if (--ep->resp_active == 0)
 752		ep->resp_task = NULL;
 753	spin_unlock_bh(&ep->ex_lock);
 754
 755	if (ep->resp_active == 0)
 756		wake_up(&ep->resp_wq);
 757
 758	return res;
 759}
 760
 761/**
 762 * fc_exch_timeout() - Handle exchange timer expiration
 763 * @work: The work_struct identifying the exchange that timed out
 764 */
 765static void fc_exch_timeout(struct work_struct *work)
 766{
 767	struct fc_exch *ep = container_of(work, struct fc_exch,
 768					  timeout_work.work);
 769	struct fc_seq *sp = &ep->seq;
 770	u32 e_stat;
 771	int rc = 1;
 772
 773	FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
 774
 775	spin_lock_bh(&ep->ex_lock);
 776	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 777		goto unlock;
 778
 779	e_stat = ep->esb_stat;
 780	if (e_stat & ESB_ST_COMPLETE) {
 781		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
 782		spin_unlock_bh(&ep->ex_lock);
 783		if (e_stat & ESB_ST_REC_QUAL)
 784			fc_exch_rrq(ep);
 785		goto done;
 786	} else {
 787		if (e_stat & ESB_ST_ABNORMAL)
 788			rc = fc_exch_done_locked(ep);
 789		spin_unlock_bh(&ep->ex_lock);
 790		if (!rc)
 791			fc_exch_delete(ep);
 792		fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
 793		fc_seq_set_resp(sp, NULL, ep->arg);
 794		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
 795		goto done;
 796	}
 797unlock:
 798	spin_unlock_bh(&ep->ex_lock);
 799done:
 800	/*
 801	 * This release matches the hold taken when the timer was set.
 802	 */
 803	fc_exch_release(ep);
 804}
 805
 806/**
 807 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
 808 * @lport: The local port that the exchange is for
 809 * @mp:	   The exchange manager that will allocate the exchange
 810 *
 811 * Returns pointer to allocated fc_exch with exch lock held.
 812 */
 813static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
 814					struct fc_exch_mgr *mp)
 815{
 816	struct fc_exch *ep;
 817	unsigned int cpu;
 818	u16 index;
 819	struct fc_exch_pool *pool;
 820
 821	/* allocate memory for exchange */
 822	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
 823	if (!ep) {
 824		atomic_inc(&mp->stats.no_free_exch);
 825		goto out;
 826	}
 827	memset(ep, 0, sizeof(*ep));
 828
 829	cpu = get_cpu();
 830	pool = per_cpu_ptr(mp->pool, cpu);
 831	spin_lock_bh(&pool->lock);
 832	put_cpu();
 833
 834	/* peek cache of free slot */
 835	if (pool->left != FC_XID_UNKNOWN) {
 836		if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
 837			index = pool->left;
 838			pool->left = FC_XID_UNKNOWN;
 839			goto hit;
 840		}
 841	}
 842	if (pool->right != FC_XID_UNKNOWN) {
 843		if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
 844			index = pool->right;
 845			pool->right = FC_XID_UNKNOWN;
 846			goto hit;
 847		}
 848	}
 849
 850	index = pool->next_index;
 851	/* allocate new exch from pool */
 852	while (fc_exch_ptr_get(pool, index)) {
 853		index = index == mp->pool_max_index ? 0 : index + 1;
 854		if (index == pool->next_index)
 855			goto err;
 856	}
 857	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
 858hit:
 859	fc_exch_hold(ep);	/* hold for exch in mp */
 860	spin_lock_init(&ep->ex_lock);
 861	/*
 862	 * Hold exch lock for caller to prevent fc_exch_reset()
 863	 * from releasing exch	while fc_exch_alloc() caller is
 864	 * still working on exch.
 865	 */
 866	spin_lock_bh(&ep->ex_lock);
 867
 868	fc_exch_ptr_set(pool, index, ep);
 869	list_add_tail(&ep->ex_list, &pool->ex_list);
 870	fc_seq_alloc(ep, ep->seq_id++);
 871	pool->total_exches++;
 872	spin_unlock_bh(&pool->lock);
 873
 874	/*
 875	 *  update exchange
 876	 */
 877	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
 878	ep->em = mp;
 879	ep->pool = pool;
 880	ep->lp = lport;
 881	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
 882	ep->rxid = FC_XID_UNKNOWN;
 883	ep->class = mp->class;
 884	ep->resp_active = 0;
 885	init_waitqueue_head(&ep->resp_wq);
 886	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
 887out:
 888	return ep;
 889err:
 890	spin_unlock_bh(&pool->lock);
 891	atomic_inc(&mp->stats.no_free_exch_xid);
 892	mempool_free(ep, mp->ep_pool);
 893	return NULL;
 894}
 895
 896/**
 897 * fc_exch_alloc() - Allocate an exchange from an EM on a
 898 *		     local port's list of EMs.
 899 * @lport: The local port that will own the exchange
 900 * @fp:	   The FC frame that the exchange will be for
 901 *
 902 * This function walks the list of exchange manager(EM)
 903 * anchors to select an EM for a new exchange allocation. The
 904 * EM is selected when a NULL match function pointer is encountered
 905 * or when a call to a match function returns true.
 906 */
 907static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
 908				     struct fc_frame *fp)
 909{
 910	struct fc_exch_mgr_anchor *ema;
 911	struct fc_exch *ep;
 912
 913	list_for_each_entry(ema, &lport->ema_list, ema_list) {
 914		if (!ema->match || ema->match(fp)) {
 915			ep = fc_exch_em_alloc(lport, ema->mp);
 916			if (ep)
 917				return ep;
 918		}
 919	}
 920	return NULL;
 921}
 922
 923/**
 924 * fc_exch_find() - Lookup and hold an exchange
 925 * @mp:	 The exchange manager to lookup the exchange from
 926 * @xid: The XID of the exchange to look up
 927 */
 928static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
 929{
 930	struct fc_lport *lport = mp->lport;
 931	struct fc_exch_pool *pool;
 932	struct fc_exch *ep = NULL;
 933	u16 cpu = xid & fc_cpu_mask;
 934
 935	if (xid == FC_XID_UNKNOWN)
 936		return NULL;
 937
 938	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 939		pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
 940		       lport->host->host_no, lport->port_id, xid, cpu);
 941		return NULL;
 942	}
 943
 944	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
 945		pool = per_cpu_ptr(mp->pool, cpu);
 946		spin_lock_bh(&pool->lock);
 947		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
 948		if (ep == &fc_quarantine_exch) {
 949			FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
 950			ep = NULL;
 951		}
 952		if (ep) {
 953			WARN_ON(ep->xid != xid);
 954			fc_exch_hold(ep);
 955		}
 956		spin_unlock_bh(&pool->lock);
 957	}
 958	return ep;
 959}
 960
 961
 962/**
 963 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
 964 *		    the memory allocated for the related objects may be freed.
 965 * @sp: The sequence that has completed
 966 *
 967 * Note: May sleep if invoked from outside a response handler.
 968 */
 969void fc_exch_done(struct fc_seq *sp)
 970{
 971	struct fc_exch *ep = fc_seq_exch(sp);
 972	int rc;
 973
 974	spin_lock_bh(&ep->ex_lock);
 975	rc = fc_exch_done_locked(ep);
 976	spin_unlock_bh(&ep->ex_lock);
 977
 978	fc_seq_set_resp(sp, NULL, ep->arg);
 979	if (!rc)
 980		fc_exch_delete(ep);
 981}
 982EXPORT_SYMBOL(fc_exch_done);
 983
 984/**
 985 * fc_exch_resp() - Allocate a new exchange for a response frame
 986 * @lport: The local port that the exchange was for
 987 * @mp:	   The exchange manager to allocate the exchange from
 988 * @fp:	   The response frame
 989 *
 990 * Sets the responder ID in the frame header.
 991 */
 992static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
 993				    struct fc_exch_mgr *mp,
 994				    struct fc_frame *fp)
 995{
 996	struct fc_exch *ep;
 997	struct fc_frame_header *fh;
 998
 999	ep = fc_exch_alloc(lport, fp);
1000	if (ep) {
1001		ep->class = fc_frame_class(fp);
1002
1003		/*
1004		 * Set EX_CTX indicating we're responding on this exchange.
1005		 */
1006		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
1007		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
1008		fh = fc_frame_header_get(fp);
1009		ep->sid = ntoh24(fh->fh_d_id);
1010		ep->did = ntoh24(fh->fh_s_id);
1011		ep->oid = ep->did;
1012
1013		/*
1014		 * Allocated exchange has placed the XID in the
1015		 * originator field. Move it to the responder field,
1016		 * and set the originator XID from the frame.
1017		 */
1018		ep->rxid = ep->xid;
1019		ep->oxid = ntohs(fh->fh_ox_id);
1020		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1021		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1022			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1023
1024		fc_exch_hold(ep);	/* hold for caller */
1025		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
1026	}
1027	return ep;
1028}
1029
1030/**
1031 * fc_seq_lookup_recip() - Find a sequence where the other end
1032 *			   originated the sequence
1033 * @lport: The local port that the frame was sent to
1034 * @mp:	   The Exchange Manager to lookup the exchange from
1035 * @fp:	   The frame associated with the sequence we're looking for
1036 *
1037 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1038 * on the ep that should be released by the caller.
1039 */
1040static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1041						 struct fc_exch_mgr *mp,
1042						 struct fc_frame *fp)
1043{
1044	struct fc_frame_header *fh = fc_frame_header_get(fp);
1045	struct fc_exch *ep = NULL;
1046	struct fc_seq *sp = NULL;
1047	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1048	u32 f_ctl;
1049	u16 xid;
1050
1051	f_ctl = ntoh24(fh->fh_f_ctl);
1052	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1053
1054	/*
1055	 * Lookup or create the exchange if we will be creating the sequence.
1056	 */
1057	if (f_ctl & FC_FC_EX_CTX) {
1058		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
1059		ep = fc_exch_find(mp, xid);
1060		if (!ep) {
1061			atomic_inc(&mp->stats.xid_not_found);
1062			reject = FC_RJT_OX_ID;
1063			goto out;
1064		}
1065		if (ep->rxid == FC_XID_UNKNOWN)
1066			ep->rxid = ntohs(fh->fh_rx_id);
1067		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1068			reject = FC_RJT_OX_ID;
1069			goto rel;
1070		}
1071	} else {
1072		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
1073
1074		/*
1075		 * Special case for MDS issuing an ELS TEST with a
1076		 * bad rxid of 0.
1077		 * XXX take this out once we do the proper reject.
1078		 */
1079		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1080		    fc_frame_payload_op(fp) == ELS_TEST) {
1081			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1082			xid = FC_XID_UNKNOWN;
1083		}
1084
1085		/*
1086		 * new sequence - find the exchange
1087		 */
1088		ep = fc_exch_find(mp, xid);
1089		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1090			if (ep) {
1091				atomic_inc(&mp->stats.xid_busy);
1092				reject = FC_RJT_RX_ID;
1093				goto rel;
1094			}
1095			ep = fc_exch_resp(lport, mp, fp);
1096			if (!ep) {
1097				reject = FC_RJT_EXCH_EST;	/* XXX */
1098				goto out;
1099			}
1100			xid = ep->xid;	/* get our XID */
1101		} else if (!ep) {
1102			atomic_inc(&mp->stats.xid_not_found);
1103			reject = FC_RJT_RX_ID;	/* XID not found */
1104			goto out;
1105		}
1106	}
1107
1108	spin_lock_bh(&ep->ex_lock);
1109	/*
1110	 * At this point, we have the exchange held.
1111	 * Find or create the sequence.
1112	 */
1113	if (fc_sof_is_init(fr_sof(fp))) {
1114		sp = &ep->seq;
1115		sp->ssb_stat |= SSB_ST_RESP;
1116		sp->id = fh->fh_seq_id;
1117	} else {
1118		sp = &ep->seq;
1119		if (sp->id != fh->fh_seq_id) {
1120			atomic_inc(&mp->stats.seq_not_found);
1121			if (f_ctl & FC_FC_END_SEQ) {
1122				/*
1123				 * Update sequence_id based on incoming last
1124				 * frame of sequence exchange. This is needed
1125				 * for FC target where DDP has been used
1126				 * on target where, stack is indicated only
1127				 * about last frame's (payload _header) header.
1128				 * Whereas "seq_id" which is part of
1129				 * frame_header is allocated by initiator
1130				 * which is totally different from "seq_id"
1131				 * allocated when XFER_RDY was sent by target.
1132				 * To avoid false -ve which results into not
1133				 * sending RSP, hence write request on other
1134				 * end never finishes.
1135				 */
1136				sp->ssb_stat |= SSB_ST_RESP;
1137				sp->id = fh->fh_seq_id;
1138			} else {
1139				spin_unlock_bh(&ep->ex_lock);
1140
1141				/* sequence/exch should exist */
1142				reject = FC_RJT_SEQ_ID;
1143				goto rel;
1144			}
1145		}
1146	}
1147	WARN_ON(ep != fc_seq_exch(sp));
1148
1149	if (f_ctl & FC_FC_SEQ_INIT)
1150		ep->esb_stat |= ESB_ST_SEQ_INIT;
1151	spin_unlock_bh(&ep->ex_lock);
1152
1153	fr_seq(fp) = sp;
1154out:
1155	return reject;
1156rel:
1157	fc_exch_done(&ep->seq);
1158	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1159	return reject;
1160}
1161
1162/**
1163 * fc_seq_lookup_orig() - Find a sequence where this end
1164 *			  originated the sequence
1165 * @mp:	   The Exchange Manager to lookup the exchange from
1166 * @fp:	   The frame associated with the sequence we're looking for
1167 *
1168 * Does not hold the sequence for the caller.
1169 */
1170static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1171					 struct fc_frame *fp)
1172{
1173	struct fc_frame_header *fh = fc_frame_header_get(fp);
1174	struct fc_exch *ep;
1175	struct fc_seq *sp = NULL;
1176	u32 f_ctl;
1177	u16 xid;
1178
1179	f_ctl = ntoh24(fh->fh_f_ctl);
1180	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1181	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1182	ep = fc_exch_find(mp, xid);
1183	if (!ep)
1184		return NULL;
1185	if (ep->seq.id == fh->fh_seq_id) {
1186		/*
1187		 * Save the RX_ID if we didn't previously know it.
1188		 */
1189		sp = &ep->seq;
1190		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1191		    ep->rxid == FC_XID_UNKNOWN) {
1192			ep->rxid = ntohs(fh->fh_rx_id);
1193		}
1194	}
1195	fc_exch_release(ep);
1196	return sp;
1197}
1198
1199/**
1200 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1201 * @ep:	     The exchange to set the addresses for
1202 * @orig_id: The originator's ID
1203 * @resp_id: The responder's ID
1204 *
1205 * Note this must be done before the first sequence of the exchange is sent.
1206 */
1207static void fc_exch_set_addr(struct fc_exch *ep,
1208			     u32 orig_id, u32 resp_id)
1209{
1210	ep->oid = orig_id;
1211	if (ep->esb_stat & ESB_ST_RESP) {
1212		ep->sid = resp_id;
1213		ep->did = orig_id;
1214	} else {
1215		ep->sid = orig_id;
1216		ep->did = resp_id;
1217	}
1218}
1219
1220/**
1221 * fc_seq_els_rsp_send() - Send an ELS response using information from
1222 *			   the existing sequence/exchange.
1223 * @fp:	      The received frame
1224 * @els_cmd:  The ELS command to be sent
1225 * @els_data: The ELS data to be sent
1226 *
1227 * The received frame is not freed.
1228 */
1229void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1230			 struct fc_seq_els_data *els_data)
1231{
1232	switch (els_cmd) {
1233	case ELS_LS_RJT:
1234		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1235		break;
1236	case ELS_LS_ACC:
1237		fc_seq_ls_acc(fp);
1238		break;
1239	case ELS_RRQ:
1240		fc_exch_els_rrq(fp);
1241		break;
1242	case ELS_REC:
1243		fc_exch_els_rec(fp);
1244		break;
1245	default:
1246		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1247	}
1248}
1249EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1250
1251/**
1252 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1253 * @sp:	     The sequence that is to be sent
1254 * @fp:	     The frame that will be sent on the sequence
1255 * @rctl:    The R_CTL information to be sent
1256 * @fh_type: The frame header type
1257 */
1258static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1259			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1260{
1261	u32 f_ctl;
1262	struct fc_exch *ep = fc_seq_exch(sp);
1263
1264	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1265	f_ctl |= ep->f_ctl;
1266	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1267	fc_seq_send_locked(ep->lp, sp, fp);
1268}
1269
1270/**
1271 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1272 * @sp:	   The sequence to send the ACK on
1273 * @rx_fp: The received frame that is being acknoledged
1274 *
1275 * Send ACK_1 (or equiv.) indicating we received something.
1276 */
1277static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1278{
1279	struct fc_frame *fp;
1280	struct fc_frame_header *rx_fh;
1281	struct fc_frame_header *fh;
1282	struct fc_exch *ep = fc_seq_exch(sp);
1283	struct fc_lport *lport = ep->lp;
1284	unsigned int f_ctl;
1285
1286	/*
1287	 * Don't send ACKs for class 3.
1288	 */
1289	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1290		fp = fc_frame_alloc(lport, 0);
1291		if (!fp) {
1292			FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1293			return;
1294		}
1295
1296		fh = fc_frame_header_get(fp);
1297		fh->fh_r_ctl = FC_RCTL_ACK_1;
1298		fh->fh_type = FC_TYPE_BLS;
1299
1300		/*
1301		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1302		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1303		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1304		 * Last ACK uses bits 7-6 (continue sequence),
1305		 * bits 5-4 are meaningful (what kind of ACK to use).
1306		 */
1307		rx_fh = fc_frame_header_get(rx_fp);
1308		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1309		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1310			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1311			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1312			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1313		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1314		hton24(fh->fh_f_ctl, f_ctl);
1315
1316		fc_exch_setup_hdr(ep, fp, f_ctl);
1317		fh->fh_seq_id = rx_fh->fh_seq_id;
1318		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1319		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1320
1321		fr_sof(fp) = fr_sof(rx_fp);
1322		if (f_ctl & FC_FC_END_SEQ)
1323			fr_eof(fp) = FC_EOF_T;
1324		else
1325			fr_eof(fp) = FC_EOF_N;
1326
1327		lport->tt.frame_send(lport, fp);
1328	}
1329}
1330
1331/**
1332 * fc_exch_send_ba_rjt() - Send BLS Reject
1333 * @rx_fp:  The frame being rejected
1334 * @reason: The reason the frame is being rejected
1335 * @explan: The explanation for the rejection
1336 *
1337 * This is for rejecting BA_ABTS only.
1338 */
1339static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1340				enum fc_ba_rjt_reason reason,
1341				enum fc_ba_rjt_explan explan)
1342{
1343	struct fc_frame *fp;
1344	struct fc_frame_header *rx_fh;
1345	struct fc_frame_header *fh;
1346	struct fc_ba_rjt *rp;
1347	struct fc_seq *sp;
1348	struct fc_lport *lport;
1349	unsigned int f_ctl;
1350
1351	lport = fr_dev(rx_fp);
1352	sp = fr_seq(rx_fp);
1353	fp = fc_frame_alloc(lport, sizeof(*rp));
1354	if (!fp) {
1355		FC_EXCH_DBG(fc_seq_exch(sp),
1356			     "Drop BA_RJT request, out of memory\n");
1357		return;
1358	}
1359	fh = fc_frame_header_get(fp);
1360	rx_fh = fc_frame_header_get(rx_fp);
1361
1362	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1363
1364	rp = fc_frame_payload_get(fp, sizeof(*rp));
1365	rp->br_reason = reason;
1366	rp->br_explan = explan;
1367
1368	/*
1369	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1370	 */
1371	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1372	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1373	fh->fh_ox_id = rx_fh->fh_ox_id;
1374	fh->fh_rx_id = rx_fh->fh_rx_id;
1375	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1376	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1377	fh->fh_type = FC_TYPE_BLS;
1378
1379	/*
1380	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1381	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1382	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1383	 * Last ACK uses bits 7-6 (continue sequence),
1384	 * bits 5-4 are meaningful (what kind of ACK to use).
1385	 * Always set LAST_SEQ, END_SEQ.
1386	 */
1387	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1388	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1389		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1390		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1391	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1392	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1393	f_ctl &= ~FC_FC_FIRST_SEQ;
1394	hton24(fh->fh_f_ctl, f_ctl);
1395
1396	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1397	fr_eof(fp) = FC_EOF_T;
1398	if (fc_sof_needs_ack(fr_sof(fp)))
1399		fr_eof(fp) = FC_EOF_N;
1400
1401	lport->tt.frame_send(lport, fp);
1402}
1403
1404/**
1405 * fc_exch_recv_abts() - Handle an incoming ABTS
1406 * @ep:	   The exchange the abort was on
1407 * @rx_fp: The ABTS frame
1408 *
1409 * This would be for target mode usually, but could be due to lost
1410 * FCP transfer ready, confirm or RRQ. We always handle this as an
1411 * exchange abort, ignoring the parameter.
1412 */
1413static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1414{
1415	struct fc_frame *fp;
1416	struct fc_ba_acc *ap;
1417	struct fc_frame_header *fh;
1418	struct fc_seq *sp;
1419
1420	if (!ep)
1421		goto reject;
1422
1423	FC_EXCH_DBG(ep, "exch: ABTS received\n");
1424	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1425	if (!fp) {
1426		FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1427		goto free;
1428	}
1429
1430	spin_lock_bh(&ep->ex_lock);
1431	if (ep->esb_stat & ESB_ST_COMPLETE) {
1432		spin_unlock_bh(&ep->ex_lock);
1433		FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1434		fc_frame_free(fp);
1435		goto reject;
1436	}
1437	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1438		ep->esb_stat |= ESB_ST_REC_QUAL;
1439		fc_exch_hold(ep);		/* hold for REC_QUAL */
1440	}
1441	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1442	fh = fc_frame_header_get(fp);
1443	ap = fc_frame_payload_get(fp, sizeof(*ap));
1444	memset(ap, 0, sizeof(*ap));
1445	sp = &ep->seq;
1446	ap->ba_high_seq_cnt = htons(0xffff);
1447	if (sp->ssb_stat & SSB_ST_RESP) {
1448		ap->ba_seq_id = sp->id;
1449		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1450		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1451		ap->ba_low_seq_cnt = htons(sp->cnt);
1452	}
1453	sp = fc_seq_start_next_locked(sp);
1454	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1455	ep->esb_stat |= ESB_ST_ABNORMAL;
1456	spin_unlock_bh(&ep->ex_lock);
1457
1458free:
1459	fc_frame_free(rx_fp);
1460	return;
1461
1462reject:
1463	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1464	goto free;
1465}
1466
1467/**
1468 * fc_seq_assign() - Assign exchange and sequence for incoming request
1469 * @lport: The local port that received the request
1470 * @fp:    The request frame
1471 *
1472 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1473 * A reference will be held on the exchange/sequence for the caller, which
1474 * must call fc_seq_release().
1475 */
1476struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1477{
1478	struct fc_exch_mgr_anchor *ema;
1479
1480	WARN_ON(lport != fr_dev(fp));
1481	WARN_ON(fr_seq(fp));
1482	fr_seq(fp) = NULL;
1483
1484	list_for_each_entry(ema, &lport->ema_list, ema_list)
1485		if ((!ema->match || ema->match(fp)) &&
1486		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1487			break;
1488	return fr_seq(fp);
1489}
1490EXPORT_SYMBOL(fc_seq_assign);
1491
1492/**
1493 * fc_seq_release() - Release the hold
1494 * @sp:    The sequence.
1495 */
1496void fc_seq_release(struct fc_seq *sp)
1497{
1498	fc_exch_release(fc_seq_exch(sp));
1499}
1500EXPORT_SYMBOL(fc_seq_release);
1501
1502/**
1503 * fc_exch_recv_req() - Handler for an incoming request
1504 * @lport: The local port that received the request
1505 * @mp:	   The EM that the exchange is on
1506 * @fp:	   The request frame
1507 *
1508 * This is used when the other end is originating the exchange
1509 * and the sequence.
1510 */
1511static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1512			     struct fc_frame *fp)
1513{
1514	struct fc_frame_header *fh = fc_frame_header_get(fp);
1515	struct fc_seq *sp = NULL;
1516	struct fc_exch *ep = NULL;
1517	enum fc_pf_rjt_reason reject;
1518
1519	/* We can have the wrong fc_lport at this point with NPIV, which is a
1520	 * problem now that we know a new exchange needs to be allocated
1521	 */
1522	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1523	if (!lport) {
1524		fc_frame_free(fp);
1525		return;
1526	}
1527	fr_dev(fp) = lport;
1528
1529	BUG_ON(fr_seq(fp));		/* XXX remove later */
1530
1531	/*
1532	 * If the RX_ID is 0xffff, don't allocate an exchange.
1533	 * The upper-level protocol may request one later, if needed.
1534	 */
1535	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1536		return fc_lport_recv(lport, fp);
1537
1538	reject = fc_seq_lookup_recip(lport, mp, fp);
1539	if (reject == FC_RJT_NONE) {
1540		sp = fr_seq(fp);	/* sequence will be held */
1541		ep = fc_seq_exch(sp);
1542		fc_seq_send_ack(sp, fp);
1543		ep->encaps = fr_encaps(fp);
1544
1545		/*
1546		 * Call the receive function.
1547		 *
1548		 * The receive function may allocate a new sequence
1549		 * over the old one, so we shouldn't change the
1550		 * sequence after this.
1551		 *
1552		 * The frame will be freed by the receive function.
1553		 * If new exch resp handler is valid then call that
1554		 * first.
1555		 */
1556		if (!fc_invoke_resp(ep, sp, fp))
1557			fc_lport_recv(lport, fp);
1558		fc_exch_release(ep);	/* release from lookup */
1559	} else {
1560		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1561			     reject);
1562		fc_frame_free(fp);
1563	}
1564}
1565
1566/**
1567 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1568 *			     end is the originator of the sequence that is a
1569 *			     response to our initial exchange
1570 * @mp: The EM that the exchange is on
1571 * @fp: The response frame
1572 */
1573static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1574{
1575	struct fc_frame_header *fh = fc_frame_header_get(fp);
1576	struct fc_seq *sp;
1577	struct fc_exch *ep;
1578	enum fc_sof sof;
1579	u32 f_ctl;
1580	int rc;
1581
1582	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1583	if (!ep) {
1584		atomic_inc(&mp->stats.xid_not_found);
1585		goto out;
1586	}
1587	if (ep->esb_stat & ESB_ST_COMPLETE) {
1588		atomic_inc(&mp->stats.xid_not_found);
1589		goto rel;
1590	}
1591	if (ep->rxid == FC_XID_UNKNOWN)
1592		ep->rxid = ntohs(fh->fh_rx_id);
1593	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1594		atomic_inc(&mp->stats.xid_not_found);
1595		goto rel;
1596	}
1597	if (ep->did != ntoh24(fh->fh_s_id) &&
1598	    ep->did != FC_FID_FLOGI) {
1599		atomic_inc(&mp->stats.xid_not_found);
1600		goto rel;
1601	}
1602	sof = fr_sof(fp);
1603	sp = &ep->seq;
1604	if (fc_sof_is_init(sof)) {
1605		sp->ssb_stat |= SSB_ST_RESP;
1606		sp->id = fh->fh_seq_id;
1607	}
1608
1609	f_ctl = ntoh24(fh->fh_f_ctl);
1610	fr_seq(fp) = sp;
1611
1612	spin_lock_bh(&ep->ex_lock);
1613	if (f_ctl & FC_FC_SEQ_INIT)
1614		ep->esb_stat |= ESB_ST_SEQ_INIT;
1615	spin_unlock_bh(&ep->ex_lock);
1616
1617	if (fc_sof_needs_ack(sof))
1618		fc_seq_send_ack(sp, fp);
1619
1620	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1621	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1622	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1623		spin_lock_bh(&ep->ex_lock);
1624		rc = fc_exch_done_locked(ep);
1625		WARN_ON(fc_seq_exch(sp) != ep);
1626		spin_unlock_bh(&ep->ex_lock);
1627		if (!rc)
1628			fc_exch_delete(ep);
 
 
 
 
 
1629	}
1630
1631	/*
1632	 * Call the receive function.
1633	 * The sequence is held (has a refcnt) for us,
1634	 * but not for the receive function.
1635	 *
1636	 * The receive function may allocate a new sequence
1637	 * over the old one, so we shouldn't change the
1638	 * sequence after this.
1639	 *
1640	 * The frame will be freed by the receive function.
1641	 * If new exch resp handler is valid then call that
1642	 * first.
1643	 */
1644	if (!fc_invoke_resp(ep, sp, fp))
1645		fc_frame_free(fp);
1646
 
1647	fc_exch_release(ep);
1648	return;
1649rel:
1650	fc_exch_release(ep);
1651out:
1652	fc_frame_free(fp);
1653}
1654
1655/**
1656 * fc_exch_recv_resp() - Handler for a sequence where other end is
1657 *			 responding to our sequence
1658 * @mp: The EM that the exchange is on
1659 * @fp: The response frame
1660 */
1661static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1662{
1663	struct fc_seq *sp;
1664
1665	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1666
1667	if (!sp)
1668		atomic_inc(&mp->stats.xid_not_found);
1669	else
1670		atomic_inc(&mp->stats.non_bls_resp);
1671
1672	fc_frame_free(fp);
1673}
1674
1675/**
1676 * fc_exch_abts_resp() - Handler for a response to an ABT
1677 * @ep: The exchange that the frame is on
1678 * @fp: The response frame
1679 *
1680 * This response would be to an ABTS cancelling an exchange or sequence.
1681 * The response can be either BA_ACC or BA_RJT
1682 */
1683static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1684{
1685	struct fc_frame_header *fh;
1686	struct fc_ba_acc *ap;
1687	struct fc_seq *sp;
1688	u16 low;
1689	u16 high;
1690	int rc = 1, has_rec = 0;
1691
1692	fh = fc_frame_header_get(fp);
1693	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1694		    fc_exch_rctl_name(fh->fh_r_ctl));
1695
1696	if (cancel_delayed_work_sync(&ep->timeout_work)) {
1697		FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1698		fc_exch_release(ep);	/* release from pending timer hold */
 
1699	}
1700
1701	spin_lock_bh(&ep->ex_lock);
1702	switch (fh->fh_r_ctl) {
1703	case FC_RCTL_BA_ACC:
1704		ap = fc_frame_payload_get(fp, sizeof(*ap));
1705		if (!ap)
1706			break;
1707
1708		/*
1709		 * Decide whether to establish a Recovery Qualifier.
1710		 * We do this if there is a non-empty SEQ_CNT range and
1711		 * SEQ_ID is the same as the one we aborted.
1712		 */
1713		low = ntohs(ap->ba_low_seq_cnt);
1714		high = ntohs(ap->ba_high_seq_cnt);
1715		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1716		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1717		     ap->ba_seq_id == ep->seq_id) && low != high) {
1718			ep->esb_stat |= ESB_ST_REC_QUAL;
1719			fc_exch_hold(ep);  /* hold for recovery qualifier */
1720			has_rec = 1;
1721		}
1722		break;
1723	case FC_RCTL_BA_RJT:
1724		break;
1725	default:
1726		break;
1727	}
1728
1729	/* do we need to do some other checks here. Can we reuse more of
1730	 * fc_exch_recv_seq_resp
1731	 */
1732	sp = &ep->seq;
1733	/*
1734	 * do we want to check END_SEQ as well as LAST_SEQ here?
1735	 */
1736	if (ep->fh_type != FC_TYPE_FCP &&
1737	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1738		rc = fc_exch_done_locked(ep);
1739	spin_unlock_bh(&ep->ex_lock);
1740
1741	fc_exch_hold(ep);
1742	if (!rc)
1743		fc_exch_delete(ep);
1744	if (!fc_invoke_resp(ep, sp, fp))
1745		fc_frame_free(fp);
1746	if (has_rec)
1747		fc_exch_timer_set(ep, ep->r_a_tov);
1748	fc_exch_release(ep);
1749}
1750
1751/**
1752 * fc_exch_recv_bls() - Handler for a BLS sequence
1753 * @mp: The EM that the exchange is on
1754 * @fp: The request frame
1755 *
1756 * The BLS frame is always a sequence initiated by the remote side.
1757 * We may be either the originator or recipient of the exchange.
1758 */
1759static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1760{
1761	struct fc_frame_header *fh;
1762	struct fc_exch *ep;
1763	u32 f_ctl;
1764
1765	fh = fc_frame_header_get(fp);
1766	f_ctl = ntoh24(fh->fh_f_ctl);
1767	fr_seq(fp) = NULL;
1768
1769	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1770			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1771	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1772		spin_lock_bh(&ep->ex_lock);
1773		ep->esb_stat |= ESB_ST_SEQ_INIT;
1774		spin_unlock_bh(&ep->ex_lock);
1775	}
1776	if (f_ctl & FC_FC_SEQ_CTX) {
1777		/*
1778		 * A response to a sequence we initiated.
1779		 * This should only be ACKs for class 2 or F.
1780		 */
1781		switch (fh->fh_r_ctl) {
1782		case FC_RCTL_ACK_1:
1783		case FC_RCTL_ACK_0:
1784			break;
1785		default:
1786			if (ep)
1787				FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1788					    fh->fh_r_ctl,
1789					    fc_exch_rctl_name(fh->fh_r_ctl));
1790			break;
1791		}
1792		fc_frame_free(fp);
1793	} else {
1794		switch (fh->fh_r_ctl) {
1795		case FC_RCTL_BA_RJT:
1796		case FC_RCTL_BA_ACC:
1797			if (ep)
1798				fc_exch_abts_resp(ep, fp);
1799			else
1800				fc_frame_free(fp);
1801			break;
1802		case FC_RCTL_BA_ABTS:
1803			if (ep)
1804				fc_exch_recv_abts(ep, fp);
1805			else
1806				fc_frame_free(fp);
1807			break;
1808		default:			/* ignore junk */
1809			fc_frame_free(fp);
1810			break;
1811		}
1812	}
1813	if (ep)
1814		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1815}
1816
1817/**
1818 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1819 * @rx_fp: The received frame, not freed here.
1820 *
1821 * If this fails due to allocation or transmit congestion, assume the
1822 * originator will repeat the sequence.
1823 */
1824static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1825{
1826	struct fc_lport *lport;
1827	struct fc_els_ls_acc *acc;
1828	struct fc_frame *fp;
1829	struct fc_seq *sp;
1830
1831	lport = fr_dev(rx_fp);
1832	sp = fr_seq(rx_fp);
1833	fp = fc_frame_alloc(lport, sizeof(*acc));
1834	if (!fp) {
1835		FC_EXCH_DBG(fc_seq_exch(sp),
1836			    "exch: drop LS_ACC, out of memory\n");
1837		return;
1838	}
1839	acc = fc_frame_payload_get(fp, sizeof(*acc));
1840	memset(acc, 0, sizeof(*acc));
1841	acc->la_cmd = ELS_LS_ACC;
1842	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1843	lport->tt.frame_send(lport, fp);
1844}
1845
1846/**
1847 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1848 * @rx_fp: The received frame, not freed here.
1849 * @reason: The reason the sequence is being rejected
1850 * @explan: The explanation for the rejection
1851 *
1852 * If this fails due to allocation or transmit congestion, assume the
1853 * originator will repeat the sequence.
1854 */
1855static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1856			  enum fc_els_rjt_explan explan)
1857{
1858	struct fc_lport *lport;
1859	struct fc_els_ls_rjt *rjt;
1860	struct fc_frame *fp;
1861	struct fc_seq *sp;
1862
1863	lport = fr_dev(rx_fp);
1864	sp = fr_seq(rx_fp);
1865	fp = fc_frame_alloc(lport, sizeof(*rjt));
1866	if (!fp) {
1867		FC_EXCH_DBG(fc_seq_exch(sp),
1868			    "exch: drop LS_ACC, out of memory\n");
1869		return;
1870	}
1871	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1872	memset(rjt, 0, sizeof(*rjt));
1873	rjt->er_cmd = ELS_LS_RJT;
1874	rjt->er_reason = reason;
1875	rjt->er_explan = explan;
1876	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1877	lport->tt.frame_send(lport, fp);
1878}
1879
1880/**
1881 * fc_exch_reset() - Reset an exchange
1882 * @ep: The exchange to be reset
1883 *
1884 * Note: May sleep if invoked from outside a response handler.
1885 */
1886static void fc_exch_reset(struct fc_exch *ep)
1887{
1888	struct fc_seq *sp;
1889	int rc = 1;
1890
1891	spin_lock_bh(&ep->ex_lock);
1892	ep->state |= FC_EX_RST_CLEANUP;
1893	fc_exch_timer_cancel(ep);
1894	if (ep->esb_stat & ESB_ST_REC_QUAL)
1895		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1896	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1897	sp = &ep->seq;
1898	rc = fc_exch_done_locked(ep);
1899	spin_unlock_bh(&ep->ex_lock);
1900
1901	fc_exch_hold(ep);
1902
1903	if (!rc)
1904		fc_exch_delete(ep);
 
 
 
 
 
1905
1906	fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
 
1907	fc_seq_set_resp(sp, NULL, ep->arg);
1908	fc_exch_release(ep);
1909}
1910
1911/**
1912 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1913 * @lport: The local port that the exchange pool is on
1914 * @pool:  The exchange pool to be reset
1915 * @sid:   The source ID
1916 * @did:   The destination ID
1917 *
1918 * Resets a per cpu exches pool, releasing all of its sequences
1919 * and exchanges. If sid is non-zero then reset only exchanges
1920 * we sourced from the local port's FID. If did is non-zero then
1921 * only reset exchanges destined for the local port's FID.
1922 */
1923static void fc_exch_pool_reset(struct fc_lport *lport,
1924			       struct fc_exch_pool *pool,
1925			       u32 sid, u32 did)
1926{
1927	struct fc_exch *ep;
1928	struct fc_exch *next;
1929
1930	spin_lock_bh(&pool->lock);
1931restart:
1932	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1933		if ((lport == ep->lp) &&
1934		    (sid == 0 || sid == ep->sid) &&
1935		    (did == 0 || did == ep->did)) {
1936			fc_exch_hold(ep);
1937			spin_unlock_bh(&pool->lock);
1938
1939			fc_exch_reset(ep);
1940
1941			fc_exch_release(ep);
1942			spin_lock_bh(&pool->lock);
1943
1944			/*
1945			 * must restart loop incase while lock
1946			 * was down multiple eps were released.
1947			 */
1948			goto restart;
1949		}
1950	}
1951	pool->next_index = 0;
1952	pool->left = FC_XID_UNKNOWN;
1953	pool->right = FC_XID_UNKNOWN;
1954	spin_unlock_bh(&pool->lock);
1955}
1956
1957/**
1958 * fc_exch_mgr_reset() - Reset all EMs of a local port
1959 * @lport: The local port whose EMs are to be reset
1960 * @sid:   The source ID
1961 * @did:   The destination ID
1962 *
1963 * Reset all EMs associated with a given local port. Release all
1964 * sequences and exchanges. If sid is non-zero then reset only the
1965 * exchanges sent from the local port's FID. If did is non-zero then
1966 * reset only exchanges destined for the local port's FID.
1967 */
1968void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1969{
1970	struct fc_exch_mgr_anchor *ema;
1971	unsigned int cpu;
1972
1973	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1974		for_each_possible_cpu(cpu)
1975			fc_exch_pool_reset(lport,
1976					   per_cpu_ptr(ema->mp->pool, cpu),
1977					   sid, did);
1978	}
1979}
1980EXPORT_SYMBOL(fc_exch_mgr_reset);
1981
1982/**
1983 * fc_exch_lookup() - find an exchange
1984 * @lport: The local port
1985 * @xid: The exchange ID
1986 *
1987 * Returns exchange pointer with hold for caller, or NULL if not found.
1988 */
1989static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1990{
1991	struct fc_exch_mgr_anchor *ema;
1992
1993	list_for_each_entry(ema, &lport->ema_list, ema_list)
1994		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1995			return fc_exch_find(ema->mp, xid);
1996	return NULL;
1997}
1998
1999/**
2000 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
2001 * @rfp: The REC frame, not freed here.
2002 *
2003 * Note that the requesting port may be different than the S_ID in the request.
2004 */
2005static void fc_exch_els_rec(struct fc_frame *rfp)
2006{
2007	struct fc_lport *lport;
2008	struct fc_frame *fp;
2009	struct fc_exch *ep;
2010	struct fc_els_rec *rp;
2011	struct fc_els_rec_acc *acc;
2012	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2013	enum fc_els_rjt_explan explan;
2014	u32 sid;
2015	u16 xid, rxid, oxid;
2016
2017	lport = fr_dev(rfp);
2018	rp = fc_frame_payload_get(rfp, sizeof(*rp));
2019	explan = ELS_EXPL_INV_LEN;
2020	if (!rp)
2021		goto reject;
2022	sid = ntoh24(rp->rec_s_id);
2023	rxid = ntohs(rp->rec_rx_id);
2024	oxid = ntohs(rp->rec_ox_id);
2025
2026	explan = ELS_EXPL_OXID_RXID;
2027	if (sid == fc_host_port_id(lport->host))
2028		xid = oxid;
2029	else
2030		xid = rxid;
2031	if (xid == FC_XID_UNKNOWN) {
2032		FC_LPORT_DBG(lport,
2033			     "REC request from %x: invalid rxid %x oxid %x\n",
2034			     sid, rxid, oxid);
2035		goto reject;
2036	}
2037	ep = fc_exch_lookup(lport, xid);
2038	if (!ep) {
2039		FC_LPORT_DBG(lport,
2040			     "REC request from %x: rxid %x oxid %x not found\n",
2041			     sid, rxid, oxid);
2042		goto reject;
2043	}
2044	FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2045		    sid, rxid, oxid);
2046	if (ep->oid != sid || oxid != ep->oxid)
2047		goto rel;
2048	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2049		goto rel;
2050	fp = fc_frame_alloc(lport, sizeof(*acc));
2051	if (!fp) {
2052		FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2053		goto out;
2054	}
2055
2056	acc = fc_frame_payload_get(fp, sizeof(*acc));
2057	memset(acc, 0, sizeof(*acc));
2058	acc->reca_cmd = ELS_LS_ACC;
2059	acc->reca_ox_id = rp->rec_ox_id;
2060	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2061	acc->reca_rx_id = htons(ep->rxid);
2062	if (ep->sid == ep->oid)
2063		hton24(acc->reca_rfid, ep->did);
2064	else
2065		hton24(acc->reca_rfid, ep->sid);
2066	acc->reca_fc4value = htonl(ep->seq.rec_data);
2067	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2068						 ESB_ST_SEQ_INIT |
2069						 ESB_ST_COMPLETE));
2070	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2071	lport->tt.frame_send(lport, fp);
2072out:
2073	fc_exch_release(ep);
2074	return;
2075
2076rel:
2077	fc_exch_release(ep);
2078reject:
2079	fc_seq_ls_rjt(rfp, reason, explan);
2080}
2081
2082/**
2083 * fc_exch_rrq_resp() - Handler for RRQ responses
2084 * @sp:	 The sequence that the RRQ is on
2085 * @fp:	 The RRQ frame
2086 * @arg: The exchange that the RRQ is on
2087 *
2088 * TODO: fix error handler.
2089 */
2090static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2091{
2092	struct fc_exch *aborted_ep = arg;
2093	unsigned int op;
2094
2095	if (IS_ERR(fp)) {
2096		int err = PTR_ERR(fp);
2097
2098		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2099			goto cleanup;
2100		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2101			    "frame error %d\n", err);
2102		return;
2103	}
2104
2105	op = fc_frame_payload_op(fp);
2106	fc_frame_free(fp);
2107
2108	switch (op) {
2109	case ELS_LS_RJT:
2110		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2111		fallthrough;
2112	case ELS_LS_ACC:
2113		goto cleanup;
2114	default:
2115		FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2116			    op);
2117		return;
2118	}
2119
2120cleanup:
2121	fc_exch_done(&aborted_ep->seq);
2122	/* drop hold for rec qual */
2123	fc_exch_release(aborted_ep);
2124}
2125
2126
2127/**
2128 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2129 * @lport:	The local port to send the frame on
2130 * @fp:		The frame to be sent
2131 * @resp:	The response handler for this request
2132 * @destructor: The destructor for the exchange
2133 * @arg:	The argument to be passed to the response handler
2134 * @timer_msec: The timeout period for the exchange
2135 *
2136 * The exchange response handler is set in this routine to resp()
2137 * function pointer. It can be called in two scenarios: if a timeout
2138 * occurs or if a response frame is received for the exchange. The
2139 * fc_frame pointer in response handler will also indicate timeout
2140 * as error using IS_ERR related macros.
2141 *
2142 * The exchange destructor handler is also set in this routine.
2143 * The destructor handler is invoked by EM layer when exchange
2144 * is about to free, this can be used by caller to free its
2145 * resources along with exchange free.
2146 *
2147 * The arg is passed back to resp and destructor handler.
2148 *
2149 * The timeout value (in msec) for an exchange is set if non zero
2150 * timer_msec argument is specified. The timer is canceled when
2151 * it fires or when the exchange is done. The exchange timeout handler
2152 * is registered by EM layer.
2153 *
2154 * The frame pointer with some of the header's fields must be
2155 * filled before calling this routine, those fields are:
2156 *
2157 * - routing control
2158 * - FC port did
2159 * - FC port sid
2160 * - FC header type
2161 * - frame control
2162 * - parameter or relative offset
2163 */
2164struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2165				struct fc_frame *fp,
2166				void (*resp)(struct fc_seq *,
2167					     struct fc_frame *fp,
2168					     void *arg),
2169				void (*destructor)(struct fc_seq *, void *),
2170				void *arg, u32 timer_msec)
2171{
2172	struct fc_exch *ep;
2173	struct fc_seq *sp = NULL;
2174	struct fc_frame_header *fh;
2175	struct fc_fcp_pkt *fsp = NULL;
2176	int rc = 1;
2177
2178	ep = fc_exch_alloc(lport, fp);
2179	if (!ep) {
2180		fc_frame_free(fp);
2181		return NULL;
2182	}
2183	ep->esb_stat |= ESB_ST_SEQ_INIT;
2184	fh = fc_frame_header_get(fp);
2185	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2186	ep->resp = resp;
2187	ep->destructor = destructor;
2188	ep->arg = arg;
2189	ep->r_a_tov = lport->r_a_tov;
2190	ep->lp = lport;
2191	sp = &ep->seq;
2192
2193	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2194	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2195	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2196	sp->cnt++;
2197
2198	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2199		fsp = fr_fsp(fp);
2200		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2201	}
2202
2203	if (unlikely(lport->tt.frame_send(lport, fp)))
2204		goto err;
2205
2206	if (timer_msec)
2207		fc_exch_timer_set_locked(ep, timer_msec);
2208	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2209
2210	if (ep->f_ctl & FC_FC_SEQ_INIT)
2211		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2212	spin_unlock_bh(&ep->ex_lock);
2213	return sp;
2214err:
2215	if (fsp)
2216		fc_fcp_ddp_done(fsp);
2217	rc = fc_exch_done_locked(ep);
2218	spin_unlock_bh(&ep->ex_lock);
2219	if (!rc)
2220		fc_exch_delete(ep);
2221	return NULL;
2222}
2223EXPORT_SYMBOL(fc_exch_seq_send);
2224
2225/**
2226 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2227 * @ep: The exchange to send the RRQ on
2228 *
2229 * This tells the remote port to stop blocking the use of
2230 * the exchange and the seq_cnt range.
2231 */
2232static void fc_exch_rrq(struct fc_exch *ep)
2233{
2234	struct fc_lport *lport;
2235	struct fc_els_rrq *rrq;
2236	struct fc_frame *fp;
2237	u32 did;
2238
2239	lport = ep->lp;
2240
2241	fp = fc_frame_alloc(lport, sizeof(*rrq));
2242	if (!fp)
2243		goto retry;
2244
2245	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2246	memset(rrq, 0, sizeof(*rrq));
2247	rrq->rrq_cmd = ELS_RRQ;
2248	hton24(rrq->rrq_s_id, ep->sid);
2249	rrq->rrq_ox_id = htons(ep->oxid);
2250	rrq->rrq_rx_id = htons(ep->rxid);
2251
2252	did = ep->did;
2253	if (ep->esb_stat & ESB_ST_RESP)
2254		did = ep->sid;
2255
2256	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2257		       lport->port_id, FC_TYPE_ELS,
2258		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2259
2260	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2261			     lport->e_d_tov))
2262		return;
2263
2264retry:
2265	FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2266	spin_lock_bh(&ep->ex_lock);
2267	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2268		spin_unlock_bh(&ep->ex_lock);
2269		/* drop hold for rec qual */
2270		fc_exch_release(ep);
2271		return;
2272	}
2273	ep->esb_stat |= ESB_ST_REC_QUAL;
2274	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2275	spin_unlock_bh(&ep->ex_lock);
2276}
2277
2278/**
2279 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2280 * @fp: The RRQ frame, not freed here.
2281 */
2282static void fc_exch_els_rrq(struct fc_frame *fp)
2283{
2284	struct fc_lport *lport;
2285	struct fc_exch *ep = NULL;	/* request or subject exchange */
2286	struct fc_els_rrq *rp;
2287	u32 sid;
2288	u16 xid;
2289	enum fc_els_rjt_explan explan;
2290
2291	lport = fr_dev(fp);
2292	rp = fc_frame_payload_get(fp, sizeof(*rp));
2293	explan = ELS_EXPL_INV_LEN;
2294	if (!rp)
2295		goto reject;
2296
2297	/*
2298	 * lookup subject exchange.
2299	 */
2300	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2301	xid = fc_host_port_id(lport->host) == sid ?
2302			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2303	ep = fc_exch_lookup(lport, xid);
2304	explan = ELS_EXPL_OXID_RXID;
2305	if (!ep)
2306		goto reject;
2307	spin_lock_bh(&ep->ex_lock);
2308	FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2309		    sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2310	if (ep->oxid != ntohs(rp->rrq_ox_id))
2311		goto unlock_reject;
2312	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2313	    ep->rxid != FC_XID_UNKNOWN)
2314		goto unlock_reject;
2315	explan = ELS_EXPL_SID;
2316	if (ep->sid != sid)
2317		goto unlock_reject;
2318
2319	/*
2320	 * Clear Recovery Qualifier state, and cancel timer if complete.
2321	 */
2322	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2323		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2324		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2325	}
2326	if (ep->esb_stat & ESB_ST_COMPLETE)
2327		fc_exch_timer_cancel(ep);
2328
2329	spin_unlock_bh(&ep->ex_lock);
2330
2331	/*
2332	 * Send LS_ACC.
2333	 */
2334	fc_seq_ls_acc(fp);
2335	goto out;
2336
2337unlock_reject:
2338	spin_unlock_bh(&ep->ex_lock);
2339reject:
2340	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2341out:
2342	if (ep)
2343		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2344}
2345
2346/**
2347 * fc_exch_update_stats() - update exches stats to lport
2348 * @lport: The local port to update exchange manager stats
2349 */
2350void fc_exch_update_stats(struct fc_lport *lport)
2351{
2352	struct fc_host_statistics *st;
2353	struct fc_exch_mgr_anchor *ema;
2354	struct fc_exch_mgr *mp;
2355
2356	st = &lport->host_stats;
2357
2358	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2359		mp = ema->mp;
2360		st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2361		st->fc_no_free_exch_xid +=
2362				atomic_read(&mp->stats.no_free_exch_xid);
2363		st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2364		st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2365		st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2366		st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2367	}
2368}
2369EXPORT_SYMBOL(fc_exch_update_stats);
2370
2371/**
2372 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2373 * @lport: The local port to add the exchange manager to
2374 * @mp:	   The exchange manager to be added to the local port
2375 * @match: The match routine that indicates when this EM should be used
2376 */
2377struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2378					   struct fc_exch_mgr *mp,
2379					   bool (*match)(struct fc_frame *))
2380{
2381	struct fc_exch_mgr_anchor *ema;
2382
2383	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2384	if (!ema)
2385		return ema;
2386
2387	ema->mp = mp;
2388	ema->match = match;
2389	/* add EM anchor to EM anchors list */
2390	list_add_tail(&ema->ema_list, &lport->ema_list);
2391	kref_get(&mp->kref);
2392	return ema;
2393}
2394EXPORT_SYMBOL(fc_exch_mgr_add);
2395
2396/**
2397 * fc_exch_mgr_destroy() - Destroy an exchange manager
2398 * @kref: The reference to the EM to be destroyed
2399 */
2400static void fc_exch_mgr_destroy(struct kref *kref)
2401{
2402	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2403
2404	mempool_destroy(mp->ep_pool);
2405	free_percpu(mp->pool);
2406	kfree(mp);
2407}
2408
2409/**
2410 * fc_exch_mgr_del() - Delete an EM from a local port's list
2411 * @ema: The exchange manager anchor identifying the EM to be deleted
2412 */
2413void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2414{
2415	/* remove EM anchor from EM anchors list */
2416	list_del(&ema->ema_list);
2417	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2418	kfree(ema);
2419}
2420EXPORT_SYMBOL(fc_exch_mgr_del);
2421
2422/**
2423 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2424 * @src: Source lport to clone exchange managers from
2425 * @dst: New lport that takes references to all the exchange managers
2426 */
2427int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2428{
2429	struct fc_exch_mgr_anchor *ema, *tmp;
2430
2431	list_for_each_entry(ema, &src->ema_list, ema_list) {
2432		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2433			goto err;
2434	}
2435	return 0;
2436err:
2437	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2438		fc_exch_mgr_del(ema);
2439	return -ENOMEM;
2440}
2441EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2442
2443/**
2444 * fc_exch_mgr_alloc() - Allocate an exchange manager
2445 * @lport:   The local port that the new EM will be associated with
2446 * @class:   The default FC class for new exchanges
2447 * @min_xid: The minimum XID for exchanges from the new EM
2448 * @max_xid: The maximum XID for exchanges from the new EM
2449 * @match:   The match routine for the new EM
2450 */
2451struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2452				      enum fc_class class,
2453				      u16 min_xid, u16 max_xid,
2454				      bool (*match)(struct fc_frame *))
2455{
2456	struct fc_exch_mgr *mp;
2457	u16 pool_exch_range;
2458	size_t pool_size;
2459	unsigned int cpu;
2460	struct fc_exch_pool *pool;
2461
2462	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2463	    (min_xid & fc_cpu_mask) != 0) {
2464		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2465			     min_xid, max_xid);
2466		return NULL;
2467	}
2468
2469	/*
2470	 * allocate memory for EM
2471	 */
2472	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2473	if (!mp)
2474		return NULL;
2475
2476	mp->class = class;
2477	mp->lport = lport;
2478	/* adjust em exch xid range for offload */
2479	mp->min_xid = min_xid;
2480
2481       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2482	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2483		sizeof(struct fc_exch *);
2484	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2485		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2486			min_xid - 1;
2487	} else {
2488		mp->max_xid = max_xid;
2489		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2490			(fc_cpu_mask + 1);
2491	}
2492
2493	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2494	if (!mp->ep_pool)
2495		goto free_mp;
2496
2497	/*
2498	 * Setup per cpu exch pool with entire exchange id range equally
2499	 * divided across all cpus. The exch pointers array memory is
2500	 * allocated for exch range per pool.
2501	 */
2502	mp->pool_max_index = pool_exch_range - 1;
2503
2504	/*
2505	 * Allocate and initialize per cpu exch pool
2506	 */
2507	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2508	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2509	if (!mp->pool)
2510		goto free_mempool;
2511	for_each_possible_cpu(cpu) {
2512		pool = per_cpu_ptr(mp->pool, cpu);
2513		pool->next_index = 0;
2514		pool->left = FC_XID_UNKNOWN;
2515		pool->right = FC_XID_UNKNOWN;
2516		spin_lock_init(&pool->lock);
2517		INIT_LIST_HEAD(&pool->ex_list);
2518	}
2519
2520	kref_init(&mp->kref);
2521	if (!fc_exch_mgr_add(lport, mp, match)) {
2522		free_percpu(mp->pool);
2523		goto free_mempool;
2524	}
2525
2526	/*
2527	 * Above kref_init() sets mp->kref to 1 and then
2528	 * call to fc_exch_mgr_add incremented mp->kref again,
2529	 * so adjust that extra increment.
2530	 */
2531	kref_put(&mp->kref, fc_exch_mgr_destroy);
2532	return mp;
2533
2534free_mempool:
2535	mempool_destroy(mp->ep_pool);
2536free_mp:
2537	kfree(mp);
2538	return NULL;
2539}
2540EXPORT_SYMBOL(fc_exch_mgr_alloc);
2541
2542/**
2543 * fc_exch_mgr_free() - Free all exchange managers on a local port
2544 * @lport: The local port whose EMs are to be freed
2545 */
2546void fc_exch_mgr_free(struct fc_lport *lport)
2547{
2548	struct fc_exch_mgr_anchor *ema, *next;
2549
2550	flush_workqueue(fc_exch_workqueue);
2551	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2552		fc_exch_mgr_del(ema);
2553}
2554EXPORT_SYMBOL(fc_exch_mgr_free);
2555
2556/**
2557 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2558 * upon 'xid'.
2559 * @f_ctl: f_ctl
2560 * @lport: The local port the frame was received on
2561 * @fh: The received frame header
2562 */
2563static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2564					      struct fc_lport *lport,
2565					      struct fc_frame_header *fh)
2566{
2567	struct fc_exch_mgr_anchor *ema;
2568	u16 xid;
2569
2570	if (f_ctl & FC_FC_EX_CTX)
2571		xid = ntohs(fh->fh_ox_id);
2572	else {
2573		xid = ntohs(fh->fh_rx_id);
2574		if (xid == FC_XID_UNKNOWN)
2575			return list_entry(lport->ema_list.prev,
2576					  typeof(*ema), ema_list);
2577	}
2578
2579	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2580		if ((xid >= ema->mp->min_xid) &&
2581		    (xid <= ema->mp->max_xid))
2582			return ema;
2583	}
2584	return NULL;
2585}
2586/**
2587 * fc_exch_recv() - Handler for received frames
2588 * @lport: The local port the frame was received on
2589 * @fp:	The received frame
2590 */
2591void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2592{
2593	struct fc_frame_header *fh = fc_frame_header_get(fp);
2594	struct fc_exch_mgr_anchor *ema;
2595	u32 f_ctl;
2596
2597	/* lport lock ? */
2598	if (!lport || lport->state == LPORT_ST_DISABLED) {
2599		FC_LIBFC_DBG("Receiving frames for an lport that "
2600			     "has not been initialized correctly\n");
2601		fc_frame_free(fp);
2602		return;
2603	}
2604
2605	f_ctl = ntoh24(fh->fh_f_ctl);
2606	ema = fc_find_ema(f_ctl, lport, fh);
2607	if (!ema) {
2608		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2609				    "fc_ctl <0x%x>, xid <0x%x>\n",
2610				     f_ctl,
2611				     (f_ctl & FC_FC_EX_CTX) ?
2612				     ntohs(fh->fh_ox_id) :
2613				     ntohs(fh->fh_rx_id));
2614		fc_frame_free(fp);
2615		return;
2616	}
2617
2618	/*
2619	 * If frame is marked invalid, just drop it.
2620	 */
2621	switch (fr_eof(fp)) {
2622	case FC_EOF_T:
2623		if (f_ctl & FC_FC_END_SEQ)
2624			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2625		fallthrough;
2626	case FC_EOF_N:
2627		if (fh->fh_type == FC_TYPE_BLS)
2628			fc_exch_recv_bls(ema->mp, fp);
2629		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2630			 FC_FC_EX_CTX)
2631			fc_exch_recv_seq_resp(ema->mp, fp);
2632		else if (f_ctl & FC_FC_SEQ_CTX)
2633			fc_exch_recv_resp(ema->mp, fp);
2634		else	/* no EX_CTX and no SEQ_CTX */
2635			fc_exch_recv_req(lport, ema->mp, fp);
2636		break;
2637	default:
2638		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2639			     fr_eof(fp));
2640		fc_frame_free(fp);
2641	}
2642}
2643EXPORT_SYMBOL(fc_exch_recv);
2644
2645/**
2646 * fc_exch_init() - Initialize the exchange layer for a local port
2647 * @lport: The local port to initialize the exchange layer for
2648 */
2649int fc_exch_init(struct fc_lport *lport)
2650{
2651	if (!lport->tt.exch_mgr_reset)
2652		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2653
2654	return 0;
2655}
2656EXPORT_SYMBOL(fc_exch_init);
2657
2658/**
2659 * fc_setup_exch_mgr() - Setup an exchange manager
2660 */
2661int fc_setup_exch_mgr(void)
2662{
2663	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2664					 0, SLAB_HWCACHE_ALIGN, NULL);
2665	if (!fc_em_cachep)
2666		return -ENOMEM;
2667
2668	/*
2669	 * Initialize fc_cpu_mask and fc_cpu_order. The
2670	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2671	 * to order of 2's * power and order is stored
2672	 * in fc_cpu_order as this is later required in
2673	 * mapping between an exch id and exch array index
2674	 * in per cpu exch pool.
2675	 *
2676	 * This round up is required to align fc_cpu_mask
2677	 * to exchange id's lower bits such that all incoming
2678	 * frames of an exchange gets delivered to the same
2679	 * cpu on which exchange originated by simple bitwise
2680	 * AND operation between fc_cpu_mask and exchange id.
2681	 */
2682	fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2683	fc_cpu_mask = (1 << fc_cpu_order) - 1;
2684
2685	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2686	if (!fc_exch_workqueue)
2687		goto err;
2688	return 0;
2689err:
2690	kmem_cache_destroy(fc_em_cachep);
2691	return -ENOMEM;
2692}
2693
2694/**
2695 * fc_destroy_exch_mgr() - Destroy an exchange manager
2696 */
2697void fc_destroy_exch_mgr(void)
2698{
2699	destroy_workqueue(fc_exch_workqueue);
2700	kmem_cache_destroy(fc_em_cachep);
2701}