Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
4 *
5 * Copyright (C) 2012 Freescale Semiconductor, Inc.
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/string.h>
13#include <linux/ptrace.h>
14#include <linux/errno.h>
15#include <linux/ioport.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/pci.h>
19#include <linux/delay.h>
20#include <linux/netdevice.h>
21#include <linux/etherdevice.h>
22#include <linux/skbuff.h>
23#include <linux/spinlock.h>
24#include <linux/workqueue.h>
25#include <linux/bitops.h>
26#include <linux/io.h>
27#include <linux/irq.h>
28#include <linux/clk.h>
29#include <linux/platform_device.h>
30#include <linux/phy.h>
31#include <linux/fec.h>
32#include <linux/of.h>
33#include <linux/of_gpio.h>
34#include <linux/of_net.h>
35
36#include "fec.h"
37
38/* FEC 1588 register bits */
39#define FEC_T_CTRL_SLAVE 0x00002000
40#define FEC_T_CTRL_CAPTURE 0x00000800
41#define FEC_T_CTRL_RESTART 0x00000200
42#define FEC_T_CTRL_PERIOD_RST 0x00000030
43#define FEC_T_CTRL_PERIOD_EN 0x00000010
44#define FEC_T_CTRL_ENABLE 0x00000001
45
46#define FEC_T_INC_MASK 0x0000007f
47#define FEC_T_INC_OFFSET 0
48#define FEC_T_INC_CORR_MASK 0x00007f00
49#define FEC_T_INC_CORR_OFFSET 8
50
51#define FEC_T_CTRL_PINPER 0x00000080
52#define FEC_T_TF0_MASK 0x00000001
53#define FEC_T_TF0_OFFSET 0
54#define FEC_T_TF1_MASK 0x00000002
55#define FEC_T_TF1_OFFSET 1
56#define FEC_T_TF2_MASK 0x00000004
57#define FEC_T_TF2_OFFSET 2
58#define FEC_T_TF3_MASK 0x00000008
59#define FEC_T_TF3_OFFSET 3
60#define FEC_T_TDRE_MASK 0x00000001
61#define FEC_T_TDRE_OFFSET 0
62#define FEC_T_TMODE_MASK 0x0000003C
63#define FEC_T_TMODE_OFFSET 2
64#define FEC_T_TIE_MASK 0x00000040
65#define FEC_T_TIE_OFFSET 6
66#define FEC_T_TF_MASK 0x00000080
67#define FEC_T_TF_OFFSET 7
68
69#define FEC_ATIME_CTRL 0x400
70#define FEC_ATIME 0x404
71#define FEC_ATIME_EVT_OFFSET 0x408
72#define FEC_ATIME_EVT_PERIOD 0x40c
73#define FEC_ATIME_CORR 0x410
74#define FEC_ATIME_INC 0x414
75#define FEC_TS_TIMESTAMP 0x418
76
77#define FEC_TGSR 0x604
78#define FEC_TCSR(n) (0x608 + n * 0x08)
79#define FEC_TCCR(n) (0x60C + n * 0x08)
80#define MAX_TIMER_CHANNEL 3
81#define FEC_TMODE_TOGGLE 0x05
82#define FEC_HIGH_PULSE 0x0F
83
84#define FEC_CC_MULT (1 << 31)
85#define FEC_COUNTER_PERIOD (1 << 31)
86#define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC
87#define FEC_CHANNLE_0 0
88#define DEFAULT_PPS_CHANNEL FEC_CHANNLE_0
89
90#define FEC_PTP_MAX_NSEC_PERIOD 4000000000ULL
91#define FEC_PTP_MAX_NSEC_COUNTER 0x80000000ULL
92
93/**
94 * fec_ptp_enable_pps
95 * @fep: the fec_enet_private structure handle
96 * @enable: enable the channel pps output
97 *
98 * This function enble the PPS ouput on the timer channel.
99 */
100static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
101{
102 unsigned long flags;
103 u32 val, tempval;
104 struct timespec64 ts;
105 u64 ns;
106
107 if (fep->pps_enable == enable)
108 return 0;
109
110 fep->pps_channel = DEFAULT_PPS_CHANNEL;
111 fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
112
113 spin_lock_irqsave(&fep->tmreg_lock, flags);
114
115 if (enable) {
116 /* clear capture or output compare interrupt status if have.
117 */
118 writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
119
120 /* It is recommended to double check the TMODE field in the
121 * TCSR register to be cleared before the first compare counter
122 * is written into TCCR register. Just add a double check.
123 */
124 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
125 do {
126 val &= ~(FEC_T_TMODE_MASK);
127 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
128 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
129 } while (val & FEC_T_TMODE_MASK);
130
131 /* Dummy read counter to update the counter */
132 timecounter_read(&fep->tc);
133 /* We want to find the first compare event in the next
134 * second point. So we need to know what the ptp time
135 * is now and how many nanoseconds is ahead to get next second.
136 * The remaining nanosecond ahead before the next second would be
137 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
138 * to current timer would be next second.
139 */
140 tempval = fep->cc.read(&fep->cc);
141 /* Convert the ptp local counter to 1588 timestamp */
142 ns = timecounter_cyc2time(&fep->tc, tempval);
143 ts = ns_to_timespec64(ns);
144
145 /* The tempval is less than 3 seconds, and so val is less than
146 * 4 seconds. No overflow for 32bit calculation.
147 */
148 val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
149
150 /* Need to consider the situation that the current time is
151 * very close to the second point, which means NSEC_PER_SEC
152 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
153 * is still running when we calculate the first compare event, it is
154 * possible that the remaining nanoseonds run out before the compare
155 * counter is calculated and written into TCCR register. To avoid
156 * this possibility, we will set the compare event to be the next
157 * of next second. The current setting is 31-bit timer and wrap
158 * around over 2 seconds. So it is okay to set the next of next
159 * seond for the timer.
160 */
161 val += NSEC_PER_SEC;
162
163 /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
164 * ptp counter, which maybe cause 32-bit wrap. Since the
165 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
166 * We can ensure the wrap will not cause issue. If the offset
167 * is bigger than fep->cc.mask would be a error.
168 */
169 val &= fep->cc.mask;
170 writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
171
172 /* Calculate the second the compare event timestamp */
173 fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
174
175 /* * Enable compare event when overflow */
176 val = readl(fep->hwp + FEC_ATIME_CTRL);
177 val |= FEC_T_CTRL_PINPER;
178 writel(val, fep->hwp + FEC_ATIME_CTRL);
179
180 /* Compare channel setting. */
181 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
182 val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
183 val &= ~(1 << FEC_T_TDRE_OFFSET);
184 val &= ~(FEC_T_TMODE_MASK);
185 val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
186 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
187
188 /* Write the second compare event timestamp and calculate
189 * the third timestamp. Refer the TCCR register detail in the spec.
190 */
191 writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
192 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
193 } else {
194 writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
195 }
196
197 fep->pps_enable = enable;
198 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
199
200 return 0;
201}
202
203static int fec_ptp_pps_perout(struct fec_enet_private *fep)
204{
205 u32 compare_val, ptp_hc, temp_val;
206 u64 curr_time;
207 unsigned long flags;
208
209 spin_lock_irqsave(&fep->tmreg_lock, flags);
210
211 /* Update time counter */
212 timecounter_read(&fep->tc);
213
214 /* Get the current ptp hardware time counter */
215 temp_val = readl(fep->hwp + FEC_ATIME_CTRL);
216 temp_val |= FEC_T_CTRL_CAPTURE;
217 writel(temp_val, fep->hwp + FEC_ATIME_CTRL);
218 if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
219 udelay(1);
220
221 ptp_hc = readl(fep->hwp + FEC_ATIME);
222
223 /* Convert the ptp local counter to 1588 timestamp */
224 curr_time = timecounter_cyc2time(&fep->tc, ptp_hc);
225
226 /* If the pps start time less than current time add 100ms, just return.
227 * Because the software might not able to set the comparison time into
228 * the FEC_TCCR register in time and missed the start time.
229 */
230 if (fep->perout_stime < curr_time + 100 * NSEC_PER_MSEC) {
231 dev_err(&fep->pdev->dev, "Current time is too close to the start time!\n");
232 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
233 return -1;
234 }
235
236 compare_val = fep->perout_stime - curr_time + ptp_hc;
237 compare_val &= fep->cc.mask;
238
239 writel(compare_val, fep->hwp + FEC_TCCR(fep->pps_channel));
240 fep->next_counter = (compare_val + fep->reload_period) & fep->cc.mask;
241
242 /* Enable compare event when overflow */
243 temp_val = readl(fep->hwp + FEC_ATIME_CTRL);
244 temp_val |= FEC_T_CTRL_PINPER;
245 writel(temp_val, fep->hwp + FEC_ATIME_CTRL);
246
247 /* Compare channel setting. */
248 temp_val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
249 temp_val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
250 temp_val &= ~(1 << FEC_T_TDRE_OFFSET);
251 temp_val &= ~(FEC_T_TMODE_MASK);
252 temp_val |= (FEC_TMODE_TOGGLE << FEC_T_TMODE_OFFSET);
253 writel(temp_val, fep->hwp + FEC_TCSR(fep->pps_channel));
254
255 /* Write the second compare event timestamp and calculate
256 * the third timestamp. Refer the TCCR register detail in the spec.
257 */
258 writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
259 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
260 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
261
262 return 0;
263}
264
265static enum hrtimer_restart fec_ptp_pps_perout_handler(struct hrtimer *timer)
266{
267 struct fec_enet_private *fep = container_of(timer,
268 struct fec_enet_private, perout_timer);
269
270 fec_ptp_pps_perout(fep);
271
272 return HRTIMER_NORESTART;
273}
274
275/**
276 * fec_ptp_read - read raw cycle counter (to be used by time counter)
277 * @cc: the cyclecounter structure
278 *
279 * this function reads the cyclecounter registers and is called by the
280 * cyclecounter structure used to construct a ns counter from the
281 * arbitrary fixed point registers
282 */
283static u64 fec_ptp_read(const struct cyclecounter *cc)
284{
285 struct fec_enet_private *fep =
286 container_of(cc, struct fec_enet_private, cc);
287 u32 tempval;
288
289 tempval = readl(fep->hwp + FEC_ATIME_CTRL);
290 tempval |= FEC_T_CTRL_CAPTURE;
291 writel(tempval, fep->hwp + FEC_ATIME_CTRL);
292
293 if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
294 udelay(1);
295
296 return readl(fep->hwp + FEC_ATIME);
297}
298
299/**
300 * fec_ptp_start_cyclecounter - create the cycle counter from hw
301 * @ndev: network device
302 *
303 * this function initializes the timecounter and cyclecounter
304 * structures for use in generated a ns counter from the arbitrary
305 * fixed point cycles registers in the hardware.
306 */
307void fec_ptp_start_cyclecounter(struct net_device *ndev)
308{
309 struct fec_enet_private *fep = netdev_priv(ndev);
310 unsigned long flags;
311 int inc;
312
313 inc = 1000000000 / fep->cycle_speed;
314
315 /* grab the ptp lock */
316 spin_lock_irqsave(&fep->tmreg_lock, flags);
317
318 /* 1ns counter */
319 writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
320
321 /* use 31-bit timer counter */
322 writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
323
324 writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
325 fep->hwp + FEC_ATIME_CTRL);
326
327 memset(&fep->cc, 0, sizeof(fep->cc));
328 fep->cc.read = fec_ptp_read;
329 fep->cc.mask = CLOCKSOURCE_MASK(31);
330 fep->cc.shift = 31;
331 fep->cc.mult = FEC_CC_MULT;
332
333 /* reset the ns time counter */
334 timecounter_init(&fep->tc, &fep->cc, 0);
335
336 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
337}
338
339/**
340 * fec_ptp_adjfine - adjust ptp cycle frequency
341 * @ptp: the ptp clock structure
342 * @scaled_ppm: scaled parts per million adjustment from base
343 *
344 * Adjust the frequency of the ptp cycle counter by the
345 * indicated amount from the base frequency.
346 *
347 * Scaled parts per million is ppm with a 16-bit binary fractional field.
348 *
349 * Because ENET hardware frequency adjust is complex,
350 * using software method to do that.
351 */
352static int fec_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
353{
354 s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
355 unsigned long flags;
356 int neg_adj = 0;
357 u32 i, tmp;
358 u32 corr_inc, corr_period;
359 u32 corr_ns;
360 u64 lhs, rhs;
361
362 struct fec_enet_private *fep =
363 container_of(ptp, struct fec_enet_private, ptp_caps);
364
365 if (ppb == 0)
366 return 0;
367
368 if (ppb < 0) {
369 ppb = -ppb;
370 neg_adj = 1;
371 }
372
373 /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
374 * Try to find the corr_inc between 1 to fep->ptp_inc to
375 * meet adjustment requirement.
376 */
377 lhs = NSEC_PER_SEC;
378 rhs = (u64)ppb * (u64)fep->ptp_inc;
379 for (i = 1; i <= fep->ptp_inc; i++) {
380 if (lhs >= rhs) {
381 corr_inc = i;
382 corr_period = div_u64(lhs, rhs);
383 break;
384 }
385 lhs += NSEC_PER_SEC;
386 }
387 /* Not found? Set it to high value - double speed
388 * correct in every clock step.
389 */
390 if (i > fep->ptp_inc) {
391 corr_inc = fep->ptp_inc;
392 corr_period = 1;
393 }
394
395 if (neg_adj)
396 corr_ns = fep->ptp_inc - corr_inc;
397 else
398 corr_ns = fep->ptp_inc + corr_inc;
399
400 spin_lock_irqsave(&fep->tmreg_lock, flags);
401
402 tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
403 tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
404 writel(tmp, fep->hwp + FEC_ATIME_INC);
405 corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
406 writel(corr_period, fep->hwp + FEC_ATIME_CORR);
407 /* dummy read to update the timer. */
408 timecounter_read(&fep->tc);
409
410 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
411
412 return 0;
413}
414
415/**
416 * fec_ptp_adjtime
417 * @ptp: the ptp clock structure
418 * @delta: offset to adjust the cycle counter by
419 *
420 * adjust the timer by resetting the timecounter structure.
421 */
422static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
423{
424 struct fec_enet_private *fep =
425 container_of(ptp, struct fec_enet_private, ptp_caps);
426 unsigned long flags;
427
428 spin_lock_irqsave(&fep->tmreg_lock, flags);
429 timecounter_adjtime(&fep->tc, delta);
430 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
431
432 return 0;
433}
434
435/**
436 * fec_ptp_gettime
437 * @ptp: the ptp clock structure
438 * @ts: timespec structure to hold the current time value
439 *
440 * read the timecounter and return the correct value on ns,
441 * after converting it into a struct timespec.
442 */
443static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
444{
445 struct fec_enet_private *fep =
446 container_of(ptp, struct fec_enet_private, ptp_caps);
447 u64 ns;
448 unsigned long flags;
449
450 mutex_lock(&fep->ptp_clk_mutex);
451 /* Check the ptp clock */
452 if (!fep->ptp_clk_on) {
453 mutex_unlock(&fep->ptp_clk_mutex);
454 return -EINVAL;
455 }
456 spin_lock_irqsave(&fep->tmreg_lock, flags);
457 ns = timecounter_read(&fep->tc);
458 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
459 mutex_unlock(&fep->ptp_clk_mutex);
460
461 *ts = ns_to_timespec64(ns);
462
463 return 0;
464}
465
466/**
467 * fec_ptp_settime
468 * @ptp: the ptp clock structure
469 * @ts: the timespec containing the new time for the cycle counter
470 *
471 * reset the timecounter to use a new base value instead of the kernel
472 * wall timer value.
473 */
474static int fec_ptp_settime(struct ptp_clock_info *ptp,
475 const struct timespec64 *ts)
476{
477 struct fec_enet_private *fep =
478 container_of(ptp, struct fec_enet_private, ptp_caps);
479
480 u64 ns;
481 unsigned long flags;
482 u32 counter;
483
484 mutex_lock(&fep->ptp_clk_mutex);
485 /* Check the ptp clock */
486 if (!fep->ptp_clk_on) {
487 mutex_unlock(&fep->ptp_clk_mutex);
488 return -EINVAL;
489 }
490
491 ns = timespec64_to_ns(ts);
492 /* Get the timer value based on timestamp.
493 * Update the counter with the masked value.
494 */
495 counter = ns & fep->cc.mask;
496
497 spin_lock_irqsave(&fep->tmreg_lock, flags);
498 writel(counter, fep->hwp + FEC_ATIME);
499 timecounter_init(&fep->tc, &fep->cc, ns);
500 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
501 mutex_unlock(&fep->ptp_clk_mutex);
502 return 0;
503}
504
505static int fec_ptp_pps_disable(struct fec_enet_private *fep, uint channel)
506{
507 unsigned long flags;
508
509 spin_lock_irqsave(&fep->tmreg_lock, flags);
510 writel(0, fep->hwp + FEC_TCSR(channel));
511 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
512
513 return 0;
514}
515
516/**
517 * fec_ptp_enable
518 * @ptp: the ptp clock structure
519 * @rq: the requested feature to change
520 * @on: whether to enable or disable the feature
521 *
522 */
523static int fec_ptp_enable(struct ptp_clock_info *ptp,
524 struct ptp_clock_request *rq, int on)
525{
526 struct fec_enet_private *fep =
527 container_of(ptp, struct fec_enet_private, ptp_caps);
528 ktime_t timeout;
529 struct timespec64 start_time, period;
530 u64 curr_time, delta, period_ns;
531 unsigned long flags;
532 int ret = 0;
533
534 if (rq->type == PTP_CLK_REQ_PPS) {
535 ret = fec_ptp_enable_pps(fep, on);
536
537 return ret;
538 } else if (rq->type == PTP_CLK_REQ_PEROUT) {
539 /* Reject requests with unsupported flags */
540 if (rq->perout.flags)
541 return -EOPNOTSUPP;
542
543 if (rq->perout.index != DEFAULT_PPS_CHANNEL)
544 return -EOPNOTSUPP;
545
546 fep->pps_channel = DEFAULT_PPS_CHANNEL;
547 period.tv_sec = rq->perout.period.sec;
548 period.tv_nsec = rq->perout.period.nsec;
549 period_ns = timespec64_to_ns(&period);
550
551 /* FEC PTP timer only has 31 bits, so if the period exceed
552 * 4s is not supported.
553 */
554 if (period_ns > FEC_PTP_MAX_NSEC_PERIOD) {
555 dev_err(&fep->pdev->dev, "The period must equal to or less than 4s!\n");
556 return -EOPNOTSUPP;
557 }
558
559 fep->reload_period = div_u64(period_ns, 2);
560 if (on && fep->reload_period) {
561 /* Convert 1588 timestamp to ns*/
562 start_time.tv_sec = rq->perout.start.sec;
563 start_time.tv_nsec = rq->perout.start.nsec;
564 fep->perout_stime = timespec64_to_ns(&start_time);
565
566 mutex_lock(&fep->ptp_clk_mutex);
567 if (!fep->ptp_clk_on) {
568 dev_err(&fep->pdev->dev, "Error: PTP clock is closed!\n");
569 mutex_unlock(&fep->ptp_clk_mutex);
570 return -EOPNOTSUPP;
571 }
572 spin_lock_irqsave(&fep->tmreg_lock, flags);
573 /* Read current timestamp */
574 curr_time = timecounter_read(&fep->tc);
575 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
576 mutex_unlock(&fep->ptp_clk_mutex);
577
578 /* Calculate time difference */
579 delta = fep->perout_stime - curr_time;
580
581 if (fep->perout_stime <= curr_time) {
582 dev_err(&fep->pdev->dev, "Start time must larger than current time!\n");
583 return -EINVAL;
584 }
585
586 /* Because the timer counter of FEC only has 31-bits, correspondingly,
587 * the time comparison register FEC_TCCR also only low 31 bits can be
588 * set. If the start time of pps signal exceeds current time more than
589 * 0x80000000 ns, a software timer is used and the timer expires about
590 * 1 second before the start time to be able to set FEC_TCCR.
591 */
592 if (delta > FEC_PTP_MAX_NSEC_COUNTER) {
593 timeout = ns_to_ktime(delta - NSEC_PER_SEC);
594 hrtimer_start(&fep->perout_timer, timeout, HRTIMER_MODE_REL);
595 } else {
596 return fec_ptp_pps_perout(fep);
597 }
598 } else {
599 fec_ptp_pps_disable(fep, fep->pps_channel);
600 }
601
602 return 0;
603 } else {
604 return -EOPNOTSUPP;
605 }
606}
607
608int fec_ptp_set(struct net_device *ndev, struct kernel_hwtstamp_config *config,
609 struct netlink_ext_ack *extack)
610{
611 struct fec_enet_private *fep = netdev_priv(ndev);
612
613 switch (config->tx_type) {
614 case HWTSTAMP_TX_OFF:
615 fep->hwts_tx_en = 0;
616 break;
617 case HWTSTAMP_TX_ON:
618 fep->hwts_tx_en = 1;
619 break;
620 default:
621 return -ERANGE;
622 }
623
624 switch (config->rx_filter) {
625 case HWTSTAMP_FILTER_NONE:
626 fep->hwts_rx_en = 0;
627 break;
628
629 default:
630 fep->hwts_rx_en = 1;
631 config->rx_filter = HWTSTAMP_FILTER_ALL;
632 break;
633 }
634
635 return 0;
636}
637
638void fec_ptp_get(struct net_device *ndev, struct kernel_hwtstamp_config *config)
639{
640 struct fec_enet_private *fep = netdev_priv(ndev);
641
642 config->flags = 0;
643 config->tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
644 config->rx_filter = (fep->hwts_rx_en ?
645 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
646}
647
648/*
649 * fec_time_keep - call timecounter_read every second to avoid timer overrun
650 * because ENET just support 32bit counter, will timeout in 4s
651 */
652static void fec_time_keep(struct work_struct *work)
653{
654 struct delayed_work *dwork = to_delayed_work(work);
655 struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
656 unsigned long flags;
657
658 mutex_lock(&fep->ptp_clk_mutex);
659 if (fep->ptp_clk_on) {
660 spin_lock_irqsave(&fep->tmreg_lock, flags);
661 timecounter_read(&fep->tc);
662 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
663 }
664 mutex_unlock(&fep->ptp_clk_mutex);
665
666 schedule_delayed_work(&fep->time_keep, HZ);
667}
668
669/* This function checks the pps event and reloads the timer compare counter. */
670static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
671{
672 struct net_device *ndev = dev_id;
673 struct fec_enet_private *fep = netdev_priv(ndev);
674 u32 val;
675 u8 channel = fep->pps_channel;
676 struct ptp_clock_event event;
677
678 val = readl(fep->hwp + FEC_TCSR(channel));
679 if (val & FEC_T_TF_MASK) {
680 /* Write the next next compare(not the next according the spec)
681 * value to the register
682 */
683 writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
684 do {
685 writel(val, fep->hwp + FEC_TCSR(channel));
686 } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
687
688 /* Update the counter; */
689 fep->next_counter = (fep->next_counter + fep->reload_period) &
690 fep->cc.mask;
691
692 event.type = PTP_CLOCK_PPS;
693 ptp_clock_event(fep->ptp_clock, &event);
694 return IRQ_HANDLED;
695 }
696
697 return IRQ_NONE;
698}
699
700/**
701 * fec_ptp_init
702 * @pdev: The FEC network adapter
703 * @irq_idx: the interrupt index
704 *
705 * This function performs the required steps for enabling ptp
706 * support. If ptp support has already been loaded it simply calls the
707 * cyclecounter init routine and exits.
708 */
709
710void fec_ptp_init(struct platform_device *pdev, int irq_idx)
711{
712 struct net_device *ndev = platform_get_drvdata(pdev);
713 struct fec_enet_private *fep = netdev_priv(ndev);
714 int irq;
715 int ret;
716
717 fep->ptp_caps.owner = THIS_MODULE;
718 strscpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name));
719
720 fep->ptp_caps.max_adj = 250000000;
721 fep->ptp_caps.n_alarm = 0;
722 fep->ptp_caps.n_ext_ts = 0;
723 fep->ptp_caps.n_per_out = 1;
724 fep->ptp_caps.n_pins = 0;
725 fep->ptp_caps.pps = 1;
726 fep->ptp_caps.adjfine = fec_ptp_adjfine;
727 fep->ptp_caps.adjtime = fec_ptp_adjtime;
728 fep->ptp_caps.gettime64 = fec_ptp_gettime;
729 fep->ptp_caps.settime64 = fec_ptp_settime;
730 fep->ptp_caps.enable = fec_ptp_enable;
731
732 fep->cycle_speed = clk_get_rate(fep->clk_ptp);
733 if (!fep->cycle_speed) {
734 fep->cycle_speed = NSEC_PER_SEC;
735 dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n");
736 }
737 fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
738
739 spin_lock_init(&fep->tmreg_lock);
740
741 fec_ptp_start_cyclecounter(ndev);
742
743 INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
744
745 hrtimer_init(&fep->perout_timer, CLOCK_REALTIME, HRTIMER_MODE_REL);
746 fep->perout_timer.function = fec_ptp_pps_perout_handler;
747
748 irq = platform_get_irq_byname_optional(pdev, "pps");
749 if (irq < 0)
750 irq = platform_get_irq_optional(pdev, irq_idx);
751 /* Failure to get an irq is not fatal,
752 * only the PTP_CLOCK_PPS clock events should stop
753 */
754 if (irq >= 0) {
755 ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
756 0, pdev->name, ndev);
757 if (ret < 0)
758 dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
759 ret);
760 }
761
762 fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
763 if (IS_ERR(fep->ptp_clock)) {
764 fep->ptp_clock = NULL;
765 dev_err(&pdev->dev, "ptp_clock_register failed\n");
766 }
767
768 schedule_delayed_work(&fep->time_keep, HZ);
769}
770
771void fec_ptp_stop(struct platform_device *pdev)
772{
773 struct net_device *ndev = platform_get_drvdata(pdev);
774 struct fec_enet_private *fep = netdev_priv(ndev);
775
776 cancel_delayed_work_sync(&fep->time_keep);
777 hrtimer_cancel(&fep->perout_timer);
778 if (fep->ptp_clock)
779 ptp_clock_unregister(fep->ptp_clock);
780}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
4 *
5 * Copyright (C) 2012 Freescale Semiconductor, Inc.
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/string.h>
13#include <linux/ptrace.h>
14#include <linux/errno.h>
15#include <linux/ioport.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/pci.h>
19#include <linux/delay.h>
20#include <linux/netdevice.h>
21#include <linux/etherdevice.h>
22#include <linux/skbuff.h>
23#include <linux/spinlock.h>
24#include <linux/workqueue.h>
25#include <linux/bitops.h>
26#include <linux/io.h>
27#include <linux/irq.h>
28#include <linux/clk.h>
29#include <linux/platform_device.h>
30#include <linux/phy.h>
31#include <linux/fec.h>
32#include <linux/of.h>
33#include <linux/of_device.h>
34#include <linux/of_gpio.h>
35#include <linux/of_net.h>
36
37#include "fec.h"
38
39/* FEC 1588 register bits */
40#define FEC_T_CTRL_SLAVE 0x00002000
41#define FEC_T_CTRL_CAPTURE 0x00000800
42#define FEC_T_CTRL_RESTART 0x00000200
43#define FEC_T_CTRL_PERIOD_RST 0x00000030
44#define FEC_T_CTRL_PERIOD_EN 0x00000010
45#define FEC_T_CTRL_ENABLE 0x00000001
46
47#define FEC_T_INC_MASK 0x0000007f
48#define FEC_T_INC_OFFSET 0
49#define FEC_T_INC_CORR_MASK 0x00007f00
50#define FEC_T_INC_CORR_OFFSET 8
51
52#define FEC_T_CTRL_PINPER 0x00000080
53#define FEC_T_TF0_MASK 0x00000001
54#define FEC_T_TF0_OFFSET 0
55#define FEC_T_TF1_MASK 0x00000002
56#define FEC_T_TF1_OFFSET 1
57#define FEC_T_TF2_MASK 0x00000004
58#define FEC_T_TF2_OFFSET 2
59#define FEC_T_TF3_MASK 0x00000008
60#define FEC_T_TF3_OFFSET 3
61#define FEC_T_TDRE_MASK 0x00000001
62#define FEC_T_TDRE_OFFSET 0
63#define FEC_T_TMODE_MASK 0x0000003C
64#define FEC_T_TMODE_OFFSET 2
65#define FEC_T_TIE_MASK 0x00000040
66#define FEC_T_TIE_OFFSET 6
67#define FEC_T_TF_MASK 0x00000080
68#define FEC_T_TF_OFFSET 7
69
70#define FEC_ATIME_CTRL 0x400
71#define FEC_ATIME 0x404
72#define FEC_ATIME_EVT_OFFSET 0x408
73#define FEC_ATIME_EVT_PERIOD 0x40c
74#define FEC_ATIME_CORR 0x410
75#define FEC_ATIME_INC 0x414
76#define FEC_TS_TIMESTAMP 0x418
77
78#define FEC_TGSR 0x604
79#define FEC_TCSR(n) (0x608 + n * 0x08)
80#define FEC_TCCR(n) (0x60C + n * 0x08)
81#define MAX_TIMER_CHANNEL 3
82#define FEC_TMODE_TOGGLE 0x05
83#define FEC_HIGH_PULSE 0x0F
84
85#define FEC_CC_MULT (1 << 31)
86#define FEC_COUNTER_PERIOD (1 << 31)
87#define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC
88#define FEC_CHANNLE_0 0
89#define DEFAULT_PPS_CHANNEL FEC_CHANNLE_0
90
91/**
92 * fec_ptp_enable_pps
93 * @fep: the fec_enet_private structure handle
94 * @enable: enable the channel pps output
95 *
96 * This function enble the PPS ouput on the timer channel.
97 */
98static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
99{
100 unsigned long flags;
101 u32 val, tempval;
102 struct timespec64 ts;
103 u64 ns;
104 val = 0;
105
106 if (fep->pps_enable == enable)
107 return 0;
108
109 fep->pps_channel = DEFAULT_PPS_CHANNEL;
110 fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
111
112 spin_lock_irqsave(&fep->tmreg_lock, flags);
113
114 if (enable) {
115 /* clear capture or output compare interrupt status if have.
116 */
117 writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
118
119 /* It is recommended to double check the TMODE field in the
120 * TCSR register to be cleared before the first compare counter
121 * is written into TCCR register. Just add a double check.
122 */
123 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
124 do {
125 val &= ~(FEC_T_TMODE_MASK);
126 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
127 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
128 } while (val & FEC_T_TMODE_MASK);
129
130 /* Dummy read counter to update the counter */
131 timecounter_read(&fep->tc);
132 /* We want to find the first compare event in the next
133 * second point. So we need to know what the ptp time
134 * is now and how many nanoseconds is ahead to get next second.
135 * The remaining nanosecond ahead before the next second would be
136 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
137 * to current timer would be next second.
138 */
139 tempval = readl(fep->hwp + FEC_ATIME_CTRL);
140 tempval |= FEC_T_CTRL_CAPTURE;
141 writel(tempval, fep->hwp + FEC_ATIME_CTRL);
142
143 tempval = readl(fep->hwp + FEC_ATIME);
144 /* Convert the ptp local counter to 1588 timestamp */
145 ns = timecounter_cyc2time(&fep->tc, tempval);
146 ts = ns_to_timespec64(ns);
147
148 /* The tempval is less than 3 seconds, and so val is less than
149 * 4 seconds. No overflow for 32bit calculation.
150 */
151 val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
152
153 /* Need to consider the situation that the current time is
154 * very close to the second point, which means NSEC_PER_SEC
155 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
156 * is still running when we calculate the first compare event, it is
157 * possible that the remaining nanoseonds run out before the compare
158 * counter is calculated and written into TCCR register. To avoid
159 * this possibility, we will set the compare event to be the next
160 * of next second. The current setting is 31-bit timer and wrap
161 * around over 2 seconds. So it is okay to set the next of next
162 * seond for the timer.
163 */
164 val += NSEC_PER_SEC;
165
166 /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
167 * ptp counter, which maybe cause 32-bit wrap. Since the
168 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
169 * We can ensure the wrap will not cause issue. If the offset
170 * is bigger than fep->cc.mask would be a error.
171 */
172 val &= fep->cc.mask;
173 writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
174
175 /* Calculate the second the compare event timestamp */
176 fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
177
178 /* * Enable compare event when overflow */
179 val = readl(fep->hwp + FEC_ATIME_CTRL);
180 val |= FEC_T_CTRL_PINPER;
181 writel(val, fep->hwp + FEC_ATIME_CTRL);
182
183 /* Compare channel setting. */
184 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
185 val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
186 val &= ~(1 << FEC_T_TDRE_OFFSET);
187 val &= ~(FEC_T_TMODE_MASK);
188 val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
189 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
190
191 /* Write the second compare event timestamp and calculate
192 * the third timestamp. Refer the TCCR register detail in the spec.
193 */
194 writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
195 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
196 } else {
197 writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
198 }
199
200 fep->pps_enable = enable;
201 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
202
203 return 0;
204}
205
206/**
207 * fec_ptp_read - read raw cycle counter (to be used by time counter)
208 * @cc: the cyclecounter structure
209 *
210 * this function reads the cyclecounter registers and is called by the
211 * cyclecounter structure used to construct a ns counter from the
212 * arbitrary fixed point registers
213 */
214static u64 fec_ptp_read(const struct cyclecounter *cc)
215{
216 struct fec_enet_private *fep =
217 container_of(cc, struct fec_enet_private, cc);
218 const struct platform_device_id *id_entry =
219 platform_get_device_id(fep->pdev);
220 u32 tempval;
221
222 tempval = readl(fep->hwp + FEC_ATIME_CTRL);
223 tempval |= FEC_T_CTRL_CAPTURE;
224 writel(tempval, fep->hwp + FEC_ATIME_CTRL);
225
226 if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE)
227 udelay(1);
228
229 return readl(fep->hwp + FEC_ATIME);
230}
231
232/**
233 * fec_ptp_start_cyclecounter - create the cycle counter from hw
234 * @ndev: network device
235 *
236 * this function initializes the timecounter and cyclecounter
237 * structures for use in generated a ns counter from the arbitrary
238 * fixed point cycles registers in the hardware.
239 */
240void fec_ptp_start_cyclecounter(struct net_device *ndev)
241{
242 struct fec_enet_private *fep = netdev_priv(ndev);
243 unsigned long flags;
244 int inc;
245
246 inc = 1000000000 / fep->cycle_speed;
247
248 /* grab the ptp lock */
249 spin_lock_irqsave(&fep->tmreg_lock, flags);
250
251 /* 1ns counter */
252 writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
253
254 /* use 31-bit timer counter */
255 writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
256
257 writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
258 fep->hwp + FEC_ATIME_CTRL);
259
260 memset(&fep->cc, 0, sizeof(fep->cc));
261 fep->cc.read = fec_ptp_read;
262 fep->cc.mask = CLOCKSOURCE_MASK(31);
263 fep->cc.shift = 31;
264 fep->cc.mult = FEC_CC_MULT;
265
266 /* reset the ns time counter */
267 timecounter_init(&fep->tc, &fep->cc, 0);
268
269 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
270}
271
272/**
273 * fec_ptp_adjfreq - adjust ptp cycle frequency
274 * @ptp: the ptp clock structure
275 * @ppb: parts per billion adjustment from base
276 *
277 * Adjust the frequency of the ptp cycle counter by the
278 * indicated ppb from the base frequency.
279 *
280 * Because ENET hardware frequency adjust is complex,
281 * using software method to do that.
282 */
283static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
284{
285 unsigned long flags;
286 int neg_adj = 0;
287 u32 i, tmp;
288 u32 corr_inc, corr_period;
289 u32 corr_ns;
290 u64 lhs, rhs;
291
292 struct fec_enet_private *fep =
293 container_of(ptp, struct fec_enet_private, ptp_caps);
294
295 if (ppb == 0)
296 return 0;
297
298 if (ppb < 0) {
299 ppb = -ppb;
300 neg_adj = 1;
301 }
302
303 /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
304 * Try to find the corr_inc between 1 to fep->ptp_inc to
305 * meet adjustment requirement.
306 */
307 lhs = NSEC_PER_SEC;
308 rhs = (u64)ppb * (u64)fep->ptp_inc;
309 for (i = 1; i <= fep->ptp_inc; i++) {
310 if (lhs >= rhs) {
311 corr_inc = i;
312 corr_period = div_u64(lhs, rhs);
313 break;
314 }
315 lhs += NSEC_PER_SEC;
316 }
317 /* Not found? Set it to high value - double speed
318 * correct in every clock step.
319 */
320 if (i > fep->ptp_inc) {
321 corr_inc = fep->ptp_inc;
322 corr_period = 1;
323 }
324
325 if (neg_adj)
326 corr_ns = fep->ptp_inc - corr_inc;
327 else
328 corr_ns = fep->ptp_inc + corr_inc;
329
330 spin_lock_irqsave(&fep->tmreg_lock, flags);
331
332 tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
333 tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
334 writel(tmp, fep->hwp + FEC_ATIME_INC);
335 corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
336 writel(corr_period, fep->hwp + FEC_ATIME_CORR);
337 /* dummy read to update the timer. */
338 timecounter_read(&fep->tc);
339
340 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
341
342 return 0;
343}
344
345/**
346 * fec_ptp_adjtime
347 * @ptp: the ptp clock structure
348 * @delta: offset to adjust the cycle counter by
349 *
350 * adjust the timer by resetting the timecounter structure.
351 */
352static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
353{
354 struct fec_enet_private *fep =
355 container_of(ptp, struct fec_enet_private, ptp_caps);
356 unsigned long flags;
357
358 spin_lock_irqsave(&fep->tmreg_lock, flags);
359 timecounter_adjtime(&fep->tc, delta);
360 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
361
362 return 0;
363}
364
365/**
366 * fec_ptp_gettime
367 * @ptp: the ptp clock structure
368 * @ts: timespec structure to hold the current time value
369 *
370 * read the timecounter and return the correct value on ns,
371 * after converting it into a struct timespec.
372 */
373static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
374{
375 struct fec_enet_private *adapter =
376 container_of(ptp, struct fec_enet_private, ptp_caps);
377 u64 ns;
378 unsigned long flags;
379
380 spin_lock_irqsave(&adapter->tmreg_lock, flags);
381 ns = timecounter_read(&adapter->tc);
382 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
383
384 *ts = ns_to_timespec64(ns);
385
386 return 0;
387}
388
389/**
390 * fec_ptp_settime
391 * @ptp: the ptp clock structure
392 * @ts: the timespec containing the new time for the cycle counter
393 *
394 * reset the timecounter to use a new base value instead of the kernel
395 * wall timer value.
396 */
397static int fec_ptp_settime(struct ptp_clock_info *ptp,
398 const struct timespec64 *ts)
399{
400 struct fec_enet_private *fep =
401 container_of(ptp, struct fec_enet_private, ptp_caps);
402
403 u64 ns;
404 unsigned long flags;
405 u32 counter;
406
407 mutex_lock(&fep->ptp_clk_mutex);
408 /* Check the ptp clock */
409 if (!fep->ptp_clk_on) {
410 mutex_unlock(&fep->ptp_clk_mutex);
411 return -EINVAL;
412 }
413
414 ns = timespec64_to_ns(ts);
415 /* Get the timer value based on timestamp.
416 * Update the counter with the masked value.
417 */
418 counter = ns & fep->cc.mask;
419
420 spin_lock_irqsave(&fep->tmreg_lock, flags);
421 writel(counter, fep->hwp + FEC_ATIME);
422 timecounter_init(&fep->tc, &fep->cc, ns);
423 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
424 mutex_unlock(&fep->ptp_clk_mutex);
425 return 0;
426}
427
428/**
429 * fec_ptp_enable
430 * @ptp: the ptp clock structure
431 * @rq: the requested feature to change
432 * @on: whether to enable or disable the feature
433 *
434 */
435static int fec_ptp_enable(struct ptp_clock_info *ptp,
436 struct ptp_clock_request *rq, int on)
437{
438 struct fec_enet_private *fep =
439 container_of(ptp, struct fec_enet_private, ptp_caps);
440 int ret = 0;
441
442 if (rq->type == PTP_CLK_REQ_PPS) {
443 ret = fec_ptp_enable_pps(fep, on);
444
445 return ret;
446 }
447 return -EOPNOTSUPP;
448}
449
450/**
451 * fec_ptp_disable_hwts - disable hardware time stamping
452 * @ndev: pointer to net_device
453 */
454void fec_ptp_disable_hwts(struct net_device *ndev)
455{
456 struct fec_enet_private *fep = netdev_priv(ndev);
457
458 fep->hwts_tx_en = 0;
459 fep->hwts_rx_en = 0;
460}
461
462int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
463{
464 struct fec_enet_private *fep = netdev_priv(ndev);
465
466 struct hwtstamp_config config;
467
468 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
469 return -EFAULT;
470
471 /* reserved for future extensions */
472 if (config.flags)
473 return -EINVAL;
474
475 switch (config.tx_type) {
476 case HWTSTAMP_TX_OFF:
477 fep->hwts_tx_en = 0;
478 break;
479 case HWTSTAMP_TX_ON:
480 fep->hwts_tx_en = 1;
481 break;
482 default:
483 return -ERANGE;
484 }
485
486 switch (config.rx_filter) {
487 case HWTSTAMP_FILTER_NONE:
488 fep->hwts_rx_en = 0;
489 break;
490
491 default:
492 fep->hwts_rx_en = 1;
493 config.rx_filter = HWTSTAMP_FILTER_ALL;
494 break;
495 }
496
497 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
498 -EFAULT : 0;
499}
500
501int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
502{
503 struct fec_enet_private *fep = netdev_priv(ndev);
504 struct hwtstamp_config config;
505
506 config.flags = 0;
507 config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
508 config.rx_filter = (fep->hwts_rx_en ?
509 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
510
511 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
512 -EFAULT : 0;
513}
514
515/**
516 * fec_time_keep - call timecounter_read every second to avoid timer overrun
517 * because ENET just support 32bit counter, will timeout in 4s
518 */
519static void fec_time_keep(struct work_struct *work)
520{
521 struct delayed_work *dwork = to_delayed_work(work);
522 struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
523 u64 ns;
524 unsigned long flags;
525
526 mutex_lock(&fep->ptp_clk_mutex);
527 if (fep->ptp_clk_on) {
528 spin_lock_irqsave(&fep->tmreg_lock, flags);
529 ns = timecounter_read(&fep->tc);
530 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
531 }
532 mutex_unlock(&fep->ptp_clk_mutex);
533
534 schedule_delayed_work(&fep->time_keep, HZ);
535}
536
537/* This function checks the pps event and reloads the timer compare counter. */
538static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
539{
540 struct net_device *ndev = dev_id;
541 struct fec_enet_private *fep = netdev_priv(ndev);
542 u32 val;
543 u8 channel = fep->pps_channel;
544 struct ptp_clock_event event;
545
546 val = readl(fep->hwp + FEC_TCSR(channel));
547 if (val & FEC_T_TF_MASK) {
548 /* Write the next next compare(not the next according the spec)
549 * value to the register
550 */
551 writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
552 do {
553 writel(val, fep->hwp + FEC_TCSR(channel));
554 } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
555
556 /* Update the counter; */
557 fep->next_counter = (fep->next_counter + fep->reload_period) &
558 fep->cc.mask;
559
560 event.type = PTP_CLOCK_PPS;
561 ptp_clock_event(fep->ptp_clock, &event);
562 return IRQ_HANDLED;
563 }
564
565 return IRQ_NONE;
566}
567
568/**
569 * fec_ptp_init
570 * @ndev: The FEC network adapter
571 *
572 * This function performs the required steps for enabling ptp
573 * support. If ptp support has already been loaded it simply calls the
574 * cyclecounter init routine and exits.
575 */
576
577void fec_ptp_init(struct platform_device *pdev, int irq_idx)
578{
579 struct net_device *ndev = platform_get_drvdata(pdev);
580 struct fec_enet_private *fep = netdev_priv(ndev);
581 int irq;
582 int ret;
583
584 fep->ptp_caps.owner = THIS_MODULE;
585 strlcpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name));
586
587 fep->ptp_caps.max_adj = 250000000;
588 fep->ptp_caps.n_alarm = 0;
589 fep->ptp_caps.n_ext_ts = 0;
590 fep->ptp_caps.n_per_out = 0;
591 fep->ptp_caps.n_pins = 0;
592 fep->ptp_caps.pps = 1;
593 fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
594 fep->ptp_caps.adjtime = fec_ptp_adjtime;
595 fep->ptp_caps.gettime64 = fec_ptp_gettime;
596 fep->ptp_caps.settime64 = fec_ptp_settime;
597 fep->ptp_caps.enable = fec_ptp_enable;
598
599 fep->cycle_speed = clk_get_rate(fep->clk_ptp);
600 fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
601
602 spin_lock_init(&fep->tmreg_lock);
603
604 fec_ptp_start_cyclecounter(ndev);
605
606 INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
607
608 irq = platform_get_irq_byname_optional(pdev, "pps");
609 if (irq < 0)
610 irq = platform_get_irq_optional(pdev, irq_idx);
611 /* Failure to get an irq is not fatal,
612 * only the PTP_CLOCK_PPS clock events should stop
613 */
614 if (irq >= 0) {
615 ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
616 0, pdev->name, ndev);
617 if (ret < 0)
618 dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
619 ret);
620 }
621
622 fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
623 if (IS_ERR(fep->ptp_clock)) {
624 fep->ptp_clock = NULL;
625 dev_err(&pdev->dev, "ptp_clock_register failed\n");
626 }
627
628 schedule_delayed_work(&fep->time_keep, HZ);
629}
630
631void fec_ptp_stop(struct platform_device *pdev)
632{
633 struct net_device *ndev = platform_get_drvdata(pdev);
634 struct fec_enet_private *fep = netdev_priv(ndev);
635
636 cancel_delayed_work_sync(&fep->time_keep);
637 if (fep->ptp_clock)
638 ptp_clock_unregister(fep->ptp_clock);
639}