Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright(c) 2007 Intel Corporation. All rights reserved.
   4 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
   5 * Copyright(c) 2008 Mike Christie
   6 *
   7 * Maintained at www.Open-FCoE.org
   8 */
   9
  10/*
  11 * Fibre Channel exchange and sequence handling.
  12 */
  13
  14#include <linux/timer.h>
  15#include <linux/slab.h>
  16#include <linux/err.h>
  17#include <linux/export.h>
  18#include <linux/log2.h>
  19
  20#include <scsi/fc/fc_fc2.h>
  21
  22#include <scsi/libfc.h>
 
  23
  24#include "fc_libfc.h"
  25
  26u16	fc_cpu_mask;		/* cpu mask for possible cpus */
  27EXPORT_SYMBOL(fc_cpu_mask);
  28static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
  29static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
  30static struct workqueue_struct *fc_exch_workqueue;
  31
  32/*
  33 * Structure and function definitions for managing Fibre Channel Exchanges
  34 * and Sequences.
  35 *
  36 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
  37 *
  38 * fc_exch_mgr holds the exchange state for an N port
  39 *
  40 * fc_exch holds state for one exchange and links to its active sequence.
  41 *
  42 * fc_seq holds the state for an individual sequence.
  43 */
  44
  45/**
  46 * struct fc_exch_pool - Per cpu exchange pool
  47 * @next_index:	  Next possible free exchange index
  48 * @total_exches: Total allocated exchanges
  49 * @lock:	  Exch pool lock
  50 * @ex_list:	  List of exchanges
  51 * @left:	  Cache of free slot in exch array
  52 * @right:	  Cache of free slot in exch array
  53 *
  54 * This structure manages per cpu exchanges in array of exchange pointers.
  55 * This array is allocated followed by struct fc_exch_pool memory for
  56 * assigned range of exchanges to per cpu pool.
  57 */
  58struct fc_exch_pool {
  59	spinlock_t	 lock;
  60	struct list_head ex_list;
  61	u16		 next_index;
  62	u16		 total_exches;
  63
 
  64	u16		 left;
  65	u16		 right;
  66} ____cacheline_aligned_in_smp;
  67
  68/**
  69 * struct fc_exch_mgr - The Exchange Manager (EM).
  70 * @class:	    Default class for new sequences
  71 * @kref:	    Reference counter
  72 * @min_xid:	    Minimum exchange ID
  73 * @max_xid:	    Maximum exchange ID
  74 * @ep_pool:	    Reserved exchange pointers
  75 * @pool_max_index: Max exch array index in exch pool
  76 * @pool:	    Per cpu exch pool
  77 * @lport:	    Local exchange port
  78 * @stats:	    Statistics structure
  79 *
  80 * This structure is the center for creating exchanges and sequences.
  81 * It manages the allocation of exchange IDs.
  82 */
  83struct fc_exch_mgr {
  84	struct fc_exch_pool __percpu *pool;
  85	mempool_t	*ep_pool;
  86	struct fc_lport	*lport;
  87	enum fc_class	class;
  88	struct kref	kref;
  89	u16		min_xid;
  90	u16		max_xid;
  91	u16		pool_max_index;
  92
  93	struct {
  94		atomic_t no_free_exch;
  95		atomic_t no_free_exch_xid;
  96		atomic_t xid_not_found;
  97		atomic_t xid_busy;
  98		atomic_t seq_not_found;
  99		atomic_t non_bls_resp;
 100	} stats;
 101};
 102
 103/**
 104 * struct fc_exch_mgr_anchor - primary structure for list of EMs
 105 * @ema_list: Exchange Manager Anchor list
 106 * @mp:	      Exchange Manager associated with this anchor
 107 * @match:    Routine to determine if this anchor's EM should be used
 108 *
 109 * When walking the list of anchors the match routine will be called
 110 * for each anchor to determine if that EM should be used. The last
 111 * anchor in the list will always match to handle any exchanges not
 112 * handled by other EMs. The non-default EMs would be added to the
 113 * anchor list by HW that provides offloads.
 114 */
 115struct fc_exch_mgr_anchor {
 116	struct list_head ema_list;
 117	struct fc_exch_mgr *mp;
 118	bool (*match)(struct fc_frame *);
 119};
 120
 121static void fc_exch_rrq(struct fc_exch *);
 122static void fc_seq_ls_acc(struct fc_frame *);
 123static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
 124			  enum fc_els_rjt_explan);
 125static void fc_exch_els_rec(struct fc_frame *);
 126static void fc_exch_els_rrq(struct fc_frame *);
 127
 128/*
 129 * Internal implementation notes.
 130 *
 131 * The exchange manager is one by default in libfc but LLD may choose
 132 * to have one per CPU. The sequence manager is one per exchange manager
 133 * and currently never separated.
 134 *
 135 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
 136 * assigned by the Sequence Initiator that shall be unique for a specific
 137 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
 138 * qualified by exchange ID, which one might think it would be.
 139 * In practice this limits the number of open sequences and exchanges to 256
 140 * per session.	 For most targets we could treat this limit as per exchange.
 141 *
 142 * The exchange and its sequence are freed when the last sequence is received.
 143 * It's possible for the remote port to leave an exchange open without
 144 * sending any sequences.
 145 *
 146 * Notes on reference counts:
 147 *
 148 * Exchanges are reference counted and exchange gets freed when the reference
 149 * count becomes zero.
 150 *
 151 * Timeouts:
 152 * Sequences are timed out for E_D_TOV and R_A_TOV.
 153 *
 154 * Sequence event handling:
 155 *
 156 * The following events may occur on initiator sequences:
 157 *
 158 *	Send.
 159 *	    For now, the whole thing is sent.
 160 *	Receive ACK
 161 *	    This applies only to class F.
 162 *	    The sequence is marked complete.
 163 *	ULP completion.
 164 *	    The upper layer calls fc_exch_done() when done
 165 *	    with exchange and sequence tuple.
 166 *	RX-inferred completion.
 167 *	    When we receive the next sequence on the same exchange, we can
 168 *	    retire the previous sequence ID.  (XXX not implemented).
 169 *	Timeout.
 170 *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
 171 *	    E_D_TOV causes abort and calls upper layer response handler
 172 *	    with FC_EX_TIMEOUT error.
 173 *	Receive RJT
 174 *	    XXX defer.
 175 *	Send ABTS
 176 *	    On timeout.
 177 *
 178 * The following events may occur on recipient sequences:
 179 *
 180 *	Receive
 181 *	    Allocate sequence for first frame received.
 182 *	    Hold during receive handler.
 183 *	    Release when final frame received.
 184 *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
 185 *	Receive ABTS
 186 *	    Deallocate sequence
 187 *	Send RJT
 188 *	    Deallocate
 189 *
 190 * For now, we neglect conditions where only part of a sequence was
 191 * received or transmitted, or where out-of-order receipt is detected.
 192 */
 193
 194/*
 195 * Locking notes:
 196 *
 197 * The EM code run in a per-CPU worker thread.
 198 *
 199 * To protect against concurrency between a worker thread code and timers,
 200 * sequence allocation and deallocation must be locked.
 201 *  - exchange refcnt can be done atomicly without locks.
 202 *  - sequence allocation must be locked by exch lock.
 203 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
 204 *    EM pool lock must be taken before the ex_lock.
 205 */
 206
 207/*
 208 * opcode names for debugging.
 209 */
 210static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
 211
 212/**
 213 * fc_exch_name_lookup() - Lookup name by opcode
 214 * @op:	       Opcode to be looked up
 215 * @table:     Opcode/name table
 216 * @max_index: Index not to be exceeded
 217 *
 218 * This routine is used to determine a human-readable string identifying
 219 * a R_CTL opcode.
 220 */
 221static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
 222					      unsigned int max_index)
 223{
 224	const char *name = NULL;
 225
 226	if (op < max_index)
 227		name = table[op];
 228	if (!name)
 229		name = "unknown";
 230	return name;
 231}
 232
 233/**
 234 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
 235 * @op: The opcode to be looked up
 236 */
 237static const char *fc_exch_rctl_name(unsigned int op)
 238{
 239	return fc_exch_name_lookup(op, fc_exch_rctl_names,
 240				   ARRAY_SIZE(fc_exch_rctl_names));
 241}
 242
 243/**
 244 * fc_exch_hold() - Increment an exchange's reference count
 245 * @ep: Echange to be held
 246 */
 247static inline void fc_exch_hold(struct fc_exch *ep)
 248{
 249	atomic_inc(&ep->ex_refcnt);
 250}
 251
 252/**
 253 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
 254 *			 and determine SOF and EOF.
 255 * @ep:	   The exchange to that will use the header
 256 * @fp:	   The frame whose header is to be modified
 257 * @f_ctl: F_CTL bits that will be used for the frame header
 258 *
 259 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
 260 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
 261 */
 262static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
 263			      u32 f_ctl)
 264{
 265	struct fc_frame_header *fh = fc_frame_header_get(fp);
 266	u16 fill;
 267
 268	fr_sof(fp) = ep->class;
 269	if (ep->seq.cnt)
 270		fr_sof(fp) = fc_sof_normal(ep->class);
 271
 272	if (f_ctl & FC_FC_END_SEQ) {
 273		fr_eof(fp) = FC_EOF_T;
 274		if (fc_sof_needs_ack((enum fc_sof)ep->class))
 275			fr_eof(fp) = FC_EOF_N;
 276		/*
 277		 * From F_CTL.
 278		 * The number of fill bytes to make the length a 4-byte
 279		 * multiple is the low order 2-bits of the f_ctl.
 280		 * The fill itself will have been cleared by the frame
 281		 * allocation.
 282		 * After this, the length will be even, as expected by
 283		 * the transport.
 284		 */
 285		fill = fr_len(fp) & 3;
 286		if (fill) {
 287			fill = 4 - fill;
 288			/* TODO, this may be a problem with fragmented skb */
 289			skb_put(fp_skb(fp), fill);
 290			hton24(fh->fh_f_ctl, f_ctl | fill);
 291		}
 292	} else {
 293		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
 294		fr_eof(fp) = FC_EOF_N;
 295	}
 296
 297	/* Initialize remaining fh fields from fc_fill_fc_hdr */
 298	fh->fh_ox_id = htons(ep->oxid);
 299	fh->fh_rx_id = htons(ep->rxid);
 300	fh->fh_seq_id = ep->seq.id;
 301	fh->fh_seq_cnt = htons(ep->seq.cnt);
 302}
 303
 304/**
 305 * fc_exch_release() - Decrement an exchange's reference count
 306 * @ep: Exchange to be released
 307 *
 308 * If the reference count reaches zero and the exchange is complete,
 309 * it is freed.
 310 */
 311static void fc_exch_release(struct fc_exch *ep)
 312{
 313	struct fc_exch_mgr *mp;
 314
 315	if (atomic_dec_and_test(&ep->ex_refcnt)) {
 316		mp = ep->em;
 317		if (ep->destructor)
 318			ep->destructor(&ep->seq, ep->arg);
 319		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
 320		mempool_free(ep, mp->ep_pool);
 321	}
 322}
 323
 324/**
 325 * fc_exch_timer_cancel() - cancel exch timer
 326 * @ep:		The exchange whose timer to be canceled
 327 */
 328static inline void fc_exch_timer_cancel(struct fc_exch *ep)
 329{
 330	if (cancel_delayed_work(&ep->timeout_work)) {
 331		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
 332		atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
 333	}
 334}
 335
 336/**
 337 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
 338 *				the exchange lock held
 339 * @ep:		The exchange whose timer will start
 340 * @timer_msec: The timeout period
 341 *
 342 * Used for upper level protocols to time out the exchange.
 343 * The timer is cancelled when it fires or when the exchange completes.
 344 */
 345static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
 346					    unsigned int timer_msec)
 347{
 348	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 349		return;
 350
 351	FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
 352
 353	fc_exch_hold(ep);		/* hold for timer */
 354	if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
 355				msecs_to_jiffies(timer_msec))) {
 356		FC_EXCH_DBG(ep, "Exchange already queued\n");
 357		fc_exch_release(ep);
 358	}
 359}
 360
 361/**
 362 * fc_exch_timer_set() - Lock the exchange and set the timer
 363 * @ep:		The exchange whose timer will start
 364 * @timer_msec: The timeout period
 365 */
 366static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
 367{
 368	spin_lock_bh(&ep->ex_lock);
 369	fc_exch_timer_set_locked(ep, timer_msec);
 370	spin_unlock_bh(&ep->ex_lock);
 371}
 372
 373/**
 374 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
 375 * @ep: The exchange that is complete
 376 *
 377 * Note: May sleep if invoked from outside a response handler.
 378 */
 379static int fc_exch_done_locked(struct fc_exch *ep)
 380{
 381	int rc = 1;
 382
 383	/*
 384	 * We must check for completion in case there are two threads
 385	 * tyring to complete this. But the rrq code will reuse the
 386	 * ep, and in that case we only clear the resp and set it as
 387	 * complete, so it can be reused by the timer to send the rrq.
 388	 */
 389	if (ep->state & FC_EX_DONE)
 390		return rc;
 391	ep->esb_stat |= ESB_ST_COMPLETE;
 392
 393	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
 394		ep->state |= FC_EX_DONE;
 395		fc_exch_timer_cancel(ep);
 396		rc = 0;
 397	}
 398	return rc;
 399}
 400
 401static struct fc_exch fc_quarantine_exch;
 402
 403/**
 404 * fc_exch_ptr_get() - Return an exchange from an exchange pool
 405 * @pool:  Exchange Pool to get an exchange from
 406 * @index: Index of the exchange within the pool
 407 *
 408 * Use the index to get an exchange from within an exchange pool. exches
 409 * will point to an array of exchange pointers. The index will select
 410 * the exchange within the array.
 411 */
 412static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
 413					      u16 index)
 414{
 415	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
 416	return exches[index];
 417}
 418
 419/**
 420 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
 421 * @pool:  The pool to assign the exchange to
 422 * @index: The index in the pool where the exchange will be assigned
 423 * @ep:	   The exchange to assign to the pool
 424 */
 425static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
 426				   struct fc_exch *ep)
 427{
 428	((struct fc_exch **)(pool + 1))[index] = ep;
 429}
 430
 431/**
 432 * fc_exch_delete() - Delete an exchange
 433 * @ep: The exchange to be deleted
 434 */
 435static void fc_exch_delete(struct fc_exch *ep)
 436{
 437	struct fc_exch_pool *pool;
 438	u16 index;
 439
 440	pool = ep->pool;
 441	spin_lock_bh(&pool->lock);
 442	WARN_ON(pool->total_exches <= 0);
 443	pool->total_exches--;
 444
 445	/* update cache of free slot */
 446	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
 447	if (!(ep->state & FC_EX_QUARANTINE)) {
 448		if (pool->left == FC_XID_UNKNOWN)
 449			pool->left = index;
 450		else if (pool->right == FC_XID_UNKNOWN)
 451			pool->right = index;
 452		else
 453			pool->next_index = index;
 454		fc_exch_ptr_set(pool, index, NULL);
 455	} else {
 456		fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
 457	}
 458	list_del(&ep->ex_list);
 459	spin_unlock_bh(&pool->lock);
 460	fc_exch_release(ep);	/* drop hold for exch in mp */
 461}
 462
 463static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
 464			      struct fc_frame *fp)
 465{
 466	struct fc_exch *ep;
 467	struct fc_frame_header *fh = fc_frame_header_get(fp);
 468	int error = -ENXIO;
 469	u32 f_ctl;
 470	u8 fh_type = fh->fh_type;
 471
 472	ep = fc_seq_exch(sp);
 473
 474	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
 475		fc_frame_free(fp);
 476		goto out;
 477	}
 478
 479	WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
 480
 481	f_ctl = ntoh24(fh->fh_f_ctl);
 482	fc_exch_setup_hdr(ep, fp, f_ctl);
 483	fr_encaps(fp) = ep->encaps;
 484
 485	/*
 486	 * update sequence count if this frame is carrying
 487	 * multiple FC frames when sequence offload is enabled
 488	 * by LLD.
 489	 */
 490	if (fr_max_payload(fp))
 491		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
 492					fr_max_payload(fp));
 493	else
 494		sp->cnt++;
 495
 496	/*
 497	 * Send the frame.
 498	 */
 499	error = lport->tt.frame_send(lport, fp);
 500
 501	if (fh_type == FC_TYPE_BLS)
 502		goto out;
 503
 504	/*
 505	 * Update the exchange and sequence flags,
 506	 * assuming all frames for the sequence have been sent.
 507	 * We can only be called to send once for each sequence.
 508	 */
 509	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
 510	if (f_ctl & FC_FC_SEQ_INIT)
 511		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
 512out:
 513	return error;
 514}
 515
 516/**
 517 * fc_seq_send() - Send a frame using existing sequence/exchange pair
 518 * @lport: The local port that the exchange will be sent on
 519 * @sp:	   The sequence to be sent
 520 * @fp:	   The frame to be sent on the exchange
 521 *
 522 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
 523 * or indirectly by calling libfc_function_template.frame_send().
 524 */
 525int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
 526{
 527	struct fc_exch *ep;
 528	int error;
 529	ep = fc_seq_exch(sp);
 530	spin_lock_bh(&ep->ex_lock);
 531	error = fc_seq_send_locked(lport, sp, fp);
 532	spin_unlock_bh(&ep->ex_lock);
 533	return error;
 534}
 535EXPORT_SYMBOL(fc_seq_send);
 536
 537/**
 538 * fc_seq_alloc() - Allocate a sequence for a given exchange
 539 * @ep:	    The exchange to allocate a new sequence for
 540 * @seq_id: The sequence ID to be used
 541 *
 542 * We don't support multiple originated sequences on the same exchange.
 543 * By implication, any previously originated sequence on this exchange
 544 * is complete, and we reallocate the same sequence.
 545 */
 546static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
 547{
 548	struct fc_seq *sp;
 549
 550	sp = &ep->seq;
 551	sp->ssb_stat = 0;
 552	sp->cnt = 0;
 553	sp->id = seq_id;
 554	return sp;
 555}
 556
 557/**
 558 * fc_seq_start_next_locked() - Allocate a new sequence on the same
 559 *				exchange as the supplied sequence
 560 * @sp: The sequence/exchange to get a new sequence for
 561 */
 562static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
 563{
 564	struct fc_exch *ep = fc_seq_exch(sp);
 565
 566	sp = fc_seq_alloc(ep, ep->seq_id++);
 567	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
 568		    ep->f_ctl, sp->id);
 569	return sp;
 570}
 571
 572/**
 573 * fc_seq_start_next() - Lock the exchange and get a new sequence
 574 *			 for a given sequence/exchange pair
 575 * @sp: The sequence/exchange to get a new exchange for
 576 */
 577struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
 578{
 579	struct fc_exch *ep = fc_seq_exch(sp);
 580
 581	spin_lock_bh(&ep->ex_lock);
 582	sp = fc_seq_start_next_locked(sp);
 583	spin_unlock_bh(&ep->ex_lock);
 584
 585	return sp;
 586}
 587EXPORT_SYMBOL(fc_seq_start_next);
 588
 589/*
 590 * Set the response handler for the exchange associated with a sequence.
 591 *
 592 * Note: May sleep if invoked from outside a response handler.
 593 */
 594void fc_seq_set_resp(struct fc_seq *sp,
 595		     void (*resp)(struct fc_seq *, struct fc_frame *, void *),
 596		     void *arg)
 597{
 598	struct fc_exch *ep = fc_seq_exch(sp);
 599	DEFINE_WAIT(wait);
 600
 601	spin_lock_bh(&ep->ex_lock);
 602	while (ep->resp_active && ep->resp_task != current) {
 603		prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
 604		spin_unlock_bh(&ep->ex_lock);
 605
 606		schedule();
 607
 608		spin_lock_bh(&ep->ex_lock);
 609	}
 610	finish_wait(&ep->resp_wq, &wait);
 611	ep->resp = resp;
 612	ep->arg = arg;
 613	spin_unlock_bh(&ep->ex_lock);
 614}
 615EXPORT_SYMBOL(fc_seq_set_resp);
 616
 617/**
 618 * fc_exch_abort_locked() - Abort an exchange
 619 * @ep:	The exchange to be aborted
 620 * @timer_msec: The period of time to wait before aborting
 621 *
 622 * Abort an exchange and sequence. Generally called because of a
 623 * exchange timeout or an abort from the upper layer.
 624 *
 625 * A timer_msec can be specified for abort timeout, if non-zero
 626 * timer_msec value is specified then exchange resp handler
 627 * will be called with timeout error if no response to abort.
 628 *
 629 * Locking notes:  Called with exch lock held
 630 *
 631 * Return value: 0 on success else error code
 632 */
 633static int fc_exch_abort_locked(struct fc_exch *ep,
 634				unsigned int timer_msec)
 635{
 636	struct fc_seq *sp;
 637	struct fc_frame *fp;
 638	int error;
 639
 640	FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
 641	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
 642	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
 643		FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
 644			    ep->esb_stat, ep->state);
 645		return -ENXIO;
 646	}
 647
 648	/*
 649	 * Send the abort on a new sequence if possible.
 650	 */
 651	sp = fc_seq_start_next_locked(&ep->seq);
 652	if (!sp)
 653		return -ENOMEM;
 654
 655	if (timer_msec)
 656		fc_exch_timer_set_locked(ep, timer_msec);
 657
 658	if (ep->sid) {
 659		/*
 660		 * Send an abort for the sequence that timed out.
 661		 */
 662		fp = fc_frame_alloc(ep->lp, 0);
 663		if (fp) {
 664			ep->esb_stat |= ESB_ST_SEQ_INIT;
 665			fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
 666				       FC_TYPE_BLS, FC_FC_END_SEQ |
 667				       FC_FC_SEQ_INIT, 0);
 668			error = fc_seq_send_locked(ep->lp, sp, fp);
 669		} else {
 670			error = -ENOBUFS;
 671		}
 672	} else {
 673		/*
 674		 * If not logged into the fabric, don't send ABTS but leave
 675		 * sequence active until next timeout.
 676		 */
 677		error = 0;
 678	}
 679	ep->esb_stat |= ESB_ST_ABNORMAL;
 680	return error;
 681}
 682
 683/**
 684 * fc_seq_exch_abort() - Abort an exchange and sequence
 685 * @req_sp:	The sequence to be aborted
 686 * @timer_msec: The period of time to wait before aborting
 687 *
 688 * Generally called because of a timeout or an abort from the upper layer.
 689 *
 690 * Return value: 0 on success else error code
 691 */
 692int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
 693{
 694	struct fc_exch *ep;
 695	int error;
 696
 697	ep = fc_seq_exch(req_sp);
 698	spin_lock_bh(&ep->ex_lock);
 699	error = fc_exch_abort_locked(ep, timer_msec);
 700	spin_unlock_bh(&ep->ex_lock);
 701	return error;
 702}
 703
 704/**
 705 * fc_invoke_resp() - invoke ep->resp()
 706 * @ep:	   The exchange to be operated on
 707 * @fp:	   The frame pointer to pass through to ->resp()
 708 * @sp:	   The sequence pointer to pass through to ->resp()
 709 *
 710 * Notes:
 711 * It is assumed that after initialization finished (this means the
 712 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
 713 * modified only via fc_seq_set_resp(). This guarantees that none of these
 714 * two variables changes if ep->resp_active > 0.
 715 *
 716 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
 717 * this function is invoked, the first spin_lock_bh() call in this function
 718 * will wait until fc_seq_set_resp() has finished modifying these variables.
 719 *
 720 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
 721 * ep->resp() won't be invoked after fc_exch_done() has returned.
 722 *
 723 * The response handler itself may invoke fc_exch_done(), which will clear the
 724 * ep->resp pointer.
 725 *
 726 * Return value:
 727 * Returns true if and only if ep->resp has been invoked.
 728 */
 729static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
 730			   struct fc_frame *fp)
 731{
 732	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
 733	void *arg;
 734	bool res = false;
 735
 736	spin_lock_bh(&ep->ex_lock);
 737	ep->resp_active++;
 738	if (ep->resp_task != current)
 739		ep->resp_task = !ep->resp_task ? current : NULL;
 740	resp = ep->resp;
 741	arg = ep->arg;
 742	spin_unlock_bh(&ep->ex_lock);
 743
 744	if (resp) {
 745		resp(sp, fp, arg);
 746		res = true;
 747	}
 748
 749	spin_lock_bh(&ep->ex_lock);
 750	if (--ep->resp_active == 0)
 751		ep->resp_task = NULL;
 752	spin_unlock_bh(&ep->ex_lock);
 753
 754	if (ep->resp_active == 0)
 755		wake_up(&ep->resp_wq);
 756
 757	return res;
 758}
 759
 760/**
 761 * fc_exch_timeout() - Handle exchange timer expiration
 762 * @work: The work_struct identifying the exchange that timed out
 763 */
 764static void fc_exch_timeout(struct work_struct *work)
 765{
 766	struct fc_exch *ep = container_of(work, struct fc_exch,
 767					  timeout_work.work);
 768	struct fc_seq *sp = &ep->seq;
 769	u32 e_stat;
 770	int rc = 1;
 771
 772	FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
 773
 774	spin_lock_bh(&ep->ex_lock);
 775	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 776		goto unlock;
 777
 778	e_stat = ep->esb_stat;
 779	if (e_stat & ESB_ST_COMPLETE) {
 780		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
 781		spin_unlock_bh(&ep->ex_lock);
 782		if (e_stat & ESB_ST_REC_QUAL)
 783			fc_exch_rrq(ep);
 784		goto done;
 785	} else {
 786		if (e_stat & ESB_ST_ABNORMAL)
 787			rc = fc_exch_done_locked(ep);
 788		spin_unlock_bh(&ep->ex_lock);
 789		if (!rc)
 790			fc_exch_delete(ep);
 791		fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
 792		fc_seq_set_resp(sp, NULL, ep->arg);
 793		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
 794		goto done;
 795	}
 796unlock:
 797	spin_unlock_bh(&ep->ex_lock);
 798done:
 799	/*
 800	 * This release matches the hold taken when the timer was set.
 801	 */
 802	fc_exch_release(ep);
 803}
 804
 805/**
 806 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
 807 * @lport: The local port that the exchange is for
 808 * @mp:	   The exchange manager that will allocate the exchange
 809 *
 810 * Returns pointer to allocated fc_exch with exch lock held.
 811 */
 812static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
 813					struct fc_exch_mgr *mp)
 814{
 815	struct fc_exch *ep;
 816	unsigned int cpu;
 817	u16 index;
 818	struct fc_exch_pool *pool;
 819
 820	/* allocate memory for exchange */
 821	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
 822	if (!ep) {
 823		atomic_inc(&mp->stats.no_free_exch);
 824		goto out;
 825	}
 826	memset(ep, 0, sizeof(*ep));
 827
 828	cpu = raw_smp_processor_id();
 829	pool = per_cpu_ptr(mp->pool, cpu);
 830	spin_lock_bh(&pool->lock);
 
 831
 832	/* peek cache of free slot */
 833	if (pool->left != FC_XID_UNKNOWN) {
 834		if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
 835			index = pool->left;
 836			pool->left = FC_XID_UNKNOWN;
 837			goto hit;
 838		}
 839	}
 840	if (pool->right != FC_XID_UNKNOWN) {
 841		if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
 842			index = pool->right;
 843			pool->right = FC_XID_UNKNOWN;
 844			goto hit;
 845		}
 846	}
 847
 848	index = pool->next_index;
 849	/* allocate new exch from pool */
 850	while (fc_exch_ptr_get(pool, index)) {
 851		index = index == mp->pool_max_index ? 0 : index + 1;
 852		if (index == pool->next_index)
 853			goto err;
 854	}
 855	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
 856hit:
 857	fc_exch_hold(ep);	/* hold for exch in mp */
 858	spin_lock_init(&ep->ex_lock);
 859	/*
 860	 * Hold exch lock for caller to prevent fc_exch_reset()
 861	 * from releasing exch	while fc_exch_alloc() caller is
 862	 * still working on exch.
 863	 */
 864	spin_lock_bh(&ep->ex_lock);
 865
 866	fc_exch_ptr_set(pool, index, ep);
 867	list_add_tail(&ep->ex_list, &pool->ex_list);
 868	fc_seq_alloc(ep, ep->seq_id++);
 869	pool->total_exches++;
 870	spin_unlock_bh(&pool->lock);
 871
 872	/*
 873	 *  update exchange
 874	 */
 875	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
 876	ep->em = mp;
 877	ep->pool = pool;
 878	ep->lp = lport;
 879	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
 880	ep->rxid = FC_XID_UNKNOWN;
 881	ep->class = mp->class;
 882	ep->resp_active = 0;
 883	init_waitqueue_head(&ep->resp_wq);
 884	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
 885out:
 886	return ep;
 887err:
 888	spin_unlock_bh(&pool->lock);
 889	atomic_inc(&mp->stats.no_free_exch_xid);
 890	mempool_free(ep, mp->ep_pool);
 891	return NULL;
 892}
 893
 894/**
 895 * fc_exch_alloc() - Allocate an exchange from an EM on a
 896 *		     local port's list of EMs.
 897 * @lport: The local port that will own the exchange
 898 * @fp:	   The FC frame that the exchange will be for
 899 *
 900 * This function walks the list of exchange manager(EM)
 901 * anchors to select an EM for a new exchange allocation. The
 902 * EM is selected when a NULL match function pointer is encountered
 903 * or when a call to a match function returns true.
 904 */
 905static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
 906				     struct fc_frame *fp)
 907{
 908	struct fc_exch_mgr_anchor *ema;
 909	struct fc_exch *ep;
 910
 911	list_for_each_entry(ema, &lport->ema_list, ema_list) {
 912		if (!ema->match || ema->match(fp)) {
 913			ep = fc_exch_em_alloc(lport, ema->mp);
 914			if (ep)
 915				return ep;
 916		}
 917	}
 918	return NULL;
 919}
 920
 921/**
 922 * fc_exch_find() - Lookup and hold an exchange
 923 * @mp:	 The exchange manager to lookup the exchange from
 924 * @xid: The XID of the exchange to look up
 925 */
 926static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
 927{
 928	struct fc_lport *lport = mp->lport;
 929	struct fc_exch_pool *pool;
 930	struct fc_exch *ep = NULL;
 931	u16 cpu = xid & fc_cpu_mask;
 932
 933	if (xid == FC_XID_UNKNOWN)
 934		return NULL;
 935
 936	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 937		pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
 938		       lport->host->host_no, lport->port_id, xid, cpu);
 939		return NULL;
 940	}
 941
 942	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
 943		pool = per_cpu_ptr(mp->pool, cpu);
 944		spin_lock_bh(&pool->lock);
 945		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
 946		if (ep == &fc_quarantine_exch) {
 947			FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
 948			ep = NULL;
 949		}
 950		if (ep) {
 951			WARN_ON(ep->xid != xid);
 952			fc_exch_hold(ep);
 953		}
 954		spin_unlock_bh(&pool->lock);
 955	}
 956	return ep;
 957}
 958
 959
 960/**
 961 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
 962 *		    the memory allocated for the related objects may be freed.
 963 * @sp: The sequence that has completed
 964 *
 965 * Note: May sleep if invoked from outside a response handler.
 966 */
 967void fc_exch_done(struct fc_seq *sp)
 968{
 969	struct fc_exch *ep = fc_seq_exch(sp);
 970	int rc;
 971
 972	spin_lock_bh(&ep->ex_lock);
 973	rc = fc_exch_done_locked(ep);
 974	spin_unlock_bh(&ep->ex_lock);
 975
 976	fc_seq_set_resp(sp, NULL, ep->arg);
 977	if (!rc)
 978		fc_exch_delete(ep);
 979}
 980EXPORT_SYMBOL(fc_exch_done);
 981
 982/**
 983 * fc_exch_resp() - Allocate a new exchange for a response frame
 984 * @lport: The local port that the exchange was for
 985 * @mp:	   The exchange manager to allocate the exchange from
 986 * @fp:	   The response frame
 987 *
 988 * Sets the responder ID in the frame header.
 989 */
 990static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
 991				    struct fc_exch_mgr *mp,
 992				    struct fc_frame *fp)
 993{
 994	struct fc_exch *ep;
 995	struct fc_frame_header *fh;
 996
 997	ep = fc_exch_alloc(lport, fp);
 998	if (ep) {
 999		ep->class = fc_frame_class(fp);
1000
1001		/*
1002		 * Set EX_CTX indicating we're responding on this exchange.
1003		 */
1004		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
1005		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
1006		fh = fc_frame_header_get(fp);
1007		ep->sid = ntoh24(fh->fh_d_id);
1008		ep->did = ntoh24(fh->fh_s_id);
1009		ep->oid = ep->did;
1010
1011		/*
1012		 * Allocated exchange has placed the XID in the
1013		 * originator field. Move it to the responder field,
1014		 * and set the originator XID from the frame.
1015		 */
1016		ep->rxid = ep->xid;
1017		ep->oxid = ntohs(fh->fh_ox_id);
1018		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1019		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1020			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1021
1022		fc_exch_hold(ep);	/* hold for caller */
1023		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
1024	}
1025	return ep;
1026}
1027
1028/**
1029 * fc_seq_lookup_recip() - Find a sequence where the other end
1030 *			   originated the sequence
1031 * @lport: The local port that the frame was sent to
1032 * @mp:	   The Exchange Manager to lookup the exchange from
1033 * @fp:	   The frame associated with the sequence we're looking for
1034 *
1035 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1036 * on the ep that should be released by the caller.
1037 */
1038static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1039						 struct fc_exch_mgr *mp,
1040						 struct fc_frame *fp)
1041{
1042	struct fc_frame_header *fh = fc_frame_header_get(fp);
1043	struct fc_exch *ep = NULL;
1044	struct fc_seq *sp = NULL;
1045	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1046	u32 f_ctl;
1047	u16 xid;
1048
1049	f_ctl = ntoh24(fh->fh_f_ctl);
1050	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1051
1052	/*
1053	 * Lookup or create the exchange if we will be creating the sequence.
1054	 */
1055	if (f_ctl & FC_FC_EX_CTX) {
1056		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
1057		ep = fc_exch_find(mp, xid);
1058		if (!ep) {
1059			atomic_inc(&mp->stats.xid_not_found);
1060			reject = FC_RJT_OX_ID;
1061			goto out;
1062		}
1063		if (ep->rxid == FC_XID_UNKNOWN)
1064			ep->rxid = ntohs(fh->fh_rx_id);
1065		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1066			reject = FC_RJT_OX_ID;
1067			goto rel;
1068		}
1069	} else {
1070		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
1071
1072		/*
1073		 * Special case for MDS issuing an ELS TEST with a
1074		 * bad rxid of 0.
1075		 * XXX take this out once we do the proper reject.
1076		 */
1077		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1078		    fc_frame_payload_op(fp) == ELS_TEST) {
1079			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1080			xid = FC_XID_UNKNOWN;
1081		}
1082
1083		/*
1084		 * new sequence - find the exchange
1085		 */
1086		ep = fc_exch_find(mp, xid);
1087		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1088			if (ep) {
1089				atomic_inc(&mp->stats.xid_busy);
1090				reject = FC_RJT_RX_ID;
1091				goto rel;
1092			}
1093			ep = fc_exch_resp(lport, mp, fp);
1094			if (!ep) {
1095				reject = FC_RJT_EXCH_EST;	/* XXX */
1096				goto out;
1097			}
1098			xid = ep->xid;	/* get our XID */
1099		} else if (!ep) {
1100			atomic_inc(&mp->stats.xid_not_found);
1101			reject = FC_RJT_RX_ID;	/* XID not found */
1102			goto out;
1103		}
1104	}
1105
1106	spin_lock_bh(&ep->ex_lock);
1107	/*
1108	 * At this point, we have the exchange held.
1109	 * Find or create the sequence.
1110	 */
1111	if (fc_sof_is_init(fr_sof(fp))) {
1112		sp = &ep->seq;
1113		sp->ssb_stat |= SSB_ST_RESP;
1114		sp->id = fh->fh_seq_id;
1115	} else {
1116		sp = &ep->seq;
1117		if (sp->id != fh->fh_seq_id) {
1118			atomic_inc(&mp->stats.seq_not_found);
1119			if (f_ctl & FC_FC_END_SEQ) {
1120				/*
1121				 * Update sequence_id based on incoming last
1122				 * frame of sequence exchange. This is needed
1123				 * for FC target where DDP has been used
1124				 * on target where, stack is indicated only
1125				 * about last frame's (payload _header) header.
1126				 * Whereas "seq_id" which is part of
1127				 * frame_header is allocated by initiator
1128				 * which is totally different from "seq_id"
1129				 * allocated when XFER_RDY was sent by target.
1130				 * To avoid false -ve which results into not
1131				 * sending RSP, hence write request on other
1132				 * end never finishes.
1133				 */
1134				sp->ssb_stat |= SSB_ST_RESP;
1135				sp->id = fh->fh_seq_id;
1136			} else {
1137				spin_unlock_bh(&ep->ex_lock);
1138
1139				/* sequence/exch should exist */
1140				reject = FC_RJT_SEQ_ID;
1141				goto rel;
1142			}
1143		}
1144	}
1145	WARN_ON(ep != fc_seq_exch(sp));
1146
1147	if (f_ctl & FC_FC_SEQ_INIT)
1148		ep->esb_stat |= ESB_ST_SEQ_INIT;
1149	spin_unlock_bh(&ep->ex_lock);
1150
1151	fr_seq(fp) = sp;
1152out:
1153	return reject;
1154rel:
1155	fc_exch_done(&ep->seq);
1156	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1157	return reject;
1158}
1159
1160/**
1161 * fc_seq_lookup_orig() - Find a sequence where this end
1162 *			  originated the sequence
1163 * @mp:	   The Exchange Manager to lookup the exchange from
1164 * @fp:	   The frame associated with the sequence we're looking for
1165 *
1166 * Does not hold the sequence for the caller.
1167 */
1168static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1169					 struct fc_frame *fp)
1170{
1171	struct fc_frame_header *fh = fc_frame_header_get(fp);
1172	struct fc_exch *ep;
1173	struct fc_seq *sp = NULL;
1174	u32 f_ctl;
1175	u16 xid;
1176
1177	f_ctl = ntoh24(fh->fh_f_ctl);
1178	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1179	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1180	ep = fc_exch_find(mp, xid);
1181	if (!ep)
1182		return NULL;
1183	if (ep->seq.id == fh->fh_seq_id) {
1184		/*
1185		 * Save the RX_ID if we didn't previously know it.
1186		 */
1187		sp = &ep->seq;
1188		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1189		    ep->rxid == FC_XID_UNKNOWN) {
1190			ep->rxid = ntohs(fh->fh_rx_id);
1191		}
1192	}
1193	fc_exch_release(ep);
1194	return sp;
1195}
1196
1197/**
1198 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1199 * @ep:	     The exchange to set the addresses for
1200 * @orig_id: The originator's ID
1201 * @resp_id: The responder's ID
1202 *
1203 * Note this must be done before the first sequence of the exchange is sent.
1204 */
1205static void fc_exch_set_addr(struct fc_exch *ep,
1206			     u32 orig_id, u32 resp_id)
1207{
1208	ep->oid = orig_id;
1209	if (ep->esb_stat & ESB_ST_RESP) {
1210		ep->sid = resp_id;
1211		ep->did = orig_id;
1212	} else {
1213		ep->sid = orig_id;
1214		ep->did = resp_id;
1215	}
1216}
1217
1218/**
1219 * fc_seq_els_rsp_send() - Send an ELS response using information from
1220 *			   the existing sequence/exchange.
1221 * @fp:	      The received frame
1222 * @els_cmd:  The ELS command to be sent
1223 * @els_data: The ELS data to be sent
1224 *
1225 * The received frame is not freed.
1226 */
1227void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1228			 struct fc_seq_els_data *els_data)
1229{
1230	switch (els_cmd) {
1231	case ELS_LS_RJT:
1232		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1233		break;
1234	case ELS_LS_ACC:
1235		fc_seq_ls_acc(fp);
1236		break;
1237	case ELS_RRQ:
1238		fc_exch_els_rrq(fp);
1239		break;
1240	case ELS_REC:
1241		fc_exch_els_rec(fp);
1242		break;
1243	default:
1244		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1245	}
1246}
1247EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1248
1249/**
1250 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1251 * @sp:	     The sequence that is to be sent
1252 * @fp:	     The frame that will be sent on the sequence
1253 * @rctl:    The R_CTL information to be sent
1254 * @fh_type: The frame header type
1255 */
1256static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1257			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1258{
1259	u32 f_ctl;
1260	struct fc_exch *ep = fc_seq_exch(sp);
1261
1262	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1263	f_ctl |= ep->f_ctl;
1264	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1265	fc_seq_send_locked(ep->lp, sp, fp);
1266}
1267
1268/**
1269 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1270 * @sp:	   The sequence to send the ACK on
1271 * @rx_fp: The received frame that is being acknoledged
1272 *
1273 * Send ACK_1 (or equiv.) indicating we received something.
1274 */
1275static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1276{
1277	struct fc_frame *fp;
1278	struct fc_frame_header *rx_fh;
1279	struct fc_frame_header *fh;
1280	struct fc_exch *ep = fc_seq_exch(sp);
1281	struct fc_lport *lport = ep->lp;
1282	unsigned int f_ctl;
1283
1284	/*
1285	 * Don't send ACKs for class 3.
1286	 */
1287	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1288		fp = fc_frame_alloc(lport, 0);
1289		if (!fp) {
1290			FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1291			return;
1292		}
1293
1294		fh = fc_frame_header_get(fp);
1295		fh->fh_r_ctl = FC_RCTL_ACK_1;
1296		fh->fh_type = FC_TYPE_BLS;
1297
1298		/*
1299		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1300		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1301		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1302		 * Last ACK uses bits 7-6 (continue sequence),
1303		 * bits 5-4 are meaningful (what kind of ACK to use).
1304		 */
1305		rx_fh = fc_frame_header_get(rx_fp);
1306		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1307		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1308			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1309			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1310			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1311		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1312		hton24(fh->fh_f_ctl, f_ctl);
1313
1314		fc_exch_setup_hdr(ep, fp, f_ctl);
1315		fh->fh_seq_id = rx_fh->fh_seq_id;
1316		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1317		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1318
1319		fr_sof(fp) = fr_sof(rx_fp);
1320		if (f_ctl & FC_FC_END_SEQ)
1321			fr_eof(fp) = FC_EOF_T;
1322		else
1323			fr_eof(fp) = FC_EOF_N;
1324
1325		lport->tt.frame_send(lport, fp);
1326	}
1327}
1328
1329/**
1330 * fc_exch_send_ba_rjt() - Send BLS Reject
1331 * @rx_fp:  The frame being rejected
1332 * @reason: The reason the frame is being rejected
1333 * @explan: The explanation for the rejection
1334 *
1335 * This is for rejecting BA_ABTS only.
1336 */
1337static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1338				enum fc_ba_rjt_reason reason,
1339				enum fc_ba_rjt_explan explan)
1340{
1341	struct fc_frame *fp;
1342	struct fc_frame_header *rx_fh;
1343	struct fc_frame_header *fh;
1344	struct fc_ba_rjt *rp;
1345	struct fc_seq *sp;
1346	struct fc_lport *lport;
1347	unsigned int f_ctl;
1348
1349	lport = fr_dev(rx_fp);
1350	sp = fr_seq(rx_fp);
1351	fp = fc_frame_alloc(lport, sizeof(*rp));
1352	if (!fp) {
1353		FC_EXCH_DBG(fc_seq_exch(sp),
1354			     "Drop BA_RJT request, out of memory\n");
1355		return;
1356	}
1357	fh = fc_frame_header_get(fp);
1358	rx_fh = fc_frame_header_get(rx_fp);
1359
1360	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1361
1362	rp = fc_frame_payload_get(fp, sizeof(*rp));
1363	rp->br_reason = reason;
1364	rp->br_explan = explan;
1365
1366	/*
1367	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1368	 */
1369	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1370	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1371	fh->fh_ox_id = rx_fh->fh_ox_id;
1372	fh->fh_rx_id = rx_fh->fh_rx_id;
1373	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1374	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1375	fh->fh_type = FC_TYPE_BLS;
1376
1377	/*
1378	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1379	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1380	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1381	 * Last ACK uses bits 7-6 (continue sequence),
1382	 * bits 5-4 are meaningful (what kind of ACK to use).
1383	 * Always set LAST_SEQ, END_SEQ.
1384	 */
1385	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1386	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1387		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1388		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1389	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1390	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1391	f_ctl &= ~FC_FC_FIRST_SEQ;
1392	hton24(fh->fh_f_ctl, f_ctl);
1393
1394	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1395	fr_eof(fp) = FC_EOF_T;
1396	if (fc_sof_needs_ack(fr_sof(fp)))
1397		fr_eof(fp) = FC_EOF_N;
1398
1399	lport->tt.frame_send(lport, fp);
1400}
1401
1402/**
1403 * fc_exch_recv_abts() - Handle an incoming ABTS
1404 * @ep:	   The exchange the abort was on
1405 * @rx_fp: The ABTS frame
1406 *
1407 * This would be for target mode usually, but could be due to lost
1408 * FCP transfer ready, confirm or RRQ. We always handle this as an
1409 * exchange abort, ignoring the parameter.
1410 */
1411static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1412{
1413	struct fc_frame *fp;
1414	struct fc_ba_acc *ap;
1415	struct fc_frame_header *fh;
1416	struct fc_seq *sp;
1417
1418	if (!ep)
1419		goto reject;
1420
1421	FC_EXCH_DBG(ep, "exch: ABTS received\n");
1422	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1423	if (!fp) {
1424		FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1425		goto free;
1426	}
1427
1428	spin_lock_bh(&ep->ex_lock);
1429	if (ep->esb_stat & ESB_ST_COMPLETE) {
1430		spin_unlock_bh(&ep->ex_lock);
1431		FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1432		fc_frame_free(fp);
1433		goto reject;
1434	}
1435	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1436		ep->esb_stat |= ESB_ST_REC_QUAL;
1437		fc_exch_hold(ep);		/* hold for REC_QUAL */
1438	}
1439	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1440	fh = fc_frame_header_get(fp);
1441	ap = fc_frame_payload_get(fp, sizeof(*ap));
1442	memset(ap, 0, sizeof(*ap));
1443	sp = &ep->seq;
1444	ap->ba_high_seq_cnt = htons(0xffff);
1445	if (sp->ssb_stat & SSB_ST_RESP) {
1446		ap->ba_seq_id = sp->id;
1447		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1448		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1449		ap->ba_low_seq_cnt = htons(sp->cnt);
1450	}
1451	sp = fc_seq_start_next_locked(sp);
1452	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1453	ep->esb_stat |= ESB_ST_ABNORMAL;
1454	spin_unlock_bh(&ep->ex_lock);
1455
1456free:
1457	fc_frame_free(rx_fp);
1458	return;
1459
1460reject:
1461	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1462	goto free;
1463}
1464
1465/**
1466 * fc_seq_assign() - Assign exchange and sequence for incoming request
1467 * @lport: The local port that received the request
1468 * @fp:    The request frame
1469 *
1470 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1471 * A reference will be held on the exchange/sequence for the caller, which
1472 * must call fc_seq_release().
1473 */
1474struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1475{
1476	struct fc_exch_mgr_anchor *ema;
1477
1478	WARN_ON(lport != fr_dev(fp));
1479	WARN_ON(fr_seq(fp));
1480	fr_seq(fp) = NULL;
1481
1482	list_for_each_entry(ema, &lport->ema_list, ema_list)
1483		if ((!ema->match || ema->match(fp)) &&
1484		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1485			break;
1486	return fr_seq(fp);
1487}
1488EXPORT_SYMBOL(fc_seq_assign);
1489
1490/**
1491 * fc_seq_release() - Release the hold
1492 * @sp:    The sequence.
1493 */
1494void fc_seq_release(struct fc_seq *sp)
1495{
1496	fc_exch_release(fc_seq_exch(sp));
1497}
1498EXPORT_SYMBOL(fc_seq_release);
1499
1500/**
1501 * fc_exch_recv_req() - Handler for an incoming request
1502 * @lport: The local port that received the request
1503 * @mp:	   The EM that the exchange is on
1504 * @fp:	   The request frame
1505 *
1506 * This is used when the other end is originating the exchange
1507 * and the sequence.
1508 */
1509static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1510			     struct fc_frame *fp)
1511{
1512	struct fc_frame_header *fh = fc_frame_header_get(fp);
1513	struct fc_seq *sp = NULL;
1514	struct fc_exch *ep = NULL;
1515	enum fc_pf_rjt_reason reject;
1516
1517	/* We can have the wrong fc_lport at this point with NPIV, which is a
1518	 * problem now that we know a new exchange needs to be allocated
1519	 */
1520	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1521	if (!lport) {
1522		fc_frame_free(fp);
1523		return;
1524	}
1525	fr_dev(fp) = lport;
1526
1527	BUG_ON(fr_seq(fp));		/* XXX remove later */
1528
1529	/*
1530	 * If the RX_ID is 0xffff, don't allocate an exchange.
1531	 * The upper-level protocol may request one later, if needed.
1532	 */
1533	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1534		return fc_lport_recv(lport, fp);
1535
1536	reject = fc_seq_lookup_recip(lport, mp, fp);
1537	if (reject == FC_RJT_NONE) {
1538		sp = fr_seq(fp);	/* sequence will be held */
1539		ep = fc_seq_exch(sp);
1540		fc_seq_send_ack(sp, fp);
1541		ep->encaps = fr_encaps(fp);
1542
1543		/*
1544		 * Call the receive function.
1545		 *
1546		 * The receive function may allocate a new sequence
1547		 * over the old one, so we shouldn't change the
1548		 * sequence after this.
1549		 *
1550		 * The frame will be freed by the receive function.
1551		 * If new exch resp handler is valid then call that
1552		 * first.
1553		 */
1554		if (!fc_invoke_resp(ep, sp, fp))
1555			fc_lport_recv(lport, fp);
1556		fc_exch_release(ep);	/* release from lookup */
1557	} else {
1558		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1559			     reject);
1560		fc_frame_free(fp);
1561	}
1562}
1563
1564/**
1565 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1566 *			     end is the originator of the sequence that is a
1567 *			     response to our initial exchange
1568 * @mp: The EM that the exchange is on
1569 * @fp: The response frame
1570 */
1571static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1572{
1573	struct fc_frame_header *fh = fc_frame_header_get(fp);
1574	struct fc_seq *sp;
1575	struct fc_exch *ep;
1576	enum fc_sof sof;
1577	u32 f_ctl;
1578	int rc;
1579
1580	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1581	if (!ep) {
1582		atomic_inc(&mp->stats.xid_not_found);
1583		goto out;
1584	}
1585	if (ep->esb_stat & ESB_ST_COMPLETE) {
1586		atomic_inc(&mp->stats.xid_not_found);
1587		goto rel;
1588	}
1589	if (ep->rxid == FC_XID_UNKNOWN)
1590		ep->rxid = ntohs(fh->fh_rx_id);
1591	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1592		atomic_inc(&mp->stats.xid_not_found);
1593		goto rel;
1594	}
1595	if (ep->did != ntoh24(fh->fh_s_id) &&
1596	    ep->did != FC_FID_FLOGI) {
1597		atomic_inc(&mp->stats.xid_not_found);
1598		goto rel;
1599	}
1600	sof = fr_sof(fp);
1601	sp = &ep->seq;
1602	if (fc_sof_is_init(sof)) {
1603		sp->ssb_stat |= SSB_ST_RESP;
1604		sp->id = fh->fh_seq_id;
1605	}
1606
1607	f_ctl = ntoh24(fh->fh_f_ctl);
1608	fr_seq(fp) = sp;
1609
1610	spin_lock_bh(&ep->ex_lock);
1611	if (f_ctl & FC_FC_SEQ_INIT)
1612		ep->esb_stat |= ESB_ST_SEQ_INIT;
1613	spin_unlock_bh(&ep->ex_lock);
1614
1615	if (fc_sof_needs_ack(sof))
1616		fc_seq_send_ack(sp, fp);
1617
1618	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1619	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1620	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1621		spin_lock_bh(&ep->ex_lock);
1622		rc = fc_exch_done_locked(ep);
1623		WARN_ON(fc_seq_exch(sp) != ep);
1624		spin_unlock_bh(&ep->ex_lock);
1625		if (!rc) {
1626			fc_exch_delete(ep);
1627		} else {
1628			FC_EXCH_DBG(ep, "ep is completed already,"
1629					"hence skip calling the resp\n");
1630			goto skip_resp;
1631		}
1632	}
1633
1634	/*
1635	 * Call the receive function.
1636	 * The sequence is held (has a refcnt) for us,
1637	 * but not for the receive function.
1638	 *
1639	 * The receive function may allocate a new sequence
1640	 * over the old one, so we shouldn't change the
1641	 * sequence after this.
1642	 *
1643	 * The frame will be freed by the receive function.
1644	 * If new exch resp handler is valid then call that
1645	 * first.
1646	 */
1647	if (!fc_invoke_resp(ep, sp, fp))
1648		fc_frame_free(fp);
1649
1650skip_resp:
1651	fc_exch_release(ep);
1652	return;
1653rel:
1654	fc_exch_release(ep);
1655out:
1656	fc_frame_free(fp);
1657}
1658
1659/**
1660 * fc_exch_recv_resp() - Handler for a sequence where other end is
1661 *			 responding to our sequence
1662 * @mp: The EM that the exchange is on
1663 * @fp: The response frame
1664 */
1665static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1666{
1667	struct fc_seq *sp;
1668
1669	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1670
1671	if (!sp)
1672		atomic_inc(&mp->stats.xid_not_found);
1673	else
1674		atomic_inc(&mp->stats.non_bls_resp);
1675
1676	fc_frame_free(fp);
1677}
1678
1679/**
1680 * fc_exch_abts_resp() - Handler for a response to an ABT
1681 * @ep: The exchange that the frame is on
1682 * @fp: The response frame
1683 *
1684 * This response would be to an ABTS cancelling an exchange or sequence.
1685 * The response can be either BA_ACC or BA_RJT
1686 */
1687static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1688{
1689	struct fc_frame_header *fh;
1690	struct fc_ba_acc *ap;
1691	struct fc_seq *sp;
1692	u16 low;
1693	u16 high;
1694	int rc = 1, has_rec = 0;
1695
1696	fh = fc_frame_header_get(fp);
1697	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1698		    fc_exch_rctl_name(fh->fh_r_ctl));
1699
1700	if (cancel_delayed_work_sync(&ep->timeout_work)) {
1701		FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1702		fc_exch_release(ep);	/* release from pending timer hold */
1703		return;
1704	}
1705
1706	spin_lock_bh(&ep->ex_lock);
1707	switch (fh->fh_r_ctl) {
1708	case FC_RCTL_BA_ACC:
1709		ap = fc_frame_payload_get(fp, sizeof(*ap));
1710		if (!ap)
1711			break;
1712
1713		/*
1714		 * Decide whether to establish a Recovery Qualifier.
1715		 * We do this if there is a non-empty SEQ_CNT range and
1716		 * SEQ_ID is the same as the one we aborted.
1717		 */
1718		low = ntohs(ap->ba_low_seq_cnt);
1719		high = ntohs(ap->ba_high_seq_cnt);
1720		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1721		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1722		     ap->ba_seq_id == ep->seq_id) && low != high) {
1723			ep->esb_stat |= ESB_ST_REC_QUAL;
1724			fc_exch_hold(ep);  /* hold for recovery qualifier */
1725			has_rec = 1;
1726		}
1727		break;
1728	case FC_RCTL_BA_RJT:
1729		break;
1730	default:
1731		break;
1732	}
1733
1734	/* do we need to do some other checks here. Can we reuse more of
1735	 * fc_exch_recv_seq_resp
1736	 */
1737	sp = &ep->seq;
1738	/*
1739	 * do we want to check END_SEQ as well as LAST_SEQ here?
1740	 */
1741	if (ep->fh_type != FC_TYPE_FCP &&
1742	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1743		rc = fc_exch_done_locked(ep);
1744	spin_unlock_bh(&ep->ex_lock);
1745
1746	fc_exch_hold(ep);
1747	if (!rc)
1748		fc_exch_delete(ep);
1749	if (!fc_invoke_resp(ep, sp, fp))
1750		fc_frame_free(fp);
1751	if (has_rec)
1752		fc_exch_timer_set(ep, ep->r_a_tov);
1753	fc_exch_release(ep);
1754}
1755
1756/**
1757 * fc_exch_recv_bls() - Handler for a BLS sequence
1758 * @mp: The EM that the exchange is on
1759 * @fp: The request frame
1760 *
1761 * The BLS frame is always a sequence initiated by the remote side.
1762 * We may be either the originator or recipient of the exchange.
1763 */
1764static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1765{
1766	struct fc_frame_header *fh;
1767	struct fc_exch *ep;
1768	u32 f_ctl;
1769
1770	fh = fc_frame_header_get(fp);
1771	f_ctl = ntoh24(fh->fh_f_ctl);
1772	fr_seq(fp) = NULL;
1773
1774	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1775			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1776	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1777		spin_lock_bh(&ep->ex_lock);
1778		ep->esb_stat |= ESB_ST_SEQ_INIT;
1779		spin_unlock_bh(&ep->ex_lock);
1780	}
1781	if (f_ctl & FC_FC_SEQ_CTX) {
1782		/*
1783		 * A response to a sequence we initiated.
1784		 * This should only be ACKs for class 2 or F.
1785		 */
1786		switch (fh->fh_r_ctl) {
1787		case FC_RCTL_ACK_1:
1788		case FC_RCTL_ACK_0:
1789			break;
1790		default:
1791			if (ep)
1792				FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1793					    fh->fh_r_ctl,
1794					    fc_exch_rctl_name(fh->fh_r_ctl));
1795			break;
1796		}
1797		fc_frame_free(fp);
1798	} else {
1799		switch (fh->fh_r_ctl) {
1800		case FC_RCTL_BA_RJT:
1801		case FC_RCTL_BA_ACC:
1802			if (ep)
1803				fc_exch_abts_resp(ep, fp);
1804			else
1805				fc_frame_free(fp);
1806			break;
1807		case FC_RCTL_BA_ABTS:
1808			if (ep)
1809				fc_exch_recv_abts(ep, fp);
1810			else
1811				fc_frame_free(fp);
1812			break;
1813		default:			/* ignore junk */
1814			fc_frame_free(fp);
1815			break;
1816		}
1817	}
1818	if (ep)
1819		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1820}
1821
1822/**
1823 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1824 * @rx_fp: The received frame, not freed here.
1825 *
1826 * If this fails due to allocation or transmit congestion, assume the
1827 * originator will repeat the sequence.
1828 */
1829static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1830{
1831	struct fc_lport *lport;
1832	struct fc_els_ls_acc *acc;
1833	struct fc_frame *fp;
1834	struct fc_seq *sp;
1835
1836	lport = fr_dev(rx_fp);
1837	sp = fr_seq(rx_fp);
1838	fp = fc_frame_alloc(lport, sizeof(*acc));
1839	if (!fp) {
1840		FC_EXCH_DBG(fc_seq_exch(sp),
1841			    "exch: drop LS_ACC, out of memory\n");
1842		return;
1843	}
1844	acc = fc_frame_payload_get(fp, sizeof(*acc));
1845	memset(acc, 0, sizeof(*acc));
1846	acc->la_cmd = ELS_LS_ACC;
1847	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1848	lport->tt.frame_send(lport, fp);
1849}
1850
1851/**
1852 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1853 * @rx_fp: The received frame, not freed here.
1854 * @reason: The reason the sequence is being rejected
1855 * @explan: The explanation for the rejection
1856 *
1857 * If this fails due to allocation or transmit congestion, assume the
1858 * originator will repeat the sequence.
1859 */
1860static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1861			  enum fc_els_rjt_explan explan)
1862{
1863	struct fc_lport *lport;
1864	struct fc_els_ls_rjt *rjt;
1865	struct fc_frame *fp;
1866	struct fc_seq *sp;
1867
1868	lport = fr_dev(rx_fp);
1869	sp = fr_seq(rx_fp);
1870	fp = fc_frame_alloc(lport, sizeof(*rjt));
1871	if (!fp) {
1872		FC_EXCH_DBG(fc_seq_exch(sp),
1873			    "exch: drop LS_ACC, out of memory\n");
1874		return;
1875	}
1876	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1877	memset(rjt, 0, sizeof(*rjt));
1878	rjt->er_cmd = ELS_LS_RJT;
1879	rjt->er_reason = reason;
1880	rjt->er_explan = explan;
1881	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1882	lport->tt.frame_send(lport, fp);
1883}
1884
1885/**
1886 * fc_exch_reset() - Reset an exchange
1887 * @ep: The exchange to be reset
1888 *
1889 * Note: May sleep if invoked from outside a response handler.
1890 */
1891static void fc_exch_reset(struct fc_exch *ep)
1892{
1893	struct fc_seq *sp;
1894	int rc = 1;
1895
1896	spin_lock_bh(&ep->ex_lock);
1897	ep->state |= FC_EX_RST_CLEANUP;
1898	fc_exch_timer_cancel(ep);
1899	if (ep->esb_stat & ESB_ST_REC_QUAL)
1900		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1901	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1902	sp = &ep->seq;
1903	rc = fc_exch_done_locked(ep);
1904	spin_unlock_bh(&ep->ex_lock);
1905
1906	fc_exch_hold(ep);
1907
1908	if (!rc) {
1909		fc_exch_delete(ep);
1910	} else {
1911		FC_EXCH_DBG(ep, "ep is completed already,"
1912				"hence skip calling the resp\n");
1913		goto skip_resp;
1914	}
1915
1916	fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1917skip_resp:
1918	fc_seq_set_resp(sp, NULL, ep->arg);
1919	fc_exch_release(ep);
1920}
1921
1922/**
1923 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1924 * @lport: The local port that the exchange pool is on
1925 * @pool:  The exchange pool to be reset
1926 * @sid:   The source ID
1927 * @did:   The destination ID
1928 *
1929 * Resets a per cpu exches pool, releasing all of its sequences
1930 * and exchanges. If sid is non-zero then reset only exchanges
1931 * we sourced from the local port's FID. If did is non-zero then
1932 * only reset exchanges destined for the local port's FID.
1933 */
1934static void fc_exch_pool_reset(struct fc_lport *lport,
1935			       struct fc_exch_pool *pool,
1936			       u32 sid, u32 did)
1937{
1938	struct fc_exch *ep;
1939	struct fc_exch *next;
1940
1941	spin_lock_bh(&pool->lock);
1942restart:
1943	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1944		if ((lport == ep->lp) &&
1945		    (sid == 0 || sid == ep->sid) &&
1946		    (did == 0 || did == ep->did)) {
1947			fc_exch_hold(ep);
1948			spin_unlock_bh(&pool->lock);
1949
1950			fc_exch_reset(ep);
1951
1952			fc_exch_release(ep);
1953			spin_lock_bh(&pool->lock);
1954
1955			/*
1956			 * must restart loop incase while lock
1957			 * was down multiple eps were released.
1958			 */
1959			goto restart;
1960		}
1961	}
1962	pool->next_index = 0;
1963	pool->left = FC_XID_UNKNOWN;
1964	pool->right = FC_XID_UNKNOWN;
1965	spin_unlock_bh(&pool->lock);
1966}
1967
1968/**
1969 * fc_exch_mgr_reset() - Reset all EMs of a local port
1970 * @lport: The local port whose EMs are to be reset
1971 * @sid:   The source ID
1972 * @did:   The destination ID
1973 *
1974 * Reset all EMs associated with a given local port. Release all
1975 * sequences and exchanges. If sid is non-zero then reset only the
1976 * exchanges sent from the local port's FID. If did is non-zero then
1977 * reset only exchanges destined for the local port's FID.
1978 */
1979void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1980{
1981	struct fc_exch_mgr_anchor *ema;
1982	unsigned int cpu;
1983
1984	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1985		for_each_possible_cpu(cpu)
1986			fc_exch_pool_reset(lport,
1987					   per_cpu_ptr(ema->mp->pool, cpu),
1988					   sid, did);
1989	}
1990}
1991EXPORT_SYMBOL(fc_exch_mgr_reset);
1992
1993/**
1994 * fc_exch_lookup() - find an exchange
1995 * @lport: The local port
1996 * @xid: The exchange ID
1997 *
1998 * Returns exchange pointer with hold for caller, or NULL if not found.
1999 */
2000static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
2001{
2002	struct fc_exch_mgr_anchor *ema;
2003
2004	list_for_each_entry(ema, &lport->ema_list, ema_list)
2005		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
2006			return fc_exch_find(ema->mp, xid);
2007	return NULL;
2008}
2009
2010/**
2011 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
2012 * @rfp: The REC frame, not freed here.
2013 *
2014 * Note that the requesting port may be different than the S_ID in the request.
2015 */
2016static void fc_exch_els_rec(struct fc_frame *rfp)
2017{
2018	struct fc_lport *lport;
2019	struct fc_frame *fp;
2020	struct fc_exch *ep;
2021	struct fc_els_rec *rp;
2022	struct fc_els_rec_acc *acc;
2023	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2024	enum fc_els_rjt_explan explan;
2025	u32 sid;
2026	u16 xid, rxid, oxid;
2027
2028	lport = fr_dev(rfp);
2029	rp = fc_frame_payload_get(rfp, sizeof(*rp));
2030	explan = ELS_EXPL_INV_LEN;
2031	if (!rp)
2032		goto reject;
2033	sid = ntoh24(rp->rec_s_id);
2034	rxid = ntohs(rp->rec_rx_id);
2035	oxid = ntohs(rp->rec_ox_id);
2036
2037	explan = ELS_EXPL_OXID_RXID;
2038	if (sid == fc_host_port_id(lport->host))
2039		xid = oxid;
2040	else
2041		xid = rxid;
2042	if (xid == FC_XID_UNKNOWN) {
2043		FC_LPORT_DBG(lport,
2044			     "REC request from %x: invalid rxid %x oxid %x\n",
2045			     sid, rxid, oxid);
2046		goto reject;
2047	}
2048	ep = fc_exch_lookup(lport, xid);
2049	if (!ep) {
2050		FC_LPORT_DBG(lport,
2051			     "REC request from %x: rxid %x oxid %x not found\n",
2052			     sid, rxid, oxid);
2053		goto reject;
2054	}
2055	FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2056		    sid, rxid, oxid);
2057	if (ep->oid != sid || oxid != ep->oxid)
2058		goto rel;
2059	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2060		goto rel;
2061	fp = fc_frame_alloc(lport, sizeof(*acc));
2062	if (!fp) {
2063		FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2064		goto out;
2065	}
2066
2067	acc = fc_frame_payload_get(fp, sizeof(*acc));
2068	memset(acc, 0, sizeof(*acc));
2069	acc->reca_cmd = ELS_LS_ACC;
2070	acc->reca_ox_id = rp->rec_ox_id;
2071	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2072	acc->reca_rx_id = htons(ep->rxid);
2073	if (ep->sid == ep->oid)
2074		hton24(acc->reca_rfid, ep->did);
2075	else
2076		hton24(acc->reca_rfid, ep->sid);
2077	acc->reca_fc4value = htonl(ep->seq.rec_data);
2078	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2079						 ESB_ST_SEQ_INIT |
2080						 ESB_ST_COMPLETE));
2081	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2082	lport->tt.frame_send(lport, fp);
2083out:
2084	fc_exch_release(ep);
2085	return;
2086
2087rel:
2088	fc_exch_release(ep);
2089reject:
2090	fc_seq_ls_rjt(rfp, reason, explan);
2091}
2092
2093/**
2094 * fc_exch_rrq_resp() - Handler for RRQ responses
2095 * @sp:	 The sequence that the RRQ is on
2096 * @fp:	 The RRQ frame
2097 * @arg: The exchange that the RRQ is on
2098 *
2099 * TODO: fix error handler.
2100 */
2101static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2102{
2103	struct fc_exch *aborted_ep = arg;
2104	unsigned int op;
2105
2106	if (IS_ERR(fp)) {
2107		int err = PTR_ERR(fp);
2108
2109		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2110			goto cleanup;
2111		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2112			    "frame error %d\n", err);
2113		return;
2114	}
2115
2116	op = fc_frame_payload_op(fp);
2117	fc_frame_free(fp);
2118
2119	switch (op) {
2120	case ELS_LS_RJT:
2121		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2122		fallthrough;
2123	case ELS_LS_ACC:
2124		goto cleanup;
2125	default:
2126		FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2127			    op);
2128		return;
2129	}
2130
2131cleanup:
2132	fc_exch_done(&aborted_ep->seq);
2133	/* drop hold for rec qual */
2134	fc_exch_release(aborted_ep);
2135}
2136
2137
2138/**
2139 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2140 * @lport:	The local port to send the frame on
2141 * @fp:		The frame to be sent
2142 * @resp:	The response handler for this request
2143 * @destructor: The destructor for the exchange
2144 * @arg:	The argument to be passed to the response handler
2145 * @timer_msec: The timeout period for the exchange
2146 *
2147 * The exchange response handler is set in this routine to resp()
2148 * function pointer. It can be called in two scenarios: if a timeout
2149 * occurs or if a response frame is received for the exchange. The
2150 * fc_frame pointer in response handler will also indicate timeout
2151 * as error using IS_ERR related macros.
2152 *
2153 * The exchange destructor handler is also set in this routine.
2154 * The destructor handler is invoked by EM layer when exchange
2155 * is about to free, this can be used by caller to free its
2156 * resources along with exchange free.
2157 *
2158 * The arg is passed back to resp and destructor handler.
2159 *
2160 * The timeout value (in msec) for an exchange is set if non zero
2161 * timer_msec argument is specified. The timer is canceled when
2162 * it fires or when the exchange is done. The exchange timeout handler
2163 * is registered by EM layer.
2164 *
2165 * The frame pointer with some of the header's fields must be
2166 * filled before calling this routine, those fields are:
2167 *
2168 * - routing control
2169 * - FC port did
2170 * - FC port sid
2171 * - FC header type
2172 * - frame control
2173 * - parameter or relative offset
2174 */
2175struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2176				struct fc_frame *fp,
2177				void (*resp)(struct fc_seq *,
2178					     struct fc_frame *fp,
2179					     void *arg),
2180				void (*destructor)(struct fc_seq *, void *),
2181				void *arg, u32 timer_msec)
2182{
2183	struct fc_exch *ep;
2184	struct fc_seq *sp = NULL;
2185	struct fc_frame_header *fh;
2186	struct fc_fcp_pkt *fsp = NULL;
2187	int rc = 1;
2188
2189	ep = fc_exch_alloc(lport, fp);
2190	if (!ep) {
2191		fc_frame_free(fp);
2192		return NULL;
2193	}
2194	ep->esb_stat |= ESB_ST_SEQ_INIT;
2195	fh = fc_frame_header_get(fp);
2196	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2197	ep->resp = resp;
2198	ep->destructor = destructor;
2199	ep->arg = arg;
2200	ep->r_a_tov = lport->r_a_tov;
2201	ep->lp = lport;
2202	sp = &ep->seq;
2203
2204	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2205	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2206	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2207	sp->cnt++;
2208
2209	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2210		fsp = fr_fsp(fp);
2211		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2212	}
2213
2214	if (unlikely(lport->tt.frame_send(lport, fp)))
2215		goto err;
2216
2217	if (timer_msec)
2218		fc_exch_timer_set_locked(ep, timer_msec);
2219	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2220
2221	if (ep->f_ctl & FC_FC_SEQ_INIT)
2222		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2223	spin_unlock_bh(&ep->ex_lock);
2224	return sp;
2225err:
2226	if (fsp)
2227		fc_fcp_ddp_done(fsp);
2228	rc = fc_exch_done_locked(ep);
2229	spin_unlock_bh(&ep->ex_lock);
2230	if (!rc)
2231		fc_exch_delete(ep);
2232	return NULL;
2233}
2234EXPORT_SYMBOL(fc_exch_seq_send);
2235
2236/**
2237 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2238 * @ep: The exchange to send the RRQ on
2239 *
2240 * This tells the remote port to stop blocking the use of
2241 * the exchange and the seq_cnt range.
2242 */
2243static void fc_exch_rrq(struct fc_exch *ep)
2244{
2245	struct fc_lport *lport;
2246	struct fc_els_rrq *rrq;
2247	struct fc_frame *fp;
2248	u32 did;
2249
2250	lport = ep->lp;
2251
2252	fp = fc_frame_alloc(lport, sizeof(*rrq));
2253	if (!fp)
2254		goto retry;
2255
2256	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2257	memset(rrq, 0, sizeof(*rrq));
2258	rrq->rrq_cmd = ELS_RRQ;
2259	hton24(rrq->rrq_s_id, ep->sid);
2260	rrq->rrq_ox_id = htons(ep->oxid);
2261	rrq->rrq_rx_id = htons(ep->rxid);
2262
2263	did = ep->did;
2264	if (ep->esb_stat & ESB_ST_RESP)
2265		did = ep->sid;
2266
2267	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2268		       lport->port_id, FC_TYPE_ELS,
2269		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2270
2271	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2272			     lport->e_d_tov))
2273		return;
2274
2275retry:
2276	FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2277	spin_lock_bh(&ep->ex_lock);
2278	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2279		spin_unlock_bh(&ep->ex_lock);
2280		/* drop hold for rec qual */
2281		fc_exch_release(ep);
2282		return;
2283	}
2284	ep->esb_stat |= ESB_ST_REC_QUAL;
2285	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2286	spin_unlock_bh(&ep->ex_lock);
2287}
2288
2289/**
2290 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2291 * @fp: The RRQ frame, not freed here.
2292 */
2293static void fc_exch_els_rrq(struct fc_frame *fp)
2294{
2295	struct fc_lport *lport;
2296	struct fc_exch *ep = NULL;	/* request or subject exchange */
2297	struct fc_els_rrq *rp;
2298	u32 sid;
2299	u16 xid;
2300	enum fc_els_rjt_explan explan;
2301
2302	lport = fr_dev(fp);
2303	rp = fc_frame_payload_get(fp, sizeof(*rp));
2304	explan = ELS_EXPL_INV_LEN;
2305	if (!rp)
2306		goto reject;
2307
2308	/*
2309	 * lookup subject exchange.
2310	 */
2311	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2312	xid = fc_host_port_id(lport->host) == sid ?
2313			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2314	ep = fc_exch_lookup(lport, xid);
2315	explan = ELS_EXPL_OXID_RXID;
2316	if (!ep)
2317		goto reject;
2318	spin_lock_bh(&ep->ex_lock);
2319	FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2320		    sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2321	if (ep->oxid != ntohs(rp->rrq_ox_id))
2322		goto unlock_reject;
2323	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2324	    ep->rxid != FC_XID_UNKNOWN)
2325		goto unlock_reject;
2326	explan = ELS_EXPL_SID;
2327	if (ep->sid != sid)
2328		goto unlock_reject;
2329
2330	/*
2331	 * Clear Recovery Qualifier state, and cancel timer if complete.
2332	 */
2333	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2334		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2335		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2336	}
2337	if (ep->esb_stat & ESB_ST_COMPLETE)
2338		fc_exch_timer_cancel(ep);
2339
2340	spin_unlock_bh(&ep->ex_lock);
2341
2342	/*
2343	 * Send LS_ACC.
2344	 */
2345	fc_seq_ls_acc(fp);
2346	goto out;
2347
2348unlock_reject:
2349	spin_unlock_bh(&ep->ex_lock);
2350reject:
2351	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2352out:
2353	if (ep)
2354		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2355}
2356
2357/**
2358 * fc_exch_update_stats() - update exches stats to lport
2359 * @lport: The local port to update exchange manager stats
2360 */
2361void fc_exch_update_stats(struct fc_lport *lport)
2362{
2363	struct fc_host_statistics *st;
2364	struct fc_exch_mgr_anchor *ema;
2365	struct fc_exch_mgr *mp;
2366
2367	st = &lport->host_stats;
2368
2369	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2370		mp = ema->mp;
2371		st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2372		st->fc_no_free_exch_xid +=
2373				atomic_read(&mp->stats.no_free_exch_xid);
2374		st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2375		st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2376		st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2377		st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2378	}
2379}
2380EXPORT_SYMBOL(fc_exch_update_stats);
2381
2382/**
2383 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2384 * @lport: The local port to add the exchange manager to
2385 * @mp:	   The exchange manager to be added to the local port
2386 * @match: The match routine that indicates when this EM should be used
2387 */
2388struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2389					   struct fc_exch_mgr *mp,
2390					   bool (*match)(struct fc_frame *))
2391{
2392	struct fc_exch_mgr_anchor *ema;
2393
2394	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2395	if (!ema)
2396		return ema;
2397
2398	ema->mp = mp;
2399	ema->match = match;
2400	/* add EM anchor to EM anchors list */
2401	list_add_tail(&ema->ema_list, &lport->ema_list);
2402	kref_get(&mp->kref);
2403	return ema;
2404}
2405EXPORT_SYMBOL(fc_exch_mgr_add);
2406
2407/**
2408 * fc_exch_mgr_destroy() - Destroy an exchange manager
2409 * @kref: The reference to the EM to be destroyed
2410 */
2411static void fc_exch_mgr_destroy(struct kref *kref)
2412{
2413	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2414
2415	mempool_destroy(mp->ep_pool);
2416	free_percpu(mp->pool);
2417	kfree(mp);
2418}
2419
2420/**
2421 * fc_exch_mgr_del() - Delete an EM from a local port's list
2422 * @ema: The exchange manager anchor identifying the EM to be deleted
2423 */
2424void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2425{
2426	/* remove EM anchor from EM anchors list */
2427	list_del(&ema->ema_list);
2428	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2429	kfree(ema);
2430}
2431EXPORT_SYMBOL(fc_exch_mgr_del);
2432
2433/**
2434 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2435 * @src: Source lport to clone exchange managers from
2436 * @dst: New lport that takes references to all the exchange managers
2437 */
2438int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2439{
2440	struct fc_exch_mgr_anchor *ema, *tmp;
2441
2442	list_for_each_entry(ema, &src->ema_list, ema_list) {
2443		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2444			goto err;
2445	}
2446	return 0;
2447err:
2448	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2449		fc_exch_mgr_del(ema);
2450	return -ENOMEM;
2451}
2452EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2453
2454/**
2455 * fc_exch_mgr_alloc() - Allocate an exchange manager
2456 * @lport:   The local port that the new EM will be associated with
2457 * @class:   The default FC class for new exchanges
2458 * @min_xid: The minimum XID for exchanges from the new EM
2459 * @max_xid: The maximum XID for exchanges from the new EM
2460 * @match:   The match routine for the new EM
2461 */
2462struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2463				      enum fc_class class,
2464				      u16 min_xid, u16 max_xid,
2465				      bool (*match)(struct fc_frame *))
2466{
2467	struct fc_exch_mgr *mp;
2468	u16 pool_exch_range;
2469	size_t pool_size;
2470	unsigned int cpu;
2471	struct fc_exch_pool *pool;
2472
2473	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2474	    (min_xid & fc_cpu_mask) != 0) {
2475		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2476			     min_xid, max_xid);
2477		return NULL;
2478	}
2479
2480	/*
2481	 * allocate memory for EM
2482	 */
2483	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2484	if (!mp)
2485		return NULL;
2486
2487	mp->class = class;
2488	mp->lport = lport;
2489	/* adjust em exch xid range for offload */
2490	mp->min_xid = min_xid;
2491
2492       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2493	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2494		sizeof(struct fc_exch *);
2495	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2496		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2497			min_xid - 1;
2498	} else {
2499		mp->max_xid = max_xid;
2500		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2501			(fc_cpu_mask + 1);
2502	}
2503
2504	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2505	if (!mp->ep_pool)
2506		goto free_mp;
2507
2508	/*
2509	 * Setup per cpu exch pool with entire exchange id range equally
2510	 * divided across all cpus. The exch pointers array memory is
2511	 * allocated for exch range per pool.
2512	 */
2513	mp->pool_max_index = pool_exch_range - 1;
2514
2515	/*
2516	 * Allocate and initialize per cpu exch pool
2517	 */
2518	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2519	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2520	if (!mp->pool)
2521		goto free_mempool;
2522	for_each_possible_cpu(cpu) {
2523		pool = per_cpu_ptr(mp->pool, cpu);
2524		pool->next_index = 0;
2525		pool->left = FC_XID_UNKNOWN;
2526		pool->right = FC_XID_UNKNOWN;
2527		spin_lock_init(&pool->lock);
2528		INIT_LIST_HEAD(&pool->ex_list);
2529	}
2530
2531	kref_init(&mp->kref);
2532	if (!fc_exch_mgr_add(lport, mp, match)) {
2533		free_percpu(mp->pool);
2534		goto free_mempool;
2535	}
2536
2537	/*
2538	 * Above kref_init() sets mp->kref to 1 and then
2539	 * call to fc_exch_mgr_add incremented mp->kref again,
2540	 * so adjust that extra increment.
2541	 */
2542	kref_put(&mp->kref, fc_exch_mgr_destroy);
2543	return mp;
2544
2545free_mempool:
2546	mempool_destroy(mp->ep_pool);
2547free_mp:
2548	kfree(mp);
2549	return NULL;
2550}
2551EXPORT_SYMBOL(fc_exch_mgr_alloc);
2552
2553/**
2554 * fc_exch_mgr_free() - Free all exchange managers on a local port
2555 * @lport: The local port whose EMs are to be freed
2556 */
2557void fc_exch_mgr_free(struct fc_lport *lport)
2558{
2559	struct fc_exch_mgr_anchor *ema, *next;
2560
2561	flush_workqueue(fc_exch_workqueue);
2562	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2563		fc_exch_mgr_del(ema);
2564}
2565EXPORT_SYMBOL(fc_exch_mgr_free);
2566
2567/**
2568 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2569 * upon 'xid'.
2570 * @f_ctl: f_ctl
2571 * @lport: The local port the frame was received on
2572 * @fh: The received frame header
2573 */
2574static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2575					      struct fc_lport *lport,
2576					      struct fc_frame_header *fh)
2577{
2578	struct fc_exch_mgr_anchor *ema;
2579	u16 xid;
2580
2581	if (f_ctl & FC_FC_EX_CTX)
2582		xid = ntohs(fh->fh_ox_id);
2583	else {
2584		xid = ntohs(fh->fh_rx_id);
2585		if (xid == FC_XID_UNKNOWN)
2586			return list_entry(lport->ema_list.prev,
2587					  typeof(*ema), ema_list);
2588	}
2589
2590	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2591		if ((xid >= ema->mp->min_xid) &&
2592		    (xid <= ema->mp->max_xid))
2593			return ema;
2594	}
2595	return NULL;
2596}
2597/**
2598 * fc_exch_recv() - Handler for received frames
2599 * @lport: The local port the frame was received on
2600 * @fp:	The received frame
2601 */
2602void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2603{
2604	struct fc_frame_header *fh = fc_frame_header_get(fp);
2605	struct fc_exch_mgr_anchor *ema;
2606	u32 f_ctl;
2607
2608	/* lport lock ? */
2609	if (!lport || lport->state == LPORT_ST_DISABLED) {
2610		FC_LIBFC_DBG("Receiving frames for an lport that "
2611			     "has not been initialized correctly\n");
2612		fc_frame_free(fp);
2613		return;
2614	}
2615
2616	f_ctl = ntoh24(fh->fh_f_ctl);
2617	ema = fc_find_ema(f_ctl, lport, fh);
2618	if (!ema) {
2619		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2620				    "fc_ctl <0x%x>, xid <0x%x>\n",
2621				     f_ctl,
2622				     (f_ctl & FC_FC_EX_CTX) ?
2623				     ntohs(fh->fh_ox_id) :
2624				     ntohs(fh->fh_rx_id));
2625		fc_frame_free(fp);
2626		return;
2627	}
2628
2629	/*
2630	 * If frame is marked invalid, just drop it.
2631	 */
2632	switch (fr_eof(fp)) {
2633	case FC_EOF_T:
2634		if (f_ctl & FC_FC_END_SEQ)
2635			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2636		fallthrough;
2637	case FC_EOF_N:
2638		if (fh->fh_type == FC_TYPE_BLS)
2639			fc_exch_recv_bls(ema->mp, fp);
2640		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2641			 FC_FC_EX_CTX)
2642			fc_exch_recv_seq_resp(ema->mp, fp);
2643		else if (f_ctl & FC_FC_SEQ_CTX)
2644			fc_exch_recv_resp(ema->mp, fp);
2645		else	/* no EX_CTX and no SEQ_CTX */
2646			fc_exch_recv_req(lport, ema->mp, fp);
2647		break;
2648	default:
2649		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2650			     fr_eof(fp));
2651		fc_frame_free(fp);
2652	}
2653}
2654EXPORT_SYMBOL(fc_exch_recv);
2655
2656/**
2657 * fc_exch_init() - Initialize the exchange layer for a local port
2658 * @lport: The local port to initialize the exchange layer for
2659 */
2660int fc_exch_init(struct fc_lport *lport)
2661{
2662	if (!lport->tt.exch_mgr_reset)
2663		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2664
2665	return 0;
2666}
2667EXPORT_SYMBOL(fc_exch_init);
2668
2669/**
2670 * fc_setup_exch_mgr() - Setup an exchange manager
2671 */
2672int fc_setup_exch_mgr(void)
2673{
2674	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2675					 0, SLAB_HWCACHE_ALIGN, NULL);
2676	if (!fc_em_cachep)
2677		return -ENOMEM;
2678
2679	/*
2680	 * Initialize fc_cpu_mask and fc_cpu_order. The
2681	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2682	 * to order of 2's * power and order is stored
2683	 * in fc_cpu_order as this is later required in
2684	 * mapping between an exch id and exch array index
2685	 * in per cpu exch pool.
2686	 *
2687	 * This round up is required to align fc_cpu_mask
2688	 * to exchange id's lower bits such that all incoming
2689	 * frames of an exchange gets delivered to the same
2690	 * cpu on which exchange originated by simple bitwise
2691	 * AND operation between fc_cpu_mask and exchange id.
2692	 */
2693	fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2694	fc_cpu_mask = (1 << fc_cpu_order) - 1;
2695
2696	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2697	if (!fc_exch_workqueue)
2698		goto err;
2699	return 0;
2700err:
2701	kmem_cache_destroy(fc_em_cachep);
2702	return -ENOMEM;
2703}
2704
2705/**
2706 * fc_destroy_exch_mgr() - Destroy an exchange manager
2707 */
2708void fc_destroy_exch_mgr(void)
2709{
2710	destroy_workqueue(fc_exch_workqueue);
2711	kmem_cache_destroy(fc_em_cachep);
2712}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright(c) 2007 Intel Corporation. All rights reserved.
   4 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
   5 * Copyright(c) 2008 Mike Christie
   6 *
   7 * Maintained at www.Open-FCoE.org
   8 */
   9
  10/*
  11 * Fibre Channel exchange and sequence handling.
  12 */
  13
  14#include <linux/timer.h>
  15#include <linux/slab.h>
  16#include <linux/err.h>
  17#include <linux/export.h>
  18#include <linux/log2.h>
  19
  20#include <scsi/fc/fc_fc2.h>
  21
  22#include <scsi/libfc.h>
  23#include <scsi/fc_encode.h>
  24
  25#include "fc_libfc.h"
  26
  27u16	fc_cpu_mask;		/* cpu mask for possible cpus */
  28EXPORT_SYMBOL(fc_cpu_mask);
  29static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
  30static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
  31static struct workqueue_struct *fc_exch_workqueue;
  32
  33/*
  34 * Structure and function definitions for managing Fibre Channel Exchanges
  35 * and Sequences.
  36 *
  37 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
  38 *
  39 * fc_exch_mgr holds the exchange state for an N port
  40 *
  41 * fc_exch holds state for one exchange and links to its active sequence.
  42 *
  43 * fc_seq holds the state for an individual sequence.
  44 */
  45
  46/**
  47 * struct fc_exch_pool - Per cpu exchange pool
  48 * @next_index:	  Next possible free exchange index
  49 * @total_exches: Total allocated exchanges
  50 * @lock:	  Exch pool lock
  51 * @ex_list:	  List of exchanges
 
 
  52 *
  53 * This structure manages per cpu exchanges in array of exchange pointers.
  54 * This array is allocated followed by struct fc_exch_pool memory for
  55 * assigned range of exchanges to per cpu pool.
  56 */
  57struct fc_exch_pool {
  58	spinlock_t	 lock;
  59	struct list_head ex_list;
  60	u16		 next_index;
  61	u16		 total_exches;
  62
  63	/* two cache of free slot in exch array */
  64	u16		 left;
  65	u16		 right;
  66} ____cacheline_aligned_in_smp;
  67
  68/**
  69 * struct fc_exch_mgr - The Exchange Manager (EM).
  70 * @class:	    Default class for new sequences
  71 * @kref:	    Reference counter
  72 * @min_xid:	    Minimum exchange ID
  73 * @max_xid:	    Maximum exchange ID
  74 * @ep_pool:	    Reserved exchange pointers
  75 * @pool_max_index: Max exch array index in exch pool
  76 * @pool:	    Per cpu exch pool
 
  77 * @stats:	    Statistics structure
  78 *
  79 * This structure is the center for creating exchanges and sequences.
  80 * It manages the allocation of exchange IDs.
  81 */
  82struct fc_exch_mgr {
  83	struct fc_exch_pool __percpu *pool;
  84	mempool_t	*ep_pool;
  85	struct fc_lport	*lport;
  86	enum fc_class	class;
  87	struct kref	kref;
  88	u16		min_xid;
  89	u16		max_xid;
  90	u16		pool_max_index;
  91
  92	struct {
  93		atomic_t no_free_exch;
  94		atomic_t no_free_exch_xid;
  95		atomic_t xid_not_found;
  96		atomic_t xid_busy;
  97		atomic_t seq_not_found;
  98		atomic_t non_bls_resp;
  99	} stats;
 100};
 101
 102/**
 103 * struct fc_exch_mgr_anchor - primary structure for list of EMs
 104 * @ema_list: Exchange Manager Anchor list
 105 * @mp:	      Exchange Manager associated with this anchor
 106 * @match:    Routine to determine if this anchor's EM should be used
 107 *
 108 * When walking the list of anchors the match routine will be called
 109 * for each anchor to determine if that EM should be used. The last
 110 * anchor in the list will always match to handle any exchanges not
 111 * handled by other EMs. The non-default EMs would be added to the
 112 * anchor list by HW that provides offloads.
 113 */
 114struct fc_exch_mgr_anchor {
 115	struct list_head ema_list;
 116	struct fc_exch_mgr *mp;
 117	bool (*match)(struct fc_frame *);
 118};
 119
 120static void fc_exch_rrq(struct fc_exch *);
 121static void fc_seq_ls_acc(struct fc_frame *);
 122static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
 123			  enum fc_els_rjt_explan);
 124static void fc_exch_els_rec(struct fc_frame *);
 125static void fc_exch_els_rrq(struct fc_frame *);
 126
 127/*
 128 * Internal implementation notes.
 129 *
 130 * The exchange manager is one by default in libfc but LLD may choose
 131 * to have one per CPU. The sequence manager is one per exchange manager
 132 * and currently never separated.
 133 *
 134 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
 135 * assigned by the Sequence Initiator that shall be unique for a specific
 136 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
 137 * qualified by exchange ID, which one might think it would be.
 138 * In practice this limits the number of open sequences and exchanges to 256
 139 * per session.	 For most targets we could treat this limit as per exchange.
 140 *
 141 * The exchange and its sequence are freed when the last sequence is received.
 142 * It's possible for the remote port to leave an exchange open without
 143 * sending any sequences.
 144 *
 145 * Notes on reference counts:
 146 *
 147 * Exchanges are reference counted and exchange gets freed when the reference
 148 * count becomes zero.
 149 *
 150 * Timeouts:
 151 * Sequences are timed out for E_D_TOV and R_A_TOV.
 152 *
 153 * Sequence event handling:
 154 *
 155 * The following events may occur on initiator sequences:
 156 *
 157 *	Send.
 158 *	    For now, the whole thing is sent.
 159 *	Receive ACK
 160 *	    This applies only to class F.
 161 *	    The sequence is marked complete.
 162 *	ULP completion.
 163 *	    The upper layer calls fc_exch_done() when done
 164 *	    with exchange and sequence tuple.
 165 *	RX-inferred completion.
 166 *	    When we receive the next sequence on the same exchange, we can
 167 *	    retire the previous sequence ID.  (XXX not implemented).
 168 *	Timeout.
 169 *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
 170 *	    E_D_TOV causes abort and calls upper layer response handler
 171 *	    with FC_EX_TIMEOUT error.
 172 *	Receive RJT
 173 *	    XXX defer.
 174 *	Send ABTS
 175 *	    On timeout.
 176 *
 177 * The following events may occur on recipient sequences:
 178 *
 179 *	Receive
 180 *	    Allocate sequence for first frame received.
 181 *	    Hold during receive handler.
 182 *	    Release when final frame received.
 183 *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
 184 *	Receive ABTS
 185 *	    Deallocate sequence
 186 *	Send RJT
 187 *	    Deallocate
 188 *
 189 * For now, we neglect conditions where only part of a sequence was
 190 * received or transmitted, or where out-of-order receipt is detected.
 191 */
 192
 193/*
 194 * Locking notes:
 195 *
 196 * The EM code run in a per-CPU worker thread.
 197 *
 198 * To protect against concurrency between a worker thread code and timers,
 199 * sequence allocation and deallocation must be locked.
 200 *  - exchange refcnt can be done atomicly without locks.
 201 *  - sequence allocation must be locked by exch lock.
 202 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
 203 *    EM pool lock must be taken before the ex_lock.
 204 */
 205
 206/*
 207 * opcode names for debugging.
 208 */
 209static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
 210
 211/**
 212 * fc_exch_name_lookup() - Lookup name by opcode
 213 * @op:	       Opcode to be looked up
 214 * @table:     Opcode/name table
 215 * @max_index: Index not to be exceeded
 216 *
 217 * This routine is used to determine a human-readable string identifying
 218 * a R_CTL opcode.
 219 */
 220static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
 221					      unsigned int max_index)
 222{
 223	const char *name = NULL;
 224
 225	if (op < max_index)
 226		name = table[op];
 227	if (!name)
 228		name = "unknown";
 229	return name;
 230}
 231
 232/**
 233 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
 234 * @op: The opcode to be looked up
 235 */
 236static const char *fc_exch_rctl_name(unsigned int op)
 237{
 238	return fc_exch_name_lookup(op, fc_exch_rctl_names,
 239				   ARRAY_SIZE(fc_exch_rctl_names));
 240}
 241
 242/**
 243 * fc_exch_hold() - Increment an exchange's reference count
 244 * @ep: Echange to be held
 245 */
 246static inline void fc_exch_hold(struct fc_exch *ep)
 247{
 248	atomic_inc(&ep->ex_refcnt);
 249}
 250
 251/**
 252 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
 253 *			 and determine SOF and EOF.
 254 * @ep:	   The exchange to that will use the header
 255 * @fp:	   The frame whose header is to be modified
 256 * @f_ctl: F_CTL bits that will be used for the frame header
 257 *
 258 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
 259 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
 260 */
 261static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
 262			      u32 f_ctl)
 263{
 264	struct fc_frame_header *fh = fc_frame_header_get(fp);
 265	u16 fill;
 266
 267	fr_sof(fp) = ep->class;
 268	if (ep->seq.cnt)
 269		fr_sof(fp) = fc_sof_normal(ep->class);
 270
 271	if (f_ctl & FC_FC_END_SEQ) {
 272		fr_eof(fp) = FC_EOF_T;
 273		if (fc_sof_needs_ack(ep->class))
 274			fr_eof(fp) = FC_EOF_N;
 275		/*
 276		 * From F_CTL.
 277		 * The number of fill bytes to make the length a 4-byte
 278		 * multiple is the low order 2-bits of the f_ctl.
 279		 * The fill itself will have been cleared by the frame
 280		 * allocation.
 281		 * After this, the length will be even, as expected by
 282		 * the transport.
 283		 */
 284		fill = fr_len(fp) & 3;
 285		if (fill) {
 286			fill = 4 - fill;
 287			/* TODO, this may be a problem with fragmented skb */
 288			skb_put(fp_skb(fp), fill);
 289			hton24(fh->fh_f_ctl, f_ctl | fill);
 290		}
 291	} else {
 292		WARN_ON(fr_len(fp) % 4 != 0);	/* no pad to non last frame */
 293		fr_eof(fp) = FC_EOF_N;
 294	}
 295
 296	/* Initialize remaining fh fields from fc_fill_fc_hdr */
 297	fh->fh_ox_id = htons(ep->oxid);
 298	fh->fh_rx_id = htons(ep->rxid);
 299	fh->fh_seq_id = ep->seq.id;
 300	fh->fh_seq_cnt = htons(ep->seq.cnt);
 301}
 302
 303/**
 304 * fc_exch_release() - Decrement an exchange's reference count
 305 * @ep: Exchange to be released
 306 *
 307 * If the reference count reaches zero and the exchange is complete,
 308 * it is freed.
 309 */
 310static void fc_exch_release(struct fc_exch *ep)
 311{
 312	struct fc_exch_mgr *mp;
 313
 314	if (atomic_dec_and_test(&ep->ex_refcnt)) {
 315		mp = ep->em;
 316		if (ep->destructor)
 317			ep->destructor(&ep->seq, ep->arg);
 318		WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
 319		mempool_free(ep, mp->ep_pool);
 320	}
 321}
 322
 323/**
 324 * fc_exch_timer_cancel() - cancel exch timer
 325 * @ep:		The exchange whose timer to be canceled
 326 */
 327static inline void fc_exch_timer_cancel(struct fc_exch *ep)
 328{
 329	if (cancel_delayed_work(&ep->timeout_work)) {
 330		FC_EXCH_DBG(ep, "Exchange timer canceled\n");
 331		atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
 332	}
 333}
 334
 335/**
 336 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
 337 *				the exchange lock held
 338 * @ep:		The exchange whose timer will start
 339 * @timer_msec: The timeout period
 340 *
 341 * Used for upper level protocols to time out the exchange.
 342 * The timer is cancelled when it fires or when the exchange completes.
 343 */
 344static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
 345					    unsigned int timer_msec)
 346{
 347	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 348		return;
 349
 350	FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
 351
 352	fc_exch_hold(ep);		/* hold for timer */
 353	if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
 354				msecs_to_jiffies(timer_msec))) {
 355		FC_EXCH_DBG(ep, "Exchange already queued\n");
 356		fc_exch_release(ep);
 357	}
 358}
 359
 360/**
 361 * fc_exch_timer_set() - Lock the exchange and set the timer
 362 * @ep:		The exchange whose timer will start
 363 * @timer_msec: The timeout period
 364 */
 365static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
 366{
 367	spin_lock_bh(&ep->ex_lock);
 368	fc_exch_timer_set_locked(ep, timer_msec);
 369	spin_unlock_bh(&ep->ex_lock);
 370}
 371
 372/**
 373 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
 374 * @ep: The exchange that is complete
 375 *
 376 * Note: May sleep if invoked from outside a response handler.
 377 */
 378static int fc_exch_done_locked(struct fc_exch *ep)
 379{
 380	int rc = 1;
 381
 382	/*
 383	 * We must check for completion in case there are two threads
 384	 * tyring to complete this. But the rrq code will reuse the
 385	 * ep, and in that case we only clear the resp and set it as
 386	 * complete, so it can be reused by the timer to send the rrq.
 387	 */
 388	if (ep->state & FC_EX_DONE)
 389		return rc;
 390	ep->esb_stat |= ESB_ST_COMPLETE;
 391
 392	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
 393		ep->state |= FC_EX_DONE;
 394		fc_exch_timer_cancel(ep);
 395		rc = 0;
 396	}
 397	return rc;
 398}
 399
 400static struct fc_exch fc_quarantine_exch;
 401
 402/**
 403 * fc_exch_ptr_get() - Return an exchange from an exchange pool
 404 * @pool:  Exchange Pool to get an exchange from
 405 * @index: Index of the exchange within the pool
 406 *
 407 * Use the index to get an exchange from within an exchange pool. exches
 408 * will point to an array of exchange pointers. The index will select
 409 * the exchange within the array.
 410 */
 411static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
 412					      u16 index)
 413{
 414	struct fc_exch **exches = (struct fc_exch **)(pool + 1);
 415	return exches[index];
 416}
 417
 418/**
 419 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
 420 * @pool:  The pool to assign the exchange to
 421 * @index: The index in the pool where the exchange will be assigned
 422 * @ep:	   The exchange to assign to the pool
 423 */
 424static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
 425				   struct fc_exch *ep)
 426{
 427	((struct fc_exch **)(pool + 1))[index] = ep;
 428}
 429
 430/**
 431 * fc_exch_delete() - Delete an exchange
 432 * @ep: The exchange to be deleted
 433 */
 434static void fc_exch_delete(struct fc_exch *ep)
 435{
 436	struct fc_exch_pool *pool;
 437	u16 index;
 438
 439	pool = ep->pool;
 440	spin_lock_bh(&pool->lock);
 441	WARN_ON(pool->total_exches <= 0);
 442	pool->total_exches--;
 443
 444	/* update cache of free slot */
 445	index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
 446	if (!(ep->state & FC_EX_QUARANTINE)) {
 447		if (pool->left == FC_XID_UNKNOWN)
 448			pool->left = index;
 449		else if (pool->right == FC_XID_UNKNOWN)
 450			pool->right = index;
 451		else
 452			pool->next_index = index;
 453		fc_exch_ptr_set(pool, index, NULL);
 454	} else {
 455		fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
 456	}
 457	list_del(&ep->ex_list);
 458	spin_unlock_bh(&pool->lock);
 459	fc_exch_release(ep);	/* drop hold for exch in mp */
 460}
 461
 462static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
 463			      struct fc_frame *fp)
 464{
 465	struct fc_exch *ep;
 466	struct fc_frame_header *fh = fc_frame_header_get(fp);
 467	int error = -ENXIO;
 468	u32 f_ctl;
 469	u8 fh_type = fh->fh_type;
 470
 471	ep = fc_seq_exch(sp);
 472
 473	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
 474		fc_frame_free(fp);
 475		goto out;
 476	}
 477
 478	WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
 479
 480	f_ctl = ntoh24(fh->fh_f_ctl);
 481	fc_exch_setup_hdr(ep, fp, f_ctl);
 482	fr_encaps(fp) = ep->encaps;
 483
 484	/*
 485	 * update sequence count if this frame is carrying
 486	 * multiple FC frames when sequence offload is enabled
 487	 * by LLD.
 488	 */
 489	if (fr_max_payload(fp))
 490		sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
 491					fr_max_payload(fp));
 492	else
 493		sp->cnt++;
 494
 495	/*
 496	 * Send the frame.
 497	 */
 498	error = lport->tt.frame_send(lport, fp);
 499
 500	if (fh_type == FC_TYPE_BLS)
 501		goto out;
 502
 503	/*
 504	 * Update the exchange and sequence flags,
 505	 * assuming all frames for the sequence have been sent.
 506	 * We can only be called to send once for each sequence.
 507	 */
 508	ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;	/* not first seq */
 509	if (f_ctl & FC_FC_SEQ_INIT)
 510		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
 511out:
 512	return error;
 513}
 514
 515/**
 516 * fc_seq_send() - Send a frame using existing sequence/exchange pair
 517 * @lport: The local port that the exchange will be sent on
 518 * @sp:	   The sequence to be sent
 519 * @fp:	   The frame to be sent on the exchange
 520 *
 521 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
 522 * or indirectly by calling libfc_function_template.frame_send().
 523 */
 524int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
 525{
 526	struct fc_exch *ep;
 527	int error;
 528	ep = fc_seq_exch(sp);
 529	spin_lock_bh(&ep->ex_lock);
 530	error = fc_seq_send_locked(lport, sp, fp);
 531	spin_unlock_bh(&ep->ex_lock);
 532	return error;
 533}
 534EXPORT_SYMBOL(fc_seq_send);
 535
 536/**
 537 * fc_seq_alloc() - Allocate a sequence for a given exchange
 538 * @ep:	    The exchange to allocate a new sequence for
 539 * @seq_id: The sequence ID to be used
 540 *
 541 * We don't support multiple originated sequences on the same exchange.
 542 * By implication, any previously originated sequence on this exchange
 543 * is complete, and we reallocate the same sequence.
 544 */
 545static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
 546{
 547	struct fc_seq *sp;
 548
 549	sp = &ep->seq;
 550	sp->ssb_stat = 0;
 551	sp->cnt = 0;
 552	sp->id = seq_id;
 553	return sp;
 554}
 555
 556/**
 557 * fc_seq_start_next_locked() - Allocate a new sequence on the same
 558 *				exchange as the supplied sequence
 559 * @sp: The sequence/exchange to get a new sequence for
 560 */
 561static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
 562{
 563	struct fc_exch *ep = fc_seq_exch(sp);
 564
 565	sp = fc_seq_alloc(ep, ep->seq_id++);
 566	FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
 567		    ep->f_ctl, sp->id);
 568	return sp;
 569}
 570
 571/**
 572 * fc_seq_start_next() - Lock the exchange and get a new sequence
 573 *			 for a given sequence/exchange pair
 574 * @sp: The sequence/exchange to get a new exchange for
 575 */
 576struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
 577{
 578	struct fc_exch *ep = fc_seq_exch(sp);
 579
 580	spin_lock_bh(&ep->ex_lock);
 581	sp = fc_seq_start_next_locked(sp);
 582	spin_unlock_bh(&ep->ex_lock);
 583
 584	return sp;
 585}
 586EXPORT_SYMBOL(fc_seq_start_next);
 587
 588/*
 589 * Set the response handler for the exchange associated with a sequence.
 590 *
 591 * Note: May sleep if invoked from outside a response handler.
 592 */
 593void fc_seq_set_resp(struct fc_seq *sp,
 594		     void (*resp)(struct fc_seq *, struct fc_frame *, void *),
 595		     void *arg)
 596{
 597	struct fc_exch *ep = fc_seq_exch(sp);
 598	DEFINE_WAIT(wait);
 599
 600	spin_lock_bh(&ep->ex_lock);
 601	while (ep->resp_active && ep->resp_task != current) {
 602		prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
 603		spin_unlock_bh(&ep->ex_lock);
 604
 605		schedule();
 606
 607		spin_lock_bh(&ep->ex_lock);
 608	}
 609	finish_wait(&ep->resp_wq, &wait);
 610	ep->resp = resp;
 611	ep->arg = arg;
 612	spin_unlock_bh(&ep->ex_lock);
 613}
 614EXPORT_SYMBOL(fc_seq_set_resp);
 615
 616/**
 617 * fc_exch_abort_locked() - Abort an exchange
 618 * @ep:	The exchange to be aborted
 619 * @timer_msec: The period of time to wait before aborting
 620 *
 621 * Abort an exchange and sequence. Generally called because of a
 622 * exchange timeout or an abort from the upper layer.
 623 *
 624 * A timer_msec can be specified for abort timeout, if non-zero
 625 * timer_msec value is specified then exchange resp handler
 626 * will be called with timeout error if no response to abort.
 627 *
 628 * Locking notes:  Called with exch lock held
 629 *
 630 * Return value: 0 on success else error code
 631 */
 632static int fc_exch_abort_locked(struct fc_exch *ep,
 633				unsigned int timer_msec)
 634{
 635	struct fc_seq *sp;
 636	struct fc_frame *fp;
 637	int error;
 638
 639	FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
 640	if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
 641	    ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
 642		FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
 643			    ep->esb_stat, ep->state);
 644		return -ENXIO;
 645	}
 646
 647	/*
 648	 * Send the abort on a new sequence if possible.
 649	 */
 650	sp = fc_seq_start_next_locked(&ep->seq);
 651	if (!sp)
 652		return -ENOMEM;
 653
 654	if (timer_msec)
 655		fc_exch_timer_set_locked(ep, timer_msec);
 656
 657	if (ep->sid) {
 658		/*
 659		 * Send an abort for the sequence that timed out.
 660		 */
 661		fp = fc_frame_alloc(ep->lp, 0);
 662		if (fp) {
 663			ep->esb_stat |= ESB_ST_SEQ_INIT;
 664			fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
 665				       FC_TYPE_BLS, FC_FC_END_SEQ |
 666				       FC_FC_SEQ_INIT, 0);
 667			error = fc_seq_send_locked(ep->lp, sp, fp);
 668		} else {
 669			error = -ENOBUFS;
 670		}
 671	} else {
 672		/*
 673		 * If not logged into the fabric, don't send ABTS but leave
 674		 * sequence active until next timeout.
 675		 */
 676		error = 0;
 677	}
 678	ep->esb_stat |= ESB_ST_ABNORMAL;
 679	return error;
 680}
 681
 682/**
 683 * fc_seq_exch_abort() - Abort an exchange and sequence
 684 * @req_sp:	The sequence to be aborted
 685 * @timer_msec: The period of time to wait before aborting
 686 *
 687 * Generally called because of a timeout or an abort from the upper layer.
 688 *
 689 * Return value: 0 on success else error code
 690 */
 691int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
 692{
 693	struct fc_exch *ep;
 694	int error;
 695
 696	ep = fc_seq_exch(req_sp);
 697	spin_lock_bh(&ep->ex_lock);
 698	error = fc_exch_abort_locked(ep, timer_msec);
 699	spin_unlock_bh(&ep->ex_lock);
 700	return error;
 701}
 702
 703/**
 704 * fc_invoke_resp() - invoke ep->resp()
 
 
 
 705 *
 706 * Notes:
 707 * It is assumed that after initialization finished (this means the
 708 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
 709 * modified only via fc_seq_set_resp(). This guarantees that none of these
 710 * two variables changes if ep->resp_active > 0.
 711 *
 712 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
 713 * this function is invoked, the first spin_lock_bh() call in this function
 714 * will wait until fc_seq_set_resp() has finished modifying these variables.
 715 *
 716 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
 717 * ep->resp() won't be invoked after fc_exch_done() has returned.
 718 *
 719 * The response handler itself may invoke fc_exch_done(), which will clear the
 720 * ep->resp pointer.
 721 *
 722 * Return value:
 723 * Returns true if and only if ep->resp has been invoked.
 724 */
 725static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
 726			   struct fc_frame *fp)
 727{
 728	void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
 729	void *arg;
 730	bool res = false;
 731
 732	spin_lock_bh(&ep->ex_lock);
 733	ep->resp_active++;
 734	if (ep->resp_task != current)
 735		ep->resp_task = !ep->resp_task ? current : NULL;
 736	resp = ep->resp;
 737	arg = ep->arg;
 738	spin_unlock_bh(&ep->ex_lock);
 739
 740	if (resp) {
 741		resp(sp, fp, arg);
 742		res = true;
 743	}
 744
 745	spin_lock_bh(&ep->ex_lock);
 746	if (--ep->resp_active == 0)
 747		ep->resp_task = NULL;
 748	spin_unlock_bh(&ep->ex_lock);
 749
 750	if (ep->resp_active == 0)
 751		wake_up(&ep->resp_wq);
 752
 753	return res;
 754}
 755
 756/**
 757 * fc_exch_timeout() - Handle exchange timer expiration
 758 * @work: The work_struct identifying the exchange that timed out
 759 */
 760static void fc_exch_timeout(struct work_struct *work)
 761{
 762	struct fc_exch *ep = container_of(work, struct fc_exch,
 763					  timeout_work.work);
 764	struct fc_seq *sp = &ep->seq;
 765	u32 e_stat;
 766	int rc = 1;
 767
 768	FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
 769
 770	spin_lock_bh(&ep->ex_lock);
 771	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 772		goto unlock;
 773
 774	e_stat = ep->esb_stat;
 775	if (e_stat & ESB_ST_COMPLETE) {
 776		ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
 777		spin_unlock_bh(&ep->ex_lock);
 778		if (e_stat & ESB_ST_REC_QUAL)
 779			fc_exch_rrq(ep);
 780		goto done;
 781	} else {
 782		if (e_stat & ESB_ST_ABNORMAL)
 783			rc = fc_exch_done_locked(ep);
 784		spin_unlock_bh(&ep->ex_lock);
 785		if (!rc)
 786			fc_exch_delete(ep);
 787		fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
 788		fc_seq_set_resp(sp, NULL, ep->arg);
 789		fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
 790		goto done;
 791	}
 792unlock:
 793	spin_unlock_bh(&ep->ex_lock);
 794done:
 795	/*
 796	 * This release matches the hold taken when the timer was set.
 797	 */
 798	fc_exch_release(ep);
 799}
 800
 801/**
 802 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
 803 * @lport: The local port that the exchange is for
 804 * @mp:	   The exchange manager that will allocate the exchange
 805 *
 806 * Returns pointer to allocated fc_exch with exch lock held.
 807 */
 808static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
 809					struct fc_exch_mgr *mp)
 810{
 811	struct fc_exch *ep;
 812	unsigned int cpu;
 813	u16 index;
 814	struct fc_exch_pool *pool;
 815
 816	/* allocate memory for exchange */
 817	ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
 818	if (!ep) {
 819		atomic_inc(&mp->stats.no_free_exch);
 820		goto out;
 821	}
 822	memset(ep, 0, sizeof(*ep));
 823
 824	cpu = get_cpu();
 825	pool = per_cpu_ptr(mp->pool, cpu);
 826	spin_lock_bh(&pool->lock);
 827	put_cpu();
 828
 829	/* peek cache of free slot */
 830	if (pool->left != FC_XID_UNKNOWN) {
 831		if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
 832			index = pool->left;
 833			pool->left = FC_XID_UNKNOWN;
 834			goto hit;
 835		}
 836	}
 837	if (pool->right != FC_XID_UNKNOWN) {
 838		if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
 839			index = pool->right;
 840			pool->right = FC_XID_UNKNOWN;
 841			goto hit;
 842		}
 843	}
 844
 845	index = pool->next_index;
 846	/* allocate new exch from pool */
 847	while (fc_exch_ptr_get(pool, index)) {
 848		index = index == mp->pool_max_index ? 0 : index + 1;
 849		if (index == pool->next_index)
 850			goto err;
 851	}
 852	pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
 853hit:
 854	fc_exch_hold(ep);	/* hold for exch in mp */
 855	spin_lock_init(&ep->ex_lock);
 856	/*
 857	 * Hold exch lock for caller to prevent fc_exch_reset()
 858	 * from releasing exch	while fc_exch_alloc() caller is
 859	 * still working on exch.
 860	 */
 861	spin_lock_bh(&ep->ex_lock);
 862
 863	fc_exch_ptr_set(pool, index, ep);
 864	list_add_tail(&ep->ex_list, &pool->ex_list);
 865	fc_seq_alloc(ep, ep->seq_id++);
 866	pool->total_exches++;
 867	spin_unlock_bh(&pool->lock);
 868
 869	/*
 870	 *  update exchange
 871	 */
 872	ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
 873	ep->em = mp;
 874	ep->pool = pool;
 875	ep->lp = lport;
 876	ep->f_ctl = FC_FC_FIRST_SEQ;	/* next seq is first seq */
 877	ep->rxid = FC_XID_UNKNOWN;
 878	ep->class = mp->class;
 879	ep->resp_active = 0;
 880	init_waitqueue_head(&ep->resp_wq);
 881	INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
 882out:
 883	return ep;
 884err:
 885	spin_unlock_bh(&pool->lock);
 886	atomic_inc(&mp->stats.no_free_exch_xid);
 887	mempool_free(ep, mp->ep_pool);
 888	return NULL;
 889}
 890
 891/**
 892 * fc_exch_alloc() - Allocate an exchange from an EM on a
 893 *		     local port's list of EMs.
 894 * @lport: The local port that will own the exchange
 895 * @fp:	   The FC frame that the exchange will be for
 896 *
 897 * This function walks the list of exchange manager(EM)
 898 * anchors to select an EM for a new exchange allocation. The
 899 * EM is selected when a NULL match function pointer is encountered
 900 * or when a call to a match function returns true.
 901 */
 902static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
 903				     struct fc_frame *fp)
 904{
 905	struct fc_exch_mgr_anchor *ema;
 906	struct fc_exch *ep;
 907
 908	list_for_each_entry(ema, &lport->ema_list, ema_list) {
 909		if (!ema->match || ema->match(fp)) {
 910			ep = fc_exch_em_alloc(lport, ema->mp);
 911			if (ep)
 912				return ep;
 913		}
 914	}
 915	return NULL;
 916}
 917
 918/**
 919 * fc_exch_find() - Lookup and hold an exchange
 920 * @mp:	 The exchange manager to lookup the exchange from
 921 * @xid: The XID of the exchange to look up
 922 */
 923static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
 924{
 925	struct fc_lport *lport = mp->lport;
 926	struct fc_exch_pool *pool;
 927	struct fc_exch *ep = NULL;
 928	u16 cpu = xid & fc_cpu_mask;
 929
 930	if (xid == FC_XID_UNKNOWN)
 931		return NULL;
 932
 933	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 934		pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
 935		       lport->host->host_no, lport->port_id, xid, cpu);
 936		return NULL;
 937	}
 938
 939	if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
 940		pool = per_cpu_ptr(mp->pool, cpu);
 941		spin_lock_bh(&pool->lock);
 942		ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
 943		if (ep == &fc_quarantine_exch) {
 944			FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
 945			ep = NULL;
 946		}
 947		if (ep) {
 948			WARN_ON(ep->xid != xid);
 949			fc_exch_hold(ep);
 950		}
 951		spin_unlock_bh(&pool->lock);
 952	}
 953	return ep;
 954}
 955
 956
 957/**
 958 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
 959 *		    the memory allocated for the related objects may be freed.
 960 * @sp: The sequence that has completed
 961 *
 962 * Note: May sleep if invoked from outside a response handler.
 963 */
 964void fc_exch_done(struct fc_seq *sp)
 965{
 966	struct fc_exch *ep = fc_seq_exch(sp);
 967	int rc;
 968
 969	spin_lock_bh(&ep->ex_lock);
 970	rc = fc_exch_done_locked(ep);
 971	spin_unlock_bh(&ep->ex_lock);
 972
 973	fc_seq_set_resp(sp, NULL, ep->arg);
 974	if (!rc)
 975		fc_exch_delete(ep);
 976}
 977EXPORT_SYMBOL(fc_exch_done);
 978
 979/**
 980 * fc_exch_resp() - Allocate a new exchange for a response frame
 981 * @lport: The local port that the exchange was for
 982 * @mp:	   The exchange manager to allocate the exchange from
 983 * @fp:	   The response frame
 984 *
 985 * Sets the responder ID in the frame header.
 986 */
 987static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
 988				    struct fc_exch_mgr *mp,
 989				    struct fc_frame *fp)
 990{
 991	struct fc_exch *ep;
 992	struct fc_frame_header *fh;
 993
 994	ep = fc_exch_alloc(lport, fp);
 995	if (ep) {
 996		ep->class = fc_frame_class(fp);
 997
 998		/*
 999		 * Set EX_CTX indicating we're responding on this exchange.
1000		 */
1001		ep->f_ctl |= FC_FC_EX_CTX;	/* we're responding */
1002		ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not new */
1003		fh = fc_frame_header_get(fp);
1004		ep->sid = ntoh24(fh->fh_d_id);
1005		ep->did = ntoh24(fh->fh_s_id);
1006		ep->oid = ep->did;
1007
1008		/*
1009		 * Allocated exchange has placed the XID in the
1010		 * originator field. Move it to the responder field,
1011		 * and set the originator XID from the frame.
1012		 */
1013		ep->rxid = ep->xid;
1014		ep->oxid = ntohs(fh->fh_ox_id);
1015		ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1016		if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1017			ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1018
1019		fc_exch_hold(ep);	/* hold for caller */
1020		spin_unlock_bh(&ep->ex_lock);	/* lock from fc_exch_alloc */
1021	}
1022	return ep;
1023}
1024
1025/**
1026 * fc_seq_lookup_recip() - Find a sequence where the other end
1027 *			   originated the sequence
1028 * @lport: The local port that the frame was sent to
1029 * @mp:	   The Exchange Manager to lookup the exchange from
1030 * @fp:	   The frame associated with the sequence we're looking for
1031 *
1032 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1033 * on the ep that should be released by the caller.
1034 */
1035static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1036						 struct fc_exch_mgr *mp,
1037						 struct fc_frame *fp)
1038{
1039	struct fc_frame_header *fh = fc_frame_header_get(fp);
1040	struct fc_exch *ep = NULL;
1041	struct fc_seq *sp = NULL;
1042	enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1043	u32 f_ctl;
1044	u16 xid;
1045
1046	f_ctl = ntoh24(fh->fh_f_ctl);
1047	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1048
1049	/*
1050	 * Lookup or create the exchange if we will be creating the sequence.
1051	 */
1052	if (f_ctl & FC_FC_EX_CTX) {
1053		xid = ntohs(fh->fh_ox_id);	/* we originated exch */
1054		ep = fc_exch_find(mp, xid);
1055		if (!ep) {
1056			atomic_inc(&mp->stats.xid_not_found);
1057			reject = FC_RJT_OX_ID;
1058			goto out;
1059		}
1060		if (ep->rxid == FC_XID_UNKNOWN)
1061			ep->rxid = ntohs(fh->fh_rx_id);
1062		else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1063			reject = FC_RJT_OX_ID;
1064			goto rel;
1065		}
1066	} else {
1067		xid = ntohs(fh->fh_rx_id);	/* we are the responder */
1068
1069		/*
1070		 * Special case for MDS issuing an ELS TEST with a
1071		 * bad rxid of 0.
1072		 * XXX take this out once we do the proper reject.
1073		 */
1074		if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1075		    fc_frame_payload_op(fp) == ELS_TEST) {
1076			fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1077			xid = FC_XID_UNKNOWN;
1078		}
1079
1080		/*
1081		 * new sequence - find the exchange
1082		 */
1083		ep = fc_exch_find(mp, xid);
1084		if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1085			if (ep) {
1086				atomic_inc(&mp->stats.xid_busy);
1087				reject = FC_RJT_RX_ID;
1088				goto rel;
1089			}
1090			ep = fc_exch_resp(lport, mp, fp);
1091			if (!ep) {
1092				reject = FC_RJT_EXCH_EST;	/* XXX */
1093				goto out;
1094			}
1095			xid = ep->xid;	/* get our XID */
1096		} else if (!ep) {
1097			atomic_inc(&mp->stats.xid_not_found);
1098			reject = FC_RJT_RX_ID;	/* XID not found */
1099			goto out;
1100		}
1101	}
1102
1103	spin_lock_bh(&ep->ex_lock);
1104	/*
1105	 * At this point, we have the exchange held.
1106	 * Find or create the sequence.
1107	 */
1108	if (fc_sof_is_init(fr_sof(fp))) {
1109		sp = &ep->seq;
1110		sp->ssb_stat |= SSB_ST_RESP;
1111		sp->id = fh->fh_seq_id;
1112	} else {
1113		sp = &ep->seq;
1114		if (sp->id != fh->fh_seq_id) {
1115			atomic_inc(&mp->stats.seq_not_found);
1116			if (f_ctl & FC_FC_END_SEQ) {
1117				/*
1118				 * Update sequence_id based on incoming last
1119				 * frame of sequence exchange. This is needed
1120				 * for FC target where DDP has been used
1121				 * on target where, stack is indicated only
1122				 * about last frame's (payload _header) header.
1123				 * Whereas "seq_id" which is part of
1124				 * frame_header is allocated by initiator
1125				 * which is totally different from "seq_id"
1126				 * allocated when XFER_RDY was sent by target.
1127				 * To avoid false -ve which results into not
1128				 * sending RSP, hence write request on other
1129				 * end never finishes.
1130				 */
1131				sp->ssb_stat |= SSB_ST_RESP;
1132				sp->id = fh->fh_seq_id;
1133			} else {
1134				spin_unlock_bh(&ep->ex_lock);
1135
1136				/* sequence/exch should exist */
1137				reject = FC_RJT_SEQ_ID;
1138				goto rel;
1139			}
1140		}
1141	}
1142	WARN_ON(ep != fc_seq_exch(sp));
1143
1144	if (f_ctl & FC_FC_SEQ_INIT)
1145		ep->esb_stat |= ESB_ST_SEQ_INIT;
1146	spin_unlock_bh(&ep->ex_lock);
1147
1148	fr_seq(fp) = sp;
1149out:
1150	return reject;
1151rel:
1152	fc_exch_done(&ep->seq);
1153	fc_exch_release(ep);	/* hold from fc_exch_find/fc_exch_resp */
1154	return reject;
1155}
1156
1157/**
1158 * fc_seq_lookup_orig() - Find a sequence where this end
1159 *			  originated the sequence
1160 * @mp:	   The Exchange Manager to lookup the exchange from
1161 * @fp:	   The frame associated with the sequence we're looking for
1162 *
1163 * Does not hold the sequence for the caller.
1164 */
1165static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1166					 struct fc_frame *fp)
1167{
1168	struct fc_frame_header *fh = fc_frame_header_get(fp);
1169	struct fc_exch *ep;
1170	struct fc_seq *sp = NULL;
1171	u32 f_ctl;
1172	u16 xid;
1173
1174	f_ctl = ntoh24(fh->fh_f_ctl);
1175	WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1176	xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1177	ep = fc_exch_find(mp, xid);
1178	if (!ep)
1179		return NULL;
1180	if (ep->seq.id == fh->fh_seq_id) {
1181		/*
1182		 * Save the RX_ID if we didn't previously know it.
1183		 */
1184		sp = &ep->seq;
1185		if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1186		    ep->rxid == FC_XID_UNKNOWN) {
1187			ep->rxid = ntohs(fh->fh_rx_id);
1188		}
1189	}
1190	fc_exch_release(ep);
1191	return sp;
1192}
1193
1194/**
1195 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1196 * @ep:	     The exchange to set the addresses for
1197 * @orig_id: The originator's ID
1198 * @resp_id: The responder's ID
1199 *
1200 * Note this must be done before the first sequence of the exchange is sent.
1201 */
1202static void fc_exch_set_addr(struct fc_exch *ep,
1203			     u32 orig_id, u32 resp_id)
1204{
1205	ep->oid = orig_id;
1206	if (ep->esb_stat & ESB_ST_RESP) {
1207		ep->sid = resp_id;
1208		ep->did = orig_id;
1209	} else {
1210		ep->sid = orig_id;
1211		ep->did = resp_id;
1212	}
1213}
1214
1215/**
1216 * fc_seq_els_rsp_send() - Send an ELS response using information from
1217 *			   the existing sequence/exchange.
1218 * @fp:	      The received frame
1219 * @els_cmd:  The ELS command to be sent
1220 * @els_data: The ELS data to be sent
1221 *
1222 * The received frame is not freed.
1223 */
1224void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1225			 struct fc_seq_els_data *els_data)
1226{
1227	switch (els_cmd) {
1228	case ELS_LS_RJT:
1229		fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1230		break;
1231	case ELS_LS_ACC:
1232		fc_seq_ls_acc(fp);
1233		break;
1234	case ELS_RRQ:
1235		fc_exch_els_rrq(fp);
1236		break;
1237	case ELS_REC:
1238		fc_exch_els_rec(fp);
1239		break;
1240	default:
1241		FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1242	}
1243}
1244EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1245
1246/**
1247 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1248 * @sp:	     The sequence that is to be sent
1249 * @fp:	     The frame that will be sent on the sequence
1250 * @rctl:    The R_CTL information to be sent
1251 * @fh_type: The frame header type
1252 */
1253static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1254			     enum fc_rctl rctl, enum fc_fh_type fh_type)
1255{
1256	u32 f_ctl;
1257	struct fc_exch *ep = fc_seq_exch(sp);
1258
1259	f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1260	f_ctl |= ep->f_ctl;
1261	fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1262	fc_seq_send_locked(ep->lp, sp, fp);
1263}
1264
1265/**
1266 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1267 * @sp:	   The sequence to send the ACK on
1268 * @rx_fp: The received frame that is being acknoledged
1269 *
1270 * Send ACK_1 (or equiv.) indicating we received something.
1271 */
1272static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1273{
1274	struct fc_frame *fp;
1275	struct fc_frame_header *rx_fh;
1276	struct fc_frame_header *fh;
1277	struct fc_exch *ep = fc_seq_exch(sp);
1278	struct fc_lport *lport = ep->lp;
1279	unsigned int f_ctl;
1280
1281	/*
1282	 * Don't send ACKs for class 3.
1283	 */
1284	if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1285		fp = fc_frame_alloc(lport, 0);
1286		if (!fp) {
1287			FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1288			return;
1289		}
1290
1291		fh = fc_frame_header_get(fp);
1292		fh->fh_r_ctl = FC_RCTL_ACK_1;
1293		fh->fh_type = FC_TYPE_BLS;
1294
1295		/*
1296		 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1297		 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1298		 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1299		 * Last ACK uses bits 7-6 (continue sequence),
1300		 * bits 5-4 are meaningful (what kind of ACK to use).
1301		 */
1302		rx_fh = fc_frame_header_get(rx_fp);
1303		f_ctl = ntoh24(rx_fh->fh_f_ctl);
1304		f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1305			FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1306			FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1307			FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1308		f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1309		hton24(fh->fh_f_ctl, f_ctl);
1310
1311		fc_exch_setup_hdr(ep, fp, f_ctl);
1312		fh->fh_seq_id = rx_fh->fh_seq_id;
1313		fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1314		fh->fh_parm_offset = htonl(1);	/* ack single frame */
1315
1316		fr_sof(fp) = fr_sof(rx_fp);
1317		if (f_ctl & FC_FC_END_SEQ)
1318			fr_eof(fp) = FC_EOF_T;
1319		else
1320			fr_eof(fp) = FC_EOF_N;
1321
1322		lport->tt.frame_send(lport, fp);
1323	}
1324}
1325
1326/**
1327 * fc_exch_send_ba_rjt() - Send BLS Reject
1328 * @rx_fp:  The frame being rejected
1329 * @reason: The reason the frame is being rejected
1330 * @explan: The explanation for the rejection
1331 *
1332 * This is for rejecting BA_ABTS only.
1333 */
1334static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1335				enum fc_ba_rjt_reason reason,
1336				enum fc_ba_rjt_explan explan)
1337{
1338	struct fc_frame *fp;
1339	struct fc_frame_header *rx_fh;
1340	struct fc_frame_header *fh;
1341	struct fc_ba_rjt *rp;
1342	struct fc_seq *sp;
1343	struct fc_lport *lport;
1344	unsigned int f_ctl;
1345
1346	lport = fr_dev(rx_fp);
1347	sp = fr_seq(rx_fp);
1348	fp = fc_frame_alloc(lport, sizeof(*rp));
1349	if (!fp) {
1350		FC_EXCH_DBG(fc_seq_exch(sp),
1351			     "Drop BA_RJT request, out of memory\n");
1352		return;
1353	}
1354	fh = fc_frame_header_get(fp);
1355	rx_fh = fc_frame_header_get(rx_fp);
1356
1357	memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1358
1359	rp = fc_frame_payload_get(fp, sizeof(*rp));
1360	rp->br_reason = reason;
1361	rp->br_explan = explan;
1362
1363	/*
1364	 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1365	 */
1366	memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1367	memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1368	fh->fh_ox_id = rx_fh->fh_ox_id;
1369	fh->fh_rx_id = rx_fh->fh_rx_id;
1370	fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1371	fh->fh_r_ctl = FC_RCTL_BA_RJT;
1372	fh->fh_type = FC_TYPE_BLS;
1373
1374	/*
1375	 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1376	 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1377	 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1378	 * Last ACK uses bits 7-6 (continue sequence),
1379	 * bits 5-4 are meaningful (what kind of ACK to use).
1380	 * Always set LAST_SEQ, END_SEQ.
1381	 */
1382	f_ctl = ntoh24(rx_fh->fh_f_ctl);
1383	f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1384		FC_FC_END_CONN | FC_FC_SEQ_INIT |
1385		FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1386	f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1387	f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1388	f_ctl &= ~FC_FC_FIRST_SEQ;
1389	hton24(fh->fh_f_ctl, f_ctl);
1390
1391	fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1392	fr_eof(fp) = FC_EOF_T;
1393	if (fc_sof_needs_ack(fr_sof(fp)))
1394		fr_eof(fp) = FC_EOF_N;
1395
1396	lport->tt.frame_send(lport, fp);
1397}
1398
1399/**
1400 * fc_exch_recv_abts() - Handle an incoming ABTS
1401 * @ep:	   The exchange the abort was on
1402 * @rx_fp: The ABTS frame
1403 *
1404 * This would be for target mode usually, but could be due to lost
1405 * FCP transfer ready, confirm or RRQ. We always handle this as an
1406 * exchange abort, ignoring the parameter.
1407 */
1408static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1409{
1410	struct fc_frame *fp;
1411	struct fc_ba_acc *ap;
1412	struct fc_frame_header *fh;
1413	struct fc_seq *sp;
1414
1415	if (!ep)
1416		goto reject;
1417
1418	FC_EXCH_DBG(ep, "exch: ABTS received\n");
1419	fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1420	if (!fp) {
1421		FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1422		goto free;
1423	}
1424
1425	spin_lock_bh(&ep->ex_lock);
1426	if (ep->esb_stat & ESB_ST_COMPLETE) {
1427		spin_unlock_bh(&ep->ex_lock);
1428		FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1429		fc_frame_free(fp);
1430		goto reject;
1431	}
1432	if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1433		ep->esb_stat |= ESB_ST_REC_QUAL;
1434		fc_exch_hold(ep);		/* hold for REC_QUAL */
1435	}
1436	fc_exch_timer_set_locked(ep, ep->r_a_tov);
1437	fh = fc_frame_header_get(fp);
1438	ap = fc_frame_payload_get(fp, sizeof(*ap));
1439	memset(ap, 0, sizeof(*ap));
1440	sp = &ep->seq;
1441	ap->ba_high_seq_cnt = htons(0xffff);
1442	if (sp->ssb_stat & SSB_ST_RESP) {
1443		ap->ba_seq_id = sp->id;
1444		ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1445		ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1446		ap->ba_low_seq_cnt = htons(sp->cnt);
1447	}
1448	sp = fc_seq_start_next_locked(sp);
1449	fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1450	ep->esb_stat |= ESB_ST_ABNORMAL;
1451	spin_unlock_bh(&ep->ex_lock);
1452
1453free:
1454	fc_frame_free(rx_fp);
1455	return;
1456
1457reject:
1458	fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1459	goto free;
1460}
1461
1462/**
1463 * fc_seq_assign() - Assign exchange and sequence for incoming request
1464 * @lport: The local port that received the request
1465 * @fp:    The request frame
1466 *
1467 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1468 * A reference will be held on the exchange/sequence for the caller, which
1469 * must call fc_seq_release().
1470 */
1471struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1472{
1473	struct fc_exch_mgr_anchor *ema;
1474
1475	WARN_ON(lport != fr_dev(fp));
1476	WARN_ON(fr_seq(fp));
1477	fr_seq(fp) = NULL;
1478
1479	list_for_each_entry(ema, &lport->ema_list, ema_list)
1480		if ((!ema->match || ema->match(fp)) &&
1481		    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1482			break;
1483	return fr_seq(fp);
1484}
1485EXPORT_SYMBOL(fc_seq_assign);
1486
1487/**
1488 * fc_seq_release() - Release the hold
1489 * @sp:    The sequence.
1490 */
1491void fc_seq_release(struct fc_seq *sp)
1492{
1493	fc_exch_release(fc_seq_exch(sp));
1494}
1495EXPORT_SYMBOL(fc_seq_release);
1496
1497/**
1498 * fc_exch_recv_req() - Handler for an incoming request
1499 * @lport: The local port that received the request
1500 * @mp:	   The EM that the exchange is on
1501 * @fp:	   The request frame
1502 *
1503 * This is used when the other end is originating the exchange
1504 * and the sequence.
1505 */
1506static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1507			     struct fc_frame *fp)
1508{
1509	struct fc_frame_header *fh = fc_frame_header_get(fp);
1510	struct fc_seq *sp = NULL;
1511	struct fc_exch *ep = NULL;
1512	enum fc_pf_rjt_reason reject;
1513
1514	/* We can have the wrong fc_lport at this point with NPIV, which is a
1515	 * problem now that we know a new exchange needs to be allocated
1516	 */
1517	lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1518	if (!lport) {
1519		fc_frame_free(fp);
1520		return;
1521	}
1522	fr_dev(fp) = lport;
1523
1524	BUG_ON(fr_seq(fp));		/* XXX remove later */
1525
1526	/*
1527	 * If the RX_ID is 0xffff, don't allocate an exchange.
1528	 * The upper-level protocol may request one later, if needed.
1529	 */
1530	if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1531		return fc_lport_recv(lport, fp);
1532
1533	reject = fc_seq_lookup_recip(lport, mp, fp);
1534	if (reject == FC_RJT_NONE) {
1535		sp = fr_seq(fp);	/* sequence will be held */
1536		ep = fc_seq_exch(sp);
1537		fc_seq_send_ack(sp, fp);
1538		ep->encaps = fr_encaps(fp);
1539
1540		/*
1541		 * Call the receive function.
1542		 *
1543		 * The receive function may allocate a new sequence
1544		 * over the old one, so we shouldn't change the
1545		 * sequence after this.
1546		 *
1547		 * The frame will be freed by the receive function.
1548		 * If new exch resp handler is valid then call that
1549		 * first.
1550		 */
1551		if (!fc_invoke_resp(ep, sp, fp))
1552			fc_lport_recv(lport, fp);
1553		fc_exch_release(ep);	/* release from lookup */
1554	} else {
1555		FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1556			     reject);
1557		fc_frame_free(fp);
1558	}
1559}
1560
1561/**
1562 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1563 *			     end is the originator of the sequence that is a
1564 *			     response to our initial exchange
1565 * @mp: The EM that the exchange is on
1566 * @fp: The response frame
1567 */
1568static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1569{
1570	struct fc_frame_header *fh = fc_frame_header_get(fp);
1571	struct fc_seq *sp;
1572	struct fc_exch *ep;
1573	enum fc_sof sof;
1574	u32 f_ctl;
1575	int rc;
1576
1577	ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1578	if (!ep) {
1579		atomic_inc(&mp->stats.xid_not_found);
1580		goto out;
1581	}
1582	if (ep->esb_stat & ESB_ST_COMPLETE) {
1583		atomic_inc(&mp->stats.xid_not_found);
1584		goto rel;
1585	}
1586	if (ep->rxid == FC_XID_UNKNOWN)
1587		ep->rxid = ntohs(fh->fh_rx_id);
1588	if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1589		atomic_inc(&mp->stats.xid_not_found);
1590		goto rel;
1591	}
1592	if (ep->did != ntoh24(fh->fh_s_id) &&
1593	    ep->did != FC_FID_FLOGI) {
1594		atomic_inc(&mp->stats.xid_not_found);
1595		goto rel;
1596	}
1597	sof = fr_sof(fp);
1598	sp = &ep->seq;
1599	if (fc_sof_is_init(sof)) {
1600		sp->ssb_stat |= SSB_ST_RESP;
1601		sp->id = fh->fh_seq_id;
1602	}
1603
1604	f_ctl = ntoh24(fh->fh_f_ctl);
1605	fr_seq(fp) = sp;
1606
1607	spin_lock_bh(&ep->ex_lock);
1608	if (f_ctl & FC_FC_SEQ_INIT)
1609		ep->esb_stat |= ESB_ST_SEQ_INIT;
1610	spin_unlock_bh(&ep->ex_lock);
1611
1612	if (fc_sof_needs_ack(sof))
1613		fc_seq_send_ack(sp, fp);
1614
1615	if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1616	    (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1617	    (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1618		spin_lock_bh(&ep->ex_lock);
1619		rc = fc_exch_done_locked(ep);
1620		WARN_ON(fc_seq_exch(sp) != ep);
1621		spin_unlock_bh(&ep->ex_lock);
1622		if (!rc)
1623			fc_exch_delete(ep);
 
 
 
 
 
1624	}
1625
1626	/*
1627	 * Call the receive function.
1628	 * The sequence is held (has a refcnt) for us,
1629	 * but not for the receive function.
1630	 *
1631	 * The receive function may allocate a new sequence
1632	 * over the old one, so we shouldn't change the
1633	 * sequence after this.
1634	 *
1635	 * The frame will be freed by the receive function.
1636	 * If new exch resp handler is valid then call that
1637	 * first.
1638	 */
1639	if (!fc_invoke_resp(ep, sp, fp))
1640		fc_frame_free(fp);
1641
 
1642	fc_exch_release(ep);
1643	return;
1644rel:
1645	fc_exch_release(ep);
1646out:
1647	fc_frame_free(fp);
1648}
1649
1650/**
1651 * fc_exch_recv_resp() - Handler for a sequence where other end is
1652 *			 responding to our sequence
1653 * @mp: The EM that the exchange is on
1654 * @fp: The response frame
1655 */
1656static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1657{
1658	struct fc_seq *sp;
1659
1660	sp = fc_seq_lookup_orig(mp, fp);	/* doesn't hold sequence */
1661
1662	if (!sp)
1663		atomic_inc(&mp->stats.xid_not_found);
1664	else
1665		atomic_inc(&mp->stats.non_bls_resp);
1666
1667	fc_frame_free(fp);
1668}
1669
1670/**
1671 * fc_exch_abts_resp() - Handler for a response to an ABT
1672 * @ep: The exchange that the frame is on
1673 * @fp: The response frame
1674 *
1675 * This response would be to an ABTS cancelling an exchange or sequence.
1676 * The response can be either BA_ACC or BA_RJT
1677 */
1678static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1679{
1680	struct fc_frame_header *fh;
1681	struct fc_ba_acc *ap;
1682	struct fc_seq *sp;
1683	u16 low;
1684	u16 high;
1685	int rc = 1, has_rec = 0;
1686
1687	fh = fc_frame_header_get(fp);
1688	FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1689		    fc_exch_rctl_name(fh->fh_r_ctl));
1690
1691	if (cancel_delayed_work_sync(&ep->timeout_work)) {
1692		FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1693		fc_exch_release(ep);	/* release from pending timer hold */
 
1694	}
1695
1696	spin_lock_bh(&ep->ex_lock);
1697	switch (fh->fh_r_ctl) {
1698	case FC_RCTL_BA_ACC:
1699		ap = fc_frame_payload_get(fp, sizeof(*ap));
1700		if (!ap)
1701			break;
1702
1703		/*
1704		 * Decide whether to establish a Recovery Qualifier.
1705		 * We do this if there is a non-empty SEQ_CNT range and
1706		 * SEQ_ID is the same as the one we aborted.
1707		 */
1708		low = ntohs(ap->ba_low_seq_cnt);
1709		high = ntohs(ap->ba_high_seq_cnt);
1710		if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1711		    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1712		     ap->ba_seq_id == ep->seq_id) && low != high) {
1713			ep->esb_stat |= ESB_ST_REC_QUAL;
1714			fc_exch_hold(ep);  /* hold for recovery qualifier */
1715			has_rec = 1;
1716		}
1717		break;
1718	case FC_RCTL_BA_RJT:
1719		break;
1720	default:
1721		break;
1722	}
1723
1724	/* do we need to do some other checks here. Can we reuse more of
1725	 * fc_exch_recv_seq_resp
1726	 */
1727	sp = &ep->seq;
1728	/*
1729	 * do we want to check END_SEQ as well as LAST_SEQ here?
1730	 */
1731	if (ep->fh_type != FC_TYPE_FCP &&
1732	    ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1733		rc = fc_exch_done_locked(ep);
1734	spin_unlock_bh(&ep->ex_lock);
1735
1736	fc_exch_hold(ep);
1737	if (!rc)
1738		fc_exch_delete(ep);
1739	if (!fc_invoke_resp(ep, sp, fp))
1740		fc_frame_free(fp);
1741	if (has_rec)
1742		fc_exch_timer_set(ep, ep->r_a_tov);
1743	fc_exch_release(ep);
1744}
1745
1746/**
1747 * fc_exch_recv_bls() - Handler for a BLS sequence
1748 * @mp: The EM that the exchange is on
1749 * @fp: The request frame
1750 *
1751 * The BLS frame is always a sequence initiated by the remote side.
1752 * We may be either the originator or recipient of the exchange.
1753 */
1754static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1755{
1756	struct fc_frame_header *fh;
1757	struct fc_exch *ep;
1758	u32 f_ctl;
1759
1760	fh = fc_frame_header_get(fp);
1761	f_ctl = ntoh24(fh->fh_f_ctl);
1762	fr_seq(fp) = NULL;
1763
1764	ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1765			  ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1766	if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1767		spin_lock_bh(&ep->ex_lock);
1768		ep->esb_stat |= ESB_ST_SEQ_INIT;
1769		spin_unlock_bh(&ep->ex_lock);
1770	}
1771	if (f_ctl & FC_FC_SEQ_CTX) {
1772		/*
1773		 * A response to a sequence we initiated.
1774		 * This should only be ACKs for class 2 or F.
1775		 */
1776		switch (fh->fh_r_ctl) {
1777		case FC_RCTL_ACK_1:
1778		case FC_RCTL_ACK_0:
1779			break;
1780		default:
1781			if (ep)
1782				FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1783					    fh->fh_r_ctl,
1784					    fc_exch_rctl_name(fh->fh_r_ctl));
1785			break;
1786		}
1787		fc_frame_free(fp);
1788	} else {
1789		switch (fh->fh_r_ctl) {
1790		case FC_RCTL_BA_RJT:
1791		case FC_RCTL_BA_ACC:
1792			if (ep)
1793				fc_exch_abts_resp(ep, fp);
1794			else
1795				fc_frame_free(fp);
1796			break;
1797		case FC_RCTL_BA_ABTS:
1798			if (ep)
1799				fc_exch_recv_abts(ep, fp);
1800			else
1801				fc_frame_free(fp);
1802			break;
1803		default:			/* ignore junk */
1804			fc_frame_free(fp);
1805			break;
1806		}
1807	}
1808	if (ep)
1809		fc_exch_release(ep);	/* release hold taken by fc_exch_find */
1810}
1811
1812/**
1813 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1814 * @rx_fp: The received frame, not freed here.
1815 *
1816 * If this fails due to allocation or transmit congestion, assume the
1817 * originator will repeat the sequence.
1818 */
1819static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1820{
1821	struct fc_lport *lport;
1822	struct fc_els_ls_acc *acc;
1823	struct fc_frame *fp;
1824	struct fc_seq *sp;
1825
1826	lport = fr_dev(rx_fp);
1827	sp = fr_seq(rx_fp);
1828	fp = fc_frame_alloc(lport, sizeof(*acc));
1829	if (!fp) {
1830		FC_EXCH_DBG(fc_seq_exch(sp),
1831			    "exch: drop LS_ACC, out of memory\n");
1832		return;
1833	}
1834	acc = fc_frame_payload_get(fp, sizeof(*acc));
1835	memset(acc, 0, sizeof(*acc));
1836	acc->la_cmd = ELS_LS_ACC;
1837	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1838	lport->tt.frame_send(lport, fp);
1839}
1840
1841/**
1842 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1843 * @rx_fp: The received frame, not freed here.
1844 * @reason: The reason the sequence is being rejected
1845 * @explan: The explanation for the rejection
1846 *
1847 * If this fails due to allocation or transmit congestion, assume the
1848 * originator will repeat the sequence.
1849 */
1850static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1851			  enum fc_els_rjt_explan explan)
1852{
1853	struct fc_lport *lport;
1854	struct fc_els_ls_rjt *rjt;
1855	struct fc_frame *fp;
1856	struct fc_seq *sp;
1857
1858	lport = fr_dev(rx_fp);
1859	sp = fr_seq(rx_fp);
1860	fp = fc_frame_alloc(lport, sizeof(*rjt));
1861	if (!fp) {
1862		FC_EXCH_DBG(fc_seq_exch(sp),
1863			    "exch: drop LS_ACC, out of memory\n");
1864		return;
1865	}
1866	rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1867	memset(rjt, 0, sizeof(*rjt));
1868	rjt->er_cmd = ELS_LS_RJT;
1869	rjt->er_reason = reason;
1870	rjt->er_explan = explan;
1871	fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1872	lport->tt.frame_send(lport, fp);
1873}
1874
1875/**
1876 * fc_exch_reset() - Reset an exchange
1877 * @ep: The exchange to be reset
1878 *
1879 * Note: May sleep if invoked from outside a response handler.
1880 */
1881static void fc_exch_reset(struct fc_exch *ep)
1882{
1883	struct fc_seq *sp;
1884	int rc = 1;
1885
1886	spin_lock_bh(&ep->ex_lock);
1887	ep->state |= FC_EX_RST_CLEANUP;
1888	fc_exch_timer_cancel(ep);
1889	if (ep->esb_stat & ESB_ST_REC_QUAL)
1890		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec_qual */
1891	ep->esb_stat &= ~ESB_ST_REC_QUAL;
1892	sp = &ep->seq;
1893	rc = fc_exch_done_locked(ep);
1894	spin_unlock_bh(&ep->ex_lock);
1895
1896	fc_exch_hold(ep);
1897
1898	if (!rc)
1899		fc_exch_delete(ep);
 
 
 
 
 
1900
1901	fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
 
1902	fc_seq_set_resp(sp, NULL, ep->arg);
1903	fc_exch_release(ep);
1904}
1905
1906/**
1907 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1908 * @lport: The local port that the exchange pool is on
1909 * @pool:  The exchange pool to be reset
1910 * @sid:   The source ID
1911 * @did:   The destination ID
1912 *
1913 * Resets a per cpu exches pool, releasing all of its sequences
1914 * and exchanges. If sid is non-zero then reset only exchanges
1915 * we sourced from the local port's FID. If did is non-zero then
1916 * only reset exchanges destined for the local port's FID.
1917 */
1918static void fc_exch_pool_reset(struct fc_lport *lport,
1919			       struct fc_exch_pool *pool,
1920			       u32 sid, u32 did)
1921{
1922	struct fc_exch *ep;
1923	struct fc_exch *next;
1924
1925	spin_lock_bh(&pool->lock);
1926restart:
1927	list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1928		if ((lport == ep->lp) &&
1929		    (sid == 0 || sid == ep->sid) &&
1930		    (did == 0 || did == ep->did)) {
1931			fc_exch_hold(ep);
1932			spin_unlock_bh(&pool->lock);
1933
1934			fc_exch_reset(ep);
1935
1936			fc_exch_release(ep);
1937			spin_lock_bh(&pool->lock);
1938
1939			/*
1940			 * must restart loop incase while lock
1941			 * was down multiple eps were released.
1942			 */
1943			goto restart;
1944		}
1945	}
1946	pool->next_index = 0;
1947	pool->left = FC_XID_UNKNOWN;
1948	pool->right = FC_XID_UNKNOWN;
1949	spin_unlock_bh(&pool->lock);
1950}
1951
1952/**
1953 * fc_exch_mgr_reset() - Reset all EMs of a local port
1954 * @lport: The local port whose EMs are to be reset
1955 * @sid:   The source ID
1956 * @did:   The destination ID
1957 *
1958 * Reset all EMs associated with a given local port. Release all
1959 * sequences and exchanges. If sid is non-zero then reset only the
1960 * exchanges sent from the local port's FID. If did is non-zero then
1961 * reset only exchanges destined for the local port's FID.
1962 */
1963void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1964{
1965	struct fc_exch_mgr_anchor *ema;
1966	unsigned int cpu;
1967
1968	list_for_each_entry(ema, &lport->ema_list, ema_list) {
1969		for_each_possible_cpu(cpu)
1970			fc_exch_pool_reset(lport,
1971					   per_cpu_ptr(ema->mp->pool, cpu),
1972					   sid, did);
1973	}
1974}
1975EXPORT_SYMBOL(fc_exch_mgr_reset);
1976
1977/**
1978 * fc_exch_lookup() - find an exchange
1979 * @lport: The local port
1980 * @xid: The exchange ID
1981 *
1982 * Returns exchange pointer with hold for caller, or NULL if not found.
1983 */
1984static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1985{
1986	struct fc_exch_mgr_anchor *ema;
1987
1988	list_for_each_entry(ema, &lport->ema_list, ema_list)
1989		if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1990			return fc_exch_find(ema->mp, xid);
1991	return NULL;
1992}
1993
1994/**
1995 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1996 * @rfp: The REC frame, not freed here.
1997 *
1998 * Note that the requesting port may be different than the S_ID in the request.
1999 */
2000static void fc_exch_els_rec(struct fc_frame *rfp)
2001{
2002	struct fc_lport *lport;
2003	struct fc_frame *fp;
2004	struct fc_exch *ep;
2005	struct fc_els_rec *rp;
2006	struct fc_els_rec_acc *acc;
2007	enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2008	enum fc_els_rjt_explan explan;
2009	u32 sid;
2010	u16 xid, rxid, oxid;
2011
2012	lport = fr_dev(rfp);
2013	rp = fc_frame_payload_get(rfp, sizeof(*rp));
2014	explan = ELS_EXPL_INV_LEN;
2015	if (!rp)
2016		goto reject;
2017	sid = ntoh24(rp->rec_s_id);
2018	rxid = ntohs(rp->rec_rx_id);
2019	oxid = ntohs(rp->rec_ox_id);
2020
2021	explan = ELS_EXPL_OXID_RXID;
2022	if (sid == fc_host_port_id(lport->host))
2023		xid = oxid;
2024	else
2025		xid = rxid;
2026	if (xid == FC_XID_UNKNOWN) {
2027		FC_LPORT_DBG(lport,
2028			     "REC request from %x: invalid rxid %x oxid %x\n",
2029			     sid, rxid, oxid);
2030		goto reject;
2031	}
2032	ep = fc_exch_lookup(lport, xid);
2033	if (!ep) {
2034		FC_LPORT_DBG(lport,
2035			     "REC request from %x: rxid %x oxid %x not found\n",
2036			     sid, rxid, oxid);
2037		goto reject;
2038	}
2039	FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2040		    sid, rxid, oxid);
2041	if (ep->oid != sid || oxid != ep->oxid)
2042		goto rel;
2043	if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2044		goto rel;
2045	fp = fc_frame_alloc(lport, sizeof(*acc));
2046	if (!fp) {
2047		FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2048		goto out;
2049	}
2050
2051	acc = fc_frame_payload_get(fp, sizeof(*acc));
2052	memset(acc, 0, sizeof(*acc));
2053	acc->reca_cmd = ELS_LS_ACC;
2054	acc->reca_ox_id = rp->rec_ox_id;
2055	memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2056	acc->reca_rx_id = htons(ep->rxid);
2057	if (ep->sid == ep->oid)
2058		hton24(acc->reca_rfid, ep->did);
2059	else
2060		hton24(acc->reca_rfid, ep->sid);
2061	acc->reca_fc4value = htonl(ep->seq.rec_data);
2062	acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2063						 ESB_ST_SEQ_INIT |
2064						 ESB_ST_COMPLETE));
2065	fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2066	lport->tt.frame_send(lport, fp);
2067out:
2068	fc_exch_release(ep);
2069	return;
2070
2071rel:
2072	fc_exch_release(ep);
2073reject:
2074	fc_seq_ls_rjt(rfp, reason, explan);
2075}
2076
2077/**
2078 * fc_exch_rrq_resp() - Handler for RRQ responses
2079 * @sp:	 The sequence that the RRQ is on
2080 * @fp:	 The RRQ frame
2081 * @arg: The exchange that the RRQ is on
2082 *
2083 * TODO: fix error handler.
2084 */
2085static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2086{
2087	struct fc_exch *aborted_ep = arg;
2088	unsigned int op;
2089
2090	if (IS_ERR(fp)) {
2091		int err = PTR_ERR(fp);
2092
2093		if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2094			goto cleanup;
2095		FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2096			    "frame error %d\n", err);
2097		return;
2098	}
2099
2100	op = fc_frame_payload_op(fp);
2101	fc_frame_free(fp);
2102
2103	switch (op) {
2104	case ELS_LS_RJT:
2105		FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2106		/* fall through */
2107	case ELS_LS_ACC:
2108		goto cleanup;
2109	default:
2110		FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2111			    op);
2112		return;
2113	}
2114
2115cleanup:
2116	fc_exch_done(&aborted_ep->seq);
2117	/* drop hold for rec qual */
2118	fc_exch_release(aborted_ep);
2119}
2120
2121
2122/**
2123 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2124 * @lport:	The local port to send the frame on
2125 * @fp:		The frame to be sent
2126 * @resp:	The response handler for this request
2127 * @destructor: The destructor for the exchange
2128 * @arg:	The argument to be passed to the response handler
2129 * @timer_msec: The timeout period for the exchange
2130 *
2131 * The exchange response handler is set in this routine to resp()
2132 * function pointer. It can be called in two scenarios: if a timeout
2133 * occurs or if a response frame is received for the exchange. The
2134 * fc_frame pointer in response handler will also indicate timeout
2135 * as error using IS_ERR related macros.
2136 *
2137 * The exchange destructor handler is also set in this routine.
2138 * The destructor handler is invoked by EM layer when exchange
2139 * is about to free, this can be used by caller to free its
2140 * resources along with exchange free.
2141 *
2142 * The arg is passed back to resp and destructor handler.
2143 *
2144 * The timeout value (in msec) for an exchange is set if non zero
2145 * timer_msec argument is specified. The timer is canceled when
2146 * it fires or when the exchange is done. The exchange timeout handler
2147 * is registered by EM layer.
2148 *
2149 * The frame pointer with some of the header's fields must be
2150 * filled before calling this routine, those fields are:
2151 *
2152 * - routing control
2153 * - FC port did
2154 * - FC port sid
2155 * - FC header type
2156 * - frame control
2157 * - parameter or relative offset
2158 */
2159struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2160				struct fc_frame *fp,
2161				void (*resp)(struct fc_seq *,
2162					     struct fc_frame *fp,
2163					     void *arg),
2164				void (*destructor)(struct fc_seq *, void *),
2165				void *arg, u32 timer_msec)
2166{
2167	struct fc_exch *ep;
2168	struct fc_seq *sp = NULL;
2169	struct fc_frame_header *fh;
2170	struct fc_fcp_pkt *fsp = NULL;
2171	int rc = 1;
2172
2173	ep = fc_exch_alloc(lport, fp);
2174	if (!ep) {
2175		fc_frame_free(fp);
2176		return NULL;
2177	}
2178	ep->esb_stat |= ESB_ST_SEQ_INIT;
2179	fh = fc_frame_header_get(fp);
2180	fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2181	ep->resp = resp;
2182	ep->destructor = destructor;
2183	ep->arg = arg;
2184	ep->r_a_tov = lport->r_a_tov;
2185	ep->lp = lport;
2186	sp = &ep->seq;
2187
2188	ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2189	ep->f_ctl = ntoh24(fh->fh_f_ctl);
2190	fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2191	sp->cnt++;
2192
2193	if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2194		fsp = fr_fsp(fp);
2195		fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2196	}
2197
2198	if (unlikely(lport->tt.frame_send(lport, fp)))
2199		goto err;
2200
2201	if (timer_msec)
2202		fc_exch_timer_set_locked(ep, timer_msec);
2203	ep->f_ctl &= ~FC_FC_FIRST_SEQ;	/* not first seq */
2204
2205	if (ep->f_ctl & FC_FC_SEQ_INIT)
2206		ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2207	spin_unlock_bh(&ep->ex_lock);
2208	return sp;
2209err:
2210	if (fsp)
2211		fc_fcp_ddp_done(fsp);
2212	rc = fc_exch_done_locked(ep);
2213	spin_unlock_bh(&ep->ex_lock);
2214	if (!rc)
2215		fc_exch_delete(ep);
2216	return NULL;
2217}
2218EXPORT_SYMBOL(fc_exch_seq_send);
2219
2220/**
2221 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2222 * @ep: The exchange to send the RRQ on
2223 *
2224 * This tells the remote port to stop blocking the use of
2225 * the exchange and the seq_cnt range.
2226 */
2227static void fc_exch_rrq(struct fc_exch *ep)
2228{
2229	struct fc_lport *lport;
2230	struct fc_els_rrq *rrq;
2231	struct fc_frame *fp;
2232	u32 did;
2233
2234	lport = ep->lp;
2235
2236	fp = fc_frame_alloc(lport, sizeof(*rrq));
2237	if (!fp)
2238		goto retry;
2239
2240	rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2241	memset(rrq, 0, sizeof(*rrq));
2242	rrq->rrq_cmd = ELS_RRQ;
2243	hton24(rrq->rrq_s_id, ep->sid);
2244	rrq->rrq_ox_id = htons(ep->oxid);
2245	rrq->rrq_rx_id = htons(ep->rxid);
2246
2247	did = ep->did;
2248	if (ep->esb_stat & ESB_ST_RESP)
2249		did = ep->sid;
2250
2251	fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2252		       lport->port_id, FC_TYPE_ELS,
2253		       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2254
2255	if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2256			     lport->e_d_tov))
2257		return;
2258
2259retry:
2260	FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2261	spin_lock_bh(&ep->ex_lock);
2262	if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2263		spin_unlock_bh(&ep->ex_lock);
2264		/* drop hold for rec qual */
2265		fc_exch_release(ep);
2266		return;
2267	}
2268	ep->esb_stat |= ESB_ST_REC_QUAL;
2269	fc_exch_timer_set_locked(ep, ep->r_a_tov);
2270	spin_unlock_bh(&ep->ex_lock);
2271}
2272
2273/**
2274 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2275 * @fp: The RRQ frame, not freed here.
2276 */
2277static void fc_exch_els_rrq(struct fc_frame *fp)
2278{
2279	struct fc_lport *lport;
2280	struct fc_exch *ep = NULL;	/* request or subject exchange */
2281	struct fc_els_rrq *rp;
2282	u32 sid;
2283	u16 xid;
2284	enum fc_els_rjt_explan explan;
2285
2286	lport = fr_dev(fp);
2287	rp = fc_frame_payload_get(fp, sizeof(*rp));
2288	explan = ELS_EXPL_INV_LEN;
2289	if (!rp)
2290		goto reject;
2291
2292	/*
2293	 * lookup subject exchange.
2294	 */
2295	sid = ntoh24(rp->rrq_s_id);		/* subject source */
2296	xid = fc_host_port_id(lport->host) == sid ?
2297			ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2298	ep = fc_exch_lookup(lport, xid);
2299	explan = ELS_EXPL_OXID_RXID;
2300	if (!ep)
2301		goto reject;
2302	spin_lock_bh(&ep->ex_lock);
2303	FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2304		    sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2305	if (ep->oxid != ntohs(rp->rrq_ox_id))
2306		goto unlock_reject;
2307	if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2308	    ep->rxid != FC_XID_UNKNOWN)
2309		goto unlock_reject;
2310	explan = ELS_EXPL_SID;
2311	if (ep->sid != sid)
2312		goto unlock_reject;
2313
2314	/*
2315	 * Clear Recovery Qualifier state, and cancel timer if complete.
2316	 */
2317	if (ep->esb_stat & ESB_ST_REC_QUAL) {
2318		ep->esb_stat &= ~ESB_ST_REC_QUAL;
2319		atomic_dec(&ep->ex_refcnt);	/* drop hold for rec qual */
2320	}
2321	if (ep->esb_stat & ESB_ST_COMPLETE)
2322		fc_exch_timer_cancel(ep);
2323
2324	spin_unlock_bh(&ep->ex_lock);
2325
2326	/*
2327	 * Send LS_ACC.
2328	 */
2329	fc_seq_ls_acc(fp);
2330	goto out;
2331
2332unlock_reject:
2333	spin_unlock_bh(&ep->ex_lock);
2334reject:
2335	fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2336out:
2337	if (ep)
2338		fc_exch_release(ep);	/* drop hold from fc_exch_find */
2339}
2340
2341/**
2342 * fc_exch_update_stats() - update exches stats to lport
2343 * @lport: The local port to update exchange manager stats
2344 */
2345void fc_exch_update_stats(struct fc_lport *lport)
2346{
2347	struct fc_host_statistics *st;
2348	struct fc_exch_mgr_anchor *ema;
2349	struct fc_exch_mgr *mp;
2350
2351	st = &lport->host_stats;
2352
2353	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2354		mp = ema->mp;
2355		st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2356		st->fc_no_free_exch_xid +=
2357				atomic_read(&mp->stats.no_free_exch_xid);
2358		st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2359		st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2360		st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2361		st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2362	}
2363}
2364EXPORT_SYMBOL(fc_exch_update_stats);
2365
2366/**
2367 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2368 * @lport: The local port to add the exchange manager to
2369 * @mp:	   The exchange manager to be added to the local port
2370 * @match: The match routine that indicates when this EM should be used
2371 */
2372struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2373					   struct fc_exch_mgr *mp,
2374					   bool (*match)(struct fc_frame *))
2375{
2376	struct fc_exch_mgr_anchor *ema;
2377
2378	ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2379	if (!ema)
2380		return ema;
2381
2382	ema->mp = mp;
2383	ema->match = match;
2384	/* add EM anchor to EM anchors list */
2385	list_add_tail(&ema->ema_list, &lport->ema_list);
2386	kref_get(&mp->kref);
2387	return ema;
2388}
2389EXPORT_SYMBOL(fc_exch_mgr_add);
2390
2391/**
2392 * fc_exch_mgr_destroy() - Destroy an exchange manager
2393 * @kref: The reference to the EM to be destroyed
2394 */
2395static void fc_exch_mgr_destroy(struct kref *kref)
2396{
2397	struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2398
2399	mempool_destroy(mp->ep_pool);
2400	free_percpu(mp->pool);
2401	kfree(mp);
2402}
2403
2404/**
2405 * fc_exch_mgr_del() - Delete an EM from a local port's list
2406 * @ema: The exchange manager anchor identifying the EM to be deleted
2407 */
2408void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2409{
2410	/* remove EM anchor from EM anchors list */
2411	list_del(&ema->ema_list);
2412	kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2413	kfree(ema);
2414}
2415EXPORT_SYMBOL(fc_exch_mgr_del);
2416
2417/**
2418 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2419 * @src: Source lport to clone exchange managers from
2420 * @dst: New lport that takes references to all the exchange managers
2421 */
2422int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2423{
2424	struct fc_exch_mgr_anchor *ema, *tmp;
2425
2426	list_for_each_entry(ema, &src->ema_list, ema_list) {
2427		if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2428			goto err;
2429	}
2430	return 0;
2431err:
2432	list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2433		fc_exch_mgr_del(ema);
2434	return -ENOMEM;
2435}
2436EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2437
2438/**
2439 * fc_exch_mgr_alloc() - Allocate an exchange manager
2440 * @lport:   The local port that the new EM will be associated with
2441 * @class:   The default FC class for new exchanges
2442 * @min_xid: The minimum XID for exchanges from the new EM
2443 * @max_xid: The maximum XID for exchanges from the new EM
2444 * @match:   The match routine for the new EM
2445 */
2446struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2447				      enum fc_class class,
2448				      u16 min_xid, u16 max_xid,
2449				      bool (*match)(struct fc_frame *))
2450{
2451	struct fc_exch_mgr *mp;
2452	u16 pool_exch_range;
2453	size_t pool_size;
2454	unsigned int cpu;
2455	struct fc_exch_pool *pool;
2456
2457	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2458	    (min_xid & fc_cpu_mask) != 0) {
2459		FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2460			     min_xid, max_xid);
2461		return NULL;
2462	}
2463
2464	/*
2465	 * allocate memory for EM
2466	 */
2467	mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2468	if (!mp)
2469		return NULL;
2470
2471	mp->class = class;
2472	mp->lport = lport;
2473	/* adjust em exch xid range for offload */
2474	mp->min_xid = min_xid;
2475
2476       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2477	pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2478		sizeof(struct fc_exch *);
2479	if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2480		mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2481			min_xid - 1;
2482	} else {
2483		mp->max_xid = max_xid;
2484		pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2485			(fc_cpu_mask + 1);
2486	}
2487
2488	mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2489	if (!mp->ep_pool)
2490		goto free_mp;
2491
2492	/*
2493	 * Setup per cpu exch pool with entire exchange id range equally
2494	 * divided across all cpus. The exch pointers array memory is
2495	 * allocated for exch range per pool.
2496	 */
2497	mp->pool_max_index = pool_exch_range - 1;
2498
2499	/*
2500	 * Allocate and initialize per cpu exch pool
2501	 */
2502	pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2503	mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2504	if (!mp->pool)
2505		goto free_mempool;
2506	for_each_possible_cpu(cpu) {
2507		pool = per_cpu_ptr(mp->pool, cpu);
2508		pool->next_index = 0;
2509		pool->left = FC_XID_UNKNOWN;
2510		pool->right = FC_XID_UNKNOWN;
2511		spin_lock_init(&pool->lock);
2512		INIT_LIST_HEAD(&pool->ex_list);
2513	}
2514
2515	kref_init(&mp->kref);
2516	if (!fc_exch_mgr_add(lport, mp, match)) {
2517		free_percpu(mp->pool);
2518		goto free_mempool;
2519	}
2520
2521	/*
2522	 * Above kref_init() sets mp->kref to 1 and then
2523	 * call to fc_exch_mgr_add incremented mp->kref again,
2524	 * so adjust that extra increment.
2525	 */
2526	kref_put(&mp->kref, fc_exch_mgr_destroy);
2527	return mp;
2528
2529free_mempool:
2530	mempool_destroy(mp->ep_pool);
2531free_mp:
2532	kfree(mp);
2533	return NULL;
2534}
2535EXPORT_SYMBOL(fc_exch_mgr_alloc);
2536
2537/**
2538 * fc_exch_mgr_free() - Free all exchange managers on a local port
2539 * @lport: The local port whose EMs are to be freed
2540 */
2541void fc_exch_mgr_free(struct fc_lport *lport)
2542{
2543	struct fc_exch_mgr_anchor *ema, *next;
2544
2545	flush_workqueue(fc_exch_workqueue);
2546	list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2547		fc_exch_mgr_del(ema);
2548}
2549EXPORT_SYMBOL(fc_exch_mgr_free);
2550
2551/**
2552 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2553 * upon 'xid'.
2554 * @f_ctl: f_ctl
2555 * @lport: The local port the frame was received on
2556 * @fh: The received frame header
2557 */
2558static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2559					      struct fc_lport *lport,
2560					      struct fc_frame_header *fh)
2561{
2562	struct fc_exch_mgr_anchor *ema;
2563	u16 xid;
2564
2565	if (f_ctl & FC_FC_EX_CTX)
2566		xid = ntohs(fh->fh_ox_id);
2567	else {
2568		xid = ntohs(fh->fh_rx_id);
2569		if (xid == FC_XID_UNKNOWN)
2570			return list_entry(lport->ema_list.prev,
2571					  typeof(*ema), ema_list);
2572	}
2573
2574	list_for_each_entry(ema, &lport->ema_list, ema_list) {
2575		if ((xid >= ema->mp->min_xid) &&
2576		    (xid <= ema->mp->max_xid))
2577			return ema;
2578	}
2579	return NULL;
2580}
2581/**
2582 * fc_exch_recv() - Handler for received frames
2583 * @lport: The local port the frame was received on
2584 * @fp:	The received frame
2585 */
2586void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2587{
2588	struct fc_frame_header *fh = fc_frame_header_get(fp);
2589	struct fc_exch_mgr_anchor *ema;
2590	u32 f_ctl;
2591
2592	/* lport lock ? */
2593	if (!lport || lport->state == LPORT_ST_DISABLED) {
2594		FC_LIBFC_DBG("Receiving frames for an lport that "
2595			     "has not been initialized correctly\n");
2596		fc_frame_free(fp);
2597		return;
2598	}
2599
2600	f_ctl = ntoh24(fh->fh_f_ctl);
2601	ema = fc_find_ema(f_ctl, lport, fh);
2602	if (!ema) {
2603		FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2604				    "fc_ctl <0x%x>, xid <0x%x>\n",
2605				     f_ctl,
2606				     (f_ctl & FC_FC_EX_CTX) ?
2607				     ntohs(fh->fh_ox_id) :
2608				     ntohs(fh->fh_rx_id));
2609		fc_frame_free(fp);
2610		return;
2611	}
2612
2613	/*
2614	 * If frame is marked invalid, just drop it.
2615	 */
2616	switch (fr_eof(fp)) {
2617	case FC_EOF_T:
2618		if (f_ctl & FC_FC_END_SEQ)
2619			skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2620		/* fall through */
2621	case FC_EOF_N:
2622		if (fh->fh_type == FC_TYPE_BLS)
2623			fc_exch_recv_bls(ema->mp, fp);
2624		else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2625			 FC_FC_EX_CTX)
2626			fc_exch_recv_seq_resp(ema->mp, fp);
2627		else if (f_ctl & FC_FC_SEQ_CTX)
2628			fc_exch_recv_resp(ema->mp, fp);
2629		else	/* no EX_CTX and no SEQ_CTX */
2630			fc_exch_recv_req(lport, ema->mp, fp);
2631		break;
2632	default:
2633		FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2634			     fr_eof(fp));
2635		fc_frame_free(fp);
2636	}
2637}
2638EXPORT_SYMBOL(fc_exch_recv);
2639
2640/**
2641 * fc_exch_init() - Initialize the exchange layer for a local port
2642 * @lport: The local port to initialize the exchange layer for
2643 */
2644int fc_exch_init(struct fc_lport *lport)
2645{
2646	if (!lport->tt.exch_mgr_reset)
2647		lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2648
2649	return 0;
2650}
2651EXPORT_SYMBOL(fc_exch_init);
2652
2653/**
2654 * fc_setup_exch_mgr() - Setup an exchange manager
2655 */
2656int fc_setup_exch_mgr(void)
2657{
2658	fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2659					 0, SLAB_HWCACHE_ALIGN, NULL);
2660	if (!fc_em_cachep)
2661		return -ENOMEM;
2662
2663	/*
2664	 * Initialize fc_cpu_mask and fc_cpu_order. The
2665	 * fc_cpu_mask is set for nr_cpu_ids rounded up
2666	 * to order of 2's * power and order is stored
2667	 * in fc_cpu_order as this is later required in
2668	 * mapping between an exch id and exch array index
2669	 * in per cpu exch pool.
2670	 *
2671	 * This round up is required to align fc_cpu_mask
2672	 * to exchange id's lower bits such that all incoming
2673	 * frames of an exchange gets delivered to the same
2674	 * cpu on which exchange originated by simple bitwise
2675	 * AND operation between fc_cpu_mask and exchange id.
2676	 */
2677	fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2678	fc_cpu_mask = (1 << fc_cpu_order) - 1;
2679
2680	fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2681	if (!fc_exch_workqueue)
2682		goto err;
2683	return 0;
2684err:
2685	kmem_cache_destroy(fc_em_cachep);
2686	return -ENOMEM;
2687}
2688
2689/**
2690 * fc_destroy_exch_mgr() - Destroy an exchange manager
2691 */
2692void fc_destroy_exch_mgr(void)
2693{
2694	destroy_workqueue(fc_exch_workqueue);
2695	kmem_cache_destroy(fc_em_cachep);
2696}