Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
  4 *
  5 * Copyright (C) 2012 Freescale Semiconductor, Inc.
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/module.h>
 11#include <linux/kernel.h>
 12#include <linux/string.h>
 13#include <linux/ptrace.h>
 14#include <linux/errno.h>
 15#include <linux/ioport.h>
 16#include <linux/slab.h>
 17#include <linux/interrupt.h>
 18#include <linux/pci.h>
 19#include <linux/delay.h>
 20#include <linux/netdevice.h>
 21#include <linux/etherdevice.h>
 22#include <linux/skbuff.h>
 23#include <linux/spinlock.h>
 24#include <linux/workqueue.h>
 25#include <linux/bitops.h>
 26#include <linux/io.h>
 27#include <linux/irq.h>
 28#include <linux/clk.h>
 29#include <linux/platform_device.h>
 30#include <linux/phy.h>
 31#include <linux/fec.h>
 32#include <linux/of.h>
 
 33#include <linux/of_gpio.h>
 34#include <linux/of_net.h>
 35
 36#include "fec.h"
 37
 38/* FEC 1588 register bits */
 39#define FEC_T_CTRL_SLAVE                0x00002000
 40#define FEC_T_CTRL_CAPTURE              0x00000800
 41#define FEC_T_CTRL_RESTART              0x00000200
 42#define FEC_T_CTRL_PERIOD_RST           0x00000030
 43#define FEC_T_CTRL_PERIOD_EN		0x00000010
 44#define FEC_T_CTRL_ENABLE               0x00000001
 45
 46#define FEC_T_INC_MASK                  0x0000007f
 47#define FEC_T_INC_OFFSET                0
 48#define FEC_T_INC_CORR_MASK             0x00007f00
 49#define FEC_T_INC_CORR_OFFSET           8
 50
 51#define FEC_T_CTRL_PINPER		0x00000080
 52#define FEC_T_TF0_MASK			0x00000001
 53#define FEC_T_TF0_OFFSET		0
 54#define FEC_T_TF1_MASK			0x00000002
 55#define FEC_T_TF1_OFFSET		1
 56#define FEC_T_TF2_MASK			0x00000004
 57#define FEC_T_TF2_OFFSET		2
 58#define FEC_T_TF3_MASK			0x00000008
 59#define FEC_T_TF3_OFFSET		3
 60#define FEC_T_TDRE_MASK			0x00000001
 61#define FEC_T_TDRE_OFFSET		0
 62#define FEC_T_TMODE_MASK		0x0000003C
 63#define FEC_T_TMODE_OFFSET		2
 64#define FEC_T_TIE_MASK			0x00000040
 65#define FEC_T_TIE_OFFSET		6
 66#define FEC_T_TF_MASK			0x00000080
 67#define FEC_T_TF_OFFSET			7
 68
 69#define FEC_ATIME_CTRL		0x400
 70#define FEC_ATIME		0x404
 71#define FEC_ATIME_EVT_OFFSET	0x408
 72#define FEC_ATIME_EVT_PERIOD	0x40c
 73#define FEC_ATIME_CORR		0x410
 74#define FEC_ATIME_INC		0x414
 75#define FEC_TS_TIMESTAMP	0x418
 76
 77#define FEC_TGSR		0x604
 78#define FEC_TCSR(n)		(0x608 + n * 0x08)
 79#define FEC_TCCR(n)		(0x60C + n * 0x08)
 80#define MAX_TIMER_CHANNEL	3
 81#define FEC_TMODE_TOGGLE	0x05
 82#define FEC_HIGH_PULSE		0x0F
 83
 84#define FEC_CC_MULT	(1 << 31)
 85#define FEC_COUNTER_PERIOD	(1 << 31)
 86#define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
 87#define FEC_CHANNLE_0		0
 88#define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0
 89
 90#define FEC_PTP_MAX_NSEC_PERIOD		4000000000ULL
 91#define FEC_PTP_MAX_NSEC_COUNTER	0x80000000ULL
 92
 93/**
 94 * fec_ptp_enable_pps
 95 * @fep: the fec_enet_private structure handle
 96 * @enable: enable the channel pps output
 97 *
 98 * This function enble the PPS ouput on the timer channel.
 99 */
100static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
101{
102	unsigned long flags;
103	u32 val, tempval;
104	struct timespec64 ts;
105	u64 ns;
 
 
 
 
 
 
106
107	if (fep->pps_enable == enable)
108		return 0;
109
110	fep->pps_channel = DEFAULT_PPS_CHANNEL;
111	fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
112
113	spin_lock_irqsave(&fep->tmreg_lock, flags);
114
115	if (enable) {
116		/* clear capture or output compare interrupt status if have.
117		 */
118		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
119
120		/* It is recommended to double check the TMODE field in the
121		 * TCSR register to be cleared before the first compare counter
122		 * is written into TCCR register. Just add a double check.
123		 */
124		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
125		do {
126			val &= ~(FEC_T_TMODE_MASK);
127			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
128			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
129		} while (val & FEC_T_TMODE_MASK);
130
131		/* Dummy read counter to update the counter */
132		timecounter_read(&fep->tc);
133		/* We want to find the first compare event in the next
134		 * second point. So we need to know what the ptp time
135		 * is now and how many nanoseconds is ahead to get next second.
136		 * The remaining nanosecond ahead before the next second would be
137		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
138		 * to current timer would be next second.
139		 */
140		tempval = fep->cc.read(&fep->cc);
 
 
 
 
141		/* Convert the ptp local counter to 1588 timestamp */
142		ns = timecounter_cyc2time(&fep->tc, tempval);
143		ts = ns_to_timespec64(ns);
144
145		/* The tempval is  less than 3 seconds, and  so val is less than
146		 * 4 seconds. No overflow for 32bit calculation.
147		 */
148		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
149
150		/* Need to consider the situation that the current time is
151		 * very close to the second point, which means NSEC_PER_SEC
152		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
153		 * is still running when we calculate the first compare event, it is
154		 * possible that the remaining nanoseonds run out before the compare
155		 * counter is calculated and written into TCCR register. To avoid
156		 * this possibility, we will set the compare event to be the next
157		 * of next second. The current setting is 31-bit timer and wrap
158		 * around over 2 seconds. So it is okay to set the next of next
159		 * seond for the timer.
160		 */
161		val += NSEC_PER_SEC;
162
163		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
164		 * ptp counter, which maybe cause 32-bit wrap. Since the
165		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
166		 * We can ensure the wrap will not cause issue. If the offset
167		 * is bigger than fep->cc.mask would be a error.
168		 */
169		val &= fep->cc.mask;
170		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
171
172		/* Calculate the second the compare event timestamp */
173		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
174
175		/* * Enable compare event when overflow */
176		val = readl(fep->hwp + FEC_ATIME_CTRL);
177		val |= FEC_T_CTRL_PINPER;
178		writel(val, fep->hwp + FEC_ATIME_CTRL);
179
180		/* Compare channel setting. */
181		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
182		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
183		val &= ~(1 << FEC_T_TDRE_OFFSET);
184		val &= ~(FEC_T_TMODE_MASK);
185		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
186		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
187
188		/* Write the second compare event timestamp and calculate
189		 * the third timestamp. Refer the TCCR register detail in the spec.
190		 */
191		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
192		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
193	} else {
194		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
195	}
196
197	fep->pps_enable = enable;
198	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
199
200	return 0;
201}
202
203static int fec_ptp_pps_perout(struct fec_enet_private *fep)
204{
205	u32 compare_val, ptp_hc, temp_val;
206	u64 curr_time;
207	unsigned long flags;
208
209	spin_lock_irqsave(&fep->tmreg_lock, flags);
210
211	/* Update time counter */
212	timecounter_read(&fep->tc);
213
214	/* Get the current ptp hardware time counter */
215	temp_val = readl(fep->hwp + FEC_ATIME_CTRL);
216	temp_val |= FEC_T_CTRL_CAPTURE;
217	writel(temp_val, fep->hwp + FEC_ATIME_CTRL);
218	if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
219		udelay(1);
220
221	ptp_hc = readl(fep->hwp + FEC_ATIME);
222
223	/* Convert the ptp local counter to 1588 timestamp */
224	curr_time = timecounter_cyc2time(&fep->tc, ptp_hc);
225
226	/* If the pps start time less than current time add 100ms, just return.
227	 * Because the software might not able to set the comparison time into
228	 * the FEC_TCCR register in time and missed the start time.
229	 */
230	if (fep->perout_stime < curr_time + 100 * NSEC_PER_MSEC) {
231		dev_err(&fep->pdev->dev, "Current time is too close to the start time!\n");
232		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
233		return -1;
234	}
235
236	compare_val = fep->perout_stime - curr_time + ptp_hc;
237	compare_val &= fep->cc.mask;
238
239	writel(compare_val, fep->hwp + FEC_TCCR(fep->pps_channel));
240	fep->next_counter = (compare_val + fep->reload_period) & fep->cc.mask;
241
242	/* Enable compare event when overflow */
243	temp_val = readl(fep->hwp + FEC_ATIME_CTRL);
244	temp_val |= FEC_T_CTRL_PINPER;
245	writel(temp_val, fep->hwp + FEC_ATIME_CTRL);
246
247	/* Compare channel setting. */
248	temp_val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
249	temp_val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
250	temp_val &= ~(1 << FEC_T_TDRE_OFFSET);
251	temp_val &= ~(FEC_T_TMODE_MASK);
252	temp_val |= (FEC_TMODE_TOGGLE << FEC_T_TMODE_OFFSET);
253	writel(temp_val, fep->hwp + FEC_TCSR(fep->pps_channel));
254
255	/* Write the second compare event timestamp and calculate
256	 * the third timestamp. Refer the TCCR register detail in the spec.
257	 */
258	writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
259	fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
260	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
261
262	return 0;
263}
264
265static enum hrtimer_restart fec_ptp_pps_perout_handler(struct hrtimer *timer)
266{
267	struct fec_enet_private *fep = container_of(timer,
268					struct fec_enet_private, perout_timer);
269
270	fec_ptp_pps_perout(fep);
271
272	return HRTIMER_NORESTART;
273}
274
275/**
276 * fec_ptp_read - read raw cycle counter (to be used by time counter)
277 * @cc: the cyclecounter structure
278 *
279 * this function reads the cyclecounter registers and is called by the
280 * cyclecounter structure used to construct a ns counter from the
281 * arbitrary fixed point registers
282 */
283static u64 fec_ptp_read(const struct cyclecounter *cc)
284{
285	struct fec_enet_private *fep =
286		container_of(cc, struct fec_enet_private, cc);
 
 
287	u32 tempval;
288
289	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
290	tempval |= FEC_T_CTRL_CAPTURE;
291	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
292
293	if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
294		udelay(1);
295
296	return readl(fep->hwp + FEC_ATIME);
297}
298
299/**
300 * fec_ptp_start_cyclecounter - create the cycle counter from hw
301 * @ndev: network device
302 *
303 * this function initializes the timecounter and cyclecounter
304 * structures for use in generated a ns counter from the arbitrary
305 * fixed point cycles registers in the hardware.
306 */
307void fec_ptp_start_cyclecounter(struct net_device *ndev)
308{
309	struct fec_enet_private *fep = netdev_priv(ndev);
310	unsigned long flags;
311	int inc;
312
313	inc = 1000000000 / fep->cycle_speed;
314
315	/* grab the ptp lock */
316	spin_lock_irqsave(&fep->tmreg_lock, flags);
317
318	/* 1ns counter */
319	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
320
321	/* use 31-bit timer counter */
322	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
323
324	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
325		fep->hwp + FEC_ATIME_CTRL);
326
327	memset(&fep->cc, 0, sizeof(fep->cc));
328	fep->cc.read = fec_ptp_read;
329	fep->cc.mask = CLOCKSOURCE_MASK(31);
330	fep->cc.shift = 31;
331	fep->cc.mult = FEC_CC_MULT;
332
333	/* reset the ns time counter */
334	timecounter_init(&fep->tc, &fep->cc, 0);
335
336	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
337}
338
339/**
340 * fec_ptp_adjfine - adjust ptp cycle frequency
341 * @ptp: the ptp clock structure
342 * @scaled_ppm: scaled parts per million adjustment from base
343 *
344 * Adjust the frequency of the ptp cycle counter by the
345 * indicated amount from the base frequency.
346 *
347 * Scaled parts per million is ppm with a 16-bit binary fractional field.
348 *
349 * Because ENET hardware frequency adjust is complex,
350 * using software method to do that.
351 */
352static int fec_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
353{
354	s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
355	unsigned long flags;
356	int neg_adj = 0;
357	u32 i, tmp;
358	u32 corr_inc, corr_period;
359	u32 corr_ns;
360	u64 lhs, rhs;
361
362	struct fec_enet_private *fep =
363	    container_of(ptp, struct fec_enet_private, ptp_caps);
364
365	if (ppb == 0)
366		return 0;
367
368	if (ppb < 0) {
369		ppb = -ppb;
370		neg_adj = 1;
371	}
372
373	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
374	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
375	 * meet adjustment requirement.
376	 */
377	lhs = NSEC_PER_SEC;
378	rhs = (u64)ppb * (u64)fep->ptp_inc;
379	for (i = 1; i <= fep->ptp_inc; i++) {
380		if (lhs >= rhs) {
381			corr_inc = i;
382			corr_period = div_u64(lhs, rhs);
383			break;
384		}
385		lhs += NSEC_PER_SEC;
386	}
387	/* Not found? Set it to high value - double speed
388	 * correct in every clock step.
389	 */
390	if (i > fep->ptp_inc) {
391		corr_inc = fep->ptp_inc;
392		corr_period = 1;
393	}
394
395	if (neg_adj)
396		corr_ns = fep->ptp_inc - corr_inc;
397	else
398		corr_ns = fep->ptp_inc + corr_inc;
399
400	spin_lock_irqsave(&fep->tmreg_lock, flags);
401
402	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
403	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
404	writel(tmp, fep->hwp + FEC_ATIME_INC);
405	corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
406	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
407	/* dummy read to update the timer. */
408	timecounter_read(&fep->tc);
409
410	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
411
412	return 0;
413}
414
415/**
416 * fec_ptp_adjtime
417 * @ptp: the ptp clock structure
418 * @delta: offset to adjust the cycle counter by
419 *
420 * adjust the timer by resetting the timecounter structure.
421 */
422static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
423{
424	struct fec_enet_private *fep =
425	    container_of(ptp, struct fec_enet_private, ptp_caps);
426	unsigned long flags;
427
428	spin_lock_irqsave(&fep->tmreg_lock, flags);
429	timecounter_adjtime(&fep->tc, delta);
430	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
431
432	return 0;
433}
434
435/**
436 * fec_ptp_gettime
437 * @ptp: the ptp clock structure
438 * @ts: timespec structure to hold the current time value
439 *
440 * read the timecounter and return the correct value on ns,
441 * after converting it into a struct timespec.
442 */
443static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
444{
445	struct fec_enet_private *fep =
446	    container_of(ptp, struct fec_enet_private, ptp_caps);
447	u64 ns;
448	unsigned long flags;
449
450	mutex_lock(&fep->ptp_clk_mutex);
451	/* Check the ptp clock */
452	if (!fep->ptp_clk_on) {
453		mutex_unlock(&fep->ptp_clk_mutex);
454		return -EINVAL;
455	}
456	spin_lock_irqsave(&fep->tmreg_lock, flags);
457	ns = timecounter_read(&fep->tc);
458	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
459	mutex_unlock(&fep->ptp_clk_mutex);
460
461	*ts = ns_to_timespec64(ns);
462
463	return 0;
464}
465
466/**
467 * fec_ptp_settime
468 * @ptp: the ptp clock structure
469 * @ts: the timespec containing the new time for the cycle counter
470 *
471 * reset the timecounter to use a new base value instead of the kernel
472 * wall timer value.
473 */
474static int fec_ptp_settime(struct ptp_clock_info *ptp,
475			   const struct timespec64 *ts)
476{
477	struct fec_enet_private *fep =
478	    container_of(ptp, struct fec_enet_private, ptp_caps);
479
480	u64 ns;
481	unsigned long flags;
482	u32 counter;
483
484	mutex_lock(&fep->ptp_clk_mutex);
485	/* Check the ptp clock */
486	if (!fep->ptp_clk_on) {
487		mutex_unlock(&fep->ptp_clk_mutex);
488		return -EINVAL;
489	}
490
491	ns = timespec64_to_ns(ts);
492	/* Get the timer value based on timestamp.
493	 * Update the counter with the masked value.
494	 */
495	counter = ns & fep->cc.mask;
496
497	spin_lock_irqsave(&fep->tmreg_lock, flags);
498	writel(counter, fep->hwp + FEC_ATIME);
499	timecounter_init(&fep->tc, &fep->cc, ns);
500	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
501	mutex_unlock(&fep->ptp_clk_mutex);
502	return 0;
503}
504
505static int fec_ptp_pps_disable(struct fec_enet_private *fep, uint channel)
506{
507	unsigned long flags;
508
509	spin_lock_irqsave(&fep->tmreg_lock, flags);
510	writel(0, fep->hwp + FEC_TCSR(channel));
511	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
512
513	return 0;
514}
515
516/**
517 * fec_ptp_enable
518 * @ptp: the ptp clock structure
519 * @rq: the requested feature to change
520 * @on: whether to enable or disable the feature
521 *
522 */
523static int fec_ptp_enable(struct ptp_clock_info *ptp,
524			  struct ptp_clock_request *rq, int on)
525{
526	struct fec_enet_private *fep =
527	    container_of(ptp, struct fec_enet_private, ptp_caps);
528	ktime_t timeout;
529	struct timespec64 start_time, period;
530	u64 curr_time, delta, period_ns;
531	unsigned long flags;
532	int ret = 0;
533
534	if (rq->type == PTP_CLK_REQ_PPS) {
535		ret = fec_ptp_enable_pps(fep, on);
536
537		return ret;
538	} else if (rq->type == PTP_CLK_REQ_PEROUT) {
539		/* Reject requests with unsupported flags */
540		if (rq->perout.flags)
541			return -EOPNOTSUPP;
542
543		if (rq->perout.index != DEFAULT_PPS_CHANNEL)
544			return -EOPNOTSUPP;
545
546		fep->pps_channel = DEFAULT_PPS_CHANNEL;
547		period.tv_sec = rq->perout.period.sec;
548		period.tv_nsec = rq->perout.period.nsec;
549		period_ns = timespec64_to_ns(&period);
550
551		/* FEC PTP timer only has 31 bits, so if the period exceed
552		 * 4s is not supported.
553		 */
554		if (period_ns > FEC_PTP_MAX_NSEC_PERIOD) {
555			dev_err(&fep->pdev->dev, "The period must equal to or less than 4s!\n");
556			return -EOPNOTSUPP;
557		}
558
559		fep->reload_period = div_u64(period_ns, 2);
560		if (on && fep->reload_period) {
561			/* Convert 1588 timestamp to ns*/
562			start_time.tv_sec = rq->perout.start.sec;
563			start_time.tv_nsec = rq->perout.start.nsec;
564			fep->perout_stime = timespec64_to_ns(&start_time);
565
566			mutex_lock(&fep->ptp_clk_mutex);
567			if (!fep->ptp_clk_on) {
568				dev_err(&fep->pdev->dev, "Error: PTP clock is closed!\n");
569				mutex_unlock(&fep->ptp_clk_mutex);
570				return -EOPNOTSUPP;
571			}
572			spin_lock_irqsave(&fep->tmreg_lock, flags);
573			/* Read current timestamp */
574			curr_time = timecounter_read(&fep->tc);
575			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
576			mutex_unlock(&fep->ptp_clk_mutex);
577
578			/* Calculate time difference */
579			delta = fep->perout_stime - curr_time;
580
581			if (fep->perout_stime <= curr_time) {
582				dev_err(&fep->pdev->dev, "Start time must larger than current time!\n");
583				return -EINVAL;
584			}
585
586			/* Because the timer counter of FEC only has 31-bits, correspondingly,
587			 * the time comparison register FEC_TCCR also only low 31 bits can be
588			 * set. If the start time of pps signal exceeds current time more than
589			 * 0x80000000 ns, a software timer is used and the timer expires about
590			 * 1 second before the start time to be able to set FEC_TCCR.
591			 */
592			if (delta > FEC_PTP_MAX_NSEC_COUNTER) {
593				timeout = ns_to_ktime(delta - NSEC_PER_SEC);
594				hrtimer_start(&fep->perout_timer, timeout, HRTIMER_MODE_REL);
595			} else {
596				return fec_ptp_pps_perout(fep);
597			}
598		} else {
599			fec_ptp_pps_disable(fep, fep->pps_channel);
600		}
601
602		return 0;
603	} else {
604		return -EOPNOTSUPP;
605	}
 
606}
607
608int fec_ptp_set(struct net_device *ndev, struct kernel_hwtstamp_config *config,
609		struct netlink_ext_ack *extack)
610{
611	struct fec_enet_private *fep = netdev_priv(ndev);
612
613	switch (config->tx_type) {
 
 
 
 
 
 
 
 
 
614	case HWTSTAMP_TX_OFF:
615		fep->hwts_tx_en = 0;
616		break;
617	case HWTSTAMP_TX_ON:
618		fep->hwts_tx_en = 1;
619		break;
620	default:
621		return -ERANGE;
622	}
623
624	switch (config->rx_filter) {
625	case HWTSTAMP_FILTER_NONE:
626		fep->hwts_rx_en = 0;
 
 
627		break;
628
629	default:
630		fep->hwts_rx_en = 1;
631		config->rx_filter = HWTSTAMP_FILTER_ALL;
632		break;
633	}
634
635	return 0;
 
636}
637
638void fec_ptp_get(struct net_device *ndev, struct kernel_hwtstamp_config *config)
639{
640	struct fec_enet_private *fep = netdev_priv(ndev);
 
641
642	config->flags = 0;
643	config->tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
644	config->rx_filter = (fep->hwts_rx_en ?
645			     HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
 
 
 
646}
647
648/*
649 * fec_time_keep - call timecounter_read every second to avoid timer overrun
650 *                 because ENET just support 32bit counter, will timeout in 4s
651 */
652static void fec_time_keep(struct work_struct *work)
653{
654	struct delayed_work *dwork = to_delayed_work(work);
655	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
 
656	unsigned long flags;
657
658	mutex_lock(&fep->ptp_clk_mutex);
659	if (fep->ptp_clk_on) {
660		spin_lock_irqsave(&fep->tmreg_lock, flags);
661		timecounter_read(&fep->tc);
662		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
663	}
664	mutex_unlock(&fep->ptp_clk_mutex);
665
666	schedule_delayed_work(&fep->time_keep, HZ);
667}
668
669/* This function checks the pps event and reloads the timer compare counter. */
670static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
671{
672	struct net_device *ndev = dev_id;
673	struct fec_enet_private *fep = netdev_priv(ndev);
674	u32 val;
675	u8 channel = fep->pps_channel;
676	struct ptp_clock_event event;
677
678	val = readl(fep->hwp + FEC_TCSR(channel));
679	if (val & FEC_T_TF_MASK) {
680		/* Write the next next compare(not the next according the spec)
681		 * value to the register
682		 */
683		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
684		do {
685			writel(val, fep->hwp + FEC_TCSR(channel));
686		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
687
688		/* Update the counter; */
689		fep->next_counter = (fep->next_counter + fep->reload_period) &
690				fep->cc.mask;
691
692		event.type = PTP_CLOCK_PPS;
693		ptp_clock_event(fep->ptp_clock, &event);
694		return IRQ_HANDLED;
695	}
696
697	return IRQ_NONE;
698}
699
700/**
701 * fec_ptp_init
702 * @pdev: The FEC network adapter
703 * @irq_idx: the interrupt index
704 *
705 * This function performs the required steps for enabling ptp
706 * support. If ptp support has already been loaded it simply calls the
707 * cyclecounter init routine and exits.
708 */
709
710void fec_ptp_init(struct platform_device *pdev, int irq_idx)
711{
712	struct net_device *ndev = platform_get_drvdata(pdev);
713	struct fec_enet_private *fep = netdev_priv(ndev);
714	int irq;
715	int ret;
716
717	fep->ptp_caps.owner = THIS_MODULE;
718	strscpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name));
719
720	fep->ptp_caps.max_adj = 250000000;
721	fep->ptp_caps.n_alarm = 0;
722	fep->ptp_caps.n_ext_ts = 0;
723	fep->ptp_caps.n_per_out = 1;
724	fep->ptp_caps.n_pins = 0;
725	fep->ptp_caps.pps = 1;
726	fep->ptp_caps.adjfine = fec_ptp_adjfine;
727	fep->ptp_caps.adjtime = fec_ptp_adjtime;
728	fep->ptp_caps.gettime64 = fec_ptp_gettime;
729	fep->ptp_caps.settime64 = fec_ptp_settime;
730	fep->ptp_caps.enable = fec_ptp_enable;
731
732	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
733	if (!fep->cycle_speed) {
734		fep->cycle_speed = NSEC_PER_SEC;
735		dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n");
736	}
737	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
738
739	spin_lock_init(&fep->tmreg_lock);
740
741	fec_ptp_start_cyclecounter(ndev);
742
743	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
744
745	hrtimer_init(&fep->perout_timer, CLOCK_REALTIME, HRTIMER_MODE_REL);
746	fep->perout_timer.function = fec_ptp_pps_perout_handler;
747
748	irq = platform_get_irq_byname_optional(pdev, "pps");
749	if (irq < 0)
750		irq = platform_get_irq_optional(pdev, irq_idx);
751	/* Failure to get an irq is not fatal,
752	 * only the PTP_CLOCK_PPS clock events should stop
753	 */
754	if (irq >= 0) {
755		ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
756				       0, pdev->name, ndev);
757		if (ret < 0)
758			dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
759				 ret);
760	}
761
762	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
763	if (IS_ERR(fep->ptp_clock)) {
764		fep->ptp_clock = NULL;
765		dev_err(&pdev->dev, "ptp_clock_register failed\n");
766	}
767
768	schedule_delayed_work(&fep->time_keep, HZ);
769}
770
771void fec_ptp_stop(struct platform_device *pdev)
772{
773	struct net_device *ndev = platform_get_drvdata(pdev);
774	struct fec_enet_private *fep = netdev_priv(ndev);
775
776	cancel_delayed_work_sync(&fep->time_keep);
777	hrtimer_cancel(&fep->perout_timer);
778	if (fep->ptp_clock)
779		ptp_clock_unregister(fep->ptp_clock);
780}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
  4 *
  5 * Copyright (C) 2012 Freescale Semiconductor, Inc.
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/module.h>
 11#include <linux/kernel.h>
 12#include <linux/string.h>
 13#include <linux/ptrace.h>
 14#include <linux/errno.h>
 15#include <linux/ioport.h>
 16#include <linux/slab.h>
 17#include <linux/interrupt.h>
 18#include <linux/pci.h>
 19#include <linux/delay.h>
 20#include <linux/netdevice.h>
 21#include <linux/etherdevice.h>
 22#include <linux/skbuff.h>
 23#include <linux/spinlock.h>
 24#include <linux/workqueue.h>
 25#include <linux/bitops.h>
 26#include <linux/io.h>
 27#include <linux/irq.h>
 28#include <linux/clk.h>
 29#include <linux/platform_device.h>
 30#include <linux/phy.h>
 31#include <linux/fec.h>
 32#include <linux/of.h>
 33#include <linux/of_device.h>
 34#include <linux/of_gpio.h>
 35#include <linux/of_net.h>
 36
 37#include "fec.h"
 38
 39/* FEC 1588 register bits */
 40#define FEC_T_CTRL_SLAVE                0x00002000
 41#define FEC_T_CTRL_CAPTURE              0x00000800
 42#define FEC_T_CTRL_RESTART              0x00000200
 43#define FEC_T_CTRL_PERIOD_RST           0x00000030
 44#define FEC_T_CTRL_PERIOD_EN		0x00000010
 45#define FEC_T_CTRL_ENABLE               0x00000001
 46
 47#define FEC_T_INC_MASK                  0x0000007f
 48#define FEC_T_INC_OFFSET                0
 49#define FEC_T_INC_CORR_MASK             0x00007f00
 50#define FEC_T_INC_CORR_OFFSET           8
 51
 52#define FEC_T_CTRL_PINPER		0x00000080
 53#define FEC_T_TF0_MASK			0x00000001
 54#define FEC_T_TF0_OFFSET		0
 55#define FEC_T_TF1_MASK			0x00000002
 56#define FEC_T_TF1_OFFSET		1
 57#define FEC_T_TF2_MASK			0x00000004
 58#define FEC_T_TF2_OFFSET		2
 59#define FEC_T_TF3_MASK			0x00000008
 60#define FEC_T_TF3_OFFSET		3
 61#define FEC_T_TDRE_MASK			0x00000001
 62#define FEC_T_TDRE_OFFSET		0
 63#define FEC_T_TMODE_MASK		0x0000003C
 64#define FEC_T_TMODE_OFFSET		2
 65#define FEC_T_TIE_MASK			0x00000040
 66#define FEC_T_TIE_OFFSET		6
 67#define FEC_T_TF_MASK			0x00000080
 68#define FEC_T_TF_OFFSET			7
 69
 70#define FEC_ATIME_CTRL		0x400
 71#define FEC_ATIME		0x404
 72#define FEC_ATIME_EVT_OFFSET	0x408
 73#define FEC_ATIME_EVT_PERIOD	0x40c
 74#define FEC_ATIME_CORR		0x410
 75#define FEC_ATIME_INC		0x414
 76#define FEC_TS_TIMESTAMP	0x418
 77
 78#define FEC_TGSR		0x604
 79#define FEC_TCSR(n)		(0x608 + n * 0x08)
 80#define FEC_TCCR(n)		(0x60C + n * 0x08)
 81#define MAX_TIMER_CHANNEL	3
 82#define FEC_TMODE_TOGGLE	0x05
 83#define FEC_HIGH_PULSE		0x0F
 84
 85#define FEC_CC_MULT	(1 << 31)
 86#define FEC_COUNTER_PERIOD	(1 << 31)
 87#define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
 88#define FEC_CHANNLE_0		0
 89#define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0
 90
 
 
 
 91/**
 92 * fec_ptp_enable_pps
 93 * @fep: the fec_enet_private structure handle
 94 * @enable: enable the channel pps output
 95 *
 96 * This function enble the PPS ouput on the timer channel.
 97 */
 98static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
 99{
100	unsigned long flags;
101	u32 val, tempval;
102	struct timespec64 ts;
103	u64 ns;
104	val = 0;
105
106	if (!(fep->hwts_tx_en || fep->hwts_rx_en)) {
107		dev_err(&fep->pdev->dev, "No ptp stack is running\n");
108		return -EINVAL;
109	}
110
111	if (fep->pps_enable == enable)
112		return 0;
113
114	fep->pps_channel = DEFAULT_PPS_CHANNEL;
115	fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
116
117	spin_lock_irqsave(&fep->tmreg_lock, flags);
118
119	if (enable) {
120		/* clear capture or output compare interrupt status if have.
121		 */
122		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
123
124		/* It is recommended to double check the TMODE field in the
125		 * TCSR register to be cleared before the first compare counter
126		 * is written into TCCR register. Just add a double check.
127		 */
128		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
129		do {
130			val &= ~(FEC_T_TMODE_MASK);
131			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
132			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
133		} while (val & FEC_T_TMODE_MASK);
134
135		/* Dummy read counter to update the counter */
136		timecounter_read(&fep->tc);
137		/* We want to find the first compare event in the next
138		 * second point. So we need to know what the ptp time
139		 * is now and how many nanoseconds is ahead to get next second.
140		 * The remaining nanosecond ahead before the next second would be
141		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
142		 * to current timer would be next second.
143		 */
144		tempval = readl(fep->hwp + FEC_ATIME_CTRL);
145		tempval |= FEC_T_CTRL_CAPTURE;
146		writel(tempval, fep->hwp + FEC_ATIME_CTRL);
147
148		tempval = readl(fep->hwp + FEC_ATIME);
149		/* Convert the ptp local counter to 1588 timestamp */
150		ns = timecounter_cyc2time(&fep->tc, tempval);
151		ts = ns_to_timespec64(ns);
152
153		/* The tempval is  less than 3 seconds, and  so val is less than
154		 * 4 seconds. No overflow for 32bit calculation.
155		 */
156		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
157
158		/* Need to consider the situation that the current time is
159		 * very close to the second point, which means NSEC_PER_SEC
160		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
161		 * is still running when we calculate the first compare event, it is
162		 * possible that the remaining nanoseonds run out before the compare
163		 * counter is calculated and written into TCCR register. To avoid
164		 * this possibility, we will set the compare event to be the next
165		 * of next second. The current setting is 31-bit timer and wrap
166		 * around over 2 seconds. So it is okay to set the next of next
167		 * seond for the timer.
168		 */
169		val += NSEC_PER_SEC;
170
171		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
172		 * ptp counter, which maybe cause 32-bit wrap. Since the
173		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
174		 * We can ensure the wrap will not cause issue. If the offset
175		 * is bigger than fep->cc.mask would be a error.
176		 */
177		val &= fep->cc.mask;
178		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
179
180		/* Calculate the second the compare event timestamp */
181		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
182
183		/* * Enable compare event when overflow */
184		val = readl(fep->hwp + FEC_ATIME_CTRL);
185		val |= FEC_T_CTRL_PINPER;
186		writel(val, fep->hwp + FEC_ATIME_CTRL);
187
188		/* Compare channel setting. */
189		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
190		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
191		val &= ~(1 << FEC_T_TDRE_OFFSET);
192		val &= ~(FEC_T_TMODE_MASK);
193		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
194		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
195
196		/* Write the second compare event timestamp and calculate
197		 * the third timestamp. Refer the TCCR register detail in the spec.
198		 */
199		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
200		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
201	} else {
202		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
203	}
204
205	fep->pps_enable = enable;
206	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
207
208	return 0;
209}
210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211/**
212 * fec_ptp_read - read raw cycle counter (to be used by time counter)
213 * @cc: the cyclecounter structure
214 *
215 * this function reads the cyclecounter registers and is called by the
216 * cyclecounter structure used to construct a ns counter from the
217 * arbitrary fixed point registers
218 */
219static u64 fec_ptp_read(const struct cyclecounter *cc)
220{
221	struct fec_enet_private *fep =
222		container_of(cc, struct fec_enet_private, cc);
223	const struct platform_device_id *id_entry =
224		platform_get_device_id(fep->pdev);
225	u32 tempval;
226
227	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
228	tempval |= FEC_T_CTRL_CAPTURE;
229	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
230
231	if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE)
232		udelay(1);
233
234	return readl(fep->hwp + FEC_ATIME);
235}
236
237/**
238 * fec_ptp_start_cyclecounter - create the cycle counter from hw
239 * @ndev: network device
240 *
241 * this function initializes the timecounter and cyclecounter
242 * structures for use in generated a ns counter from the arbitrary
243 * fixed point cycles registers in the hardware.
244 */
245void fec_ptp_start_cyclecounter(struct net_device *ndev)
246{
247	struct fec_enet_private *fep = netdev_priv(ndev);
248	unsigned long flags;
249	int inc;
250
251	inc = 1000000000 / fep->cycle_speed;
252
253	/* grab the ptp lock */
254	spin_lock_irqsave(&fep->tmreg_lock, flags);
255
256	/* 1ns counter */
257	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
258
259	/* use 31-bit timer counter */
260	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
261
262	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
263		fep->hwp + FEC_ATIME_CTRL);
264
265	memset(&fep->cc, 0, sizeof(fep->cc));
266	fep->cc.read = fec_ptp_read;
267	fep->cc.mask = CLOCKSOURCE_MASK(31);
268	fep->cc.shift = 31;
269	fep->cc.mult = FEC_CC_MULT;
270
271	/* reset the ns time counter */
272	timecounter_init(&fep->tc, &fep->cc, ktime_to_ns(ktime_get_real()));
273
274	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
275}
276
277/**
278 * fec_ptp_adjfreq - adjust ptp cycle frequency
279 * @ptp: the ptp clock structure
280 * @ppb: parts per billion adjustment from base
281 *
282 * Adjust the frequency of the ptp cycle counter by the
283 * indicated ppb from the base frequency.
 
 
284 *
285 * Because ENET hardware frequency adjust is complex,
286 * using software method to do that.
287 */
288static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
289{
 
290	unsigned long flags;
291	int neg_adj = 0;
292	u32 i, tmp;
293	u32 corr_inc, corr_period;
294	u32 corr_ns;
295	u64 lhs, rhs;
296
297	struct fec_enet_private *fep =
298	    container_of(ptp, struct fec_enet_private, ptp_caps);
299
300	if (ppb == 0)
301		return 0;
302
303	if (ppb < 0) {
304		ppb = -ppb;
305		neg_adj = 1;
306	}
307
308	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
309	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
310	 * meet adjustment requirement.
311	 */
312	lhs = NSEC_PER_SEC;
313	rhs = (u64)ppb * (u64)fep->ptp_inc;
314	for (i = 1; i <= fep->ptp_inc; i++) {
315		if (lhs >= rhs) {
316			corr_inc = i;
317			corr_period = div_u64(lhs, rhs);
318			break;
319		}
320		lhs += NSEC_PER_SEC;
321	}
322	/* Not found? Set it to high value - double speed
323	 * correct in every clock step.
324	 */
325	if (i > fep->ptp_inc) {
326		corr_inc = fep->ptp_inc;
327		corr_period = 1;
328	}
329
330	if (neg_adj)
331		corr_ns = fep->ptp_inc - corr_inc;
332	else
333		corr_ns = fep->ptp_inc + corr_inc;
334
335	spin_lock_irqsave(&fep->tmreg_lock, flags);
336
337	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
338	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
339	writel(tmp, fep->hwp + FEC_ATIME_INC);
340	corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
341	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
342	/* dummy read to update the timer. */
343	timecounter_read(&fep->tc);
344
345	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
346
347	return 0;
348}
349
350/**
351 * fec_ptp_adjtime
352 * @ptp: the ptp clock structure
353 * @delta: offset to adjust the cycle counter by
354 *
355 * adjust the timer by resetting the timecounter structure.
356 */
357static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
358{
359	struct fec_enet_private *fep =
360	    container_of(ptp, struct fec_enet_private, ptp_caps);
361	unsigned long flags;
362
363	spin_lock_irqsave(&fep->tmreg_lock, flags);
364	timecounter_adjtime(&fep->tc, delta);
365	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
366
367	return 0;
368}
369
370/**
371 * fec_ptp_gettime
372 * @ptp: the ptp clock structure
373 * @ts: timespec structure to hold the current time value
374 *
375 * read the timecounter and return the correct value on ns,
376 * after converting it into a struct timespec.
377 */
378static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
379{
380	struct fec_enet_private *adapter =
381	    container_of(ptp, struct fec_enet_private, ptp_caps);
382	u64 ns;
383	unsigned long flags;
384
385	spin_lock_irqsave(&adapter->tmreg_lock, flags);
386	ns = timecounter_read(&adapter->tc);
387	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 
 
 
 
 
 
 
388
389	*ts = ns_to_timespec64(ns);
390
391	return 0;
392}
393
394/**
395 * fec_ptp_settime
396 * @ptp: the ptp clock structure
397 * @ts: the timespec containing the new time for the cycle counter
398 *
399 * reset the timecounter to use a new base value instead of the kernel
400 * wall timer value.
401 */
402static int fec_ptp_settime(struct ptp_clock_info *ptp,
403			   const struct timespec64 *ts)
404{
405	struct fec_enet_private *fep =
406	    container_of(ptp, struct fec_enet_private, ptp_caps);
407
408	u64 ns;
409	unsigned long flags;
410	u32 counter;
411
412	mutex_lock(&fep->ptp_clk_mutex);
413	/* Check the ptp clock */
414	if (!fep->ptp_clk_on) {
415		mutex_unlock(&fep->ptp_clk_mutex);
416		return -EINVAL;
417	}
418
419	ns = timespec64_to_ns(ts);
420	/* Get the timer value based on timestamp.
421	 * Update the counter with the masked value.
422	 */
423	counter = ns & fep->cc.mask;
424
425	spin_lock_irqsave(&fep->tmreg_lock, flags);
426	writel(counter, fep->hwp + FEC_ATIME);
427	timecounter_init(&fep->tc, &fep->cc, ns);
428	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
429	mutex_unlock(&fep->ptp_clk_mutex);
430	return 0;
431}
432
 
 
 
 
 
 
 
 
 
 
 
433/**
434 * fec_ptp_enable
435 * @ptp: the ptp clock structure
436 * @rq: the requested feature to change
437 * @on: whether to enable or disable the feature
438 *
439 */
440static int fec_ptp_enable(struct ptp_clock_info *ptp,
441			  struct ptp_clock_request *rq, int on)
442{
443	struct fec_enet_private *fep =
444	    container_of(ptp, struct fec_enet_private, ptp_caps);
 
 
 
 
445	int ret = 0;
446
447	if (rq->type == PTP_CLK_REQ_PPS) {
448		ret = fec_ptp_enable_pps(fep, on);
449
450		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
451	}
452	return -EOPNOTSUPP;
453}
454
455int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
 
456{
457	struct fec_enet_private *fep = netdev_priv(ndev);
458
459	struct hwtstamp_config config;
460
461	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
462		return -EFAULT;
463
464	/* reserved for future extensions */
465	if (config.flags)
466		return -EINVAL;
467
468	switch (config.tx_type) {
469	case HWTSTAMP_TX_OFF:
470		fep->hwts_tx_en = 0;
471		break;
472	case HWTSTAMP_TX_ON:
473		fep->hwts_tx_en = 1;
474		break;
475	default:
476		return -ERANGE;
477	}
478
479	switch (config.rx_filter) {
480	case HWTSTAMP_FILTER_NONE:
481		if (fep->hwts_rx_en)
482			fep->hwts_rx_en = 0;
483		config.rx_filter = HWTSTAMP_FILTER_NONE;
484		break;
485
486	default:
487		fep->hwts_rx_en = 1;
488		config.rx_filter = HWTSTAMP_FILTER_ALL;
489		break;
490	}
491
492	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
493	    -EFAULT : 0;
494}
495
496int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
497{
498	struct fec_enet_private *fep = netdev_priv(ndev);
499	struct hwtstamp_config config;
500
501	config.flags = 0;
502	config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
503	config.rx_filter = (fep->hwts_rx_en ?
504			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
505
506	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
507		-EFAULT : 0;
508}
509
510/**
511 * fec_time_keep - call timecounter_read every second to avoid timer overrun
512 *                 because ENET just support 32bit counter, will timeout in 4s
513 */
514static void fec_time_keep(struct work_struct *work)
515{
516	struct delayed_work *dwork = to_delayed_work(work);
517	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
518	u64 ns;
519	unsigned long flags;
520
521	mutex_lock(&fep->ptp_clk_mutex);
522	if (fep->ptp_clk_on) {
523		spin_lock_irqsave(&fep->tmreg_lock, flags);
524		ns = timecounter_read(&fep->tc);
525		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
526	}
527	mutex_unlock(&fep->ptp_clk_mutex);
528
529	schedule_delayed_work(&fep->time_keep, HZ);
530}
531
532/* This function checks the pps event and reloads the timer compare counter. */
533static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
534{
535	struct net_device *ndev = dev_id;
536	struct fec_enet_private *fep = netdev_priv(ndev);
537	u32 val;
538	u8 channel = fep->pps_channel;
539	struct ptp_clock_event event;
540
541	val = readl(fep->hwp + FEC_TCSR(channel));
542	if (val & FEC_T_TF_MASK) {
543		/* Write the next next compare(not the next according the spec)
544		 * value to the register
545		 */
546		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
547		do {
548			writel(val, fep->hwp + FEC_TCSR(channel));
549		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
550
551		/* Update the counter; */
552		fep->next_counter = (fep->next_counter + fep->reload_period) &
553				fep->cc.mask;
554
555		event.type = PTP_CLOCK_PPS;
556		ptp_clock_event(fep->ptp_clock, &event);
557		return IRQ_HANDLED;
558	}
559
560	return IRQ_NONE;
561}
562
563/**
564 * fec_ptp_init
565 * @ndev: The FEC network adapter
 
566 *
567 * This function performs the required steps for enabling ptp
568 * support. If ptp support has already been loaded it simply calls the
569 * cyclecounter init routine and exits.
570 */
571
572void fec_ptp_init(struct platform_device *pdev, int irq_idx)
573{
574	struct net_device *ndev = platform_get_drvdata(pdev);
575	struct fec_enet_private *fep = netdev_priv(ndev);
576	int irq;
577	int ret;
578
579	fep->ptp_caps.owner = THIS_MODULE;
580	snprintf(fep->ptp_caps.name, 16, "fec ptp");
581
582	fep->ptp_caps.max_adj = 250000000;
583	fep->ptp_caps.n_alarm = 0;
584	fep->ptp_caps.n_ext_ts = 0;
585	fep->ptp_caps.n_per_out = 0;
586	fep->ptp_caps.n_pins = 0;
587	fep->ptp_caps.pps = 1;
588	fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
589	fep->ptp_caps.adjtime = fec_ptp_adjtime;
590	fep->ptp_caps.gettime64 = fec_ptp_gettime;
591	fep->ptp_caps.settime64 = fec_ptp_settime;
592	fep->ptp_caps.enable = fec_ptp_enable;
593
594	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
 
 
 
 
595	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
596
597	spin_lock_init(&fep->tmreg_lock);
598
599	fec_ptp_start_cyclecounter(ndev);
600
601	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
602
 
 
 
603	irq = platform_get_irq_byname_optional(pdev, "pps");
604	if (irq < 0)
605		irq = platform_get_irq_optional(pdev, irq_idx);
606	/* Failure to get an irq is not fatal,
607	 * only the PTP_CLOCK_PPS clock events should stop
608	 */
609	if (irq >= 0) {
610		ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
611				       0, pdev->name, ndev);
612		if (ret < 0)
613			dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
614				 ret);
615	}
616
617	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
618	if (IS_ERR(fep->ptp_clock)) {
619		fep->ptp_clock = NULL;
620		dev_err(&pdev->dev, "ptp_clock_register failed\n");
621	}
622
623	schedule_delayed_work(&fep->time_keep, HZ);
624}
625
626void fec_ptp_stop(struct platform_device *pdev)
627{
628	struct net_device *ndev = platform_get_drvdata(pdev);
629	struct fec_enet_private *fep = netdev_priv(ndev);
630
631	cancel_delayed_work_sync(&fep->time_keep);
 
632	if (fep->ptp_clock)
633		ptp_clock_unregister(fep->ptp_clock);
634}