Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/io.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/time.h>
  21#include <linux/bitops.h>
  22#include <linux/etherdevice.h>
  23#include <linux/gpio.h>
  24#include <asm/unaligned.h>
  25
  26#include "hw.h"
  27#include "hw-ops.h"
  28#include "ar9003_mac.h"
  29#include "ar9003_mci.h"
  30#include "ar9003_phy.h"
  31#include "ath9k.h"
  32
  33static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  34
  35MODULE_AUTHOR("Atheros Communications");
  36MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
 
  37MODULE_LICENSE("Dual BSD/GPL");
  38
  39static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  40{
  41	struct ath_common *common = ath9k_hw_common(ah);
  42	struct ath9k_channel *chan = ah->curchan;
  43	unsigned int clockrate;
  44
  45	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  46	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  47		clockrate = 117;
  48	else if (!chan) /* should really check for CCK instead */
  49		clockrate = ATH9K_CLOCK_RATE_CCK;
  50	else if (IS_CHAN_2GHZ(chan))
  51		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  52	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  53		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  54	else
  55		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  56
  57	if (chan) {
  58		if (IS_CHAN_HT40(chan))
  59			clockrate *= 2;
  60		if (IS_CHAN_HALF_RATE(chan))
  61			clockrate /= 2;
  62		if (IS_CHAN_QUARTER_RATE(chan))
  63			clockrate /= 4;
  64	}
  65
  66	common->clockrate = clockrate;
  67}
  68
  69static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  70{
  71	struct ath_common *common = ath9k_hw_common(ah);
  72
  73	return usecs * common->clockrate;
  74}
  75
  76bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  77{
  78	int i;
  79
  80	BUG_ON(timeout < AH_TIME_QUANTUM);
  81
  82	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  83		if ((REG_READ(ah, reg) & mask) == val)
  84			return true;
  85
  86		udelay(AH_TIME_QUANTUM);
  87	}
  88
  89	ath_dbg(ath9k_hw_common(ah), ANY,
  90		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  91		timeout, reg, REG_READ(ah, reg), mask, val);
  92
  93	return false;
  94}
  95EXPORT_SYMBOL(ath9k_hw_wait);
  96
  97void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  98			  int hw_delay)
  99{
 100	hw_delay /= 10;
 101
 102	if (IS_CHAN_HALF_RATE(chan))
 103		hw_delay *= 2;
 104	else if (IS_CHAN_QUARTER_RATE(chan))
 105		hw_delay *= 4;
 106
 107	udelay(hw_delay + BASE_ACTIVATE_DELAY);
 108}
 109
 110void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
 111			  int column, unsigned int *writecnt)
 112{
 113	int r;
 114
 115	ENABLE_REGWRITE_BUFFER(ah);
 116	for (r = 0; r < array->ia_rows; r++) {
 117		REG_WRITE(ah, INI_RA(array, r, 0),
 118			  INI_RA(array, r, column));
 119		DO_DELAY(*writecnt);
 120	}
 121	REGWRITE_BUFFER_FLUSH(ah);
 122}
 123
 124void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
 125{
 126	u32 *tmp_reg_list, *tmp_data;
 127	int i;
 128
 129	tmp_reg_list = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
 130	if (!tmp_reg_list) {
 131		dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
 132		return;
 133	}
 134
 135	tmp_data = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
 136	if (!tmp_data) {
 137		dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
 138		goto error_tmp_data;
 139	}
 140
 141	for (i = 0; i < size; i++)
 142		tmp_reg_list[i] = array[i][0];
 143
 144	REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
 145
 146	for (i = 0; i < size; i++)
 147		array[i][1] = tmp_data[i];
 148
 149	kfree(tmp_data);
 150error_tmp_data:
 151	kfree(tmp_reg_list);
 152}
 153
 154u32 ath9k_hw_reverse_bits(u32 val, u32 n)
 155{
 156	u32 retval;
 157	int i;
 158
 159	for (i = 0, retval = 0; i < n; i++) {
 160		retval = (retval << 1) | (val & 1);
 161		val >>= 1;
 162	}
 163	return retval;
 164}
 165
 166u16 ath9k_hw_computetxtime(struct ath_hw *ah,
 167			   u8 phy, int kbps,
 168			   u32 frameLen, u16 rateix,
 169			   bool shortPreamble)
 170{
 171	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
 172
 173	if (kbps == 0)
 174		return 0;
 175
 176	switch (phy) {
 177	case WLAN_RC_PHY_CCK:
 178		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
 179		if (shortPreamble)
 180			phyTime >>= 1;
 181		numBits = frameLen << 3;
 182		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
 183		break;
 184	case WLAN_RC_PHY_OFDM:
 185		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
 186			bitsPerSymbol =
 187				((kbps >> 2) * OFDM_SYMBOL_TIME_QUARTER) / 1000;
 188			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 189			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 190			txTime = OFDM_SIFS_TIME_QUARTER
 191				+ OFDM_PREAMBLE_TIME_QUARTER
 192				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
 193		} else if (ah->curchan &&
 194			   IS_CHAN_HALF_RATE(ah->curchan)) {
 195			bitsPerSymbol =
 196				((kbps >> 1) * OFDM_SYMBOL_TIME_HALF) / 1000;
 197			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 198			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 199			txTime = OFDM_SIFS_TIME_HALF +
 200				OFDM_PREAMBLE_TIME_HALF
 201				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
 202		} else {
 203			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
 204			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 205			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 206			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
 207				+ (numSymbols * OFDM_SYMBOL_TIME);
 208		}
 209		break;
 210	default:
 211		ath_err(ath9k_hw_common(ah),
 212			"Unknown phy %u (rate ix %u)\n", phy, rateix);
 213		txTime = 0;
 214		break;
 215	}
 216
 217	return txTime;
 218}
 219EXPORT_SYMBOL(ath9k_hw_computetxtime);
 220
 221void ath9k_hw_get_channel_centers(struct ath_hw *ah,
 222				  struct ath9k_channel *chan,
 223				  struct chan_centers *centers)
 224{
 225	int8_t extoff;
 226
 227	if (!IS_CHAN_HT40(chan)) {
 228		centers->ctl_center = centers->ext_center =
 229			centers->synth_center = chan->channel;
 230		return;
 231	}
 232
 233	if (IS_CHAN_HT40PLUS(chan)) {
 234		centers->synth_center =
 235			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
 236		extoff = 1;
 237	} else {
 238		centers->synth_center =
 239			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
 240		extoff = -1;
 241	}
 242
 243	centers->ctl_center =
 244		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
 245	/* 25 MHz spacing is supported by hw but not on upper layers */
 246	centers->ext_center =
 247		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
 248}
 249
 250/******************/
 251/* Chip Revisions */
 252/******************/
 253
 254static bool ath9k_hw_read_revisions(struct ath_hw *ah)
 255{
 256	u32 srev;
 257	u32 val;
 258
 259	if (ah->get_mac_revision)
 260		ah->hw_version.macRev = ah->get_mac_revision();
 261
 262	switch (ah->hw_version.devid) {
 263	case AR5416_AR9100_DEVID:
 264		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
 265		break;
 266	case AR9300_DEVID_AR9330:
 267		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
 268		if (!ah->get_mac_revision) {
 269			val = REG_READ(ah, AR_SREV(ah));
 270			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 271		}
 272		return true;
 273	case AR9300_DEVID_AR9340:
 274		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
 275		return true;
 276	case AR9300_DEVID_QCA955X:
 277		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
 278		return true;
 279	case AR9300_DEVID_AR953X:
 280		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
 281		return true;
 282	case AR9300_DEVID_QCA956X:
 283		ah->hw_version.macVersion = AR_SREV_VERSION_9561;
 284		return true;
 285	}
 286
 287	srev = REG_READ(ah, AR_SREV(ah));
 288
 289	if (srev == -1) {
 290		ath_err(ath9k_hw_common(ah),
 291			"Failed to read SREV register");
 292		return false;
 293	}
 294
 295	val = srev & AR_SREV_ID(ah);
 296
 297	if (val == 0xFF) {
 298		val = srev;
 299		ah->hw_version.macVersion =
 300			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
 301		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 302
 303		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 304			ah->is_pciexpress = true;
 305		else
 306			ah->is_pciexpress = (val &
 307					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
 308	} else {
 309		if (!AR_SREV_9100(ah))
 310			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
 311
 312		ah->hw_version.macRev = val & AR_SREV_REVISION;
 313
 314		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
 315			ah->is_pciexpress = true;
 316	}
 317
 318	return true;
 319}
 320
 321/************************************/
 322/* HW Attach, Detach, Init Routines */
 323/************************************/
 324
 325static void ath9k_hw_disablepcie(struct ath_hw *ah)
 326{
 327	if (!AR_SREV_5416(ah))
 328		return;
 329
 330	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
 331	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
 332	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
 333	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
 334	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
 335	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
 336	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
 337	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
 338	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
 339
 340	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
 341}
 342
 343/* This should work for all families including legacy */
 344static bool ath9k_hw_chip_test(struct ath_hw *ah)
 345{
 346	struct ath_common *common = ath9k_hw_common(ah);
 347	u32 regAddr[2] = { AR_STA_ID0 };
 348	u32 regHold[2];
 349	static const u32 patternData[4] = {
 350		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
 351	};
 352	int i, j, loop_max;
 353
 354	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 355		loop_max = 2;
 356		regAddr[1] = AR_PHY_BASE + (8 << 2);
 357	} else
 358		loop_max = 1;
 359
 360	for (i = 0; i < loop_max; i++) {
 361		u32 addr = regAddr[i];
 362		u32 wrData, rdData;
 363
 364		regHold[i] = REG_READ(ah, addr);
 365		for (j = 0; j < 0x100; j++) {
 366			wrData = (j << 16) | j;
 367			REG_WRITE(ah, addr, wrData);
 368			rdData = REG_READ(ah, addr);
 369			if (rdData != wrData) {
 370				ath_err(common,
 371					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 372					addr, wrData, rdData);
 373				return false;
 374			}
 375		}
 376		for (j = 0; j < 4; j++) {
 377			wrData = patternData[j];
 378			REG_WRITE(ah, addr, wrData);
 379			rdData = REG_READ(ah, addr);
 380			if (wrData != rdData) {
 381				ath_err(common,
 382					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 383					addr, wrData, rdData);
 384				return false;
 385			}
 386		}
 387		REG_WRITE(ah, regAddr[i], regHold[i]);
 388	}
 389	udelay(100);
 390
 391	return true;
 392}
 393
 394static void ath9k_hw_init_config(struct ath_hw *ah)
 395{
 396	struct ath_common *common = ath9k_hw_common(ah);
 397
 398	ah->config.dma_beacon_response_time = 1;
 399	ah->config.sw_beacon_response_time = 6;
 400	ah->config.cwm_ignore_extcca = false;
 401	ah->config.analog_shiftreg = 1;
 402
 403	ah->config.rx_intr_mitigation = true;
 404
 405	if (AR_SREV_9300_20_OR_LATER(ah)) {
 406		ah->config.rimt_last = 500;
 407		ah->config.rimt_first = 2000;
 408	} else {
 409		ah->config.rimt_last = 250;
 410		ah->config.rimt_first = 700;
 411	}
 412
 413	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 414		ah->config.pll_pwrsave = 7;
 415
 416	/*
 417	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
 418	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
 419	 * This means we use it for all AR5416 devices, and the few
 420	 * minor PCI AR9280 devices out there.
 421	 *
 422	 * Serialization is required because these devices do not handle
 423	 * well the case of two concurrent reads/writes due to the latency
 424	 * involved. During one read/write another read/write can be issued
 425	 * on another CPU while the previous read/write may still be working
 426	 * on our hardware, if we hit this case the hardware poops in a loop.
 427	 * We prevent this by serializing reads and writes.
 428	 *
 429	 * This issue is not present on PCI-Express devices or pre-AR5416
 430	 * devices (legacy, 802.11abg).
 431	 */
 432	if (num_possible_cpus() > 1)
 433		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
 434
 435	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
 436		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
 437		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
 438		     !ah->is_pciexpress)) {
 439			ah->config.serialize_regmode = SER_REG_MODE_ON;
 440		} else {
 441			ah->config.serialize_regmode = SER_REG_MODE_OFF;
 442		}
 443	}
 444
 445	ath_dbg(common, RESET, "serialize_regmode is %d\n",
 446		ah->config.serialize_regmode);
 447
 448	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 449		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
 450	else
 451		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
 452}
 453
 454static void ath9k_hw_init_defaults(struct ath_hw *ah)
 455{
 456	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 457
 458	regulatory->country_code = CTRY_DEFAULT;
 459	regulatory->power_limit = MAX_COMBINED_POWER;
 460
 461	ah->hw_version.magic = AR5416_MAGIC;
 462	ah->hw_version.subvendorid = 0;
 463
 464	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
 465			       AR_STA_ID1_MCAST_KSRCH;
 466	if (AR_SREV_9100(ah))
 467		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
 468
 469	ah->slottime = 9;
 470	ah->globaltxtimeout = (u32) -1;
 471	ah->power_mode = ATH9K_PM_UNDEFINED;
 472	ah->htc_reset_init = true;
 473
 474	ah->tpc_enabled = false;
 475
 476	ah->ani_function = ATH9K_ANI_ALL;
 477	if (!AR_SREV_9300_20_OR_LATER(ah))
 478		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
 479
 480	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 481		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
 482	else
 483		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
 484}
 485
 486static void ath9k_hw_init_macaddr(struct ath_hw *ah)
 487{
 488	struct ath_common *common = ath9k_hw_common(ah);
 489	int i;
 490	u16 eeval;
 491	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
 492
 493	/* MAC address may already be loaded via ath9k_platform_data */
 494	if (is_valid_ether_addr(common->macaddr))
 495		return;
 496
 497	for (i = 0; i < 3; i++) {
 498		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
 499		common->macaddr[2 * i] = eeval >> 8;
 500		common->macaddr[2 * i + 1] = eeval & 0xff;
 501	}
 502
 503	if (is_valid_ether_addr(common->macaddr))
 504		return;
 505
 506	ath_err(common, "eeprom contains invalid mac address: %pM\n",
 507		common->macaddr);
 508
 509	eth_random_addr(common->macaddr);
 510	ath_err(common, "random mac address will be used: %pM\n",
 511		common->macaddr);
 512
 513	return;
 514}
 515
 516static int ath9k_hw_post_init(struct ath_hw *ah)
 517{
 518	struct ath_common *common = ath9k_hw_common(ah);
 519	int ecode;
 520
 521	if (common->bus_ops->ath_bus_type != ATH_USB) {
 522		if (!ath9k_hw_chip_test(ah))
 523			return -ENODEV;
 524	}
 525
 526	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 527		ecode = ar9002_hw_rf_claim(ah);
 528		if (ecode != 0)
 529			return ecode;
 530	}
 531
 532	ecode = ath9k_hw_eeprom_init(ah);
 533	if (ecode != 0)
 534		return ecode;
 535
 536	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
 537		ah->eep_ops->get_eeprom_ver(ah),
 538		ah->eep_ops->get_eeprom_rev(ah));
 539
 540	ath9k_hw_ani_init(ah);
 541
 542	/*
 543	 * EEPROM needs to be initialized before we do this.
 544	 * This is required for regulatory compliance.
 545	 */
 546	if (AR_SREV_9300_20_OR_LATER(ah)) {
 547		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
 548		if ((regdmn & 0xF0) == CTL_FCC) {
 549			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
 550			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
 551		}
 552	}
 553
 554	return 0;
 555}
 556
 557static int ath9k_hw_attach_ops(struct ath_hw *ah)
 558{
 559	if (!AR_SREV_9300_20_OR_LATER(ah))
 560		return ar9002_hw_attach_ops(ah);
 561
 562	ar9003_hw_attach_ops(ah);
 563	return 0;
 564}
 565
 566/* Called for all hardware families */
 567static int __ath9k_hw_init(struct ath_hw *ah)
 568{
 569	struct ath_common *common = ath9k_hw_common(ah);
 570	int r = 0;
 571
 572	if (!ath9k_hw_read_revisions(ah)) {
 573		ath_err(common, "Could not read hardware revisions");
 574		return -EOPNOTSUPP;
 575	}
 576
 577	switch (ah->hw_version.macVersion) {
 578	case AR_SREV_VERSION_5416_PCI:
 579	case AR_SREV_VERSION_5416_PCIE:
 580	case AR_SREV_VERSION_9160:
 581	case AR_SREV_VERSION_9100:
 582	case AR_SREV_VERSION_9280:
 583	case AR_SREV_VERSION_9285:
 584	case AR_SREV_VERSION_9287:
 585	case AR_SREV_VERSION_9271:
 586	case AR_SREV_VERSION_9300:
 587	case AR_SREV_VERSION_9330:
 588	case AR_SREV_VERSION_9485:
 589	case AR_SREV_VERSION_9340:
 590	case AR_SREV_VERSION_9462:
 591	case AR_SREV_VERSION_9550:
 592	case AR_SREV_VERSION_9565:
 593	case AR_SREV_VERSION_9531:
 594	case AR_SREV_VERSION_9561:
 595		break;
 596	default:
 597		ath_err(common,
 598			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
 599			ah->hw_version.macVersion, ah->hw_version.macRev);
 600		return -EOPNOTSUPP;
 601	}
 602
 603	/*
 604	 * Read back AR_WA(ah) into a permanent copy and set bits 14 and 17.
 605	 * We need to do this to avoid RMW of this register. We cannot
 606	 * read the reg when chip is asleep.
 607	 */
 608	if (AR_SREV_9300_20_OR_LATER(ah)) {
 609		ah->WARegVal = REG_READ(ah, AR_WA(ah));
 610		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
 611				 AR_WA_ASPM_TIMER_BASED_DISABLE);
 612	}
 613
 614	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
 615		ath_err(common, "Couldn't reset chip\n");
 616		return -EIO;
 617	}
 618
 619	if (AR_SREV_9565(ah)) {
 620		ah->WARegVal |= AR_WA_BIT22;
 621		REG_WRITE(ah, AR_WA(ah), ah->WARegVal);
 622	}
 623
 624	ath9k_hw_init_defaults(ah);
 625	ath9k_hw_init_config(ah);
 626
 627	r = ath9k_hw_attach_ops(ah);
 628	if (r)
 629		return r;
 630
 631	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
 632		ath_err(common, "Couldn't wakeup chip\n");
 633		return -EIO;
 634	}
 635
 636	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
 637	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
 638		ah->is_pciexpress = false;
 639
 640	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
 641	ath9k_hw_init_cal_settings(ah);
 642
 643	if (!ah->is_pciexpress)
 644		ath9k_hw_disablepcie(ah);
 645
 646	r = ath9k_hw_post_init(ah);
 647	if (r)
 648		return r;
 649
 650	ath9k_hw_init_mode_gain_regs(ah);
 651	r = ath9k_hw_fill_cap_info(ah);
 652	if (r)
 653		return r;
 654
 655	ath9k_hw_init_macaddr(ah);
 656	ath9k_hw_init_hang_checks(ah);
 657
 658	common->state = ATH_HW_INITIALIZED;
 659
 660	return 0;
 661}
 662
 663int ath9k_hw_init(struct ath_hw *ah)
 664{
 665	int ret;
 666	struct ath_common *common = ath9k_hw_common(ah);
 667
 668	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
 669	switch (ah->hw_version.devid) {
 670	case AR5416_DEVID_PCI:
 671	case AR5416_DEVID_PCIE:
 672	case AR5416_AR9100_DEVID:
 673	case AR9160_DEVID_PCI:
 674	case AR9280_DEVID_PCI:
 675	case AR9280_DEVID_PCIE:
 676	case AR9285_DEVID_PCIE:
 677	case AR9287_DEVID_PCI:
 678	case AR9287_DEVID_PCIE:
 679	case AR2427_DEVID_PCIE:
 680	case AR9300_DEVID_PCIE:
 681	case AR9300_DEVID_AR9485_PCIE:
 682	case AR9300_DEVID_AR9330:
 683	case AR9300_DEVID_AR9340:
 684	case AR9300_DEVID_QCA955X:
 685	case AR9300_DEVID_AR9580:
 686	case AR9300_DEVID_AR9462:
 687	case AR9485_DEVID_AR1111:
 688	case AR9300_DEVID_AR9565:
 689	case AR9300_DEVID_AR953X:
 690	case AR9300_DEVID_QCA956X:
 691		break;
 692	default:
 693		if (common->bus_ops->ath_bus_type == ATH_USB)
 694			break;
 695		ath_err(common, "Hardware device ID 0x%04x not supported\n",
 696			ah->hw_version.devid);
 697		return -EOPNOTSUPP;
 698	}
 699
 700	ret = __ath9k_hw_init(ah);
 701	if (ret) {
 702		ath_err(common,
 703			"Unable to initialize hardware; initialization status: %d\n",
 704			ret);
 705		return ret;
 706	}
 707
 708	ath_dynack_init(ah);
 709
 710	return 0;
 711}
 712EXPORT_SYMBOL(ath9k_hw_init);
 713
 714static void ath9k_hw_init_qos(struct ath_hw *ah)
 715{
 716	ENABLE_REGWRITE_BUFFER(ah);
 717
 718	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
 719	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
 720
 721	REG_WRITE(ah, AR_QOS_NO_ACK,
 722		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
 723		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
 724		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
 725
 726	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
 727	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
 728	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
 729	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
 730	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
 731
 732	REGWRITE_BUFFER_FLUSH(ah);
 733}
 734
 735u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
 736{
 737	struct ath_common *common = ath9k_hw_common(ah);
 738	int i = 0;
 739
 740	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 741	udelay(100);
 742	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 743
 744	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
 745
 746		udelay(100);
 747
 748		if (WARN_ON_ONCE(i >= 100)) {
 749			ath_err(common, "PLL4 measurement not done\n");
 750			break;
 751		}
 752
 753		i++;
 754	}
 755
 756	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
 757}
 758EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
 759
 760static void ath9k_hw_init_pll(struct ath_hw *ah,
 761			      struct ath9k_channel *chan)
 762{
 763	u32 pll;
 764
 765	pll = ath9k_hw_compute_pll_control(ah, chan);
 766
 767	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
 768		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
 769		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 770			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
 771		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 772			      AR_CH0_DPLL2_KD, 0x40);
 773		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 774			      AR_CH0_DPLL2_KI, 0x4);
 775
 776		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 777			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
 778		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 779			      AR_CH0_BB_DPLL1_NINI, 0x58);
 780		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 781			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
 782
 783		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 784			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
 785		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 786			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
 787		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 788			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
 789
 790		/* program BB PLL phase_shift to 0x6 */
 791		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 792			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
 793
 794		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 795			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
 796		udelay(1000);
 797	} else if (AR_SREV_9330(ah)) {
 798		u32 ddr_dpll2, pll_control2, kd;
 799
 800		if (ah->is_clk_25mhz) {
 801			ddr_dpll2 = 0x18e82f01;
 802			pll_control2 = 0xe04a3d;
 803			kd = 0x1d;
 804		} else {
 805			ddr_dpll2 = 0x19e82f01;
 806			pll_control2 = 0x886666;
 807			kd = 0x3d;
 808		}
 809
 810		/* program DDR PLL ki and kd value */
 811		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
 812
 813		/* program DDR PLL phase_shift */
 814		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
 815			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
 816
 817		REG_WRITE(ah, AR_RTC_PLL_CONTROL(ah),
 818			  pll | AR_RTC_9300_PLL_BYPASS);
 819		udelay(1000);
 820
 821		/* program refdiv, nint, frac to RTC register */
 822		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
 823
 824		/* program BB PLL kd and ki value */
 825		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
 826		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
 827
 828		/* program BB PLL phase_shift */
 829		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 830			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
 831	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 832		   AR_SREV_9561(ah)) {
 833		u32 regval, pll2_divint, pll2_divfrac, refdiv;
 834
 835		REG_WRITE(ah, AR_RTC_PLL_CONTROL(ah),
 836			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
 837		udelay(1000);
 838
 839		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
 840		udelay(100);
 841
 842		if (ah->is_clk_25mhz) {
 843			if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 844				pll2_divint = 0x1c;
 845				pll2_divfrac = 0xa3d2;
 846				refdiv = 1;
 847			} else {
 848				pll2_divint = 0x54;
 849				pll2_divfrac = 0x1eb85;
 850				refdiv = 3;
 851			}
 852		} else {
 853			if (AR_SREV_9340(ah)) {
 854				pll2_divint = 88;
 855				pll2_divfrac = 0;
 856				refdiv = 5;
 857			} else {
 858				pll2_divint = 0x11;
 859				pll2_divfrac = (AR_SREV_9531(ah) ||
 860						AR_SREV_9561(ah)) ?
 861						0x26665 : 0x26666;
 862				refdiv = 1;
 863			}
 864		}
 865
 866		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 867		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 868			regval |= (0x1 << 22);
 869		else
 870			regval |= (0x1 << 16);
 871		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 872		udelay(100);
 873
 874		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
 875			  (pll2_divint << 18) | pll2_divfrac);
 876		udelay(100);
 877
 878		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 879		if (AR_SREV_9340(ah))
 880			regval = (regval & 0x80071fff) |
 881				(0x1 << 30) |
 882				(0x1 << 13) |
 883				(0x4 << 26) |
 884				(0x18 << 19);
 885		else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 886			regval = (regval & 0x01c00fff) |
 887				(0x1 << 31) |
 888				(0x2 << 29) |
 889				(0xa << 25) |
 890				(0x1 << 19);
 891
 892			if (AR_SREV_9531(ah))
 893				regval |= (0x6 << 12);
 894		} else
 895			regval = (regval & 0x80071fff) |
 896				(0x3 << 30) |
 897				(0x1 << 13) |
 898				(0x4 << 26) |
 899				(0x60 << 19);
 900		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 901
 902		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 903			REG_WRITE(ah, AR_PHY_PLL_MODE,
 904				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
 905		else
 906			REG_WRITE(ah, AR_PHY_PLL_MODE,
 907				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
 908
 909		udelay(1000);
 910	}
 911
 912	if (AR_SREV_9565(ah))
 913		pll |= 0x40000;
 914	REG_WRITE(ah, AR_RTC_PLL_CONTROL(ah), pll);
 915
 916	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
 917	    AR_SREV_9550(ah))
 918		udelay(1000);
 919
 920	/* Switch the core clock for ar9271 to 117Mhz */
 921	if (AR_SREV_9271(ah)) {
 922		udelay(500);
 923		REG_WRITE(ah, 0x50040, 0x304);
 924	}
 925
 926	udelay(RTC_PLL_SETTLE_DELAY);
 927
 928	REG_WRITE(ah, AR_RTC_SLEEP_CLK(ah), AR_RTC_FORCE_DERIVED_CLK);
 929}
 930
 931static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
 932					  enum nl80211_iftype opmode)
 933{
 934	u32 sync_default = AR_INTR_SYNC_DEFAULT;
 935	u32 imr_reg = AR_IMR_TXERR |
 936		AR_IMR_TXURN |
 937		AR_IMR_RXERR |
 938		AR_IMR_RXORN |
 939		AR_IMR_BCNMISC;
 940	u32 msi_cfg = 0;
 941
 942	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 943	    AR_SREV_9561(ah))
 944		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
 945
 946	if (AR_SREV_9300_20_OR_LATER(ah)) {
 947		imr_reg |= AR_IMR_RXOK_HP;
 948		if (ah->config.rx_intr_mitigation) {
 949			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 950			msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
 951		} else {
 952			imr_reg |= AR_IMR_RXOK_LP;
 953			msi_cfg |= AR_INTCFG_MSI_RXOK;
 954		}
 955	} else {
 956		if (ah->config.rx_intr_mitigation) {
 957			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 958			msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
 959		} else {
 960			imr_reg |= AR_IMR_RXOK;
 961			msi_cfg |= AR_INTCFG_MSI_RXOK;
 962		}
 963	}
 964
 965	if (ah->config.tx_intr_mitigation) {
 966		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
 967		msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
 968	} else {
 969		imr_reg |= AR_IMR_TXOK;
 970		msi_cfg |= AR_INTCFG_MSI_TXOK;
 971	}
 972
 973	ENABLE_REGWRITE_BUFFER(ah);
 974
 975	REG_WRITE(ah, AR_IMR, imr_reg);
 976	ah->imrs2_reg |= AR_IMR_S2_GTT;
 977	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 978
 979	if (ah->msi_enabled) {
 980		ah->msi_reg = REG_READ(ah, AR_PCIE_MSI(ah));
 981		ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
 982		ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
 983		REG_WRITE(ah, AR_INTCFG, msi_cfg);
 984		ath_dbg(ath9k_hw_common(ah), ANY,
 985			"value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
 986			REG_READ(ah, AR_INTCFG), msi_cfg);
 987	}
 988
 989	if (!AR_SREV_9100(ah)) {
 990		REG_WRITE(ah, AR_INTR_SYNC_CAUSE(ah), 0xFFFFFFFF);
 991		REG_WRITE(ah, AR_INTR_SYNC_ENABLE(ah), sync_default);
 992		REG_WRITE(ah, AR_INTR_SYNC_MASK(ah), 0);
 993	}
 994
 995	REGWRITE_BUFFER_FLUSH(ah);
 996
 997	if (AR_SREV_9300_20_OR_LATER(ah)) {
 998		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE(ah), 0);
 999		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK(ah), 0);
1000		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE(ah), 0);
1001		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK(ah), 0);
1002	}
1003}
1004
1005static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
1006{
1007	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
1008	val = min(val, (u32) 0xFFFF);
1009	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1010}
1011
1012void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1013{
1014	u32 val = ath9k_hw_mac_to_clks(ah, us);
1015	val = min(val, (u32) 0xFFFF);
1016	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1017}
1018
1019void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1020{
1021	u32 val = ath9k_hw_mac_to_clks(ah, us);
1022	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1023	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1024}
1025
1026void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1027{
1028	u32 val = ath9k_hw_mac_to_clks(ah, us);
1029	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1030	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1031}
1032
1033static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1034{
1035	if (tu > 0xFFFF) {
1036		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1037			tu);
1038		ah->globaltxtimeout = (u32) -1;
1039		return false;
1040	} else {
1041		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1042		ah->globaltxtimeout = tu;
1043		return true;
1044	}
1045}
1046
1047void ath9k_hw_init_global_settings(struct ath_hw *ah)
1048{
1049	struct ath_common *common = ath9k_hw_common(ah);
1050	const struct ath9k_channel *chan = ah->curchan;
1051	int acktimeout, ctstimeout, ack_offset = 0;
1052	int slottime;
1053	int sifstime;
1054	int rx_lat = 0, tx_lat = 0, eifs = 0, ack_shift = 0;
1055	u32 reg;
1056
1057	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1058		ah->misc_mode);
1059
1060	if (!chan)
1061		return;
1062
1063	if (ah->misc_mode != 0)
1064		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1065
1066	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1067		rx_lat = 41;
1068	else
1069		rx_lat = 37;
1070	tx_lat = 54;
1071
1072	if (IS_CHAN_5GHZ(chan))
1073		sifstime = 16;
1074	else
1075		sifstime = 10;
1076
1077	if (IS_CHAN_HALF_RATE(chan)) {
1078		eifs = 175;
1079		rx_lat *= 2;
1080		tx_lat *= 2;
1081		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1082		    tx_lat += 11;
1083
1084		sifstime = 32;
1085		ack_offset = 16;
1086		ack_shift = 3;
1087		slottime = 13;
1088	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1089		eifs = 340;
1090		rx_lat = (rx_lat * 4) - 1;
1091		tx_lat *= 4;
1092		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1093		    tx_lat += 22;
1094
1095		sifstime = 64;
1096		ack_offset = 32;
1097		ack_shift = 1;
1098		slottime = 21;
1099	} else {
1100		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1101			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1102			reg = AR_USEC_ASYNC_FIFO;
1103		} else {
1104			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1105				common->clockrate;
1106			reg = REG_READ(ah, AR_USEC);
1107		}
1108		rx_lat = MS(reg, AR_USEC_RX_LAT);
1109		tx_lat = MS(reg, AR_USEC_TX_LAT);
1110
1111		slottime = ah->slottime;
1112	}
1113
1114	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1115	slottime += 3 * ah->coverage_class;
1116	acktimeout = slottime + sifstime + ack_offset;
1117	ctstimeout = acktimeout;
1118
1119	/*
1120	 * Workaround for early ACK timeouts, add an offset to match the
1121	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1122	 * This was initially only meant to work around an issue with delayed
1123	 * BA frames in some implementations, but it has been found to fix ACK
1124	 * timeout issues in other cases as well.
1125	 */
1126	if (IS_CHAN_2GHZ(chan) &&
1127	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1128		acktimeout += 64 - sifstime - ah->slottime;
1129		ctstimeout += 48 - sifstime - ah->slottime;
1130	}
1131
1132	if (ah->dynack.enabled) {
1133		acktimeout = ah->dynack.ackto;
1134		ctstimeout = acktimeout;
1135		slottime = (acktimeout - 3) / 2;
1136	} else {
1137		ah->dynack.ackto = acktimeout;
1138	}
1139
1140	ath9k_hw_set_sifs_time(ah, sifstime);
1141	ath9k_hw_setslottime(ah, slottime);
1142	ath9k_hw_set_ack_timeout(ah, acktimeout);
1143	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1144	if (ah->globaltxtimeout != (u32) -1)
1145		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1146
1147	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1148	REG_RMW(ah, AR_USEC,
1149		(common->clockrate - 1) |
1150		SM(rx_lat, AR_USEC_RX_LAT) |
1151		SM(tx_lat, AR_USEC_TX_LAT),
1152		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1153
1154	if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
1155		REG_RMW(ah, AR_TXSIFS,
1156			sifstime | SM(ack_shift, AR_TXSIFS_ACK_SHIFT),
1157			(AR_TXSIFS_TIME | AR_TXSIFS_ACK_SHIFT));
1158}
1159EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1160
1161void ath9k_hw_deinit(struct ath_hw *ah)
1162{
1163	struct ath_common *common = ath9k_hw_common(ah);
1164
1165	if (common->state < ATH_HW_INITIALIZED)
1166		return;
1167
1168	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1169}
1170EXPORT_SYMBOL(ath9k_hw_deinit);
1171
1172/*******/
1173/* INI */
1174/*******/
1175
1176u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1177{
1178	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1179
1180	if (IS_CHAN_2GHZ(chan))
1181		ctl |= CTL_11G;
1182	else
1183		ctl |= CTL_11A;
1184
1185	return ctl;
1186}
1187
1188/****************************************/
1189/* Reset and Channel Switching Routines */
1190/****************************************/
1191
1192static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1193{
1194	struct ath_common *common = ath9k_hw_common(ah);
1195	int txbuf_size;
1196
1197	ENABLE_REGWRITE_BUFFER(ah);
1198
1199	/*
1200	 * set AHB_MODE not to do cacheline prefetches
1201	*/
1202	if (!AR_SREV_9300_20_OR_LATER(ah))
1203		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1204
1205	/*
1206	 * let mac dma reads be in 128 byte chunks
1207	 */
1208	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1209
1210	REGWRITE_BUFFER_FLUSH(ah);
1211
1212	/*
1213	 * Restore TX Trigger Level to its pre-reset value.
1214	 * The initial value depends on whether aggregation is enabled, and is
1215	 * adjusted whenever underruns are detected.
1216	 */
1217	if (!AR_SREV_9300_20_OR_LATER(ah))
1218		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1219
1220	ENABLE_REGWRITE_BUFFER(ah);
1221
1222	/*
1223	 * let mac dma writes be in 128 byte chunks
1224	 */
1225	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1226
1227	/*
1228	 * Setup receive FIFO threshold to hold off TX activities
1229	 */
1230	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1231
1232	if (AR_SREV_9300_20_OR_LATER(ah)) {
1233		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1234		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1235
1236		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1237			ah->caps.rx_status_len);
1238	}
1239
1240	/*
1241	 * reduce the number of usable entries in PCU TXBUF to avoid
1242	 * wrap around issues.
1243	 */
1244	if (AR_SREV_9285(ah)) {
1245		/* For AR9285 the number of Fifos are reduced to half.
1246		 * So set the usable tx buf size also to half to
1247		 * avoid data/delimiter underruns
1248		 */
1249		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1250	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1251		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1252		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1253	} else {
1254		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1255	}
1256
1257	if (!AR_SREV_9271(ah))
1258		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1259
1260	REGWRITE_BUFFER_FLUSH(ah);
1261
1262	if (AR_SREV_9300_20_OR_LATER(ah))
1263		ath9k_hw_reset_txstatus_ring(ah);
1264}
1265
1266static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1267{
1268	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1269	u32 set = AR_STA_ID1_KSRCH_MODE;
1270
1271	ENABLE_REG_RMW_BUFFER(ah);
1272	switch (opmode) {
1273	case NL80211_IFTYPE_ADHOC:
1274		if (!AR_SREV_9340_13(ah)) {
1275			set |= AR_STA_ID1_ADHOC;
1276			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1277			break;
1278		}
1279		fallthrough;
1280	case NL80211_IFTYPE_OCB:
1281	case NL80211_IFTYPE_MESH_POINT:
1282	case NL80211_IFTYPE_AP:
1283		set |= AR_STA_ID1_STA_AP;
1284		fallthrough;
1285	case NL80211_IFTYPE_STATION:
1286		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1287		break;
1288	default:
1289		if (!ah->is_monitoring)
1290			set = 0;
1291		break;
1292	}
1293	REG_RMW(ah, AR_STA_ID1, set, mask);
1294	REG_RMW_BUFFER_FLUSH(ah);
1295}
1296
1297void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1298				   u32 *coef_mantissa, u32 *coef_exponent)
1299{
1300	u32 coef_exp, coef_man;
1301
1302	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1303		if ((coef_scaled >> coef_exp) & 0x1)
1304			break;
1305
1306	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1307
1308	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1309
1310	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1311	*coef_exponent = coef_exp - 16;
1312}
1313
1314/* AR9330 WAR:
1315 * call external reset function to reset WMAC if:
1316 * - doing a cold reset
1317 * - we have pending frames in the TX queues.
1318 */
1319static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1320{
1321	int i, npend = 0;
1322
1323	for (i = 0; i < AR_NUM_QCU; i++) {
1324		npend = ath9k_hw_numtxpending(ah, i);
1325		if (npend)
1326			break;
1327	}
1328
1329	if (ah->external_reset &&
1330	    (npend || type == ATH9K_RESET_COLD)) {
1331		int reset_err = 0;
1332
1333		ath_dbg(ath9k_hw_common(ah), RESET,
1334			"reset MAC via external reset\n");
1335
1336		reset_err = ah->external_reset();
1337		if (reset_err) {
1338			ath_err(ath9k_hw_common(ah),
1339				"External reset failed, err=%d\n",
1340				reset_err);
1341			return false;
1342		}
1343
1344		REG_WRITE(ah, AR_RTC_RESET(ah), 1);
1345	}
1346
1347	return true;
1348}
1349
1350static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1351{
1352	u32 rst_flags;
1353	u32 tmpReg;
1354
1355	if (AR_SREV_9100(ah)) {
1356		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK(ah),
1357			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1358		(void)REG_READ(ah, AR_RTC_DERIVED_CLK(ah));
1359	}
1360
1361	ENABLE_REGWRITE_BUFFER(ah);
1362
1363	if (AR_SREV_9300_20_OR_LATER(ah)) {
1364		REG_WRITE(ah, AR_WA(ah), ah->WARegVal);
1365		udelay(10);
1366	}
1367
1368	REG_WRITE(ah, AR_RTC_FORCE_WAKE(ah), AR_RTC_FORCE_WAKE_EN |
1369		  AR_RTC_FORCE_WAKE_ON_INT);
1370
1371	if (AR_SREV_9100(ah)) {
1372		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1373			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1374	} else {
1375		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE(ah));
1376		if (AR_SREV_9340(ah))
1377			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1378		else
1379			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1380				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1381
1382		if (tmpReg) {
1383			u32 val;
1384			REG_WRITE(ah, AR_INTR_SYNC_ENABLE(ah), 0);
1385
1386			val = AR_RC_HOSTIF;
1387			if (!AR_SREV_9300_20_OR_LATER(ah))
1388				val |= AR_RC_AHB;
1389			REG_WRITE(ah, AR_RC, val);
1390
1391		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1392			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1393
1394		rst_flags = AR_RTC_RC_MAC_WARM;
1395		if (type == ATH9K_RESET_COLD)
1396			rst_flags |= AR_RTC_RC_MAC_COLD;
1397	}
1398
1399	if (AR_SREV_9330(ah)) {
1400		if (!ath9k_hw_ar9330_reset_war(ah, type))
1401			return false;
1402	}
1403
1404	if (ath9k_hw_mci_is_enabled(ah))
1405		ar9003_mci_check_gpm_offset(ah);
1406
1407	/* DMA HALT added to resolve ar9300 and ar9580 bus error during
1408	 * RTC_RC reg read
1409	 */
1410	if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1411		REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1412		ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1413			      20 * AH_WAIT_TIMEOUT);
1414		REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1415	}
1416
1417	REG_WRITE(ah, AR_RTC_RC(ah), rst_flags);
1418
1419	REGWRITE_BUFFER_FLUSH(ah);
1420
1421	if (AR_SREV_9300_20_OR_LATER(ah))
1422		udelay(50);
1423	else if (AR_SREV_9100(ah))
1424		mdelay(10);
1425	else
1426		udelay(100);
1427
1428	REG_WRITE(ah, AR_RTC_RC(ah), 0);
1429	if (!ath9k_hw_wait(ah, AR_RTC_RC(ah), AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1430		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1431		return false;
1432	}
1433
1434	if (!AR_SREV_9100(ah))
1435		REG_WRITE(ah, AR_RC, 0);
1436
1437	if (AR_SREV_9100(ah))
1438		udelay(50);
1439
1440	return true;
1441}
1442
1443static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1444{
1445	ENABLE_REGWRITE_BUFFER(ah);
1446
1447	if (AR_SREV_9300_20_OR_LATER(ah)) {
1448		REG_WRITE(ah, AR_WA(ah), ah->WARegVal);
1449		udelay(10);
1450	}
1451
1452	REG_WRITE(ah, AR_RTC_FORCE_WAKE(ah), AR_RTC_FORCE_WAKE_EN |
1453		  AR_RTC_FORCE_WAKE_ON_INT);
1454
1455	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1456		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1457
1458	REG_WRITE(ah, AR_RTC_RESET(ah), 0);
1459
1460	REGWRITE_BUFFER_FLUSH(ah);
1461
1462	udelay(2);
1463
1464	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1465		REG_WRITE(ah, AR_RC, 0);
1466
1467	REG_WRITE(ah, AR_RTC_RESET(ah), 1);
1468
1469	if (!ath9k_hw_wait(ah,
1470			   AR_RTC_STATUS(ah),
1471			   AR_RTC_STATUS_M(ah),
1472			   AR_RTC_STATUS_ON,
1473			   AH_WAIT_TIMEOUT)) {
1474		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1475		return false;
1476	}
1477
1478	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1479}
1480
1481static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1482{
1483	bool ret = false;
1484
1485	if (AR_SREV_9300_20_OR_LATER(ah)) {
1486		REG_WRITE(ah, AR_WA(ah), ah->WARegVal);
1487		udelay(10);
1488	}
1489
1490	REG_WRITE(ah, AR_RTC_FORCE_WAKE(ah),
1491		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1492
1493	if (!ah->reset_power_on)
1494		type = ATH9K_RESET_POWER_ON;
1495
1496	switch (type) {
1497	case ATH9K_RESET_POWER_ON:
1498		ret = ath9k_hw_set_reset_power_on(ah);
1499		if (ret)
1500			ah->reset_power_on = true;
1501		break;
1502	case ATH9K_RESET_WARM:
1503	case ATH9K_RESET_COLD:
1504		ret = ath9k_hw_set_reset(ah, type);
1505		break;
1506	default:
1507		break;
1508	}
1509
1510	return ret;
1511}
1512
1513static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1514				struct ath9k_channel *chan)
1515{
1516	int reset_type = ATH9K_RESET_WARM;
1517
1518	if (AR_SREV_9280(ah)) {
1519		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1520			reset_type = ATH9K_RESET_POWER_ON;
1521		else
1522			reset_type = ATH9K_RESET_COLD;
1523	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1524		   (REG_READ(ah, AR_CR) & AR_CR_RXE(ah)))
1525		reset_type = ATH9K_RESET_COLD;
1526
1527	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1528		return false;
1529
1530	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1531		return false;
1532
1533	ah->chip_fullsleep = false;
1534
1535	if (AR_SREV_9330(ah))
1536		ar9003_hw_internal_regulator_apply(ah);
1537	ath9k_hw_init_pll(ah, chan);
1538
1539	return true;
1540}
1541
1542static bool ath9k_hw_channel_change(struct ath_hw *ah,
1543				    struct ath9k_channel *chan)
1544{
1545	struct ath_common *common = ath9k_hw_common(ah);
1546	struct ath9k_hw_capabilities *pCap = &ah->caps;
1547	bool band_switch = false, mode_diff = false;
1548	u8 ini_reloaded = 0;
1549	u32 qnum;
1550	int r;
1551
1552	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1553		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1554		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1555		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1556	}
1557
1558	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1559		if (ath9k_hw_numtxpending(ah, qnum)) {
1560			ath_dbg(common, QUEUE,
1561				"Transmit frames pending on queue %d\n", qnum);
1562			return false;
1563		}
1564	}
1565
1566	if (!ath9k_hw_rfbus_req(ah)) {
1567		ath_err(common, "Could not kill baseband RX\n");
1568		return false;
1569	}
1570
1571	if (band_switch || mode_diff) {
1572		ath9k_hw_mark_phy_inactive(ah);
1573		udelay(5);
1574
1575		if (band_switch)
1576			ath9k_hw_init_pll(ah, chan);
1577
1578		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1579			ath_err(common, "Failed to do fast channel change\n");
1580			return false;
1581		}
1582	}
1583
1584	ath9k_hw_set_channel_regs(ah, chan);
1585
1586	r = ath9k_hw_rf_set_freq(ah, chan);
1587	if (r) {
1588		ath_err(common, "Failed to set channel\n");
1589		return false;
1590	}
1591	ath9k_hw_set_clockrate(ah);
1592	ath9k_hw_apply_txpower(ah, chan, false);
1593
1594	ath9k_hw_set_delta_slope(ah, chan);
1595	ath9k_hw_spur_mitigate_freq(ah, chan);
1596
1597	if (band_switch || ini_reloaded)
1598		ah->eep_ops->set_board_values(ah, chan);
1599
1600	ath9k_hw_init_bb(ah, chan);
1601	ath9k_hw_rfbus_done(ah);
1602
1603	if (band_switch || ini_reloaded) {
1604		ah->ah_flags |= AH_FASTCC;
1605		ath9k_hw_init_cal(ah, chan);
1606		ah->ah_flags &= ~AH_FASTCC;
1607	}
1608
1609	return true;
1610}
1611
1612static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1613{
1614	u32 gpio_mask = ah->gpio_mask;
1615	int i;
1616
1617	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1618		if (!(gpio_mask & 1))
1619			continue;
1620
1621		ath9k_hw_gpio_request_out(ah, i, NULL,
1622					  AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1623		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
 
1624	}
1625}
1626
1627void ath9k_hw_check_nav(struct ath_hw *ah)
1628{
1629	struct ath_common *common = ath9k_hw_common(ah);
1630	u32 val;
1631
1632	val = REG_READ(ah, AR_NAV);
1633	if (val != 0xdeadbeef && val > 0x7fff) {
1634		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1635		REG_WRITE(ah, AR_NAV, 0);
1636	}
1637}
1638EXPORT_SYMBOL(ath9k_hw_check_nav);
1639
1640bool ath9k_hw_check_alive(struct ath_hw *ah)
1641{
1642	int count = 50;
1643	u32 reg, last_val;
1644
1645	/* Check if chip failed to wake up */
1646	if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1647		return false;
1648
1649	if (AR_SREV_9300(ah))
1650		return !ath9k_hw_detect_mac_hang(ah);
1651
1652	if (AR_SREV_9285_12_OR_LATER(ah))
1653		return true;
1654
1655	last_val = REG_READ(ah, AR_OBS_BUS_1);
1656	do {
1657		reg = REG_READ(ah, AR_OBS_BUS_1);
1658		if (reg != last_val)
1659			return true;
1660
1661		udelay(1);
1662		last_val = reg;
1663		if ((reg & 0x7E7FFFEF) == 0x00702400)
1664			continue;
1665
1666		switch (reg & 0x7E000B00) {
1667		case 0x1E000000:
1668		case 0x52000B00:
1669		case 0x18000B00:
1670			continue;
1671		default:
1672			return true;
1673		}
1674	} while (count-- > 0);
1675
1676	return false;
1677}
1678EXPORT_SYMBOL(ath9k_hw_check_alive);
1679
1680static void ath9k_hw_init_mfp(struct ath_hw *ah)
1681{
1682	/* Setup MFP options for CCMP */
1683	if (AR_SREV_9280_20_OR_LATER(ah)) {
1684		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1685		 * frames when constructing CCMP AAD. */
1686		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1687			      0xc7ff);
1688		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1689			ah->sw_mgmt_crypto_tx = true;
1690		else
1691			ah->sw_mgmt_crypto_tx = false;
1692		ah->sw_mgmt_crypto_rx = false;
1693	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1694		/* Disable hardware crypto for management frames */
1695		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1696			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1697		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1698			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1699		ah->sw_mgmt_crypto_tx = true;
1700		ah->sw_mgmt_crypto_rx = true;
1701	} else {
1702		ah->sw_mgmt_crypto_tx = true;
1703		ah->sw_mgmt_crypto_rx = true;
1704	}
1705}
1706
1707static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1708				  u32 macStaId1, u32 saveDefAntenna)
1709{
1710	struct ath_common *common = ath9k_hw_common(ah);
1711
1712	ENABLE_REGWRITE_BUFFER(ah);
1713
1714	REG_RMW(ah, AR_STA_ID1, macStaId1
1715		  | AR_STA_ID1_RTS_USE_DEF
1716		  | ah->sta_id1_defaults,
1717		  ~AR_STA_ID1_SADH_MASK);
1718	ath_hw_setbssidmask(common);
1719	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1720	ath9k_hw_write_associd(ah);
1721	REG_WRITE(ah, AR_ISR, ~0);
1722	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1723
1724	REGWRITE_BUFFER_FLUSH(ah);
1725
1726	ath9k_hw_set_operating_mode(ah, ah->opmode);
1727}
1728
1729static void ath9k_hw_init_queues(struct ath_hw *ah)
1730{
1731	int i;
1732
1733	ENABLE_REGWRITE_BUFFER(ah);
1734
1735	for (i = 0; i < AR_NUM_DCU; i++)
1736		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1737
1738	REGWRITE_BUFFER_FLUSH(ah);
1739
1740	ah->intr_txqs = 0;
1741	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1742		ath9k_hw_resettxqueue(ah, i);
1743}
1744
1745/*
1746 * For big endian systems turn on swapping for descriptors
1747 */
1748static void ath9k_hw_init_desc(struct ath_hw *ah)
1749{
1750	struct ath_common *common = ath9k_hw_common(ah);
1751
1752	if (AR_SREV_9100(ah)) {
1753		u32 mask;
1754		mask = REG_READ(ah, AR_CFG);
1755		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1756			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1757				mask);
1758		} else {
1759			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1760			REG_WRITE(ah, AR_CFG, mask);
1761			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1762				REG_READ(ah, AR_CFG));
1763		}
1764	} else {
1765		if (common->bus_ops->ath_bus_type == ATH_USB) {
1766			/* Configure AR9271 target WLAN */
1767			if (AR_SREV_9271(ah))
1768				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1769			else
1770				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1771		}
1772#ifdef __BIG_ENDIAN
1773		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1774			 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1775			 AR_SREV_9561(ah))
1776			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1777		else
1778			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1779#endif
1780	}
1781}
1782
1783/*
1784 * Fast channel change:
1785 * (Change synthesizer based on channel freq without resetting chip)
1786 */
1787static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1788{
1789	struct ath_common *common = ath9k_hw_common(ah);
1790	struct ath9k_hw_capabilities *pCap = &ah->caps;
1791	int ret;
1792
1793	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1794		goto fail;
1795
1796	if (ah->chip_fullsleep)
1797		goto fail;
1798
1799	if (!ah->curchan)
1800		goto fail;
1801
1802	if (chan->channel == ah->curchan->channel)
1803		goto fail;
1804
1805	if ((ah->curchan->channelFlags | chan->channelFlags) &
1806	    (CHANNEL_HALF | CHANNEL_QUARTER))
1807		goto fail;
1808
1809	/*
1810	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1811	 */
1812	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1813	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1814		goto fail;
1815
1816	if (!ath9k_hw_check_alive(ah))
1817		goto fail;
1818
1819	/*
1820	 * For AR9462, make sure that calibration data for
1821	 * re-using are present.
1822	 */
1823	if (AR_SREV_9462(ah) && (ah->caldata &&
1824				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1825				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1826				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1827		goto fail;
1828
1829	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1830		ah->curchan->channel, chan->channel);
1831
1832	ret = ath9k_hw_channel_change(ah, chan);
1833	if (!ret)
1834		goto fail;
1835
1836	if (ath9k_hw_mci_is_enabled(ah))
1837		ar9003_mci_2g5g_switch(ah, false);
1838
1839	ath9k_hw_loadnf(ah, ah->curchan);
1840	ath9k_hw_start_nfcal(ah, true);
1841
1842	if (AR_SREV_9271(ah))
1843		ar9002_hw_load_ani_reg(ah, chan);
1844
1845	return 0;
1846fail:
1847	return -EINVAL;
1848}
1849
1850u32 ath9k_hw_get_tsf_offset(struct timespec64 *last, struct timespec64 *cur)
1851{
1852	struct timespec64 ts;
1853	s64 usec;
1854
1855	if (!cur) {
1856		ktime_get_raw_ts64(&ts);
1857		cur = &ts;
1858	}
1859
1860	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1861	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1862
1863	return (u32) usec;
1864}
1865EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1866
1867int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1868		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1869{
1870	struct ath_common *common = ath9k_hw_common(ah);
1871	u32 saveLedState;
1872	u32 saveDefAntenna;
1873	u32 macStaId1;
1874	struct timespec64 tsf_ts;
1875	u32 tsf_offset;
1876	u64 tsf = 0;
1877	int r;
1878	bool start_mci_reset = false;
1879	bool save_fullsleep = ah->chip_fullsleep;
1880
1881	if (ath9k_hw_mci_is_enabled(ah)) {
1882		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1883		if (start_mci_reset)
1884			return 0;
1885	}
1886
1887	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1888		return -EIO;
1889
1890	if (ah->curchan && !ah->chip_fullsleep)
1891		ath9k_hw_getnf(ah, ah->curchan);
1892
1893	ah->caldata = caldata;
1894	if (caldata && (chan->channel != caldata->channel ||
1895			chan->channelFlags != caldata->channelFlags)) {
1896		/* Operating channel changed, reset channel calibration data */
1897		memset(caldata, 0, sizeof(*caldata));
1898		ath9k_init_nfcal_hist_buffer(ah, chan);
1899	} else if (caldata) {
1900		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1901	}
1902	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1903
1904	if (fastcc) {
1905		r = ath9k_hw_do_fastcc(ah, chan);
1906		if (!r)
1907			return r;
1908	}
1909
1910	if (ath9k_hw_mci_is_enabled(ah))
1911		ar9003_mci_stop_bt(ah, save_fullsleep);
1912
1913	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1914	if (saveDefAntenna == 0)
1915		saveDefAntenna = 1;
1916
1917	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1918
1919	/* Save TSF before chip reset, a cold reset clears it */
1920	ktime_get_raw_ts64(&tsf_ts);
1921	tsf = ath9k_hw_gettsf64(ah);
1922
1923	saveLedState = REG_READ(ah, AR_CFG_LED) &
1924		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1925		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1926
1927	ath9k_hw_mark_phy_inactive(ah);
1928
1929	ah->paprd_table_write_done = false;
1930
1931	/* Only required on the first reset */
1932	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1933		REG_WRITE(ah,
1934			  AR9271_RESET_POWER_DOWN_CONTROL,
1935			  AR9271_RADIO_RF_RST);
1936		udelay(50);
1937	}
1938
1939	if (!ath9k_hw_chip_reset(ah, chan)) {
1940		ath_err(common, "Chip reset failed\n");
1941		return -EINVAL;
1942	}
1943
1944	/* Only required on the first reset */
1945	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1946		ah->htc_reset_init = false;
1947		REG_WRITE(ah,
1948			  AR9271_RESET_POWER_DOWN_CONTROL,
1949			  AR9271_GATE_MAC_CTL);
1950		udelay(50);
1951	}
1952
1953	/* Restore TSF */
1954	tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1955	ath9k_hw_settsf64(ah, tsf + tsf_offset);
1956
1957	if (AR_SREV_9280_20_OR_LATER(ah))
1958		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL(ah), AR_GPIO_JTAG_DISABLE);
1959
1960	if (!AR_SREV_9300_20_OR_LATER(ah))
1961		ar9002_hw_enable_async_fifo(ah);
1962
1963	r = ath9k_hw_process_ini(ah, chan);
1964	if (r)
1965		return r;
1966
1967	ath9k_hw_set_rfmode(ah, chan);
1968
1969	if (ath9k_hw_mci_is_enabled(ah))
1970		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1971
1972	/*
1973	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1974	 * right after the chip reset. When that happens, write a new
1975	 * value after the initvals have been applied.
1976	 */
1977	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1978		tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1979		ath9k_hw_settsf64(ah, tsf + tsf_offset);
1980	}
1981
1982	ath9k_hw_init_mfp(ah);
1983
1984	ath9k_hw_set_delta_slope(ah, chan);
1985	ath9k_hw_spur_mitigate_freq(ah, chan);
1986	ah->eep_ops->set_board_values(ah, chan);
1987
1988	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1989
1990	r = ath9k_hw_rf_set_freq(ah, chan);
1991	if (r)
1992		return r;
1993
1994	ath9k_hw_set_clockrate(ah);
1995
1996	ath9k_hw_init_queues(ah);
1997	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1998	ath9k_hw_ani_cache_ini_regs(ah);
1999	ath9k_hw_init_qos(ah);
2000
2001	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2002		ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
2003
2004	ath9k_hw_init_global_settings(ah);
2005
2006	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
2007		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2008			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2009		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2010			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2011		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2012			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2013	}
2014
2015	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2016
2017	ath9k_hw_set_dma(ah);
2018
2019	if (!ath9k_hw_mci_is_enabled(ah))
2020		REG_WRITE(ah, AR_OBS(ah), 8);
2021
2022	ENABLE_REG_RMW_BUFFER(ah);
2023	if (ah->config.rx_intr_mitigation) {
2024		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
2025		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
2026	}
2027
2028	if (ah->config.tx_intr_mitigation) {
2029		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2030		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2031	}
2032	REG_RMW_BUFFER_FLUSH(ah);
2033
2034	ath9k_hw_init_bb(ah, chan);
2035
2036	if (caldata) {
2037		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2038		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2039	}
2040	if (!ath9k_hw_init_cal(ah, chan))
2041		return -EIO;
2042
2043	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2044		return -EIO;
2045
2046	ENABLE_REGWRITE_BUFFER(ah);
2047
2048	ath9k_hw_restore_chainmask(ah);
2049	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2050
2051	REGWRITE_BUFFER_FLUSH(ah);
2052
2053	ath9k_hw_gen_timer_start_tsf2(ah);
2054
2055	ath9k_hw_init_desc(ah);
2056
2057	if (ath9k_hw_btcoex_is_enabled(ah))
2058		ath9k_hw_btcoex_enable(ah);
2059
2060	if (ath9k_hw_mci_is_enabled(ah))
2061		ar9003_mci_check_bt(ah);
2062
2063	if (AR_SREV_9300_20_OR_LATER(ah)) {
2064		ath9k_hw_loadnf(ah, chan);
2065		ath9k_hw_start_nfcal(ah, true);
2066	}
2067
2068	if (AR_SREV_9300_20_OR_LATER(ah))
2069		ar9003_hw_bb_watchdog_config(ah);
2070
2071	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2072		ar9003_hw_disable_phy_restart(ah);
2073
2074	ath9k_hw_apply_gpio_override(ah);
2075
2076	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2077		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2078
2079	if (ah->hw->conf.radar_enabled) {
2080		/* set HW specific DFS configuration */
2081		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2082		ath9k_hw_set_radar_params(ah);
2083	}
2084
2085	return 0;
2086}
2087EXPORT_SYMBOL(ath9k_hw_reset);
2088
2089/******************************/
2090/* Power Management (Chipset) */
2091/******************************/
2092
2093/*
2094 * Notify Power Mgt is disabled in self-generated frames.
2095 * If requested, force chip to sleep.
2096 */
2097static void ath9k_set_power_sleep(struct ath_hw *ah)
2098{
2099	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2100
2101	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2102		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2103		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2104		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2105		/* xxx Required for WLAN only case ? */
2106		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2107		udelay(100);
2108	}
2109
2110	/*
2111	 * Clear the RTC force wake bit to allow the
2112	 * mac to go to sleep.
2113	 */
2114	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE(ah), AR_RTC_FORCE_WAKE_EN);
2115
2116	if (ath9k_hw_mci_is_enabled(ah))
2117		udelay(100);
2118
2119	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2120		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2121
2122	/* Shutdown chip. Active low */
2123	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2124		REG_CLR_BIT(ah, AR_RTC_RESET(ah), AR_RTC_RESET_EN);
2125		udelay(2);
2126	}
2127
2128	/* Clear Bit 14 of AR_WA(ah) after putting chip into Full Sleep mode. */
2129	if (AR_SREV_9300_20_OR_LATER(ah))
2130		REG_WRITE(ah, AR_WA(ah), ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2131}
2132
2133/*
2134 * Notify Power Management is enabled in self-generating
2135 * frames. If request, set power mode of chip to
2136 * auto/normal.  Duration in units of 128us (1/8 TU).
2137 */
2138static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2139{
2140	struct ath9k_hw_capabilities *pCap = &ah->caps;
2141
2142	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2143
2144	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2145		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2146		REG_WRITE(ah, AR_RTC_FORCE_WAKE(ah),
2147			  AR_RTC_FORCE_WAKE_ON_INT);
2148	} else {
2149
2150		/* When chip goes into network sleep, it could be waken
2151		 * up by MCI_INT interrupt caused by BT's HW messages
2152		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2153		 * rate (~100us). This will cause chip to leave and
2154		 * re-enter network sleep mode frequently, which in
2155		 * consequence will have WLAN MCI HW to generate lots of
2156		 * SYS_WAKING and SYS_SLEEPING messages which will make
2157		 * BT CPU to busy to process.
2158		 */
2159		if (ath9k_hw_mci_is_enabled(ah))
2160			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2161				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2162		/*
2163		 * Clear the RTC force wake bit to allow the
2164		 * mac to go to sleep.
2165		 */
2166		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE(ah), AR_RTC_FORCE_WAKE_EN);
2167
2168		if (ath9k_hw_mci_is_enabled(ah))
2169			udelay(30);
2170	}
2171
2172	/* Clear Bit 14 of AR_WA(ah) after putting chip into Net Sleep mode. */
2173	if (AR_SREV_9300_20_OR_LATER(ah))
2174		REG_WRITE(ah, AR_WA(ah), ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2175}
2176
2177static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2178{
2179	u32 val;
2180	int i;
2181
2182	/* Set Bits 14 and 17 of AR_WA(ah) before powering on the chip. */
2183	if (AR_SREV_9300_20_OR_LATER(ah)) {
2184		REG_WRITE(ah, AR_WA(ah), ah->WARegVal);
2185		udelay(10);
2186	}
2187
2188	if ((REG_READ(ah, AR_RTC_STATUS(ah)) &
2189	     AR_RTC_STATUS_M(ah)) == AR_RTC_STATUS_SHUTDOWN) {
2190		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2191			return false;
2192		}
2193		if (!AR_SREV_9300_20_OR_LATER(ah))
2194			ath9k_hw_init_pll(ah, NULL);
2195	}
2196	if (AR_SREV_9100(ah))
2197		REG_SET_BIT(ah, AR_RTC_RESET(ah),
2198			    AR_RTC_RESET_EN);
2199
2200	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE(ah),
2201		    AR_RTC_FORCE_WAKE_EN);
2202	if (AR_SREV_9100(ah))
2203		mdelay(10);
2204	else
2205		udelay(50);
2206
2207	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2208		val = REG_READ(ah, AR_RTC_STATUS(ah)) & AR_RTC_STATUS_M(ah);
2209		if (val == AR_RTC_STATUS_ON)
2210			break;
2211		udelay(50);
2212		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE(ah),
2213			    AR_RTC_FORCE_WAKE_EN);
2214	}
2215	if (i == 0) {
2216		ath_err(ath9k_hw_common(ah),
2217			"Failed to wakeup in %uus\n",
2218			POWER_UP_TIME / 20);
2219		return false;
2220	}
2221
2222	if (ath9k_hw_mci_is_enabled(ah))
2223		ar9003_mci_set_power_awake(ah);
2224
2225	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2226
2227	return true;
2228}
2229
2230bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2231{
2232	struct ath_common *common = ath9k_hw_common(ah);
2233	int status = true;
2234	static const char *modes[] = {
2235		"AWAKE",
2236		"FULL-SLEEP",
2237		"NETWORK SLEEP",
2238		"UNDEFINED"
2239	};
2240
2241	if (ah->power_mode == mode)
2242		return status;
2243
2244	ath_dbg(common, RESET, "%s -> %s\n",
2245		modes[ah->power_mode], modes[mode]);
2246
2247	switch (mode) {
2248	case ATH9K_PM_AWAKE:
2249		status = ath9k_hw_set_power_awake(ah);
2250		break;
2251	case ATH9K_PM_FULL_SLEEP:
2252		if (ath9k_hw_mci_is_enabled(ah))
2253			ar9003_mci_set_full_sleep(ah);
2254
2255		ath9k_set_power_sleep(ah);
2256		ah->chip_fullsleep = true;
2257		break;
2258	case ATH9K_PM_NETWORK_SLEEP:
2259		ath9k_set_power_network_sleep(ah);
2260		break;
2261	default:
2262		ath_err(common, "Unknown power mode %u\n", mode);
2263		return false;
2264	}
2265	ah->power_mode = mode;
2266
2267	/*
2268	 * XXX: If this warning never comes up after a while then
2269	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2270	 * ath9k_hw_setpower() return type void.
2271	 */
2272
2273	if (!(ah->ah_flags & AH_UNPLUGGED))
2274		ATH_DBG_WARN_ON_ONCE(!status);
2275
2276	return status;
2277}
2278EXPORT_SYMBOL(ath9k_hw_setpower);
2279
2280/*******************/
2281/* Beacon Handling */
2282/*******************/
2283
2284void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2285{
2286	int flags = 0;
2287
2288	ENABLE_REGWRITE_BUFFER(ah);
2289
2290	switch (ah->opmode) {
2291	case NL80211_IFTYPE_ADHOC:
2292		REG_SET_BIT(ah, AR_TXCFG,
2293			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2294		fallthrough;
2295	case NL80211_IFTYPE_MESH_POINT:
2296	case NL80211_IFTYPE_AP:
2297		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2298		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2299			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2300		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2301			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2302		flags |=
2303			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2304		break;
2305	default:
2306		ath_dbg(ath9k_hw_common(ah), BEACON,
2307			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2308		return;
 
2309	}
2310
2311	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2312	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2313	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2314
2315	REGWRITE_BUFFER_FLUSH(ah);
2316
2317	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2318}
2319EXPORT_SYMBOL(ath9k_hw_beaconinit);
2320
2321void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2322				    const struct ath9k_beacon_state *bs)
2323{
2324	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2325	struct ath9k_hw_capabilities *pCap = &ah->caps;
2326	struct ath_common *common = ath9k_hw_common(ah);
2327
2328	ENABLE_REGWRITE_BUFFER(ah);
2329
2330	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2331	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2332	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2333
2334	REGWRITE_BUFFER_FLUSH(ah);
2335
2336	REG_RMW_FIELD(ah, AR_RSSI_THR,
2337		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2338
2339	beaconintval = bs->bs_intval;
2340
2341	if (bs->bs_sleepduration > beaconintval)
2342		beaconintval = bs->bs_sleepduration;
2343
2344	dtimperiod = bs->bs_dtimperiod;
2345	if (bs->bs_sleepduration > dtimperiod)
2346		dtimperiod = bs->bs_sleepduration;
2347
2348	if (beaconintval == dtimperiod)
2349		nextTbtt = bs->bs_nextdtim;
2350	else
2351		nextTbtt = bs->bs_nexttbtt;
2352
2353	ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2354	ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2355	ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2356	ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2357
2358	ENABLE_REGWRITE_BUFFER(ah);
2359
2360	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2361	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2362
2363	REG_WRITE(ah, AR_SLEEP1,
2364		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2365		  | AR_SLEEP1_ASSUME_DTIM);
2366
2367	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2368		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2369	else
2370		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2371
2372	REG_WRITE(ah, AR_SLEEP2,
2373		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2374
2375	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2376	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2377
2378	REGWRITE_BUFFER_FLUSH(ah);
2379
2380	REG_SET_BIT(ah, AR_TIMER_MODE,
2381		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2382		    AR_DTIM_TIMER_EN);
2383
2384	/* TSF Out of Range Threshold */
2385	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2386}
2387EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2388
2389/*******************/
2390/* HW Capabilities */
2391/*******************/
2392
2393static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2394{
2395	eeprom_chainmask &= chip_chainmask;
2396	if (eeprom_chainmask)
2397		return eeprom_chainmask;
2398	else
2399		return chip_chainmask;
2400}
2401
2402/**
2403 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2404 * @ah: the atheros hardware data structure
2405 *
2406 * We enable DFS support upstream on chipsets which have passed a series
2407 * of tests. The testing requirements are going to be documented. Desired
2408 * test requirements are documented at:
2409 *
2410 * https://wireless.wiki.kernel.org/en/users/Drivers/ath9k/dfs
2411 *
2412 * Once a new chipset gets properly tested an individual commit can be used
2413 * to document the testing for DFS for that chipset.
2414 */
2415static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2416{
2417
2418	switch (ah->hw_version.macVersion) {
2419	/* for temporary testing DFS with 9280 */
2420	case AR_SREV_VERSION_9280:
2421	/* AR9580 will likely be our first target to get testing on */
2422	case AR_SREV_VERSION_9580:
2423		return true;
2424	default:
2425		return false;
2426	}
2427}
2428
2429static void ath9k_gpio_cap_init(struct ath_hw *ah)
2430{
2431	struct ath9k_hw_capabilities *pCap = &ah->caps;
2432
2433	if (AR_SREV_9271(ah)) {
2434		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2435		pCap->gpio_mask = AR9271_GPIO_MASK;
2436	} else if (AR_DEVID_7010(ah)) {
2437		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2438		pCap->gpio_mask = AR7010_GPIO_MASK;
2439	} else if (AR_SREV_9287(ah)) {
2440		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2441		pCap->gpio_mask = AR9287_GPIO_MASK;
2442	} else if (AR_SREV_9285(ah)) {
2443		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2444		pCap->gpio_mask = AR9285_GPIO_MASK;
2445	} else if (AR_SREV_9280(ah)) {
2446		pCap->num_gpio_pins = AR9280_NUM_GPIO;
2447		pCap->gpio_mask = AR9280_GPIO_MASK;
2448	} else if (AR_SREV_9300(ah)) {
2449		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2450		pCap->gpio_mask = AR9300_GPIO_MASK;
2451	} else if (AR_SREV_9330(ah)) {
2452		pCap->num_gpio_pins = AR9330_NUM_GPIO;
2453		pCap->gpio_mask = AR9330_GPIO_MASK;
2454	} else if (AR_SREV_9340(ah)) {
2455		pCap->num_gpio_pins = AR9340_NUM_GPIO;
2456		pCap->gpio_mask = AR9340_GPIO_MASK;
2457	} else if (AR_SREV_9462(ah)) {
2458		pCap->num_gpio_pins = AR9462_NUM_GPIO;
2459		pCap->gpio_mask = AR9462_GPIO_MASK;
2460	} else if (AR_SREV_9485(ah)) {
2461		pCap->num_gpio_pins = AR9485_NUM_GPIO;
2462		pCap->gpio_mask = AR9485_GPIO_MASK;
2463	} else if (AR_SREV_9531(ah)) {
2464		pCap->num_gpio_pins = AR9531_NUM_GPIO;
2465		pCap->gpio_mask = AR9531_GPIO_MASK;
2466	} else if (AR_SREV_9550(ah)) {
2467		pCap->num_gpio_pins = AR9550_NUM_GPIO;
2468		pCap->gpio_mask = AR9550_GPIO_MASK;
2469	} else if (AR_SREV_9561(ah)) {
2470		pCap->num_gpio_pins = AR9561_NUM_GPIO;
2471		pCap->gpio_mask = AR9561_GPIO_MASK;
2472	} else if (AR_SREV_9565(ah)) {
2473		pCap->num_gpio_pins = AR9565_NUM_GPIO;
2474		pCap->gpio_mask = AR9565_GPIO_MASK;
2475	} else if (AR_SREV_9580(ah)) {
2476		pCap->num_gpio_pins = AR9580_NUM_GPIO;
2477		pCap->gpio_mask = AR9580_GPIO_MASK;
2478	} else {
2479		pCap->num_gpio_pins = AR_NUM_GPIO;
2480		pCap->gpio_mask = AR_GPIO_MASK;
2481	}
2482}
2483
2484int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2485{
2486	struct ath9k_hw_capabilities *pCap = &ah->caps;
2487	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2488	struct ath_common *common = ath9k_hw_common(ah);
2489
2490	u16 eeval;
2491	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2492
2493	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2494	regulatory->current_rd = eeval;
2495
2496	if (ah->opmode != NL80211_IFTYPE_AP &&
2497	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2498		if (regulatory->current_rd == 0x64 ||
2499		    regulatory->current_rd == 0x65)
2500			regulatory->current_rd += 5;
2501		else if (regulatory->current_rd == 0x41)
2502			regulatory->current_rd = 0x43;
2503		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2504			regulatory->current_rd);
2505	}
2506
2507	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2508
2509	if (eeval & AR5416_OPFLAGS_11A) {
2510		if (ah->disable_5ghz)
2511			ath_warn(common, "disabling 5GHz band\n");
2512		else
2513			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2514	}
2515
2516	if (eeval & AR5416_OPFLAGS_11G) {
2517		if (ah->disable_2ghz)
2518			ath_warn(common, "disabling 2GHz band\n");
2519		else
2520			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2521	}
2522
2523	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2524		ath_err(common, "both bands are disabled\n");
2525		return -EINVAL;
2526	}
2527
2528	ath9k_gpio_cap_init(ah);
2529
2530	if (AR_SREV_9485(ah) ||
2531	    AR_SREV_9285(ah) ||
2532	    AR_SREV_9330(ah) ||
2533	    AR_SREV_9565(ah))
2534		pCap->chip_chainmask = 1;
2535	else if (!AR_SREV_9280_20_OR_LATER(ah))
2536		pCap->chip_chainmask = 7;
2537	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2538		 AR_SREV_9340(ah) ||
2539		 AR_SREV_9462(ah) ||
2540		 AR_SREV_9531(ah))
2541		pCap->chip_chainmask = 3;
2542	else
2543		pCap->chip_chainmask = 7;
2544
2545	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2546	/*
2547	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2548	 * the EEPROM.
2549	 */
2550	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2551	    !(eeval & AR5416_OPFLAGS_11A) &&
2552	    !(AR_SREV_9271(ah)))
2553		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2554		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2555	else if (AR_SREV_9100(ah))
2556		pCap->rx_chainmask = 0x7;
2557	else
2558		/* Use rx_chainmask from EEPROM. */
2559		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2560
2561	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2562	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2563	ah->txchainmask = pCap->tx_chainmask;
2564	ah->rxchainmask = pCap->rx_chainmask;
2565
2566	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2567
2568	/* enable key search for every frame in an aggregate */
2569	if (AR_SREV_9300_20_OR_LATER(ah))
2570		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2571
2572	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2573
2574	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2575		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2576	else
2577		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2578
2579	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2580		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2581	else
2582		pCap->rts_aggr_limit = (8 * 1024);
2583
2584#ifdef CONFIG_ATH9K_RFKILL
2585	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2586	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2587		ah->rfkill_gpio =
2588			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2589		ah->rfkill_polarity =
2590			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2591
2592		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2593	}
2594#endif
2595	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2596		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2597	else
2598		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2599
2600	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2601		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2602	else
2603		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2604
2605	if (AR_SREV_9300_20_OR_LATER(ah)) {
2606		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2607		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2608		    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2609			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2610
2611		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2612		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2613		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2614		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2615		pCap->txs_len = sizeof(struct ar9003_txs);
2616	} else {
2617		pCap->tx_desc_len = sizeof(struct ath_desc);
2618		if (AR_SREV_9280_20(ah))
2619			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2620	}
2621
2622	if (AR_SREV_9300_20_OR_LATER(ah))
2623		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2624
2625	if (AR_SREV_9561(ah))
2626		ah->ent_mode = 0x3BDA000;
2627	else if (AR_SREV_9300_20_OR_LATER(ah))
2628		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2629
2630	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2631		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2632
2633	if (AR_SREV_9285(ah)) {
2634		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2635			ant_div_ctl1 =
2636				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2637			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2638				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2639				ath_info(common, "Enable LNA combining\n");
2640			}
2641		}
2642	}
2643
2644	if (AR_SREV_9300_20_OR_LATER(ah)) {
2645		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2646			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2647	}
2648
2649	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2650		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2651		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2652			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2653			ath_info(common, "Enable LNA combining\n");
2654		}
2655	}
2656
2657	if (ath9k_hw_dfs_tested(ah))
2658		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2659
2660	tx_chainmask = pCap->tx_chainmask;
2661	rx_chainmask = pCap->rx_chainmask;
2662	while (tx_chainmask || rx_chainmask) {
2663		if (tx_chainmask & BIT(0))
2664			pCap->max_txchains++;
2665		if (rx_chainmask & BIT(0))
2666			pCap->max_rxchains++;
2667
2668		tx_chainmask >>= 1;
2669		rx_chainmask >>= 1;
2670	}
2671
2672	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2673		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2674			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2675
2676		if (AR_SREV_9462_20_OR_LATER(ah))
2677			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2678	}
2679
2680	if (AR_SREV_9300_20_OR_LATER(ah) &&
2681	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2682			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2683
2684#ifdef CONFIG_ATH9K_WOW
2685	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2686		ah->wow.max_patterns = MAX_NUM_PATTERN;
2687	else
2688		ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2689#endif
2690
2691	return 0;
2692}
2693
2694/****************************/
2695/* GPIO / RFKILL / Antennae */
2696/****************************/
2697
2698static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
2699{
2700	int addr;
2701	u32 gpio_shift, tmp;
2702
2703	if (gpio > 11)
2704		addr = AR_GPIO_OUTPUT_MUX3(ah);
2705	else if (gpio > 5)
2706		addr = AR_GPIO_OUTPUT_MUX2(ah);
2707	else
2708		addr = AR_GPIO_OUTPUT_MUX1(ah);
2709
2710	gpio_shift = (gpio % 6) * 5;
2711
2712	if (AR_SREV_9280_20_OR_LATER(ah) ||
2713	    (addr != AR_GPIO_OUTPUT_MUX1(ah))) {
2714		REG_RMW(ah, addr, (type << gpio_shift),
2715			(0x1f << gpio_shift));
2716	} else {
2717		tmp = REG_READ(ah, addr);
2718		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2719		tmp &= ~(0x1f << gpio_shift);
2720		tmp |= (type << gpio_shift);
2721		REG_WRITE(ah, addr, tmp);
2722	}
2723}
2724
2725/* BSP should set the corresponding MUX register correctly.
2726 */
2727static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2728				  const char *label)
2729{
2730	int err;
2731
2732	if (ah->caps.gpio_requested & BIT(gpio))
2733		return;
2734
2735	err = gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label);
2736	if (err) {
2737		ath_err(ath9k_hw_common(ah), "request GPIO%d failed:%d\n",
2738			gpio, err);
2739		return;
2740	}
2741
2742	ah->caps.gpio_requested |= BIT(gpio);
2743}
2744
2745static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2746				   u32 ah_signal_type)
2747{
2748	u32 gpio_set, gpio_shift = gpio;
2749
2750	if (AR_DEVID_7010(ah)) {
2751		gpio_set = out ?
2752			AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2753		REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2754			AR7010_GPIO_OE_MASK << gpio_shift);
2755	} else if (AR_SREV_SOC(ah)) {
2756		gpio_set = out ? 1 : 0;
2757		REG_RMW(ah, AR_GPIO_OE_OUT(ah), gpio_set << gpio_shift,
2758			gpio_set << gpio_shift);
2759	} else {
2760		gpio_shift = gpio << 1;
2761		gpio_set = out ?
2762			AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2763		REG_RMW(ah, AR_GPIO_OE_OUT(ah), gpio_set << gpio_shift,
2764			AR_GPIO_OE_OUT_DRV << gpio_shift);
2765
2766		if (out)
2767			ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2768	}
2769}
2770
2771static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2772				  const char *label, u32 ah_signal_type)
2773{
2774	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2775
2776	if (BIT(gpio) & ah->caps.gpio_mask)
2777		ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2778	else if (AR_SREV_SOC(ah))
2779		ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2780	else
2781		WARN_ON(1);
2782}
2783
2784void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2785{
2786	ath9k_hw_gpio_request(ah, gpio, false, label, 0);
2787}
2788EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2789
2790void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2791			       u32 ah_signal_type)
2792{
2793	ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2794}
2795EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2796
2797void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2798{
2799	if (!AR_SREV_SOC(ah))
2800		return;
2801
2802	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2803
2804	if (ah->caps.gpio_requested & BIT(gpio)) {
2805		gpio_free(gpio);
2806		ah->caps.gpio_requested &= ~BIT(gpio);
2807	}
2808}
2809EXPORT_SYMBOL(ath9k_hw_gpio_free);
2810
2811u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2812{
2813	u32 val = 0xffffffff;
2814
2815#define MS_REG_READ(x, y) \
2816	(MS(REG_READ(ah, AR_GPIO_IN_OUT(ah)), x##_GPIO_IN_VAL) & BIT(y))
2817
2818	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2819
2820	if (BIT(gpio) & ah->caps.gpio_mask) {
2821		if (AR_SREV_9271(ah))
2822			val = MS_REG_READ(AR9271, gpio);
2823		else if (AR_SREV_9287(ah))
2824			val = MS_REG_READ(AR9287, gpio);
2825		else if (AR_SREV_9285(ah))
2826			val = MS_REG_READ(AR9285, gpio);
2827		else if (AR_SREV_9280(ah))
2828			val = MS_REG_READ(AR928X, gpio);
2829		else if (AR_DEVID_7010(ah))
2830			val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2831		else if (AR_SREV_9300_20_OR_LATER(ah))
2832			val = REG_READ(ah, AR_GPIO_IN(ah)) & BIT(gpio);
2833		else
2834			val = MS_REG_READ(AR, gpio);
2835	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2836		val = gpio_get_value(gpio) & BIT(gpio);
2837	} else {
2838		WARN_ON(1);
2839	}
2840
2841	return !!val;
2842}
2843EXPORT_SYMBOL(ath9k_hw_gpio_get);
2844
2845void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2846{
2847	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2848
2849	if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2850		val = !val;
2851	else
2852		val = !!val;
2853
2854	if (BIT(gpio) & ah->caps.gpio_mask) {
2855		u32 out_addr = AR_DEVID_7010(ah) ?
2856			AR7010_GPIO_OUT : AR_GPIO_IN_OUT(ah);
2857
2858		REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2859	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2860		gpio_set_value(gpio, val);
2861	} else {
2862		WARN_ON(1);
2863	}
2864}
2865EXPORT_SYMBOL(ath9k_hw_set_gpio);
2866
2867void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2868{
2869	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2870}
2871EXPORT_SYMBOL(ath9k_hw_setantenna);
2872
2873/*********************/
2874/* General Operation */
2875/*********************/
2876
2877u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2878{
2879	u32 bits = REG_READ(ah, AR_RX_FILTER);
2880	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2881
2882	if (phybits & AR_PHY_ERR_RADAR)
2883		bits |= ATH9K_RX_FILTER_PHYRADAR;
2884	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2885		bits |= ATH9K_RX_FILTER_PHYERR;
2886
2887	return bits;
2888}
2889EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2890
2891void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2892{
2893	u32 phybits;
2894
2895	ENABLE_REGWRITE_BUFFER(ah);
2896
2897	REG_WRITE(ah, AR_RX_FILTER, bits);
2898
2899	phybits = 0;
2900	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2901		phybits |= AR_PHY_ERR_RADAR;
2902	if (bits & ATH9K_RX_FILTER_PHYERR)
2903		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2904	REG_WRITE(ah, AR_PHY_ERR, phybits);
2905
2906	if (phybits)
2907		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2908	else
2909		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2910
2911	REGWRITE_BUFFER_FLUSH(ah);
2912}
2913EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2914
2915bool ath9k_hw_phy_disable(struct ath_hw *ah)
2916{
2917	if (ath9k_hw_mci_is_enabled(ah))
2918		ar9003_mci_bt_gain_ctrl(ah);
2919
2920	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2921		return false;
2922
2923	ath9k_hw_init_pll(ah, NULL);
2924	ah->htc_reset_init = true;
2925	return true;
2926}
2927EXPORT_SYMBOL(ath9k_hw_phy_disable);
2928
2929bool ath9k_hw_disable(struct ath_hw *ah)
2930{
2931	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2932		return false;
2933
2934	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2935		return false;
2936
2937	ath9k_hw_init_pll(ah, NULL);
2938	return true;
2939}
2940EXPORT_SYMBOL(ath9k_hw_disable);
2941
2942static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2943{
2944	enum eeprom_param gain_param;
2945
2946	if (IS_CHAN_2GHZ(chan))
2947		gain_param = EEP_ANTENNA_GAIN_2G;
2948	else
2949		gain_param = EEP_ANTENNA_GAIN_5G;
2950
2951	return ah->eep_ops->get_eeprom(ah, gain_param);
2952}
2953
2954void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2955			    bool test)
2956{
2957	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2958	struct ieee80211_channel *channel;
2959	int chan_pwr, new_pwr;
2960	u16 ctl = NO_CTL;
2961
2962	if (!chan)
2963		return;
2964
2965	if (!test)
2966		ctl = ath9k_regd_get_ctl(reg, chan);
2967
2968	channel = chan->chan;
2969	chan_pwr = min_t(int, channel->max_power * 2, MAX_COMBINED_POWER);
2970	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2971
2972	ah->eep_ops->set_txpower(ah, chan, ctl,
2973				 get_antenna_gain(ah, chan), new_pwr, test);
2974}
2975
2976void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2977{
2978	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2979	struct ath9k_channel *chan = ah->curchan;
2980	struct ieee80211_channel *channel = chan->chan;
2981
2982	reg->power_limit = min_t(u32, limit, MAX_COMBINED_POWER);
2983	if (test)
2984		channel->max_power = MAX_COMBINED_POWER / 2;
2985
2986	ath9k_hw_apply_txpower(ah, chan, test);
2987
2988	if (test)
2989		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2990}
2991EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2992
2993void ath9k_hw_setopmode(struct ath_hw *ah)
2994{
2995	ath9k_hw_set_operating_mode(ah, ah->opmode);
2996}
2997EXPORT_SYMBOL(ath9k_hw_setopmode);
2998
2999void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3000{
3001	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3002	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3003}
3004EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3005
3006void ath9k_hw_write_associd(struct ath_hw *ah)
3007{
3008	struct ath_common *common = ath9k_hw_common(ah);
3009
3010	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3011	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3012		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3013}
3014EXPORT_SYMBOL(ath9k_hw_write_associd);
3015
3016#define ATH9K_MAX_TSF_READ 10
3017
3018u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3019{
3020	u32 tsf_lower, tsf_upper1, tsf_upper2;
3021	int i;
3022
3023	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
3024	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
3025		tsf_lower = REG_READ(ah, AR_TSF_L32);
3026		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
3027		if (tsf_upper2 == tsf_upper1)
3028			break;
3029		tsf_upper1 = tsf_upper2;
3030	}
3031
3032	WARN_ON( i == ATH9K_MAX_TSF_READ );
3033
3034	return (((u64)tsf_upper1 << 32) | tsf_lower);
3035}
3036EXPORT_SYMBOL(ath9k_hw_gettsf64);
3037
3038void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3039{
3040	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3041	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3042}
3043EXPORT_SYMBOL(ath9k_hw_settsf64);
3044
3045void ath9k_hw_reset_tsf(struct ath_hw *ah)
3046{
3047	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3048			   AH_TSF_WRITE_TIMEOUT))
3049		ath_dbg(ath9k_hw_common(ah), RESET,
3050			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3051
3052	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3053}
3054EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3055
3056void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3057{
3058	if (set)
3059		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3060	else
3061		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3062}
3063EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3064
3065void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3066{
3067	u32 macmode;
3068
3069	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3070		macmode = AR_2040_JOINED_RX_CLEAR;
3071	else
3072		macmode = 0;
3073
3074	REG_WRITE(ah, AR_2040_MODE, macmode);
3075}
3076
3077/* HW Generic timers configuration */
3078
3079static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3080{
3081	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3082	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3083	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3084	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3085	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3086	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3087	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3088	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3089	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3090	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3091				AR_NDP2_TIMER_MODE, 0x0002},
3092	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3093				AR_NDP2_TIMER_MODE, 0x0004},
3094	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3095				AR_NDP2_TIMER_MODE, 0x0008},
3096	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3097				AR_NDP2_TIMER_MODE, 0x0010},
3098	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3099				AR_NDP2_TIMER_MODE, 0x0020},
3100	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3101				AR_NDP2_TIMER_MODE, 0x0040},
3102	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3103				AR_NDP2_TIMER_MODE, 0x0080}
3104};
3105
3106/* HW generic timer primitives */
3107
3108u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3109{
3110	return REG_READ(ah, AR_TSF_L32);
3111}
3112EXPORT_SYMBOL(ath9k_hw_gettsf32);
3113
3114void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3115{
3116	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3117
3118	if (timer_table->tsf2_enabled) {
3119		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3120		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3121	}
3122}
3123
3124struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3125					  void (*trigger)(void *),
3126					  void (*overflow)(void *),
3127					  void *arg,
3128					  u8 timer_index)
3129{
3130	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3131	struct ath_gen_timer *timer;
3132
3133	if ((timer_index < AR_FIRST_NDP_TIMER) ||
3134	    (timer_index >= ATH_MAX_GEN_TIMER))
3135		return NULL;
3136
3137	if ((timer_index > AR_FIRST_NDP_TIMER) &&
3138	    !AR_SREV_9300_20_OR_LATER(ah))
3139		return NULL;
3140
3141	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3142	if (timer == NULL)
3143		return NULL;
3144
3145	/* allocate a hardware generic timer slot */
3146	timer_table->timers[timer_index] = timer;
3147	timer->index = timer_index;
3148	timer->trigger = trigger;
3149	timer->overflow = overflow;
3150	timer->arg = arg;
3151
3152	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3153		timer_table->tsf2_enabled = true;
3154		ath9k_hw_gen_timer_start_tsf2(ah);
3155	}
3156
3157	return timer;
3158}
3159EXPORT_SYMBOL(ath_gen_timer_alloc);
3160
3161void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3162			      struct ath_gen_timer *timer,
3163			      u32 timer_next,
3164			      u32 timer_period)
3165{
3166	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3167	u32 mask = 0;
3168
3169	timer_table->timer_mask |= BIT(timer->index);
3170
3171	/*
3172	 * Program generic timer registers
3173	 */
3174	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3175		 timer_next);
3176	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3177		  timer_period);
3178	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3179		    gen_tmr_configuration[timer->index].mode_mask);
3180
3181	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3182		/*
3183		 * Starting from AR9462, each generic timer can select which tsf
3184		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3185		 * 8 - 15  use tsf2.
3186		 */
3187		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3188			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3189				       (1 << timer->index));
3190		else
3191			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3192				       (1 << timer->index));
3193	}
3194
3195	if (timer->trigger)
3196		mask |= SM(AR_GENTMR_BIT(timer->index),
3197			   AR_IMR_S5_GENTIMER_TRIG);
3198	if (timer->overflow)
3199		mask |= SM(AR_GENTMR_BIT(timer->index),
3200			   AR_IMR_S5_GENTIMER_THRESH);
3201
3202	REG_SET_BIT(ah, AR_IMR_S5, mask);
3203
3204	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3205		ah->imask |= ATH9K_INT_GENTIMER;
3206		ath9k_hw_set_interrupts(ah);
3207	}
3208}
3209EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3210
3211void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3212{
3213	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3214
3215	/* Clear generic timer enable bits. */
3216	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3217			gen_tmr_configuration[timer->index].mode_mask);
3218
3219	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3220		/*
3221		 * Need to switch back to TSF if it was using TSF2.
3222		 */
3223		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3224			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3225				    (1 << timer->index));
3226		}
3227	}
3228
3229	/* Disable both trigger and thresh interrupt masks */
3230	REG_CLR_BIT(ah, AR_IMR_S5,
3231		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3232		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3233
3234	timer_table->timer_mask &= ~BIT(timer->index);
3235
3236	if (timer_table->timer_mask == 0) {
3237		ah->imask &= ~ATH9K_INT_GENTIMER;
3238		ath9k_hw_set_interrupts(ah);
3239	}
3240}
3241EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3242
3243void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3244{
3245	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3246
3247	/* free the hardware generic timer slot */
3248	timer_table->timers[timer->index] = NULL;
3249	kfree(timer);
3250}
3251EXPORT_SYMBOL(ath_gen_timer_free);
3252
3253/*
3254 * Generic Timer Interrupts handling
3255 */
3256void ath_gen_timer_isr(struct ath_hw *ah)
3257{
3258	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3259	struct ath_gen_timer *timer;
3260	unsigned long trigger_mask, thresh_mask;
3261	unsigned int index;
3262
3263	/* get hardware generic timer interrupt status */
3264	trigger_mask = ah->intr_gen_timer_trigger;
3265	thresh_mask = ah->intr_gen_timer_thresh;
3266	trigger_mask &= timer_table->timer_mask;
3267	thresh_mask &= timer_table->timer_mask;
3268
3269	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3270		timer = timer_table->timers[index];
3271		if (!timer)
3272		    continue;
3273		if (!timer->overflow)
3274		    continue;
3275
3276		trigger_mask &= ~BIT(index);
3277		timer->overflow(timer->arg);
3278	}
3279
3280	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3281		timer = timer_table->timers[index];
3282		if (!timer)
3283		    continue;
3284		if (!timer->trigger)
3285		    continue;
3286		timer->trigger(timer->arg);
3287	}
3288}
3289EXPORT_SYMBOL(ath_gen_timer_isr);
3290
3291/********/
3292/* HTC  */
3293/********/
3294
3295static struct {
3296	u32 version;
3297	const char * name;
3298} ath_mac_bb_names[] = {
3299	/* Devices with external radios */
3300	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3301	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3302	{ AR_SREV_VERSION_9100,		"9100" },
3303	{ AR_SREV_VERSION_9160,		"9160" },
3304	/* Single-chip solutions */
3305	{ AR_SREV_VERSION_9280,		"9280" },
3306	{ AR_SREV_VERSION_9285,		"9285" },
3307	{ AR_SREV_VERSION_9287,         "9287" },
3308	{ AR_SREV_VERSION_9271,         "9271" },
3309	{ AR_SREV_VERSION_9300,         "9300" },
3310	{ AR_SREV_VERSION_9330,         "9330" },
3311	{ AR_SREV_VERSION_9340,		"9340" },
3312	{ AR_SREV_VERSION_9485,         "9485" },
3313	{ AR_SREV_VERSION_9462,         "9462" },
3314	{ AR_SREV_VERSION_9550,         "9550" },
3315	{ AR_SREV_VERSION_9565,         "9565" },
3316	{ AR_SREV_VERSION_9531,         "9531" },
3317	{ AR_SREV_VERSION_9561,         "9561" },
3318};
3319
3320/* For devices with external radios */
3321static struct {
3322	u16 version;
3323	const char * name;
3324} ath_rf_names[] = {
3325	{ 0,				"5133" },
3326	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3327	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3328	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3329	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3330};
3331
3332/*
3333 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3334 */
3335static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3336{
3337	int i;
3338
3339	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3340		if (ath_mac_bb_names[i].version == mac_bb_version) {
3341			return ath_mac_bb_names[i].name;
3342		}
3343	}
3344
3345	return "????";
3346}
3347
3348/*
3349 * Return the RF name. "????" is returned if the RF is unknown.
3350 * Used for devices with external radios.
3351 */
3352static const char *ath9k_hw_rf_name(u16 rf_version)
3353{
3354	int i;
3355
3356	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3357		if (ath_rf_names[i].version == rf_version) {
3358			return ath_rf_names[i].name;
3359		}
3360	}
3361
3362	return "????";
3363}
3364
3365void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3366{
3367	int used;
3368
3369	/* chipsets >= AR9280 are single-chip */
3370	if (AR_SREV_9280_20_OR_LATER(ah)) {
3371		used = scnprintf(hw_name, len,
3372				 "Atheros AR%s Rev:%x",
3373				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3374				 ah->hw_version.macRev);
3375	}
3376	else {
3377		used = scnprintf(hw_name, len,
3378				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3379				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3380				 ah->hw_version.macRev,
3381				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3382						  & AR_RADIO_SREV_MAJOR)),
3383				 ah->hw_version.phyRev);
3384	}
3385
3386	hw_name[used] = '\0';
3387}
3388EXPORT_SYMBOL(ath9k_hw_name);
v5.9
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/io.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/time.h>
  21#include <linux/bitops.h>
  22#include <linux/etherdevice.h>
  23#include <linux/gpio.h>
  24#include <asm/unaligned.h>
  25
  26#include "hw.h"
  27#include "hw-ops.h"
  28#include "ar9003_mac.h"
  29#include "ar9003_mci.h"
  30#include "ar9003_phy.h"
  31#include "ath9k.h"
  32
  33static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  34
  35MODULE_AUTHOR("Atheros Communications");
  36MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  37MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  38MODULE_LICENSE("Dual BSD/GPL");
  39
  40static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  41{
  42	struct ath_common *common = ath9k_hw_common(ah);
  43	struct ath9k_channel *chan = ah->curchan;
  44	unsigned int clockrate;
  45
  46	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  47	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  48		clockrate = 117;
  49	else if (!chan) /* should really check for CCK instead */
  50		clockrate = ATH9K_CLOCK_RATE_CCK;
  51	else if (IS_CHAN_2GHZ(chan))
  52		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  53	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  54		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  55	else
  56		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  57
  58	if (chan) {
  59		if (IS_CHAN_HT40(chan))
  60			clockrate *= 2;
  61		if (IS_CHAN_HALF_RATE(chan))
  62			clockrate /= 2;
  63		if (IS_CHAN_QUARTER_RATE(chan))
  64			clockrate /= 4;
  65	}
  66
  67	common->clockrate = clockrate;
  68}
  69
  70static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  71{
  72	struct ath_common *common = ath9k_hw_common(ah);
  73
  74	return usecs * common->clockrate;
  75}
  76
  77bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  78{
  79	int i;
  80
  81	BUG_ON(timeout < AH_TIME_QUANTUM);
  82
  83	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  84		if ((REG_READ(ah, reg) & mask) == val)
  85			return true;
  86
  87		udelay(AH_TIME_QUANTUM);
  88	}
  89
  90	ath_dbg(ath9k_hw_common(ah), ANY,
  91		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  92		timeout, reg, REG_READ(ah, reg), mask, val);
  93
  94	return false;
  95}
  96EXPORT_SYMBOL(ath9k_hw_wait);
  97
  98void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  99			  int hw_delay)
 100{
 101	hw_delay /= 10;
 102
 103	if (IS_CHAN_HALF_RATE(chan))
 104		hw_delay *= 2;
 105	else if (IS_CHAN_QUARTER_RATE(chan))
 106		hw_delay *= 4;
 107
 108	udelay(hw_delay + BASE_ACTIVATE_DELAY);
 109}
 110
 111void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
 112			  int column, unsigned int *writecnt)
 113{
 114	int r;
 115
 116	ENABLE_REGWRITE_BUFFER(ah);
 117	for (r = 0; r < array->ia_rows; r++) {
 118		REG_WRITE(ah, INI_RA(array, r, 0),
 119			  INI_RA(array, r, column));
 120		DO_DELAY(*writecnt);
 121	}
 122	REGWRITE_BUFFER_FLUSH(ah);
 123}
 124
 125void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
 126{
 127	u32 *tmp_reg_list, *tmp_data;
 128	int i;
 129
 130	tmp_reg_list = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
 131	if (!tmp_reg_list) {
 132		dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
 133		return;
 134	}
 135
 136	tmp_data = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
 137	if (!tmp_data) {
 138		dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
 139		goto error_tmp_data;
 140	}
 141
 142	for (i = 0; i < size; i++)
 143		tmp_reg_list[i] = array[i][0];
 144
 145	REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
 146
 147	for (i = 0; i < size; i++)
 148		array[i][1] = tmp_data[i];
 149
 150	kfree(tmp_data);
 151error_tmp_data:
 152	kfree(tmp_reg_list);
 153}
 154
 155u32 ath9k_hw_reverse_bits(u32 val, u32 n)
 156{
 157	u32 retval;
 158	int i;
 159
 160	for (i = 0, retval = 0; i < n; i++) {
 161		retval = (retval << 1) | (val & 1);
 162		val >>= 1;
 163	}
 164	return retval;
 165}
 166
 167u16 ath9k_hw_computetxtime(struct ath_hw *ah,
 168			   u8 phy, int kbps,
 169			   u32 frameLen, u16 rateix,
 170			   bool shortPreamble)
 171{
 172	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
 173
 174	if (kbps == 0)
 175		return 0;
 176
 177	switch (phy) {
 178	case WLAN_RC_PHY_CCK:
 179		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
 180		if (shortPreamble)
 181			phyTime >>= 1;
 182		numBits = frameLen << 3;
 183		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
 184		break;
 185	case WLAN_RC_PHY_OFDM:
 186		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
 187			bitsPerSymbol =
 188				((kbps >> 2) * OFDM_SYMBOL_TIME_QUARTER) / 1000;
 189			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 190			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 191			txTime = OFDM_SIFS_TIME_QUARTER
 192				+ OFDM_PREAMBLE_TIME_QUARTER
 193				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
 194		} else if (ah->curchan &&
 195			   IS_CHAN_HALF_RATE(ah->curchan)) {
 196			bitsPerSymbol =
 197				((kbps >> 1) * OFDM_SYMBOL_TIME_HALF) / 1000;
 198			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 199			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 200			txTime = OFDM_SIFS_TIME_HALF +
 201				OFDM_PREAMBLE_TIME_HALF
 202				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
 203		} else {
 204			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
 205			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 206			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 207			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
 208				+ (numSymbols * OFDM_SYMBOL_TIME);
 209		}
 210		break;
 211	default:
 212		ath_err(ath9k_hw_common(ah),
 213			"Unknown phy %u (rate ix %u)\n", phy, rateix);
 214		txTime = 0;
 215		break;
 216	}
 217
 218	return txTime;
 219}
 220EXPORT_SYMBOL(ath9k_hw_computetxtime);
 221
 222void ath9k_hw_get_channel_centers(struct ath_hw *ah,
 223				  struct ath9k_channel *chan,
 224				  struct chan_centers *centers)
 225{
 226	int8_t extoff;
 227
 228	if (!IS_CHAN_HT40(chan)) {
 229		centers->ctl_center = centers->ext_center =
 230			centers->synth_center = chan->channel;
 231		return;
 232	}
 233
 234	if (IS_CHAN_HT40PLUS(chan)) {
 235		centers->synth_center =
 236			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
 237		extoff = 1;
 238	} else {
 239		centers->synth_center =
 240			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
 241		extoff = -1;
 242	}
 243
 244	centers->ctl_center =
 245		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
 246	/* 25 MHz spacing is supported by hw but not on upper layers */
 247	centers->ext_center =
 248		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
 249}
 250
 251/******************/
 252/* Chip Revisions */
 253/******************/
 254
 255static bool ath9k_hw_read_revisions(struct ath_hw *ah)
 256{
 257	u32 srev;
 258	u32 val;
 259
 260	if (ah->get_mac_revision)
 261		ah->hw_version.macRev = ah->get_mac_revision();
 262
 263	switch (ah->hw_version.devid) {
 264	case AR5416_AR9100_DEVID:
 265		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
 266		break;
 267	case AR9300_DEVID_AR9330:
 268		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
 269		if (!ah->get_mac_revision) {
 270			val = REG_READ(ah, AR_SREV);
 271			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 272		}
 273		return true;
 274	case AR9300_DEVID_AR9340:
 275		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
 276		return true;
 277	case AR9300_DEVID_QCA955X:
 278		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
 279		return true;
 280	case AR9300_DEVID_AR953X:
 281		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
 282		return true;
 283	case AR9300_DEVID_QCA956X:
 284		ah->hw_version.macVersion = AR_SREV_VERSION_9561;
 285		return true;
 286	}
 287
 288	srev = REG_READ(ah, AR_SREV);
 289
 290	if (srev == -EIO) {
 291		ath_err(ath9k_hw_common(ah),
 292			"Failed to read SREV register");
 293		return false;
 294	}
 295
 296	val = srev & AR_SREV_ID;
 297
 298	if (val == 0xFF) {
 299		val = srev;
 300		ah->hw_version.macVersion =
 301			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
 302		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 303
 304		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 305			ah->is_pciexpress = true;
 306		else
 307			ah->is_pciexpress = (val &
 308					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
 309	} else {
 310		if (!AR_SREV_9100(ah))
 311			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
 312
 313		ah->hw_version.macRev = val & AR_SREV_REVISION;
 314
 315		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
 316			ah->is_pciexpress = true;
 317	}
 318
 319	return true;
 320}
 321
 322/************************************/
 323/* HW Attach, Detach, Init Routines */
 324/************************************/
 325
 326static void ath9k_hw_disablepcie(struct ath_hw *ah)
 327{
 328	if (!AR_SREV_5416(ah))
 329		return;
 330
 331	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
 332	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
 333	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
 334	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
 335	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
 336	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
 337	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
 338	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
 339	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
 340
 341	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
 342}
 343
 344/* This should work for all families including legacy */
 345static bool ath9k_hw_chip_test(struct ath_hw *ah)
 346{
 347	struct ath_common *common = ath9k_hw_common(ah);
 348	u32 regAddr[2] = { AR_STA_ID0 };
 349	u32 regHold[2];
 350	static const u32 patternData[4] = {
 351		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
 352	};
 353	int i, j, loop_max;
 354
 355	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 356		loop_max = 2;
 357		regAddr[1] = AR_PHY_BASE + (8 << 2);
 358	} else
 359		loop_max = 1;
 360
 361	for (i = 0; i < loop_max; i++) {
 362		u32 addr = regAddr[i];
 363		u32 wrData, rdData;
 364
 365		regHold[i] = REG_READ(ah, addr);
 366		for (j = 0; j < 0x100; j++) {
 367			wrData = (j << 16) | j;
 368			REG_WRITE(ah, addr, wrData);
 369			rdData = REG_READ(ah, addr);
 370			if (rdData != wrData) {
 371				ath_err(common,
 372					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 373					addr, wrData, rdData);
 374				return false;
 375			}
 376		}
 377		for (j = 0; j < 4; j++) {
 378			wrData = patternData[j];
 379			REG_WRITE(ah, addr, wrData);
 380			rdData = REG_READ(ah, addr);
 381			if (wrData != rdData) {
 382				ath_err(common,
 383					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 384					addr, wrData, rdData);
 385				return false;
 386			}
 387		}
 388		REG_WRITE(ah, regAddr[i], regHold[i]);
 389	}
 390	udelay(100);
 391
 392	return true;
 393}
 394
 395static void ath9k_hw_init_config(struct ath_hw *ah)
 396{
 397	struct ath_common *common = ath9k_hw_common(ah);
 398
 399	ah->config.dma_beacon_response_time = 1;
 400	ah->config.sw_beacon_response_time = 6;
 401	ah->config.cwm_ignore_extcca = false;
 402	ah->config.analog_shiftreg = 1;
 403
 404	ah->config.rx_intr_mitigation = true;
 405
 406	if (AR_SREV_9300_20_OR_LATER(ah)) {
 407		ah->config.rimt_last = 500;
 408		ah->config.rimt_first = 2000;
 409	} else {
 410		ah->config.rimt_last = 250;
 411		ah->config.rimt_first = 700;
 412	}
 413
 414	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 415		ah->config.pll_pwrsave = 7;
 416
 417	/*
 418	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
 419	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
 420	 * This means we use it for all AR5416 devices, and the few
 421	 * minor PCI AR9280 devices out there.
 422	 *
 423	 * Serialization is required because these devices do not handle
 424	 * well the case of two concurrent reads/writes due to the latency
 425	 * involved. During one read/write another read/write can be issued
 426	 * on another CPU while the previous read/write may still be working
 427	 * on our hardware, if we hit this case the hardware poops in a loop.
 428	 * We prevent this by serializing reads and writes.
 429	 *
 430	 * This issue is not present on PCI-Express devices or pre-AR5416
 431	 * devices (legacy, 802.11abg).
 432	 */
 433	if (num_possible_cpus() > 1)
 434		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
 435
 436	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
 437		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
 438		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
 439		     !ah->is_pciexpress)) {
 440			ah->config.serialize_regmode = SER_REG_MODE_ON;
 441		} else {
 442			ah->config.serialize_regmode = SER_REG_MODE_OFF;
 443		}
 444	}
 445
 446	ath_dbg(common, RESET, "serialize_regmode is %d\n",
 447		ah->config.serialize_regmode);
 448
 449	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 450		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
 451	else
 452		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
 453}
 454
 455static void ath9k_hw_init_defaults(struct ath_hw *ah)
 456{
 457	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 458
 459	regulatory->country_code = CTRY_DEFAULT;
 460	regulatory->power_limit = MAX_COMBINED_POWER;
 461
 462	ah->hw_version.magic = AR5416_MAGIC;
 463	ah->hw_version.subvendorid = 0;
 464
 465	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
 466			       AR_STA_ID1_MCAST_KSRCH;
 467	if (AR_SREV_9100(ah))
 468		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
 469
 470	ah->slottime = 9;
 471	ah->globaltxtimeout = (u32) -1;
 472	ah->power_mode = ATH9K_PM_UNDEFINED;
 473	ah->htc_reset_init = true;
 474
 475	ah->tpc_enabled = false;
 476
 477	ah->ani_function = ATH9K_ANI_ALL;
 478	if (!AR_SREV_9300_20_OR_LATER(ah))
 479		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
 480
 481	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 482		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
 483	else
 484		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
 485}
 486
 487static void ath9k_hw_init_macaddr(struct ath_hw *ah)
 488{
 489	struct ath_common *common = ath9k_hw_common(ah);
 490	int i;
 491	u16 eeval;
 492	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
 493
 494	/* MAC address may already be loaded via ath9k_platform_data */
 495	if (is_valid_ether_addr(common->macaddr))
 496		return;
 497
 498	for (i = 0; i < 3; i++) {
 499		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
 500		common->macaddr[2 * i] = eeval >> 8;
 501		common->macaddr[2 * i + 1] = eeval & 0xff;
 502	}
 503
 504	if (is_valid_ether_addr(common->macaddr))
 505		return;
 506
 507	ath_err(common, "eeprom contains invalid mac address: %pM\n",
 508		common->macaddr);
 509
 510	eth_random_addr(common->macaddr);
 511	ath_err(common, "random mac address will be used: %pM\n",
 512		common->macaddr);
 513
 514	return;
 515}
 516
 517static int ath9k_hw_post_init(struct ath_hw *ah)
 518{
 519	struct ath_common *common = ath9k_hw_common(ah);
 520	int ecode;
 521
 522	if (common->bus_ops->ath_bus_type != ATH_USB) {
 523		if (!ath9k_hw_chip_test(ah))
 524			return -ENODEV;
 525	}
 526
 527	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 528		ecode = ar9002_hw_rf_claim(ah);
 529		if (ecode != 0)
 530			return ecode;
 531	}
 532
 533	ecode = ath9k_hw_eeprom_init(ah);
 534	if (ecode != 0)
 535		return ecode;
 536
 537	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
 538		ah->eep_ops->get_eeprom_ver(ah),
 539		ah->eep_ops->get_eeprom_rev(ah));
 540
 541	ath9k_hw_ani_init(ah);
 542
 543	/*
 544	 * EEPROM needs to be initialized before we do this.
 545	 * This is required for regulatory compliance.
 546	 */
 547	if (AR_SREV_9300_20_OR_LATER(ah)) {
 548		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
 549		if ((regdmn & 0xF0) == CTL_FCC) {
 550			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
 551			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
 552		}
 553	}
 554
 555	return 0;
 556}
 557
 558static int ath9k_hw_attach_ops(struct ath_hw *ah)
 559{
 560	if (!AR_SREV_9300_20_OR_LATER(ah))
 561		return ar9002_hw_attach_ops(ah);
 562
 563	ar9003_hw_attach_ops(ah);
 564	return 0;
 565}
 566
 567/* Called for all hardware families */
 568static int __ath9k_hw_init(struct ath_hw *ah)
 569{
 570	struct ath_common *common = ath9k_hw_common(ah);
 571	int r = 0;
 572
 573	if (!ath9k_hw_read_revisions(ah)) {
 574		ath_err(common, "Could not read hardware revisions");
 575		return -EOPNOTSUPP;
 576	}
 577
 578	switch (ah->hw_version.macVersion) {
 579	case AR_SREV_VERSION_5416_PCI:
 580	case AR_SREV_VERSION_5416_PCIE:
 581	case AR_SREV_VERSION_9160:
 582	case AR_SREV_VERSION_9100:
 583	case AR_SREV_VERSION_9280:
 584	case AR_SREV_VERSION_9285:
 585	case AR_SREV_VERSION_9287:
 586	case AR_SREV_VERSION_9271:
 587	case AR_SREV_VERSION_9300:
 588	case AR_SREV_VERSION_9330:
 589	case AR_SREV_VERSION_9485:
 590	case AR_SREV_VERSION_9340:
 591	case AR_SREV_VERSION_9462:
 592	case AR_SREV_VERSION_9550:
 593	case AR_SREV_VERSION_9565:
 594	case AR_SREV_VERSION_9531:
 595	case AR_SREV_VERSION_9561:
 596		break;
 597	default:
 598		ath_err(common,
 599			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
 600			ah->hw_version.macVersion, ah->hw_version.macRev);
 601		return -EOPNOTSUPP;
 602	}
 603
 604	/*
 605	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
 606	 * We need to do this to avoid RMW of this register. We cannot
 607	 * read the reg when chip is asleep.
 608	 */
 609	if (AR_SREV_9300_20_OR_LATER(ah)) {
 610		ah->WARegVal = REG_READ(ah, AR_WA);
 611		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
 612				 AR_WA_ASPM_TIMER_BASED_DISABLE);
 613	}
 614
 615	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
 616		ath_err(common, "Couldn't reset chip\n");
 617		return -EIO;
 618	}
 619
 620	if (AR_SREV_9565(ah)) {
 621		ah->WARegVal |= AR_WA_BIT22;
 622		REG_WRITE(ah, AR_WA, ah->WARegVal);
 623	}
 624
 625	ath9k_hw_init_defaults(ah);
 626	ath9k_hw_init_config(ah);
 627
 628	r = ath9k_hw_attach_ops(ah);
 629	if (r)
 630		return r;
 631
 632	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
 633		ath_err(common, "Couldn't wakeup chip\n");
 634		return -EIO;
 635	}
 636
 637	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
 638	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
 639		ah->is_pciexpress = false;
 640
 641	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
 642	ath9k_hw_init_cal_settings(ah);
 643
 644	if (!ah->is_pciexpress)
 645		ath9k_hw_disablepcie(ah);
 646
 647	r = ath9k_hw_post_init(ah);
 648	if (r)
 649		return r;
 650
 651	ath9k_hw_init_mode_gain_regs(ah);
 652	r = ath9k_hw_fill_cap_info(ah);
 653	if (r)
 654		return r;
 655
 656	ath9k_hw_init_macaddr(ah);
 657	ath9k_hw_init_hang_checks(ah);
 658
 659	common->state = ATH_HW_INITIALIZED;
 660
 661	return 0;
 662}
 663
 664int ath9k_hw_init(struct ath_hw *ah)
 665{
 666	int ret;
 667	struct ath_common *common = ath9k_hw_common(ah);
 668
 669	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
 670	switch (ah->hw_version.devid) {
 671	case AR5416_DEVID_PCI:
 672	case AR5416_DEVID_PCIE:
 673	case AR5416_AR9100_DEVID:
 674	case AR9160_DEVID_PCI:
 675	case AR9280_DEVID_PCI:
 676	case AR9280_DEVID_PCIE:
 677	case AR9285_DEVID_PCIE:
 678	case AR9287_DEVID_PCI:
 679	case AR9287_DEVID_PCIE:
 680	case AR2427_DEVID_PCIE:
 681	case AR9300_DEVID_PCIE:
 682	case AR9300_DEVID_AR9485_PCIE:
 683	case AR9300_DEVID_AR9330:
 684	case AR9300_DEVID_AR9340:
 685	case AR9300_DEVID_QCA955X:
 686	case AR9300_DEVID_AR9580:
 687	case AR9300_DEVID_AR9462:
 688	case AR9485_DEVID_AR1111:
 689	case AR9300_DEVID_AR9565:
 690	case AR9300_DEVID_AR953X:
 691	case AR9300_DEVID_QCA956X:
 692		break;
 693	default:
 694		if (common->bus_ops->ath_bus_type == ATH_USB)
 695			break;
 696		ath_err(common, "Hardware device ID 0x%04x not supported\n",
 697			ah->hw_version.devid);
 698		return -EOPNOTSUPP;
 699	}
 700
 701	ret = __ath9k_hw_init(ah);
 702	if (ret) {
 703		ath_err(common,
 704			"Unable to initialize hardware; initialization status: %d\n",
 705			ret);
 706		return ret;
 707	}
 708
 709	ath_dynack_init(ah);
 710
 711	return 0;
 712}
 713EXPORT_SYMBOL(ath9k_hw_init);
 714
 715static void ath9k_hw_init_qos(struct ath_hw *ah)
 716{
 717	ENABLE_REGWRITE_BUFFER(ah);
 718
 719	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
 720	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
 721
 722	REG_WRITE(ah, AR_QOS_NO_ACK,
 723		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
 724		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
 725		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
 726
 727	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
 728	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
 729	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
 730	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
 731	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
 732
 733	REGWRITE_BUFFER_FLUSH(ah);
 734}
 735
 736u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
 737{
 738	struct ath_common *common = ath9k_hw_common(ah);
 739	int i = 0;
 740
 741	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 742	udelay(100);
 743	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 744
 745	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
 746
 747		udelay(100);
 748
 749		if (WARN_ON_ONCE(i >= 100)) {
 750			ath_err(common, "PLL4 measurement not done\n");
 751			break;
 752		}
 753
 754		i++;
 755	}
 756
 757	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
 758}
 759EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
 760
 761static void ath9k_hw_init_pll(struct ath_hw *ah,
 762			      struct ath9k_channel *chan)
 763{
 764	u32 pll;
 765
 766	pll = ath9k_hw_compute_pll_control(ah, chan);
 767
 768	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
 769		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
 770		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 771			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
 772		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 773			      AR_CH0_DPLL2_KD, 0x40);
 774		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 775			      AR_CH0_DPLL2_KI, 0x4);
 776
 777		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 778			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
 779		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 780			      AR_CH0_BB_DPLL1_NINI, 0x58);
 781		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 782			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
 783
 784		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 785			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
 786		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 787			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
 788		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 789			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
 790
 791		/* program BB PLL phase_shift to 0x6 */
 792		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 793			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
 794
 795		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 796			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
 797		udelay(1000);
 798	} else if (AR_SREV_9330(ah)) {
 799		u32 ddr_dpll2, pll_control2, kd;
 800
 801		if (ah->is_clk_25mhz) {
 802			ddr_dpll2 = 0x18e82f01;
 803			pll_control2 = 0xe04a3d;
 804			kd = 0x1d;
 805		} else {
 806			ddr_dpll2 = 0x19e82f01;
 807			pll_control2 = 0x886666;
 808			kd = 0x3d;
 809		}
 810
 811		/* program DDR PLL ki and kd value */
 812		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
 813
 814		/* program DDR PLL phase_shift */
 815		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
 816			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
 817
 818		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
 819			  pll | AR_RTC_9300_PLL_BYPASS);
 820		udelay(1000);
 821
 822		/* program refdiv, nint, frac to RTC register */
 823		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
 824
 825		/* program BB PLL kd and ki value */
 826		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
 827		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
 828
 829		/* program BB PLL phase_shift */
 830		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 831			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
 832	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 833		   AR_SREV_9561(ah)) {
 834		u32 regval, pll2_divint, pll2_divfrac, refdiv;
 835
 836		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
 837			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
 838		udelay(1000);
 839
 840		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
 841		udelay(100);
 842
 843		if (ah->is_clk_25mhz) {
 844			if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 845				pll2_divint = 0x1c;
 846				pll2_divfrac = 0xa3d2;
 847				refdiv = 1;
 848			} else {
 849				pll2_divint = 0x54;
 850				pll2_divfrac = 0x1eb85;
 851				refdiv = 3;
 852			}
 853		} else {
 854			if (AR_SREV_9340(ah)) {
 855				pll2_divint = 88;
 856				pll2_divfrac = 0;
 857				refdiv = 5;
 858			} else {
 859				pll2_divint = 0x11;
 860				pll2_divfrac = (AR_SREV_9531(ah) ||
 861						AR_SREV_9561(ah)) ?
 862						0x26665 : 0x26666;
 863				refdiv = 1;
 864			}
 865		}
 866
 867		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 868		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 869			regval |= (0x1 << 22);
 870		else
 871			regval |= (0x1 << 16);
 872		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 873		udelay(100);
 874
 875		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
 876			  (pll2_divint << 18) | pll2_divfrac);
 877		udelay(100);
 878
 879		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 880		if (AR_SREV_9340(ah))
 881			regval = (regval & 0x80071fff) |
 882				(0x1 << 30) |
 883				(0x1 << 13) |
 884				(0x4 << 26) |
 885				(0x18 << 19);
 886		else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 887			regval = (regval & 0x01c00fff) |
 888				(0x1 << 31) |
 889				(0x2 << 29) |
 890				(0xa << 25) |
 891				(0x1 << 19);
 892
 893			if (AR_SREV_9531(ah))
 894				regval |= (0x6 << 12);
 895		} else
 896			regval = (regval & 0x80071fff) |
 897				(0x3 << 30) |
 898				(0x1 << 13) |
 899				(0x4 << 26) |
 900				(0x60 << 19);
 901		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 902
 903		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 904			REG_WRITE(ah, AR_PHY_PLL_MODE,
 905				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
 906		else
 907			REG_WRITE(ah, AR_PHY_PLL_MODE,
 908				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
 909
 910		udelay(1000);
 911	}
 912
 913	if (AR_SREV_9565(ah))
 914		pll |= 0x40000;
 915	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
 916
 917	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
 918	    AR_SREV_9550(ah))
 919		udelay(1000);
 920
 921	/* Switch the core clock for ar9271 to 117Mhz */
 922	if (AR_SREV_9271(ah)) {
 923		udelay(500);
 924		REG_WRITE(ah, 0x50040, 0x304);
 925	}
 926
 927	udelay(RTC_PLL_SETTLE_DELAY);
 928
 929	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
 930}
 931
 932static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
 933					  enum nl80211_iftype opmode)
 934{
 935	u32 sync_default = AR_INTR_SYNC_DEFAULT;
 936	u32 imr_reg = AR_IMR_TXERR |
 937		AR_IMR_TXURN |
 938		AR_IMR_RXERR |
 939		AR_IMR_RXORN |
 940		AR_IMR_BCNMISC;
 941	u32 msi_cfg = 0;
 942
 943	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 944	    AR_SREV_9561(ah))
 945		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
 946
 947	if (AR_SREV_9300_20_OR_LATER(ah)) {
 948		imr_reg |= AR_IMR_RXOK_HP;
 949		if (ah->config.rx_intr_mitigation) {
 950			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 951			msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
 952		} else {
 953			imr_reg |= AR_IMR_RXOK_LP;
 954			msi_cfg |= AR_INTCFG_MSI_RXOK;
 955		}
 956	} else {
 957		if (ah->config.rx_intr_mitigation) {
 958			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 959			msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
 960		} else {
 961			imr_reg |= AR_IMR_RXOK;
 962			msi_cfg |= AR_INTCFG_MSI_RXOK;
 963		}
 964	}
 965
 966	if (ah->config.tx_intr_mitigation) {
 967		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
 968		msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
 969	} else {
 970		imr_reg |= AR_IMR_TXOK;
 971		msi_cfg |= AR_INTCFG_MSI_TXOK;
 972	}
 973
 974	ENABLE_REGWRITE_BUFFER(ah);
 975
 976	REG_WRITE(ah, AR_IMR, imr_reg);
 977	ah->imrs2_reg |= AR_IMR_S2_GTT;
 978	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 979
 980	if (ah->msi_enabled) {
 981		ah->msi_reg = REG_READ(ah, AR_PCIE_MSI);
 982		ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
 983		ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
 984		REG_WRITE(ah, AR_INTCFG, msi_cfg);
 985		ath_dbg(ath9k_hw_common(ah), ANY,
 986			"value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
 987			REG_READ(ah, AR_INTCFG), msi_cfg);
 988	}
 989
 990	if (!AR_SREV_9100(ah)) {
 991		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
 992		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
 993		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
 994	}
 995
 996	REGWRITE_BUFFER_FLUSH(ah);
 997
 998	if (AR_SREV_9300_20_OR_LATER(ah)) {
 999		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
1000		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
1001		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
1002		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
1003	}
1004}
1005
1006static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
1007{
1008	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
1009	val = min(val, (u32) 0xFFFF);
1010	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1011}
1012
1013void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1014{
1015	u32 val = ath9k_hw_mac_to_clks(ah, us);
1016	val = min(val, (u32) 0xFFFF);
1017	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1018}
1019
1020void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1021{
1022	u32 val = ath9k_hw_mac_to_clks(ah, us);
1023	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1024	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1025}
1026
1027void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1028{
1029	u32 val = ath9k_hw_mac_to_clks(ah, us);
1030	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1031	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1032}
1033
1034static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1035{
1036	if (tu > 0xFFFF) {
1037		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1038			tu);
1039		ah->globaltxtimeout = (u32) -1;
1040		return false;
1041	} else {
1042		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1043		ah->globaltxtimeout = tu;
1044		return true;
1045	}
1046}
1047
1048void ath9k_hw_init_global_settings(struct ath_hw *ah)
1049{
1050	struct ath_common *common = ath9k_hw_common(ah);
1051	const struct ath9k_channel *chan = ah->curchan;
1052	int acktimeout, ctstimeout, ack_offset = 0;
1053	int slottime;
1054	int sifstime;
1055	int rx_lat = 0, tx_lat = 0, eifs = 0, ack_shift = 0;
1056	u32 reg;
1057
1058	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1059		ah->misc_mode);
1060
1061	if (!chan)
1062		return;
1063
1064	if (ah->misc_mode != 0)
1065		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1066
1067	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1068		rx_lat = 41;
1069	else
1070		rx_lat = 37;
1071	tx_lat = 54;
1072
1073	if (IS_CHAN_5GHZ(chan))
1074		sifstime = 16;
1075	else
1076		sifstime = 10;
1077
1078	if (IS_CHAN_HALF_RATE(chan)) {
1079		eifs = 175;
1080		rx_lat *= 2;
1081		tx_lat *= 2;
1082		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1083		    tx_lat += 11;
1084
1085		sifstime = 32;
1086		ack_offset = 16;
1087		ack_shift = 3;
1088		slottime = 13;
1089	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1090		eifs = 340;
1091		rx_lat = (rx_lat * 4) - 1;
1092		tx_lat *= 4;
1093		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1094		    tx_lat += 22;
1095
1096		sifstime = 64;
1097		ack_offset = 32;
1098		ack_shift = 1;
1099		slottime = 21;
1100	} else {
1101		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1102			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1103			reg = AR_USEC_ASYNC_FIFO;
1104		} else {
1105			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1106				common->clockrate;
1107			reg = REG_READ(ah, AR_USEC);
1108		}
1109		rx_lat = MS(reg, AR_USEC_RX_LAT);
1110		tx_lat = MS(reg, AR_USEC_TX_LAT);
1111
1112		slottime = ah->slottime;
1113	}
1114
1115	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1116	slottime += 3 * ah->coverage_class;
1117	acktimeout = slottime + sifstime + ack_offset;
1118	ctstimeout = acktimeout;
1119
1120	/*
1121	 * Workaround for early ACK timeouts, add an offset to match the
1122	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1123	 * This was initially only meant to work around an issue with delayed
1124	 * BA frames in some implementations, but it has been found to fix ACK
1125	 * timeout issues in other cases as well.
1126	 */
1127	if (IS_CHAN_2GHZ(chan) &&
1128	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1129		acktimeout += 64 - sifstime - ah->slottime;
1130		ctstimeout += 48 - sifstime - ah->slottime;
1131	}
1132
1133	if (ah->dynack.enabled) {
1134		acktimeout = ah->dynack.ackto;
1135		ctstimeout = acktimeout;
1136		slottime = (acktimeout - 3) / 2;
1137	} else {
1138		ah->dynack.ackto = acktimeout;
1139	}
1140
1141	ath9k_hw_set_sifs_time(ah, sifstime);
1142	ath9k_hw_setslottime(ah, slottime);
1143	ath9k_hw_set_ack_timeout(ah, acktimeout);
1144	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1145	if (ah->globaltxtimeout != (u32) -1)
1146		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1147
1148	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1149	REG_RMW(ah, AR_USEC,
1150		(common->clockrate - 1) |
1151		SM(rx_lat, AR_USEC_RX_LAT) |
1152		SM(tx_lat, AR_USEC_TX_LAT),
1153		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1154
1155	if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
1156		REG_RMW(ah, AR_TXSIFS,
1157			sifstime | SM(ack_shift, AR_TXSIFS_ACK_SHIFT),
1158			(AR_TXSIFS_TIME | AR_TXSIFS_ACK_SHIFT));
1159}
1160EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1161
1162void ath9k_hw_deinit(struct ath_hw *ah)
1163{
1164	struct ath_common *common = ath9k_hw_common(ah);
1165
1166	if (common->state < ATH_HW_INITIALIZED)
1167		return;
1168
1169	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1170}
1171EXPORT_SYMBOL(ath9k_hw_deinit);
1172
1173/*******/
1174/* INI */
1175/*******/
1176
1177u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1178{
1179	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1180
1181	if (IS_CHAN_2GHZ(chan))
1182		ctl |= CTL_11G;
1183	else
1184		ctl |= CTL_11A;
1185
1186	return ctl;
1187}
1188
1189/****************************************/
1190/* Reset and Channel Switching Routines */
1191/****************************************/
1192
1193static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1194{
1195	struct ath_common *common = ath9k_hw_common(ah);
1196	int txbuf_size;
1197
1198	ENABLE_REGWRITE_BUFFER(ah);
1199
1200	/*
1201	 * set AHB_MODE not to do cacheline prefetches
1202	*/
1203	if (!AR_SREV_9300_20_OR_LATER(ah))
1204		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1205
1206	/*
1207	 * let mac dma reads be in 128 byte chunks
1208	 */
1209	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1210
1211	REGWRITE_BUFFER_FLUSH(ah);
1212
1213	/*
1214	 * Restore TX Trigger Level to its pre-reset value.
1215	 * The initial value depends on whether aggregation is enabled, and is
1216	 * adjusted whenever underruns are detected.
1217	 */
1218	if (!AR_SREV_9300_20_OR_LATER(ah))
1219		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1220
1221	ENABLE_REGWRITE_BUFFER(ah);
1222
1223	/*
1224	 * let mac dma writes be in 128 byte chunks
1225	 */
1226	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1227
1228	/*
1229	 * Setup receive FIFO threshold to hold off TX activities
1230	 */
1231	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1232
1233	if (AR_SREV_9300_20_OR_LATER(ah)) {
1234		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1235		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1236
1237		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1238			ah->caps.rx_status_len);
1239	}
1240
1241	/*
1242	 * reduce the number of usable entries in PCU TXBUF to avoid
1243	 * wrap around issues.
1244	 */
1245	if (AR_SREV_9285(ah)) {
1246		/* For AR9285 the number of Fifos are reduced to half.
1247		 * So set the usable tx buf size also to half to
1248		 * avoid data/delimiter underruns
1249		 */
1250		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1251	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1252		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1253		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1254	} else {
1255		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1256	}
1257
1258	if (!AR_SREV_9271(ah))
1259		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1260
1261	REGWRITE_BUFFER_FLUSH(ah);
1262
1263	if (AR_SREV_9300_20_OR_LATER(ah))
1264		ath9k_hw_reset_txstatus_ring(ah);
1265}
1266
1267static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1268{
1269	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1270	u32 set = AR_STA_ID1_KSRCH_MODE;
1271
1272	ENABLE_REG_RMW_BUFFER(ah);
1273	switch (opmode) {
1274	case NL80211_IFTYPE_ADHOC:
1275		if (!AR_SREV_9340_13(ah)) {
1276			set |= AR_STA_ID1_ADHOC;
1277			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1278			break;
1279		}
1280		/* fall through */
1281	case NL80211_IFTYPE_OCB:
1282	case NL80211_IFTYPE_MESH_POINT:
1283	case NL80211_IFTYPE_AP:
1284		set |= AR_STA_ID1_STA_AP;
1285		/* fall through */
1286	case NL80211_IFTYPE_STATION:
1287		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1288		break;
1289	default:
1290		if (!ah->is_monitoring)
1291			set = 0;
1292		break;
1293	}
1294	REG_RMW(ah, AR_STA_ID1, set, mask);
1295	REG_RMW_BUFFER_FLUSH(ah);
1296}
1297
1298void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1299				   u32 *coef_mantissa, u32 *coef_exponent)
1300{
1301	u32 coef_exp, coef_man;
1302
1303	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1304		if ((coef_scaled >> coef_exp) & 0x1)
1305			break;
1306
1307	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1308
1309	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1310
1311	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1312	*coef_exponent = coef_exp - 16;
1313}
1314
1315/* AR9330 WAR:
1316 * call external reset function to reset WMAC if:
1317 * - doing a cold reset
1318 * - we have pending frames in the TX queues.
1319 */
1320static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1321{
1322	int i, npend = 0;
1323
1324	for (i = 0; i < AR_NUM_QCU; i++) {
1325		npend = ath9k_hw_numtxpending(ah, i);
1326		if (npend)
1327			break;
1328	}
1329
1330	if (ah->external_reset &&
1331	    (npend || type == ATH9K_RESET_COLD)) {
1332		int reset_err = 0;
1333
1334		ath_dbg(ath9k_hw_common(ah), RESET,
1335			"reset MAC via external reset\n");
1336
1337		reset_err = ah->external_reset();
1338		if (reset_err) {
1339			ath_err(ath9k_hw_common(ah),
1340				"External reset failed, err=%d\n",
1341				reset_err);
1342			return false;
1343		}
1344
1345		REG_WRITE(ah, AR_RTC_RESET, 1);
1346	}
1347
1348	return true;
1349}
1350
1351static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1352{
1353	u32 rst_flags;
1354	u32 tmpReg;
1355
1356	if (AR_SREV_9100(ah)) {
1357		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1358			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1359		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1360	}
1361
1362	ENABLE_REGWRITE_BUFFER(ah);
1363
1364	if (AR_SREV_9300_20_OR_LATER(ah)) {
1365		REG_WRITE(ah, AR_WA, ah->WARegVal);
1366		udelay(10);
1367	}
1368
1369	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1370		  AR_RTC_FORCE_WAKE_ON_INT);
1371
1372	if (AR_SREV_9100(ah)) {
1373		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1374			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1375	} else {
1376		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1377		if (AR_SREV_9340(ah))
1378			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1379		else
1380			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1381				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1382
1383		if (tmpReg) {
1384			u32 val;
1385			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1386
1387			val = AR_RC_HOSTIF;
1388			if (!AR_SREV_9300_20_OR_LATER(ah))
1389				val |= AR_RC_AHB;
1390			REG_WRITE(ah, AR_RC, val);
1391
1392		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1393			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1394
1395		rst_flags = AR_RTC_RC_MAC_WARM;
1396		if (type == ATH9K_RESET_COLD)
1397			rst_flags |= AR_RTC_RC_MAC_COLD;
1398	}
1399
1400	if (AR_SREV_9330(ah)) {
1401		if (!ath9k_hw_ar9330_reset_war(ah, type))
1402			return false;
1403	}
1404
1405	if (ath9k_hw_mci_is_enabled(ah))
1406		ar9003_mci_check_gpm_offset(ah);
1407
1408	/* DMA HALT added to resolve ar9300 and ar9580 bus error during
1409	 * RTC_RC reg read
1410	 */
1411	if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1412		REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1413		ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1414			      20 * AH_WAIT_TIMEOUT);
1415		REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1416	}
1417
1418	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1419
1420	REGWRITE_BUFFER_FLUSH(ah);
1421
1422	if (AR_SREV_9300_20_OR_LATER(ah))
1423		udelay(50);
1424	else if (AR_SREV_9100(ah))
1425		mdelay(10);
1426	else
1427		udelay(100);
1428
1429	REG_WRITE(ah, AR_RTC_RC, 0);
1430	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1431		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1432		return false;
1433	}
1434
1435	if (!AR_SREV_9100(ah))
1436		REG_WRITE(ah, AR_RC, 0);
1437
1438	if (AR_SREV_9100(ah))
1439		udelay(50);
1440
1441	return true;
1442}
1443
1444static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1445{
1446	ENABLE_REGWRITE_BUFFER(ah);
1447
1448	if (AR_SREV_9300_20_OR_LATER(ah)) {
1449		REG_WRITE(ah, AR_WA, ah->WARegVal);
1450		udelay(10);
1451	}
1452
1453	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1454		  AR_RTC_FORCE_WAKE_ON_INT);
1455
1456	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1457		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1458
1459	REG_WRITE(ah, AR_RTC_RESET, 0);
1460
1461	REGWRITE_BUFFER_FLUSH(ah);
1462
1463	udelay(2);
1464
1465	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1466		REG_WRITE(ah, AR_RC, 0);
1467
1468	REG_WRITE(ah, AR_RTC_RESET, 1);
1469
1470	if (!ath9k_hw_wait(ah,
1471			   AR_RTC_STATUS,
1472			   AR_RTC_STATUS_M,
1473			   AR_RTC_STATUS_ON,
1474			   AH_WAIT_TIMEOUT)) {
1475		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1476		return false;
1477	}
1478
1479	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1480}
1481
1482static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1483{
1484	bool ret = false;
1485
1486	if (AR_SREV_9300_20_OR_LATER(ah)) {
1487		REG_WRITE(ah, AR_WA, ah->WARegVal);
1488		udelay(10);
1489	}
1490
1491	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1492		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1493
1494	if (!ah->reset_power_on)
1495		type = ATH9K_RESET_POWER_ON;
1496
1497	switch (type) {
1498	case ATH9K_RESET_POWER_ON:
1499		ret = ath9k_hw_set_reset_power_on(ah);
1500		if (ret)
1501			ah->reset_power_on = true;
1502		break;
1503	case ATH9K_RESET_WARM:
1504	case ATH9K_RESET_COLD:
1505		ret = ath9k_hw_set_reset(ah, type);
1506		break;
1507	default:
1508		break;
1509	}
1510
1511	return ret;
1512}
1513
1514static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1515				struct ath9k_channel *chan)
1516{
1517	int reset_type = ATH9K_RESET_WARM;
1518
1519	if (AR_SREV_9280(ah)) {
1520		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1521			reset_type = ATH9K_RESET_POWER_ON;
1522		else
1523			reset_type = ATH9K_RESET_COLD;
1524	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1525		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1526		reset_type = ATH9K_RESET_COLD;
1527
1528	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1529		return false;
1530
1531	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1532		return false;
1533
1534	ah->chip_fullsleep = false;
1535
1536	if (AR_SREV_9330(ah))
1537		ar9003_hw_internal_regulator_apply(ah);
1538	ath9k_hw_init_pll(ah, chan);
1539
1540	return true;
1541}
1542
1543static bool ath9k_hw_channel_change(struct ath_hw *ah,
1544				    struct ath9k_channel *chan)
1545{
1546	struct ath_common *common = ath9k_hw_common(ah);
1547	struct ath9k_hw_capabilities *pCap = &ah->caps;
1548	bool band_switch = false, mode_diff = false;
1549	u8 ini_reloaded = 0;
1550	u32 qnum;
1551	int r;
1552
1553	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1554		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1555		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1556		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1557	}
1558
1559	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1560		if (ath9k_hw_numtxpending(ah, qnum)) {
1561			ath_dbg(common, QUEUE,
1562				"Transmit frames pending on queue %d\n", qnum);
1563			return false;
1564		}
1565	}
1566
1567	if (!ath9k_hw_rfbus_req(ah)) {
1568		ath_err(common, "Could not kill baseband RX\n");
1569		return false;
1570	}
1571
1572	if (band_switch || mode_diff) {
1573		ath9k_hw_mark_phy_inactive(ah);
1574		udelay(5);
1575
1576		if (band_switch)
1577			ath9k_hw_init_pll(ah, chan);
1578
1579		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1580			ath_err(common, "Failed to do fast channel change\n");
1581			return false;
1582		}
1583	}
1584
1585	ath9k_hw_set_channel_regs(ah, chan);
1586
1587	r = ath9k_hw_rf_set_freq(ah, chan);
1588	if (r) {
1589		ath_err(common, "Failed to set channel\n");
1590		return false;
1591	}
1592	ath9k_hw_set_clockrate(ah);
1593	ath9k_hw_apply_txpower(ah, chan, false);
1594
1595	ath9k_hw_set_delta_slope(ah, chan);
1596	ath9k_hw_spur_mitigate_freq(ah, chan);
1597
1598	if (band_switch || ini_reloaded)
1599		ah->eep_ops->set_board_values(ah, chan);
1600
1601	ath9k_hw_init_bb(ah, chan);
1602	ath9k_hw_rfbus_done(ah);
1603
1604	if (band_switch || ini_reloaded) {
1605		ah->ah_flags |= AH_FASTCC;
1606		ath9k_hw_init_cal(ah, chan);
1607		ah->ah_flags &= ~AH_FASTCC;
1608	}
1609
1610	return true;
1611}
1612
1613static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1614{
1615	u32 gpio_mask = ah->gpio_mask;
1616	int i;
1617
1618	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1619		if (!(gpio_mask & 1))
1620			continue;
1621
1622		ath9k_hw_gpio_request_out(ah, i, NULL,
1623					  AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1624		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1625		ath9k_hw_gpio_free(ah, i);
1626	}
1627}
1628
1629void ath9k_hw_check_nav(struct ath_hw *ah)
1630{
1631	struct ath_common *common = ath9k_hw_common(ah);
1632	u32 val;
1633
1634	val = REG_READ(ah, AR_NAV);
1635	if (val != 0xdeadbeef && val > 0x7fff) {
1636		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1637		REG_WRITE(ah, AR_NAV, 0);
1638	}
1639}
1640EXPORT_SYMBOL(ath9k_hw_check_nav);
1641
1642bool ath9k_hw_check_alive(struct ath_hw *ah)
1643{
1644	int count = 50;
1645	u32 reg, last_val;
1646
1647	/* Check if chip failed to wake up */
1648	if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1649		return false;
1650
1651	if (AR_SREV_9300(ah))
1652		return !ath9k_hw_detect_mac_hang(ah);
1653
1654	if (AR_SREV_9285_12_OR_LATER(ah))
1655		return true;
1656
1657	last_val = REG_READ(ah, AR_OBS_BUS_1);
1658	do {
1659		reg = REG_READ(ah, AR_OBS_BUS_1);
1660		if (reg != last_val)
1661			return true;
1662
1663		udelay(1);
1664		last_val = reg;
1665		if ((reg & 0x7E7FFFEF) == 0x00702400)
1666			continue;
1667
1668		switch (reg & 0x7E000B00) {
1669		case 0x1E000000:
1670		case 0x52000B00:
1671		case 0x18000B00:
1672			continue;
1673		default:
1674			return true;
1675		}
1676	} while (count-- > 0);
1677
1678	return false;
1679}
1680EXPORT_SYMBOL(ath9k_hw_check_alive);
1681
1682static void ath9k_hw_init_mfp(struct ath_hw *ah)
1683{
1684	/* Setup MFP options for CCMP */
1685	if (AR_SREV_9280_20_OR_LATER(ah)) {
1686		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1687		 * frames when constructing CCMP AAD. */
1688		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1689			      0xc7ff);
1690		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1691			ah->sw_mgmt_crypto_tx = true;
1692		else
1693			ah->sw_mgmt_crypto_tx = false;
1694		ah->sw_mgmt_crypto_rx = false;
1695	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1696		/* Disable hardware crypto for management frames */
1697		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1698			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1699		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1700			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1701		ah->sw_mgmt_crypto_tx = true;
1702		ah->sw_mgmt_crypto_rx = true;
1703	} else {
1704		ah->sw_mgmt_crypto_tx = true;
1705		ah->sw_mgmt_crypto_rx = true;
1706	}
1707}
1708
1709static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1710				  u32 macStaId1, u32 saveDefAntenna)
1711{
1712	struct ath_common *common = ath9k_hw_common(ah);
1713
1714	ENABLE_REGWRITE_BUFFER(ah);
1715
1716	REG_RMW(ah, AR_STA_ID1, macStaId1
1717		  | AR_STA_ID1_RTS_USE_DEF
1718		  | ah->sta_id1_defaults,
1719		  ~AR_STA_ID1_SADH_MASK);
1720	ath_hw_setbssidmask(common);
1721	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1722	ath9k_hw_write_associd(ah);
1723	REG_WRITE(ah, AR_ISR, ~0);
1724	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1725
1726	REGWRITE_BUFFER_FLUSH(ah);
1727
1728	ath9k_hw_set_operating_mode(ah, ah->opmode);
1729}
1730
1731static void ath9k_hw_init_queues(struct ath_hw *ah)
1732{
1733	int i;
1734
1735	ENABLE_REGWRITE_BUFFER(ah);
1736
1737	for (i = 0; i < AR_NUM_DCU; i++)
1738		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1739
1740	REGWRITE_BUFFER_FLUSH(ah);
1741
1742	ah->intr_txqs = 0;
1743	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1744		ath9k_hw_resettxqueue(ah, i);
1745}
1746
1747/*
1748 * For big endian systems turn on swapping for descriptors
1749 */
1750static void ath9k_hw_init_desc(struct ath_hw *ah)
1751{
1752	struct ath_common *common = ath9k_hw_common(ah);
1753
1754	if (AR_SREV_9100(ah)) {
1755		u32 mask;
1756		mask = REG_READ(ah, AR_CFG);
1757		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1758			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1759				mask);
1760		} else {
1761			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1762			REG_WRITE(ah, AR_CFG, mask);
1763			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1764				REG_READ(ah, AR_CFG));
1765		}
1766	} else {
1767		if (common->bus_ops->ath_bus_type == ATH_USB) {
1768			/* Configure AR9271 target WLAN */
1769			if (AR_SREV_9271(ah))
1770				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1771			else
1772				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1773		}
1774#ifdef __BIG_ENDIAN
1775		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1776			 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1777			 AR_SREV_9561(ah))
1778			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1779		else
1780			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1781#endif
1782	}
1783}
1784
1785/*
1786 * Fast channel change:
1787 * (Change synthesizer based on channel freq without resetting chip)
1788 */
1789static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1790{
1791	struct ath_common *common = ath9k_hw_common(ah);
1792	struct ath9k_hw_capabilities *pCap = &ah->caps;
1793	int ret;
1794
1795	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1796		goto fail;
1797
1798	if (ah->chip_fullsleep)
1799		goto fail;
1800
1801	if (!ah->curchan)
1802		goto fail;
1803
1804	if (chan->channel == ah->curchan->channel)
1805		goto fail;
1806
1807	if ((ah->curchan->channelFlags | chan->channelFlags) &
1808	    (CHANNEL_HALF | CHANNEL_QUARTER))
1809		goto fail;
1810
1811	/*
1812	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1813	 */
1814	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1815	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1816		goto fail;
1817
1818	if (!ath9k_hw_check_alive(ah))
1819		goto fail;
1820
1821	/*
1822	 * For AR9462, make sure that calibration data for
1823	 * re-using are present.
1824	 */
1825	if (AR_SREV_9462(ah) && (ah->caldata &&
1826				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1827				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1828				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1829		goto fail;
1830
1831	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1832		ah->curchan->channel, chan->channel);
1833
1834	ret = ath9k_hw_channel_change(ah, chan);
1835	if (!ret)
1836		goto fail;
1837
1838	if (ath9k_hw_mci_is_enabled(ah))
1839		ar9003_mci_2g5g_switch(ah, false);
1840
1841	ath9k_hw_loadnf(ah, ah->curchan);
1842	ath9k_hw_start_nfcal(ah, true);
1843
1844	if (AR_SREV_9271(ah))
1845		ar9002_hw_load_ani_reg(ah, chan);
1846
1847	return 0;
1848fail:
1849	return -EINVAL;
1850}
1851
1852u32 ath9k_hw_get_tsf_offset(struct timespec64 *last, struct timespec64 *cur)
1853{
1854	struct timespec64 ts;
1855	s64 usec;
1856
1857	if (!cur) {
1858		ktime_get_raw_ts64(&ts);
1859		cur = &ts;
1860	}
1861
1862	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1863	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1864
1865	return (u32) usec;
1866}
1867EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1868
1869int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1870		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1871{
1872	struct ath_common *common = ath9k_hw_common(ah);
1873	u32 saveLedState;
1874	u32 saveDefAntenna;
1875	u32 macStaId1;
1876	struct timespec64 tsf_ts;
1877	u32 tsf_offset;
1878	u64 tsf = 0;
1879	int r;
1880	bool start_mci_reset = false;
1881	bool save_fullsleep = ah->chip_fullsleep;
1882
1883	if (ath9k_hw_mci_is_enabled(ah)) {
1884		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1885		if (start_mci_reset)
1886			return 0;
1887	}
1888
1889	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1890		return -EIO;
1891
1892	if (ah->curchan && !ah->chip_fullsleep)
1893		ath9k_hw_getnf(ah, ah->curchan);
1894
1895	ah->caldata = caldata;
1896	if (caldata && (chan->channel != caldata->channel ||
1897			chan->channelFlags != caldata->channelFlags)) {
1898		/* Operating channel changed, reset channel calibration data */
1899		memset(caldata, 0, sizeof(*caldata));
1900		ath9k_init_nfcal_hist_buffer(ah, chan);
1901	} else if (caldata) {
1902		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1903	}
1904	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1905
1906	if (fastcc) {
1907		r = ath9k_hw_do_fastcc(ah, chan);
1908		if (!r)
1909			return r;
1910	}
1911
1912	if (ath9k_hw_mci_is_enabled(ah))
1913		ar9003_mci_stop_bt(ah, save_fullsleep);
1914
1915	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1916	if (saveDefAntenna == 0)
1917		saveDefAntenna = 1;
1918
1919	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1920
1921	/* Save TSF before chip reset, a cold reset clears it */
1922	ktime_get_raw_ts64(&tsf_ts);
1923	tsf = ath9k_hw_gettsf64(ah);
1924
1925	saveLedState = REG_READ(ah, AR_CFG_LED) &
1926		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1927		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1928
1929	ath9k_hw_mark_phy_inactive(ah);
1930
1931	ah->paprd_table_write_done = false;
1932
1933	/* Only required on the first reset */
1934	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1935		REG_WRITE(ah,
1936			  AR9271_RESET_POWER_DOWN_CONTROL,
1937			  AR9271_RADIO_RF_RST);
1938		udelay(50);
1939	}
1940
1941	if (!ath9k_hw_chip_reset(ah, chan)) {
1942		ath_err(common, "Chip reset failed\n");
1943		return -EINVAL;
1944	}
1945
1946	/* Only required on the first reset */
1947	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1948		ah->htc_reset_init = false;
1949		REG_WRITE(ah,
1950			  AR9271_RESET_POWER_DOWN_CONTROL,
1951			  AR9271_GATE_MAC_CTL);
1952		udelay(50);
1953	}
1954
1955	/* Restore TSF */
1956	tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1957	ath9k_hw_settsf64(ah, tsf + tsf_offset);
1958
1959	if (AR_SREV_9280_20_OR_LATER(ah))
1960		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1961
1962	if (!AR_SREV_9300_20_OR_LATER(ah))
1963		ar9002_hw_enable_async_fifo(ah);
1964
1965	r = ath9k_hw_process_ini(ah, chan);
1966	if (r)
1967		return r;
1968
1969	ath9k_hw_set_rfmode(ah, chan);
1970
1971	if (ath9k_hw_mci_is_enabled(ah))
1972		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1973
1974	/*
1975	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1976	 * right after the chip reset. When that happens, write a new
1977	 * value after the initvals have been applied.
1978	 */
1979	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1980		tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1981		ath9k_hw_settsf64(ah, tsf + tsf_offset);
1982	}
1983
1984	ath9k_hw_init_mfp(ah);
1985
1986	ath9k_hw_set_delta_slope(ah, chan);
1987	ath9k_hw_spur_mitigate_freq(ah, chan);
1988	ah->eep_ops->set_board_values(ah, chan);
1989
1990	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1991
1992	r = ath9k_hw_rf_set_freq(ah, chan);
1993	if (r)
1994		return r;
1995
1996	ath9k_hw_set_clockrate(ah);
1997
1998	ath9k_hw_init_queues(ah);
1999	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2000	ath9k_hw_ani_cache_ini_regs(ah);
2001	ath9k_hw_init_qos(ah);
2002
2003	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2004		ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
2005
2006	ath9k_hw_init_global_settings(ah);
2007
2008	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
2009		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2010			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2011		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2012			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2013		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2014			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2015	}
2016
2017	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2018
2019	ath9k_hw_set_dma(ah);
2020
2021	if (!ath9k_hw_mci_is_enabled(ah))
2022		REG_WRITE(ah, AR_OBS, 8);
2023
2024	ENABLE_REG_RMW_BUFFER(ah);
2025	if (ah->config.rx_intr_mitigation) {
2026		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
2027		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
2028	}
2029
2030	if (ah->config.tx_intr_mitigation) {
2031		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2032		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2033	}
2034	REG_RMW_BUFFER_FLUSH(ah);
2035
2036	ath9k_hw_init_bb(ah, chan);
2037
2038	if (caldata) {
2039		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2040		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2041	}
2042	if (!ath9k_hw_init_cal(ah, chan))
2043		return -EIO;
2044
2045	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2046		return -EIO;
2047
2048	ENABLE_REGWRITE_BUFFER(ah);
2049
2050	ath9k_hw_restore_chainmask(ah);
2051	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2052
2053	REGWRITE_BUFFER_FLUSH(ah);
2054
2055	ath9k_hw_gen_timer_start_tsf2(ah);
2056
2057	ath9k_hw_init_desc(ah);
2058
2059	if (ath9k_hw_btcoex_is_enabled(ah))
2060		ath9k_hw_btcoex_enable(ah);
2061
2062	if (ath9k_hw_mci_is_enabled(ah))
2063		ar9003_mci_check_bt(ah);
2064
2065	if (AR_SREV_9300_20_OR_LATER(ah)) {
2066		ath9k_hw_loadnf(ah, chan);
2067		ath9k_hw_start_nfcal(ah, true);
2068	}
2069
2070	if (AR_SREV_9300_20_OR_LATER(ah))
2071		ar9003_hw_bb_watchdog_config(ah);
2072
2073	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2074		ar9003_hw_disable_phy_restart(ah);
2075
2076	ath9k_hw_apply_gpio_override(ah);
2077
2078	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2079		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2080
2081	if (ah->hw->conf.radar_enabled) {
2082		/* set HW specific DFS configuration */
2083		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2084		ath9k_hw_set_radar_params(ah);
2085	}
2086
2087	return 0;
2088}
2089EXPORT_SYMBOL(ath9k_hw_reset);
2090
2091/******************************/
2092/* Power Management (Chipset) */
2093/******************************/
2094
2095/*
2096 * Notify Power Mgt is disabled in self-generated frames.
2097 * If requested, force chip to sleep.
2098 */
2099static void ath9k_set_power_sleep(struct ath_hw *ah)
2100{
2101	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2102
2103	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2104		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2105		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2106		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2107		/* xxx Required for WLAN only case ? */
2108		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2109		udelay(100);
2110	}
2111
2112	/*
2113	 * Clear the RTC force wake bit to allow the
2114	 * mac to go to sleep.
2115	 */
2116	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2117
2118	if (ath9k_hw_mci_is_enabled(ah))
2119		udelay(100);
2120
2121	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2122		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2123
2124	/* Shutdown chip. Active low */
2125	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2126		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2127		udelay(2);
2128	}
2129
2130	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2131	if (AR_SREV_9300_20_OR_LATER(ah))
2132		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2133}
2134
2135/*
2136 * Notify Power Management is enabled in self-generating
2137 * frames. If request, set power mode of chip to
2138 * auto/normal.  Duration in units of 128us (1/8 TU).
2139 */
2140static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2141{
2142	struct ath9k_hw_capabilities *pCap = &ah->caps;
2143
2144	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2145
2146	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2147		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2148		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2149			  AR_RTC_FORCE_WAKE_ON_INT);
2150	} else {
2151
2152		/* When chip goes into network sleep, it could be waken
2153		 * up by MCI_INT interrupt caused by BT's HW messages
2154		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2155		 * rate (~100us). This will cause chip to leave and
2156		 * re-enter network sleep mode frequently, which in
2157		 * consequence will have WLAN MCI HW to generate lots of
2158		 * SYS_WAKING and SYS_SLEEPING messages which will make
2159		 * BT CPU to busy to process.
2160		 */
2161		if (ath9k_hw_mci_is_enabled(ah))
2162			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2163				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2164		/*
2165		 * Clear the RTC force wake bit to allow the
2166		 * mac to go to sleep.
2167		 */
2168		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2169
2170		if (ath9k_hw_mci_is_enabled(ah))
2171			udelay(30);
2172	}
2173
2174	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2175	if (AR_SREV_9300_20_OR_LATER(ah))
2176		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2177}
2178
2179static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2180{
2181	u32 val;
2182	int i;
2183
2184	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2185	if (AR_SREV_9300_20_OR_LATER(ah)) {
2186		REG_WRITE(ah, AR_WA, ah->WARegVal);
2187		udelay(10);
2188	}
2189
2190	if ((REG_READ(ah, AR_RTC_STATUS) &
2191	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2192		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2193			return false;
2194		}
2195		if (!AR_SREV_9300_20_OR_LATER(ah))
2196			ath9k_hw_init_pll(ah, NULL);
2197	}
2198	if (AR_SREV_9100(ah))
2199		REG_SET_BIT(ah, AR_RTC_RESET,
2200			    AR_RTC_RESET_EN);
2201
2202	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2203		    AR_RTC_FORCE_WAKE_EN);
2204	if (AR_SREV_9100(ah))
2205		mdelay(10);
2206	else
2207		udelay(50);
2208
2209	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2210		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2211		if (val == AR_RTC_STATUS_ON)
2212			break;
2213		udelay(50);
2214		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2215			    AR_RTC_FORCE_WAKE_EN);
2216	}
2217	if (i == 0) {
2218		ath_err(ath9k_hw_common(ah),
2219			"Failed to wakeup in %uus\n",
2220			POWER_UP_TIME / 20);
2221		return false;
2222	}
2223
2224	if (ath9k_hw_mci_is_enabled(ah))
2225		ar9003_mci_set_power_awake(ah);
2226
2227	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2228
2229	return true;
2230}
2231
2232bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2233{
2234	struct ath_common *common = ath9k_hw_common(ah);
2235	int status = true;
2236	static const char *modes[] = {
2237		"AWAKE",
2238		"FULL-SLEEP",
2239		"NETWORK SLEEP",
2240		"UNDEFINED"
2241	};
2242
2243	if (ah->power_mode == mode)
2244		return status;
2245
2246	ath_dbg(common, RESET, "%s -> %s\n",
2247		modes[ah->power_mode], modes[mode]);
2248
2249	switch (mode) {
2250	case ATH9K_PM_AWAKE:
2251		status = ath9k_hw_set_power_awake(ah);
2252		break;
2253	case ATH9K_PM_FULL_SLEEP:
2254		if (ath9k_hw_mci_is_enabled(ah))
2255			ar9003_mci_set_full_sleep(ah);
2256
2257		ath9k_set_power_sleep(ah);
2258		ah->chip_fullsleep = true;
2259		break;
2260	case ATH9K_PM_NETWORK_SLEEP:
2261		ath9k_set_power_network_sleep(ah);
2262		break;
2263	default:
2264		ath_err(common, "Unknown power mode %u\n", mode);
2265		return false;
2266	}
2267	ah->power_mode = mode;
2268
2269	/*
2270	 * XXX: If this warning never comes up after a while then
2271	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2272	 * ath9k_hw_setpower() return type void.
2273	 */
2274
2275	if (!(ah->ah_flags & AH_UNPLUGGED))
2276		ATH_DBG_WARN_ON_ONCE(!status);
2277
2278	return status;
2279}
2280EXPORT_SYMBOL(ath9k_hw_setpower);
2281
2282/*******************/
2283/* Beacon Handling */
2284/*******************/
2285
2286void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2287{
2288	int flags = 0;
2289
2290	ENABLE_REGWRITE_BUFFER(ah);
2291
2292	switch (ah->opmode) {
2293	case NL80211_IFTYPE_ADHOC:
2294		REG_SET_BIT(ah, AR_TXCFG,
2295			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2296		/* fall through */
2297	case NL80211_IFTYPE_MESH_POINT:
2298	case NL80211_IFTYPE_AP:
2299		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2300		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2301			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2302		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2303			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2304		flags |=
2305			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2306		break;
2307	default:
2308		ath_dbg(ath9k_hw_common(ah), BEACON,
2309			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2310		return;
2311		break;
2312	}
2313
2314	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2315	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2316	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2317
2318	REGWRITE_BUFFER_FLUSH(ah);
2319
2320	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2321}
2322EXPORT_SYMBOL(ath9k_hw_beaconinit);
2323
2324void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2325				    const struct ath9k_beacon_state *bs)
2326{
2327	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2328	struct ath9k_hw_capabilities *pCap = &ah->caps;
2329	struct ath_common *common = ath9k_hw_common(ah);
2330
2331	ENABLE_REGWRITE_BUFFER(ah);
2332
2333	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2334	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2335	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2336
2337	REGWRITE_BUFFER_FLUSH(ah);
2338
2339	REG_RMW_FIELD(ah, AR_RSSI_THR,
2340		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2341
2342	beaconintval = bs->bs_intval;
2343
2344	if (bs->bs_sleepduration > beaconintval)
2345		beaconintval = bs->bs_sleepduration;
2346
2347	dtimperiod = bs->bs_dtimperiod;
2348	if (bs->bs_sleepduration > dtimperiod)
2349		dtimperiod = bs->bs_sleepduration;
2350
2351	if (beaconintval == dtimperiod)
2352		nextTbtt = bs->bs_nextdtim;
2353	else
2354		nextTbtt = bs->bs_nexttbtt;
2355
2356	ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2357	ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2358	ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2359	ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2360
2361	ENABLE_REGWRITE_BUFFER(ah);
2362
2363	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2364	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2365
2366	REG_WRITE(ah, AR_SLEEP1,
2367		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2368		  | AR_SLEEP1_ASSUME_DTIM);
2369
2370	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2371		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2372	else
2373		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2374
2375	REG_WRITE(ah, AR_SLEEP2,
2376		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2377
2378	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2379	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2380
2381	REGWRITE_BUFFER_FLUSH(ah);
2382
2383	REG_SET_BIT(ah, AR_TIMER_MODE,
2384		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2385		    AR_DTIM_TIMER_EN);
2386
2387	/* TSF Out of Range Threshold */
2388	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2389}
2390EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2391
2392/*******************/
2393/* HW Capabilities */
2394/*******************/
2395
2396static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2397{
2398	eeprom_chainmask &= chip_chainmask;
2399	if (eeprom_chainmask)
2400		return eeprom_chainmask;
2401	else
2402		return chip_chainmask;
2403}
2404
2405/**
2406 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2407 * @ah: the atheros hardware data structure
2408 *
2409 * We enable DFS support upstream on chipsets which have passed a series
2410 * of tests. The testing requirements are going to be documented. Desired
2411 * test requirements are documented at:
2412 *
2413 * https://wireless.wiki.kernel.org/en/users/Drivers/ath9k/dfs
2414 *
2415 * Once a new chipset gets properly tested an individual commit can be used
2416 * to document the testing for DFS for that chipset.
2417 */
2418static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2419{
2420
2421	switch (ah->hw_version.macVersion) {
2422	/* for temporary testing DFS with 9280 */
2423	case AR_SREV_VERSION_9280:
2424	/* AR9580 will likely be our first target to get testing on */
2425	case AR_SREV_VERSION_9580:
2426		return true;
2427	default:
2428		return false;
2429	}
2430}
2431
2432static void ath9k_gpio_cap_init(struct ath_hw *ah)
2433{
2434	struct ath9k_hw_capabilities *pCap = &ah->caps;
2435
2436	if (AR_SREV_9271(ah)) {
2437		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2438		pCap->gpio_mask = AR9271_GPIO_MASK;
2439	} else if (AR_DEVID_7010(ah)) {
2440		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2441		pCap->gpio_mask = AR7010_GPIO_MASK;
2442	} else if (AR_SREV_9287(ah)) {
2443		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2444		pCap->gpio_mask = AR9287_GPIO_MASK;
2445	} else if (AR_SREV_9285(ah)) {
2446		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2447		pCap->gpio_mask = AR9285_GPIO_MASK;
2448	} else if (AR_SREV_9280(ah)) {
2449		pCap->num_gpio_pins = AR9280_NUM_GPIO;
2450		pCap->gpio_mask = AR9280_GPIO_MASK;
2451	} else if (AR_SREV_9300(ah)) {
2452		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2453		pCap->gpio_mask = AR9300_GPIO_MASK;
2454	} else if (AR_SREV_9330(ah)) {
2455		pCap->num_gpio_pins = AR9330_NUM_GPIO;
2456		pCap->gpio_mask = AR9330_GPIO_MASK;
2457	} else if (AR_SREV_9340(ah)) {
2458		pCap->num_gpio_pins = AR9340_NUM_GPIO;
2459		pCap->gpio_mask = AR9340_GPIO_MASK;
2460	} else if (AR_SREV_9462(ah)) {
2461		pCap->num_gpio_pins = AR9462_NUM_GPIO;
2462		pCap->gpio_mask = AR9462_GPIO_MASK;
2463	} else if (AR_SREV_9485(ah)) {
2464		pCap->num_gpio_pins = AR9485_NUM_GPIO;
2465		pCap->gpio_mask = AR9485_GPIO_MASK;
2466	} else if (AR_SREV_9531(ah)) {
2467		pCap->num_gpio_pins = AR9531_NUM_GPIO;
2468		pCap->gpio_mask = AR9531_GPIO_MASK;
2469	} else if (AR_SREV_9550(ah)) {
2470		pCap->num_gpio_pins = AR9550_NUM_GPIO;
2471		pCap->gpio_mask = AR9550_GPIO_MASK;
2472	} else if (AR_SREV_9561(ah)) {
2473		pCap->num_gpio_pins = AR9561_NUM_GPIO;
2474		pCap->gpio_mask = AR9561_GPIO_MASK;
2475	} else if (AR_SREV_9565(ah)) {
2476		pCap->num_gpio_pins = AR9565_NUM_GPIO;
2477		pCap->gpio_mask = AR9565_GPIO_MASK;
2478	} else if (AR_SREV_9580(ah)) {
2479		pCap->num_gpio_pins = AR9580_NUM_GPIO;
2480		pCap->gpio_mask = AR9580_GPIO_MASK;
2481	} else {
2482		pCap->num_gpio_pins = AR_NUM_GPIO;
2483		pCap->gpio_mask = AR_GPIO_MASK;
2484	}
2485}
2486
2487int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2488{
2489	struct ath9k_hw_capabilities *pCap = &ah->caps;
2490	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2491	struct ath_common *common = ath9k_hw_common(ah);
2492
2493	u16 eeval;
2494	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2495
2496	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2497	regulatory->current_rd = eeval;
2498
2499	if (ah->opmode != NL80211_IFTYPE_AP &&
2500	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2501		if (regulatory->current_rd == 0x64 ||
2502		    regulatory->current_rd == 0x65)
2503			regulatory->current_rd += 5;
2504		else if (regulatory->current_rd == 0x41)
2505			regulatory->current_rd = 0x43;
2506		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2507			regulatory->current_rd);
2508	}
2509
2510	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2511
2512	if (eeval & AR5416_OPFLAGS_11A) {
2513		if (ah->disable_5ghz)
2514			ath_warn(common, "disabling 5GHz band\n");
2515		else
2516			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2517	}
2518
2519	if (eeval & AR5416_OPFLAGS_11G) {
2520		if (ah->disable_2ghz)
2521			ath_warn(common, "disabling 2GHz band\n");
2522		else
2523			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2524	}
2525
2526	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2527		ath_err(common, "both bands are disabled\n");
2528		return -EINVAL;
2529	}
2530
2531	ath9k_gpio_cap_init(ah);
2532
2533	if (AR_SREV_9485(ah) ||
2534	    AR_SREV_9285(ah) ||
2535	    AR_SREV_9330(ah) ||
2536	    AR_SREV_9565(ah))
2537		pCap->chip_chainmask = 1;
2538	else if (!AR_SREV_9280_20_OR_LATER(ah))
2539		pCap->chip_chainmask = 7;
2540	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2541		 AR_SREV_9340(ah) ||
2542		 AR_SREV_9462(ah) ||
2543		 AR_SREV_9531(ah))
2544		pCap->chip_chainmask = 3;
2545	else
2546		pCap->chip_chainmask = 7;
2547
2548	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2549	/*
2550	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2551	 * the EEPROM.
2552	 */
2553	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2554	    !(eeval & AR5416_OPFLAGS_11A) &&
2555	    !(AR_SREV_9271(ah)))
2556		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2557		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2558	else if (AR_SREV_9100(ah))
2559		pCap->rx_chainmask = 0x7;
2560	else
2561		/* Use rx_chainmask from EEPROM. */
2562		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2563
2564	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2565	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2566	ah->txchainmask = pCap->tx_chainmask;
2567	ah->rxchainmask = pCap->rx_chainmask;
2568
2569	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2570
2571	/* enable key search for every frame in an aggregate */
2572	if (AR_SREV_9300_20_OR_LATER(ah))
2573		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2574
2575	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2576
2577	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2578		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2579	else
2580		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2581
2582	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2583		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2584	else
2585		pCap->rts_aggr_limit = (8 * 1024);
2586
2587#ifdef CONFIG_ATH9K_RFKILL
2588	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2589	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2590		ah->rfkill_gpio =
2591			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2592		ah->rfkill_polarity =
2593			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2594
2595		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2596	}
2597#endif
2598	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2599		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2600	else
2601		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2602
2603	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2604		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2605	else
2606		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2607
2608	if (AR_SREV_9300_20_OR_LATER(ah)) {
2609		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2610		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2611		    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2612			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2613
2614		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2615		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2616		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2617		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2618		pCap->txs_len = sizeof(struct ar9003_txs);
2619	} else {
2620		pCap->tx_desc_len = sizeof(struct ath_desc);
2621		if (AR_SREV_9280_20(ah))
2622			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2623	}
2624
2625	if (AR_SREV_9300_20_OR_LATER(ah))
2626		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2627
2628	if (AR_SREV_9561(ah))
2629		ah->ent_mode = 0x3BDA000;
2630	else if (AR_SREV_9300_20_OR_LATER(ah))
2631		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2632
2633	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2634		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2635
2636	if (AR_SREV_9285(ah)) {
2637		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2638			ant_div_ctl1 =
2639				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2640			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2641				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2642				ath_info(common, "Enable LNA combining\n");
2643			}
2644		}
2645	}
2646
2647	if (AR_SREV_9300_20_OR_LATER(ah)) {
2648		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2649			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2650	}
2651
2652	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2653		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2654		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2655			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2656			ath_info(common, "Enable LNA combining\n");
2657		}
2658	}
2659
2660	if (ath9k_hw_dfs_tested(ah))
2661		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2662
2663	tx_chainmask = pCap->tx_chainmask;
2664	rx_chainmask = pCap->rx_chainmask;
2665	while (tx_chainmask || rx_chainmask) {
2666		if (tx_chainmask & BIT(0))
2667			pCap->max_txchains++;
2668		if (rx_chainmask & BIT(0))
2669			pCap->max_rxchains++;
2670
2671		tx_chainmask >>= 1;
2672		rx_chainmask >>= 1;
2673	}
2674
2675	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2676		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2677			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2678
2679		if (AR_SREV_9462_20_OR_LATER(ah))
2680			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2681	}
2682
2683	if (AR_SREV_9300_20_OR_LATER(ah) &&
2684	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2685			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2686
2687#ifdef CONFIG_ATH9K_WOW
2688	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2689		ah->wow.max_patterns = MAX_NUM_PATTERN;
2690	else
2691		ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2692#endif
2693
2694	return 0;
2695}
2696
2697/****************************/
2698/* GPIO / RFKILL / Antennae */
2699/****************************/
2700
2701static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
2702{
2703	int addr;
2704	u32 gpio_shift, tmp;
2705
2706	if (gpio > 11)
2707		addr = AR_GPIO_OUTPUT_MUX3;
2708	else if (gpio > 5)
2709		addr = AR_GPIO_OUTPUT_MUX2;
2710	else
2711		addr = AR_GPIO_OUTPUT_MUX1;
2712
2713	gpio_shift = (gpio % 6) * 5;
2714
2715	if (AR_SREV_9280_20_OR_LATER(ah) ||
2716	    (addr != AR_GPIO_OUTPUT_MUX1)) {
2717		REG_RMW(ah, addr, (type << gpio_shift),
2718			(0x1f << gpio_shift));
2719	} else {
2720		tmp = REG_READ(ah, addr);
2721		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2722		tmp &= ~(0x1f << gpio_shift);
2723		tmp |= (type << gpio_shift);
2724		REG_WRITE(ah, addr, tmp);
2725	}
2726}
2727
2728/* BSP should set the corresponding MUX register correctly.
2729 */
2730static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2731				  const char *label)
2732{
 
 
2733	if (ah->caps.gpio_requested & BIT(gpio))
2734		return;
2735
2736	/* may be requested by BSP, free anyway */
2737	gpio_free(gpio);
2738
2739	if (gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label))
2740		return;
 
2741
2742	ah->caps.gpio_requested |= BIT(gpio);
2743}
2744
2745static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2746				   u32 ah_signal_type)
2747{
2748	u32 gpio_set, gpio_shift = gpio;
2749
2750	if (AR_DEVID_7010(ah)) {
2751		gpio_set = out ?
2752			AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2753		REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2754			AR7010_GPIO_OE_MASK << gpio_shift);
2755	} else if (AR_SREV_SOC(ah)) {
2756		gpio_set = out ? 1 : 0;
2757		REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2758			gpio_set << gpio_shift);
2759	} else {
2760		gpio_shift = gpio << 1;
2761		gpio_set = out ?
2762			AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2763		REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2764			AR_GPIO_OE_OUT_DRV << gpio_shift);
2765
2766		if (out)
2767			ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2768	}
2769}
2770
2771static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2772				  const char *label, u32 ah_signal_type)
2773{
2774	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2775
2776	if (BIT(gpio) & ah->caps.gpio_mask)
2777		ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2778	else if (AR_SREV_SOC(ah))
2779		ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2780	else
2781		WARN_ON(1);
2782}
2783
2784void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2785{
2786	ath9k_hw_gpio_request(ah, gpio, false, label, 0);
2787}
2788EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2789
2790void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2791			       u32 ah_signal_type)
2792{
2793	ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2794}
2795EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2796
2797void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2798{
2799	if (!AR_SREV_SOC(ah))
2800		return;
2801
2802	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2803
2804	if (ah->caps.gpio_requested & BIT(gpio)) {
2805		gpio_free(gpio);
2806		ah->caps.gpio_requested &= ~BIT(gpio);
2807	}
2808}
2809EXPORT_SYMBOL(ath9k_hw_gpio_free);
2810
2811u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2812{
2813	u32 val = 0xffffffff;
2814
2815#define MS_REG_READ(x, y) \
2816	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2817
2818	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2819
2820	if (BIT(gpio) & ah->caps.gpio_mask) {
2821		if (AR_SREV_9271(ah))
2822			val = MS_REG_READ(AR9271, gpio);
2823		else if (AR_SREV_9287(ah))
2824			val = MS_REG_READ(AR9287, gpio);
2825		else if (AR_SREV_9285(ah))
2826			val = MS_REG_READ(AR9285, gpio);
2827		else if (AR_SREV_9280(ah))
2828			val = MS_REG_READ(AR928X, gpio);
2829		else if (AR_DEVID_7010(ah))
2830			val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2831		else if (AR_SREV_9300_20_OR_LATER(ah))
2832			val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio);
2833		else
2834			val = MS_REG_READ(AR, gpio);
2835	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2836		val = gpio_get_value(gpio) & BIT(gpio);
2837	} else {
2838		WARN_ON(1);
2839	}
2840
2841	return !!val;
2842}
2843EXPORT_SYMBOL(ath9k_hw_gpio_get);
2844
2845void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2846{
2847	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2848
2849	if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2850		val = !val;
2851	else
2852		val = !!val;
2853
2854	if (BIT(gpio) & ah->caps.gpio_mask) {
2855		u32 out_addr = AR_DEVID_7010(ah) ?
2856			AR7010_GPIO_OUT : AR_GPIO_IN_OUT;
2857
2858		REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2859	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2860		gpio_set_value(gpio, val);
2861	} else {
2862		WARN_ON(1);
2863	}
2864}
2865EXPORT_SYMBOL(ath9k_hw_set_gpio);
2866
2867void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2868{
2869	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2870}
2871EXPORT_SYMBOL(ath9k_hw_setantenna);
2872
2873/*********************/
2874/* General Operation */
2875/*********************/
2876
2877u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2878{
2879	u32 bits = REG_READ(ah, AR_RX_FILTER);
2880	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2881
2882	if (phybits & AR_PHY_ERR_RADAR)
2883		bits |= ATH9K_RX_FILTER_PHYRADAR;
2884	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2885		bits |= ATH9K_RX_FILTER_PHYERR;
2886
2887	return bits;
2888}
2889EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2890
2891void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2892{
2893	u32 phybits;
2894
2895	ENABLE_REGWRITE_BUFFER(ah);
2896
2897	REG_WRITE(ah, AR_RX_FILTER, bits);
2898
2899	phybits = 0;
2900	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2901		phybits |= AR_PHY_ERR_RADAR;
2902	if (bits & ATH9K_RX_FILTER_PHYERR)
2903		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2904	REG_WRITE(ah, AR_PHY_ERR, phybits);
2905
2906	if (phybits)
2907		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2908	else
2909		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2910
2911	REGWRITE_BUFFER_FLUSH(ah);
2912}
2913EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2914
2915bool ath9k_hw_phy_disable(struct ath_hw *ah)
2916{
2917	if (ath9k_hw_mci_is_enabled(ah))
2918		ar9003_mci_bt_gain_ctrl(ah);
2919
2920	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2921		return false;
2922
2923	ath9k_hw_init_pll(ah, NULL);
2924	ah->htc_reset_init = true;
2925	return true;
2926}
2927EXPORT_SYMBOL(ath9k_hw_phy_disable);
2928
2929bool ath9k_hw_disable(struct ath_hw *ah)
2930{
2931	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2932		return false;
2933
2934	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2935		return false;
2936
2937	ath9k_hw_init_pll(ah, NULL);
2938	return true;
2939}
2940EXPORT_SYMBOL(ath9k_hw_disable);
2941
2942static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2943{
2944	enum eeprom_param gain_param;
2945
2946	if (IS_CHAN_2GHZ(chan))
2947		gain_param = EEP_ANTENNA_GAIN_2G;
2948	else
2949		gain_param = EEP_ANTENNA_GAIN_5G;
2950
2951	return ah->eep_ops->get_eeprom(ah, gain_param);
2952}
2953
2954void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2955			    bool test)
2956{
2957	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2958	struct ieee80211_channel *channel;
2959	int chan_pwr, new_pwr;
2960	u16 ctl = NO_CTL;
2961
2962	if (!chan)
2963		return;
2964
2965	if (!test)
2966		ctl = ath9k_regd_get_ctl(reg, chan);
2967
2968	channel = chan->chan;
2969	chan_pwr = min_t(int, channel->max_power * 2, MAX_COMBINED_POWER);
2970	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2971
2972	ah->eep_ops->set_txpower(ah, chan, ctl,
2973				 get_antenna_gain(ah, chan), new_pwr, test);
2974}
2975
2976void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2977{
2978	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2979	struct ath9k_channel *chan = ah->curchan;
2980	struct ieee80211_channel *channel = chan->chan;
2981
2982	reg->power_limit = min_t(u32, limit, MAX_COMBINED_POWER);
2983	if (test)
2984		channel->max_power = MAX_COMBINED_POWER / 2;
2985
2986	ath9k_hw_apply_txpower(ah, chan, test);
2987
2988	if (test)
2989		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2990}
2991EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2992
2993void ath9k_hw_setopmode(struct ath_hw *ah)
2994{
2995	ath9k_hw_set_operating_mode(ah, ah->opmode);
2996}
2997EXPORT_SYMBOL(ath9k_hw_setopmode);
2998
2999void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3000{
3001	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3002	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3003}
3004EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3005
3006void ath9k_hw_write_associd(struct ath_hw *ah)
3007{
3008	struct ath_common *common = ath9k_hw_common(ah);
3009
3010	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3011	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3012		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3013}
3014EXPORT_SYMBOL(ath9k_hw_write_associd);
3015
3016#define ATH9K_MAX_TSF_READ 10
3017
3018u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3019{
3020	u32 tsf_lower, tsf_upper1, tsf_upper2;
3021	int i;
3022
3023	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
3024	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
3025		tsf_lower = REG_READ(ah, AR_TSF_L32);
3026		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
3027		if (tsf_upper2 == tsf_upper1)
3028			break;
3029		tsf_upper1 = tsf_upper2;
3030	}
3031
3032	WARN_ON( i == ATH9K_MAX_TSF_READ );
3033
3034	return (((u64)tsf_upper1 << 32) | tsf_lower);
3035}
3036EXPORT_SYMBOL(ath9k_hw_gettsf64);
3037
3038void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3039{
3040	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3041	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3042}
3043EXPORT_SYMBOL(ath9k_hw_settsf64);
3044
3045void ath9k_hw_reset_tsf(struct ath_hw *ah)
3046{
3047	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3048			   AH_TSF_WRITE_TIMEOUT))
3049		ath_dbg(ath9k_hw_common(ah), RESET,
3050			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3051
3052	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3053}
3054EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3055
3056void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3057{
3058	if (set)
3059		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3060	else
3061		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3062}
3063EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3064
3065void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3066{
3067	u32 macmode;
3068
3069	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3070		macmode = AR_2040_JOINED_RX_CLEAR;
3071	else
3072		macmode = 0;
3073
3074	REG_WRITE(ah, AR_2040_MODE, macmode);
3075}
3076
3077/* HW Generic timers configuration */
3078
3079static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3080{
3081	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3082	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3083	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3084	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3085	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3086	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3087	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3088	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3089	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3090	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3091				AR_NDP2_TIMER_MODE, 0x0002},
3092	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3093				AR_NDP2_TIMER_MODE, 0x0004},
3094	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3095				AR_NDP2_TIMER_MODE, 0x0008},
3096	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3097				AR_NDP2_TIMER_MODE, 0x0010},
3098	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3099				AR_NDP2_TIMER_MODE, 0x0020},
3100	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3101				AR_NDP2_TIMER_MODE, 0x0040},
3102	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3103				AR_NDP2_TIMER_MODE, 0x0080}
3104};
3105
3106/* HW generic timer primitives */
3107
3108u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3109{
3110	return REG_READ(ah, AR_TSF_L32);
3111}
3112EXPORT_SYMBOL(ath9k_hw_gettsf32);
3113
3114void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3115{
3116	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3117
3118	if (timer_table->tsf2_enabled) {
3119		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3120		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3121	}
3122}
3123
3124struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3125					  void (*trigger)(void *),
3126					  void (*overflow)(void *),
3127					  void *arg,
3128					  u8 timer_index)
3129{
3130	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3131	struct ath_gen_timer *timer;
3132
3133	if ((timer_index < AR_FIRST_NDP_TIMER) ||
3134	    (timer_index >= ATH_MAX_GEN_TIMER))
3135		return NULL;
3136
3137	if ((timer_index > AR_FIRST_NDP_TIMER) &&
3138	    !AR_SREV_9300_20_OR_LATER(ah))
3139		return NULL;
3140
3141	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3142	if (timer == NULL)
3143		return NULL;
3144
3145	/* allocate a hardware generic timer slot */
3146	timer_table->timers[timer_index] = timer;
3147	timer->index = timer_index;
3148	timer->trigger = trigger;
3149	timer->overflow = overflow;
3150	timer->arg = arg;
3151
3152	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3153		timer_table->tsf2_enabled = true;
3154		ath9k_hw_gen_timer_start_tsf2(ah);
3155	}
3156
3157	return timer;
3158}
3159EXPORT_SYMBOL(ath_gen_timer_alloc);
3160
3161void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3162			      struct ath_gen_timer *timer,
3163			      u32 timer_next,
3164			      u32 timer_period)
3165{
3166	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3167	u32 mask = 0;
3168
3169	timer_table->timer_mask |= BIT(timer->index);
3170
3171	/*
3172	 * Program generic timer registers
3173	 */
3174	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3175		 timer_next);
3176	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3177		  timer_period);
3178	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3179		    gen_tmr_configuration[timer->index].mode_mask);
3180
3181	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3182		/*
3183		 * Starting from AR9462, each generic timer can select which tsf
3184		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3185		 * 8 - 15  use tsf2.
3186		 */
3187		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3188			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3189				       (1 << timer->index));
3190		else
3191			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3192				       (1 << timer->index));
3193	}
3194
3195	if (timer->trigger)
3196		mask |= SM(AR_GENTMR_BIT(timer->index),
3197			   AR_IMR_S5_GENTIMER_TRIG);
3198	if (timer->overflow)
3199		mask |= SM(AR_GENTMR_BIT(timer->index),
3200			   AR_IMR_S5_GENTIMER_THRESH);
3201
3202	REG_SET_BIT(ah, AR_IMR_S5, mask);
3203
3204	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3205		ah->imask |= ATH9K_INT_GENTIMER;
3206		ath9k_hw_set_interrupts(ah);
3207	}
3208}
3209EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3210
3211void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3212{
3213	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3214
3215	/* Clear generic timer enable bits. */
3216	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3217			gen_tmr_configuration[timer->index].mode_mask);
3218
3219	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3220		/*
3221		 * Need to switch back to TSF if it was using TSF2.
3222		 */
3223		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3224			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3225				    (1 << timer->index));
3226		}
3227	}
3228
3229	/* Disable both trigger and thresh interrupt masks */
3230	REG_CLR_BIT(ah, AR_IMR_S5,
3231		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3232		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3233
3234	timer_table->timer_mask &= ~BIT(timer->index);
3235
3236	if (timer_table->timer_mask == 0) {
3237		ah->imask &= ~ATH9K_INT_GENTIMER;
3238		ath9k_hw_set_interrupts(ah);
3239	}
3240}
3241EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3242
3243void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3244{
3245	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3246
3247	/* free the hardware generic timer slot */
3248	timer_table->timers[timer->index] = NULL;
3249	kfree(timer);
3250}
3251EXPORT_SYMBOL(ath_gen_timer_free);
3252
3253/*
3254 * Generic Timer Interrupts handling
3255 */
3256void ath_gen_timer_isr(struct ath_hw *ah)
3257{
3258	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3259	struct ath_gen_timer *timer;
3260	unsigned long trigger_mask, thresh_mask;
3261	unsigned int index;
3262
3263	/* get hardware generic timer interrupt status */
3264	trigger_mask = ah->intr_gen_timer_trigger;
3265	thresh_mask = ah->intr_gen_timer_thresh;
3266	trigger_mask &= timer_table->timer_mask;
3267	thresh_mask &= timer_table->timer_mask;
3268
3269	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3270		timer = timer_table->timers[index];
3271		if (!timer)
3272		    continue;
3273		if (!timer->overflow)
3274		    continue;
3275
3276		trigger_mask &= ~BIT(index);
3277		timer->overflow(timer->arg);
3278	}
3279
3280	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3281		timer = timer_table->timers[index];
3282		if (!timer)
3283		    continue;
3284		if (!timer->trigger)
3285		    continue;
3286		timer->trigger(timer->arg);
3287	}
3288}
3289EXPORT_SYMBOL(ath_gen_timer_isr);
3290
3291/********/
3292/* HTC  */
3293/********/
3294
3295static struct {
3296	u32 version;
3297	const char * name;
3298} ath_mac_bb_names[] = {
3299	/* Devices with external radios */
3300	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3301	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3302	{ AR_SREV_VERSION_9100,		"9100" },
3303	{ AR_SREV_VERSION_9160,		"9160" },
3304	/* Single-chip solutions */
3305	{ AR_SREV_VERSION_9280,		"9280" },
3306	{ AR_SREV_VERSION_9285,		"9285" },
3307	{ AR_SREV_VERSION_9287,         "9287" },
3308	{ AR_SREV_VERSION_9271,         "9271" },
3309	{ AR_SREV_VERSION_9300,         "9300" },
3310	{ AR_SREV_VERSION_9330,         "9330" },
3311	{ AR_SREV_VERSION_9340,		"9340" },
3312	{ AR_SREV_VERSION_9485,         "9485" },
3313	{ AR_SREV_VERSION_9462,         "9462" },
3314	{ AR_SREV_VERSION_9550,         "9550" },
3315	{ AR_SREV_VERSION_9565,         "9565" },
3316	{ AR_SREV_VERSION_9531,         "9531" },
3317	{ AR_SREV_VERSION_9561,         "9561" },
3318};
3319
3320/* For devices with external radios */
3321static struct {
3322	u16 version;
3323	const char * name;
3324} ath_rf_names[] = {
3325	{ 0,				"5133" },
3326	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3327	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3328	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3329	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3330};
3331
3332/*
3333 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3334 */
3335static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3336{
3337	int i;
3338
3339	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3340		if (ath_mac_bb_names[i].version == mac_bb_version) {
3341			return ath_mac_bb_names[i].name;
3342		}
3343	}
3344
3345	return "????";
3346}
3347
3348/*
3349 * Return the RF name. "????" is returned if the RF is unknown.
3350 * Used for devices with external radios.
3351 */
3352static const char *ath9k_hw_rf_name(u16 rf_version)
3353{
3354	int i;
3355
3356	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3357		if (ath_rf_names[i].version == rf_version) {
3358			return ath_rf_names[i].name;
3359		}
3360	}
3361
3362	return "????";
3363}
3364
3365void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3366{
3367	int used;
3368
3369	/* chipsets >= AR9280 are single-chip */
3370	if (AR_SREV_9280_20_OR_LATER(ah)) {
3371		used = scnprintf(hw_name, len,
3372				 "Atheros AR%s Rev:%x",
3373				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3374				 ah->hw_version.macRev);
3375	}
3376	else {
3377		used = scnprintf(hw_name, len,
3378				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3379				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3380				 ah->hw_version.macRev,
3381				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3382						  & AR_RADIO_SREV_MAJOR)),
3383				 ah->hw_version.phyRev);
3384	}
3385
3386	hw_name[used] = '\0';
3387}
3388EXPORT_SYMBOL(ath9k_hw_name);