Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/io.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/time.h>
  21#include <linux/bitops.h>
  22#include <linux/etherdevice.h>
  23#include <linux/gpio.h>
  24#include <asm/unaligned.h>
  25
  26#include "hw.h"
  27#include "hw-ops.h"
  28#include "ar9003_mac.h"
  29#include "ar9003_mci.h"
  30#include "ar9003_phy.h"
  31#include "ath9k.h"
  32
  33static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  34
  35MODULE_AUTHOR("Atheros Communications");
  36MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
 
  37MODULE_LICENSE("Dual BSD/GPL");
  38
  39static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  40{
  41	struct ath_common *common = ath9k_hw_common(ah);
  42	struct ath9k_channel *chan = ah->curchan;
  43	unsigned int clockrate;
  44
  45	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  46	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  47		clockrate = 117;
  48	else if (!chan) /* should really check for CCK instead */
  49		clockrate = ATH9K_CLOCK_RATE_CCK;
  50	else if (IS_CHAN_2GHZ(chan))
  51		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  52	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  53		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  54	else
  55		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  56
  57	if (chan) {
  58		if (IS_CHAN_HT40(chan))
  59			clockrate *= 2;
  60		if (IS_CHAN_HALF_RATE(chan))
  61			clockrate /= 2;
  62		if (IS_CHAN_QUARTER_RATE(chan))
  63			clockrate /= 4;
  64	}
  65
  66	common->clockrate = clockrate;
  67}
  68
  69static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  70{
  71	struct ath_common *common = ath9k_hw_common(ah);
  72
  73	return usecs * common->clockrate;
  74}
  75
  76bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  77{
  78	int i;
  79
  80	BUG_ON(timeout < AH_TIME_QUANTUM);
  81
  82	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  83		if ((REG_READ(ah, reg) & mask) == val)
  84			return true;
  85
  86		udelay(AH_TIME_QUANTUM);
  87	}
  88
  89	ath_dbg(ath9k_hw_common(ah), ANY,
  90		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  91		timeout, reg, REG_READ(ah, reg), mask, val);
  92
  93	return false;
  94}
  95EXPORT_SYMBOL(ath9k_hw_wait);
  96
  97void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  98			  int hw_delay)
  99{
 100	hw_delay /= 10;
 101
 102	if (IS_CHAN_HALF_RATE(chan))
 103		hw_delay *= 2;
 104	else if (IS_CHAN_QUARTER_RATE(chan))
 105		hw_delay *= 4;
 106
 107	udelay(hw_delay + BASE_ACTIVATE_DELAY);
 108}
 109
 110void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
 111			  int column, unsigned int *writecnt)
 112{
 113	int r;
 114
 115	ENABLE_REGWRITE_BUFFER(ah);
 116	for (r = 0; r < array->ia_rows; r++) {
 117		REG_WRITE(ah, INI_RA(array, r, 0),
 118			  INI_RA(array, r, column));
 119		DO_DELAY(*writecnt);
 120	}
 121	REGWRITE_BUFFER_FLUSH(ah);
 122}
 123
 124void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
 125{
 126	u32 *tmp_reg_list, *tmp_data;
 127	int i;
 128
 129	tmp_reg_list = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
 130	if (!tmp_reg_list) {
 131		dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
 132		return;
 133	}
 134
 135	tmp_data = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
 136	if (!tmp_data) {
 137		dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
 138		goto error_tmp_data;
 139	}
 140
 141	for (i = 0; i < size; i++)
 142		tmp_reg_list[i] = array[i][0];
 143
 144	REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
 145
 146	for (i = 0; i < size; i++)
 147		array[i][1] = tmp_data[i];
 148
 149	kfree(tmp_data);
 150error_tmp_data:
 151	kfree(tmp_reg_list);
 152}
 153
 154u32 ath9k_hw_reverse_bits(u32 val, u32 n)
 155{
 156	u32 retval;
 157	int i;
 158
 159	for (i = 0, retval = 0; i < n; i++) {
 160		retval = (retval << 1) | (val & 1);
 161		val >>= 1;
 162	}
 163	return retval;
 164}
 165
 166u16 ath9k_hw_computetxtime(struct ath_hw *ah,
 167			   u8 phy, int kbps,
 168			   u32 frameLen, u16 rateix,
 169			   bool shortPreamble)
 170{
 171	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
 172
 173	if (kbps == 0)
 174		return 0;
 175
 176	switch (phy) {
 177	case WLAN_RC_PHY_CCK:
 178		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
 179		if (shortPreamble)
 180			phyTime >>= 1;
 181		numBits = frameLen << 3;
 182		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
 183		break;
 184	case WLAN_RC_PHY_OFDM:
 185		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
 186			bitsPerSymbol =
 187				((kbps >> 2) * OFDM_SYMBOL_TIME_QUARTER) / 1000;
 188			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 189			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 190			txTime = OFDM_SIFS_TIME_QUARTER
 191				+ OFDM_PREAMBLE_TIME_QUARTER
 192				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
 193		} else if (ah->curchan &&
 194			   IS_CHAN_HALF_RATE(ah->curchan)) {
 195			bitsPerSymbol =
 196				((kbps >> 1) * OFDM_SYMBOL_TIME_HALF) / 1000;
 197			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 198			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 199			txTime = OFDM_SIFS_TIME_HALF +
 200				OFDM_PREAMBLE_TIME_HALF
 201				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
 202		} else {
 203			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
 204			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 205			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 206			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
 207				+ (numSymbols * OFDM_SYMBOL_TIME);
 208		}
 209		break;
 210	default:
 211		ath_err(ath9k_hw_common(ah),
 212			"Unknown phy %u (rate ix %u)\n", phy, rateix);
 213		txTime = 0;
 214		break;
 215	}
 216
 217	return txTime;
 218}
 219EXPORT_SYMBOL(ath9k_hw_computetxtime);
 220
 221void ath9k_hw_get_channel_centers(struct ath_hw *ah,
 222				  struct ath9k_channel *chan,
 223				  struct chan_centers *centers)
 224{
 225	int8_t extoff;
 226
 227	if (!IS_CHAN_HT40(chan)) {
 228		centers->ctl_center = centers->ext_center =
 229			centers->synth_center = chan->channel;
 230		return;
 231	}
 232
 233	if (IS_CHAN_HT40PLUS(chan)) {
 234		centers->synth_center =
 235			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
 236		extoff = 1;
 237	} else {
 238		centers->synth_center =
 239			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
 240		extoff = -1;
 241	}
 242
 243	centers->ctl_center =
 244		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
 245	/* 25 MHz spacing is supported by hw but not on upper layers */
 246	centers->ext_center =
 247		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
 248}
 249
 250/******************/
 251/* Chip Revisions */
 252/******************/
 253
 254static bool ath9k_hw_read_revisions(struct ath_hw *ah)
 255{
 256	u32 srev;
 257	u32 val;
 258
 259	if (ah->get_mac_revision)
 260		ah->hw_version.macRev = ah->get_mac_revision();
 261
 262	switch (ah->hw_version.devid) {
 263	case AR5416_AR9100_DEVID:
 264		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
 265		break;
 266	case AR9300_DEVID_AR9330:
 267		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
 268		if (!ah->get_mac_revision) {
 269			val = REG_READ(ah, AR_SREV(ah));
 270			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 271		}
 272		return true;
 273	case AR9300_DEVID_AR9340:
 274		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
 275		return true;
 276	case AR9300_DEVID_QCA955X:
 277		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
 278		return true;
 279	case AR9300_DEVID_AR953X:
 280		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
 281		return true;
 282	case AR9300_DEVID_QCA956X:
 283		ah->hw_version.macVersion = AR_SREV_VERSION_9561;
 284		return true;
 285	}
 286
 287	srev = REG_READ(ah, AR_SREV(ah));
 288
 289	if (srev == -1) {
 290		ath_err(ath9k_hw_common(ah),
 291			"Failed to read SREV register");
 292		return false;
 293	}
 294
 295	val = srev & AR_SREV_ID(ah);
 296
 297	if (val == 0xFF) {
 298		val = srev;
 299		ah->hw_version.macVersion =
 300			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
 301		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 302
 303		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 304			ah->is_pciexpress = true;
 305		else
 306			ah->is_pciexpress = (val &
 307					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
 308	} else {
 309		if (!AR_SREV_9100(ah))
 310			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
 311
 312		ah->hw_version.macRev = val & AR_SREV_REVISION;
 313
 314		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
 315			ah->is_pciexpress = true;
 316	}
 317
 318	return true;
 319}
 320
 321/************************************/
 322/* HW Attach, Detach, Init Routines */
 323/************************************/
 324
 325static void ath9k_hw_disablepcie(struct ath_hw *ah)
 326{
 327	if (!AR_SREV_5416(ah))
 328		return;
 329
 330	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
 331	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
 332	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
 333	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
 334	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
 335	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
 336	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
 337	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
 338	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
 339
 340	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
 341}
 342
 343/* This should work for all families including legacy */
 344static bool ath9k_hw_chip_test(struct ath_hw *ah)
 345{
 346	struct ath_common *common = ath9k_hw_common(ah);
 347	u32 regAddr[2] = { AR_STA_ID0 };
 348	u32 regHold[2];
 349	static const u32 patternData[4] = {
 350		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
 351	};
 352	int i, j, loop_max;
 353
 354	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 355		loop_max = 2;
 356		regAddr[1] = AR_PHY_BASE + (8 << 2);
 357	} else
 358		loop_max = 1;
 359
 360	for (i = 0; i < loop_max; i++) {
 361		u32 addr = regAddr[i];
 362		u32 wrData, rdData;
 363
 364		regHold[i] = REG_READ(ah, addr);
 365		for (j = 0; j < 0x100; j++) {
 366			wrData = (j << 16) | j;
 367			REG_WRITE(ah, addr, wrData);
 368			rdData = REG_READ(ah, addr);
 369			if (rdData != wrData) {
 370				ath_err(common,
 371					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 372					addr, wrData, rdData);
 373				return false;
 374			}
 375		}
 376		for (j = 0; j < 4; j++) {
 377			wrData = patternData[j];
 378			REG_WRITE(ah, addr, wrData);
 379			rdData = REG_READ(ah, addr);
 380			if (wrData != rdData) {
 381				ath_err(common,
 382					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 383					addr, wrData, rdData);
 384				return false;
 385			}
 386		}
 387		REG_WRITE(ah, regAddr[i], regHold[i]);
 388	}
 389	udelay(100);
 390
 391	return true;
 392}
 393
 394static void ath9k_hw_init_config(struct ath_hw *ah)
 395{
 396	struct ath_common *common = ath9k_hw_common(ah);
 397
 398	ah->config.dma_beacon_response_time = 1;
 399	ah->config.sw_beacon_response_time = 6;
 400	ah->config.cwm_ignore_extcca = false;
 401	ah->config.analog_shiftreg = 1;
 402
 403	ah->config.rx_intr_mitigation = true;
 404
 405	if (AR_SREV_9300_20_OR_LATER(ah)) {
 406		ah->config.rimt_last = 500;
 407		ah->config.rimt_first = 2000;
 408	} else {
 409		ah->config.rimt_last = 250;
 410		ah->config.rimt_first = 700;
 411	}
 412
 413	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 414		ah->config.pll_pwrsave = 7;
 415
 416	/*
 417	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
 418	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
 419	 * This means we use it for all AR5416 devices, and the few
 420	 * minor PCI AR9280 devices out there.
 421	 *
 422	 * Serialization is required because these devices do not handle
 423	 * well the case of two concurrent reads/writes due to the latency
 424	 * involved. During one read/write another read/write can be issued
 425	 * on another CPU while the previous read/write may still be working
 426	 * on our hardware, if we hit this case the hardware poops in a loop.
 427	 * We prevent this by serializing reads and writes.
 428	 *
 429	 * This issue is not present on PCI-Express devices or pre-AR5416
 430	 * devices (legacy, 802.11abg).
 431	 */
 432	if (num_possible_cpus() > 1)
 433		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
 434
 435	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
 436		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
 437		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
 438		     !ah->is_pciexpress)) {
 439			ah->config.serialize_regmode = SER_REG_MODE_ON;
 440		} else {
 441			ah->config.serialize_regmode = SER_REG_MODE_OFF;
 442		}
 443	}
 444
 445	ath_dbg(common, RESET, "serialize_regmode is %d\n",
 446		ah->config.serialize_regmode);
 447
 448	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 449		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
 450	else
 451		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
 452}
 453
 454static void ath9k_hw_init_defaults(struct ath_hw *ah)
 455{
 456	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 457
 458	regulatory->country_code = CTRY_DEFAULT;
 459	regulatory->power_limit = MAX_COMBINED_POWER;
 460
 461	ah->hw_version.magic = AR5416_MAGIC;
 462	ah->hw_version.subvendorid = 0;
 463
 464	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
 465			       AR_STA_ID1_MCAST_KSRCH;
 466	if (AR_SREV_9100(ah))
 467		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
 468
 469	ah->slottime = 9;
 470	ah->globaltxtimeout = (u32) -1;
 471	ah->power_mode = ATH9K_PM_UNDEFINED;
 472	ah->htc_reset_init = true;
 473
 474	ah->tpc_enabled = false;
 475
 476	ah->ani_function = ATH9K_ANI_ALL;
 477	if (!AR_SREV_9300_20_OR_LATER(ah))
 478		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
 479
 480	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 481		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
 482	else
 483		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
 484}
 485
 486static void ath9k_hw_init_macaddr(struct ath_hw *ah)
 487{
 488	struct ath_common *common = ath9k_hw_common(ah);
 
 489	int i;
 490	u16 eeval;
 491	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
 492
 493	/* MAC address may already be loaded via ath9k_platform_data */
 494	if (is_valid_ether_addr(common->macaddr))
 495		return;
 496
 497	for (i = 0; i < 3; i++) {
 498		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
 
 499		common->macaddr[2 * i] = eeval >> 8;
 500		common->macaddr[2 * i + 1] = eeval & 0xff;
 501	}
 
 
 
 
 502
 503	if (is_valid_ether_addr(common->macaddr))
 504		return;
 505
 506	ath_err(common, "eeprom contains invalid mac address: %pM\n",
 507		common->macaddr);
 508
 509	eth_random_addr(common->macaddr);
 510	ath_err(common, "random mac address will be used: %pM\n",
 511		common->macaddr);
 512
 513	return;
 514}
 515
 516static int ath9k_hw_post_init(struct ath_hw *ah)
 517{
 518	struct ath_common *common = ath9k_hw_common(ah);
 519	int ecode;
 520
 521	if (common->bus_ops->ath_bus_type != ATH_USB) {
 522		if (!ath9k_hw_chip_test(ah))
 523			return -ENODEV;
 524	}
 525
 526	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 527		ecode = ar9002_hw_rf_claim(ah);
 528		if (ecode != 0)
 529			return ecode;
 530	}
 531
 532	ecode = ath9k_hw_eeprom_init(ah);
 533	if (ecode != 0)
 534		return ecode;
 535
 536	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
 537		ah->eep_ops->get_eeprom_ver(ah),
 538		ah->eep_ops->get_eeprom_rev(ah));
 539
 540	ath9k_hw_ani_init(ah);
 541
 542	/*
 543	 * EEPROM needs to be initialized before we do this.
 544	 * This is required for regulatory compliance.
 545	 */
 546	if (AR_SREV_9300_20_OR_LATER(ah)) {
 547		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
 548		if ((regdmn & 0xF0) == CTL_FCC) {
 549			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
 550			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
 551		}
 552	}
 553
 554	return 0;
 555}
 556
 557static int ath9k_hw_attach_ops(struct ath_hw *ah)
 558{
 559	if (!AR_SREV_9300_20_OR_LATER(ah))
 560		return ar9002_hw_attach_ops(ah);
 561
 562	ar9003_hw_attach_ops(ah);
 563	return 0;
 564}
 565
 566/* Called for all hardware families */
 567static int __ath9k_hw_init(struct ath_hw *ah)
 568{
 569	struct ath_common *common = ath9k_hw_common(ah);
 570	int r = 0;
 571
 572	if (!ath9k_hw_read_revisions(ah)) {
 573		ath_err(common, "Could not read hardware revisions");
 574		return -EOPNOTSUPP;
 575	}
 576
 577	switch (ah->hw_version.macVersion) {
 578	case AR_SREV_VERSION_5416_PCI:
 579	case AR_SREV_VERSION_5416_PCIE:
 580	case AR_SREV_VERSION_9160:
 581	case AR_SREV_VERSION_9100:
 582	case AR_SREV_VERSION_9280:
 583	case AR_SREV_VERSION_9285:
 584	case AR_SREV_VERSION_9287:
 585	case AR_SREV_VERSION_9271:
 586	case AR_SREV_VERSION_9300:
 587	case AR_SREV_VERSION_9330:
 588	case AR_SREV_VERSION_9485:
 589	case AR_SREV_VERSION_9340:
 590	case AR_SREV_VERSION_9462:
 591	case AR_SREV_VERSION_9550:
 592	case AR_SREV_VERSION_9565:
 593	case AR_SREV_VERSION_9531:
 594	case AR_SREV_VERSION_9561:
 595		break;
 596	default:
 597		ath_err(common,
 598			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
 599			ah->hw_version.macVersion, ah->hw_version.macRev);
 600		return -EOPNOTSUPP;
 601	}
 602
 603	/*
 604	 * Read back AR_WA(ah) into a permanent copy and set bits 14 and 17.
 605	 * We need to do this to avoid RMW of this register. We cannot
 606	 * read the reg when chip is asleep.
 607	 */
 608	if (AR_SREV_9300_20_OR_LATER(ah)) {
 609		ah->WARegVal = REG_READ(ah, AR_WA(ah));
 610		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
 611				 AR_WA_ASPM_TIMER_BASED_DISABLE);
 612	}
 613
 614	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
 615		ath_err(common, "Couldn't reset chip\n");
 616		return -EIO;
 617	}
 618
 619	if (AR_SREV_9565(ah)) {
 620		ah->WARegVal |= AR_WA_BIT22;
 621		REG_WRITE(ah, AR_WA(ah), ah->WARegVal);
 622	}
 623
 624	ath9k_hw_init_defaults(ah);
 625	ath9k_hw_init_config(ah);
 626
 627	r = ath9k_hw_attach_ops(ah);
 628	if (r)
 629		return r;
 630
 631	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
 632		ath_err(common, "Couldn't wakeup chip\n");
 633		return -EIO;
 634	}
 635
 636	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
 637	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
 638		ah->is_pciexpress = false;
 639
 640	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
 641	ath9k_hw_init_cal_settings(ah);
 642
 643	if (!ah->is_pciexpress)
 644		ath9k_hw_disablepcie(ah);
 645
 646	r = ath9k_hw_post_init(ah);
 647	if (r)
 648		return r;
 649
 650	ath9k_hw_init_mode_gain_regs(ah);
 651	r = ath9k_hw_fill_cap_info(ah);
 652	if (r)
 653		return r;
 654
 655	ath9k_hw_init_macaddr(ah);
 
 
 
 
 
 656	ath9k_hw_init_hang_checks(ah);
 657
 658	common->state = ATH_HW_INITIALIZED;
 659
 660	return 0;
 661}
 662
 663int ath9k_hw_init(struct ath_hw *ah)
 664{
 665	int ret;
 666	struct ath_common *common = ath9k_hw_common(ah);
 667
 668	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
 669	switch (ah->hw_version.devid) {
 670	case AR5416_DEVID_PCI:
 671	case AR5416_DEVID_PCIE:
 672	case AR5416_AR9100_DEVID:
 673	case AR9160_DEVID_PCI:
 674	case AR9280_DEVID_PCI:
 675	case AR9280_DEVID_PCIE:
 676	case AR9285_DEVID_PCIE:
 677	case AR9287_DEVID_PCI:
 678	case AR9287_DEVID_PCIE:
 679	case AR2427_DEVID_PCIE:
 680	case AR9300_DEVID_PCIE:
 681	case AR9300_DEVID_AR9485_PCIE:
 682	case AR9300_DEVID_AR9330:
 683	case AR9300_DEVID_AR9340:
 684	case AR9300_DEVID_QCA955X:
 685	case AR9300_DEVID_AR9580:
 686	case AR9300_DEVID_AR9462:
 687	case AR9485_DEVID_AR1111:
 688	case AR9300_DEVID_AR9565:
 689	case AR9300_DEVID_AR953X:
 690	case AR9300_DEVID_QCA956X:
 691		break;
 692	default:
 693		if (common->bus_ops->ath_bus_type == ATH_USB)
 694			break;
 695		ath_err(common, "Hardware device ID 0x%04x not supported\n",
 696			ah->hw_version.devid);
 697		return -EOPNOTSUPP;
 698	}
 699
 700	ret = __ath9k_hw_init(ah);
 701	if (ret) {
 702		ath_err(common,
 703			"Unable to initialize hardware; initialization status: %d\n",
 704			ret);
 705		return ret;
 706	}
 707
 708	ath_dynack_init(ah);
 709
 710	return 0;
 711}
 712EXPORT_SYMBOL(ath9k_hw_init);
 713
 714static void ath9k_hw_init_qos(struct ath_hw *ah)
 715{
 716	ENABLE_REGWRITE_BUFFER(ah);
 717
 718	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
 719	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
 720
 721	REG_WRITE(ah, AR_QOS_NO_ACK,
 722		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
 723		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
 724		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
 725
 726	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
 727	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
 728	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
 729	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
 730	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
 731
 732	REGWRITE_BUFFER_FLUSH(ah);
 733}
 734
 735u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
 736{
 737	struct ath_common *common = ath9k_hw_common(ah);
 738	int i = 0;
 739
 740	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 741	udelay(100);
 742	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 743
 744	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
 745
 746		udelay(100);
 747
 748		if (WARN_ON_ONCE(i >= 100)) {
 749			ath_err(common, "PLL4 measurement not done\n");
 750			break;
 751		}
 752
 753		i++;
 754	}
 755
 756	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
 757}
 758EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
 759
 760static void ath9k_hw_init_pll(struct ath_hw *ah,
 761			      struct ath9k_channel *chan)
 762{
 763	u32 pll;
 764
 765	pll = ath9k_hw_compute_pll_control(ah, chan);
 766
 767	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
 768		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
 769		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 770			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
 771		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 772			      AR_CH0_DPLL2_KD, 0x40);
 773		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 774			      AR_CH0_DPLL2_KI, 0x4);
 775
 776		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 777			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
 778		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 779			      AR_CH0_BB_DPLL1_NINI, 0x58);
 780		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 781			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
 782
 783		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 784			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
 785		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 786			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
 787		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 788			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
 789
 790		/* program BB PLL phase_shift to 0x6 */
 791		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 792			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
 793
 794		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 795			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
 796		udelay(1000);
 797	} else if (AR_SREV_9330(ah)) {
 798		u32 ddr_dpll2, pll_control2, kd;
 799
 800		if (ah->is_clk_25mhz) {
 801			ddr_dpll2 = 0x18e82f01;
 802			pll_control2 = 0xe04a3d;
 803			kd = 0x1d;
 804		} else {
 805			ddr_dpll2 = 0x19e82f01;
 806			pll_control2 = 0x886666;
 807			kd = 0x3d;
 808		}
 809
 810		/* program DDR PLL ki and kd value */
 811		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
 812
 813		/* program DDR PLL phase_shift */
 814		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
 815			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
 816
 817		REG_WRITE(ah, AR_RTC_PLL_CONTROL(ah),
 818			  pll | AR_RTC_9300_PLL_BYPASS);
 819		udelay(1000);
 820
 821		/* program refdiv, nint, frac to RTC register */
 822		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
 823
 824		/* program BB PLL kd and ki value */
 825		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
 826		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
 827
 828		/* program BB PLL phase_shift */
 829		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 830			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
 831	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 832		   AR_SREV_9561(ah)) {
 833		u32 regval, pll2_divint, pll2_divfrac, refdiv;
 834
 835		REG_WRITE(ah, AR_RTC_PLL_CONTROL(ah),
 836			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
 837		udelay(1000);
 838
 839		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
 840		udelay(100);
 841
 842		if (ah->is_clk_25mhz) {
 843			if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 844				pll2_divint = 0x1c;
 845				pll2_divfrac = 0xa3d2;
 846				refdiv = 1;
 847			} else {
 848				pll2_divint = 0x54;
 849				pll2_divfrac = 0x1eb85;
 850				refdiv = 3;
 851			}
 852		} else {
 853			if (AR_SREV_9340(ah)) {
 854				pll2_divint = 88;
 855				pll2_divfrac = 0;
 856				refdiv = 5;
 857			} else {
 858				pll2_divint = 0x11;
 859				pll2_divfrac = (AR_SREV_9531(ah) ||
 860						AR_SREV_9561(ah)) ?
 861						0x26665 : 0x26666;
 862				refdiv = 1;
 863			}
 864		}
 865
 866		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 867		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 868			regval |= (0x1 << 22);
 869		else
 870			regval |= (0x1 << 16);
 871		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 872		udelay(100);
 873
 874		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
 875			  (pll2_divint << 18) | pll2_divfrac);
 876		udelay(100);
 877
 878		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 879		if (AR_SREV_9340(ah))
 880			regval = (regval & 0x80071fff) |
 881				(0x1 << 30) |
 882				(0x1 << 13) |
 883				(0x4 << 26) |
 884				(0x18 << 19);
 885		else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 886			regval = (regval & 0x01c00fff) |
 887				(0x1 << 31) |
 888				(0x2 << 29) |
 889				(0xa << 25) |
 890				(0x1 << 19);
 891
 892			if (AR_SREV_9531(ah))
 893				regval |= (0x6 << 12);
 894		} else
 895			regval = (regval & 0x80071fff) |
 896				(0x3 << 30) |
 897				(0x1 << 13) |
 898				(0x4 << 26) |
 899				(0x60 << 19);
 900		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 901
 902		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 903			REG_WRITE(ah, AR_PHY_PLL_MODE,
 904				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
 905		else
 906			REG_WRITE(ah, AR_PHY_PLL_MODE,
 907				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
 908
 909		udelay(1000);
 910	}
 911
 912	if (AR_SREV_9565(ah))
 913		pll |= 0x40000;
 914	REG_WRITE(ah, AR_RTC_PLL_CONTROL(ah), pll);
 915
 916	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
 917	    AR_SREV_9550(ah))
 918		udelay(1000);
 919
 920	/* Switch the core clock for ar9271 to 117Mhz */
 921	if (AR_SREV_9271(ah)) {
 922		udelay(500);
 923		REG_WRITE(ah, 0x50040, 0x304);
 924	}
 925
 926	udelay(RTC_PLL_SETTLE_DELAY);
 927
 928	REG_WRITE(ah, AR_RTC_SLEEP_CLK(ah), AR_RTC_FORCE_DERIVED_CLK);
 929}
 930
 931static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
 932					  enum nl80211_iftype opmode)
 933{
 934	u32 sync_default = AR_INTR_SYNC_DEFAULT;
 935	u32 imr_reg = AR_IMR_TXERR |
 936		AR_IMR_TXURN |
 937		AR_IMR_RXERR |
 938		AR_IMR_RXORN |
 939		AR_IMR_BCNMISC;
 940	u32 msi_cfg = 0;
 941
 942	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 943	    AR_SREV_9561(ah))
 944		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
 945
 946	if (AR_SREV_9300_20_OR_LATER(ah)) {
 947		imr_reg |= AR_IMR_RXOK_HP;
 948		if (ah->config.rx_intr_mitigation) {
 949			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 950			msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
 951		} else {
 952			imr_reg |= AR_IMR_RXOK_LP;
 953			msi_cfg |= AR_INTCFG_MSI_RXOK;
 954		}
 955	} else {
 956		if (ah->config.rx_intr_mitigation) {
 957			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 958			msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
 959		} else {
 960			imr_reg |= AR_IMR_RXOK;
 961			msi_cfg |= AR_INTCFG_MSI_RXOK;
 962		}
 963	}
 964
 965	if (ah->config.tx_intr_mitigation) {
 966		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
 967		msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
 968	} else {
 969		imr_reg |= AR_IMR_TXOK;
 970		msi_cfg |= AR_INTCFG_MSI_TXOK;
 971	}
 972
 973	ENABLE_REGWRITE_BUFFER(ah);
 974
 975	REG_WRITE(ah, AR_IMR, imr_reg);
 976	ah->imrs2_reg |= AR_IMR_S2_GTT;
 977	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 978
 979	if (ah->msi_enabled) {
 980		ah->msi_reg = REG_READ(ah, AR_PCIE_MSI(ah));
 981		ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
 982		ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
 983		REG_WRITE(ah, AR_INTCFG, msi_cfg);
 984		ath_dbg(ath9k_hw_common(ah), ANY,
 985			"value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
 986			REG_READ(ah, AR_INTCFG), msi_cfg);
 987	}
 988
 989	if (!AR_SREV_9100(ah)) {
 990		REG_WRITE(ah, AR_INTR_SYNC_CAUSE(ah), 0xFFFFFFFF);
 991		REG_WRITE(ah, AR_INTR_SYNC_ENABLE(ah), sync_default);
 992		REG_WRITE(ah, AR_INTR_SYNC_MASK(ah), 0);
 993	}
 994
 995	REGWRITE_BUFFER_FLUSH(ah);
 996
 997	if (AR_SREV_9300_20_OR_LATER(ah)) {
 998		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE(ah), 0);
 999		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK(ah), 0);
1000		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE(ah), 0);
1001		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK(ah), 0);
1002	}
1003}
1004
1005static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
1006{
1007	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
1008	val = min(val, (u32) 0xFFFF);
1009	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1010}
1011
1012void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1013{
1014	u32 val = ath9k_hw_mac_to_clks(ah, us);
1015	val = min(val, (u32) 0xFFFF);
1016	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1017}
1018
1019void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1020{
1021	u32 val = ath9k_hw_mac_to_clks(ah, us);
1022	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1023	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1024}
1025
1026void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1027{
1028	u32 val = ath9k_hw_mac_to_clks(ah, us);
1029	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1030	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1031}
1032
1033static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1034{
1035	if (tu > 0xFFFF) {
1036		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1037			tu);
1038		ah->globaltxtimeout = (u32) -1;
1039		return false;
1040	} else {
1041		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1042		ah->globaltxtimeout = tu;
1043		return true;
1044	}
1045}
1046
1047void ath9k_hw_init_global_settings(struct ath_hw *ah)
1048{
1049	struct ath_common *common = ath9k_hw_common(ah);
1050	const struct ath9k_channel *chan = ah->curchan;
1051	int acktimeout, ctstimeout, ack_offset = 0;
1052	int slottime;
1053	int sifstime;
1054	int rx_lat = 0, tx_lat = 0, eifs = 0, ack_shift = 0;
1055	u32 reg;
1056
1057	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1058		ah->misc_mode);
1059
1060	if (!chan)
1061		return;
1062
1063	if (ah->misc_mode != 0)
1064		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1065
1066	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1067		rx_lat = 41;
1068	else
1069		rx_lat = 37;
1070	tx_lat = 54;
1071
1072	if (IS_CHAN_5GHZ(chan))
1073		sifstime = 16;
1074	else
1075		sifstime = 10;
1076
1077	if (IS_CHAN_HALF_RATE(chan)) {
1078		eifs = 175;
1079		rx_lat *= 2;
1080		tx_lat *= 2;
1081		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1082		    tx_lat += 11;
1083
1084		sifstime = 32;
1085		ack_offset = 16;
1086		ack_shift = 3;
1087		slottime = 13;
1088	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1089		eifs = 340;
1090		rx_lat = (rx_lat * 4) - 1;
1091		tx_lat *= 4;
1092		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1093		    tx_lat += 22;
1094
1095		sifstime = 64;
1096		ack_offset = 32;
1097		ack_shift = 1;
1098		slottime = 21;
1099	} else {
1100		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1101			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1102			reg = AR_USEC_ASYNC_FIFO;
1103		} else {
1104			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1105				common->clockrate;
1106			reg = REG_READ(ah, AR_USEC);
1107		}
1108		rx_lat = MS(reg, AR_USEC_RX_LAT);
1109		tx_lat = MS(reg, AR_USEC_TX_LAT);
1110
1111		slottime = ah->slottime;
1112	}
1113
1114	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1115	slottime += 3 * ah->coverage_class;
1116	acktimeout = slottime + sifstime + ack_offset;
1117	ctstimeout = acktimeout;
1118
1119	/*
1120	 * Workaround for early ACK timeouts, add an offset to match the
1121	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1122	 * This was initially only meant to work around an issue with delayed
1123	 * BA frames in some implementations, but it has been found to fix ACK
1124	 * timeout issues in other cases as well.
1125	 */
1126	if (IS_CHAN_2GHZ(chan) &&
1127	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1128		acktimeout += 64 - sifstime - ah->slottime;
1129		ctstimeout += 48 - sifstime - ah->slottime;
1130	}
1131
1132	if (ah->dynack.enabled) {
1133		acktimeout = ah->dynack.ackto;
1134		ctstimeout = acktimeout;
1135		slottime = (acktimeout - 3) / 2;
1136	} else {
1137		ah->dynack.ackto = acktimeout;
1138	}
1139
1140	ath9k_hw_set_sifs_time(ah, sifstime);
1141	ath9k_hw_setslottime(ah, slottime);
1142	ath9k_hw_set_ack_timeout(ah, acktimeout);
1143	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1144	if (ah->globaltxtimeout != (u32) -1)
1145		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1146
1147	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1148	REG_RMW(ah, AR_USEC,
1149		(common->clockrate - 1) |
1150		SM(rx_lat, AR_USEC_RX_LAT) |
1151		SM(tx_lat, AR_USEC_TX_LAT),
1152		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1153
1154	if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
1155		REG_RMW(ah, AR_TXSIFS,
1156			sifstime | SM(ack_shift, AR_TXSIFS_ACK_SHIFT),
1157			(AR_TXSIFS_TIME | AR_TXSIFS_ACK_SHIFT));
1158}
1159EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1160
1161void ath9k_hw_deinit(struct ath_hw *ah)
1162{
1163	struct ath_common *common = ath9k_hw_common(ah);
1164
1165	if (common->state < ATH_HW_INITIALIZED)
1166		return;
1167
1168	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1169}
1170EXPORT_SYMBOL(ath9k_hw_deinit);
1171
1172/*******/
1173/* INI */
1174/*******/
1175
1176u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1177{
1178	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1179
1180	if (IS_CHAN_2GHZ(chan))
1181		ctl |= CTL_11G;
1182	else
1183		ctl |= CTL_11A;
1184
1185	return ctl;
1186}
1187
1188/****************************************/
1189/* Reset and Channel Switching Routines */
1190/****************************************/
1191
1192static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1193{
1194	struct ath_common *common = ath9k_hw_common(ah);
1195	int txbuf_size;
1196
1197	ENABLE_REGWRITE_BUFFER(ah);
1198
1199	/*
1200	 * set AHB_MODE not to do cacheline prefetches
1201	*/
1202	if (!AR_SREV_9300_20_OR_LATER(ah))
1203		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1204
1205	/*
1206	 * let mac dma reads be in 128 byte chunks
1207	 */
1208	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1209
1210	REGWRITE_BUFFER_FLUSH(ah);
1211
1212	/*
1213	 * Restore TX Trigger Level to its pre-reset value.
1214	 * The initial value depends on whether aggregation is enabled, and is
1215	 * adjusted whenever underruns are detected.
1216	 */
1217	if (!AR_SREV_9300_20_OR_LATER(ah))
1218		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1219
1220	ENABLE_REGWRITE_BUFFER(ah);
1221
1222	/*
1223	 * let mac dma writes be in 128 byte chunks
1224	 */
1225	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1226
1227	/*
1228	 * Setup receive FIFO threshold to hold off TX activities
1229	 */
1230	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1231
1232	if (AR_SREV_9300_20_OR_LATER(ah)) {
1233		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1234		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1235
1236		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1237			ah->caps.rx_status_len);
1238	}
1239
1240	/*
1241	 * reduce the number of usable entries in PCU TXBUF to avoid
1242	 * wrap around issues.
1243	 */
1244	if (AR_SREV_9285(ah)) {
1245		/* For AR9285 the number of Fifos are reduced to half.
1246		 * So set the usable tx buf size also to half to
1247		 * avoid data/delimiter underruns
1248		 */
1249		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1250	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1251		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1252		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1253	} else {
1254		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1255	}
1256
1257	if (!AR_SREV_9271(ah))
1258		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1259
1260	REGWRITE_BUFFER_FLUSH(ah);
1261
1262	if (AR_SREV_9300_20_OR_LATER(ah))
1263		ath9k_hw_reset_txstatus_ring(ah);
1264}
1265
1266static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1267{
1268	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1269	u32 set = AR_STA_ID1_KSRCH_MODE;
1270
1271	ENABLE_REG_RMW_BUFFER(ah);
1272	switch (opmode) {
1273	case NL80211_IFTYPE_ADHOC:
1274		if (!AR_SREV_9340_13(ah)) {
1275			set |= AR_STA_ID1_ADHOC;
1276			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1277			break;
1278		}
1279		fallthrough;
1280	case NL80211_IFTYPE_OCB:
1281	case NL80211_IFTYPE_MESH_POINT:
1282	case NL80211_IFTYPE_AP:
1283		set |= AR_STA_ID1_STA_AP;
1284		fallthrough;
1285	case NL80211_IFTYPE_STATION:
1286		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1287		break;
1288	default:
1289		if (!ah->is_monitoring)
1290			set = 0;
1291		break;
1292	}
1293	REG_RMW(ah, AR_STA_ID1, set, mask);
1294	REG_RMW_BUFFER_FLUSH(ah);
1295}
1296
1297void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1298				   u32 *coef_mantissa, u32 *coef_exponent)
1299{
1300	u32 coef_exp, coef_man;
1301
1302	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1303		if ((coef_scaled >> coef_exp) & 0x1)
1304			break;
1305
1306	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1307
1308	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1309
1310	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1311	*coef_exponent = coef_exp - 16;
1312}
1313
1314/* AR9330 WAR:
1315 * call external reset function to reset WMAC if:
1316 * - doing a cold reset
1317 * - we have pending frames in the TX queues.
1318 */
1319static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1320{
1321	int i, npend = 0;
1322
1323	for (i = 0; i < AR_NUM_QCU; i++) {
1324		npend = ath9k_hw_numtxpending(ah, i);
1325		if (npend)
1326			break;
1327	}
1328
1329	if (ah->external_reset &&
1330	    (npend || type == ATH9K_RESET_COLD)) {
1331		int reset_err = 0;
1332
1333		ath_dbg(ath9k_hw_common(ah), RESET,
1334			"reset MAC via external reset\n");
1335
1336		reset_err = ah->external_reset();
1337		if (reset_err) {
1338			ath_err(ath9k_hw_common(ah),
1339				"External reset failed, err=%d\n",
1340				reset_err);
1341			return false;
1342		}
1343
1344		REG_WRITE(ah, AR_RTC_RESET(ah), 1);
1345	}
1346
1347	return true;
1348}
1349
1350static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1351{
1352	u32 rst_flags;
1353	u32 tmpReg;
1354
1355	if (AR_SREV_9100(ah)) {
1356		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK(ah),
1357			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1358		(void)REG_READ(ah, AR_RTC_DERIVED_CLK(ah));
1359	}
1360
1361	ENABLE_REGWRITE_BUFFER(ah);
1362
1363	if (AR_SREV_9300_20_OR_LATER(ah)) {
1364		REG_WRITE(ah, AR_WA(ah), ah->WARegVal);
1365		udelay(10);
1366	}
1367
1368	REG_WRITE(ah, AR_RTC_FORCE_WAKE(ah), AR_RTC_FORCE_WAKE_EN |
1369		  AR_RTC_FORCE_WAKE_ON_INT);
1370
1371	if (AR_SREV_9100(ah)) {
1372		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1373			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1374	} else {
1375		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE(ah));
1376		if (AR_SREV_9340(ah))
1377			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1378		else
1379			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1380				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1381
1382		if (tmpReg) {
1383			u32 val;
1384			REG_WRITE(ah, AR_INTR_SYNC_ENABLE(ah), 0);
1385
1386			val = AR_RC_HOSTIF;
1387			if (!AR_SREV_9300_20_OR_LATER(ah))
1388				val |= AR_RC_AHB;
1389			REG_WRITE(ah, AR_RC, val);
1390
1391		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1392			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1393
1394		rst_flags = AR_RTC_RC_MAC_WARM;
1395		if (type == ATH9K_RESET_COLD)
1396			rst_flags |= AR_RTC_RC_MAC_COLD;
1397	}
1398
1399	if (AR_SREV_9330(ah)) {
1400		if (!ath9k_hw_ar9330_reset_war(ah, type))
1401			return false;
1402	}
1403
1404	if (ath9k_hw_mci_is_enabled(ah))
1405		ar9003_mci_check_gpm_offset(ah);
1406
1407	/* DMA HALT added to resolve ar9300 and ar9580 bus error during
1408	 * RTC_RC reg read
1409	 */
1410	if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1411		REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1412		ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1413			      20 * AH_WAIT_TIMEOUT);
1414		REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1415	}
1416
1417	REG_WRITE(ah, AR_RTC_RC(ah), rst_flags);
1418
1419	REGWRITE_BUFFER_FLUSH(ah);
1420
1421	if (AR_SREV_9300_20_OR_LATER(ah))
1422		udelay(50);
1423	else if (AR_SREV_9100(ah))
1424		mdelay(10);
1425	else
1426		udelay(100);
1427
1428	REG_WRITE(ah, AR_RTC_RC(ah), 0);
1429	if (!ath9k_hw_wait(ah, AR_RTC_RC(ah), AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1430		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1431		return false;
1432	}
1433
1434	if (!AR_SREV_9100(ah))
1435		REG_WRITE(ah, AR_RC, 0);
1436
1437	if (AR_SREV_9100(ah))
1438		udelay(50);
1439
1440	return true;
1441}
1442
1443static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1444{
1445	ENABLE_REGWRITE_BUFFER(ah);
1446
1447	if (AR_SREV_9300_20_OR_LATER(ah)) {
1448		REG_WRITE(ah, AR_WA(ah), ah->WARegVal);
1449		udelay(10);
1450	}
1451
1452	REG_WRITE(ah, AR_RTC_FORCE_WAKE(ah), AR_RTC_FORCE_WAKE_EN |
1453		  AR_RTC_FORCE_WAKE_ON_INT);
1454
1455	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1456		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1457
1458	REG_WRITE(ah, AR_RTC_RESET(ah), 0);
1459
1460	REGWRITE_BUFFER_FLUSH(ah);
1461
1462	udelay(2);
1463
1464	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1465		REG_WRITE(ah, AR_RC, 0);
1466
1467	REG_WRITE(ah, AR_RTC_RESET(ah), 1);
1468
1469	if (!ath9k_hw_wait(ah,
1470			   AR_RTC_STATUS(ah),
1471			   AR_RTC_STATUS_M(ah),
1472			   AR_RTC_STATUS_ON,
1473			   AH_WAIT_TIMEOUT)) {
1474		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1475		return false;
1476	}
1477
1478	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1479}
1480
1481static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1482{
1483	bool ret = false;
1484
1485	if (AR_SREV_9300_20_OR_LATER(ah)) {
1486		REG_WRITE(ah, AR_WA(ah), ah->WARegVal);
1487		udelay(10);
1488	}
1489
1490	REG_WRITE(ah, AR_RTC_FORCE_WAKE(ah),
1491		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1492
1493	if (!ah->reset_power_on)
1494		type = ATH9K_RESET_POWER_ON;
1495
1496	switch (type) {
1497	case ATH9K_RESET_POWER_ON:
1498		ret = ath9k_hw_set_reset_power_on(ah);
1499		if (ret)
1500			ah->reset_power_on = true;
1501		break;
1502	case ATH9K_RESET_WARM:
1503	case ATH9K_RESET_COLD:
1504		ret = ath9k_hw_set_reset(ah, type);
1505		break;
1506	default:
1507		break;
1508	}
1509
1510	return ret;
1511}
1512
1513static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1514				struct ath9k_channel *chan)
1515{
1516	int reset_type = ATH9K_RESET_WARM;
1517
1518	if (AR_SREV_9280(ah)) {
1519		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1520			reset_type = ATH9K_RESET_POWER_ON;
1521		else
1522			reset_type = ATH9K_RESET_COLD;
1523	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1524		   (REG_READ(ah, AR_CR) & AR_CR_RXE(ah)))
1525		reset_type = ATH9K_RESET_COLD;
1526
1527	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1528		return false;
1529
1530	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1531		return false;
1532
1533	ah->chip_fullsleep = false;
1534
1535	if (AR_SREV_9330(ah))
1536		ar9003_hw_internal_regulator_apply(ah);
1537	ath9k_hw_init_pll(ah, chan);
1538
1539	return true;
1540}
1541
1542static bool ath9k_hw_channel_change(struct ath_hw *ah,
1543				    struct ath9k_channel *chan)
1544{
1545	struct ath_common *common = ath9k_hw_common(ah);
1546	struct ath9k_hw_capabilities *pCap = &ah->caps;
1547	bool band_switch = false, mode_diff = false;
1548	u8 ini_reloaded = 0;
1549	u32 qnum;
1550	int r;
1551
1552	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1553		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1554		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1555		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1556	}
1557
1558	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1559		if (ath9k_hw_numtxpending(ah, qnum)) {
1560			ath_dbg(common, QUEUE,
1561				"Transmit frames pending on queue %d\n", qnum);
1562			return false;
1563		}
1564	}
1565
1566	if (!ath9k_hw_rfbus_req(ah)) {
1567		ath_err(common, "Could not kill baseband RX\n");
1568		return false;
1569	}
1570
1571	if (band_switch || mode_diff) {
1572		ath9k_hw_mark_phy_inactive(ah);
1573		udelay(5);
1574
1575		if (band_switch)
1576			ath9k_hw_init_pll(ah, chan);
1577
1578		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1579			ath_err(common, "Failed to do fast channel change\n");
1580			return false;
1581		}
1582	}
1583
1584	ath9k_hw_set_channel_regs(ah, chan);
1585
1586	r = ath9k_hw_rf_set_freq(ah, chan);
1587	if (r) {
1588		ath_err(common, "Failed to set channel\n");
1589		return false;
1590	}
1591	ath9k_hw_set_clockrate(ah);
1592	ath9k_hw_apply_txpower(ah, chan, false);
1593
1594	ath9k_hw_set_delta_slope(ah, chan);
1595	ath9k_hw_spur_mitigate_freq(ah, chan);
1596
1597	if (band_switch || ini_reloaded)
1598		ah->eep_ops->set_board_values(ah, chan);
1599
1600	ath9k_hw_init_bb(ah, chan);
1601	ath9k_hw_rfbus_done(ah);
1602
1603	if (band_switch || ini_reloaded) {
1604		ah->ah_flags |= AH_FASTCC;
1605		ath9k_hw_init_cal(ah, chan);
1606		ah->ah_flags &= ~AH_FASTCC;
1607	}
1608
1609	return true;
1610}
1611
1612static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1613{
1614	u32 gpio_mask = ah->gpio_mask;
1615	int i;
1616
1617	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1618		if (!(gpio_mask & 1))
1619			continue;
1620
1621		ath9k_hw_gpio_request_out(ah, i, NULL,
1622					  AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1623		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1624	}
1625}
1626
1627void ath9k_hw_check_nav(struct ath_hw *ah)
1628{
1629	struct ath_common *common = ath9k_hw_common(ah);
1630	u32 val;
1631
1632	val = REG_READ(ah, AR_NAV);
1633	if (val != 0xdeadbeef && val > 0x7fff) {
1634		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1635		REG_WRITE(ah, AR_NAV, 0);
1636	}
1637}
1638EXPORT_SYMBOL(ath9k_hw_check_nav);
1639
1640bool ath9k_hw_check_alive(struct ath_hw *ah)
1641{
1642	int count = 50;
1643	u32 reg, last_val;
1644
1645	/* Check if chip failed to wake up */
1646	if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1647		return false;
1648
1649	if (AR_SREV_9300(ah))
1650		return !ath9k_hw_detect_mac_hang(ah);
1651
1652	if (AR_SREV_9285_12_OR_LATER(ah))
1653		return true;
1654
1655	last_val = REG_READ(ah, AR_OBS_BUS_1);
1656	do {
1657		reg = REG_READ(ah, AR_OBS_BUS_1);
1658		if (reg != last_val)
1659			return true;
1660
1661		udelay(1);
1662		last_val = reg;
1663		if ((reg & 0x7E7FFFEF) == 0x00702400)
1664			continue;
1665
1666		switch (reg & 0x7E000B00) {
1667		case 0x1E000000:
1668		case 0x52000B00:
1669		case 0x18000B00:
1670			continue;
1671		default:
1672			return true;
1673		}
1674	} while (count-- > 0);
1675
1676	return false;
1677}
1678EXPORT_SYMBOL(ath9k_hw_check_alive);
1679
1680static void ath9k_hw_init_mfp(struct ath_hw *ah)
1681{
1682	/* Setup MFP options for CCMP */
1683	if (AR_SREV_9280_20_OR_LATER(ah)) {
1684		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1685		 * frames when constructing CCMP AAD. */
1686		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1687			      0xc7ff);
1688		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1689			ah->sw_mgmt_crypto_tx = true;
1690		else
1691			ah->sw_mgmt_crypto_tx = false;
1692		ah->sw_mgmt_crypto_rx = false;
1693	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1694		/* Disable hardware crypto for management frames */
1695		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1696			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1697		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1698			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1699		ah->sw_mgmt_crypto_tx = true;
1700		ah->sw_mgmt_crypto_rx = true;
1701	} else {
1702		ah->sw_mgmt_crypto_tx = true;
1703		ah->sw_mgmt_crypto_rx = true;
1704	}
1705}
1706
1707static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1708				  u32 macStaId1, u32 saveDefAntenna)
1709{
1710	struct ath_common *common = ath9k_hw_common(ah);
1711
1712	ENABLE_REGWRITE_BUFFER(ah);
1713
1714	REG_RMW(ah, AR_STA_ID1, macStaId1
1715		  | AR_STA_ID1_RTS_USE_DEF
1716		  | ah->sta_id1_defaults,
1717		  ~AR_STA_ID1_SADH_MASK);
1718	ath_hw_setbssidmask(common);
1719	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1720	ath9k_hw_write_associd(ah);
1721	REG_WRITE(ah, AR_ISR, ~0);
1722	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1723
1724	REGWRITE_BUFFER_FLUSH(ah);
1725
1726	ath9k_hw_set_operating_mode(ah, ah->opmode);
1727}
1728
1729static void ath9k_hw_init_queues(struct ath_hw *ah)
1730{
1731	int i;
1732
1733	ENABLE_REGWRITE_BUFFER(ah);
1734
1735	for (i = 0; i < AR_NUM_DCU; i++)
1736		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1737
1738	REGWRITE_BUFFER_FLUSH(ah);
1739
1740	ah->intr_txqs = 0;
1741	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1742		ath9k_hw_resettxqueue(ah, i);
1743}
1744
1745/*
1746 * For big endian systems turn on swapping for descriptors
1747 */
1748static void ath9k_hw_init_desc(struct ath_hw *ah)
1749{
1750	struct ath_common *common = ath9k_hw_common(ah);
1751
1752	if (AR_SREV_9100(ah)) {
1753		u32 mask;
1754		mask = REG_READ(ah, AR_CFG);
1755		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1756			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1757				mask);
1758		} else {
1759			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1760			REG_WRITE(ah, AR_CFG, mask);
1761			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1762				REG_READ(ah, AR_CFG));
1763		}
1764	} else {
1765		if (common->bus_ops->ath_bus_type == ATH_USB) {
1766			/* Configure AR9271 target WLAN */
1767			if (AR_SREV_9271(ah))
1768				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1769			else
1770				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1771		}
1772#ifdef __BIG_ENDIAN
1773		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1774			 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1775			 AR_SREV_9561(ah))
1776			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1777		else
1778			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1779#endif
1780	}
1781}
1782
1783/*
1784 * Fast channel change:
1785 * (Change synthesizer based on channel freq without resetting chip)
1786 */
1787static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1788{
1789	struct ath_common *common = ath9k_hw_common(ah);
1790	struct ath9k_hw_capabilities *pCap = &ah->caps;
1791	int ret;
1792
1793	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1794		goto fail;
1795
1796	if (ah->chip_fullsleep)
1797		goto fail;
1798
1799	if (!ah->curchan)
1800		goto fail;
1801
1802	if (chan->channel == ah->curchan->channel)
1803		goto fail;
1804
1805	if ((ah->curchan->channelFlags | chan->channelFlags) &
1806	    (CHANNEL_HALF | CHANNEL_QUARTER))
1807		goto fail;
1808
1809	/*
1810	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1811	 */
1812	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1813	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1814		goto fail;
1815
1816	if (!ath9k_hw_check_alive(ah))
1817		goto fail;
1818
1819	/*
1820	 * For AR9462, make sure that calibration data for
1821	 * re-using are present.
1822	 */
1823	if (AR_SREV_9462(ah) && (ah->caldata &&
1824				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1825				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1826				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1827		goto fail;
1828
1829	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1830		ah->curchan->channel, chan->channel);
1831
1832	ret = ath9k_hw_channel_change(ah, chan);
1833	if (!ret)
1834		goto fail;
1835
1836	if (ath9k_hw_mci_is_enabled(ah))
1837		ar9003_mci_2g5g_switch(ah, false);
1838
1839	ath9k_hw_loadnf(ah, ah->curchan);
1840	ath9k_hw_start_nfcal(ah, true);
1841
1842	if (AR_SREV_9271(ah))
1843		ar9002_hw_load_ani_reg(ah, chan);
1844
1845	return 0;
1846fail:
1847	return -EINVAL;
1848}
1849
1850u32 ath9k_hw_get_tsf_offset(struct timespec64 *last, struct timespec64 *cur)
1851{
1852	struct timespec64 ts;
1853	s64 usec;
1854
1855	if (!cur) {
1856		ktime_get_raw_ts64(&ts);
1857		cur = &ts;
1858	}
1859
1860	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1861	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1862
1863	return (u32) usec;
1864}
1865EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1866
1867int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1868		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1869{
1870	struct ath_common *common = ath9k_hw_common(ah);
1871	u32 saveLedState;
1872	u32 saveDefAntenna;
1873	u32 macStaId1;
1874	struct timespec64 tsf_ts;
1875	u32 tsf_offset;
1876	u64 tsf = 0;
 
1877	int r;
1878	bool start_mci_reset = false;
1879	bool save_fullsleep = ah->chip_fullsleep;
1880
1881	if (ath9k_hw_mci_is_enabled(ah)) {
1882		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1883		if (start_mci_reset)
1884			return 0;
1885	}
1886
1887	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1888		return -EIO;
1889
1890	if (ah->curchan && !ah->chip_fullsleep)
1891		ath9k_hw_getnf(ah, ah->curchan);
1892
1893	ah->caldata = caldata;
1894	if (caldata && (chan->channel != caldata->channel ||
1895			chan->channelFlags != caldata->channelFlags)) {
1896		/* Operating channel changed, reset channel calibration data */
1897		memset(caldata, 0, sizeof(*caldata));
1898		ath9k_init_nfcal_hist_buffer(ah, chan);
1899	} else if (caldata) {
1900		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1901	}
1902	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1903
1904	if (fastcc) {
1905		r = ath9k_hw_do_fastcc(ah, chan);
1906		if (!r)
1907			return r;
1908	}
1909
1910	if (ath9k_hw_mci_is_enabled(ah))
1911		ar9003_mci_stop_bt(ah, save_fullsleep);
1912
1913	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1914	if (saveDefAntenna == 0)
1915		saveDefAntenna = 1;
1916
1917	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1918
1919	/* Save TSF before chip reset, a cold reset clears it */
1920	ktime_get_raw_ts64(&tsf_ts);
1921	tsf = ath9k_hw_gettsf64(ah);
 
1922
1923	saveLedState = REG_READ(ah, AR_CFG_LED) &
1924		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1925		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1926
1927	ath9k_hw_mark_phy_inactive(ah);
1928
1929	ah->paprd_table_write_done = false;
1930
1931	/* Only required on the first reset */
1932	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1933		REG_WRITE(ah,
1934			  AR9271_RESET_POWER_DOWN_CONTROL,
1935			  AR9271_RADIO_RF_RST);
1936		udelay(50);
1937	}
1938
1939	if (!ath9k_hw_chip_reset(ah, chan)) {
1940		ath_err(common, "Chip reset failed\n");
1941		return -EINVAL;
1942	}
1943
1944	/* Only required on the first reset */
1945	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1946		ah->htc_reset_init = false;
1947		REG_WRITE(ah,
1948			  AR9271_RESET_POWER_DOWN_CONTROL,
1949			  AR9271_GATE_MAC_CTL);
1950		udelay(50);
1951	}
1952
1953	/* Restore TSF */
1954	tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1955	ath9k_hw_settsf64(ah, tsf + tsf_offset);
1956
1957	if (AR_SREV_9280_20_OR_LATER(ah))
1958		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL(ah), AR_GPIO_JTAG_DISABLE);
1959
1960	if (!AR_SREV_9300_20_OR_LATER(ah))
1961		ar9002_hw_enable_async_fifo(ah);
1962
1963	r = ath9k_hw_process_ini(ah, chan);
1964	if (r)
1965		return r;
1966
1967	ath9k_hw_set_rfmode(ah, chan);
1968
1969	if (ath9k_hw_mci_is_enabled(ah))
1970		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1971
1972	/*
1973	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1974	 * right after the chip reset. When that happens, write a new
1975	 * value after the initvals have been applied.
 
1976	 */
1977	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1978		tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1979		ath9k_hw_settsf64(ah, tsf + tsf_offset);
1980	}
1981
1982	ath9k_hw_init_mfp(ah);
1983
1984	ath9k_hw_set_delta_slope(ah, chan);
1985	ath9k_hw_spur_mitigate_freq(ah, chan);
1986	ah->eep_ops->set_board_values(ah, chan);
1987
1988	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1989
1990	r = ath9k_hw_rf_set_freq(ah, chan);
1991	if (r)
1992		return r;
1993
1994	ath9k_hw_set_clockrate(ah);
1995
1996	ath9k_hw_init_queues(ah);
1997	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1998	ath9k_hw_ani_cache_ini_regs(ah);
1999	ath9k_hw_init_qos(ah);
2000
2001	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2002		ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
2003
2004	ath9k_hw_init_global_settings(ah);
2005
2006	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
2007		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2008			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2009		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2010			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2011		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2012			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2013	}
2014
2015	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2016
2017	ath9k_hw_set_dma(ah);
2018
2019	if (!ath9k_hw_mci_is_enabled(ah))
2020		REG_WRITE(ah, AR_OBS(ah), 8);
2021
2022	ENABLE_REG_RMW_BUFFER(ah);
2023	if (ah->config.rx_intr_mitigation) {
2024		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
2025		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
2026	}
2027
2028	if (ah->config.tx_intr_mitigation) {
2029		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2030		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2031	}
2032	REG_RMW_BUFFER_FLUSH(ah);
2033
2034	ath9k_hw_init_bb(ah, chan);
2035
2036	if (caldata) {
2037		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2038		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2039	}
2040	if (!ath9k_hw_init_cal(ah, chan))
2041		return -EIO;
2042
2043	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2044		return -EIO;
2045
2046	ENABLE_REGWRITE_BUFFER(ah);
2047
2048	ath9k_hw_restore_chainmask(ah);
2049	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2050
2051	REGWRITE_BUFFER_FLUSH(ah);
2052
2053	ath9k_hw_gen_timer_start_tsf2(ah);
2054
2055	ath9k_hw_init_desc(ah);
2056
2057	if (ath9k_hw_btcoex_is_enabled(ah))
2058		ath9k_hw_btcoex_enable(ah);
2059
2060	if (ath9k_hw_mci_is_enabled(ah))
2061		ar9003_mci_check_bt(ah);
2062
2063	if (AR_SREV_9300_20_OR_LATER(ah)) {
2064		ath9k_hw_loadnf(ah, chan);
2065		ath9k_hw_start_nfcal(ah, true);
2066	}
2067
2068	if (AR_SREV_9300_20_OR_LATER(ah))
2069		ar9003_hw_bb_watchdog_config(ah);
2070
2071	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2072		ar9003_hw_disable_phy_restart(ah);
2073
2074	ath9k_hw_apply_gpio_override(ah);
2075
2076	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2077		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2078
2079	if (ah->hw->conf.radar_enabled) {
2080		/* set HW specific DFS configuration */
2081		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2082		ath9k_hw_set_radar_params(ah);
2083	}
2084
2085	return 0;
2086}
2087EXPORT_SYMBOL(ath9k_hw_reset);
2088
2089/******************************/
2090/* Power Management (Chipset) */
2091/******************************/
2092
2093/*
2094 * Notify Power Mgt is disabled in self-generated frames.
2095 * If requested, force chip to sleep.
2096 */
2097static void ath9k_set_power_sleep(struct ath_hw *ah)
2098{
2099	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2100
2101	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2102		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2103		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2104		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2105		/* xxx Required for WLAN only case ? */
2106		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2107		udelay(100);
2108	}
2109
2110	/*
2111	 * Clear the RTC force wake bit to allow the
2112	 * mac to go to sleep.
2113	 */
2114	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE(ah), AR_RTC_FORCE_WAKE_EN);
2115
2116	if (ath9k_hw_mci_is_enabled(ah))
2117		udelay(100);
2118
2119	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2120		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2121
2122	/* Shutdown chip. Active low */
2123	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2124		REG_CLR_BIT(ah, AR_RTC_RESET(ah), AR_RTC_RESET_EN);
2125		udelay(2);
2126	}
2127
2128	/* Clear Bit 14 of AR_WA(ah) after putting chip into Full Sleep mode. */
2129	if (AR_SREV_9300_20_OR_LATER(ah))
2130		REG_WRITE(ah, AR_WA(ah), ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2131}
2132
2133/*
2134 * Notify Power Management is enabled in self-generating
2135 * frames. If request, set power mode of chip to
2136 * auto/normal.  Duration in units of 128us (1/8 TU).
2137 */
2138static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2139{
2140	struct ath9k_hw_capabilities *pCap = &ah->caps;
2141
2142	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2143
2144	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2145		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2146		REG_WRITE(ah, AR_RTC_FORCE_WAKE(ah),
2147			  AR_RTC_FORCE_WAKE_ON_INT);
2148	} else {
2149
2150		/* When chip goes into network sleep, it could be waken
2151		 * up by MCI_INT interrupt caused by BT's HW messages
2152		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2153		 * rate (~100us). This will cause chip to leave and
2154		 * re-enter network sleep mode frequently, which in
2155		 * consequence will have WLAN MCI HW to generate lots of
2156		 * SYS_WAKING and SYS_SLEEPING messages which will make
2157		 * BT CPU to busy to process.
2158		 */
2159		if (ath9k_hw_mci_is_enabled(ah))
2160			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2161				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2162		/*
2163		 * Clear the RTC force wake bit to allow the
2164		 * mac to go to sleep.
2165		 */
2166		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE(ah), AR_RTC_FORCE_WAKE_EN);
2167
2168		if (ath9k_hw_mci_is_enabled(ah))
2169			udelay(30);
2170	}
2171
2172	/* Clear Bit 14 of AR_WA(ah) after putting chip into Net Sleep mode. */
2173	if (AR_SREV_9300_20_OR_LATER(ah))
2174		REG_WRITE(ah, AR_WA(ah), ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2175}
2176
2177static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2178{
2179	u32 val;
2180	int i;
2181
2182	/* Set Bits 14 and 17 of AR_WA(ah) before powering on the chip. */
2183	if (AR_SREV_9300_20_OR_LATER(ah)) {
2184		REG_WRITE(ah, AR_WA(ah), ah->WARegVal);
2185		udelay(10);
2186	}
2187
2188	if ((REG_READ(ah, AR_RTC_STATUS(ah)) &
2189	     AR_RTC_STATUS_M(ah)) == AR_RTC_STATUS_SHUTDOWN) {
2190		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2191			return false;
2192		}
2193		if (!AR_SREV_9300_20_OR_LATER(ah))
2194			ath9k_hw_init_pll(ah, NULL);
2195	}
2196	if (AR_SREV_9100(ah))
2197		REG_SET_BIT(ah, AR_RTC_RESET(ah),
2198			    AR_RTC_RESET_EN);
2199
2200	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE(ah),
2201		    AR_RTC_FORCE_WAKE_EN);
2202	if (AR_SREV_9100(ah))
2203		mdelay(10);
2204	else
2205		udelay(50);
2206
2207	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2208		val = REG_READ(ah, AR_RTC_STATUS(ah)) & AR_RTC_STATUS_M(ah);
2209		if (val == AR_RTC_STATUS_ON)
2210			break;
2211		udelay(50);
2212		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE(ah),
2213			    AR_RTC_FORCE_WAKE_EN);
2214	}
2215	if (i == 0) {
2216		ath_err(ath9k_hw_common(ah),
2217			"Failed to wakeup in %uus\n",
2218			POWER_UP_TIME / 20);
2219		return false;
2220	}
2221
2222	if (ath9k_hw_mci_is_enabled(ah))
2223		ar9003_mci_set_power_awake(ah);
2224
2225	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2226
2227	return true;
2228}
2229
2230bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2231{
2232	struct ath_common *common = ath9k_hw_common(ah);
2233	int status = true;
2234	static const char *modes[] = {
2235		"AWAKE",
2236		"FULL-SLEEP",
2237		"NETWORK SLEEP",
2238		"UNDEFINED"
2239	};
2240
2241	if (ah->power_mode == mode)
2242		return status;
2243
2244	ath_dbg(common, RESET, "%s -> %s\n",
2245		modes[ah->power_mode], modes[mode]);
2246
2247	switch (mode) {
2248	case ATH9K_PM_AWAKE:
2249		status = ath9k_hw_set_power_awake(ah);
2250		break;
2251	case ATH9K_PM_FULL_SLEEP:
2252		if (ath9k_hw_mci_is_enabled(ah))
2253			ar9003_mci_set_full_sleep(ah);
2254
2255		ath9k_set_power_sleep(ah);
2256		ah->chip_fullsleep = true;
2257		break;
2258	case ATH9K_PM_NETWORK_SLEEP:
2259		ath9k_set_power_network_sleep(ah);
2260		break;
2261	default:
2262		ath_err(common, "Unknown power mode %u\n", mode);
2263		return false;
2264	}
2265	ah->power_mode = mode;
2266
2267	/*
2268	 * XXX: If this warning never comes up after a while then
2269	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2270	 * ath9k_hw_setpower() return type void.
2271	 */
2272
2273	if (!(ah->ah_flags & AH_UNPLUGGED))
2274		ATH_DBG_WARN_ON_ONCE(!status);
2275
2276	return status;
2277}
2278EXPORT_SYMBOL(ath9k_hw_setpower);
2279
2280/*******************/
2281/* Beacon Handling */
2282/*******************/
2283
2284void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2285{
2286	int flags = 0;
2287
2288	ENABLE_REGWRITE_BUFFER(ah);
2289
2290	switch (ah->opmode) {
2291	case NL80211_IFTYPE_ADHOC:
2292		REG_SET_BIT(ah, AR_TXCFG,
2293			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2294		fallthrough;
2295	case NL80211_IFTYPE_MESH_POINT:
2296	case NL80211_IFTYPE_AP:
2297		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2298		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2299			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2300		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2301			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2302		flags |=
2303			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2304		break;
2305	default:
2306		ath_dbg(ath9k_hw_common(ah), BEACON,
2307			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2308		return;
 
2309	}
2310
2311	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2312	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2313	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2314
2315	REGWRITE_BUFFER_FLUSH(ah);
2316
2317	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2318}
2319EXPORT_SYMBOL(ath9k_hw_beaconinit);
2320
2321void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2322				    const struct ath9k_beacon_state *bs)
2323{
2324	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2325	struct ath9k_hw_capabilities *pCap = &ah->caps;
2326	struct ath_common *common = ath9k_hw_common(ah);
2327
2328	ENABLE_REGWRITE_BUFFER(ah);
2329
2330	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2331	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2332	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2333
2334	REGWRITE_BUFFER_FLUSH(ah);
2335
2336	REG_RMW_FIELD(ah, AR_RSSI_THR,
2337		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2338
2339	beaconintval = bs->bs_intval;
2340
2341	if (bs->bs_sleepduration > beaconintval)
2342		beaconintval = bs->bs_sleepduration;
2343
2344	dtimperiod = bs->bs_dtimperiod;
2345	if (bs->bs_sleepduration > dtimperiod)
2346		dtimperiod = bs->bs_sleepduration;
2347
2348	if (beaconintval == dtimperiod)
2349		nextTbtt = bs->bs_nextdtim;
2350	else
2351		nextTbtt = bs->bs_nexttbtt;
2352
2353	ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2354	ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2355	ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2356	ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2357
2358	ENABLE_REGWRITE_BUFFER(ah);
2359
2360	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2361	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2362
2363	REG_WRITE(ah, AR_SLEEP1,
2364		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2365		  | AR_SLEEP1_ASSUME_DTIM);
2366
2367	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2368		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2369	else
2370		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2371
2372	REG_WRITE(ah, AR_SLEEP2,
2373		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2374
2375	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2376	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2377
2378	REGWRITE_BUFFER_FLUSH(ah);
2379
2380	REG_SET_BIT(ah, AR_TIMER_MODE,
2381		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2382		    AR_DTIM_TIMER_EN);
2383
2384	/* TSF Out of Range Threshold */
2385	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2386}
2387EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2388
2389/*******************/
2390/* HW Capabilities */
2391/*******************/
2392
2393static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2394{
2395	eeprom_chainmask &= chip_chainmask;
2396	if (eeprom_chainmask)
2397		return eeprom_chainmask;
2398	else
2399		return chip_chainmask;
2400}
2401
2402/**
2403 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2404 * @ah: the atheros hardware data structure
2405 *
2406 * We enable DFS support upstream on chipsets which have passed a series
2407 * of tests. The testing requirements are going to be documented. Desired
2408 * test requirements are documented at:
2409 *
2410 * https://wireless.wiki.kernel.org/en/users/Drivers/ath9k/dfs
2411 *
2412 * Once a new chipset gets properly tested an individual commit can be used
2413 * to document the testing for DFS for that chipset.
2414 */
2415static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2416{
2417
2418	switch (ah->hw_version.macVersion) {
2419	/* for temporary testing DFS with 9280 */
2420	case AR_SREV_VERSION_9280:
2421	/* AR9580 will likely be our first target to get testing on */
2422	case AR_SREV_VERSION_9580:
2423		return true;
2424	default:
2425		return false;
2426	}
2427}
2428
2429static void ath9k_gpio_cap_init(struct ath_hw *ah)
2430{
2431	struct ath9k_hw_capabilities *pCap = &ah->caps;
2432
2433	if (AR_SREV_9271(ah)) {
2434		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2435		pCap->gpio_mask = AR9271_GPIO_MASK;
2436	} else if (AR_DEVID_7010(ah)) {
2437		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2438		pCap->gpio_mask = AR7010_GPIO_MASK;
2439	} else if (AR_SREV_9287(ah)) {
2440		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2441		pCap->gpio_mask = AR9287_GPIO_MASK;
2442	} else if (AR_SREV_9285(ah)) {
2443		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2444		pCap->gpio_mask = AR9285_GPIO_MASK;
2445	} else if (AR_SREV_9280(ah)) {
2446		pCap->num_gpio_pins = AR9280_NUM_GPIO;
2447		pCap->gpio_mask = AR9280_GPIO_MASK;
2448	} else if (AR_SREV_9300(ah)) {
2449		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2450		pCap->gpio_mask = AR9300_GPIO_MASK;
2451	} else if (AR_SREV_9330(ah)) {
2452		pCap->num_gpio_pins = AR9330_NUM_GPIO;
2453		pCap->gpio_mask = AR9330_GPIO_MASK;
2454	} else if (AR_SREV_9340(ah)) {
2455		pCap->num_gpio_pins = AR9340_NUM_GPIO;
2456		pCap->gpio_mask = AR9340_GPIO_MASK;
2457	} else if (AR_SREV_9462(ah)) {
2458		pCap->num_gpio_pins = AR9462_NUM_GPIO;
2459		pCap->gpio_mask = AR9462_GPIO_MASK;
2460	} else if (AR_SREV_9485(ah)) {
2461		pCap->num_gpio_pins = AR9485_NUM_GPIO;
2462		pCap->gpio_mask = AR9485_GPIO_MASK;
2463	} else if (AR_SREV_9531(ah)) {
2464		pCap->num_gpio_pins = AR9531_NUM_GPIO;
2465		pCap->gpio_mask = AR9531_GPIO_MASK;
2466	} else if (AR_SREV_9550(ah)) {
2467		pCap->num_gpio_pins = AR9550_NUM_GPIO;
2468		pCap->gpio_mask = AR9550_GPIO_MASK;
2469	} else if (AR_SREV_9561(ah)) {
2470		pCap->num_gpio_pins = AR9561_NUM_GPIO;
2471		pCap->gpio_mask = AR9561_GPIO_MASK;
2472	} else if (AR_SREV_9565(ah)) {
2473		pCap->num_gpio_pins = AR9565_NUM_GPIO;
2474		pCap->gpio_mask = AR9565_GPIO_MASK;
2475	} else if (AR_SREV_9580(ah)) {
2476		pCap->num_gpio_pins = AR9580_NUM_GPIO;
2477		pCap->gpio_mask = AR9580_GPIO_MASK;
2478	} else {
2479		pCap->num_gpio_pins = AR_NUM_GPIO;
2480		pCap->gpio_mask = AR_GPIO_MASK;
2481	}
2482}
2483
2484int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2485{
2486	struct ath9k_hw_capabilities *pCap = &ah->caps;
2487	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2488	struct ath_common *common = ath9k_hw_common(ah);
2489
2490	u16 eeval;
2491	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2492
2493	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2494	regulatory->current_rd = eeval;
2495
2496	if (ah->opmode != NL80211_IFTYPE_AP &&
2497	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2498		if (regulatory->current_rd == 0x64 ||
2499		    regulatory->current_rd == 0x65)
2500			regulatory->current_rd += 5;
2501		else if (regulatory->current_rd == 0x41)
2502			regulatory->current_rd = 0x43;
2503		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2504			regulatory->current_rd);
2505	}
2506
2507	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2508
2509	if (eeval & AR5416_OPFLAGS_11A) {
2510		if (ah->disable_5ghz)
2511			ath_warn(common, "disabling 5GHz band\n");
2512		else
2513			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2514	}
2515
2516	if (eeval & AR5416_OPFLAGS_11G) {
2517		if (ah->disable_2ghz)
2518			ath_warn(common, "disabling 2GHz band\n");
2519		else
2520			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2521	}
2522
2523	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2524		ath_err(common, "both bands are disabled\n");
2525		return -EINVAL;
2526	}
2527
2528	ath9k_gpio_cap_init(ah);
2529
2530	if (AR_SREV_9485(ah) ||
2531	    AR_SREV_9285(ah) ||
2532	    AR_SREV_9330(ah) ||
2533	    AR_SREV_9565(ah))
2534		pCap->chip_chainmask = 1;
2535	else if (!AR_SREV_9280_20_OR_LATER(ah))
2536		pCap->chip_chainmask = 7;
2537	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2538		 AR_SREV_9340(ah) ||
2539		 AR_SREV_9462(ah) ||
2540		 AR_SREV_9531(ah))
2541		pCap->chip_chainmask = 3;
2542	else
2543		pCap->chip_chainmask = 7;
2544
2545	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2546	/*
2547	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2548	 * the EEPROM.
2549	 */
2550	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2551	    !(eeval & AR5416_OPFLAGS_11A) &&
2552	    !(AR_SREV_9271(ah)))
2553		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2554		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2555	else if (AR_SREV_9100(ah))
2556		pCap->rx_chainmask = 0x7;
2557	else
2558		/* Use rx_chainmask from EEPROM. */
2559		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2560
2561	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2562	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2563	ah->txchainmask = pCap->tx_chainmask;
2564	ah->rxchainmask = pCap->rx_chainmask;
2565
2566	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2567
2568	/* enable key search for every frame in an aggregate */
2569	if (AR_SREV_9300_20_OR_LATER(ah))
2570		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2571
2572	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2573
2574	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2575		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2576	else
2577		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2579	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2580		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2581	else
2582		pCap->rts_aggr_limit = (8 * 1024);
2583
2584#ifdef CONFIG_ATH9K_RFKILL
2585	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2586	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2587		ah->rfkill_gpio =
2588			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2589		ah->rfkill_polarity =
2590			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2591
2592		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2593	}
2594#endif
2595	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2596		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2597	else
2598		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2599
2600	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2601		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2602	else
2603		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2604
2605	if (AR_SREV_9300_20_OR_LATER(ah)) {
2606		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2607		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2608		    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2609			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2610
2611		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2612		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2613		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2614		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2615		pCap->txs_len = sizeof(struct ar9003_txs);
2616	} else {
2617		pCap->tx_desc_len = sizeof(struct ath_desc);
2618		if (AR_SREV_9280_20(ah))
2619			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2620	}
2621
2622	if (AR_SREV_9300_20_OR_LATER(ah))
2623		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2624
2625	if (AR_SREV_9561(ah))
2626		ah->ent_mode = 0x3BDA000;
2627	else if (AR_SREV_9300_20_OR_LATER(ah))
2628		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2629
2630	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2631		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2632
2633	if (AR_SREV_9285(ah)) {
2634		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2635			ant_div_ctl1 =
2636				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2637			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2638				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2639				ath_info(common, "Enable LNA combining\n");
2640			}
2641		}
2642	}
2643
2644	if (AR_SREV_9300_20_OR_LATER(ah)) {
2645		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2646			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2647	}
2648
2649	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2650		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2651		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2652			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2653			ath_info(common, "Enable LNA combining\n");
2654		}
2655	}
2656
2657	if (ath9k_hw_dfs_tested(ah))
2658		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2659
2660	tx_chainmask = pCap->tx_chainmask;
2661	rx_chainmask = pCap->rx_chainmask;
2662	while (tx_chainmask || rx_chainmask) {
2663		if (tx_chainmask & BIT(0))
2664			pCap->max_txchains++;
2665		if (rx_chainmask & BIT(0))
2666			pCap->max_rxchains++;
2667
2668		tx_chainmask >>= 1;
2669		rx_chainmask >>= 1;
2670	}
2671
2672	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2673		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2674			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2675
2676		if (AR_SREV_9462_20_OR_LATER(ah))
2677			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2678	}
2679
2680	if (AR_SREV_9300_20_OR_LATER(ah) &&
2681	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2682			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2683
2684#ifdef CONFIG_ATH9K_WOW
2685	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2686		ah->wow.max_patterns = MAX_NUM_PATTERN;
2687	else
2688		ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2689#endif
2690
2691	return 0;
2692}
2693
2694/****************************/
2695/* GPIO / RFKILL / Antennae */
2696/****************************/
2697
2698static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
 
2699{
2700	int addr;
2701	u32 gpio_shift, tmp;
2702
2703	if (gpio > 11)
2704		addr = AR_GPIO_OUTPUT_MUX3(ah);
2705	else if (gpio > 5)
2706		addr = AR_GPIO_OUTPUT_MUX2(ah);
2707	else
2708		addr = AR_GPIO_OUTPUT_MUX1(ah);
2709
2710	gpio_shift = (gpio % 6) * 5;
2711
2712	if (AR_SREV_9280_20_OR_LATER(ah) ||
2713	    (addr != AR_GPIO_OUTPUT_MUX1(ah))) {
2714		REG_RMW(ah, addr, (type << gpio_shift),
2715			(0x1f << gpio_shift));
2716	} else {
2717		tmp = REG_READ(ah, addr);
2718		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2719		tmp &= ~(0x1f << gpio_shift);
2720		tmp |= (type << gpio_shift);
2721		REG_WRITE(ah, addr, tmp);
2722	}
2723}
2724
2725/* BSP should set the corresponding MUX register correctly.
2726 */
2727static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2728				  const char *label)
2729{
2730	int err;
2731
2732	if (ah->caps.gpio_requested & BIT(gpio))
2733		return;
2734
2735	err = gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label);
2736	if (err) {
2737		ath_err(ath9k_hw_common(ah), "request GPIO%d failed:%d\n",
2738			gpio, err);
 
2739		return;
2740	}
2741
2742	ah->caps.gpio_requested |= BIT(gpio);
 
 
 
 
2743}
 
2744
2745static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2746				   u32 ah_signal_type)
2747{
2748	u32 gpio_set, gpio_shift = gpio;
2749
2750	if (AR_DEVID_7010(ah)) {
2751		gpio_set = out ?
2752			AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2753		REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2754			AR7010_GPIO_OE_MASK << gpio_shift);
2755	} else if (AR_SREV_SOC(ah)) {
2756		gpio_set = out ? 1 : 0;
2757		REG_RMW(ah, AR_GPIO_OE_OUT(ah), gpio_set << gpio_shift,
2758			gpio_set << gpio_shift);
2759	} else {
2760		gpio_shift = gpio << 1;
2761		gpio_set = out ?
2762			AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2763		REG_RMW(ah, AR_GPIO_OE_OUT(ah), gpio_set << gpio_shift,
2764			AR_GPIO_OE_OUT_DRV << gpio_shift);
2765
2766		if (out)
2767			ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2768	}
2769}
2770
2771static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2772				  const char *label, u32 ah_signal_type)
2773{
2774	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2775
2776	if (BIT(gpio) & ah->caps.gpio_mask)
2777		ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2778	else if (AR_SREV_SOC(ah))
2779		ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
 
 
 
 
 
 
 
 
 
 
 
2780	else
2781		WARN_ON(1);
2782}
 
2783
2784void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2785{
2786	ath9k_hw_gpio_request(ah, gpio, false, label, 0);
2787}
2788EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2789
2790void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2791			       u32 ah_signal_type)
2792{
2793	ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2794}
2795EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2796
2797void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2798{
2799	if (!AR_SREV_SOC(ah))
 
 
2800		return;
2801
2802	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2803
2804	if (ah->caps.gpio_requested & BIT(gpio)) {
2805		gpio_free(gpio);
2806		ah->caps.gpio_requested &= ~BIT(gpio);
2807	}
2808}
2809EXPORT_SYMBOL(ath9k_hw_gpio_free);
2810
2811u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2812{
2813	u32 val = 0xffffffff;
2814
2815#define MS_REG_READ(x, y) \
2816	(MS(REG_READ(ah, AR_GPIO_IN_OUT(ah)), x##_GPIO_IN_VAL) & BIT(y))
2817
2818	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2819
2820	if (BIT(gpio) & ah->caps.gpio_mask) {
2821		if (AR_SREV_9271(ah))
2822			val = MS_REG_READ(AR9271, gpio);
2823		else if (AR_SREV_9287(ah))
2824			val = MS_REG_READ(AR9287, gpio);
2825		else if (AR_SREV_9285(ah))
2826			val = MS_REG_READ(AR9285, gpio);
2827		else if (AR_SREV_9280(ah))
2828			val = MS_REG_READ(AR928X, gpio);
2829		else if (AR_DEVID_7010(ah))
2830			val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2831		else if (AR_SREV_9300_20_OR_LATER(ah))
2832			val = REG_READ(ah, AR_GPIO_IN(ah)) & BIT(gpio);
2833		else
2834			val = MS_REG_READ(AR, gpio);
2835	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2836		val = gpio_get_value(gpio) & BIT(gpio);
2837	} else {
2838		WARN_ON(1);
2839	}
2840
2841	return !!val;
 
 
 
 
 
2842}
2843EXPORT_SYMBOL(ath9k_hw_gpio_get);
2844
2845void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2846{
2847	WARN_ON(gpio >= ah->caps.num_gpio_pins);
 
 
 
 
 
 
 
 
2848
2849	if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2850		val = !val;
 
2851	else
2852		val = !!val;
 
 
2853
2854	if (BIT(gpio) & ah->caps.gpio_mask) {
2855		u32 out_addr = AR_DEVID_7010(ah) ?
2856			AR7010_GPIO_OUT : AR_GPIO_IN_OUT(ah);
 
2857
2858		REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2859	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2860		gpio_set_value(gpio, val);
2861	} else {
2862		WARN_ON(1);
2863	}
2864}
2865EXPORT_SYMBOL(ath9k_hw_set_gpio);
2866
2867void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2868{
2869	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2870}
2871EXPORT_SYMBOL(ath9k_hw_setantenna);
2872
2873/*********************/
2874/* General Operation */
2875/*********************/
2876
2877u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2878{
2879	u32 bits = REG_READ(ah, AR_RX_FILTER);
2880	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2881
2882	if (phybits & AR_PHY_ERR_RADAR)
2883		bits |= ATH9K_RX_FILTER_PHYRADAR;
2884	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2885		bits |= ATH9K_RX_FILTER_PHYERR;
2886
2887	return bits;
2888}
2889EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2890
2891void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2892{
2893	u32 phybits;
2894
2895	ENABLE_REGWRITE_BUFFER(ah);
2896
2897	REG_WRITE(ah, AR_RX_FILTER, bits);
2898
2899	phybits = 0;
2900	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2901		phybits |= AR_PHY_ERR_RADAR;
2902	if (bits & ATH9K_RX_FILTER_PHYERR)
2903		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2904	REG_WRITE(ah, AR_PHY_ERR, phybits);
2905
2906	if (phybits)
2907		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2908	else
2909		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2910
2911	REGWRITE_BUFFER_FLUSH(ah);
2912}
2913EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2914
2915bool ath9k_hw_phy_disable(struct ath_hw *ah)
2916{
2917	if (ath9k_hw_mci_is_enabled(ah))
2918		ar9003_mci_bt_gain_ctrl(ah);
2919
2920	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2921		return false;
2922
2923	ath9k_hw_init_pll(ah, NULL);
2924	ah->htc_reset_init = true;
2925	return true;
2926}
2927EXPORT_SYMBOL(ath9k_hw_phy_disable);
2928
2929bool ath9k_hw_disable(struct ath_hw *ah)
2930{
2931	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2932		return false;
2933
2934	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2935		return false;
2936
2937	ath9k_hw_init_pll(ah, NULL);
2938	return true;
2939}
2940EXPORT_SYMBOL(ath9k_hw_disable);
2941
2942static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2943{
2944	enum eeprom_param gain_param;
2945
2946	if (IS_CHAN_2GHZ(chan))
2947		gain_param = EEP_ANTENNA_GAIN_2G;
2948	else
2949		gain_param = EEP_ANTENNA_GAIN_5G;
2950
2951	return ah->eep_ops->get_eeprom(ah, gain_param);
2952}
2953
2954void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2955			    bool test)
2956{
2957	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2958	struct ieee80211_channel *channel;
2959	int chan_pwr, new_pwr;
2960	u16 ctl = NO_CTL;
2961
2962	if (!chan)
2963		return;
2964
2965	if (!test)
2966		ctl = ath9k_regd_get_ctl(reg, chan);
2967
2968	channel = chan->chan;
2969	chan_pwr = min_t(int, channel->max_power * 2, MAX_COMBINED_POWER);
2970	new_pwr = min_t(int, chan_pwr, reg->power_limit);
 
2971
2972	ah->eep_ops->set_txpower(ah, chan, ctl,
2973				 get_antenna_gain(ah, chan), new_pwr, test);
 
 
 
 
 
2974}
2975
2976void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2977{
2978	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2979	struct ath9k_channel *chan = ah->curchan;
2980	struct ieee80211_channel *channel = chan->chan;
2981
2982	reg->power_limit = min_t(u32, limit, MAX_COMBINED_POWER);
2983	if (test)
2984		channel->max_power = MAX_COMBINED_POWER / 2;
2985
2986	ath9k_hw_apply_txpower(ah, chan, test);
2987
2988	if (test)
2989		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2990}
2991EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2992
2993void ath9k_hw_setopmode(struct ath_hw *ah)
2994{
2995	ath9k_hw_set_operating_mode(ah, ah->opmode);
2996}
2997EXPORT_SYMBOL(ath9k_hw_setopmode);
2998
2999void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3000{
3001	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3002	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3003}
3004EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3005
3006void ath9k_hw_write_associd(struct ath_hw *ah)
3007{
3008	struct ath_common *common = ath9k_hw_common(ah);
3009
3010	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3011	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3012		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3013}
3014EXPORT_SYMBOL(ath9k_hw_write_associd);
3015
3016#define ATH9K_MAX_TSF_READ 10
3017
3018u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3019{
3020	u32 tsf_lower, tsf_upper1, tsf_upper2;
3021	int i;
3022
3023	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
3024	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
3025		tsf_lower = REG_READ(ah, AR_TSF_L32);
3026		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
3027		if (tsf_upper2 == tsf_upper1)
3028			break;
3029		tsf_upper1 = tsf_upper2;
3030	}
3031
3032	WARN_ON( i == ATH9K_MAX_TSF_READ );
3033
3034	return (((u64)tsf_upper1 << 32) | tsf_lower);
3035}
3036EXPORT_SYMBOL(ath9k_hw_gettsf64);
3037
3038void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3039{
3040	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3041	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3042}
3043EXPORT_SYMBOL(ath9k_hw_settsf64);
3044
3045void ath9k_hw_reset_tsf(struct ath_hw *ah)
3046{
3047	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3048			   AH_TSF_WRITE_TIMEOUT))
3049		ath_dbg(ath9k_hw_common(ah), RESET,
3050			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3051
3052	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3053}
3054EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3055
3056void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3057{
3058	if (set)
3059		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3060	else
3061		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3062}
3063EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3064
3065void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3066{
3067	u32 macmode;
3068
3069	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3070		macmode = AR_2040_JOINED_RX_CLEAR;
3071	else
3072		macmode = 0;
3073
3074	REG_WRITE(ah, AR_2040_MODE, macmode);
3075}
3076
3077/* HW Generic timers configuration */
3078
3079static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3080{
3081	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3082	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3083	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3084	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3085	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3086	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3087	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3088	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3089	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3090	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3091				AR_NDP2_TIMER_MODE, 0x0002},
3092	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3093				AR_NDP2_TIMER_MODE, 0x0004},
3094	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3095				AR_NDP2_TIMER_MODE, 0x0008},
3096	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3097				AR_NDP2_TIMER_MODE, 0x0010},
3098	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3099				AR_NDP2_TIMER_MODE, 0x0020},
3100	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3101				AR_NDP2_TIMER_MODE, 0x0040},
3102	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3103				AR_NDP2_TIMER_MODE, 0x0080}
3104};
3105
3106/* HW generic timer primitives */
3107
3108u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3109{
3110	return REG_READ(ah, AR_TSF_L32);
3111}
3112EXPORT_SYMBOL(ath9k_hw_gettsf32);
3113
3114void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3115{
3116	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3117
3118	if (timer_table->tsf2_enabled) {
3119		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3120		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3121	}
3122}
3123
3124struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3125					  void (*trigger)(void *),
3126					  void (*overflow)(void *),
3127					  void *arg,
3128					  u8 timer_index)
3129{
3130	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3131	struct ath_gen_timer *timer;
3132
3133	if ((timer_index < AR_FIRST_NDP_TIMER) ||
3134	    (timer_index >= ATH_MAX_GEN_TIMER))
3135		return NULL;
3136
3137	if ((timer_index > AR_FIRST_NDP_TIMER) &&
3138	    !AR_SREV_9300_20_OR_LATER(ah))
3139		return NULL;
3140
3141	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3142	if (timer == NULL)
3143		return NULL;
3144
3145	/* allocate a hardware generic timer slot */
3146	timer_table->timers[timer_index] = timer;
3147	timer->index = timer_index;
3148	timer->trigger = trigger;
3149	timer->overflow = overflow;
3150	timer->arg = arg;
3151
3152	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3153		timer_table->tsf2_enabled = true;
3154		ath9k_hw_gen_timer_start_tsf2(ah);
3155	}
3156
3157	return timer;
3158}
3159EXPORT_SYMBOL(ath_gen_timer_alloc);
3160
3161void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3162			      struct ath_gen_timer *timer,
3163			      u32 timer_next,
3164			      u32 timer_period)
3165{
3166	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3167	u32 mask = 0;
3168
3169	timer_table->timer_mask |= BIT(timer->index);
3170
3171	/*
3172	 * Program generic timer registers
3173	 */
3174	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3175		 timer_next);
3176	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3177		  timer_period);
3178	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3179		    gen_tmr_configuration[timer->index].mode_mask);
3180
3181	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3182		/*
3183		 * Starting from AR9462, each generic timer can select which tsf
3184		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3185		 * 8 - 15  use tsf2.
3186		 */
3187		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3188			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3189				       (1 << timer->index));
3190		else
3191			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3192				       (1 << timer->index));
3193	}
3194
3195	if (timer->trigger)
3196		mask |= SM(AR_GENTMR_BIT(timer->index),
3197			   AR_IMR_S5_GENTIMER_TRIG);
3198	if (timer->overflow)
3199		mask |= SM(AR_GENTMR_BIT(timer->index),
3200			   AR_IMR_S5_GENTIMER_THRESH);
3201
3202	REG_SET_BIT(ah, AR_IMR_S5, mask);
3203
3204	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3205		ah->imask |= ATH9K_INT_GENTIMER;
3206		ath9k_hw_set_interrupts(ah);
3207	}
3208}
3209EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3210
3211void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3212{
3213	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3214
3215	/* Clear generic timer enable bits. */
3216	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3217			gen_tmr_configuration[timer->index].mode_mask);
3218
3219	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3220		/*
3221		 * Need to switch back to TSF if it was using TSF2.
3222		 */
3223		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3224			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3225				    (1 << timer->index));
3226		}
3227	}
3228
3229	/* Disable both trigger and thresh interrupt masks */
3230	REG_CLR_BIT(ah, AR_IMR_S5,
3231		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3232		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3233
3234	timer_table->timer_mask &= ~BIT(timer->index);
3235
3236	if (timer_table->timer_mask == 0) {
3237		ah->imask &= ~ATH9K_INT_GENTIMER;
3238		ath9k_hw_set_interrupts(ah);
3239	}
3240}
3241EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3242
3243void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3244{
3245	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3246
3247	/* free the hardware generic timer slot */
3248	timer_table->timers[timer->index] = NULL;
3249	kfree(timer);
3250}
3251EXPORT_SYMBOL(ath_gen_timer_free);
3252
3253/*
3254 * Generic Timer Interrupts handling
3255 */
3256void ath_gen_timer_isr(struct ath_hw *ah)
3257{
3258	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3259	struct ath_gen_timer *timer;
3260	unsigned long trigger_mask, thresh_mask;
3261	unsigned int index;
3262
3263	/* get hardware generic timer interrupt status */
3264	trigger_mask = ah->intr_gen_timer_trigger;
3265	thresh_mask = ah->intr_gen_timer_thresh;
3266	trigger_mask &= timer_table->timer_mask;
3267	thresh_mask &= timer_table->timer_mask;
3268
3269	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3270		timer = timer_table->timers[index];
3271		if (!timer)
3272		    continue;
3273		if (!timer->overflow)
3274		    continue;
3275
3276		trigger_mask &= ~BIT(index);
3277		timer->overflow(timer->arg);
3278	}
3279
3280	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3281		timer = timer_table->timers[index];
3282		if (!timer)
3283		    continue;
3284		if (!timer->trigger)
3285		    continue;
3286		timer->trigger(timer->arg);
3287	}
3288}
3289EXPORT_SYMBOL(ath_gen_timer_isr);
3290
3291/********/
3292/* HTC  */
3293/********/
3294
3295static struct {
3296	u32 version;
3297	const char * name;
3298} ath_mac_bb_names[] = {
3299	/* Devices with external radios */
3300	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3301	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3302	{ AR_SREV_VERSION_9100,		"9100" },
3303	{ AR_SREV_VERSION_9160,		"9160" },
3304	/* Single-chip solutions */
3305	{ AR_SREV_VERSION_9280,		"9280" },
3306	{ AR_SREV_VERSION_9285,		"9285" },
3307	{ AR_SREV_VERSION_9287,         "9287" },
3308	{ AR_SREV_VERSION_9271,         "9271" },
3309	{ AR_SREV_VERSION_9300,         "9300" },
3310	{ AR_SREV_VERSION_9330,         "9330" },
3311	{ AR_SREV_VERSION_9340,		"9340" },
3312	{ AR_SREV_VERSION_9485,         "9485" },
3313	{ AR_SREV_VERSION_9462,         "9462" },
3314	{ AR_SREV_VERSION_9550,         "9550" },
3315	{ AR_SREV_VERSION_9565,         "9565" },
3316	{ AR_SREV_VERSION_9531,         "9531" },
3317	{ AR_SREV_VERSION_9561,         "9561" },
3318};
3319
3320/* For devices with external radios */
3321static struct {
3322	u16 version;
3323	const char * name;
3324} ath_rf_names[] = {
3325	{ 0,				"5133" },
3326	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3327	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3328	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3329	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3330};
3331
3332/*
3333 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3334 */
3335static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3336{
3337	int i;
3338
3339	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3340		if (ath_mac_bb_names[i].version == mac_bb_version) {
3341			return ath_mac_bb_names[i].name;
3342		}
3343	}
3344
3345	return "????";
3346}
3347
3348/*
3349 * Return the RF name. "????" is returned if the RF is unknown.
3350 * Used for devices with external radios.
3351 */
3352static const char *ath9k_hw_rf_name(u16 rf_version)
3353{
3354	int i;
3355
3356	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3357		if (ath_rf_names[i].version == rf_version) {
3358			return ath_rf_names[i].name;
3359		}
3360	}
3361
3362	return "????";
3363}
3364
3365void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3366{
3367	int used;
3368
3369	/* chipsets >= AR9280 are single-chip */
3370	if (AR_SREV_9280_20_OR_LATER(ah)) {
3371		used = scnprintf(hw_name, len,
3372				 "Atheros AR%s Rev:%x",
3373				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3374				 ah->hw_version.macRev);
3375	}
3376	else {
3377		used = scnprintf(hw_name, len,
3378				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3379				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3380				 ah->hw_version.macRev,
3381				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3382						  & AR_RADIO_SREV_MAJOR)),
3383				 ah->hw_version.phyRev);
3384	}
3385
3386	hw_name[used] = '\0';
3387}
3388EXPORT_SYMBOL(ath9k_hw_name);
v4.6
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/io.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/time.h>
  21#include <linux/bitops.h>
  22#include <linux/etherdevice.h>
  23#include <linux/gpio.h>
  24#include <asm/unaligned.h>
  25
  26#include "hw.h"
  27#include "hw-ops.h"
  28#include "ar9003_mac.h"
  29#include "ar9003_mci.h"
  30#include "ar9003_phy.h"
  31#include "ath9k.h"
  32
  33static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  34
  35MODULE_AUTHOR("Atheros Communications");
  36MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  37MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  38MODULE_LICENSE("Dual BSD/GPL");
  39
  40static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  41{
  42	struct ath_common *common = ath9k_hw_common(ah);
  43	struct ath9k_channel *chan = ah->curchan;
  44	unsigned int clockrate;
  45
  46	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  47	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  48		clockrate = 117;
  49	else if (!chan) /* should really check for CCK instead */
  50		clockrate = ATH9K_CLOCK_RATE_CCK;
  51	else if (IS_CHAN_2GHZ(chan))
  52		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  53	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  54		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  55	else
  56		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  57
  58	if (chan) {
  59		if (IS_CHAN_HT40(chan))
  60			clockrate *= 2;
  61		if (IS_CHAN_HALF_RATE(chan))
  62			clockrate /= 2;
  63		if (IS_CHAN_QUARTER_RATE(chan))
  64			clockrate /= 4;
  65	}
  66
  67	common->clockrate = clockrate;
  68}
  69
  70static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  71{
  72	struct ath_common *common = ath9k_hw_common(ah);
  73
  74	return usecs * common->clockrate;
  75}
  76
  77bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  78{
  79	int i;
  80
  81	BUG_ON(timeout < AH_TIME_QUANTUM);
  82
  83	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  84		if ((REG_READ(ah, reg) & mask) == val)
  85			return true;
  86
  87		udelay(AH_TIME_QUANTUM);
  88	}
  89
  90	ath_dbg(ath9k_hw_common(ah), ANY,
  91		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  92		timeout, reg, REG_READ(ah, reg), mask, val);
  93
  94	return false;
  95}
  96EXPORT_SYMBOL(ath9k_hw_wait);
  97
  98void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  99			  int hw_delay)
 100{
 101	hw_delay /= 10;
 102
 103	if (IS_CHAN_HALF_RATE(chan))
 104		hw_delay *= 2;
 105	else if (IS_CHAN_QUARTER_RATE(chan))
 106		hw_delay *= 4;
 107
 108	udelay(hw_delay + BASE_ACTIVATE_DELAY);
 109}
 110
 111void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
 112			  int column, unsigned int *writecnt)
 113{
 114	int r;
 115
 116	ENABLE_REGWRITE_BUFFER(ah);
 117	for (r = 0; r < array->ia_rows; r++) {
 118		REG_WRITE(ah, INI_RA(array, r, 0),
 119			  INI_RA(array, r, column));
 120		DO_DELAY(*writecnt);
 121	}
 122	REGWRITE_BUFFER_FLUSH(ah);
 123}
 124
 125void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
 126{
 127	u32 *tmp_reg_list, *tmp_data;
 128	int i;
 129
 130	tmp_reg_list = kmalloc(size * sizeof(u32), GFP_KERNEL);
 131	if (!tmp_reg_list) {
 132		dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
 133		return;
 134	}
 135
 136	tmp_data = kmalloc(size * sizeof(u32), GFP_KERNEL);
 137	if (!tmp_data) {
 138		dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
 139		goto error_tmp_data;
 140	}
 141
 142	for (i = 0; i < size; i++)
 143		tmp_reg_list[i] = array[i][0];
 144
 145	REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
 146
 147	for (i = 0; i < size; i++)
 148		array[i][1] = tmp_data[i];
 149
 150	kfree(tmp_data);
 151error_tmp_data:
 152	kfree(tmp_reg_list);
 153}
 154
 155u32 ath9k_hw_reverse_bits(u32 val, u32 n)
 156{
 157	u32 retval;
 158	int i;
 159
 160	for (i = 0, retval = 0; i < n; i++) {
 161		retval = (retval << 1) | (val & 1);
 162		val >>= 1;
 163	}
 164	return retval;
 165}
 166
 167u16 ath9k_hw_computetxtime(struct ath_hw *ah,
 168			   u8 phy, int kbps,
 169			   u32 frameLen, u16 rateix,
 170			   bool shortPreamble)
 171{
 172	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
 173
 174	if (kbps == 0)
 175		return 0;
 176
 177	switch (phy) {
 178	case WLAN_RC_PHY_CCK:
 179		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
 180		if (shortPreamble)
 181			phyTime >>= 1;
 182		numBits = frameLen << 3;
 183		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
 184		break;
 185	case WLAN_RC_PHY_OFDM:
 186		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
 187			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
 
 188			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 189			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 190			txTime = OFDM_SIFS_TIME_QUARTER
 191				+ OFDM_PREAMBLE_TIME_QUARTER
 192				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
 193		} else if (ah->curchan &&
 194			   IS_CHAN_HALF_RATE(ah->curchan)) {
 195			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
 
 196			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 197			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 198			txTime = OFDM_SIFS_TIME_HALF +
 199				OFDM_PREAMBLE_TIME_HALF
 200				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
 201		} else {
 202			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
 203			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 204			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 205			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
 206				+ (numSymbols * OFDM_SYMBOL_TIME);
 207		}
 208		break;
 209	default:
 210		ath_err(ath9k_hw_common(ah),
 211			"Unknown phy %u (rate ix %u)\n", phy, rateix);
 212		txTime = 0;
 213		break;
 214	}
 215
 216	return txTime;
 217}
 218EXPORT_SYMBOL(ath9k_hw_computetxtime);
 219
 220void ath9k_hw_get_channel_centers(struct ath_hw *ah,
 221				  struct ath9k_channel *chan,
 222				  struct chan_centers *centers)
 223{
 224	int8_t extoff;
 225
 226	if (!IS_CHAN_HT40(chan)) {
 227		centers->ctl_center = centers->ext_center =
 228			centers->synth_center = chan->channel;
 229		return;
 230	}
 231
 232	if (IS_CHAN_HT40PLUS(chan)) {
 233		centers->synth_center =
 234			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
 235		extoff = 1;
 236	} else {
 237		centers->synth_center =
 238			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
 239		extoff = -1;
 240	}
 241
 242	centers->ctl_center =
 243		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
 244	/* 25 MHz spacing is supported by hw but not on upper layers */
 245	centers->ext_center =
 246		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
 247}
 248
 249/******************/
 250/* Chip Revisions */
 251/******************/
 252
 253static void ath9k_hw_read_revisions(struct ath_hw *ah)
 254{
 
 255	u32 val;
 256
 257	if (ah->get_mac_revision)
 258		ah->hw_version.macRev = ah->get_mac_revision();
 259
 260	switch (ah->hw_version.devid) {
 261	case AR5416_AR9100_DEVID:
 262		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
 263		break;
 264	case AR9300_DEVID_AR9330:
 265		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
 266		if (!ah->get_mac_revision) {
 267			val = REG_READ(ah, AR_SREV);
 268			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 269		}
 270		return;
 271	case AR9300_DEVID_AR9340:
 272		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
 273		return;
 274	case AR9300_DEVID_QCA955X:
 275		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
 276		return;
 277	case AR9300_DEVID_AR953X:
 278		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
 279		return;
 280	case AR9300_DEVID_QCA956X:
 281		ah->hw_version.macVersion = AR_SREV_VERSION_9561;
 282		return;
 
 
 
 
 
 
 
 
 283	}
 284
 285	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
 286
 287	if (val == 0xFF) {
 288		val = REG_READ(ah, AR_SREV);
 289		ah->hw_version.macVersion =
 290			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
 291		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 292
 293		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 294			ah->is_pciexpress = true;
 295		else
 296			ah->is_pciexpress = (val &
 297					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
 298	} else {
 299		if (!AR_SREV_9100(ah))
 300			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
 301
 302		ah->hw_version.macRev = val & AR_SREV_REVISION;
 303
 304		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
 305			ah->is_pciexpress = true;
 306	}
 
 
 307}
 308
 309/************************************/
 310/* HW Attach, Detach, Init Routines */
 311/************************************/
 312
 313static void ath9k_hw_disablepcie(struct ath_hw *ah)
 314{
 315	if (!AR_SREV_5416(ah))
 316		return;
 317
 318	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
 319	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
 320	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
 321	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
 322	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
 323	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
 324	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
 325	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
 326	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
 327
 328	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
 329}
 330
 331/* This should work for all families including legacy */
 332static bool ath9k_hw_chip_test(struct ath_hw *ah)
 333{
 334	struct ath_common *common = ath9k_hw_common(ah);
 335	u32 regAddr[2] = { AR_STA_ID0 };
 336	u32 regHold[2];
 337	static const u32 patternData[4] = {
 338		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
 339	};
 340	int i, j, loop_max;
 341
 342	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 343		loop_max = 2;
 344		regAddr[1] = AR_PHY_BASE + (8 << 2);
 345	} else
 346		loop_max = 1;
 347
 348	for (i = 0; i < loop_max; i++) {
 349		u32 addr = regAddr[i];
 350		u32 wrData, rdData;
 351
 352		regHold[i] = REG_READ(ah, addr);
 353		for (j = 0; j < 0x100; j++) {
 354			wrData = (j << 16) | j;
 355			REG_WRITE(ah, addr, wrData);
 356			rdData = REG_READ(ah, addr);
 357			if (rdData != wrData) {
 358				ath_err(common,
 359					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 360					addr, wrData, rdData);
 361				return false;
 362			}
 363		}
 364		for (j = 0; j < 4; j++) {
 365			wrData = patternData[j];
 366			REG_WRITE(ah, addr, wrData);
 367			rdData = REG_READ(ah, addr);
 368			if (wrData != rdData) {
 369				ath_err(common,
 370					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 371					addr, wrData, rdData);
 372				return false;
 373			}
 374		}
 375		REG_WRITE(ah, regAddr[i], regHold[i]);
 376	}
 377	udelay(100);
 378
 379	return true;
 380}
 381
 382static void ath9k_hw_init_config(struct ath_hw *ah)
 383{
 384	struct ath_common *common = ath9k_hw_common(ah);
 385
 386	ah->config.dma_beacon_response_time = 1;
 387	ah->config.sw_beacon_response_time = 6;
 388	ah->config.cwm_ignore_extcca = false;
 389	ah->config.analog_shiftreg = 1;
 390
 391	ah->config.rx_intr_mitigation = true;
 392
 393	if (AR_SREV_9300_20_OR_LATER(ah)) {
 394		ah->config.rimt_last = 500;
 395		ah->config.rimt_first = 2000;
 396	} else {
 397		ah->config.rimt_last = 250;
 398		ah->config.rimt_first = 700;
 399	}
 400
 401	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 402		ah->config.pll_pwrsave = 7;
 403
 404	/*
 405	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
 406	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
 407	 * This means we use it for all AR5416 devices, and the few
 408	 * minor PCI AR9280 devices out there.
 409	 *
 410	 * Serialization is required because these devices do not handle
 411	 * well the case of two concurrent reads/writes due to the latency
 412	 * involved. During one read/write another read/write can be issued
 413	 * on another CPU while the previous read/write may still be working
 414	 * on our hardware, if we hit this case the hardware poops in a loop.
 415	 * We prevent this by serializing reads and writes.
 416	 *
 417	 * This issue is not present on PCI-Express devices or pre-AR5416
 418	 * devices (legacy, 802.11abg).
 419	 */
 420	if (num_possible_cpus() > 1)
 421		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
 422
 423	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
 424		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
 425		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
 426		     !ah->is_pciexpress)) {
 427			ah->config.serialize_regmode = SER_REG_MODE_ON;
 428		} else {
 429			ah->config.serialize_regmode = SER_REG_MODE_OFF;
 430		}
 431	}
 432
 433	ath_dbg(common, RESET, "serialize_regmode is %d\n",
 434		ah->config.serialize_regmode);
 435
 436	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 437		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
 438	else
 439		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
 440}
 441
 442static void ath9k_hw_init_defaults(struct ath_hw *ah)
 443{
 444	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 445
 446	regulatory->country_code = CTRY_DEFAULT;
 447	regulatory->power_limit = MAX_RATE_POWER;
 448
 449	ah->hw_version.magic = AR5416_MAGIC;
 450	ah->hw_version.subvendorid = 0;
 451
 452	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
 453			       AR_STA_ID1_MCAST_KSRCH;
 454	if (AR_SREV_9100(ah))
 455		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
 456
 457	ah->slottime = ATH9K_SLOT_TIME_9;
 458	ah->globaltxtimeout = (u32) -1;
 459	ah->power_mode = ATH9K_PM_UNDEFINED;
 460	ah->htc_reset_init = true;
 461
 462	ah->tpc_enabled = false;
 463
 464	ah->ani_function = ATH9K_ANI_ALL;
 465	if (!AR_SREV_9300_20_OR_LATER(ah))
 466		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
 467
 468	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 469		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
 470	else
 471		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
 472}
 473
 474static int ath9k_hw_init_macaddr(struct ath_hw *ah)
 475{
 476	struct ath_common *common = ath9k_hw_common(ah);
 477	u32 sum;
 478	int i;
 479	u16 eeval;
 480	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
 481
 482	sum = 0;
 
 
 
 483	for (i = 0; i < 3; i++) {
 484		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
 485		sum += eeval;
 486		common->macaddr[2 * i] = eeval >> 8;
 487		common->macaddr[2 * i + 1] = eeval & 0xff;
 488	}
 489	if (!is_valid_ether_addr(common->macaddr)) {
 490		ath_err(common,
 491			"eeprom contains invalid mac address: %pM\n",
 492			common->macaddr);
 493
 494		random_ether_addr(common->macaddr);
 495		ath_err(common,
 496			"random mac address will be used: %pM\n",
 497			common->macaddr);
 498	}
 
 
 
 
 499
 500	return 0;
 501}
 502
 503static int ath9k_hw_post_init(struct ath_hw *ah)
 504{
 505	struct ath_common *common = ath9k_hw_common(ah);
 506	int ecode;
 507
 508	if (common->bus_ops->ath_bus_type != ATH_USB) {
 509		if (!ath9k_hw_chip_test(ah))
 510			return -ENODEV;
 511	}
 512
 513	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 514		ecode = ar9002_hw_rf_claim(ah);
 515		if (ecode != 0)
 516			return ecode;
 517	}
 518
 519	ecode = ath9k_hw_eeprom_init(ah);
 520	if (ecode != 0)
 521		return ecode;
 522
 523	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
 524		ah->eep_ops->get_eeprom_ver(ah),
 525		ah->eep_ops->get_eeprom_rev(ah));
 526
 527	ath9k_hw_ani_init(ah);
 528
 529	/*
 530	 * EEPROM needs to be initialized before we do this.
 531	 * This is required for regulatory compliance.
 532	 */
 533	if (AR_SREV_9300_20_OR_LATER(ah)) {
 534		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
 535		if ((regdmn & 0xF0) == CTL_FCC) {
 536			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
 537			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
 538		}
 539	}
 540
 541	return 0;
 542}
 543
 544static int ath9k_hw_attach_ops(struct ath_hw *ah)
 545{
 546	if (!AR_SREV_9300_20_OR_LATER(ah))
 547		return ar9002_hw_attach_ops(ah);
 548
 549	ar9003_hw_attach_ops(ah);
 550	return 0;
 551}
 552
 553/* Called for all hardware families */
 554static int __ath9k_hw_init(struct ath_hw *ah)
 555{
 556	struct ath_common *common = ath9k_hw_common(ah);
 557	int r = 0;
 558
 559	ath9k_hw_read_revisions(ah);
 
 
 
 560
 561	switch (ah->hw_version.macVersion) {
 562	case AR_SREV_VERSION_5416_PCI:
 563	case AR_SREV_VERSION_5416_PCIE:
 564	case AR_SREV_VERSION_9160:
 565	case AR_SREV_VERSION_9100:
 566	case AR_SREV_VERSION_9280:
 567	case AR_SREV_VERSION_9285:
 568	case AR_SREV_VERSION_9287:
 569	case AR_SREV_VERSION_9271:
 570	case AR_SREV_VERSION_9300:
 571	case AR_SREV_VERSION_9330:
 572	case AR_SREV_VERSION_9485:
 573	case AR_SREV_VERSION_9340:
 574	case AR_SREV_VERSION_9462:
 575	case AR_SREV_VERSION_9550:
 576	case AR_SREV_VERSION_9565:
 577	case AR_SREV_VERSION_9531:
 578	case AR_SREV_VERSION_9561:
 579		break;
 580	default:
 581		ath_err(common,
 582			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
 583			ah->hw_version.macVersion, ah->hw_version.macRev);
 584		return -EOPNOTSUPP;
 585	}
 586
 587	/*
 588	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
 589	 * We need to do this to avoid RMW of this register. We cannot
 590	 * read the reg when chip is asleep.
 591	 */
 592	if (AR_SREV_9300_20_OR_LATER(ah)) {
 593		ah->WARegVal = REG_READ(ah, AR_WA);
 594		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
 595				 AR_WA_ASPM_TIMER_BASED_DISABLE);
 596	}
 597
 598	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
 599		ath_err(common, "Couldn't reset chip\n");
 600		return -EIO;
 601	}
 602
 603	if (AR_SREV_9565(ah)) {
 604		ah->WARegVal |= AR_WA_BIT22;
 605		REG_WRITE(ah, AR_WA, ah->WARegVal);
 606	}
 607
 608	ath9k_hw_init_defaults(ah);
 609	ath9k_hw_init_config(ah);
 610
 611	r = ath9k_hw_attach_ops(ah);
 612	if (r)
 613		return r;
 614
 615	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
 616		ath_err(common, "Couldn't wakeup chip\n");
 617		return -EIO;
 618	}
 619
 620	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
 621	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
 622		ah->is_pciexpress = false;
 623
 624	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
 625	ath9k_hw_init_cal_settings(ah);
 626
 627	if (!ah->is_pciexpress)
 628		ath9k_hw_disablepcie(ah);
 629
 630	r = ath9k_hw_post_init(ah);
 631	if (r)
 632		return r;
 633
 634	ath9k_hw_init_mode_gain_regs(ah);
 635	r = ath9k_hw_fill_cap_info(ah);
 636	if (r)
 637		return r;
 638
 639	r = ath9k_hw_init_macaddr(ah);
 640	if (r) {
 641		ath_err(common, "Failed to initialize MAC address\n");
 642		return r;
 643	}
 644
 645	ath9k_hw_init_hang_checks(ah);
 646
 647	common->state = ATH_HW_INITIALIZED;
 648
 649	return 0;
 650}
 651
 652int ath9k_hw_init(struct ath_hw *ah)
 653{
 654	int ret;
 655	struct ath_common *common = ath9k_hw_common(ah);
 656
 657	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
 658	switch (ah->hw_version.devid) {
 659	case AR5416_DEVID_PCI:
 660	case AR5416_DEVID_PCIE:
 661	case AR5416_AR9100_DEVID:
 662	case AR9160_DEVID_PCI:
 663	case AR9280_DEVID_PCI:
 664	case AR9280_DEVID_PCIE:
 665	case AR9285_DEVID_PCIE:
 666	case AR9287_DEVID_PCI:
 667	case AR9287_DEVID_PCIE:
 668	case AR2427_DEVID_PCIE:
 669	case AR9300_DEVID_PCIE:
 670	case AR9300_DEVID_AR9485_PCIE:
 671	case AR9300_DEVID_AR9330:
 672	case AR9300_DEVID_AR9340:
 673	case AR9300_DEVID_QCA955X:
 674	case AR9300_DEVID_AR9580:
 675	case AR9300_DEVID_AR9462:
 676	case AR9485_DEVID_AR1111:
 677	case AR9300_DEVID_AR9565:
 678	case AR9300_DEVID_AR953X:
 679	case AR9300_DEVID_QCA956X:
 680		break;
 681	default:
 682		if (common->bus_ops->ath_bus_type == ATH_USB)
 683			break;
 684		ath_err(common, "Hardware device ID 0x%04x not supported\n",
 685			ah->hw_version.devid);
 686		return -EOPNOTSUPP;
 687	}
 688
 689	ret = __ath9k_hw_init(ah);
 690	if (ret) {
 691		ath_err(common,
 692			"Unable to initialize hardware; initialization status: %d\n",
 693			ret);
 694		return ret;
 695	}
 696
 697	ath_dynack_init(ah);
 698
 699	return 0;
 700}
 701EXPORT_SYMBOL(ath9k_hw_init);
 702
 703static void ath9k_hw_init_qos(struct ath_hw *ah)
 704{
 705	ENABLE_REGWRITE_BUFFER(ah);
 706
 707	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
 708	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
 709
 710	REG_WRITE(ah, AR_QOS_NO_ACK,
 711		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
 712		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
 713		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
 714
 715	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
 716	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
 717	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
 718	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
 719	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
 720
 721	REGWRITE_BUFFER_FLUSH(ah);
 722}
 723
 724u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
 725{
 726	struct ath_common *common = ath9k_hw_common(ah);
 727	int i = 0;
 728
 729	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 730	udelay(100);
 731	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 732
 733	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
 734
 735		udelay(100);
 736
 737		if (WARN_ON_ONCE(i >= 100)) {
 738			ath_err(common, "PLL4 meaurement not done\n");
 739			break;
 740		}
 741
 742		i++;
 743	}
 744
 745	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
 746}
 747EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
 748
 749static void ath9k_hw_init_pll(struct ath_hw *ah,
 750			      struct ath9k_channel *chan)
 751{
 752	u32 pll;
 753
 754	pll = ath9k_hw_compute_pll_control(ah, chan);
 755
 756	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
 757		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
 758		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 759			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
 760		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 761			      AR_CH0_DPLL2_KD, 0x40);
 762		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 763			      AR_CH0_DPLL2_KI, 0x4);
 764
 765		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 766			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
 767		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 768			      AR_CH0_BB_DPLL1_NINI, 0x58);
 769		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 770			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
 771
 772		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 773			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
 774		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 775			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
 776		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 777			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
 778
 779		/* program BB PLL phase_shift to 0x6 */
 780		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 781			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
 782
 783		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 784			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
 785		udelay(1000);
 786	} else if (AR_SREV_9330(ah)) {
 787		u32 ddr_dpll2, pll_control2, kd;
 788
 789		if (ah->is_clk_25mhz) {
 790			ddr_dpll2 = 0x18e82f01;
 791			pll_control2 = 0xe04a3d;
 792			kd = 0x1d;
 793		} else {
 794			ddr_dpll2 = 0x19e82f01;
 795			pll_control2 = 0x886666;
 796			kd = 0x3d;
 797		}
 798
 799		/* program DDR PLL ki and kd value */
 800		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
 801
 802		/* program DDR PLL phase_shift */
 803		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
 804			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
 805
 806		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
 807			  pll | AR_RTC_9300_PLL_BYPASS);
 808		udelay(1000);
 809
 810		/* program refdiv, nint, frac to RTC register */
 811		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
 812
 813		/* program BB PLL kd and ki value */
 814		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
 815		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
 816
 817		/* program BB PLL phase_shift */
 818		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 819			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
 820	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 821		   AR_SREV_9561(ah)) {
 822		u32 regval, pll2_divint, pll2_divfrac, refdiv;
 823
 824		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
 825			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
 826		udelay(1000);
 827
 828		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
 829		udelay(100);
 830
 831		if (ah->is_clk_25mhz) {
 832			if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 833				pll2_divint = 0x1c;
 834				pll2_divfrac = 0xa3d2;
 835				refdiv = 1;
 836			} else {
 837				pll2_divint = 0x54;
 838				pll2_divfrac = 0x1eb85;
 839				refdiv = 3;
 840			}
 841		} else {
 842			if (AR_SREV_9340(ah)) {
 843				pll2_divint = 88;
 844				pll2_divfrac = 0;
 845				refdiv = 5;
 846			} else {
 847				pll2_divint = 0x11;
 848				pll2_divfrac = (AR_SREV_9531(ah) ||
 849						AR_SREV_9561(ah)) ?
 850						0x26665 : 0x26666;
 851				refdiv = 1;
 852			}
 853		}
 854
 855		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 856		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 857			regval |= (0x1 << 22);
 858		else
 859			regval |= (0x1 << 16);
 860		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 861		udelay(100);
 862
 863		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
 864			  (pll2_divint << 18) | pll2_divfrac);
 865		udelay(100);
 866
 867		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 868		if (AR_SREV_9340(ah))
 869			regval = (regval & 0x80071fff) |
 870				(0x1 << 30) |
 871				(0x1 << 13) |
 872				(0x4 << 26) |
 873				(0x18 << 19);
 874		else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 875			regval = (regval & 0x01c00fff) |
 876				(0x1 << 31) |
 877				(0x2 << 29) |
 878				(0xa << 25) |
 879				(0x1 << 19);
 880
 881			if (AR_SREV_9531(ah))
 882				regval |= (0x6 << 12);
 883		} else
 884			regval = (regval & 0x80071fff) |
 885				(0x3 << 30) |
 886				(0x1 << 13) |
 887				(0x4 << 26) |
 888				(0x60 << 19);
 889		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 890
 891		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 892			REG_WRITE(ah, AR_PHY_PLL_MODE,
 893				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
 894		else
 895			REG_WRITE(ah, AR_PHY_PLL_MODE,
 896				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
 897
 898		udelay(1000);
 899	}
 900
 901	if (AR_SREV_9565(ah))
 902		pll |= 0x40000;
 903	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
 904
 905	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
 906	    AR_SREV_9550(ah))
 907		udelay(1000);
 908
 909	/* Switch the core clock for ar9271 to 117Mhz */
 910	if (AR_SREV_9271(ah)) {
 911		udelay(500);
 912		REG_WRITE(ah, 0x50040, 0x304);
 913	}
 914
 915	udelay(RTC_PLL_SETTLE_DELAY);
 916
 917	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
 918}
 919
 920static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
 921					  enum nl80211_iftype opmode)
 922{
 923	u32 sync_default = AR_INTR_SYNC_DEFAULT;
 924	u32 imr_reg = AR_IMR_TXERR |
 925		AR_IMR_TXURN |
 926		AR_IMR_RXERR |
 927		AR_IMR_RXORN |
 928		AR_IMR_BCNMISC;
 
 929
 930	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 931	    AR_SREV_9561(ah))
 932		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
 933
 934	if (AR_SREV_9300_20_OR_LATER(ah)) {
 935		imr_reg |= AR_IMR_RXOK_HP;
 936		if (ah->config.rx_intr_mitigation)
 937			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 938		else
 
 939			imr_reg |= AR_IMR_RXOK_LP;
 940
 
 941	} else {
 942		if (ah->config.rx_intr_mitigation)
 943			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 944		else
 
 945			imr_reg |= AR_IMR_RXOK;
 
 
 946	}
 947
 948	if (ah->config.tx_intr_mitigation)
 949		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
 950	else
 
 951		imr_reg |= AR_IMR_TXOK;
 
 
 952
 953	ENABLE_REGWRITE_BUFFER(ah);
 954
 955	REG_WRITE(ah, AR_IMR, imr_reg);
 956	ah->imrs2_reg |= AR_IMR_S2_GTT;
 957	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 958
 
 
 
 
 
 
 
 
 
 
 959	if (!AR_SREV_9100(ah)) {
 960		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
 961		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
 962		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
 963	}
 964
 965	REGWRITE_BUFFER_FLUSH(ah);
 966
 967	if (AR_SREV_9300_20_OR_LATER(ah)) {
 968		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
 969		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
 970		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
 971		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
 972	}
 973}
 974
 975static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
 976{
 977	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
 978	val = min(val, (u32) 0xFFFF);
 979	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
 980}
 981
 982void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
 983{
 984	u32 val = ath9k_hw_mac_to_clks(ah, us);
 985	val = min(val, (u32) 0xFFFF);
 986	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
 987}
 988
 989void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
 990{
 991	u32 val = ath9k_hw_mac_to_clks(ah, us);
 992	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
 993	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
 994}
 995
 996void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
 997{
 998	u32 val = ath9k_hw_mac_to_clks(ah, us);
 999	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1000	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1001}
1002
1003static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1004{
1005	if (tu > 0xFFFF) {
1006		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1007			tu);
1008		ah->globaltxtimeout = (u32) -1;
1009		return false;
1010	} else {
1011		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1012		ah->globaltxtimeout = tu;
1013		return true;
1014	}
1015}
1016
1017void ath9k_hw_init_global_settings(struct ath_hw *ah)
1018{
1019	struct ath_common *common = ath9k_hw_common(ah);
1020	const struct ath9k_channel *chan = ah->curchan;
1021	int acktimeout, ctstimeout, ack_offset = 0;
1022	int slottime;
1023	int sifstime;
1024	int rx_lat = 0, tx_lat = 0, eifs = 0;
1025	u32 reg;
1026
1027	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1028		ah->misc_mode);
1029
1030	if (!chan)
1031		return;
1032
1033	if (ah->misc_mode != 0)
1034		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1035
1036	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1037		rx_lat = 41;
1038	else
1039		rx_lat = 37;
1040	tx_lat = 54;
1041
1042	if (IS_CHAN_5GHZ(chan))
1043		sifstime = 16;
1044	else
1045		sifstime = 10;
1046
1047	if (IS_CHAN_HALF_RATE(chan)) {
1048		eifs = 175;
1049		rx_lat *= 2;
1050		tx_lat *= 2;
1051		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1052		    tx_lat += 11;
1053
1054		sifstime = 32;
1055		ack_offset = 16;
 
1056		slottime = 13;
1057	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1058		eifs = 340;
1059		rx_lat = (rx_lat * 4) - 1;
1060		tx_lat *= 4;
1061		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1062		    tx_lat += 22;
1063
1064		sifstime = 64;
1065		ack_offset = 32;
 
1066		slottime = 21;
1067	} else {
1068		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1069			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1070			reg = AR_USEC_ASYNC_FIFO;
1071		} else {
1072			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1073				common->clockrate;
1074			reg = REG_READ(ah, AR_USEC);
1075		}
1076		rx_lat = MS(reg, AR_USEC_RX_LAT);
1077		tx_lat = MS(reg, AR_USEC_TX_LAT);
1078
1079		slottime = ah->slottime;
1080	}
1081
1082	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1083	slottime += 3 * ah->coverage_class;
1084	acktimeout = slottime + sifstime + ack_offset;
1085	ctstimeout = acktimeout;
1086
1087	/*
1088	 * Workaround for early ACK timeouts, add an offset to match the
1089	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1090	 * This was initially only meant to work around an issue with delayed
1091	 * BA frames in some implementations, but it has been found to fix ACK
1092	 * timeout issues in other cases as well.
1093	 */
1094	if (IS_CHAN_2GHZ(chan) &&
1095	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1096		acktimeout += 64 - sifstime - ah->slottime;
1097		ctstimeout += 48 - sifstime - ah->slottime;
1098	}
1099
1100	if (ah->dynack.enabled) {
1101		acktimeout = ah->dynack.ackto;
1102		ctstimeout = acktimeout;
1103		slottime = (acktimeout - 3) / 2;
1104	} else {
1105		ah->dynack.ackto = acktimeout;
1106	}
1107
1108	ath9k_hw_set_sifs_time(ah, sifstime);
1109	ath9k_hw_setslottime(ah, slottime);
1110	ath9k_hw_set_ack_timeout(ah, acktimeout);
1111	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1112	if (ah->globaltxtimeout != (u32) -1)
1113		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1114
1115	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1116	REG_RMW(ah, AR_USEC,
1117		(common->clockrate - 1) |
1118		SM(rx_lat, AR_USEC_RX_LAT) |
1119		SM(tx_lat, AR_USEC_TX_LAT),
1120		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1121
 
 
 
 
1122}
1123EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1124
1125void ath9k_hw_deinit(struct ath_hw *ah)
1126{
1127	struct ath_common *common = ath9k_hw_common(ah);
1128
1129	if (common->state < ATH_HW_INITIALIZED)
1130		return;
1131
1132	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1133}
1134EXPORT_SYMBOL(ath9k_hw_deinit);
1135
1136/*******/
1137/* INI */
1138/*******/
1139
1140u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1141{
1142	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1143
1144	if (IS_CHAN_2GHZ(chan))
1145		ctl |= CTL_11G;
1146	else
1147		ctl |= CTL_11A;
1148
1149	return ctl;
1150}
1151
1152/****************************************/
1153/* Reset and Channel Switching Routines */
1154/****************************************/
1155
1156static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1157{
1158	struct ath_common *common = ath9k_hw_common(ah);
1159	int txbuf_size;
1160
1161	ENABLE_REGWRITE_BUFFER(ah);
1162
1163	/*
1164	 * set AHB_MODE not to do cacheline prefetches
1165	*/
1166	if (!AR_SREV_9300_20_OR_LATER(ah))
1167		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1168
1169	/*
1170	 * let mac dma reads be in 128 byte chunks
1171	 */
1172	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1173
1174	REGWRITE_BUFFER_FLUSH(ah);
1175
1176	/*
1177	 * Restore TX Trigger Level to its pre-reset value.
1178	 * The initial value depends on whether aggregation is enabled, and is
1179	 * adjusted whenever underruns are detected.
1180	 */
1181	if (!AR_SREV_9300_20_OR_LATER(ah))
1182		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1183
1184	ENABLE_REGWRITE_BUFFER(ah);
1185
1186	/*
1187	 * let mac dma writes be in 128 byte chunks
1188	 */
1189	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1190
1191	/*
1192	 * Setup receive FIFO threshold to hold off TX activities
1193	 */
1194	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1195
1196	if (AR_SREV_9300_20_OR_LATER(ah)) {
1197		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1198		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1199
1200		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1201			ah->caps.rx_status_len);
1202	}
1203
1204	/*
1205	 * reduce the number of usable entries in PCU TXBUF to avoid
1206	 * wrap around issues.
1207	 */
1208	if (AR_SREV_9285(ah)) {
1209		/* For AR9285 the number of Fifos are reduced to half.
1210		 * So set the usable tx buf size also to half to
1211		 * avoid data/delimiter underruns
1212		 */
1213		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1214	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1215		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1216		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1217	} else {
1218		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1219	}
1220
1221	if (!AR_SREV_9271(ah))
1222		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1223
1224	REGWRITE_BUFFER_FLUSH(ah);
1225
1226	if (AR_SREV_9300_20_OR_LATER(ah))
1227		ath9k_hw_reset_txstatus_ring(ah);
1228}
1229
1230static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1231{
1232	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1233	u32 set = AR_STA_ID1_KSRCH_MODE;
1234
1235	ENABLE_REG_RMW_BUFFER(ah);
1236	switch (opmode) {
1237	case NL80211_IFTYPE_ADHOC:
1238		if (!AR_SREV_9340_13(ah)) {
1239			set |= AR_STA_ID1_ADHOC;
1240			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1241			break;
1242		}
1243		/* fall through */
1244	case NL80211_IFTYPE_OCB:
1245	case NL80211_IFTYPE_MESH_POINT:
1246	case NL80211_IFTYPE_AP:
1247		set |= AR_STA_ID1_STA_AP;
1248		/* fall through */
1249	case NL80211_IFTYPE_STATION:
1250		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1251		break;
1252	default:
1253		if (!ah->is_monitoring)
1254			set = 0;
1255		break;
1256	}
1257	REG_RMW(ah, AR_STA_ID1, set, mask);
1258	REG_RMW_BUFFER_FLUSH(ah);
1259}
1260
1261void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1262				   u32 *coef_mantissa, u32 *coef_exponent)
1263{
1264	u32 coef_exp, coef_man;
1265
1266	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1267		if ((coef_scaled >> coef_exp) & 0x1)
1268			break;
1269
1270	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1271
1272	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1273
1274	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1275	*coef_exponent = coef_exp - 16;
1276}
1277
1278/* AR9330 WAR:
1279 * call external reset function to reset WMAC if:
1280 * - doing a cold reset
1281 * - we have pending frames in the TX queues.
1282 */
1283static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1284{
1285	int i, npend = 0;
1286
1287	for (i = 0; i < AR_NUM_QCU; i++) {
1288		npend = ath9k_hw_numtxpending(ah, i);
1289		if (npend)
1290			break;
1291	}
1292
1293	if (ah->external_reset &&
1294	    (npend || type == ATH9K_RESET_COLD)) {
1295		int reset_err = 0;
1296
1297		ath_dbg(ath9k_hw_common(ah), RESET,
1298			"reset MAC via external reset\n");
1299
1300		reset_err = ah->external_reset();
1301		if (reset_err) {
1302			ath_err(ath9k_hw_common(ah),
1303				"External reset failed, err=%d\n",
1304				reset_err);
1305			return false;
1306		}
1307
1308		REG_WRITE(ah, AR_RTC_RESET, 1);
1309	}
1310
1311	return true;
1312}
1313
1314static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1315{
1316	u32 rst_flags;
1317	u32 tmpReg;
1318
1319	if (AR_SREV_9100(ah)) {
1320		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1321			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1322		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1323	}
1324
1325	ENABLE_REGWRITE_BUFFER(ah);
1326
1327	if (AR_SREV_9300_20_OR_LATER(ah)) {
1328		REG_WRITE(ah, AR_WA, ah->WARegVal);
1329		udelay(10);
1330	}
1331
1332	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1333		  AR_RTC_FORCE_WAKE_ON_INT);
1334
1335	if (AR_SREV_9100(ah)) {
1336		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1337			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1338	} else {
1339		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1340		if (AR_SREV_9340(ah))
1341			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1342		else
1343			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1344				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1345
1346		if (tmpReg) {
1347			u32 val;
1348			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1349
1350			val = AR_RC_HOSTIF;
1351			if (!AR_SREV_9300_20_OR_LATER(ah))
1352				val |= AR_RC_AHB;
1353			REG_WRITE(ah, AR_RC, val);
1354
1355		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1356			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1357
1358		rst_flags = AR_RTC_RC_MAC_WARM;
1359		if (type == ATH9K_RESET_COLD)
1360			rst_flags |= AR_RTC_RC_MAC_COLD;
1361	}
1362
1363	if (AR_SREV_9330(ah)) {
1364		if (!ath9k_hw_ar9330_reset_war(ah, type))
1365			return false;
1366	}
1367
1368	if (ath9k_hw_mci_is_enabled(ah))
1369		ar9003_mci_check_gpm_offset(ah);
1370
1371	/* DMA HALT added to resolve ar9300 and ar9580 bus error during
1372	 * RTC_RC reg read
1373	 */
1374	if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1375		REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1376		ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1377			      20 * AH_WAIT_TIMEOUT);
1378		REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1379	}
1380
1381	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1382
1383	REGWRITE_BUFFER_FLUSH(ah);
1384
1385	if (AR_SREV_9300_20_OR_LATER(ah))
1386		udelay(50);
1387	else if (AR_SREV_9100(ah))
1388		mdelay(10);
1389	else
1390		udelay(100);
1391
1392	REG_WRITE(ah, AR_RTC_RC, 0);
1393	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1394		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1395		return false;
1396	}
1397
1398	if (!AR_SREV_9100(ah))
1399		REG_WRITE(ah, AR_RC, 0);
1400
1401	if (AR_SREV_9100(ah))
1402		udelay(50);
1403
1404	return true;
1405}
1406
1407static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1408{
1409	ENABLE_REGWRITE_BUFFER(ah);
1410
1411	if (AR_SREV_9300_20_OR_LATER(ah)) {
1412		REG_WRITE(ah, AR_WA, ah->WARegVal);
1413		udelay(10);
1414	}
1415
1416	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1417		  AR_RTC_FORCE_WAKE_ON_INT);
1418
1419	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1420		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1421
1422	REG_WRITE(ah, AR_RTC_RESET, 0);
1423
1424	REGWRITE_BUFFER_FLUSH(ah);
1425
1426	udelay(2);
1427
1428	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1429		REG_WRITE(ah, AR_RC, 0);
1430
1431	REG_WRITE(ah, AR_RTC_RESET, 1);
1432
1433	if (!ath9k_hw_wait(ah,
1434			   AR_RTC_STATUS,
1435			   AR_RTC_STATUS_M,
1436			   AR_RTC_STATUS_ON,
1437			   AH_WAIT_TIMEOUT)) {
1438		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1439		return false;
1440	}
1441
1442	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1443}
1444
1445static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1446{
1447	bool ret = false;
1448
1449	if (AR_SREV_9300_20_OR_LATER(ah)) {
1450		REG_WRITE(ah, AR_WA, ah->WARegVal);
1451		udelay(10);
1452	}
1453
1454	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1455		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1456
1457	if (!ah->reset_power_on)
1458		type = ATH9K_RESET_POWER_ON;
1459
1460	switch (type) {
1461	case ATH9K_RESET_POWER_ON:
1462		ret = ath9k_hw_set_reset_power_on(ah);
1463		if (ret)
1464			ah->reset_power_on = true;
1465		break;
1466	case ATH9K_RESET_WARM:
1467	case ATH9K_RESET_COLD:
1468		ret = ath9k_hw_set_reset(ah, type);
1469		break;
1470	default:
1471		break;
1472	}
1473
1474	return ret;
1475}
1476
1477static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1478				struct ath9k_channel *chan)
1479{
1480	int reset_type = ATH9K_RESET_WARM;
1481
1482	if (AR_SREV_9280(ah)) {
1483		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1484			reset_type = ATH9K_RESET_POWER_ON;
1485		else
1486			reset_type = ATH9K_RESET_COLD;
1487	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1488		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1489		reset_type = ATH9K_RESET_COLD;
1490
1491	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1492		return false;
1493
1494	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1495		return false;
1496
1497	ah->chip_fullsleep = false;
1498
1499	if (AR_SREV_9330(ah))
1500		ar9003_hw_internal_regulator_apply(ah);
1501	ath9k_hw_init_pll(ah, chan);
1502
1503	return true;
1504}
1505
1506static bool ath9k_hw_channel_change(struct ath_hw *ah,
1507				    struct ath9k_channel *chan)
1508{
1509	struct ath_common *common = ath9k_hw_common(ah);
1510	struct ath9k_hw_capabilities *pCap = &ah->caps;
1511	bool band_switch = false, mode_diff = false;
1512	u8 ini_reloaded = 0;
1513	u32 qnum;
1514	int r;
1515
1516	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1517		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1518		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1519		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1520	}
1521
1522	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1523		if (ath9k_hw_numtxpending(ah, qnum)) {
1524			ath_dbg(common, QUEUE,
1525				"Transmit frames pending on queue %d\n", qnum);
1526			return false;
1527		}
1528	}
1529
1530	if (!ath9k_hw_rfbus_req(ah)) {
1531		ath_err(common, "Could not kill baseband RX\n");
1532		return false;
1533	}
1534
1535	if (band_switch || mode_diff) {
1536		ath9k_hw_mark_phy_inactive(ah);
1537		udelay(5);
1538
1539		if (band_switch)
1540			ath9k_hw_init_pll(ah, chan);
1541
1542		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1543			ath_err(common, "Failed to do fast channel change\n");
1544			return false;
1545		}
1546	}
1547
1548	ath9k_hw_set_channel_regs(ah, chan);
1549
1550	r = ath9k_hw_rf_set_freq(ah, chan);
1551	if (r) {
1552		ath_err(common, "Failed to set channel\n");
1553		return false;
1554	}
1555	ath9k_hw_set_clockrate(ah);
1556	ath9k_hw_apply_txpower(ah, chan, false);
1557
1558	ath9k_hw_set_delta_slope(ah, chan);
1559	ath9k_hw_spur_mitigate_freq(ah, chan);
1560
1561	if (band_switch || ini_reloaded)
1562		ah->eep_ops->set_board_values(ah, chan);
1563
1564	ath9k_hw_init_bb(ah, chan);
1565	ath9k_hw_rfbus_done(ah);
1566
1567	if (band_switch || ini_reloaded) {
1568		ah->ah_flags |= AH_FASTCC;
1569		ath9k_hw_init_cal(ah, chan);
1570		ah->ah_flags &= ~AH_FASTCC;
1571	}
1572
1573	return true;
1574}
1575
1576static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1577{
1578	u32 gpio_mask = ah->gpio_mask;
1579	int i;
1580
1581	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1582		if (!(gpio_mask & 1))
1583			continue;
1584
1585		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
 
1586		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1587	}
1588}
1589
1590void ath9k_hw_check_nav(struct ath_hw *ah)
1591{
1592	struct ath_common *common = ath9k_hw_common(ah);
1593	u32 val;
1594
1595	val = REG_READ(ah, AR_NAV);
1596	if (val != 0xdeadbeef && val > 0x7fff) {
1597		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1598		REG_WRITE(ah, AR_NAV, 0);
1599	}
1600}
1601EXPORT_SYMBOL(ath9k_hw_check_nav);
1602
1603bool ath9k_hw_check_alive(struct ath_hw *ah)
1604{
1605	int count = 50;
1606	u32 reg, last_val;
1607
 
 
 
 
1608	if (AR_SREV_9300(ah))
1609		return !ath9k_hw_detect_mac_hang(ah);
1610
1611	if (AR_SREV_9285_12_OR_LATER(ah))
1612		return true;
1613
1614	last_val = REG_READ(ah, AR_OBS_BUS_1);
1615	do {
1616		reg = REG_READ(ah, AR_OBS_BUS_1);
1617		if (reg != last_val)
1618			return true;
1619
1620		udelay(1);
1621		last_val = reg;
1622		if ((reg & 0x7E7FFFEF) == 0x00702400)
1623			continue;
1624
1625		switch (reg & 0x7E000B00) {
1626		case 0x1E000000:
1627		case 0x52000B00:
1628		case 0x18000B00:
1629			continue;
1630		default:
1631			return true;
1632		}
1633	} while (count-- > 0);
1634
1635	return false;
1636}
1637EXPORT_SYMBOL(ath9k_hw_check_alive);
1638
1639static void ath9k_hw_init_mfp(struct ath_hw *ah)
1640{
1641	/* Setup MFP options for CCMP */
1642	if (AR_SREV_9280_20_OR_LATER(ah)) {
1643		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1644		 * frames when constructing CCMP AAD. */
1645		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1646			      0xc7ff);
1647		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1648			ah->sw_mgmt_crypto_tx = true;
1649		else
1650			ah->sw_mgmt_crypto_tx = false;
1651		ah->sw_mgmt_crypto_rx = false;
1652	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1653		/* Disable hardware crypto for management frames */
1654		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1655			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1656		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1657			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1658		ah->sw_mgmt_crypto_tx = true;
1659		ah->sw_mgmt_crypto_rx = true;
1660	} else {
1661		ah->sw_mgmt_crypto_tx = true;
1662		ah->sw_mgmt_crypto_rx = true;
1663	}
1664}
1665
1666static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1667				  u32 macStaId1, u32 saveDefAntenna)
1668{
1669	struct ath_common *common = ath9k_hw_common(ah);
1670
1671	ENABLE_REGWRITE_BUFFER(ah);
1672
1673	REG_RMW(ah, AR_STA_ID1, macStaId1
1674		  | AR_STA_ID1_RTS_USE_DEF
1675		  | ah->sta_id1_defaults,
1676		  ~AR_STA_ID1_SADH_MASK);
1677	ath_hw_setbssidmask(common);
1678	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1679	ath9k_hw_write_associd(ah);
1680	REG_WRITE(ah, AR_ISR, ~0);
1681	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1682
1683	REGWRITE_BUFFER_FLUSH(ah);
1684
1685	ath9k_hw_set_operating_mode(ah, ah->opmode);
1686}
1687
1688static void ath9k_hw_init_queues(struct ath_hw *ah)
1689{
1690	int i;
1691
1692	ENABLE_REGWRITE_BUFFER(ah);
1693
1694	for (i = 0; i < AR_NUM_DCU; i++)
1695		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1696
1697	REGWRITE_BUFFER_FLUSH(ah);
1698
1699	ah->intr_txqs = 0;
1700	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1701		ath9k_hw_resettxqueue(ah, i);
1702}
1703
1704/*
1705 * For big endian systems turn on swapping for descriptors
1706 */
1707static void ath9k_hw_init_desc(struct ath_hw *ah)
1708{
1709	struct ath_common *common = ath9k_hw_common(ah);
1710
1711	if (AR_SREV_9100(ah)) {
1712		u32 mask;
1713		mask = REG_READ(ah, AR_CFG);
1714		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1715			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1716				mask);
1717		} else {
1718			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1719			REG_WRITE(ah, AR_CFG, mask);
1720			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1721				REG_READ(ah, AR_CFG));
1722		}
1723	} else {
1724		if (common->bus_ops->ath_bus_type == ATH_USB) {
1725			/* Configure AR9271 target WLAN */
1726			if (AR_SREV_9271(ah))
1727				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1728			else
1729				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1730		}
1731#ifdef __BIG_ENDIAN
1732		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1733			 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1734			 AR_SREV_9561(ah))
1735			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1736		else
1737			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1738#endif
1739	}
1740}
1741
1742/*
1743 * Fast channel change:
1744 * (Change synthesizer based on channel freq without resetting chip)
1745 */
1746static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1747{
1748	struct ath_common *common = ath9k_hw_common(ah);
1749	struct ath9k_hw_capabilities *pCap = &ah->caps;
1750	int ret;
1751
1752	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1753		goto fail;
1754
1755	if (ah->chip_fullsleep)
1756		goto fail;
1757
1758	if (!ah->curchan)
1759		goto fail;
1760
1761	if (chan->channel == ah->curchan->channel)
1762		goto fail;
1763
1764	if ((ah->curchan->channelFlags | chan->channelFlags) &
1765	    (CHANNEL_HALF | CHANNEL_QUARTER))
1766		goto fail;
1767
1768	/*
1769	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1770	 */
1771	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1772	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1773		goto fail;
1774
1775	if (!ath9k_hw_check_alive(ah))
1776		goto fail;
1777
1778	/*
1779	 * For AR9462, make sure that calibration data for
1780	 * re-using are present.
1781	 */
1782	if (AR_SREV_9462(ah) && (ah->caldata &&
1783				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1784				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1785				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1786		goto fail;
1787
1788	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1789		ah->curchan->channel, chan->channel);
1790
1791	ret = ath9k_hw_channel_change(ah, chan);
1792	if (!ret)
1793		goto fail;
1794
1795	if (ath9k_hw_mci_is_enabled(ah))
1796		ar9003_mci_2g5g_switch(ah, false);
1797
1798	ath9k_hw_loadnf(ah, ah->curchan);
1799	ath9k_hw_start_nfcal(ah, true);
1800
1801	if (AR_SREV_9271(ah))
1802		ar9002_hw_load_ani_reg(ah, chan);
1803
1804	return 0;
1805fail:
1806	return -EINVAL;
1807}
1808
1809u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1810{
1811	struct timespec ts;
1812	s64 usec;
1813
1814	if (!cur) {
1815		getrawmonotonic(&ts);
1816		cur = &ts;
1817	}
1818
1819	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1820	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1821
1822	return (u32) usec;
1823}
1824EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1825
1826int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1827		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1828{
1829	struct ath_common *common = ath9k_hw_common(ah);
1830	u32 saveLedState;
1831	u32 saveDefAntenna;
1832	u32 macStaId1;
 
 
1833	u64 tsf = 0;
1834	s64 usec = 0;
1835	int r;
1836	bool start_mci_reset = false;
1837	bool save_fullsleep = ah->chip_fullsleep;
1838
1839	if (ath9k_hw_mci_is_enabled(ah)) {
1840		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1841		if (start_mci_reset)
1842			return 0;
1843	}
1844
1845	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1846		return -EIO;
1847
1848	if (ah->curchan && !ah->chip_fullsleep)
1849		ath9k_hw_getnf(ah, ah->curchan);
1850
1851	ah->caldata = caldata;
1852	if (caldata && (chan->channel != caldata->channel ||
1853			chan->channelFlags != caldata->channelFlags)) {
1854		/* Operating channel changed, reset channel calibration data */
1855		memset(caldata, 0, sizeof(*caldata));
1856		ath9k_init_nfcal_hist_buffer(ah, chan);
1857	} else if (caldata) {
1858		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1859	}
1860	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1861
1862	if (fastcc) {
1863		r = ath9k_hw_do_fastcc(ah, chan);
1864		if (!r)
1865			return r;
1866	}
1867
1868	if (ath9k_hw_mci_is_enabled(ah))
1869		ar9003_mci_stop_bt(ah, save_fullsleep);
1870
1871	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1872	if (saveDefAntenna == 0)
1873		saveDefAntenna = 1;
1874
1875	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1876
1877	/* Save TSF before chip reset, a cold reset clears it */
 
1878	tsf = ath9k_hw_gettsf64(ah);
1879	usec = ktime_to_us(ktime_get_raw());
1880
1881	saveLedState = REG_READ(ah, AR_CFG_LED) &
1882		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1883		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1884
1885	ath9k_hw_mark_phy_inactive(ah);
1886
1887	ah->paprd_table_write_done = false;
1888
1889	/* Only required on the first reset */
1890	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1891		REG_WRITE(ah,
1892			  AR9271_RESET_POWER_DOWN_CONTROL,
1893			  AR9271_RADIO_RF_RST);
1894		udelay(50);
1895	}
1896
1897	if (!ath9k_hw_chip_reset(ah, chan)) {
1898		ath_err(common, "Chip reset failed\n");
1899		return -EINVAL;
1900	}
1901
1902	/* Only required on the first reset */
1903	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1904		ah->htc_reset_init = false;
1905		REG_WRITE(ah,
1906			  AR9271_RESET_POWER_DOWN_CONTROL,
1907			  AR9271_GATE_MAC_CTL);
1908		udelay(50);
1909	}
1910
1911	/* Restore TSF */
1912	usec = ktime_to_us(ktime_get_raw()) - usec;
1913	ath9k_hw_settsf64(ah, tsf + usec);
1914
1915	if (AR_SREV_9280_20_OR_LATER(ah))
1916		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1917
1918	if (!AR_SREV_9300_20_OR_LATER(ah))
1919		ar9002_hw_enable_async_fifo(ah);
1920
1921	r = ath9k_hw_process_ini(ah, chan);
1922	if (r)
1923		return r;
1924
1925	ath9k_hw_set_rfmode(ah, chan);
1926
1927	if (ath9k_hw_mci_is_enabled(ah))
1928		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1929
1930	/*
1931	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1932	 * right after the chip reset. When that happens, write a new
1933	 * value after the initvals have been applied, with an offset
1934	 * based on measured time difference
1935	 */
1936	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1937		tsf += 1500;
1938		ath9k_hw_settsf64(ah, tsf);
1939	}
1940
1941	ath9k_hw_init_mfp(ah);
1942
1943	ath9k_hw_set_delta_slope(ah, chan);
1944	ath9k_hw_spur_mitigate_freq(ah, chan);
1945	ah->eep_ops->set_board_values(ah, chan);
1946
1947	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1948
1949	r = ath9k_hw_rf_set_freq(ah, chan);
1950	if (r)
1951		return r;
1952
1953	ath9k_hw_set_clockrate(ah);
1954
1955	ath9k_hw_init_queues(ah);
1956	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1957	ath9k_hw_ani_cache_ini_regs(ah);
1958	ath9k_hw_init_qos(ah);
1959
1960	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1961		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1962
1963	ath9k_hw_init_global_settings(ah);
1964
1965	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1966		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1967			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1968		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1969			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1970		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1971			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1972	}
1973
1974	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1975
1976	ath9k_hw_set_dma(ah);
1977
1978	if (!ath9k_hw_mci_is_enabled(ah))
1979		REG_WRITE(ah, AR_OBS, 8);
1980
1981	ENABLE_REG_RMW_BUFFER(ah);
1982	if (ah->config.rx_intr_mitigation) {
1983		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1984		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1985	}
1986
1987	if (ah->config.tx_intr_mitigation) {
1988		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1989		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1990	}
1991	REG_RMW_BUFFER_FLUSH(ah);
1992
1993	ath9k_hw_init_bb(ah, chan);
1994
1995	if (caldata) {
1996		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1997		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1998	}
1999	if (!ath9k_hw_init_cal(ah, chan))
2000		return -EIO;
2001
2002	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2003		return -EIO;
2004
2005	ENABLE_REGWRITE_BUFFER(ah);
2006
2007	ath9k_hw_restore_chainmask(ah);
2008	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2009
2010	REGWRITE_BUFFER_FLUSH(ah);
2011
2012	ath9k_hw_gen_timer_start_tsf2(ah);
2013
2014	ath9k_hw_init_desc(ah);
2015
2016	if (ath9k_hw_btcoex_is_enabled(ah))
2017		ath9k_hw_btcoex_enable(ah);
2018
2019	if (ath9k_hw_mci_is_enabled(ah))
2020		ar9003_mci_check_bt(ah);
2021
2022	if (AR_SREV_9300_20_OR_LATER(ah)) {
2023		ath9k_hw_loadnf(ah, chan);
2024		ath9k_hw_start_nfcal(ah, true);
2025	}
2026
2027	if (AR_SREV_9300_20_OR_LATER(ah))
2028		ar9003_hw_bb_watchdog_config(ah);
2029
2030	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2031		ar9003_hw_disable_phy_restart(ah);
2032
2033	ath9k_hw_apply_gpio_override(ah);
2034
2035	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2036		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2037
2038	if (ah->hw->conf.radar_enabled) {
2039		/* set HW specific DFS configuration */
2040		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2041		ath9k_hw_set_radar_params(ah);
2042	}
2043
2044	return 0;
2045}
2046EXPORT_SYMBOL(ath9k_hw_reset);
2047
2048/******************************/
2049/* Power Management (Chipset) */
2050/******************************/
2051
2052/*
2053 * Notify Power Mgt is disabled in self-generated frames.
2054 * If requested, force chip to sleep.
2055 */
2056static void ath9k_set_power_sleep(struct ath_hw *ah)
2057{
2058	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2059
2060	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2061		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2062		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2063		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2064		/* xxx Required for WLAN only case ? */
2065		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2066		udelay(100);
2067	}
2068
2069	/*
2070	 * Clear the RTC force wake bit to allow the
2071	 * mac to go to sleep.
2072	 */
2073	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2074
2075	if (ath9k_hw_mci_is_enabled(ah))
2076		udelay(100);
2077
2078	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2079		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2080
2081	/* Shutdown chip. Active low */
2082	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2083		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2084		udelay(2);
2085	}
2086
2087	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2088	if (AR_SREV_9300_20_OR_LATER(ah))
2089		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2090}
2091
2092/*
2093 * Notify Power Management is enabled in self-generating
2094 * frames. If request, set power mode of chip to
2095 * auto/normal.  Duration in units of 128us (1/8 TU).
2096 */
2097static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2098{
2099	struct ath9k_hw_capabilities *pCap = &ah->caps;
2100
2101	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2102
2103	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2104		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2105		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2106			  AR_RTC_FORCE_WAKE_ON_INT);
2107	} else {
2108
2109		/* When chip goes into network sleep, it could be waken
2110		 * up by MCI_INT interrupt caused by BT's HW messages
2111		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2112		 * rate (~100us). This will cause chip to leave and
2113		 * re-enter network sleep mode frequently, which in
2114		 * consequence will have WLAN MCI HW to generate lots of
2115		 * SYS_WAKING and SYS_SLEEPING messages which will make
2116		 * BT CPU to busy to process.
2117		 */
2118		if (ath9k_hw_mci_is_enabled(ah))
2119			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2120				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2121		/*
2122		 * Clear the RTC force wake bit to allow the
2123		 * mac to go to sleep.
2124		 */
2125		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2126
2127		if (ath9k_hw_mci_is_enabled(ah))
2128			udelay(30);
2129	}
2130
2131	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2132	if (AR_SREV_9300_20_OR_LATER(ah))
2133		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2134}
2135
2136static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2137{
2138	u32 val;
2139	int i;
2140
2141	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2142	if (AR_SREV_9300_20_OR_LATER(ah)) {
2143		REG_WRITE(ah, AR_WA, ah->WARegVal);
2144		udelay(10);
2145	}
2146
2147	if ((REG_READ(ah, AR_RTC_STATUS) &
2148	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2149		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2150			return false;
2151		}
2152		if (!AR_SREV_9300_20_OR_LATER(ah))
2153			ath9k_hw_init_pll(ah, NULL);
2154	}
2155	if (AR_SREV_9100(ah))
2156		REG_SET_BIT(ah, AR_RTC_RESET,
2157			    AR_RTC_RESET_EN);
2158
2159	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2160		    AR_RTC_FORCE_WAKE_EN);
2161	if (AR_SREV_9100(ah))
2162		mdelay(10);
2163	else
2164		udelay(50);
2165
2166	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2167		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2168		if (val == AR_RTC_STATUS_ON)
2169			break;
2170		udelay(50);
2171		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2172			    AR_RTC_FORCE_WAKE_EN);
2173	}
2174	if (i == 0) {
2175		ath_err(ath9k_hw_common(ah),
2176			"Failed to wakeup in %uus\n",
2177			POWER_UP_TIME / 20);
2178		return false;
2179	}
2180
2181	if (ath9k_hw_mci_is_enabled(ah))
2182		ar9003_mci_set_power_awake(ah);
2183
2184	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2185
2186	return true;
2187}
2188
2189bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2190{
2191	struct ath_common *common = ath9k_hw_common(ah);
2192	int status = true;
2193	static const char *modes[] = {
2194		"AWAKE",
2195		"FULL-SLEEP",
2196		"NETWORK SLEEP",
2197		"UNDEFINED"
2198	};
2199
2200	if (ah->power_mode == mode)
2201		return status;
2202
2203	ath_dbg(common, RESET, "%s -> %s\n",
2204		modes[ah->power_mode], modes[mode]);
2205
2206	switch (mode) {
2207	case ATH9K_PM_AWAKE:
2208		status = ath9k_hw_set_power_awake(ah);
2209		break;
2210	case ATH9K_PM_FULL_SLEEP:
2211		if (ath9k_hw_mci_is_enabled(ah))
2212			ar9003_mci_set_full_sleep(ah);
2213
2214		ath9k_set_power_sleep(ah);
2215		ah->chip_fullsleep = true;
2216		break;
2217	case ATH9K_PM_NETWORK_SLEEP:
2218		ath9k_set_power_network_sleep(ah);
2219		break;
2220	default:
2221		ath_err(common, "Unknown power mode %u\n", mode);
2222		return false;
2223	}
2224	ah->power_mode = mode;
2225
2226	/*
2227	 * XXX: If this warning never comes up after a while then
2228	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2229	 * ath9k_hw_setpower() return type void.
2230	 */
2231
2232	if (!(ah->ah_flags & AH_UNPLUGGED))
2233		ATH_DBG_WARN_ON_ONCE(!status);
2234
2235	return status;
2236}
2237EXPORT_SYMBOL(ath9k_hw_setpower);
2238
2239/*******************/
2240/* Beacon Handling */
2241/*******************/
2242
2243void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2244{
2245	int flags = 0;
2246
2247	ENABLE_REGWRITE_BUFFER(ah);
2248
2249	switch (ah->opmode) {
2250	case NL80211_IFTYPE_ADHOC:
2251		REG_SET_BIT(ah, AR_TXCFG,
2252			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
 
2253	case NL80211_IFTYPE_MESH_POINT:
2254	case NL80211_IFTYPE_AP:
2255		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2256		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2257			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2258		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2259			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2260		flags |=
2261			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2262		break;
2263	default:
2264		ath_dbg(ath9k_hw_common(ah), BEACON,
2265			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2266		return;
2267		break;
2268	}
2269
2270	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2271	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2272	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2273
2274	REGWRITE_BUFFER_FLUSH(ah);
2275
2276	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2277}
2278EXPORT_SYMBOL(ath9k_hw_beaconinit);
2279
2280void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2281				    const struct ath9k_beacon_state *bs)
2282{
2283	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2284	struct ath9k_hw_capabilities *pCap = &ah->caps;
2285	struct ath_common *common = ath9k_hw_common(ah);
2286
2287	ENABLE_REGWRITE_BUFFER(ah);
2288
2289	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2290	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2291	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2292
2293	REGWRITE_BUFFER_FLUSH(ah);
2294
2295	REG_RMW_FIELD(ah, AR_RSSI_THR,
2296		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2297
2298	beaconintval = bs->bs_intval;
2299
2300	if (bs->bs_sleepduration > beaconintval)
2301		beaconintval = bs->bs_sleepduration;
2302
2303	dtimperiod = bs->bs_dtimperiod;
2304	if (bs->bs_sleepduration > dtimperiod)
2305		dtimperiod = bs->bs_sleepduration;
2306
2307	if (beaconintval == dtimperiod)
2308		nextTbtt = bs->bs_nextdtim;
2309	else
2310		nextTbtt = bs->bs_nexttbtt;
2311
2312	ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2313	ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2314	ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2315	ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2316
2317	ENABLE_REGWRITE_BUFFER(ah);
2318
2319	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2320	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2321
2322	REG_WRITE(ah, AR_SLEEP1,
2323		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2324		  | AR_SLEEP1_ASSUME_DTIM);
2325
2326	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2327		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2328	else
2329		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2330
2331	REG_WRITE(ah, AR_SLEEP2,
2332		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2333
2334	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2335	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2336
2337	REGWRITE_BUFFER_FLUSH(ah);
2338
2339	REG_SET_BIT(ah, AR_TIMER_MODE,
2340		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2341		    AR_DTIM_TIMER_EN);
2342
2343	/* TSF Out of Range Threshold */
2344	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2345}
2346EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2347
2348/*******************/
2349/* HW Capabilities */
2350/*******************/
2351
2352static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2353{
2354	eeprom_chainmask &= chip_chainmask;
2355	if (eeprom_chainmask)
2356		return eeprom_chainmask;
2357	else
2358		return chip_chainmask;
2359}
2360
2361/**
2362 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2363 * @ah: the atheros hardware data structure
2364 *
2365 * We enable DFS support upstream on chipsets which have passed a series
2366 * of tests. The testing requirements are going to be documented. Desired
2367 * test requirements are documented at:
2368 *
2369 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2370 *
2371 * Once a new chipset gets properly tested an individual commit can be used
2372 * to document the testing for DFS for that chipset.
2373 */
2374static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2375{
2376
2377	switch (ah->hw_version.macVersion) {
2378	/* for temporary testing DFS with 9280 */
2379	case AR_SREV_VERSION_9280:
2380	/* AR9580 will likely be our first target to get testing on */
2381	case AR_SREV_VERSION_9580:
2382		return true;
2383	default:
2384		return false;
2385	}
2386}
2387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2388int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2389{
2390	struct ath9k_hw_capabilities *pCap = &ah->caps;
2391	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2392	struct ath_common *common = ath9k_hw_common(ah);
2393
2394	u16 eeval;
2395	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2396
2397	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2398	regulatory->current_rd = eeval;
2399
2400	if (ah->opmode != NL80211_IFTYPE_AP &&
2401	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2402		if (regulatory->current_rd == 0x64 ||
2403		    regulatory->current_rd == 0x65)
2404			regulatory->current_rd += 5;
2405		else if (regulatory->current_rd == 0x41)
2406			regulatory->current_rd = 0x43;
2407		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2408			regulatory->current_rd);
2409	}
2410
2411	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2412
2413	if (eeval & AR5416_OPFLAGS_11A) {
2414		if (ah->disable_5ghz)
2415			ath_warn(common, "disabling 5GHz band\n");
2416		else
2417			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2418	}
2419
2420	if (eeval & AR5416_OPFLAGS_11G) {
2421		if (ah->disable_2ghz)
2422			ath_warn(common, "disabling 2GHz band\n");
2423		else
2424			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2425	}
2426
2427	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2428		ath_err(common, "both bands are disabled\n");
2429		return -EINVAL;
2430	}
2431
 
 
2432	if (AR_SREV_9485(ah) ||
2433	    AR_SREV_9285(ah) ||
2434	    AR_SREV_9330(ah) ||
2435	    AR_SREV_9565(ah))
2436		pCap->chip_chainmask = 1;
2437	else if (!AR_SREV_9280_20_OR_LATER(ah))
2438		pCap->chip_chainmask = 7;
2439	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2440		 AR_SREV_9340(ah) ||
2441		 AR_SREV_9462(ah) ||
2442		 AR_SREV_9531(ah))
2443		pCap->chip_chainmask = 3;
2444	else
2445		pCap->chip_chainmask = 7;
2446
2447	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2448	/*
2449	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2450	 * the EEPROM.
2451	 */
2452	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2453	    !(eeval & AR5416_OPFLAGS_11A) &&
2454	    !(AR_SREV_9271(ah)))
2455		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2456		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2457	else if (AR_SREV_9100(ah))
2458		pCap->rx_chainmask = 0x7;
2459	else
2460		/* Use rx_chainmask from EEPROM. */
2461		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2462
2463	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2464	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2465	ah->txchainmask = pCap->tx_chainmask;
2466	ah->rxchainmask = pCap->rx_chainmask;
2467
2468	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2469
2470	/* enable key search for every frame in an aggregate */
2471	if (AR_SREV_9300_20_OR_LATER(ah))
2472		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2473
2474	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2475
2476	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2477		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2478	else
2479		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2480
2481	if (AR_SREV_9271(ah))
2482		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2483	else if (AR_DEVID_7010(ah))
2484		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2485	else if (AR_SREV_9300_20_OR_LATER(ah))
2486		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2487	else if (AR_SREV_9287_11_OR_LATER(ah))
2488		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2489	else if (AR_SREV_9285_12_OR_LATER(ah))
2490		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2491	else if (AR_SREV_9280_20_OR_LATER(ah))
2492		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2493	else
2494		pCap->num_gpio_pins = AR_NUM_GPIO;
2495
2496	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2497		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2498	else
2499		pCap->rts_aggr_limit = (8 * 1024);
2500
2501#ifdef CONFIG_ATH9K_RFKILL
2502	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2503	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2504		ah->rfkill_gpio =
2505			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2506		ah->rfkill_polarity =
2507			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2508
2509		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2510	}
2511#endif
2512	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2513		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2514	else
2515		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2516
2517	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2518		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2519	else
2520		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2521
2522	if (AR_SREV_9300_20_OR_LATER(ah)) {
2523		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2524		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2525		    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2526			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2527
2528		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2529		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2530		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2531		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2532		pCap->txs_len = sizeof(struct ar9003_txs);
2533	} else {
2534		pCap->tx_desc_len = sizeof(struct ath_desc);
2535		if (AR_SREV_9280_20(ah))
2536			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2537	}
2538
2539	if (AR_SREV_9300_20_OR_LATER(ah))
2540		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2541
2542	if (AR_SREV_9561(ah))
2543		ah->ent_mode = 0x3BDA000;
2544	else if (AR_SREV_9300_20_OR_LATER(ah))
2545		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2546
2547	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2548		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2549
2550	if (AR_SREV_9285(ah)) {
2551		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2552			ant_div_ctl1 =
2553				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2554			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2555				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2556				ath_info(common, "Enable LNA combining\n");
2557			}
2558		}
2559	}
2560
2561	if (AR_SREV_9300_20_OR_LATER(ah)) {
2562		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2563			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2564	}
2565
2566	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2567		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2568		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2569			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2570			ath_info(common, "Enable LNA combining\n");
2571		}
2572	}
2573
2574	if (ath9k_hw_dfs_tested(ah))
2575		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2576
2577	tx_chainmask = pCap->tx_chainmask;
2578	rx_chainmask = pCap->rx_chainmask;
2579	while (tx_chainmask || rx_chainmask) {
2580		if (tx_chainmask & BIT(0))
2581			pCap->max_txchains++;
2582		if (rx_chainmask & BIT(0))
2583			pCap->max_rxchains++;
2584
2585		tx_chainmask >>= 1;
2586		rx_chainmask >>= 1;
2587	}
2588
2589	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2590		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2591			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2592
2593		if (AR_SREV_9462_20_OR_LATER(ah))
2594			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2595	}
2596
2597	if (AR_SREV_9300_20_OR_LATER(ah) &&
2598	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2599			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2600
2601#ifdef CONFIG_ATH9K_WOW
2602	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2603		ah->wow.max_patterns = MAX_NUM_PATTERN;
2604	else
2605		ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2606#endif
2607
2608	return 0;
2609}
2610
2611/****************************/
2612/* GPIO / RFKILL / Antennae */
2613/****************************/
2614
2615static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2616					 u32 gpio, u32 type)
2617{
2618	int addr;
2619	u32 gpio_shift, tmp;
2620
2621	if (gpio > 11)
2622		addr = AR_GPIO_OUTPUT_MUX3;
2623	else if (gpio > 5)
2624		addr = AR_GPIO_OUTPUT_MUX2;
2625	else
2626		addr = AR_GPIO_OUTPUT_MUX1;
2627
2628	gpio_shift = (gpio % 6) * 5;
2629
2630	if (AR_SREV_9280_20_OR_LATER(ah)
2631	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2632		REG_RMW(ah, addr, (type << gpio_shift),
2633			(0x1f << gpio_shift));
2634	} else {
2635		tmp = REG_READ(ah, addr);
2636		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2637		tmp &= ~(0x1f << gpio_shift);
2638		tmp |= (type << gpio_shift);
2639		REG_WRITE(ah, addr, tmp);
2640	}
2641}
2642
2643void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
 
 
 
2644{
2645	u32 gpio_shift;
2646
2647	BUG_ON(gpio >= ah->caps.num_gpio_pins);
 
2648
2649	if (AR_DEVID_7010(ah)) {
2650		gpio_shift = gpio;
2651		REG_RMW(ah, AR7010_GPIO_OE,
2652			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2653			(AR7010_GPIO_OE_MASK << gpio_shift));
2654		return;
2655	}
2656
2657	gpio_shift = gpio << 1;
2658	REG_RMW(ah,
2659		AR_GPIO_OE_OUT,
2660		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2661		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2662}
2663EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2664
2665u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
 
2666{
2667#define MS_REG_READ(x, y) \
2668	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2669
2670	if (gpio >= ah->caps.num_gpio_pins)
2671		return 0xffffffff;
 
 
2672
2673	if (AR_DEVID_7010(ah)) {
2674		u32 val;
2675		val = REG_READ(ah, AR7010_GPIO_IN);
2676		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2677	} else if (AR_SREV_9300_20_OR_LATER(ah))
2678		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2679			AR_GPIO_BIT(gpio)) != 0;
2680	else if (AR_SREV_9271(ah))
2681		return MS_REG_READ(AR9271, gpio) != 0;
2682	else if (AR_SREV_9287_11_OR_LATER(ah))
2683		return MS_REG_READ(AR9287, gpio) != 0;
2684	else if (AR_SREV_9285_12_OR_LATER(ah))
2685		return MS_REG_READ(AR9285, gpio) != 0;
2686	else if (AR_SREV_9280_20_OR_LATER(ah))
2687		return MS_REG_READ(AR928X, gpio) != 0;
2688	else
2689		return MS_REG_READ(AR, gpio) != 0;
2690}
2691EXPORT_SYMBOL(ath9k_hw_gpio_get);
2692
2693void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2694			 u32 ah_signal_type)
 
 
 
 
 
 
2695{
2696	u32 gpio_shift;
 
 
2697
2698	if (AR_DEVID_7010(ah)) {
2699		gpio_shift = gpio;
2700		REG_RMW(ah, AR7010_GPIO_OE,
2701			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2702			(AR7010_GPIO_OE_MASK << gpio_shift));
2703		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2704	}
2705
2706	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2707	gpio_shift = 2 * gpio;
2708	REG_RMW(ah,
2709		AR_GPIO_OE_OUT,
2710		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2711		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2712}
2713EXPORT_SYMBOL(ath9k_hw_cfg_output);
2714
2715void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2716{
2717	if (AR_DEVID_7010(ah)) {
2718		val = val ? 0 : 1;
2719		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2720			AR_GPIO_BIT(gpio));
2721		return;
2722	}
2723
2724	if (AR_SREV_9271(ah))
2725		val = ~val;
2726
2727	if ((1 << gpio) & AR_GPIO_OE_OUT_MASK)
2728		REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2729			AR_GPIO_BIT(gpio));
2730	else
2731		gpio_set_value(gpio, val & 1);
2732}
2733EXPORT_SYMBOL(ath9k_hw_set_gpio);
2734
2735void ath9k_hw_request_gpio(struct ath_hw *ah, u32 gpio, const char *label)
2736{
2737	if (gpio >= ah->caps.num_gpio_pins)
2738		return;
2739
2740	gpio_request_one(gpio, GPIOF_DIR_OUT | GPIOF_INIT_LOW, label);
 
 
 
 
 
2741}
2742EXPORT_SYMBOL(ath9k_hw_request_gpio);
2743
2744void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2745{
2746	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2747}
2748EXPORT_SYMBOL(ath9k_hw_setantenna);
2749
2750/*********************/
2751/* General Operation */
2752/*********************/
2753
2754u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2755{
2756	u32 bits = REG_READ(ah, AR_RX_FILTER);
2757	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2758
2759	if (phybits & AR_PHY_ERR_RADAR)
2760		bits |= ATH9K_RX_FILTER_PHYRADAR;
2761	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2762		bits |= ATH9K_RX_FILTER_PHYERR;
2763
2764	return bits;
2765}
2766EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2767
2768void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2769{
2770	u32 phybits;
2771
2772	ENABLE_REGWRITE_BUFFER(ah);
2773
2774	REG_WRITE(ah, AR_RX_FILTER, bits);
2775
2776	phybits = 0;
2777	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2778		phybits |= AR_PHY_ERR_RADAR;
2779	if (bits & ATH9K_RX_FILTER_PHYERR)
2780		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2781	REG_WRITE(ah, AR_PHY_ERR, phybits);
2782
2783	if (phybits)
2784		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2785	else
2786		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2787
2788	REGWRITE_BUFFER_FLUSH(ah);
2789}
2790EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2791
2792bool ath9k_hw_phy_disable(struct ath_hw *ah)
2793{
2794	if (ath9k_hw_mci_is_enabled(ah))
2795		ar9003_mci_bt_gain_ctrl(ah);
2796
2797	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2798		return false;
2799
2800	ath9k_hw_init_pll(ah, NULL);
2801	ah->htc_reset_init = true;
2802	return true;
2803}
2804EXPORT_SYMBOL(ath9k_hw_phy_disable);
2805
2806bool ath9k_hw_disable(struct ath_hw *ah)
2807{
2808	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2809		return false;
2810
2811	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2812		return false;
2813
2814	ath9k_hw_init_pll(ah, NULL);
2815	return true;
2816}
2817EXPORT_SYMBOL(ath9k_hw_disable);
2818
2819static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2820{
2821	enum eeprom_param gain_param;
2822
2823	if (IS_CHAN_2GHZ(chan))
2824		gain_param = EEP_ANTENNA_GAIN_2G;
2825	else
2826		gain_param = EEP_ANTENNA_GAIN_5G;
2827
2828	return ah->eep_ops->get_eeprom(ah, gain_param);
2829}
2830
2831void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2832			    bool test)
2833{
2834	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2835	struct ieee80211_channel *channel;
2836	int chan_pwr, new_pwr, max_gain;
2837	int ant_gain, ant_reduction = 0;
2838
2839	if (!chan)
2840		return;
2841
 
 
 
2842	channel = chan->chan;
2843	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2844	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2845	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2846
2847	ant_gain = get_antenna_gain(ah, chan);
2848	if (ant_gain > max_gain)
2849		ant_reduction = ant_gain - max_gain;
2850
2851	ah->eep_ops->set_txpower(ah, chan,
2852				 ath9k_regd_get_ctl(reg, chan),
2853				 ant_reduction, new_pwr, test);
2854}
2855
2856void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2857{
2858	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2859	struct ath9k_channel *chan = ah->curchan;
2860	struct ieee80211_channel *channel = chan->chan;
2861
2862	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2863	if (test)
2864		channel->max_power = MAX_RATE_POWER / 2;
2865
2866	ath9k_hw_apply_txpower(ah, chan, test);
2867
2868	if (test)
2869		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2870}
2871EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2872
2873void ath9k_hw_setopmode(struct ath_hw *ah)
2874{
2875	ath9k_hw_set_operating_mode(ah, ah->opmode);
2876}
2877EXPORT_SYMBOL(ath9k_hw_setopmode);
2878
2879void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2880{
2881	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2882	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2883}
2884EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2885
2886void ath9k_hw_write_associd(struct ath_hw *ah)
2887{
2888	struct ath_common *common = ath9k_hw_common(ah);
2889
2890	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2891	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2892		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2893}
2894EXPORT_SYMBOL(ath9k_hw_write_associd);
2895
2896#define ATH9K_MAX_TSF_READ 10
2897
2898u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2899{
2900	u32 tsf_lower, tsf_upper1, tsf_upper2;
2901	int i;
2902
2903	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2904	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2905		tsf_lower = REG_READ(ah, AR_TSF_L32);
2906		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2907		if (tsf_upper2 == tsf_upper1)
2908			break;
2909		tsf_upper1 = tsf_upper2;
2910	}
2911
2912	WARN_ON( i == ATH9K_MAX_TSF_READ );
2913
2914	return (((u64)tsf_upper1 << 32) | tsf_lower);
2915}
2916EXPORT_SYMBOL(ath9k_hw_gettsf64);
2917
2918void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2919{
2920	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2921	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2922}
2923EXPORT_SYMBOL(ath9k_hw_settsf64);
2924
2925void ath9k_hw_reset_tsf(struct ath_hw *ah)
2926{
2927	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2928			   AH_TSF_WRITE_TIMEOUT))
2929		ath_dbg(ath9k_hw_common(ah), RESET,
2930			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2931
2932	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2933}
2934EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2935
2936void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2937{
2938	if (set)
2939		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2940	else
2941		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2942}
2943EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2944
2945void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2946{
2947	u32 macmode;
2948
2949	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2950		macmode = AR_2040_JOINED_RX_CLEAR;
2951	else
2952		macmode = 0;
2953
2954	REG_WRITE(ah, AR_2040_MODE, macmode);
2955}
2956
2957/* HW Generic timers configuration */
2958
2959static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2960{
2961	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2962	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2963	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2964	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2965	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2966	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2967	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2968	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2969	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2970	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2971				AR_NDP2_TIMER_MODE, 0x0002},
2972	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2973				AR_NDP2_TIMER_MODE, 0x0004},
2974	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2975				AR_NDP2_TIMER_MODE, 0x0008},
2976	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2977				AR_NDP2_TIMER_MODE, 0x0010},
2978	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2979				AR_NDP2_TIMER_MODE, 0x0020},
2980	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2981				AR_NDP2_TIMER_MODE, 0x0040},
2982	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2983				AR_NDP2_TIMER_MODE, 0x0080}
2984};
2985
2986/* HW generic timer primitives */
2987
2988u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2989{
2990	return REG_READ(ah, AR_TSF_L32);
2991}
2992EXPORT_SYMBOL(ath9k_hw_gettsf32);
2993
2994void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
2995{
2996	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2997
2998	if (timer_table->tsf2_enabled) {
2999		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3000		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3001	}
3002}
3003
3004struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3005					  void (*trigger)(void *),
3006					  void (*overflow)(void *),
3007					  void *arg,
3008					  u8 timer_index)
3009{
3010	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3011	struct ath_gen_timer *timer;
3012
3013	if ((timer_index < AR_FIRST_NDP_TIMER) ||
3014	    (timer_index >= ATH_MAX_GEN_TIMER))
3015		return NULL;
3016
3017	if ((timer_index > AR_FIRST_NDP_TIMER) &&
3018	    !AR_SREV_9300_20_OR_LATER(ah))
3019		return NULL;
3020
3021	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3022	if (timer == NULL)
3023		return NULL;
3024
3025	/* allocate a hardware generic timer slot */
3026	timer_table->timers[timer_index] = timer;
3027	timer->index = timer_index;
3028	timer->trigger = trigger;
3029	timer->overflow = overflow;
3030	timer->arg = arg;
3031
3032	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3033		timer_table->tsf2_enabled = true;
3034		ath9k_hw_gen_timer_start_tsf2(ah);
3035	}
3036
3037	return timer;
3038}
3039EXPORT_SYMBOL(ath_gen_timer_alloc);
3040
3041void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3042			      struct ath_gen_timer *timer,
3043			      u32 timer_next,
3044			      u32 timer_period)
3045{
3046	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3047	u32 mask = 0;
3048
3049	timer_table->timer_mask |= BIT(timer->index);
3050
3051	/*
3052	 * Program generic timer registers
3053	 */
3054	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3055		 timer_next);
3056	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3057		  timer_period);
3058	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3059		    gen_tmr_configuration[timer->index].mode_mask);
3060
3061	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3062		/*
3063		 * Starting from AR9462, each generic timer can select which tsf
3064		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3065		 * 8 - 15  use tsf2.
3066		 */
3067		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3068			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3069				       (1 << timer->index));
3070		else
3071			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3072				       (1 << timer->index));
3073	}
3074
3075	if (timer->trigger)
3076		mask |= SM(AR_GENTMR_BIT(timer->index),
3077			   AR_IMR_S5_GENTIMER_TRIG);
3078	if (timer->overflow)
3079		mask |= SM(AR_GENTMR_BIT(timer->index),
3080			   AR_IMR_S5_GENTIMER_THRESH);
3081
3082	REG_SET_BIT(ah, AR_IMR_S5, mask);
3083
3084	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3085		ah->imask |= ATH9K_INT_GENTIMER;
3086		ath9k_hw_set_interrupts(ah);
3087	}
3088}
3089EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3090
3091void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3092{
3093	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3094
3095	/* Clear generic timer enable bits. */
3096	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3097			gen_tmr_configuration[timer->index].mode_mask);
3098
3099	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3100		/*
3101		 * Need to switch back to TSF if it was using TSF2.
3102		 */
3103		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3104			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3105				    (1 << timer->index));
3106		}
3107	}
3108
3109	/* Disable both trigger and thresh interrupt masks */
3110	REG_CLR_BIT(ah, AR_IMR_S5,
3111		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3112		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3113
3114	timer_table->timer_mask &= ~BIT(timer->index);
3115
3116	if (timer_table->timer_mask == 0) {
3117		ah->imask &= ~ATH9K_INT_GENTIMER;
3118		ath9k_hw_set_interrupts(ah);
3119	}
3120}
3121EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3122
3123void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3124{
3125	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3126
3127	/* free the hardware generic timer slot */
3128	timer_table->timers[timer->index] = NULL;
3129	kfree(timer);
3130}
3131EXPORT_SYMBOL(ath_gen_timer_free);
3132
3133/*
3134 * Generic Timer Interrupts handling
3135 */
3136void ath_gen_timer_isr(struct ath_hw *ah)
3137{
3138	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3139	struct ath_gen_timer *timer;
3140	unsigned long trigger_mask, thresh_mask;
3141	unsigned int index;
3142
3143	/* get hardware generic timer interrupt status */
3144	trigger_mask = ah->intr_gen_timer_trigger;
3145	thresh_mask = ah->intr_gen_timer_thresh;
3146	trigger_mask &= timer_table->timer_mask;
3147	thresh_mask &= timer_table->timer_mask;
3148
3149	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3150		timer = timer_table->timers[index];
3151		if (!timer)
3152		    continue;
3153		if (!timer->overflow)
3154		    continue;
3155
3156		trigger_mask &= ~BIT(index);
3157		timer->overflow(timer->arg);
3158	}
3159
3160	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3161		timer = timer_table->timers[index];
3162		if (!timer)
3163		    continue;
3164		if (!timer->trigger)
3165		    continue;
3166		timer->trigger(timer->arg);
3167	}
3168}
3169EXPORT_SYMBOL(ath_gen_timer_isr);
3170
3171/********/
3172/* HTC  */
3173/********/
3174
3175static struct {
3176	u32 version;
3177	const char * name;
3178} ath_mac_bb_names[] = {
3179	/* Devices with external radios */
3180	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3181	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3182	{ AR_SREV_VERSION_9100,		"9100" },
3183	{ AR_SREV_VERSION_9160,		"9160" },
3184	/* Single-chip solutions */
3185	{ AR_SREV_VERSION_9280,		"9280" },
3186	{ AR_SREV_VERSION_9285,		"9285" },
3187	{ AR_SREV_VERSION_9287,         "9287" },
3188	{ AR_SREV_VERSION_9271,         "9271" },
3189	{ AR_SREV_VERSION_9300,         "9300" },
3190	{ AR_SREV_VERSION_9330,         "9330" },
3191	{ AR_SREV_VERSION_9340,		"9340" },
3192	{ AR_SREV_VERSION_9485,         "9485" },
3193	{ AR_SREV_VERSION_9462,         "9462" },
3194	{ AR_SREV_VERSION_9550,         "9550" },
3195	{ AR_SREV_VERSION_9565,         "9565" },
3196	{ AR_SREV_VERSION_9531,         "9531" },
3197	{ AR_SREV_VERSION_9561,         "9561" },
3198};
3199
3200/* For devices with external radios */
3201static struct {
3202	u16 version;
3203	const char * name;
3204} ath_rf_names[] = {
3205	{ 0,				"5133" },
3206	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3207	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3208	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3209	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3210};
3211
3212/*
3213 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3214 */
3215static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3216{
3217	int i;
3218
3219	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3220		if (ath_mac_bb_names[i].version == mac_bb_version) {
3221			return ath_mac_bb_names[i].name;
3222		}
3223	}
3224
3225	return "????";
3226}
3227
3228/*
3229 * Return the RF name. "????" is returned if the RF is unknown.
3230 * Used for devices with external radios.
3231 */
3232static const char *ath9k_hw_rf_name(u16 rf_version)
3233{
3234	int i;
3235
3236	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3237		if (ath_rf_names[i].version == rf_version) {
3238			return ath_rf_names[i].name;
3239		}
3240	}
3241
3242	return "????";
3243}
3244
3245void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3246{
3247	int used;
3248
3249	/* chipsets >= AR9280 are single-chip */
3250	if (AR_SREV_9280_20_OR_LATER(ah)) {
3251		used = scnprintf(hw_name, len,
3252				 "Atheros AR%s Rev:%x",
3253				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3254				 ah->hw_version.macRev);
3255	}
3256	else {
3257		used = scnprintf(hw_name, len,
3258				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3259				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3260				 ah->hw_version.macRev,
3261				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3262						  & AR_RADIO_SREV_MAJOR)),
3263				 ah->hw_version.phyRev);
3264	}
3265
3266	hw_name[used] = '\0';
3267}
3268EXPORT_SYMBOL(ath9k_hw_name);