Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Block driver for media (i.e., flash cards)
4 *
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
7 *
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
11 *
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 *
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 *
18 * Author: Andrew Christian
19 * 28 May 2002
20 */
21#include <linux/moduleparam.h>
22#include <linux/module.h>
23#include <linux/init.h>
24
25#include <linux/kernel.h>
26#include <linux/fs.h>
27#include <linux/slab.h>
28#include <linux/errno.h>
29#include <linux/hdreg.h>
30#include <linux/kdev_t.h>
31#include <linux/kref.h>
32#include <linux/blkdev.h>
33#include <linux/cdev.h>
34#include <linux/mutex.h>
35#include <linux/scatterlist.h>
36#include <linux/string_helpers.h>
37#include <linux/delay.h>
38#include <linux/capability.h>
39#include <linux/compat.h>
40#include <linux/pm_runtime.h>
41#include <linux/idr.h>
42#include <linux/debugfs.h>
43
44#include <linux/mmc/ioctl.h>
45#include <linux/mmc/card.h>
46#include <linux/mmc/host.h>
47#include <linux/mmc/mmc.h>
48#include <linux/mmc/sd.h>
49
50#include <linux/uaccess.h>
51
52#include "queue.h"
53#include "block.h"
54#include "core.h"
55#include "card.h"
56#include "crypto.h"
57#include "host.h"
58#include "bus.h"
59#include "mmc_ops.h"
60#include "quirks.h"
61#include "sd_ops.h"
62
63MODULE_ALIAS("mmc:block");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "mmcblk."
68
69/*
70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72 * second software timer to timeout the whole request, so 10 seconds should be
73 * ample.
74 */
75#define MMC_BLK_TIMEOUT_MS (10 * 1000)
76#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78
79static DEFINE_MUTEX(block_mutex);
80
81/*
82 * The defaults come from config options but can be overriden by module
83 * or bootarg options.
84 */
85static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86
87/*
88 * We've only got one major, so number of mmcblk devices is
89 * limited to (1 << 20) / number of minors per device. It is also
90 * limited by the MAX_DEVICES below.
91 */
92static int max_devices;
93
94#define MAX_DEVICES 256
95
96static DEFINE_IDA(mmc_blk_ida);
97static DEFINE_IDA(mmc_rpmb_ida);
98
99struct mmc_blk_busy_data {
100 struct mmc_card *card;
101 u32 status;
102};
103
104/*
105 * There is one mmc_blk_data per slot.
106 */
107struct mmc_blk_data {
108 struct device *parent;
109 struct gendisk *disk;
110 struct mmc_queue queue;
111 struct list_head part;
112 struct list_head rpmbs;
113
114 unsigned int flags;
115#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
116#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
117
118 struct kref kref;
119 unsigned int read_only;
120 unsigned int part_type;
121 unsigned int reset_done;
122#define MMC_BLK_READ BIT(0)
123#define MMC_BLK_WRITE BIT(1)
124#define MMC_BLK_DISCARD BIT(2)
125#define MMC_BLK_SECDISCARD BIT(3)
126#define MMC_BLK_CQE_RECOVERY BIT(4)
127#define MMC_BLK_TRIM BIT(5)
128
129 /*
130 * Only set in main mmc_blk_data associated
131 * with mmc_card with dev_set_drvdata, and keeps
132 * track of the current selected device partition.
133 */
134 unsigned int part_curr;
135#define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */
136 int area_type;
137
138 /* debugfs files (only in main mmc_blk_data) */
139 struct dentry *status_dentry;
140 struct dentry *ext_csd_dentry;
141};
142
143/* Device type for RPMB character devices */
144static dev_t mmc_rpmb_devt;
145
146/* Bus type for RPMB character devices */
147static struct bus_type mmc_rpmb_bus_type = {
148 .name = "mmc_rpmb",
149};
150
151/**
152 * struct mmc_rpmb_data - special RPMB device type for these areas
153 * @dev: the device for the RPMB area
154 * @chrdev: character device for the RPMB area
155 * @id: unique device ID number
156 * @part_index: partition index (0 on first)
157 * @md: parent MMC block device
158 * @node: list item, so we can put this device on a list
159 */
160struct mmc_rpmb_data {
161 struct device dev;
162 struct cdev chrdev;
163 int id;
164 unsigned int part_index;
165 struct mmc_blk_data *md;
166 struct list_head node;
167};
168
169static DEFINE_MUTEX(open_lock);
170
171module_param(perdev_minors, int, 0444);
172MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
173
174static inline int mmc_blk_part_switch(struct mmc_card *card,
175 unsigned int part_type);
176static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
177 struct mmc_card *card,
178 int recovery_mode,
179 struct mmc_queue *mq);
180static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
181static int mmc_spi_err_check(struct mmc_card *card);
182static int mmc_blk_busy_cb(void *cb_data, bool *busy);
183
184static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
185{
186 struct mmc_blk_data *md;
187
188 mutex_lock(&open_lock);
189 md = disk->private_data;
190 if (md && !kref_get_unless_zero(&md->kref))
191 md = NULL;
192 mutex_unlock(&open_lock);
193
194 return md;
195}
196
197static inline int mmc_get_devidx(struct gendisk *disk)
198{
199 int devidx = disk->first_minor / perdev_minors;
200 return devidx;
201}
202
203static void mmc_blk_kref_release(struct kref *ref)
204{
205 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
206 int devidx;
207
208 devidx = mmc_get_devidx(md->disk);
209 ida_simple_remove(&mmc_blk_ida, devidx);
210
211 mutex_lock(&open_lock);
212 md->disk->private_data = NULL;
213 mutex_unlock(&open_lock);
214
215 put_disk(md->disk);
216 kfree(md);
217}
218
219static void mmc_blk_put(struct mmc_blk_data *md)
220{
221 kref_put(&md->kref, mmc_blk_kref_release);
222}
223
224static ssize_t power_ro_lock_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
226{
227 int ret;
228 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
229 struct mmc_card *card = md->queue.card;
230 int locked = 0;
231
232 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
233 locked = 2;
234 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
235 locked = 1;
236
237 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
238
239 mmc_blk_put(md);
240
241 return ret;
242}
243
244static ssize_t power_ro_lock_store(struct device *dev,
245 struct device_attribute *attr, const char *buf, size_t count)
246{
247 int ret;
248 struct mmc_blk_data *md, *part_md;
249 struct mmc_queue *mq;
250 struct request *req;
251 unsigned long set;
252
253 if (kstrtoul(buf, 0, &set))
254 return -EINVAL;
255
256 if (set != 1)
257 return count;
258
259 md = mmc_blk_get(dev_to_disk(dev));
260 mq = &md->queue;
261
262 /* Dispatch locking to the block layer */
263 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
264 if (IS_ERR(req)) {
265 count = PTR_ERR(req);
266 goto out_put;
267 }
268 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
269 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
270 blk_execute_rq(req, false);
271 ret = req_to_mmc_queue_req(req)->drv_op_result;
272 blk_mq_free_request(req);
273
274 if (!ret) {
275 pr_info("%s: Locking boot partition ro until next power on\n",
276 md->disk->disk_name);
277 set_disk_ro(md->disk, 1);
278
279 list_for_each_entry(part_md, &md->part, part)
280 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
281 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
282 set_disk_ro(part_md->disk, 1);
283 }
284 }
285out_put:
286 mmc_blk_put(md);
287 return count;
288}
289
290static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
291 power_ro_lock_show, power_ro_lock_store);
292
293static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
294 char *buf)
295{
296 int ret;
297 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
298
299 ret = snprintf(buf, PAGE_SIZE, "%d\n",
300 get_disk_ro(dev_to_disk(dev)) ^
301 md->read_only);
302 mmc_blk_put(md);
303 return ret;
304}
305
306static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
307 const char *buf, size_t count)
308{
309 int ret;
310 char *end;
311 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
312 unsigned long set = simple_strtoul(buf, &end, 0);
313 if (end == buf) {
314 ret = -EINVAL;
315 goto out;
316 }
317
318 set_disk_ro(dev_to_disk(dev), set || md->read_only);
319 ret = count;
320out:
321 mmc_blk_put(md);
322 return ret;
323}
324
325static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
326
327static struct attribute *mmc_disk_attrs[] = {
328 &dev_attr_force_ro.attr,
329 &dev_attr_ro_lock_until_next_power_on.attr,
330 NULL,
331};
332
333static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
334 struct attribute *a, int n)
335{
336 struct device *dev = kobj_to_dev(kobj);
337 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
338 umode_t mode = a->mode;
339
340 if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
341 (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
342 md->queue.card->ext_csd.boot_ro_lockable) {
343 mode = S_IRUGO;
344 if (!(md->queue.card->ext_csd.boot_ro_lock &
345 EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
346 mode |= S_IWUSR;
347 }
348
349 mmc_blk_put(md);
350 return mode;
351}
352
353static const struct attribute_group mmc_disk_attr_group = {
354 .is_visible = mmc_disk_attrs_is_visible,
355 .attrs = mmc_disk_attrs,
356};
357
358static const struct attribute_group *mmc_disk_attr_groups[] = {
359 &mmc_disk_attr_group,
360 NULL,
361};
362
363static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
364{
365 struct mmc_blk_data *md = mmc_blk_get(disk);
366 int ret = -ENXIO;
367
368 mutex_lock(&block_mutex);
369 if (md) {
370 ret = 0;
371 if ((mode & BLK_OPEN_WRITE) && md->read_only) {
372 mmc_blk_put(md);
373 ret = -EROFS;
374 }
375 }
376 mutex_unlock(&block_mutex);
377
378 return ret;
379}
380
381static void mmc_blk_release(struct gendisk *disk)
382{
383 struct mmc_blk_data *md = disk->private_data;
384
385 mutex_lock(&block_mutex);
386 mmc_blk_put(md);
387 mutex_unlock(&block_mutex);
388}
389
390static int
391mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
392{
393 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
394 geo->heads = 4;
395 geo->sectors = 16;
396 return 0;
397}
398
399struct mmc_blk_ioc_data {
400 struct mmc_ioc_cmd ic;
401 unsigned char *buf;
402 u64 buf_bytes;
403 unsigned int flags;
404#define MMC_BLK_IOC_DROP BIT(0) /* drop this mrq */
405#define MMC_BLK_IOC_SBC BIT(1) /* use mrq.sbc */
406
407 struct mmc_rpmb_data *rpmb;
408};
409
410static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
411 struct mmc_ioc_cmd __user *user)
412{
413 struct mmc_blk_ioc_data *idata;
414 int err;
415
416 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
417 if (!idata) {
418 err = -ENOMEM;
419 goto out;
420 }
421
422 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
423 err = -EFAULT;
424 goto idata_err;
425 }
426
427 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
428 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
429 err = -EOVERFLOW;
430 goto idata_err;
431 }
432
433 if (!idata->buf_bytes) {
434 idata->buf = NULL;
435 return idata;
436 }
437
438 idata->buf = memdup_user((void __user *)(unsigned long)
439 idata->ic.data_ptr, idata->buf_bytes);
440 if (IS_ERR(idata->buf)) {
441 err = PTR_ERR(idata->buf);
442 goto idata_err;
443 }
444
445 return idata;
446
447idata_err:
448 kfree(idata);
449out:
450 return ERR_PTR(err);
451}
452
453static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
454 struct mmc_blk_ioc_data *idata)
455{
456 struct mmc_ioc_cmd *ic = &idata->ic;
457
458 if (copy_to_user(&(ic_ptr->response), ic->response,
459 sizeof(ic->response)))
460 return -EFAULT;
461
462 if (!idata->ic.write_flag) {
463 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
464 idata->buf, idata->buf_bytes))
465 return -EFAULT;
466 }
467
468 return 0;
469}
470
471static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
472 struct mmc_blk_ioc_data **idatas, int i)
473{
474 struct mmc_command cmd = {}, sbc = {};
475 struct mmc_data data = {};
476 struct mmc_request mrq = {};
477 struct scatterlist sg;
478 bool r1b_resp;
479 unsigned int busy_timeout_ms;
480 int err;
481 unsigned int target_part;
482 struct mmc_blk_ioc_data *idata = idatas[i];
483 struct mmc_blk_ioc_data *prev_idata = NULL;
484
485 if (!card || !md || !idata)
486 return -EINVAL;
487
488 if (idata->flags & MMC_BLK_IOC_DROP)
489 return 0;
490
491 if (idata->flags & MMC_BLK_IOC_SBC)
492 prev_idata = idatas[i - 1];
493
494 /*
495 * The RPMB accesses comes in from the character device, so we
496 * need to target these explicitly. Else we just target the
497 * partition type for the block device the ioctl() was issued
498 * on.
499 */
500 if (idata->rpmb) {
501 /* Support multiple RPMB partitions */
502 target_part = idata->rpmb->part_index;
503 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
504 } else {
505 target_part = md->part_type;
506 }
507
508 cmd.opcode = idata->ic.opcode;
509 cmd.arg = idata->ic.arg;
510 cmd.flags = idata->ic.flags;
511
512 if (idata->buf_bytes) {
513 data.sg = &sg;
514 data.sg_len = 1;
515 data.blksz = idata->ic.blksz;
516 data.blocks = idata->ic.blocks;
517
518 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
519
520 if (idata->ic.write_flag)
521 data.flags = MMC_DATA_WRITE;
522 else
523 data.flags = MMC_DATA_READ;
524
525 /* data.flags must already be set before doing this. */
526 mmc_set_data_timeout(&data, card);
527
528 /* Allow overriding the timeout_ns for empirical tuning. */
529 if (idata->ic.data_timeout_ns)
530 data.timeout_ns = idata->ic.data_timeout_ns;
531
532 mrq.data = &data;
533 }
534
535 mrq.cmd = &cmd;
536
537 err = mmc_blk_part_switch(card, target_part);
538 if (err)
539 return err;
540
541 if (idata->ic.is_acmd) {
542 err = mmc_app_cmd(card->host, card);
543 if (err)
544 return err;
545 }
546
547 if (idata->rpmb || prev_idata) {
548 sbc.opcode = MMC_SET_BLOCK_COUNT;
549 /*
550 * We don't do any blockcount validation because the max size
551 * may be increased by a future standard. We just copy the
552 * 'Reliable Write' bit here.
553 */
554 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
555 if (prev_idata)
556 sbc.arg = prev_idata->ic.arg;
557 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
558 mrq.sbc = &sbc;
559 }
560
561 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
562 (cmd.opcode == MMC_SWITCH))
563 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
564
565 /* If it's an R1B response we need some more preparations. */
566 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
567 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
568 if (r1b_resp)
569 mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
570
571 mmc_wait_for_req(card->host, &mrq);
572 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
573
574 if (prev_idata) {
575 memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
576 if (sbc.error) {
577 dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
578 __func__, sbc.error);
579 return sbc.error;
580 }
581 }
582
583 if (cmd.error) {
584 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
585 __func__, cmd.error);
586 return cmd.error;
587 }
588 if (data.error) {
589 dev_err(mmc_dev(card->host), "%s: data error %d\n",
590 __func__, data.error);
591 return data.error;
592 }
593
594 /*
595 * Make sure the cache of the PARTITION_CONFIG register and
596 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
597 * changed it successfully.
598 */
599 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
600 (cmd.opcode == MMC_SWITCH)) {
601 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
602 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
603
604 /*
605 * Update cache so the next mmc_blk_part_switch call operates
606 * on up-to-date data.
607 */
608 card->ext_csd.part_config = value;
609 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
610 }
611
612 /*
613 * Make sure to update CACHE_CTRL in case it was changed. The cache
614 * will get turned back on if the card is re-initialized, e.g.
615 * suspend/resume or hw reset in recovery.
616 */
617 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
618 (cmd.opcode == MMC_SWITCH)) {
619 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
620
621 card->ext_csd.cache_ctrl = value;
622 }
623
624 /*
625 * According to the SD specs, some commands require a delay after
626 * issuing the command.
627 */
628 if (idata->ic.postsleep_min_us)
629 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
630
631 if (mmc_host_is_spi(card->host)) {
632 if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
633 return mmc_spi_err_check(card);
634 return err;
635 }
636
637 /*
638 * Ensure RPMB, writes and R1B responses are completed by polling with
639 * CMD13. Note that, usually we don't need to poll when using HW busy
640 * detection, but here it's needed since some commands may indicate the
641 * error through the R1 status bits.
642 */
643 if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
644 struct mmc_blk_busy_data cb_data = {
645 .card = card,
646 };
647
648 err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
649 &mmc_blk_busy_cb, &cb_data);
650
651 idata->ic.response[0] = cb_data.status;
652 }
653
654 return err;
655}
656
657static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
658 struct mmc_ioc_cmd __user *ic_ptr,
659 struct mmc_rpmb_data *rpmb)
660{
661 struct mmc_blk_ioc_data *idata;
662 struct mmc_blk_ioc_data *idatas[1];
663 struct mmc_queue *mq;
664 struct mmc_card *card;
665 int err = 0, ioc_err = 0;
666 struct request *req;
667
668 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
669 if (IS_ERR(idata))
670 return PTR_ERR(idata);
671 /* This will be NULL on non-RPMB ioctl():s */
672 idata->rpmb = rpmb;
673
674 card = md->queue.card;
675 if (IS_ERR(card)) {
676 err = PTR_ERR(card);
677 goto cmd_done;
678 }
679
680 /*
681 * Dispatch the ioctl() into the block request queue.
682 */
683 mq = &md->queue;
684 req = blk_mq_alloc_request(mq->queue,
685 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
686 if (IS_ERR(req)) {
687 err = PTR_ERR(req);
688 goto cmd_done;
689 }
690 idatas[0] = idata;
691 req_to_mmc_queue_req(req)->drv_op =
692 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
693 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
694 req_to_mmc_queue_req(req)->drv_op_data = idatas;
695 req_to_mmc_queue_req(req)->ioc_count = 1;
696 blk_execute_rq(req, false);
697 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
698 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
699 blk_mq_free_request(req);
700
701cmd_done:
702 kfree(idata->buf);
703 kfree(idata);
704 return ioc_err ? ioc_err : err;
705}
706
707static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
708 struct mmc_ioc_multi_cmd __user *user,
709 struct mmc_rpmb_data *rpmb)
710{
711 struct mmc_blk_ioc_data **idata = NULL;
712 struct mmc_ioc_cmd __user *cmds = user->cmds;
713 struct mmc_card *card;
714 struct mmc_queue *mq;
715 int err = 0, ioc_err = 0;
716 __u64 num_of_cmds;
717 unsigned int i, n;
718 struct request *req;
719
720 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
721 sizeof(num_of_cmds)))
722 return -EFAULT;
723
724 if (!num_of_cmds)
725 return 0;
726
727 if (num_of_cmds > MMC_IOC_MAX_CMDS)
728 return -EINVAL;
729
730 n = num_of_cmds;
731 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
732 if (!idata)
733 return -ENOMEM;
734
735 for (i = 0; i < n; i++) {
736 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
737 if (IS_ERR(idata[i])) {
738 err = PTR_ERR(idata[i]);
739 n = i;
740 goto cmd_err;
741 }
742 /* This will be NULL on non-RPMB ioctl():s */
743 idata[i]->rpmb = rpmb;
744 }
745
746 card = md->queue.card;
747 if (IS_ERR(card)) {
748 err = PTR_ERR(card);
749 goto cmd_err;
750 }
751
752
753 /*
754 * Dispatch the ioctl()s into the block request queue.
755 */
756 mq = &md->queue;
757 req = blk_mq_alloc_request(mq->queue,
758 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
759 if (IS_ERR(req)) {
760 err = PTR_ERR(req);
761 goto cmd_err;
762 }
763 req_to_mmc_queue_req(req)->drv_op =
764 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
765 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
766 req_to_mmc_queue_req(req)->drv_op_data = idata;
767 req_to_mmc_queue_req(req)->ioc_count = n;
768 blk_execute_rq(req, false);
769 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
770
771 /* copy to user if data and response */
772 for (i = 0; i < n && !err; i++)
773 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
774
775 blk_mq_free_request(req);
776
777cmd_err:
778 for (i = 0; i < n; i++) {
779 kfree(idata[i]->buf);
780 kfree(idata[i]);
781 }
782 kfree(idata);
783 return ioc_err ? ioc_err : err;
784}
785
786static int mmc_blk_check_blkdev(struct block_device *bdev)
787{
788 /*
789 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
790 * whole block device, not on a partition. This prevents overspray
791 * between sibling partitions.
792 */
793 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
794 return -EPERM;
795 return 0;
796}
797
798static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
799 unsigned int cmd, unsigned long arg)
800{
801 struct mmc_blk_data *md;
802 int ret;
803
804 switch (cmd) {
805 case MMC_IOC_CMD:
806 ret = mmc_blk_check_blkdev(bdev);
807 if (ret)
808 return ret;
809 md = mmc_blk_get(bdev->bd_disk);
810 if (!md)
811 return -EINVAL;
812 ret = mmc_blk_ioctl_cmd(md,
813 (struct mmc_ioc_cmd __user *)arg,
814 NULL);
815 mmc_blk_put(md);
816 return ret;
817 case MMC_IOC_MULTI_CMD:
818 ret = mmc_blk_check_blkdev(bdev);
819 if (ret)
820 return ret;
821 md = mmc_blk_get(bdev->bd_disk);
822 if (!md)
823 return -EINVAL;
824 ret = mmc_blk_ioctl_multi_cmd(md,
825 (struct mmc_ioc_multi_cmd __user *)arg,
826 NULL);
827 mmc_blk_put(md);
828 return ret;
829 default:
830 return -EINVAL;
831 }
832}
833
834#ifdef CONFIG_COMPAT
835static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
836 unsigned int cmd, unsigned long arg)
837{
838 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
839}
840#endif
841
842static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
843 sector_t *sector)
844{
845 struct mmc_blk_data *md;
846 int ret;
847
848 md = mmc_blk_get(disk);
849 if (!md)
850 return -EINVAL;
851
852 if (md->queue.card)
853 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
854 else
855 ret = -ENODEV;
856
857 mmc_blk_put(md);
858
859 return ret;
860}
861
862static const struct block_device_operations mmc_bdops = {
863 .open = mmc_blk_open,
864 .release = mmc_blk_release,
865 .getgeo = mmc_blk_getgeo,
866 .owner = THIS_MODULE,
867 .ioctl = mmc_blk_ioctl,
868#ifdef CONFIG_COMPAT
869 .compat_ioctl = mmc_blk_compat_ioctl,
870#endif
871 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector,
872};
873
874static int mmc_blk_part_switch_pre(struct mmc_card *card,
875 unsigned int part_type)
876{
877 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB;
878 int ret = 0;
879
880 if ((part_type & mask) == mask) {
881 if (card->ext_csd.cmdq_en) {
882 ret = mmc_cmdq_disable(card);
883 if (ret)
884 return ret;
885 }
886 mmc_retune_pause(card->host);
887 }
888
889 return ret;
890}
891
892static int mmc_blk_part_switch_post(struct mmc_card *card,
893 unsigned int part_type)
894{
895 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB;
896 int ret = 0;
897
898 if ((part_type & mask) == mask) {
899 mmc_retune_unpause(card->host);
900 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
901 ret = mmc_cmdq_enable(card);
902 }
903
904 return ret;
905}
906
907static inline int mmc_blk_part_switch(struct mmc_card *card,
908 unsigned int part_type)
909{
910 int ret = 0;
911 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
912
913 if (main_md->part_curr == part_type)
914 return 0;
915
916 if (mmc_card_mmc(card)) {
917 u8 part_config = card->ext_csd.part_config;
918
919 ret = mmc_blk_part_switch_pre(card, part_type);
920 if (ret)
921 return ret;
922
923 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
924 part_config |= part_type;
925
926 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
927 EXT_CSD_PART_CONFIG, part_config,
928 card->ext_csd.part_time);
929 if (ret) {
930 mmc_blk_part_switch_post(card, part_type);
931 return ret;
932 }
933
934 card->ext_csd.part_config = part_config;
935
936 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
937 }
938
939 main_md->part_curr = part_type;
940 return ret;
941}
942
943static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
944{
945 int err;
946 u32 result;
947 __be32 *blocks;
948
949 struct mmc_request mrq = {};
950 struct mmc_command cmd = {};
951 struct mmc_data data = {};
952
953 struct scatterlist sg;
954
955 err = mmc_app_cmd(card->host, card);
956 if (err)
957 return err;
958
959 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
960 cmd.arg = 0;
961 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
962
963 data.blksz = 4;
964 data.blocks = 1;
965 data.flags = MMC_DATA_READ;
966 data.sg = &sg;
967 data.sg_len = 1;
968 mmc_set_data_timeout(&data, card);
969
970 mrq.cmd = &cmd;
971 mrq.data = &data;
972
973 blocks = kmalloc(4, GFP_KERNEL);
974 if (!blocks)
975 return -ENOMEM;
976
977 sg_init_one(&sg, blocks, 4);
978
979 mmc_wait_for_req(card->host, &mrq);
980
981 result = ntohl(*blocks);
982 kfree(blocks);
983
984 if (cmd.error || data.error)
985 return -EIO;
986
987 *written_blocks = result;
988
989 return 0;
990}
991
992static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
993{
994 if (host->actual_clock)
995 return host->actual_clock / 1000;
996
997 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
998 if (host->ios.clock)
999 return host->ios.clock / 2000;
1000
1001 /* How can there be no clock */
1002 WARN_ON_ONCE(1);
1003 return 100; /* 100 kHz is minimum possible value */
1004}
1005
1006static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1007 struct mmc_data *data)
1008{
1009 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1010 unsigned int khz;
1011
1012 if (data->timeout_clks) {
1013 khz = mmc_blk_clock_khz(host);
1014 ms += DIV_ROUND_UP(data->timeout_clks, khz);
1015 }
1016
1017 return ms;
1018}
1019
1020/*
1021 * Attempts to reset the card and get back to the requested partition.
1022 * Therefore any error here must result in cancelling the block layer
1023 * request, it must not be reattempted without going through the mmc_blk
1024 * partition sanity checks.
1025 */
1026static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1027 int type)
1028{
1029 int err;
1030 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1031
1032 if (md->reset_done & type)
1033 return -EEXIST;
1034
1035 md->reset_done |= type;
1036 err = mmc_hw_reset(host->card);
1037 /*
1038 * A successful reset will leave the card in the main partition, but
1039 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1040 * in that case.
1041 */
1042 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1043 if (err)
1044 return err;
1045 /* Ensure we switch back to the correct partition */
1046 if (mmc_blk_part_switch(host->card, md->part_type))
1047 /*
1048 * We have failed to get back into the correct
1049 * partition, so we need to abort the whole request.
1050 */
1051 return -ENODEV;
1052 return 0;
1053}
1054
1055static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1056{
1057 md->reset_done &= ~type;
1058}
1059
1060static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1061{
1062 struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1063 int i;
1064
1065 for (i = 1; i < mq_rq->ioc_count; i++) {
1066 if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1067 mmc_op_multi(idata[i]->ic.opcode)) {
1068 idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1069 idata[i]->flags |= MMC_BLK_IOC_SBC;
1070 }
1071 }
1072}
1073
1074/*
1075 * The non-block commands come back from the block layer after it queued it and
1076 * processed it with all other requests and then they get issued in this
1077 * function.
1078 */
1079static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1080{
1081 struct mmc_queue_req *mq_rq;
1082 struct mmc_card *card = mq->card;
1083 struct mmc_blk_data *md = mq->blkdata;
1084 struct mmc_blk_ioc_data **idata;
1085 bool rpmb_ioctl;
1086 u8 **ext_csd;
1087 u32 status;
1088 int ret;
1089 int i;
1090
1091 mq_rq = req_to_mmc_queue_req(req);
1092 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1093
1094 switch (mq_rq->drv_op) {
1095 case MMC_DRV_OP_IOCTL:
1096 if (card->ext_csd.cmdq_en) {
1097 ret = mmc_cmdq_disable(card);
1098 if (ret)
1099 break;
1100 }
1101
1102 mmc_blk_check_sbc(mq_rq);
1103
1104 fallthrough;
1105 case MMC_DRV_OP_IOCTL_RPMB:
1106 idata = mq_rq->drv_op_data;
1107 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1108 ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1109 if (ret)
1110 break;
1111 }
1112 /* Always switch back to main area after RPMB access */
1113 if (rpmb_ioctl)
1114 mmc_blk_part_switch(card, 0);
1115 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1116 mmc_cmdq_enable(card);
1117 break;
1118 case MMC_DRV_OP_BOOT_WP:
1119 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1120 card->ext_csd.boot_ro_lock |
1121 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1122 card->ext_csd.part_time);
1123 if (ret)
1124 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1125 md->disk->disk_name, ret);
1126 else
1127 card->ext_csd.boot_ro_lock |=
1128 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1129 break;
1130 case MMC_DRV_OP_GET_CARD_STATUS:
1131 ret = mmc_send_status(card, &status);
1132 if (!ret)
1133 ret = status;
1134 break;
1135 case MMC_DRV_OP_GET_EXT_CSD:
1136 ext_csd = mq_rq->drv_op_data;
1137 ret = mmc_get_ext_csd(card, ext_csd);
1138 break;
1139 default:
1140 pr_err("%s: unknown driver specific operation\n",
1141 md->disk->disk_name);
1142 ret = -EINVAL;
1143 break;
1144 }
1145 mq_rq->drv_op_result = ret;
1146 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1147}
1148
1149static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1150 int type, unsigned int erase_arg)
1151{
1152 struct mmc_blk_data *md = mq->blkdata;
1153 struct mmc_card *card = md->queue.card;
1154 unsigned int from, nr;
1155 int err = 0;
1156 blk_status_t status = BLK_STS_OK;
1157
1158 if (!mmc_can_erase(card)) {
1159 status = BLK_STS_NOTSUPP;
1160 goto fail;
1161 }
1162
1163 from = blk_rq_pos(req);
1164 nr = blk_rq_sectors(req);
1165
1166 do {
1167 err = 0;
1168 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1169 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1170 INAND_CMD38_ARG_EXT_CSD,
1171 erase_arg == MMC_TRIM_ARG ?
1172 INAND_CMD38_ARG_TRIM :
1173 INAND_CMD38_ARG_ERASE,
1174 card->ext_csd.generic_cmd6_time);
1175 }
1176 if (!err)
1177 err = mmc_erase(card, from, nr, erase_arg);
1178 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1179 if (err)
1180 status = BLK_STS_IOERR;
1181 else
1182 mmc_blk_reset_success(md, type);
1183fail:
1184 blk_mq_end_request(req, status);
1185}
1186
1187static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1188{
1189 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1190}
1191
1192static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1193{
1194 struct mmc_blk_data *md = mq->blkdata;
1195 struct mmc_card *card = md->queue.card;
1196 unsigned int arg = card->erase_arg;
1197
1198 if (mmc_card_broken_sd_discard(card))
1199 arg = SD_ERASE_ARG;
1200
1201 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1202}
1203
1204static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1205 struct request *req)
1206{
1207 struct mmc_blk_data *md = mq->blkdata;
1208 struct mmc_card *card = md->queue.card;
1209 unsigned int from, nr, arg;
1210 int err = 0, type = MMC_BLK_SECDISCARD;
1211 blk_status_t status = BLK_STS_OK;
1212
1213 if (!(mmc_can_secure_erase_trim(card))) {
1214 status = BLK_STS_NOTSUPP;
1215 goto out;
1216 }
1217
1218 from = blk_rq_pos(req);
1219 nr = blk_rq_sectors(req);
1220
1221 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1222 arg = MMC_SECURE_TRIM1_ARG;
1223 else
1224 arg = MMC_SECURE_ERASE_ARG;
1225
1226retry:
1227 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1228 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1229 INAND_CMD38_ARG_EXT_CSD,
1230 arg == MMC_SECURE_TRIM1_ARG ?
1231 INAND_CMD38_ARG_SECTRIM1 :
1232 INAND_CMD38_ARG_SECERASE,
1233 card->ext_csd.generic_cmd6_time);
1234 if (err)
1235 goto out_retry;
1236 }
1237
1238 err = mmc_erase(card, from, nr, arg);
1239 if (err == -EIO)
1240 goto out_retry;
1241 if (err) {
1242 status = BLK_STS_IOERR;
1243 goto out;
1244 }
1245
1246 if (arg == MMC_SECURE_TRIM1_ARG) {
1247 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1248 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1249 INAND_CMD38_ARG_EXT_CSD,
1250 INAND_CMD38_ARG_SECTRIM2,
1251 card->ext_csd.generic_cmd6_time);
1252 if (err)
1253 goto out_retry;
1254 }
1255
1256 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1257 if (err == -EIO)
1258 goto out_retry;
1259 if (err) {
1260 status = BLK_STS_IOERR;
1261 goto out;
1262 }
1263 }
1264
1265out_retry:
1266 if (err && !mmc_blk_reset(md, card->host, type))
1267 goto retry;
1268 if (!err)
1269 mmc_blk_reset_success(md, type);
1270out:
1271 blk_mq_end_request(req, status);
1272}
1273
1274static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1275{
1276 struct mmc_blk_data *md = mq->blkdata;
1277 struct mmc_card *card = md->queue.card;
1278 int ret = 0;
1279
1280 ret = mmc_flush_cache(card->host);
1281 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1282}
1283
1284/*
1285 * Reformat current write as a reliable write, supporting
1286 * both legacy and the enhanced reliable write MMC cards.
1287 * In each transfer we'll handle only as much as a single
1288 * reliable write can handle, thus finish the request in
1289 * partial completions.
1290 */
1291static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1292 struct mmc_card *card,
1293 struct request *req)
1294{
1295 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1296 /* Legacy mode imposes restrictions on transfers. */
1297 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1298 brq->data.blocks = 1;
1299
1300 if (brq->data.blocks > card->ext_csd.rel_sectors)
1301 brq->data.blocks = card->ext_csd.rel_sectors;
1302 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1303 brq->data.blocks = 1;
1304 }
1305}
1306
1307#define CMD_ERRORS_EXCL_OOR \
1308 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1309 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1310 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1311 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1312 R1_CC_ERROR | /* Card controller error */ \
1313 R1_ERROR) /* General/unknown error */
1314
1315#define CMD_ERRORS \
1316 (CMD_ERRORS_EXCL_OOR | \
1317 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1318
1319static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1320{
1321 u32 val;
1322
1323 /*
1324 * Per the SD specification(physical layer version 4.10)[1],
1325 * section 4.3.3, it explicitly states that "When the last
1326 * block of user area is read using CMD18, the host should
1327 * ignore OUT_OF_RANGE error that may occur even the sequence
1328 * is correct". And JESD84-B51 for eMMC also has a similar
1329 * statement on section 6.8.3.
1330 *
1331 * Multiple block read/write could be done by either predefined
1332 * method, namely CMD23, or open-ending mode. For open-ending mode,
1333 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1334 *
1335 * However the spec[1] doesn't tell us whether we should also
1336 * ignore that for predefined method. But per the spec[1], section
1337 * 4.15 Set Block Count Command, it says"If illegal block count
1338 * is set, out of range error will be indicated during read/write
1339 * operation (For example, data transfer is stopped at user area
1340 * boundary)." In another word, we could expect a out of range error
1341 * in the response for the following CMD18/25. And if argument of
1342 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1343 * we could also expect to get a -ETIMEDOUT or any error number from
1344 * the host drivers due to missing data response(for write)/data(for
1345 * read), as the cards will stop the data transfer by itself per the
1346 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1347 */
1348
1349 if (!brq->stop.error) {
1350 bool oor_with_open_end;
1351 /* If there is no error yet, check R1 response */
1352
1353 val = brq->stop.resp[0] & CMD_ERRORS;
1354 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1355
1356 if (val && !oor_with_open_end)
1357 brq->stop.error = -EIO;
1358 }
1359}
1360
1361static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1362 int recovery_mode, bool *do_rel_wr_p,
1363 bool *do_data_tag_p)
1364{
1365 struct mmc_blk_data *md = mq->blkdata;
1366 struct mmc_card *card = md->queue.card;
1367 struct mmc_blk_request *brq = &mqrq->brq;
1368 struct request *req = mmc_queue_req_to_req(mqrq);
1369 bool do_rel_wr, do_data_tag;
1370
1371 /*
1372 * Reliable writes are used to implement Forced Unit Access and
1373 * are supported only on MMCs.
1374 */
1375 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1376 rq_data_dir(req) == WRITE &&
1377 (md->flags & MMC_BLK_REL_WR);
1378
1379 memset(brq, 0, sizeof(struct mmc_blk_request));
1380
1381 mmc_crypto_prepare_req(mqrq);
1382
1383 brq->mrq.data = &brq->data;
1384 brq->mrq.tag = req->tag;
1385
1386 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1387 brq->stop.arg = 0;
1388
1389 if (rq_data_dir(req) == READ) {
1390 brq->data.flags = MMC_DATA_READ;
1391 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1392 } else {
1393 brq->data.flags = MMC_DATA_WRITE;
1394 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1395 }
1396
1397 brq->data.blksz = 512;
1398 brq->data.blocks = blk_rq_sectors(req);
1399 brq->data.blk_addr = blk_rq_pos(req);
1400
1401 /*
1402 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1403 * The eMMC will give "high" priority tasks priority over "simple"
1404 * priority tasks. Here we always set "simple" priority by not setting
1405 * MMC_DATA_PRIO.
1406 */
1407
1408 /*
1409 * The block layer doesn't support all sector count
1410 * restrictions, so we need to be prepared for too big
1411 * requests.
1412 */
1413 if (brq->data.blocks > card->host->max_blk_count)
1414 brq->data.blocks = card->host->max_blk_count;
1415
1416 if (brq->data.blocks > 1) {
1417 /*
1418 * Some SD cards in SPI mode return a CRC error or even lock up
1419 * completely when trying to read the last block using a
1420 * multiblock read command.
1421 */
1422 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1423 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1424 get_capacity(md->disk)))
1425 brq->data.blocks--;
1426
1427 /*
1428 * After a read error, we redo the request one (native) sector
1429 * at a time in order to accurately determine which
1430 * sectors can be read successfully.
1431 */
1432 if (recovery_mode)
1433 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1434
1435 /*
1436 * Some controllers have HW issues while operating
1437 * in multiple I/O mode
1438 */
1439 if (card->host->ops->multi_io_quirk)
1440 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1441 (rq_data_dir(req) == READ) ?
1442 MMC_DATA_READ : MMC_DATA_WRITE,
1443 brq->data.blocks);
1444 }
1445
1446 if (do_rel_wr) {
1447 mmc_apply_rel_rw(brq, card, req);
1448 brq->data.flags |= MMC_DATA_REL_WR;
1449 }
1450
1451 /*
1452 * Data tag is used only during writing meta data to speed
1453 * up write and any subsequent read of this meta data
1454 */
1455 do_data_tag = card->ext_csd.data_tag_unit_size &&
1456 (req->cmd_flags & REQ_META) &&
1457 (rq_data_dir(req) == WRITE) &&
1458 ((brq->data.blocks * brq->data.blksz) >=
1459 card->ext_csd.data_tag_unit_size);
1460
1461 if (do_data_tag)
1462 brq->data.flags |= MMC_DATA_DAT_TAG;
1463
1464 mmc_set_data_timeout(&brq->data, card);
1465
1466 brq->data.sg = mqrq->sg;
1467 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1468
1469 /*
1470 * Adjust the sg list so it is the same size as the
1471 * request.
1472 */
1473 if (brq->data.blocks != blk_rq_sectors(req)) {
1474 int i, data_size = brq->data.blocks << 9;
1475 struct scatterlist *sg;
1476
1477 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1478 data_size -= sg->length;
1479 if (data_size <= 0) {
1480 sg->length += data_size;
1481 i++;
1482 break;
1483 }
1484 }
1485 brq->data.sg_len = i;
1486 }
1487
1488 if (do_rel_wr_p)
1489 *do_rel_wr_p = do_rel_wr;
1490
1491 if (do_data_tag_p)
1492 *do_data_tag_p = do_data_tag;
1493}
1494
1495#define MMC_CQE_RETRIES 2
1496
1497static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1498{
1499 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1500 struct mmc_request *mrq = &mqrq->brq.mrq;
1501 struct request_queue *q = req->q;
1502 struct mmc_host *host = mq->card->host;
1503 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1504 unsigned long flags;
1505 bool put_card;
1506 int err;
1507
1508 mmc_cqe_post_req(host, mrq);
1509
1510 if (mrq->cmd && mrq->cmd->error)
1511 err = mrq->cmd->error;
1512 else if (mrq->data && mrq->data->error)
1513 err = mrq->data->error;
1514 else
1515 err = 0;
1516
1517 if (err) {
1518 if (mqrq->retries++ < MMC_CQE_RETRIES)
1519 blk_mq_requeue_request(req, true);
1520 else
1521 blk_mq_end_request(req, BLK_STS_IOERR);
1522 } else if (mrq->data) {
1523 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1524 blk_mq_requeue_request(req, true);
1525 else
1526 __blk_mq_end_request(req, BLK_STS_OK);
1527 } else if (mq->in_recovery) {
1528 blk_mq_requeue_request(req, true);
1529 } else {
1530 blk_mq_end_request(req, BLK_STS_OK);
1531 }
1532
1533 spin_lock_irqsave(&mq->lock, flags);
1534
1535 mq->in_flight[issue_type] -= 1;
1536
1537 put_card = (mmc_tot_in_flight(mq) == 0);
1538
1539 mmc_cqe_check_busy(mq);
1540
1541 spin_unlock_irqrestore(&mq->lock, flags);
1542
1543 if (!mq->cqe_busy)
1544 blk_mq_run_hw_queues(q, true);
1545
1546 if (put_card)
1547 mmc_put_card(mq->card, &mq->ctx);
1548}
1549
1550void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1551{
1552 struct mmc_card *card = mq->card;
1553 struct mmc_host *host = card->host;
1554 int err;
1555
1556 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1557
1558 err = mmc_cqe_recovery(host);
1559 if (err)
1560 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1561 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1562
1563 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1564}
1565
1566static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1567{
1568 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1569 brq.mrq);
1570 struct request *req = mmc_queue_req_to_req(mqrq);
1571 struct request_queue *q = req->q;
1572 struct mmc_queue *mq = q->queuedata;
1573
1574 /*
1575 * Block layer timeouts race with completions which means the normal
1576 * completion path cannot be used during recovery.
1577 */
1578 if (mq->in_recovery)
1579 mmc_blk_cqe_complete_rq(mq, req);
1580 else if (likely(!blk_should_fake_timeout(req->q)))
1581 blk_mq_complete_request(req);
1582}
1583
1584static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1585{
1586 mrq->done = mmc_blk_cqe_req_done;
1587 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1588
1589 return mmc_cqe_start_req(host, mrq);
1590}
1591
1592static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1593 struct request *req)
1594{
1595 struct mmc_blk_request *brq = &mqrq->brq;
1596
1597 memset(brq, 0, sizeof(*brq));
1598
1599 brq->mrq.cmd = &brq->cmd;
1600 brq->mrq.tag = req->tag;
1601
1602 return &brq->mrq;
1603}
1604
1605static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1606{
1607 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1608 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1609
1610 mrq->cmd->opcode = MMC_SWITCH;
1611 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1612 (EXT_CSD_FLUSH_CACHE << 16) |
1613 (1 << 8) |
1614 EXT_CSD_CMD_SET_NORMAL;
1615 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1616
1617 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1618}
1619
1620static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1621{
1622 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1623 struct mmc_host *host = mq->card->host;
1624 int err;
1625
1626 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1627 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1628 mmc_pre_req(host, &mqrq->brq.mrq);
1629
1630 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1631 if (err)
1632 mmc_post_req(host, &mqrq->brq.mrq, err);
1633
1634 return err;
1635}
1636
1637static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1638{
1639 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1640 struct mmc_host *host = mq->card->host;
1641
1642 if (host->hsq_enabled)
1643 return mmc_blk_hsq_issue_rw_rq(mq, req);
1644
1645 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1646
1647 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1648}
1649
1650static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1651 struct mmc_card *card,
1652 int recovery_mode,
1653 struct mmc_queue *mq)
1654{
1655 u32 readcmd, writecmd;
1656 struct mmc_blk_request *brq = &mqrq->brq;
1657 struct request *req = mmc_queue_req_to_req(mqrq);
1658 struct mmc_blk_data *md = mq->blkdata;
1659 bool do_rel_wr, do_data_tag;
1660
1661 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1662
1663 brq->mrq.cmd = &brq->cmd;
1664
1665 brq->cmd.arg = blk_rq_pos(req);
1666 if (!mmc_card_blockaddr(card))
1667 brq->cmd.arg <<= 9;
1668 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1669
1670 if (brq->data.blocks > 1 || do_rel_wr) {
1671 /* SPI multiblock writes terminate using a special
1672 * token, not a STOP_TRANSMISSION request.
1673 */
1674 if (!mmc_host_is_spi(card->host) ||
1675 rq_data_dir(req) == READ)
1676 brq->mrq.stop = &brq->stop;
1677 readcmd = MMC_READ_MULTIPLE_BLOCK;
1678 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1679 } else {
1680 brq->mrq.stop = NULL;
1681 readcmd = MMC_READ_SINGLE_BLOCK;
1682 writecmd = MMC_WRITE_BLOCK;
1683 }
1684 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1685
1686 /*
1687 * Pre-defined multi-block transfers are preferable to
1688 * open ended-ones (and necessary for reliable writes).
1689 * However, it is not sufficient to just send CMD23,
1690 * and avoid the final CMD12, as on an error condition
1691 * CMD12 (stop) needs to be sent anyway. This, coupled
1692 * with Auto-CMD23 enhancements provided by some
1693 * hosts, means that the complexity of dealing
1694 * with this is best left to the host. If CMD23 is
1695 * supported by card and host, we'll fill sbc in and let
1696 * the host deal with handling it correctly. This means
1697 * that for hosts that don't expose MMC_CAP_CMD23, no
1698 * change of behavior will be observed.
1699 *
1700 * N.B: Some MMC cards experience perf degradation.
1701 * We'll avoid using CMD23-bounded multiblock writes for
1702 * these, while retaining features like reliable writes.
1703 */
1704 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1705 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1706 do_data_tag)) {
1707 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1708 brq->sbc.arg = brq->data.blocks |
1709 (do_rel_wr ? (1 << 31) : 0) |
1710 (do_data_tag ? (1 << 29) : 0);
1711 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1712 brq->mrq.sbc = &brq->sbc;
1713 }
1714}
1715
1716#define MMC_MAX_RETRIES 5
1717#define MMC_DATA_RETRIES 2
1718#define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1719
1720static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1721{
1722 struct mmc_command cmd = {
1723 .opcode = MMC_STOP_TRANSMISSION,
1724 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1725 /* Some hosts wait for busy anyway, so provide a busy timeout */
1726 .busy_timeout = timeout,
1727 };
1728
1729 return mmc_wait_for_cmd(card->host, &cmd, 5);
1730}
1731
1732static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1733{
1734 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1735 struct mmc_blk_request *brq = &mqrq->brq;
1736 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1737 int err;
1738
1739 mmc_retune_hold_now(card->host);
1740
1741 mmc_blk_send_stop(card, timeout);
1742
1743 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1744
1745 mmc_retune_release(card->host);
1746
1747 return err;
1748}
1749
1750#define MMC_READ_SINGLE_RETRIES 2
1751
1752/* Single (native) sector read during recovery */
1753static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1754{
1755 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1756 struct mmc_request *mrq = &mqrq->brq.mrq;
1757 struct mmc_card *card = mq->card;
1758 struct mmc_host *host = card->host;
1759 blk_status_t error = BLK_STS_OK;
1760 size_t bytes_per_read = queue_physical_block_size(mq->queue);
1761
1762 do {
1763 u32 status;
1764 int err;
1765 int retries = 0;
1766
1767 while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1768 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1769
1770 mmc_wait_for_req(host, mrq);
1771
1772 err = mmc_send_status(card, &status);
1773 if (err)
1774 goto error_exit;
1775
1776 if (!mmc_host_is_spi(host) &&
1777 !mmc_ready_for_data(status)) {
1778 err = mmc_blk_fix_state(card, req);
1779 if (err)
1780 goto error_exit;
1781 }
1782
1783 if (!mrq->cmd->error)
1784 break;
1785 }
1786
1787 if (mrq->cmd->error ||
1788 mrq->data->error ||
1789 (!mmc_host_is_spi(host) &&
1790 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1791 error = BLK_STS_IOERR;
1792 else
1793 error = BLK_STS_OK;
1794
1795 } while (blk_update_request(req, error, bytes_per_read));
1796
1797 return;
1798
1799error_exit:
1800 mrq->data->bytes_xfered = 0;
1801 blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1802 /* Let it try the remaining request again */
1803 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1804 mqrq->retries = MMC_MAX_RETRIES - 1;
1805}
1806
1807static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1808{
1809 return !!brq->mrq.sbc;
1810}
1811
1812static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1813{
1814 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1815}
1816
1817/*
1818 * Check for errors the host controller driver might not have seen such as
1819 * response mode errors or invalid card state.
1820 */
1821static bool mmc_blk_status_error(struct request *req, u32 status)
1822{
1823 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1824 struct mmc_blk_request *brq = &mqrq->brq;
1825 struct mmc_queue *mq = req->q->queuedata;
1826 u32 stop_err_bits;
1827
1828 if (mmc_host_is_spi(mq->card->host))
1829 return false;
1830
1831 stop_err_bits = mmc_blk_stop_err_bits(brq);
1832
1833 return brq->cmd.resp[0] & CMD_ERRORS ||
1834 brq->stop.resp[0] & stop_err_bits ||
1835 status & stop_err_bits ||
1836 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1837}
1838
1839static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1840{
1841 return !brq->sbc.error && !brq->cmd.error &&
1842 !(brq->cmd.resp[0] & CMD_ERRORS);
1843}
1844
1845/*
1846 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1847 * policy:
1848 * 1. A request that has transferred at least some data is considered
1849 * successful and will be requeued if there is remaining data to
1850 * transfer.
1851 * 2. Otherwise the number of retries is incremented and the request
1852 * will be requeued if there are remaining retries.
1853 * 3. Otherwise the request will be errored out.
1854 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1855 * mqrq->retries. So there are only 4 possible actions here:
1856 * 1. do not accept the bytes_xfered value i.e. set it to zero
1857 * 2. change mqrq->retries to determine the number of retries
1858 * 3. try to reset the card
1859 * 4. read one sector at a time
1860 */
1861static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1862{
1863 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1864 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1865 struct mmc_blk_request *brq = &mqrq->brq;
1866 struct mmc_blk_data *md = mq->blkdata;
1867 struct mmc_card *card = mq->card;
1868 u32 status;
1869 u32 blocks;
1870 int err;
1871
1872 /*
1873 * Some errors the host driver might not have seen. Set the number of
1874 * bytes transferred to zero in that case.
1875 */
1876 err = __mmc_send_status(card, &status, 0);
1877 if (err || mmc_blk_status_error(req, status))
1878 brq->data.bytes_xfered = 0;
1879
1880 mmc_retune_release(card->host);
1881
1882 /*
1883 * Try again to get the status. This also provides an opportunity for
1884 * re-tuning.
1885 */
1886 if (err)
1887 err = __mmc_send_status(card, &status, 0);
1888
1889 /*
1890 * Nothing more to do after the number of bytes transferred has been
1891 * updated and there is no card.
1892 */
1893 if (err && mmc_detect_card_removed(card->host))
1894 return;
1895
1896 /* Try to get back to "tran" state */
1897 if (!mmc_host_is_spi(mq->card->host) &&
1898 (err || !mmc_ready_for_data(status)))
1899 err = mmc_blk_fix_state(mq->card, req);
1900
1901 /*
1902 * Special case for SD cards where the card might record the number of
1903 * blocks written.
1904 */
1905 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1906 rq_data_dir(req) == WRITE) {
1907 if (mmc_sd_num_wr_blocks(card, &blocks))
1908 brq->data.bytes_xfered = 0;
1909 else
1910 brq->data.bytes_xfered = blocks << 9;
1911 }
1912
1913 /* Reset if the card is in a bad state */
1914 if (!mmc_host_is_spi(mq->card->host) &&
1915 err && mmc_blk_reset(md, card->host, type)) {
1916 pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1917 mqrq->retries = MMC_NO_RETRIES;
1918 return;
1919 }
1920
1921 /*
1922 * If anything was done, just return and if there is anything remaining
1923 * on the request it will get requeued.
1924 */
1925 if (brq->data.bytes_xfered)
1926 return;
1927
1928 /* Reset before last retry */
1929 if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1930 mmc_blk_reset(md, card->host, type))
1931 return;
1932
1933 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1934 if (brq->sbc.error || brq->cmd.error)
1935 return;
1936
1937 /* Reduce the remaining retries for data errors */
1938 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1939 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1940 return;
1941 }
1942
1943 if (rq_data_dir(req) == READ && brq->data.blocks >
1944 queue_physical_block_size(mq->queue) >> 9) {
1945 /* Read one (native) sector at a time */
1946 mmc_blk_read_single(mq, req);
1947 return;
1948 }
1949}
1950
1951static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1952{
1953 mmc_blk_eval_resp_error(brq);
1954
1955 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1956 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1957}
1958
1959static int mmc_spi_err_check(struct mmc_card *card)
1960{
1961 u32 status = 0;
1962 int err;
1963
1964 /*
1965 * SPI does not have a TRAN state we have to wait on, instead the
1966 * card is ready again when it no longer holds the line LOW.
1967 * We still have to ensure two things here before we know the write
1968 * was successful:
1969 * 1. The card has not disconnected during busy and we actually read our
1970 * own pull-up, thinking it was still connected, so ensure it
1971 * still responds.
1972 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1973 * just reconnected card after being disconnected during busy.
1974 */
1975 err = __mmc_send_status(card, &status, 0);
1976 if (err)
1977 return err;
1978 /* All R1 and R2 bits of SPI are errors in our case */
1979 if (status)
1980 return -EIO;
1981 return 0;
1982}
1983
1984static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1985{
1986 struct mmc_blk_busy_data *data = cb_data;
1987 u32 status = 0;
1988 int err;
1989
1990 err = mmc_send_status(data->card, &status);
1991 if (err)
1992 return err;
1993
1994 /* Accumulate response error bits. */
1995 data->status |= status;
1996
1997 *busy = !mmc_ready_for_data(status);
1998 return 0;
1999}
2000
2001static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2002{
2003 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2004 struct mmc_blk_busy_data cb_data;
2005 int err;
2006
2007 if (rq_data_dir(req) == READ)
2008 return 0;
2009
2010 if (mmc_host_is_spi(card->host)) {
2011 err = mmc_spi_err_check(card);
2012 if (err)
2013 mqrq->brq.data.bytes_xfered = 0;
2014 return err;
2015 }
2016
2017 cb_data.card = card;
2018 cb_data.status = 0;
2019 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
2020 &mmc_blk_busy_cb, &cb_data);
2021
2022 /*
2023 * Do not assume data transferred correctly if there are any error bits
2024 * set.
2025 */
2026 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2027 mqrq->brq.data.bytes_xfered = 0;
2028 err = err ? err : -EIO;
2029 }
2030
2031 /* Copy the exception bit so it will be seen later on */
2032 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2033 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2034
2035 return err;
2036}
2037
2038static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2039 struct request *req)
2040{
2041 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2042
2043 mmc_blk_reset_success(mq->blkdata, type);
2044}
2045
2046static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2047{
2048 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2049 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2050
2051 if (nr_bytes) {
2052 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2053 blk_mq_requeue_request(req, true);
2054 else
2055 __blk_mq_end_request(req, BLK_STS_OK);
2056 } else if (!blk_rq_bytes(req)) {
2057 __blk_mq_end_request(req, BLK_STS_IOERR);
2058 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2059 blk_mq_requeue_request(req, true);
2060 } else {
2061 if (mmc_card_removed(mq->card))
2062 req->rq_flags |= RQF_QUIET;
2063 blk_mq_end_request(req, BLK_STS_IOERR);
2064 }
2065}
2066
2067static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2068 struct mmc_queue_req *mqrq)
2069{
2070 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2071 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2072 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2073}
2074
2075static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2076 struct mmc_queue_req *mqrq)
2077{
2078 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2079 mmc_run_bkops(mq->card);
2080}
2081
2082static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2083{
2084 struct mmc_queue_req *mqrq =
2085 container_of(mrq, struct mmc_queue_req, brq.mrq);
2086 struct request *req = mmc_queue_req_to_req(mqrq);
2087 struct request_queue *q = req->q;
2088 struct mmc_queue *mq = q->queuedata;
2089 struct mmc_host *host = mq->card->host;
2090 unsigned long flags;
2091
2092 if (mmc_blk_rq_error(&mqrq->brq) ||
2093 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2094 spin_lock_irqsave(&mq->lock, flags);
2095 mq->recovery_needed = true;
2096 mq->recovery_req = req;
2097 spin_unlock_irqrestore(&mq->lock, flags);
2098
2099 host->cqe_ops->cqe_recovery_start(host);
2100
2101 schedule_work(&mq->recovery_work);
2102 return;
2103 }
2104
2105 mmc_blk_rw_reset_success(mq, req);
2106
2107 /*
2108 * Block layer timeouts race with completions which means the normal
2109 * completion path cannot be used during recovery.
2110 */
2111 if (mq->in_recovery)
2112 mmc_blk_cqe_complete_rq(mq, req);
2113 else if (likely(!blk_should_fake_timeout(req->q)))
2114 blk_mq_complete_request(req);
2115}
2116
2117void mmc_blk_mq_complete(struct request *req)
2118{
2119 struct mmc_queue *mq = req->q->queuedata;
2120 struct mmc_host *host = mq->card->host;
2121
2122 if (host->cqe_enabled)
2123 mmc_blk_cqe_complete_rq(mq, req);
2124 else if (likely(!blk_should_fake_timeout(req->q)))
2125 mmc_blk_mq_complete_rq(mq, req);
2126}
2127
2128static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2129 struct request *req)
2130{
2131 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2132 struct mmc_host *host = mq->card->host;
2133
2134 if (mmc_blk_rq_error(&mqrq->brq) ||
2135 mmc_blk_card_busy(mq->card, req)) {
2136 mmc_blk_mq_rw_recovery(mq, req);
2137 } else {
2138 mmc_blk_rw_reset_success(mq, req);
2139 mmc_retune_release(host);
2140 }
2141
2142 mmc_blk_urgent_bkops(mq, mqrq);
2143}
2144
2145static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2146{
2147 unsigned long flags;
2148 bool put_card;
2149
2150 spin_lock_irqsave(&mq->lock, flags);
2151
2152 mq->in_flight[issue_type] -= 1;
2153
2154 put_card = (mmc_tot_in_flight(mq) == 0);
2155
2156 spin_unlock_irqrestore(&mq->lock, flags);
2157
2158 if (put_card)
2159 mmc_put_card(mq->card, &mq->ctx);
2160}
2161
2162static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2163 bool can_sleep)
2164{
2165 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2166 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2167 struct mmc_request *mrq = &mqrq->brq.mrq;
2168 struct mmc_host *host = mq->card->host;
2169
2170 mmc_post_req(host, mrq, 0);
2171
2172 /*
2173 * Block layer timeouts race with completions which means the normal
2174 * completion path cannot be used during recovery.
2175 */
2176 if (mq->in_recovery) {
2177 mmc_blk_mq_complete_rq(mq, req);
2178 } else if (likely(!blk_should_fake_timeout(req->q))) {
2179 if (can_sleep)
2180 blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2181 else
2182 blk_mq_complete_request(req);
2183 }
2184
2185 mmc_blk_mq_dec_in_flight(mq, issue_type);
2186}
2187
2188void mmc_blk_mq_recovery(struct mmc_queue *mq)
2189{
2190 struct request *req = mq->recovery_req;
2191 struct mmc_host *host = mq->card->host;
2192 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2193
2194 mq->recovery_req = NULL;
2195 mq->rw_wait = false;
2196
2197 if (mmc_blk_rq_error(&mqrq->brq)) {
2198 mmc_retune_hold_now(host);
2199 mmc_blk_mq_rw_recovery(mq, req);
2200 }
2201
2202 mmc_blk_urgent_bkops(mq, mqrq);
2203
2204 mmc_blk_mq_post_req(mq, req, true);
2205}
2206
2207static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2208 struct request **prev_req)
2209{
2210 if (mmc_host_done_complete(mq->card->host))
2211 return;
2212
2213 mutex_lock(&mq->complete_lock);
2214
2215 if (!mq->complete_req)
2216 goto out_unlock;
2217
2218 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2219
2220 if (prev_req)
2221 *prev_req = mq->complete_req;
2222 else
2223 mmc_blk_mq_post_req(mq, mq->complete_req, true);
2224
2225 mq->complete_req = NULL;
2226
2227out_unlock:
2228 mutex_unlock(&mq->complete_lock);
2229}
2230
2231void mmc_blk_mq_complete_work(struct work_struct *work)
2232{
2233 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2234 complete_work);
2235
2236 mmc_blk_mq_complete_prev_req(mq, NULL);
2237}
2238
2239static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2240{
2241 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2242 brq.mrq);
2243 struct request *req = mmc_queue_req_to_req(mqrq);
2244 struct request_queue *q = req->q;
2245 struct mmc_queue *mq = q->queuedata;
2246 struct mmc_host *host = mq->card->host;
2247 unsigned long flags;
2248
2249 if (!mmc_host_done_complete(host)) {
2250 bool waiting;
2251
2252 /*
2253 * We cannot complete the request in this context, so record
2254 * that there is a request to complete, and that a following
2255 * request does not need to wait (although it does need to
2256 * complete complete_req first).
2257 */
2258 spin_lock_irqsave(&mq->lock, flags);
2259 mq->complete_req = req;
2260 mq->rw_wait = false;
2261 waiting = mq->waiting;
2262 spin_unlock_irqrestore(&mq->lock, flags);
2263
2264 /*
2265 * If 'waiting' then the waiting task will complete this
2266 * request, otherwise queue a work to do it. Note that
2267 * complete_work may still race with the dispatch of a following
2268 * request.
2269 */
2270 if (waiting)
2271 wake_up(&mq->wait);
2272 else
2273 queue_work(mq->card->complete_wq, &mq->complete_work);
2274
2275 return;
2276 }
2277
2278 /* Take the recovery path for errors or urgent background operations */
2279 if (mmc_blk_rq_error(&mqrq->brq) ||
2280 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2281 spin_lock_irqsave(&mq->lock, flags);
2282 mq->recovery_needed = true;
2283 mq->recovery_req = req;
2284 spin_unlock_irqrestore(&mq->lock, flags);
2285 wake_up(&mq->wait);
2286 schedule_work(&mq->recovery_work);
2287 return;
2288 }
2289
2290 mmc_blk_rw_reset_success(mq, req);
2291
2292 mq->rw_wait = false;
2293 wake_up(&mq->wait);
2294
2295 /* context unknown */
2296 mmc_blk_mq_post_req(mq, req, false);
2297}
2298
2299static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2300{
2301 unsigned long flags;
2302 bool done;
2303
2304 /*
2305 * Wait while there is another request in progress, but not if recovery
2306 * is needed. Also indicate whether there is a request waiting to start.
2307 */
2308 spin_lock_irqsave(&mq->lock, flags);
2309 if (mq->recovery_needed) {
2310 *err = -EBUSY;
2311 done = true;
2312 } else {
2313 done = !mq->rw_wait;
2314 }
2315 mq->waiting = !done;
2316 spin_unlock_irqrestore(&mq->lock, flags);
2317
2318 return done;
2319}
2320
2321static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2322{
2323 int err = 0;
2324
2325 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2326
2327 /* Always complete the previous request if there is one */
2328 mmc_blk_mq_complete_prev_req(mq, prev_req);
2329
2330 return err;
2331}
2332
2333static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2334 struct request *req)
2335{
2336 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2337 struct mmc_host *host = mq->card->host;
2338 struct request *prev_req = NULL;
2339 int err = 0;
2340
2341 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2342
2343 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2344
2345 mmc_pre_req(host, &mqrq->brq.mrq);
2346
2347 err = mmc_blk_rw_wait(mq, &prev_req);
2348 if (err)
2349 goto out_post_req;
2350
2351 mq->rw_wait = true;
2352
2353 err = mmc_start_request(host, &mqrq->brq.mrq);
2354
2355 if (prev_req)
2356 mmc_blk_mq_post_req(mq, prev_req, true);
2357
2358 if (err)
2359 mq->rw_wait = false;
2360
2361 /* Release re-tuning here where there is no synchronization required */
2362 if (err || mmc_host_done_complete(host))
2363 mmc_retune_release(host);
2364
2365out_post_req:
2366 if (err)
2367 mmc_post_req(host, &mqrq->brq.mrq, err);
2368
2369 return err;
2370}
2371
2372static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2373{
2374 if (host->cqe_enabled)
2375 return host->cqe_ops->cqe_wait_for_idle(host);
2376
2377 return mmc_blk_rw_wait(mq, NULL);
2378}
2379
2380enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2381{
2382 struct mmc_blk_data *md = mq->blkdata;
2383 struct mmc_card *card = md->queue.card;
2384 struct mmc_host *host = card->host;
2385 int ret;
2386
2387 ret = mmc_blk_part_switch(card, md->part_type);
2388 if (ret)
2389 return MMC_REQ_FAILED_TO_START;
2390
2391 switch (mmc_issue_type(mq, req)) {
2392 case MMC_ISSUE_SYNC:
2393 ret = mmc_blk_wait_for_idle(mq, host);
2394 if (ret)
2395 return MMC_REQ_BUSY;
2396 switch (req_op(req)) {
2397 case REQ_OP_DRV_IN:
2398 case REQ_OP_DRV_OUT:
2399 mmc_blk_issue_drv_op(mq, req);
2400 break;
2401 case REQ_OP_DISCARD:
2402 mmc_blk_issue_discard_rq(mq, req);
2403 break;
2404 case REQ_OP_SECURE_ERASE:
2405 mmc_blk_issue_secdiscard_rq(mq, req);
2406 break;
2407 case REQ_OP_WRITE_ZEROES:
2408 mmc_blk_issue_trim_rq(mq, req);
2409 break;
2410 case REQ_OP_FLUSH:
2411 mmc_blk_issue_flush(mq, req);
2412 break;
2413 default:
2414 WARN_ON_ONCE(1);
2415 return MMC_REQ_FAILED_TO_START;
2416 }
2417 return MMC_REQ_FINISHED;
2418 case MMC_ISSUE_DCMD:
2419 case MMC_ISSUE_ASYNC:
2420 switch (req_op(req)) {
2421 case REQ_OP_FLUSH:
2422 if (!mmc_cache_enabled(host)) {
2423 blk_mq_end_request(req, BLK_STS_OK);
2424 return MMC_REQ_FINISHED;
2425 }
2426 ret = mmc_blk_cqe_issue_flush(mq, req);
2427 break;
2428 case REQ_OP_WRITE:
2429 card->written_flag = true;
2430 fallthrough;
2431 case REQ_OP_READ:
2432 if (host->cqe_enabled)
2433 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2434 else
2435 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2436 break;
2437 default:
2438 WARN_ON_ONCE(1);
2439 ret = -EINVAL;
2440 }
2441 if (!ret)
2442 return MMC_REQ_STARTED;
2443 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2444 default:
2445 WARN_ON_ONCE(1);
2446 return MMC_REQ_FAILED_TO_START;
2447 }
2448}
2449
2450static inline int mmc_blk_readonly(struct mmc_card *card)
2451{
2452 return mmc_card_readonly(card) ||
2453 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2454}
2455
2456static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2457 struct device *parent,
2458 sector_t size,
2459 bool default_ro,
2460 const char *subname,
2461 int area_type,
2462 unsigned int part_type)
2463{
2464 struct mmc_blk_data *md;
2465 int devidx, ret;
2466 char cap_str[10];
2467 bool cache_enabled = false;
2468 bool fua_enabled = false;
2469
2470 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2471 if (devidx < 0) {
2472 /*
2473 * We get -ENOSPC because there are no more any available
2474 * devidx. The reason may be that, either userspace haven't yet
2475 * unmounted the partitions, which postpones mmc_blk_release()
2476 * from being called, or the device has more partitions than
2477 * what we support.
2478 */
2479 if (devidx == -ENOSPC)
2480 dev_err(mmc_dev(card->host),
2481 "no more device IDs available\n");
2482
2483 return ERR_PTR(devidx);
2484 }
2485
2486 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2487 if (!md) {
2488 ret = -ENOMEM;
2489 goto out;
2490 }
2491
2492 md->area_type = area_type;
2493
2494 /*
2495 * Set the read-only status based on the supported commands
2496 * and the write protect switch.
2497 */
2498 md->read_only = mmc_blk_readonly(card);
2499
2500 md->disk = mmc_init_queue(&md->queue, card);
2501 if (IS_ERR(md->disk)) {
2502 ret = PTR_ERR(md->disk);
2503 goto err_kfree;
2504 }
2505
2506 INIT_LIST_HEAD(&md->part);
2507 INIT_LIST_HEAD(&md->rpmbs);
2508 kref_init(&md->kref);
2509
2510 md->queue.blkdata = md;
2511 md->part_type = part_type;
2512
2513 md->disk->major = MMC_BLOCK_MAJOR;
2514 md->disk->minors = perdev_minors;
2515 md->disk->first_minor = devidx * perdev_minors;
2516 md->disk->fops = &mmc_bdops;
2517 md->disk->private_data = md;
2518 md->parent = parent;
2519 set_disk_ro(md->disk, md->read_only || default_ro);
2520 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2521 md->disk->flags |= GENHD_FL_NO_PART;
2522
2523 /*
2524 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2525 *
2526 * - be set for removable media with permanent block devices
2527 * - be unset for removable block devices with permanent media
2528 *
2529 * Since MMC block devices clearly fall under the second
2530 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2531 * should use the block device creation/destruction hotplug
2532 * messages to tell when the card is present.
2533 */
2534
2535 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2536 "mmcblk%u%s", card->host->index, subname ? subname : "");
2537
2538 set_capacity(md->disk, size);
2539
2540 if (mmc_host_cmd23(card->host)) {
2541 if ((mmc_card_mmc(card) &&
2542 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2543 (mmc_card_sd(card) &&
2544 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2545 md->flags |= MMC_BLK_CMD23;
2546 }
2547
2548 if (md->flags & MMC_BLK_CMD23 &&
2549 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2550 card->ext_csd.rel_sectors)) {
2551 md->flags |= MMC_BLK_REL_WR;
2552 fua_enabled = true;
2553 cache_enabled = true;
2554 }
2555 if (mmc_cache_enabled(card->host))
2556 cache_enabled = true;
2557
2558 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2559
2560 string_get_size((u64)size, 512, STRING_UNITS_2,
2561 cap_str, sizeof(cap_str));
2562 pr_info("%s: %s %s %s%s\n",
2563 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2564 cap_str, md->read_only ? " (ro)" : "");
2565
2566 /* used in ->open, must be set before add_disk: */
2567 if (area_type == MMC_BLK_DATA_AREA_MAIN)
2568 dev_set_drvdata(&card->dev, md);
2569 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2570 if (ret)
2571 goto err_put_disk;
2572 return md;
2573
2574 err_put_disk:
2575 put_disk(md->disk);
2576 blk_mq_free_tag_set(&md->queue.tag_set);
2577 err_kfree:
2578 kfree(md);
2579 out:
2580 ida_simple_remove(&mmc_blk_ida, devidx);
2581 return ERR_PTR(ret);
2582}
2583
2584static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2585{
2586 sector_t size;
2587
2588 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2589 /*
2590 * The EXT_CSD sector count is in number or 512 byte
2591 * sectors.
2592 */
2593 size = card->ext_csd.sectors;
2594 } else {
2595 /*
2596 * The CSD capacity field is in units of read_blkbits.
2597 * set_capacity takes units of 512 bytes.
2598 */
2599 size = (typeof(sector_t))card->csd.capacity
2600 << (card->csd.read_blkbits - 9);
2601 }
2602
2603 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2604 MMC_BLK_DATA_AREA_MAIN, 0);
2605}
2606
2607static int mmc_blk_alloc_part(struct mmc_card *card,
2608 struct mmc_blk_data *md,
2609 unsigned int part_type,
2610 sector_t size,
2611 bool default_ro,
2612 const char *subname,
2613 int area_type)
2614{
2615 struct mmc_blk_data *part_md;
2616
2617 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2618 subname, area_type, part_type);
2619 if (IS_ERR(part_md))
2620 return PTR_ERR(part_md);
2621 list_add(&part_md->part, &md->part);
2622
2623 return 0;
2624}
2625
2626/**
2627 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2628 * @filp: the character device file
2629 * @cmd: the ioctl() command
2630 * @arg: the argument from userspace
2631 *
2632 * This will essentially just redirect the ioctl()s coming in over to
2633 * the main block device spawning the RPMB character device.
2634 */
2635static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2636 unsigned long arg)
2637{
2638 struct mmc_rpmb_data *rpmb = filp->private_data;
2639 int ret;
2640
2641 switch (cmd) {
2642 case MMC_IOC_CMD:
2643 ret = mmc_blk_ioctl_cmd(rpmb->md,
2644 (struct mmc_ioc_cmd __user *)arg,
2645 rpmb);
2646 break;
2647 case MMC_IOC_MULTI_CMD:
2648 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2649 (struct mmc_ioc_multi_cmd __user *)arg,
2650 rpmb);
2651 break;
2652 default:
2653 ret = -EINVAL;
2654 break;
2655 }
2656
2657 return ret;
2658}
2659
2660#ifdef CONFIG_COMPAT
2661static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2662 unsigned long arg)
2663{
2664 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2665}
2666#endif
2667
2668static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2669{
2670 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2671 struct mmc_rpmb_data, chrdev);
2672
2673 get_device(&rpmb->dev);
2674 filp->private_data = rpmb;
2675 mmc_blk_get(rpmb->md->disk);
2676
2677 return nonseekable_open(inode, filp);
2678}
2679
2680static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2681{
2682 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2683 struct mmc_rpmb_data, chrdev);
2684
2685 mmc_blk_put(rpmb->md);
2686 put_device(&rpmb->dev);
2687
2688 return 0;
2689}
2690
2691static const struct file_operations mmc_rpmb_fileops = {
2692 .release = mmc_rpmb_chrdev_release,
2693 .open = mmc_rpmb_chrdev_open,
2694 .owner = THIS_MODULE,
2695 .llseek = no_llseek,
2696 .unlocked_ioctl = mmc_rpmb_ioctl,
2697#ifdef CONFIG_COMPAT
2698 .compat_ioctl = mmc_rpmb_ioctl_compat,
2699#endif
2700};
2701
2702static void mmc_blk_rpmb_device_release(struct device *dev)
2703{
2704 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2705
2706 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2707 kfree(rpmb);
2708}
2709
2710static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2711 struct mmc_blk_data *md,
2712 unsigned int part_index,
2713 sector_t size,
2714 const char *subname)
2715{
2716 int devidx, ret;
2717 char rpmb_name[DISK_NAME_LEN];
2718 char cap_str[10];
2719 struct mmc_rpmb_data *rpmb;
2720
2721 /* This creates the minor number for the RPMB char device */
2722 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2723 if (devidx < 0)
2724 return devidx;
2725
2726 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2727 if (!rpmb) {
2728 ida_simple_remove(&mmc_rpmb_ida, devidx);
2729 return -ENOMEM;
2730 }
2731
2732 snprintf(rpmb_name, sizeof(rpmb_name),
2733 "mmcblk%u%s", card->host->index, subname ? subname : "");
2734
2735 rpmb->id = devidx;
2736 rpmb->part_index = part_index;
2737 rpmb->dev.init_name = rpmb_name;
2738 rpmb->dev.bus = &mmc_rpmb_bus_type;
2739 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2740 rpmb->dev.parent = &card->dev;
2741 rpmb->dev.release = mmc_blk_rpmb_device_release;
2742 device_initialize(&rpmb->dev);
2743 dev_set_drvdata(&rpmb->dev, rpmb);
2744 rpmb->md = md;
2745
2746 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2747 rpmb->chrdev.owner = THIS_MODULE;
2748 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2749 if (ret) {
2750 pr_err("%s: could not add character device\n", rpmb_name);
2751 goto out_put_device;
2752 }
2753
2754 list_add(&rpmb->node, &md->rpmbs);
2755
2756 string_get_size((u64)size, 512, STRING_UNITS_2,
2757 cap_str, sizeof(cap_str));
2758
2759 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2760 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2761 MAJOR(mmc_rpmb_devt), rpmb->id);
2762
2763 return 0;
2764
2765out_put_device:
2766 put_device(&rpmb->dev);
2767 return ret;
2768}
2769
2770static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2771
2772{
2773 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2774 put_device(&rpmb->dev);
2775}
2776
2777/* MMC Physical partitions consist of two boot partitions and
2778 * up to four general purpose partitions.
2779 * For each partition enabled in EXT_CSD a block device will be allocatedi
2780 * to provide access to the partition.
2781 */
2782
2783static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2784{
2785 int idx, ret;
2786
2787 if (!mmc_card_mmc(card))
2788 return 0;
2789
2790 for (idx = 0; idx < card->nr_parts; idx++) {
2791 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2792 /*
2793 * RPMB partitions does not provide block access, they
2794 * are only accessed using ioctl():s. Thus create
2795 * special RPMB block devices that do not have a
2796 * backing block queue for these.
2797 */
2798 ret = mmc_blk_alloc_rpmb_part(card, md,
2799 card->part[idx].part_cfg,
2800 card->part[idx].size >> 9,
2801 card->part[idx].name);
2802 if (ret)
2803 return ret;
2804 } else if (card->part[idx].size) {
2805 ret = mmc_blk_alloc_part(card, md,
2806 card->part[idx].part_cfg,
2807 card->part[idx].size >> 9,
2808 card->part[idx].force_ro,
2809 card->part[idx].name,
2810 card->part[idx].area_type);
2811 if (ret)
2812 return ret;
2813 }
2814 }
2815
2816 return 0;
2817}
2818
2819static void mmc_blk_remove_req(struct mmc_blk_data *md)
2820{
2821 /*
2822 * Flush remaining requests and free queues. It is freeing the queue
2823 * that stops new requests from being accepted.
2824 */
2825 del_gendisk(md->disk);
2826 mmc_cleanup_queue(&md->queue);
2827 mmc_blk_put(md);
2828}
2829
2830static void mmc_blk_remove_parts(struct mmc_card *card,
2831 struct mmc_blk_data *md)
2832{
2833 struct list_head *pos, *q;
2834 struct mmc_blk_data *part_md;
2835 struct mmc_rpmb_data *rpmb;
2836
2837 /* Remove RPMB partitions */
2838 list_for_each_safe(pos, q, &md->rpmbs) {
2839 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2840 list_del(pos);
2841 mmc_blk_remove_rpmb_part(rpmb);
2842 }
2843 /* Remove block partitions */
2844 list_for_each_safe(pos, q, &md->part) {
2845 part_md = list_entry(pos, struct mmc_blk_data, part);
2846 list_del(pos);
2847 mmc_blk_remove_req(part_md);
2848 }
2849}
2850
2851#ifdef CONFIG_DEBUG_FS
2852
2853static int mmc_dbg_card_status_get(void *data, u64 *val)
2854{
2855 struct mmc_card *card = data;
2856 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2857 struct mmc_queue *mq = &md->queue;
2858 struct request *req;
2859 int ret;
2860
2861 /* Ask the block layer about the card status */
2862 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2863 if (IS_ERR(req))
2864 return PTR_ERR(req);
2865 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2866 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2867 blk_execute_rq(req, false);
2868 ret = req_to_mmc_queue_req(req)->drv_op_result;
2869 if (ret >= 0) {
2870 *val = ret;
2871 ret = 0;
2872 }
2873 blk_mq_free_request(req);
2874
2875 return ret;
2876}
2877DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2878 NULL, "%08llx\n");
2879
2880/* That is two digits * 512 + 1 for newline */
2881#define EXT_CSD_STR_LEN 1025
2882
2883static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2884{
2885 struct mmc_card *card = inode->i_private;
2886 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2887 struct mmc_queue *mq = &md->queue;
2888 struct request *req;
2889 char *buf;
2890 ssize_t n = 0;
2891 u8 *ext_csd;
2892 int err, i;
2893
2894 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2895 if (!buf)
2896 return -ENOMEM;
2897
2898 /* Ask the block layer for the EXT CSD */
2899 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2900 if (IS_ERR(req)) {
2901 err = PTR_ERR(req);
2902 goto out_free;
2903 }
2904 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2905 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2906 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2907 blk_execute_rq(req, false);
2908 err = req_to_mmc_queue_req(req)->drv_op_result;
2909 blk_mq_free_request(req);
2910 if (err) {
2911 pr_err("FAILED %d\n", err);
2912 goto out_free;
2913 }
2914
2915 for (i = 0; i < 512; i++)
2916 n += sprintf(buf + n, "%02x", ext_csd[i]);
2917 n += sprintf(buf + n, "\n");
2918
2919 if (n != EXT_CSD_STR_LEN) {
2920 err = -EINVAL;
2921 kfree(ext_csd);
2922 goto out_free;
2923 }
2924
2925 filp->private_data = buf;
2926 kfree(ext_csd);
2927 return 0;
2928
2929out_free:
2930 kfree(buf);
2931 return err;
2932}
2933
2934static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2935 size_t cnt, loff_t *ppos)
2936{
2937 char *buf = filp->private_data;
2938
2939 return simple_read_from_buffer(ubuf, cnt, ppos,
2940 buf, EXT_CSD_STR_LEN);
2941}
2942
2943static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2944{
2945 kfree(file->private_data);
2946 return 0;
2947}
2948
2949static const struct file_operations mmc_dbg_ext_csd_fops = {
2950 .open = mmc_ext_csd_open,
2951 .read = mmc_ext_csd_read,
2952 .release = mmc_ext_csd_release,
2953 .llseek = default_llseek,
2954};
2955
2956static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2957{
2958 struct dentry *root;
2959
2960 if (!card->debugfs_root)
2961 return;
2962
2963 root = card->debugfs_root;
2964
2965 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2966 md->status_dentry =
2967 debugfs_create_file_unsafe("status", 0400, root,
2968 card,
2969 &mmc_dbg_card_status_fops);
2970 }
2971
2972 if (mmc_card_mmc(card)) {
2973 md->ext_csd_dentry =
2974 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2975 &mmc_dbg_ext_csd_fops);
2976 }
2977}
2978
2979static void mmc_blk_remove_debugfs(struct mmc_card *card,
2980 struct mmc_blk_data *md)
2981{
2982 if (!card->debugfs_root)
2983 return;
2984
2985 debugfs_remove(md->status_dentry);
2986 md->status_dentry = NULL;
2987
2988 debugfs_remove(md->ext_csd_dentry);
2989 md->ext_csd_dentry = NULL;
2990}
2991
2992#else
2993
2994static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2995{
2996}
2997
2998static void mmc_blk_remove_debugfs(struct mmc_card *card,
2999 struct mmc_blk_data *md)
3000{
3001}
3002
3003#endif /* CONFIG_DEBUG_FS */
3004
3005static int mmc_blk_probe(struct mmc_card *card)
3006{
3007 struct mmc_blk_data *md;
3008 int ret = 0;
3009
3010 /*
3011 * Check that the card supports the command class(es) we need.
3012 */
3013 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3014 return -ENODEV;
3015
3016 mmc_fixup_device(card, mmc_blk_fixups);
3017
3018 card->complete_wq = alloc_workqueue("mmc_complete",
3019 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3020 if (!card->complete_wq) {
3021 pr_err("Failed to create mmc completion workqueue");
3022 return -ENOMEM;
3023 }
3024
3025 md = mmc_blk_alloc(card);
3026 if (IS_ERR(md)) {
3027 ret = PTR_ERR(md);
3028 goto out_free;
3029 }
3030
3031 ret = mmc_blk_alloc_parts(card, md);
3032 if (ret)
3033 goto out;
3034
3035 /* Add two debugfs entries */
3036 mmc_blk_add_debugfs(card, md);
3037
3038 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3039 pm_runtime_use_autosuspend(&card->dev);
3040
3041 /*
3042 * Don't enable runtime PM for SD-combo cards here. Leave that
3043 * decision to be taken during the SDIO init sequence instead.
3044 */
3045 if (!mmc_card_sd_combo(card)) {
3046 pm_runtime_set_active(&card->dev);
3047 pm_runtime_enable(&card->dev);
3048 }
3049
3050 return 0;
3051
3052out:
3053 mmc_blk_remove_parts(card, md);
3054 mmc_blk_remove_req(md);
3055out_free:
3056 destroy_workqueue(card->complete_wq);
3057 return ret;
3058}
3059
3060static void mmc_blk_remove(struct mmc_card *card)
3061{
3062 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3063
3064 mmc_blk_remove_debugfs(card, md);
3065 mmc_blk_remove_parts(card, md);
3066 pm_runtime_get_sync(&card->dev);
3067 if (md->part_curr != md->part_type) {
3068 mmc_claim_host(card->host);
3069 mmc_blk_part_switch(card, md->part_type);
3070 mmc_release_host(card->host);
3071 }
3072 if (!mmc_card_sd_combo(card))
3073 pm_runtime_disable(&card->dev);
3074 pm_runtime_put_noidle(&card->dev);
3075 mmc_blk_remove_req(md);
3076 destroy_workqueue(card->complete_wq);
3077}
3078
3079static int _mmc_blk_suspend(struct mmc_card *card)
3080{
3081 struct mmc_blk_data *part_md;
3082 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3083
3084 if (md) {
3085 mmc_queue_suspend(&md->queue);
3086 list_for_each_entry(part_md, &md->part, part) {
3087 mmc_queue_suspend(&part_md->queue);
3088 }
3089 }
3090 return 0;
3091}
3092
3093static void mmc_blk_shutdown(struct mmc_card *card)
3094{
3095 _mmc_blk_suspend(card);
3096}
3097
3098#ifdef CONFIG_PM_SLEEP
3099static int mmc_blk_suspend(struct device *dev)
3100{
3101 struct mmc_card *card = mmc_dev_to_card(dev);
3102
3103 return _mmc_blk_suspend(card);
3104}
3105
3106static int mmc_blk_resume(struct device *dev)
3107{
3108 struct mmc_blk_data *part_md;
3109 struct mmc_blk_data *md = dev_get_drvdata(dev);
3110
3111 if (md) {
3112 /*
3113 * Resume involves the card going into idle state,
3114 * so current partition is always the main one.
3115 */
3116 md->part_curr = md->part_type;
3117 mmc_queue_resume(&md->queue);
3118 list_for_each_entry(part_md, &md->part, part) {
3119 mmc_queue_resume(&part_md->queue);
3120 }
3121 }
3122 return 0;
3123}
3124#endif
3125
3126static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3127
3128static struct mmc_driver mmc_driver = {
3129 .drv = {
3130 .name = "mmcblk",
3131 .pm = &mmc_blk_pm_ops,
3132 },
3133 .probe = mmc_blk_probe,
3134 .remove = mmc_blk_remove,
3135 .shutdown = mmc_blk_shutdown,
3136};
3137
3138static int __init mmc_blk_init(void)
3139{
3140 int res;
3141
3142 res = bus_register(&mmc_rpmb_bus_type);
3143 if (res < 0) {
3144 pr_err("mmcblk: could not register RPMB bus type\n");
3145 return res;
3146 }
3147 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3148 if (res < 0) {
3149 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3150 goto out_bus_unreg;
3151 }
3152
3153 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3154 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3155
3156 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3157
3158 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3159 if (res)
3160 goto out_chrdev_unreg;
3161
3162 res = mmc_register_driver(&mmc_driver);
3163 if (res)
3164 goto out_blkdev_unreg;
3165
3166 return 0;
3167
3168out_blkdev_unreg:
3169 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3170out_chrdev_unreg:
3171 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3172out_bus_unreg:
3173 bus_unregister(&mmc_rpmb_bus_type);
3174 return res;
3175}
3176
3177static void __exit mmc_blk_exit(void)
3178{
3179 mmc_unregister_driver(&mmc_driver);
3180 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3181 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3182 bus_unregister(&mmc_rpmb_bus_type);
3183}
3184
3185module_init(mmc_blk_init);
3186module_exit(mmc_blk_exit);
3187
3188MODULE_LICENSE("GPL");
3189MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
1/*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20#include <linux/moduleparam.h>
21#include <linux/module.h>
22#include <linux/init.h>
23
24#include <linux/kernel.h>
25#include <linux/fs.h>
26#include <linux/slab.h>
27#include <linux/errno.h>
28#include <linux/hdreg.h>
29#include <linux/kdev_t.h>
30#include <linux/blkdev.h>
31#include <linux/cdev.h>
32#include <linux/mutex.h>
33#include <linux/scatterlist.h>
34#include <linux/string_helpers.h>
35#include <linux/delay.h>
36#include <linux/capability.h>
37#include <linux/compat.h>
38#include <linux/pm_runtime.h>
39#include <linux/idr.h>
40#include <linux/debugfs.h>
41
42#include <linux/mmc/ioctl.h>
43#include <linux/mmc/card.h>
44#include <linux/mmc/host.h>
45#include <linux/mmc/mmc.h>
46#include <linux/mmc/sd.h>
47
48#include <linux/uaccess.h>
49
50#include "queue.h"
51#include "block.h"
52#include "core.h"
53#include "card.h"
54#include "host.h"
55#include "bus.h"
56#include "mmc_ops.h"
57#include "quirks.h"
58#include "sd_ops.h"
59
60MODULE_ALIAS("mmc:block");
61#ifdef MODULE_PARAM_PREFIX
62#undef MODULE_PARAM_PREFIX
63#endif
64#define MODULE_PARAM_PREFIX "mmcblk."
65
66/*
67 * Set a 10 second timeout for polling write request busy state. Note, mmc core
68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69 * second software timer to timeout the whole request, so 10 seconds should be
70 * ample.
71 */
72#define MMC_BLK_TIMEOUT_MS (10 * 1000)
73#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
74#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
75
76#define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
77 (rq_data_dir(req) == WRITE))
78static DEFINE_MUTEX(block_mutex);
79
80/*
81 * The defaults come from config options but can be overriden by module
82 * or bootarg options.
83 */
84static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
85
86/*
87 * We've only got one major, so number of mmcblk devices is
88 * limited to (1 << 20) / number of minors per device. It is also
89 * limited by the MAX_DEVICES below.
90 */
91static int max_devices;
92
93#define MAX_DEVICES 256
94
95static DEFINE_IDA(mmc_blk_ida);
96static DEFINE_IDA(mmc_rpmb_ida);
97
98/*
99 * There is one mmc_blk_data per slot.
100 */
101struct mmc_blk_data {
102 struct device *parent;
103 struct gendisk *disk;
104 struct mmc_queue queue;
105 struct list_head part;
106 struct list_head rpmbs;
107
108 unsigned int flags;
109#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
110#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
111
112 unsigned int usage;
113 unsigned int read_only;
114 unsigned int part_type;
115 unsigned int reset_done;
116#define MMC_BLK_READ BIT(0)
117#define MMC_BLK_WRITE BIT(1)
118#define MMC_BLK_DISCARD BIT(2)
119#define MMC_BLK_SECDISCARD BIT(3)
120#define MMC_BLK_CQE_RECOVERY BIT(4)
121
122 /*
123 * Only set in main mmc_blk_data associated
124 * with mmc_card with dev_set_drvdata, and keeps
125 * track of the current selected device partition.
126 */
127 unsigned int part_curr;
128 struct device_attribute force_ro;
129 struct device_attribute power_ro_lock;
130 int area_type;
131
132 /* debugfs files (only in main mmc_blk_data) */
133 struct dentry *status_dentry;
134 struct dentry *ext_csd_dentry;
135};
136
137/* Device type for RPMB character devices */
138static dev_t mmc_rpmb_devt;
139
140/* Bus type for RPMB character devices */
141static struct bus_type mmc_rpmb_bus_type = {
142 .name = "mmc_rpmb",
143};
144
145/**
146 * struct mmc_rpmb_data - special RPMB device type for these areas
147 * @dev: the device for the RPMB area
148 * @chrdev: character device for the RPMB area
149 * @id: unique device ID number
150 * @part_index: partition index (0 on first)
151 * @md: parent MMC block device
152 * @node: list item, so we can put this device on a list
153 */
154struct mmc_rpmb_data {
155 struct device dev;
156 struct cdev chrdev;
157 int id;
158 unsigned int part_index;
159 struct mmc_blk_data *md;
160 struct list_head node;
161};
162
163static DEFINE_MUTEX(open_lock);
164
165module_param(perdev_minors, int, 0444);
166MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
167
168static inline int mmc_blk_part_switch(struct mmc_card *card,
169 unsigned int part_type);
170static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
171 struct mmc_card *card,
172 int disable_multi,
173 struct mmc_queue *mq);
174static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
175
176static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
177{
178 struct mmc_blk_data *md;
179
180 mutex_lock(&open_lock);
181 md = disk->private_data;
182 if (md && md->usage == 0)
183 md = NULL;
184 if (md)
185 md->usage++;
186 mutex_unlock(&open_lock);
187
188 return md;
189}
190
191static inline int mmc_get_devidx(struct gendisk *disk)
192{
193 int devidx = disk->first_minor / perdev_minors;
194 return devidx;
195}
196
197static void mmc_blk_put(struct mmc_blk_data *md)
198{
199 mutex_lock(&open_lock);
200 md->usage--;
201 if (md->usage == 0) {
202 int devidx = mmc_get_devidx(md->disk);
203 blk_put_queue(md->queue.queue);
204 ida_simple_remove(&mmc_blk_ida, devidx);
205 put_disk(md->disk);
206 kfree(md);
207 }
208 mutex_unlock(&open_lock);
209}
210
211static ssize_t power_ro_lock_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213{
214 int ret;
215 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
216 struct mmc_card *card = md->queue.card;
217 int locked = 0;
218
219 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
220 locked = 2;
221 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
222 locked = 1;
223
224 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
225
226 mmc_blk_put(md);
227
228 return ret;
229}
230
231static ssize_t power_ro_lock_store(struct device *dev,
232 struct device_attribute *attr, const char *buf, size_t count)
233{
234 int ret;
235 struct mmc_blk_data *md, *part_md;
236 struct mmc_queue *mq;
237 struct request *req;
238 unsigned long set;
239
240 if (kstrtoul(buf, 0, &set))
241 return -EINVAL;
242
243 if (set != 1)
244 return count;
245
246 md = mmc_blk_get(dev_to_disk(dev));
247 mq = &md->queue;
248
249 /* Dispatch locking to the block layer */
250 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
251 if (IS_ERR(req)) {
252 count = PTR_ERR(req);
253 goto out_put;
254 }
255 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
256 blk_execute_rq(mq->queue, NULL, req, 0);
257 ret = req_to_mmc_queue_req(req)->drv_op_result;
258 blk_put_request(req);
259
260 if (!ret) {
261 pr_info("%s: Locking boot partition ro until next power on\n",
262 md->disk->disk_name);
263 set_disk_ro(md->disk, 1);
264
265 list_for_each_entry(part_md, &md->part, part)
266 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
267 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
268 set_disk_ro(part_md->disk, 1);
269 }
270 }
271out_put:
272 mmc_blk_put(md);
273 return count;
274}
275
276static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
277 char *buf)
278{
279 int ret;
280 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
281
282 ret = snprintf(buf, PAGE_SIZE, "%d\n",
283 get_disk_ro(dev_to_disk(dev)) ^
284 md->read_only);
285 mmc_blk_put(md);
286 return ret;
287}
288
289static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
290 const char *buf, size_t count)
291{
292 int ret;
293 char *end;
294 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
295 unsigned long set = simple_strtoul(buf, &end, 0);
296 if (end == buf) {
297 ret = -EINVAL;
298 goto out;
299 }
300
301 set_disk_ro(dev_to_disk(dev), set || md->read_only);
302 ret = count;
303out:
304 mmc_blk_put(md);
305 return ret;
306}
307
308static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
309{
310 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
311 int ret = -ENXIO;
312
313 mutex_lock(&block_mutex);
314 if (md) {
315 ret = 0;
316 if ((mode & FMODE_WRITE) && md->read_only) {
317 mmc_blk_put(md);
318 ret = -EROFS;
319 }
320 }
321 mutex_unlock(&block_mutex);
322
323 return ret;
324}
325
326static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
327{
328 struct mmc_blk_data *md = disk->private_data;
329
330 mutex_lock(&block_mutex);
331 mmc_blk_put(md);
332 mutex_unlock(&block_mutex);
333}
334
335static int
336mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
337{
338 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
339 geo->heads = 4;
340 geo->sectors = 16;
341 return 0;
342}
343
344struct mmc_blk_ioc_data {
345 struct mmc_ioc_cmd ic;
346 unsigned char *buf;
347 u64 buf_bytes;
348 struct mmc_rpmb_data *rpmb;
349};
350
351static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
352 struct mmc_ioc_cmd __user *user)
353{
354 struct mmc_blk_ioc_data *idata;
355 int err;
356
357 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
358 if (!idata) {
359 err = -ENOMEM;
360 goto out;
361 }
362
363 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
364 err = -EFAULT;
365 goto idata_err;
366 }
367
368 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
369 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
370 err = -EOVERFLOW;
371 goto idata_err;
372 }
373
374 if (!idata->buf_bytes) {
375 idata->buf = NULL;
376 return idata;
377 }
378
379 idata->buf = memdup_user((void __user *)(unsigned long)
380 idata->ic.data_ptr, idata->buf_bytes);
381 if (IS_ERR(idata->buf)) {
382 err = PTR_ERR(idata->buf);
383 goto idata_err;
384 }
385
386 return idata;
387
388idata_err:
389 kfree(idata);
390out:
391 return ERR_PTR(err);
392}
393
394static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
395 struct mmc_blk_ioc_data *idata)
396{
397 struct mmc_ioc_cmd *ic = &idata->ic;
398
399 if (copy_to_user(&(ic_ptr->response), ic->response,
400 sizeof(ic->response)))
401 return -EFAULT;
402
403 if (!idata->ic.write_flag) {
404 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
405 idata->buf, idata->buf_bytes))
406 return -EFAULT;
407 }
408
409 return 0;
410}
411
412static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
413 u32 *resp_errs)
414{
415 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
416 int err = 0;
417 u32 status;
418
419 do {
420 bool done = time_after(jiffies, timeout);
421
422 err = __mmc_send_status(card, &status, 5);
423 if (err) {
424 dev_err(mmc_dev(card->host),
425 "error %d requesting status\n", err);
426 return err;
427 }
428
429 /* Accumulate any response error bits seen */
430 if (resp_errs)
431 *resp_errs |= status;
432
433 /*
434 * Timeout if the device never becomes ready for data and never
435 * leaves the program state.
436 */
437 if (done) {
438 dev_err(mmc_dev(card->host),
439 "Card stuck in wrong state! %s status: %#x\n",
440 __func__, status);
441 return -ETIMEDOUT;
442 }
443 } while (!mmc_ready_for_data(status));
444
445 return err;
446}
447
448static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
449 struct mmc_blk_ioc_data *idata)
450{
451 struct mmc_command cmd = {}, sbc = {};
452 struct mmc_data data = {};
453 struct mmc_request mrq = {};
454 struct scatterlist sg;
455 int err;
456 unsigned int target_part;
457
458 if (!card || !md || !idata)
459 return -EINVAL;
460
461 /*
462 * The RPMB accesses comes in from the character device, so we
463 * need to target these explicitly. Else we just target the
464 * partition type for the block device the ioctl() was issued
465 * on.
466 */
467 if (idata->rpmb) {
468 /* Support multiple RPMB partitions */
469 target_part = idata->rpmb->part_index;
470 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
471 } else {
472 target_part = md->part_type;
473 }
474
475 cmd.opcode = idata->ic.opcode;
476 cmd.arg = idata->ic.arg;
477 cmd.flags = idata->ic.flags;
478
479 if (idata->buf_bytes) {
480 data.sg = &sg;
481 data.sg_len = 1;
482 data.blksz = idata->ic.blksz;
483 data.blocks = idata->ic.blocks;
484
485 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
486
487 if (idata->ic.write_flag)
488 data.flags = MMC_DATA_WRITE;
489 else
490 data.flags = MMC_DATA_READ;
491
492 /* data.flags must already be set before doing this. */
493 mmc_set_data_timeout(&data, card);
494
495 /* Allow overriding the timeout_ns for empirical tuning. */
496 if (idata->ic.data_timeout_ns)
497 data.timeout_ns = idata->ic.data_timeout_ns;
498
499 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
500 /*
501 * Pretend this is a data transfer and rely on the
502 * host driver to compute timeout. When all host
503 * drivers support cmd.cmd_timeout for R1B, this
504 * can be changed to:
505 *
506 * mrq.data = NULL;
507 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
508 */
509 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
510 }
511
512 mrq.data = &data;
513 }
514
515 mrq.cmd = &cmd;
516
517 err = mmc_blk_part_switch(card, target_part);
518 if (err)
519 return err;
520
521 if (idata->ic.is_acmd) {
522 err = mmc_app_cmd(card->host, card);
523 if (err)
524 return err;
525 }
526
527 if (idata->rpmb) {
528 sbc.opcode = MMC_SET_BLOCK_COUNT;
529 /*
530 * We don't do any blockcount validation because the max size
531 * may be increased by a future standard. We just copy the
532 * 'Reliable Write' bit here.
533 */
534 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
535 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
536 mrq.sbc = &sbc;
537 }
538
539 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
540 (cmd.opcode == MMC_SWITCH))
541 return mmc_sanitize(card);
542
543 mmc_wait_for_req(card->host, &mrq);
544
545 if (cmd.error) {
546 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
547 __func__, cmd.error);
548 return cmd.error;
549 }
550 if (data.error) {
551 dev_err(mmc_dev(card->host), "%s: data error %d\n",
552 __func__, data.error);
553 return data.error;
554 }
555
556 /*
557 * Make sure the cache of the PARTITION_CONFIG register and
558 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
559 * changed it successfully.
560 */
561 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
562 (cmd.opcode == MMC_SWITCH)) {
563 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
564 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
565
566 /*
567 * Update cache so the next mmc_blk_part_switch call operates
568 * on up-to-date data.
569 */
570 card->ext_csd.part_config = value;
571 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
572 }
573
574 /*
575 * According to the SD specs, some commands require a delay after
576 * issuing the command.
577 */
578 if (idata->ic.postsleep_min_us)
579 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
580
581 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
582
583 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B)) {
584 /*
585 * Ensure RPMB/R1B command has completed by polling CMD13
586 * "Send Status".
587 */
588 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
589 }
590
591 return err;
592}
593
594static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
595 struct mmc_ioc_cmd __user *ic_ptr,
596 struct mmc_rpmb_data *rpmb)
597{
598 struct mmc_blk_ioc_data *idata;
599 struct mmc_blk_ioc_data *idatas[1];
600 struct mmc_queue *mq;
601 struct mmc_card *card;
602 int err = 0, ioc_err = 0;
603 struct request *req;
604
605 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
606 if (IS_ERR(idata))
607 return PTR_ERR(idata);
608 /* This will be NULL on non-RPMB ioctl():s */
609 idata->rpmb = rpmb;
610
611 card = md->queue.card;
612 if (IS_ERR(card)) {
613 err = PTR_ERR(card);
614 goto cmd_done;
615 }
616
617 /*
618 * Dispatch the ioctl() into the block request queue.
619 */
620 mq = &md->queue;
621 req = blk_get_request(mq->queue,
622 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
623 if (IS_ERR(req)) {
624 err = PTR_ERR(req);
625 goto cmd_done;
626 }
627 idatas[0] = idata;
628 req_to_mmc_queue_req(req)->drv_op =
629 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
630 req_to_mmc_queue_req(req)->drv_op_data = idatas;
631 req_to_mmc_queue_req(req)->ioc_count = 1;
632 blk_execute_rq(mq->queue, NULL, req, 0);
633 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
634 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
635 blk_put_request(req);
636
637cmd_done:
638 kfree(idata->buf);
639 kfree(idata);
640 return ioc_err ? ioc_err : err;
641}
642
643static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
644 struct mmc_ioc_multi_cmd __user *user,
645 struct mmc_rpmb_data *rpmb)
646{
647 struct mmc_blk_ioc_data **idata = NULL;
648 struct mmc_ioc_cmd __user *cmds = user->cmds;
649 struct mmc_card *card;
650 struct mmc_queue *mq;
651 int i, err = 0, ioc_err = 0;
652 __u64 num_of_cmds;
653 struct request *req;
654
655 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
656 sizeof(num_of_cmds)))
657 return -EFAULT;
658
659 if (!num_of_cmds)
660 return 0;
661
662 if (num_of_cmds > MMC_IOC_MAX_CMDS)
663 return -EINVAL;
664
665 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
666 if (!idata)
667 return -ENOMEM;
668
669 for (i = 0; i < num_of_cmds; i++) {
670 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
671 if (IS_ERR(idata[i])) {
672 err = PTR_ERR(idata[i]);
673 num_of_cmds = i;
674 goto cmd_err;
675 }
676 /* This will be NULL on non-RPMB ioctl():s */
677 idata[i]->rpmb = rpmb;
678 }
679
680 card = md->queue.card;
681 if (IS_ERR(card)) {
682 err = PTR_ERR(card);
683 goto cmd_err;
684 }
685
686
687 /*
688 * Dispatch the ioctl()s into the block request queue.
689 */
690 mq = &md->queue;
691 req = blk_get_request(mq->queue,
692 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
693 if (IS_ERR(req)) {
694 err = PTR_ERR(req);
695 goto cmd_err;
696 }
697 req_to_mmc_queue_req(req)->drv_op =
698 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
699 req_to_mmc_queue_req(req)->drv_op_data = idata;
700 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
701 blk_execute_rq(mq->queue, NULL, req, 0);
702 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
703
704 /* copy to user if data and response */
705 for (i = 0; i < num_of_cmds && !err; i++)
706 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
707
708 blk_put_request(req);
709
710cmd_err:
711 for (i = 0; i < num_of_cmds; i++) {
712 kfree(idata[i]->buf);
713 kfree(idata[i]);
714 }
715 kfree(idata);
716 return ioc_err ? ioc_err : err;
717}
718
719static int mmc_blk_check_blkdev(struct block_device *bdev)
720{
721 /*
722 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
723 * whole block device, not on a partition. This prevents overspray
724 * between sibling partitions.
725 */
726 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
727 return -EPERM;
728 return 0;
729}
730
731static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
732 unsigned int cmd, unsigned long arg)
733{
734 struct mmc_blk_data *md;
735 int ret;
736
737 switch (cmd) {
738 case MMC_IOC_CMD:
739 ret = mmc_blk_check_blkdev(bdev);
740 if (ret)
741 return ret;
742 md = mmc_blk_get(bdev->bd_disk);
743 if (!md)
744 return -EINVAL;
745 ret = mmc_blk_ioctl_cmd(md,
746 (struct mmc_ioc_cmd __user *)arg,
747 NULL);
748 mmc_blk_put(md);
749 return ret;
750 case MMC_IOC_MULTI_CMD:
751 ret = mmc_blk_check_blkdev(bdev);
752 if (ret)
753 return ret;
754 md = mmc_blk_get(bdev->bd_disk);
755 if (!md)
756 return -EINVAL;
757 ret = mmc_blk_ioctl_multi_cmd(md,
758 (struct mmc_ioc_multi_cmd __user *)arg,
759 NULL);
760 mmc_blk_put(md);
761 return ret;
762 default:
763 return -EINVAL;
764 }
765}
766
767#ifdef CONFIG_COMPAT
768static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
769 unsigned int cmd, unsigned long arg)
770{
771 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
772}
773#endif
774
775static const struct block_device_operations mmc_bdops = {
776 .open = mmc_blk_open,
777 .release = mmc_blk_release,
778 .getgeo = mmc_blk_getgeo,
779 .owner = THIS_MODULE,
780 .ioctl = mmc_blk_ioctl,
781#ifdef CONFIG_COMPAT
782 .compat_ioctl = mmc_blk_compat_ioctl,
783#endif
784};
785
786static int mmc_blk_part_switch_pre(struct mmc_card *card,
787 unsigned int part_type)
788{
789 int ret = 0;
790
791 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
792 if (card->ext_csd.cmdq_en) {
793 ret = mmc_cmdq_disable(card);
794 if (ret)
795 return ret;
796 }
797 mmc_retune_pause(card->host);
798 }
799
800 return ret;
801}
802
803static int mmc_blk_part_switch_post(struct mmc_card *card,
804 unsigned int part_type)
805{
806 int ret = 0;
807
808 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
809 mmc_retune_unpause(card->host);
810 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
811 ret = mmc_cmdq_enable(card);
812 }
813
814 return ret;
815}
816
817static inline int mmc_blk_part_switch(struct mmc_card *card,
818 unsigned int part_type)
819{
820 int ret = 0;
821 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
822
823 if (main_md->part_curr == part_type)
824 return 0;
825
826 if (mmc_card_mmc(card)) {
827 u8 part_config = card->ext_csd.part_config;
828
829 ret = mmc_blk_part_switch_pre(card, part_type);
830 if (ret)
831 return ret;
832
833 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
834 part_config |= part_type;
835
836 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
837 EXT_CSD_PART_CONFIG, part_config,
838 card->ext_csd.part_time);
839 if (ret) {
840 mmc_blk_part_switch_post(card, part_type);
841 return ret;
842 }
843
844 card->ext_csd.part_config = part_config;
845
846 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
847 }
848
849 main_md->part_curr = part_type;
850 return ret;
851}
852
853static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
854{
855 int err;
856 u32 result;
857 __be32 *blocks;
858
859 struct mmc_request mrq = {};
860 struct mmc_command cmd = {};
861 struct mmc_data data = {};
862
863 struct scatterlist sg;
864
865 cmd.opcode = MMC_APP_CMD;
866 cmd.arg = card->rca << 16;
867 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
868
869 err = mmc_wait_for_cmd(card->host, &cmd, 0);
870 if (err)
871 return err;
872 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
873 return -EIO;
874
875 memset(&cmd, 0, sizeof(struct mmc_command));
876
877 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
878 cmd.arg = 0;
879 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
880
881 data.blksz = 4;
882 data.blocks = 1;
883 data.flags = MMC_DATA_READ;
884 data.sg = &sg;
885 data.sg_len = 1;
886 mmc_set_data_timeout(&data, card);
887
888 mrq.cmd = &cmd;
889 mrq.data = &data;
890
891 blocks = kmalloc(4, GFP_KERNEL);
892 if (!blocks)
893 return -ENOMEM;
894
895 sg_init_one(&sg, blocks, 4);
896
897 mmc_wait_for_req(card->host, &mrq);
898
899 result = ntohl(*blocks);
900 kfree(blocks);
901
902 if (cmd.error || data.error)
903 return -EIO;
904
905 *written_blocks = result;
906
907 return 0;
908}
909
910static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
911{
912 if (host->actual_clock)
913 return host->actual_clock / 1000;
914
915 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
916 if (host->ios.clock)
917 return host->ios.clock / 2000;
918
919 /* How can there be no clock */
920 WARN_ON_ONCE(1);
921 return 100; /* 100 kHz is minimum possible value */
922}
923
924static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
925 struct mmc_data *data)
926{
927 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
928 unsigned int khz;
929
930 if (data->timeout_clks) {
931 khz = mmc_blk_clock_khz(host);
932 ms += DIV_ROUND_UP(data->timeout_clks, khz);
933 }
934
935 return ms;
936}
937
938static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
939 int type)
940{
941 int err;
942
943 if (md->reset_done & type)
944 return -EEXIST;
945
946 md->reset_done |= type;
947 err = mmc_hw_reset(host);
948 /* Ensure we switch back to the correct partition */
949 if (err != -EOPNOTSUPP) {
950 struct mmc_blk_data *main_md =
951 dev_get_drvdata(&host->card->dev);
952 int part_err;
953
954 main_md->part_curr = main_md->part_type;
955 part_err = mmc_blk_part_switch(host->card, md->part_type);
956 if (part_err) {
957 /*
958 * We have failed to get back into the correct
959 * partition, so we need to abort the whole request.
960 */
961 return -ENODEV;
962 }
963 }
964 return err;
965}
966
967static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
968{
969 md->reset_done &= ~type;
970}
971
972/*
973 * The non-block commands come back from the block layer after it queued it and
974 * processed it with all other requests and then they get issued in this
975 * function.
976 */
977static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
978{
979 struct mmc_queue_req *mq_rq;
980 struct mmc_card *card = mq->card;
981 struct mmc_blk_data *md = mq->blkdata;
982 struct mmc_blk_ioc_data **idata;
983 bool rpmb_ioctl;
984 u8 **ext_csd;
985 u32 status;
986 int ret;
987 int i;
988
989 mq_rq = req_to_mmc_queue_req(req);
990 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
991
992 switch (mq_rq->drv_op) {
993 case MMC_DRV_OP_IOCTL:
994 case MMC_DRV_OP_IOCTL_RPMB:
995 idata = mq_rq->drv_op_data;
996 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
997 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
998 if (ret)
999 break;
1000 }
1001 /* Always switch back to main area after RPMB access */
1002 if (rpmb_ioctl)
1003 mmc_blk_part_switch(card, 0);
1004 break;
1005 case MMC_DRV_OP_BOOT_WP:
1006 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1007 card->ext_csd.boot_ro_lock |
1008 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1009 card->ext_csd.part_time);
1010 if (ret)
1011 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1012 md->disk->disk_name, ret);
1013 else
1014 card->ext_csd.boot_ro_lock |=
1015 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1016 break;
1017 case MMC_DRV_OP_GET_CARD_STATUS:
1018 ret = mmc_send_status(card, &status);
1019 if (!ret)
1020 ret = status;
1021 break;
1022 case MMC_DRV_OP_GET_EXT_CSD:
1023 ext_csd = mq_rq->drv_op_data;
1024 ret = mmc_get_ext_csd(card, ext_csd);
1025 break;
1026 default:
1027 pr_err("%s: unknown driver specific operation\n",
1028 md->disk->disk_name);
1029 ret = -EINVAL;
1030 break;
1031 }
1032 mq_rq->drv_op_result = ret;
1033 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1034}
1035
1036static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1037{
1038 struct mmc_blk_data *md = mq->blkdata;
1039 struct mmc_card *card = md->queue.card;
1040 unsigned int from, nr;
1041 int err = 0, type = MMC_BLK_DISCARD;
1042 blk_status_t status = BLK_STS_OK;
1043
1044 if (!mmc_can_erase(card)) {
1045 status = BLK_STS_NOTSUPP;
1046 goto fail;
1047 }
1048
1049 from = blk_rq_pos(req);
1050 nr = blk_rq_sectors(req);
1051
1052 do {
1053 err = 0;
1054 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1055 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1056 INAND_CMD38_ARG_EXT_CSD,
1057 card->erase_arg == MMC_TRIM_ARG ?
1058 INAND_CMD38_ARG_TRIM :
1059 INAND_CMD38_ARG_ERASE,
1060 card->ext_csd.generic_cmd6_time);
1061 }
1062 if (!err)
1063 err = mmc_erase(card, from, nr, card->erase_arg);
1064 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1065 if (err)
1066 status = BLK_STS_IOERR;
1067 else
1068 mmc_blk_reset_success(md, type);
1069fail:
1070 blk_mq_end_request(req, status);
1071}
1072
1073static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1074 struct request *req)
1075{
1076 struct mmc_blk_data *md = mq->blkdata;
1077 struct mmc_card *card = md->queue.card;
1078 unsigned int from, nr, arg;
1079 int err = 0, type = MMC_BLK_SECDISCARD;
1080 blk_status_t status = BLK_STS_OK;
1081
1082 if (!(mmc_can_secure_erase_trim(card))) {
1083 status = BLK_STS_NOTSUPP;
1084 goto out;
1085 }
1086
1087 from = blk_rq_pos(req);
1088 nr = blk_rq_sectors(req);
1089
1090 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1091 arg = MMC_SECURE_TRIM1_ARG;
1092 else
1093 arg = MMC_SECURE_ERASE_ARG;
1094
1095retry:
1096 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1097 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1098 INAND_CMD38_ARG_EXT_CSD,
1099 arg == MMC_SECURE_TRIM1_ARG ?
1100 INAND_CMD38_ARG_SECTRIM1 :
1101 INAND_CMD38_ARG_SECERASE,
1102 card->ext_csd.generic_cmd6_time);
1103 if (err)
1104 goto out_retry;
1105 }
1106
1107 err = mmc_erase(card, from, nr, arg);
1108 if (err == -EIO)
1109 goto out_retry;
1110 if (err) {
1111 status = BLK_STS_IOERR;
1112 goto out;
1113 }
1114
1115 if (arg == MMC_SECURE_TRIM1_ARG) {
1116 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1117 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1118 INAND_CMD38_ARG_EXT_CSD,
1119 INAND_CMD38_ARG_SECTRIM2,
1120 card->ext_csd.generic_cmd6_time);
1121 if (err)
1122 goto out_retry;
1123 }
1124
1125 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1126 if (err == -EIO)
1127 goto out_retry;
1128 if (err) {
1129 status = BLK_STS_IOERR;
1130 goto out;
1131 }
1132 }
1133
1134out_retry:
1135 if (err && !mmc_blk_reset(md, card->host, type))
1136 goto retry;
1137 if (!err)
1138 mmc_blk_reset_success(md, type);
1139out:
1140 blk_mq_end_request(req, status);
1141}
1142
1143static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1144{
1145 struct mmc_blk_data *md = mq->blkdata;
1146 struct mmc_card *card = md->queue.card;
1147 int ret = 0;
1148
1149 ret = mmc_flush_cache(card);
1150 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1151}
1152
1153/*
1154 * Reformat current write as a reliable write, supporting
1155 * both legacy and the enhanced reliable write MMC cards.
1156 * In each transfer we'll handle only as much as a single
1157 * reliable write can handle, thus finish the request in
1158 * partial completions.
1159 */
1160static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1161 struct mmc_card *card,
1162 struct request *req)
1163{
1164 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1165 /* Legacy mode imposes restrictions on transfers. */
1166 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1167 brq->data.blocks = 1;
1168
1169 if (brq->data.blocks > card->ext_csd.rel_sectors)
1170 brq->data.blocks = card->ext_csd.rel_sectors;
1171 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1172 brq->data.blocks = 1;
1173 }
1174}
1175
1176#define CMD_ERRORS_EXCL_OOR \
1177 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1178 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1179 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1180 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1181 R1_CC_ERROR | /* Card controller error */ \
1182 R1_ERROR) /* General/unknown error */
1183
1184#define CMD_ERRORS \
1185 (CMD_ERRORS_EXCL_OOR | \
1186 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1187
1188static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1189{
1190 u32 val;
1191
1192 /*
1193 * Per the SD specification(physical layer version 4.10)[1],
1194 * section 4.3.3, it explicitly states that "When the last
1195 * block of user area is read using CMD18, the host should
1196 * ignore OUT_OF_RANGE error that may occur even the sequence
1197 * is correct". And JESD84-B51 for eMMC also has a similar
1198 * statement on section 6.8.3.
1199 *
1200 * Multiple block read/write could be done by either predefined
1201 * method, namely CMD23, or open-ending mode. For open-ending mode,
1202 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1203 *
1204 * However the spec[1] doesn't tell us whether we should also
1205 * ignore that for predefined method. But per the spec[1], section
1206 * 4.15 Set Block Count Command, it says"If illegal block count
1207 * is set, out of range error will be indicated during read/write
1208 * operation (For example, data transfer is stopped at user area
1209 * boundary)." In another word, we could expect a out of range error
1210 * in the response for the following CMD18/25. And if argument of
1211 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1212 * we could also expect to get a -ETIMEDOUT or any error number from
1213 * the host drivers due to missing data response(for write)/data(for
1214 * read), as the cards will stop the data transfer by itself per the
1215 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1216 */
1217
1218 if (!brq->stop.error) {
1219 bool oor_with_open_end;
1220 /* If there is no error yet, check R1 response */
1221
1222 val = brq->stop.resp[0] & CMD_ERRORS;
1223 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1224
1225 if (val && !oor_with_open_end)
1226 brq->stop.error = -EIO;
1227 }
1228}
1229
1230static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1231 int disable_multi, bool *do_rel_wr_p,
1232 bool *do_data_tag_p)
1233{
1234 struct mmc_blk_data *md = mq->blkdata;
1235 struct mmc_card *card = md->queue.card;
1236 struct mmc_blk_request *brq = &mqrq->brq;
1237 struct request *req = mmc_queue_req_to_req(mqrq);
1238 bool do_rel_wr, do_data_tag;
1239
1240 /*
1241 * Reliable writes are used to implement Forced Unit Access and
1242 * are supported only on MMCs.
1243 */
1244 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1245 rq_data_dir(req) == WRITE &&
1246 (md->flags & MMC_BLK_REL_WR);
1247
1248 memset(brq, 0, sizeof(struct mmc_blk_request));
1249
1250 brq->mrq.data = &brq->data;
1251 brq->mrq.tag = req->tag;
1252
1253 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1254 brq->stop.arg = 0;
1255
1256 if (rq_data_dir(req) == READ) {
1257 brq->data.flags = MMC_DATA_READ;
1258 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1259 } else {
1260 brq->data.flags = MMC_DATA_WRITE;
1261 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1262 }
1263
1264 brq->data.blksz = 512;
1265 brq->data.blocks = blk_rq_sectors(req);
1266 brq->data.blk_addr = blk_rq_pos(req);
1267
1268 /*
1269 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1270 * The eMMC will give "high" priority tasks priority over "simple"
1271 * priority tasks. Here we always set "simple" priority by not setting
1272 * MMC_DATA_PRIO.
1273 */
1274
1275 /*
1276 * The block layer doesn't support all sector count
1277 * restrictions, so we need to be prepared for too big
1278 * requests.
1279 */
1280 if (brq->data.blocks > card->host->max_blk_count)
1281 brq->data.blocks = card->host->max_blk_count;
1282
1283 if (brq->data.blocks > 1) {
1284 /*
1285 * Some SD cards in SPI mode return a CRC error or even lock up
1286 * completely when trying to read the last block using a
1287 * multiblock read command.
1288 */
1289 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1290 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1291 get_capacity(md->disk)))
1292 brq->data.blocks--;
1293
1294 /*
1295 * After a read error, we redo the request one sector
1296 * at a time in order to accurately determine which
1297 * sectors can be read successfully.
1298 */
1299 if (disable_multi)
1300 brq->data.blocks = 1;
1301
1302 /*
1303 * Some controllers have HW issues while operating
1304 * in multiple I/O mode
1305 */
1306 if (card->host->ops->multi_io_quirk)
1307 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1308 (rq_data_dir(req) == READ) ?
1309 MMC_DATA_READ : MMC_DATA_WRITE,
1310 brq->data.blocks);
1311 }
1312
1313 if (do_rel_wr) {
1314 mmc_apply_rel_rw(brq, card, req);
1315 brq->data.flags |= MMC_DATA_REL_WR;
1316 }
1317
1318 /*
1319 * Data tag is used only during writing meta data to speed
1320 * up write and any subsequent read of this meta data
1321 */
1322 do_data_tag = card->ext_csd.data_tag_unit_size &&
1323 (req->cmd_flags & REQ_META) &&
1324 (rq_data_dir(req) == WRITE) &&
1325 ((brq->data.blocks * brq->data.blksz) >=
1326 card->ext_csd.data_tag_unit_size);
1327
1328 if (do_data_tag)
1329 brq->data.flags |= MMC_DATA_DAT_TAG;
1330
1331 mmc_set_data_timeout(&brq->data, card);
1332
1333 brq->data.sg = mqrq->sg;
1334 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1335
1336 /*
1337 * Adjust the sg list so it is the same size as the
1338 * request.
1339 */
1340 if (brq->data.blocks != blk_rq_sectors(req)) {
1341 int i, data_size = brq->data.blocks << 9;
1342 struct scatterlist *sg;
1343
1344 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1345 data_size -= sg->length;
1346 if (data_size <= 0) {
1347 sg->length += data_size;
1348 i++;
1349 break;
1350 }
1351 }
1352 brq->data.sg_len = i;
1353 }
1354
1355 if (do_rel_wr_p)
1356 *do_rel_wr_p = do_rel_wr;
1357
1358 if (do_data_tag_p)
1359 *do_data_tag_p = do_data_tag;
1360}
1361
1362#define MMC_CQE_RETRIES 2
1363
1364static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1365{
1366 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1367 struct mmc_request *mrq = &mqrq->brq.mrq;
1368 struct request_queue *q = req->q;
1369 struct mmc_host *host = mq->card->host;
1370 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1371 unsigned long flags;
1372 bool put_card;
1373 int err;
1374
1375 mmc_cqe_post_req(host, mrq);
1376
1377 if (mrq->cmd && mrq->cmd->error)
1378 err = mrq->cmd->error;
1379 else if (mrq->data && mrq->data->error)
1380 err = mrq->data->error;
1381 else
1382 err = 0;
1383
1384 if (err) {
1385 if (mqrq->retries++ < MMC_CQE_RETRIES)
1386 blk_mq_requeue_request(req, true);
1387 else
1388 blk_mq_end_request(req, BLK_STS_IOERR);
1389 } else if (mrq->data) {
1390 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1391 blk_mq_requeue_request(req, true);
1392 else
1393 __blk_mq_end_request(req, BLK_STS_OK);
1394 } else {
1395 blk_mq_end_request(req, BLK_STS_OK);
1396 }
1397
1398 spin_lock_irqsave(&mq->lock, flags);
1399
1400 mq->in_flight[issue_type] -= 1;
1401
1402 put_card = (mmc_tot_in_flight(mq) == 0);
1403
1404 mmc_cqe_check_busy(mq);
1405
1406 spin_unlock_irqrestore(&mq->lock, flags);
1407
1408 if (!mq->cqe_busy)
1409 blk_mq_run_hw_queues(q, true);
1410
1411 if (put_card)
1412 mmc_put_card(mq->card, &mq->ctx);
1413}
1414
1415void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1416{
1417 struct mmc_card *card = mq->card;
1418 struct mmc_host *host = card->host;
1419 int err;
1420
1421 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1422
1423 err = mmc_cqe_recovery(host);
1424 if (err)
1425 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1426 else
1427 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1428
1429 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1430}
1431
1432static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1433{
1434 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1435 brq.mrq);
1436 struct request *req = mmc_queue_req_to_req(mqrq);
1437 struct request_queue *q = req->q;
1438 struct mmc_queue *mq = q->queuedata;
1439
1440 /*
1441 * Block layer timeouts race with completions which means the normal
1442 * completion path cannot be used during recovery.
1443 */
1444 if (mq->in_recovery)
1445 mmc_blk_cqe_complete_rq(mq, req);
1446 else if (likely(!blk_should_fake_timeout(req->q)))
1447 blk_mq_complete_request(req);
1448}
1449
1450static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1451{
1452 mrq->done = mmc_blk_cqe_req_done;
1453 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1454
1455 return mmc_cqe_start_req(host, mrq);
1456}
1457
1458static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1459 struct request *req)
1460{
1461 struct mmc_blk_request *brq = &mqrq->brq;
1462
1463 memset(brq, 0, sizeof(*brq));
1464
1465 brq->mrq.cmd = &brq->cmd;
1466 brq->mrq.tag = req->tag;
1467
1468 return &brq->mrq;
1469}
1470
1471static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1472{
1473 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1474 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1475
1476 mrq->cmd->opcode = MMC_SWITCH;
1477 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1478 (EXT_CSD_FLUSH_CACHE << 16) |
1479 (1 << 8) |
1480 EXT_CSD_CMD_SET_NORMAL;
1481 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1482
1483 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1484}
1485
1486static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1487{
1488 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1489 struct mmc_host *host = mq->card->host;
1490 int err;
1491
1492 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1493 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1494 mmc_pre_req(host, &mqrq->brq.mrq);
1495
1496 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1497 if (err)
1498 mmc_post_req(host, &mqrq->brq.mrq, err);
1499
1500 return err;
1501}
1502
1503static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1504{
1505 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1506 struct mmc_host *host = mq->card->host;
1507
1508 if (host->hsq_enabled)
1509 return mmc_blk_hsq_issue_rw_rq(mq, req);
1510
1511 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1512
1513 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1514}
1515
1516static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1517 struct mmc_card *card,
1518 int disable_multi,
1519 struct mmc_queue *mq)
1520{
1521 u32 readcmd, writecmd;
1522 struct mmc_blk_request *brq = &mqrq->brq;
1523 struct request *req = mmc_queue_req_to_req(mqrq);
1524 struct mmc_blk_data *md = mq->blkdata;
1525 bool do_rel_wr, do_data_tag;
1526
1527 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1528
1529 brq->mrq.cmd = &brq->cmd;
1530
1531 brq->cmd.arg = blk_rq_pos(req);
1532 if (!mmc_card_blockaddr(card))
1533 brq->cmd.arg <<= 9;
1534 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1535
1536 if (brq->data.blocks > 1 || do_rel_wr) {
1537 /* SPI multiblock writes terminate using a special
1538 * token, not a STOP_TRANSMISSION request.
1539 */
1540 if (!mmc_host_is_spi(card->host) ||
1541 rq_data_dir(req) == READ)
1542 brq->mrq.stop = &brq->stop;
1543 readcmd = MMC_READ_MULTIPLE_BLOCK;
1544 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1545 } else {
1546 brq->mrq.stop = NULL;
1547 readcmd = MMC_READ_SINGLE_BLOCK;
1548 writecmd = MMC_WRITE_BLOCK;
1549 }
1550 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1551
1552 /*
1553 * Pre-defined multi-block transfers are preferable to
1554 * open ended-ones (and necessary for reliable writes).
1555 * However, it is not sufficient to just send CMD23,
1556 * and avoid the final CMD12, as on an error condition
1557 * CMD12 (stop) needs to be sent anyway. This, coupled
1558 * with Auto-CMD23 enhancements provided by some
1559 * hosts, means that the complexity of dealing
1560 * with this is best left to the host. If CMD23 is
1561 * supported by card and host, we'll fill sbc in and let
1562 * the host deal with handling it correctly. This means
1563 * that for hosts that don't expose MMC_CAP_CMD23, no
1564 * change of behavior will be observed.
1565 *
1566 * N.B: Some MMC cards experience perf degradation.
1567 * We'll avoid using CMD23-bounded multiblock writes for
1568 * these, while retaining features like reliable writes.
1569 */
1570 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1571 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1572 do_data_tag)) {
1573 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1574 brq->sbc.arg = brq->data.blocks |
1575 (do_rel_wr ? (1 << 31) : 0) |
1576 (do_data_tag ? (1 << 29) : 0);
1577 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1578 brq->mrq.sbc = &brq->sbc;
1579 }
1580}
1581
1582#define MMC_MAX_RETRIES 5
1583#define MMC_DATA_RETRIES 2
1584#define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1585
1586static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1587{
1588 struct mmc_command cmd = {
1589 .opcode = MMC_STOP_TRANSMISSION,
1590 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1591 /* Some hosts wait for busy anyway, so provide a busy timeout */
1592 .busy_timeout = timeout,
1593 };
1594
1595 return mmc_wait_for_cmd(card->host, &cmd, 5);
1596}
1597
1598static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1599{
1600 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1601 struct mmc_blk_request *brq = &mqrq->brq;
1602 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1603 int err;
1604
1605 mmc_retune_hold_now(card->host);
1606
1607 mmc_blk_send_stop(card, timeout);
1608
1609 err = card_busy_detect(card, timeout, NULL);
1610
1611 mmc_retune_release(card->host);
1612
1613 return err;
1614}
1615
1616#define MMC_READ_SINGLE_RETRIES 2
1617
1618/* Single sector read during recovery */
1619static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1620{
1621 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1622 struct mmc_request *mrq = &mqrq->brq.mrq;
1623 struct mmc_card *card = mq->card;
1624 struct mmc_host *host = card->host;
1625 blk_status_t error = BLK_STS_OK;
1626 int retries = 0;
1627
1628 do {
1629 u32 status;
1630 int err;
1631
1632 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1633
1634 mmc_wait_for_req(host, mrq);
1635
1636 err = mmc_send_status(card, &status);
1637 if (err)
1638 goto error_exit;
1639
1640 if (!mmc_host_is_spi(host) &&
1641 !mmc_ready_for_data(status)) {
1642 err = mmc_blk_fix_state(card, req);
1643 if (err)
1644 goto error_exit;
1645 }
1646
1647 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1648 continue;
1649
1650 retries = 0;
1651
1652 if (mrq->cmd->error ||
1653 mrq->data->error ||
1654 (!mmc_host_is_spi(host) &&
1655 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1656 error = BLK_STS_IOERR;
1657 else
1658 error = BLK_STS_OK;
1659
1660 } while (blk_update_request(req, error, 512));
1661
1662 return;
1663
1664error_exit:
1665 mrq->data->bytes_xfered = 0;
1666 blk_update_request(req, BLK_STS_IOERR, 512);
1667 /* Let it try the remaining request again */
1668 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1669 mqrq->retries = MMC_MAX_RETRIES - 1;
1670}
1671
1672static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1673{
1674 return !!brq->mrq.sbc;
1675}
1676
1677static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1678{
1679 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1680}
1681
1682/*
1683 * Check for errors the host controller driver might not have seen such as
1684 * response mode errors or invalid card state.
1685 */
1686static bool mmc_blk_status_error(struct request *req, u32 status)
1687{
1688 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1689 struct mmc_blk_request *brq = &mqrq->brq;
1690 struct mmc_queue *mq = req->q->queuedata;
1691 u32 stop_err_bits;
1692
1693 if (mmc_host_is_spi(mq->card->host))
1694 return false;
1695
1696 stop_err_bits = mmc_blk_stop_err_bits(brq);
1697
1698 return brq->cmd.resp[0] & CMD_ERRORS ||
1699 brq->stop.resp[0] & stop_err_bits ||
1700 status & stop_err_bits ||
1701 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1702}
1703
1704static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1705{
1706 return !brq->sbc.error && !brq->cmd.error &&
1707 !(brq->cmd.resp[0] & CMD_ERRORS);
1708}
1709
1710/*
1711 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1712 * policy:
1713 * 1. A request that has transferred at least some data is considered
1714 * successful and will be requeued if there is remaining data to
1715 * transfer.
1716 * 2. Otherwise the number of retries is incremented and the request
1717 * will be requeued if there are remaining retries.
1718 * 3. Otherwise the request will be errored out.
1719 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1720 * mqrq->retries. So there are only 4 possible actions here:
1721 * 1. do not accept the bytes_xfered value i.e. set it to zero
1722 * 2. change mqrq->retries to determine the number of retries
1723 * 3. try to reset the card
1724 * 4. read one sector at a time
1725 */
1726static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1727{
1728 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1729 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1730 struct mmc_blk_request *brq = &mqrq->brq;
1731 struct mmc_blk_data *md = mq->blkdata;
1732 struct mmc_card *card = mq->card;
1733 u32 status;
1734 u32 blocks;
1735 int err;
1736
1737 /*
1738 * Some errors the host driver might not have seen. Set the number of
1739 * bytes transferred to zero in that case.
1740 */
1741 err = __mmc_send_status(card, &status, 0);
1742 if (err || mmc_blk_status_error(req, status))
1743 brq->data.bytes_xfered = 0;
1744
1745 mmc_retune_release(card->host);
1746
1747 /*
1748 * Try again to get the status. This also provides an opportunity for
1749 * re-tuning.
1750 */
1751 if (err)
1752 err = __mmc_send_status(card, &status, 0);
1753
1754 /*
1755 * Nothing more to do after the number of bytes transferred has been
1756 * updated and there is no card.
1757 */
1758 if (err && mmc_detect_card_removed(card->host))
1759 return;
1760
1761 /* Try to get back to "tran" state */
1762 if (!mmc_host_is_spi(mq->card->host) &&
1763 (err || !mmc_ready_for_data(status)))
1764 err = mmc_blk_fix_state(mq->card, req);
1765
1766 /*
1767 * Special case for SD cards where the card might record the number of
1768 * blocks written.
1769 */
1770 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1771 rq_data_dir(req) == WRITE) {
1772 if (mmc_sd_num_wr_blocks(card, &blocks))
1773 brq->data.bytes_xfered = 0;
1774 else
1775 brq->data.bytes_xfered = blocks << 9;
1776 }
1777
1778 /* Reset if the card is in a bad state */
1779 if (!mmc_host_is_spi(mq->card->host) &&
1780 err && mmc_blk_reset(md, card->host, type)) {
1781 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1782 mqrq->retries = MMC_NO_RETRIES;
1783 return;
1784 }
1785
1786 /*
1787 * If anything was done, just return and if there is anything remaining
1788 * on the request it will get requeued.
1789 */
1790 if (brq->data.bytes_xfered)
1791 return;
1792
1793 /* Reset before last retry */
1794 if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1795 mmc_blk_reset(md, card->host, type);
1796
1797 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1798 if (brq->sbc.error || brq->cmd.error)
1799 return;
1800
1801 /* Reduce the remaining retries for data errors */
1802 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1803 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1804 return;
1805 }
1806
1807 /* FIXME: Missing single sector read for large sector size */
1808 if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1809 brq->data.blocks > 1) {
1810 /* Read one sector at a time */
1811 mmc_blk_read_single(mq, req);
1812 return;
1813 }
1814}
1815
1816static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1817{
1818 mmc_blk_eval_resp_error(brq);
1819
1820 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1821 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1822}
1823
1824static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1825{
1826 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1827 u32 status = 0;
1828 int err;
1829
1830 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1831 return 0;
1832
1833 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1834
1835 /*
1836 * Do not assume data transferred correctly if there are any error bits
1837 * set.
1838 */
1839 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1840 mqrq->brq.data.bytes_xfered = 0;
1841 err = err ? err : -EIO;
1842 }
1843
1844 /* Copy the exception bit so it will be seen later on */
1845 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1846 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1847
1848 return err;
1849}
1850
1851static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1852 struct request *req)
1853{
1854 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1855
1856 mmc_blk_reset_success(mq->blkdata, type);
1857}
1858
1859static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1860{
1861 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1862 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1863
1864 if (nr_bytes) {
1865 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1866 blk_mq_requeue_request(req, true);
1867 else
1868 __blk_mq_end_request(req, BLK_STS_OK);
1869 } else if (!blk_rq_bytes(req)) {
1870 __blk_mq_end_request(req, BLK_STS_IOERR);
1871 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1872 blk_mq_requeue_request(req, true);
1873 } else {
1874 if (mmc_card_removed(mq->card))
1875 req->rq_flags |= RQF_QUIET;
1876 blk_mq_end_request(req, BLK_STS_IOERR);
1877 }
1878}
1879
1880static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1881 struct mmc_queue_req *mqrq)
1882{
1883 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1884 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1885 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1886}
1887
1888static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1889 struct mmc_queue_req *mqrq)
1890{
1891 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1892 mmc_run_bkops(mq->card);
1893}
1894
1895static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1896{
1897 struct mmc_queue_req *mqrq =
1898 container_of(mrq, struct mmc_queue_req, brq.mrq);
1899 struct request *req = mmc_queue_req_to_req(mqrq);
1900 struct request_queue *q = req->q;
1901 struct mmc_queue *mq = q->queuedata;
1902 struct mmc_host *host = mq->card->host;
1903 unsigned long flags;
1904
1905 if (mmc_blk_rq_error(&mqrq->brq) ||
1906 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1907 spin_lock_irqsave(&mq->lock, flags);
1908 mq->recovery_needed = true;
1909 mq->recovery_req = req;
1910 spin_unlock_irqrestore(&mq->lock, flags);
1911
1912 host->cqe_ops->cqe_recovery_start(host);
1913
1914 schedule_work(&mq->recovery_work);
1915 return;
1916 }
1917
1918 mmc_blk_rw_reset_success(mq, req);
1919
1920 /*
1921 * Block layer timeouts race with completions which means the normal
1922 * completion path cannot be used during recovery.
1923 */
1924 if (mq->in_recovery)
1925 mmc_blk_cqe_complete_rq(mq, req);
1926 else if (likely(!blk_should_fake_timeout(req->q)))
1927 blk_mq_complete_request(req);
1928}
1929
1930void mmc_blk_mq_complete(struct request *req)
1931{
1932 struct mmc_queue *mq = req->q->queuedata;
1933
1934 if (mq->use_cqe)
1935 mmc_blk_cqe_complete_rq(mq, req);
1936 else if (likely(!blk_should_fake_timeout(req->q)))
1937 mmc_blk_mq_complete_rq(mq, req);
1938}
1939
1940static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1941 struct request *req)
1942{
1943 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1944 struct mmc_host *host = mq->card->host;
1945
1946 if (mmc_blk_rq_error(&mqrq->brq) ||
1947 mmc_blk_card_busy(mq->card, req)) {
1948 mmc_blk_mq_rw_recovery(mq, req);
1949 } else {
1950 mmc_blk_rw_reset_success(mq, req);
1951 mmc_retune_release(host);
1952 }
1953
1954 mmc_blk_urgent_bkops(mq, mqrq);
1955}
1956
1957static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1958{
1959 unsigned long flags;
1960 bool put_card;
1961
1962 spin_lock_irqsave(&mq->lock, flags);
1963
1964 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1965
1966 put_card = (mmc_tot_in_flight(mq) == 0);
1967
1968 spin_unlock_irqrestore(&mq->lock, flags);
1969
1970 if (put_card)
1971 mmc_put_card(mq->card, &mq->ctx);
1972}
1973
1974static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1975{
1976 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1977 struct mmc_request *mrq = &mqrq->brq.mrq;
1978 struct mmc_host *host = mq->card->host;
1979
1980 mmc_post_req(host, mrq, 0);
1981
1982 /*
1983 * Block layer timeouts race with completions which means the normal
1984 * completion path cannot be used during recovery.
1985 */
1986 if (mq->in_recovery)
1987 mmc_blk_mq_complete_rq(mq, req);
1988 else if (likely(!blk_should_fake_timeout(req->q)))
1989 blk_mq_complete_request(req);
1990
1991 mmc_blk_mq_dec_in_flight(mq, req);
1992}
1993
1994void mmc_blk_mq_recovery(struct mmc_queue *mq)
1995{
1996 struct request *req = mq->recovery_req;
1997 struct mmc_host *host = mq->card->host;
1998 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1999
2000 mq->recovery_req = NULL;
2001 mq->rw_wait = false;
2002
2003 if (mmc_blk_rq_error(&mqrq->brq)) {
2004 mmc_retune_hold_now(host);
2005 mmc_blk_mq_rw_recovery(mq, req);
2006 }
2007
2008 mmc_blk_urgent_bkops(mq, mqrq);
2009
2010 mmc_blk_mq_post_req(mq, req);
2011}
2012
2013static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2014 struct request **prev_req)
2015{
2016 if (mmc_host_done_complete(mq->card->host))
2017 return;
2018
2019 mutex_lock(&mq->complete_lock);
2020
2021 if (!mq->complete_req)
2022 goto out_unlock;
2023
2024 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2025
2026 if (prev_req)
2027 *prev_req = mq->complete_req;
2028 else
2029 mmc_blk_mq_post_req(mq, mq->complete_req);
2030
2031 mq->complete_req = NULL;
2032
2033out_unlock:
2034 mutex_unlock(&mq->complete_lock);
2035}
2036
2037void mmc_blk_mq_complete_work(struct work_struct *work)
2038{
2039 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2040 complete_work);
2041
2042 mmc_blk_mq_complete_prev_req(mq, NULL);
2043}
2044
2045static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2046{
2047 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2048 brq.mrq);
2049 struct request *req = mmc_queue_req_to_req(mqrq);
2050 struct request_queue *q = req->q;
2051 struct mmc_queue *mq = q->queuedata;
2052 struct mmc_host *host = mq->card->host;
2053 unsigned long flags;
2054
2055 if (!mmc_host_done_complete(host)) {
2056 bool waiting;
2057
2058 /*
2059 * We cannot complete the request in this context, so record
2060 * that there is a request to complete, and that a following
2061 * request does not need to wait (although it does need to
2062 * complete complete_req first).
2063 */
2064 spin_lock_irqsave(&mq->lock, flags);
2065 mq->complete_req = req;
2066 mq->rw_wait = false;
2067 waiting = mq->waiting;
2068 spin_unlock_irqrestore(&mq->lock, flags);
2069
2070 /*
2071 * If 'waiting' then the waiting task will complete this
2072 * request, otherwise queue a work to do it. Note that
2073 * complete_work may still race with the dispatch of a following
2074 * request.
2075 */
2076 if (waiting)
2077 wake_up(&mq->wait);
2078 else
2079 queue_work(mq->card->complete_wq, &mq->complete_work);
2080
2081 return;
2082 }
2083
2084 /* Take the recovery path for errors or urgent background operations */
2085 if (mmc_blk_rq_error(&mqrq->brq) ||
2086 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2087 spin_lock_irqsave(&mq->lock, flags);
2088 mq->recovery_needed = true;
2089 mq->recovery_req = req;
2090 spin_unlock_irqrestore(&mq->lock, flags);
2091 wake_up(&mq->wait);
2092 schedule_work(&mq->recovery_work);
2093 return;
2094 }
2095
2096 mmc_blk_rw_reset_success(mq, req);
2097
2098 mq->rw_wait = false;
2099 wake_up(&mq->wait);
2100
2101 mmc_blk_mq_post_req(mq, req);
2102}
2103
2104static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2105{
2106 unsigned long flags;
2107 bool done;
2108
2109 /*
2110 * Wait while there is another request in progress, but not if recovery
2111 * is needed. Also indicate whether there is a request waiting to start.
2112 */
2113 spin_lock_irqsave(&mq->lock, flags);
2114 if (mq->recovery_needed) {
2115 *err = -EBUSY;
2116 done = true;
2117 } else {
2118 done = !mq->rw_wait;
2119 }
2120 mq->waiting = !done;
2121 spin_unlock_irqrestore(&mq->lock, flags);
2122
2123 return done;
2124}
2125
2126static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2127{
2128 int err = 0;
2129
2130 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2131
2132 /* Always complete the previous request if there is one */
2133 mmc_blk_mq_complete_prev_req(mq, prev_req);
2134
2135 return err;
2136}
2137
2138static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2139 struct request *req)
2140{
2141 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2142 struct mmc_host *host = mq->card->host;
2143 struct request *prev_req = NULL;
2144 int err = 0;
2145
2146 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2147
2148 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2149
2150 mmc_pre_req(host, &mqrq->brq.mrq);
2151
2152 err = mmc_blk_rw_wait(mq, &prev_req);
2153 if (err)
2154 goto out_post_req;
2155
2156 mq->rw_wait = true;
2157
2158 err = mmc_start_request(host, &mqrq->brq.mrq);
2159
2160 if (prev_req)
2161 mmc_blk_mq_post_req(mq, prev_req);
2162
2163 if (err)
2164 mq->rw_wait = false;
2165
2166 /* Release re-tuning here where there is no synchronization required */
2167 if (err || mmc_host_done_complete(host))
2168 mmc_retune_release(host);
2169
2170out_post_req:
2171 if (err)
2172 mmc_post_req(host, &mqrq->brq.mrq, err);
2173
2174 return err;
2175}
2176
2177static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2178{
2179 if (mq->use_cqe)
2180 return host->cqe_ops->cqe_wait_for_idle(host);
2181
2182 return mmc_blk_rw_wait(mq, NULL);
2183}
2184
2185enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2186{
2187 struct mmc_blk_data *md = mq->blkdata;
2188 struct mmc_card *card = md->queue.card;
2189 struct mmc_host *host = card->host;
2190 int ret;
2191
2192 ret = mmc_blk_part_switch(card, md->part_type);
2193 if (ret)
2194 return MMC_REQ_FAILED_TO_START;
2195
2196 switch (mmc_issue_type(mq, req)) {
2197 case MMC_ISSUE_SYNC:
2198 ret = mmc_blk_wait_for_idle(mq, host);
2199 if (ret)
2200 return MMC_REQ_BUSY;
2201 switch (req_op(req)) {
2202 case REQ_OP_DRV_IN:
2203 case REQ_OP_DRV_OUT:
2204 mmc_blk_issue_drv_op(mq, req);
2205 break;
2206 case REQ_OP_DISCARD:
2207 mmc_blk_issue_discard_rq(mq, req);
2208 break;
2209 case REQ_OP_SECURE_ERASE:
2210 mmc_blk_issue_secdiscard_rq(mq, req);
2211 break;
2212 case REQ_OP_FLUSH:
2213 mmc_blk_issue_flush(mq, req);
2214 break;
2215 default:
2216 WARN_ON_ONCE(1);
2217 return MMC_REQ_FAILED_TO_START;
2218 }
2219 return MMC_REQ_FINISHED;
2220 case MMC_ISSUE_DCMD:
2221 case MMC_ISSUE_ASYNC:
2222 switch (req_op(req)) {
2223 case REQ_OP_FLUSH:
2224 ret = mmc_blk_cqe_issue_flush(mq, req);
2225 break;
2226 case REQ_OP_READ:
2227 case REQ_OP_WRITE:
2228 if (mq->use_cqe)
2229 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2230 else
2231 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2232 break;
2233 default:
2234 WARN_ON_ONCE(1);
2235 ret = -EINVAL;
2236 }
2237 if (!ret)
2238 return MMC_REQ_STARTED;
2239 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2240 default:
2241 WARN_ON_ONCE(1);
2242 return MMC_REQ_FAILED_TO_START;
2243 }
2244}
2245
2246static inline int mmc_blk_readonly(struct mmc_card *card)
2247{
2248 return mmc_card_readonly(card) ||
2249 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2250}
2251
2252static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2253 struct device *parent,
2254 sector_t size,
2255 bool default_ro,
2256 const char *subname,
2257 int area_type)
2258{
2259 struct mmc_blk_data *md;
2260 int devidx, ret;
2261
2262 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2263 if (devidx < 0) {
2264 /*
2265 * We get -ENOSPC because there are no more any available
2266 * devidx. The reason may be that, either userspace haven't yet
2267 * unmounted the partitions, which postpones mmc_blk_release()
2268 * from being called, or the device has more partitions than
2269 * what we support.
2270 */
2271 if (devidx == -ENOSPC)
2272 dev_err(mmc_dev(card->host),
2273 "no more device IDs available\n");
2274
2275 return ERR_PTR(devidx);
2276 }
2277
2278 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2279 if (!md) {
2280 ret = -ENOMEM;
2281 goto out;
2282 }
2283
2284 md->area_type = area_type;
2285
2286 /*
2287 * Set the read-only status based on the supported commands
2288 * and the write protect switch.
2289 */
2290 md->read_only = mmc_blk_readonly(card);
2291
2292 md->disk = alloc_disk(perdev_minors);
2293 if (md->disk == NULL) {
2294 ret = -ENOMEM;
2295 goto err_kfree;
2296 }
2297
2298 INIT_LIST_HEAD(&md->part);
2299 INIT_LIST_HEAD(&md->rpmbs);
2300 md->usage = 1;
2301
2302 ret = mmc_init_queue(&md->queue, card);
2303 if (ret)
2304 goto err_putdisk;
2305
2306 md->queue.blkdata = md;
2307
2308 /*
2309 * Keep an extra reference to the queue so that we can shutdown the
2310 * queue (i.e. call blk_cleanup_queue()) while there are still
2311 * references to the 'md'. The corresponding blk_put_queue() is in
2312 * mmc_blk_put().
2313 */
2314 if (!blk_get_queue(md->queue.queue)) {
2315 mmc_cleanup_queue(&md->queue);
2316 ret = -ENODEV;
2317 goto err_putdisk;
2318 }
2319
2320 md->disk->major = MMC_BLOCK_MAJOR;
2321 md->disk->first_minor = devidx * perdev_minors;
2322 md->disk->fops = &mmc_bdops;
2323 md->disk->private_data = md;
2324 md->disk->queue = md->queue.queue;
2325 md->parent = parent;
2326 set_disk_ro(md->disk, md->read_only || default_ro);
2327 md->disk->flags = GENHD_FL_EXT_DEVT;
2328 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2329 md->disk->flags |= GENHD_FL_NO_PART_SCAN
2330 | GENHD_FL_SUPPRESS_PARTITION_INFO;
2331
2332 /*
2333 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2334 *
2335 * - be set for removable media with permanent block devices
2336 * - be unset for removable block devices with permanent media
2337 *
2338 * Since MMC block devices clearly fall under the second
2339 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2340 * should use the block device creation/destruction hotplug
2341 * messages to tell when the card is present.
2342 */
2343
2344 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2345 "mmcblk%u%s", card->host->index, subname ? subname : "");
2346
2347 set_capacity(md->disk, size);
2348
2349 if (mmc_host_cmd23(card->host)) {
2350 if ((mmc_card_mmc(card) &&
2351 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2352 (mmc_card_sd(card) &&
2353 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2354 md->flags |= MMC_BLK_CMD23;
2355 }
2356
2357 if (mmc_card_mmc(card) &&
2358 md->flags & MMC_BLK_CMD23 &&
2359 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2360 card->ext_csd.rel_sectors)) {
2361 md->flags |= MMC_BLK_REL_WR;
2362 blk_queue_write_cache(md->queue.queue, true, true);
2363 }
2364
2365 return md;
2366
2367 err_putdisk:
2368 put_disk(md->disk);
2369 err_kfree:
2370 kfree(md);
2371 out:
2372 ida_simple_remove(&mmc_blk_ida, devidx);
2373 return ERR_PTR(ret);
2374}
2375
2376static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2377{
2378 sector_t size;
2379
2380 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2381 /*
2382 * The EXT_CSD sector count is in number or 512 byte
2383 * sectors.
2384 */
2385 size = card->ext_csd.sectors;
2386 } else {
2387 /*
2388 * The CSD capacity field is in units of read_blkbits.
2389 * set_capacity takes units of 512 bytes.
2390 */
2391 size = (typeof(sector_t))card->csd.capacity
2392 << (card->csd.read_blkbits - 9);
2393 }
2394
2395 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2396 MMC_BLK_DATA_AREA_MAIN);
2397}
2398
2399static int mmc_blk_alloc_part(struct mmc_card *card,
2400 struct mmc_blk_data *md,
2401 unsigned int part_type,
2402 sector_t size,
2403 bool default_ro,
2404 const char *subname,
2405 int area_type)
2406{
2407 char cap_str[10];
2408 struct mmc_blk_data *part_md;
2409
2410 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2411 subname, area_type);
2412 if (IS_ERR(part_md))
2413 return PTR_ERR(part_md);
2414 part_md->part_type = part_type;
2415 list_add(&part_md->part, &md->part);
2416
2417 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2418 cap_str, sizeof(cap_str));
2419 pr_info("%s: %s %s partition %u %s\n",
2420 part_md->disk->disk_name, mmc_card_id(card),
2421 mmc_card_name(card), part_md->part_type, cap_str);
2422 return 0;
2423}
2424
2425/**
2426 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2427 * @filp: the character device file
2428 * @cmd: the ioctl() command
2429 * @arg: the argument from userspace
2430 *
2431 * This will essentially just redirect the ioctl()s coming in over to
2432 * the main block device spawning the RPMB character device.
2433 */
2434static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2435 unsigned long arg)
2436{
2437 struct mmc_rpmb_data *rpmb = filp->private_data;
2438 int ret;
2439
2440 switch (cmd) {
2441 case MMC_IOC_CMD:
2442 ret = mmc_blk_ioctl_cmd(rpmb->md,
2443 (struct mmc_ioc_cmd __user *)arg,
2444 rpmb);
2445 break;
2446 case MMC_IOC_MULTI_CMD:
2447 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2448 (struct mmc_ioc_multi_cmd __user *)arg,
2449 rpmb);
2450 break;
2451 default:
2452 ret = -EINVAL;
2453 break;
2454 }
2455
2456 return ret;
2457}
2458
2459#ifdef CONFIG_COMPAT
2460static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2461 unsigned long arg)
2462{
2463 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2464}
2465#endif
2466
2467static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2468{
2469 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2470 struct mmc_rpmb_data, chrdev);
2471
2472 get_device(&rpmb->dev);
2473 filp->private_data = rpmb;
2474 mmc_blk_get(rpmb->md->disk);
2475
2476 return nonseekable_open(inode, filp);
2477}
2478
2479static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2480{
2481 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2482 struct mmc_rpmb_data, chrdev);
2483
2484 mmc_blk_put(rpmb->md);
2485 put_device(&rpmb->dev);
2486
2487 return 0;
2488}
2489
2490static const struct file_operations mmc_rpmb_fileops = {
2491 .release = mmc_rpmb_chrdev_release,
2492 .open = mmc_rpmb_chrdev_open,
2493 .owner = THIS_MODULE,
2494 .llseek = no_llseek,
2495 .unlocked_ioctl = mmc_rpmb_ioctl,
2496#ifdef CONFIG_COMPAT
2497 .compat_ioctl = mmc_rpmb_ioctl_compat,
2498#endif
2499};
2500
2501static void mmc_blk_rpmb_device_release(struct device *dev)
2502{
2503 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2504
2505 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2506 kfree(rpmb);
2507}
2508
2509static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2510 struct mmc_blk_data *md,
2511 unsigned int part_index,
2512 sector_t size,
2513 const char *subname)
2514{
2515 int devidx, ret;
2516 char rpmb_name[DISK_NAME_LEN];
2517 char cap_str[10];
2518 struct mmc_rpmb_data *rpmb;
2519
2520 /* This creates the minor number for the RPMB char device */
2521 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2522 if (devidx < 0)
2523 return devidx;
2524
2525 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2526 if (!rpmb) {
2527 ida_simple_remove(&mmc_rpmb_ida, devidx);
2528 return -ENOMEM;
2529 }
2530
2531 snprintf(rpmb_name, sizeof(rpmb_name),
2532 "mmcblk%u%s", card->host->index, subname ? subname : "");
2533
2534 rpmb->id = devidx;
2535 rpmb->part_index = part_index;
2536 rpmb->dev.init_name = rpmb_name;
2537 rpmb->dev.bus = &mmc_rpmb_bus_type;
2538 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2539 rpmb->dev.parent = &card->dev;
2540 rpmb->dev.release = mmc_blk_rpmb_device_release;
2541 device_initialize(&rpmb->dev);
2542 dev_set_drvdata(&rpmb->dev, rpmb);
2543 rpmb->md = md;
2544
2545 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2546 rpmb->chrdev.owner = THIS_MODULE;
2547 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2548 if (ret) {
2549 pr_err("%s: could not add character device\n", rpmb_name);
2550 goto out_put_device;
2551 }
2552
2553 list_add(&rpmb->node, &md->rpmbs);
2554
2555 string_get_size((u64)size, 512, STRING_UNITS_2,
2556 cap_str, sizeof(cap_str));
2557
2558 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2559 rpmb_name, mmc_card_id(card),
2560 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2561 MAJOR(mmc_rpmb_devt), rpmb->id);
2562
2563 return 0;
2564
2565out_put_device:
2566 put_device(&rpmb->dev);
2567 return ret;
2568}
2569
2570static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2571
2572{
2573 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2574 put_device(&rpmb->dev);
2575}
2576
2577/* MMC Physical partitions consist of two boot partitions and
2578 * up to four general purpose partitions.
2579 * For each partition enabled in EXT_CSD a block device will be allocatedi
2580 * to provide access to the partition.
2581 */
2582
2583static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2584{
2585 int idx, ret;
2586
2587 if (!mmc_card_mmc(card))
2588 return 0;
2589
2590 for (idx = 0; idx < card->nr_parts; idx++) {
2591 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2592 /*
2593 * RPMB partitions does not provide block access, they
2594 * are only accessed using ioctl():s. Thus create
2595 * special RPMB block devices that do not have a
2596 * backing block queue for these.
2597 */
2598 ret = mmc_blk_alloc_rpmb_part(card, md,
2599 card->part[idx].part_cfg,
2600 card->part[idx].size >> 9,
2601 card->part[idx].name);
2602 if (ret)
2603 return ret;
2604 } else if (card->part[idx].size) {
2605 ret = mmc_blk_alloc_part(card, md,
2606 card->part[idx].part_cfg,
2607 card->part[idx].size >> 9,
2608 card->part[idx].force_ro,
2609 card->part[idx].name,
2610 card->part[idx].area_type);
2611 if (ret)
2612 return ret;
2613 }
2614 }
2615
2616 return 0;
2617}
2618
2619static void mmc_blk_remove_req(struct mmc_blk_data *md)
2620{
2621 struct mmc_card *card;
2622
2623 if (md) {
2624 /*
2625 * Flush remaining requests and free queues. It
2626 * is freeing the queue that stops new requests
2627 * from being accepted.
2628 */
2629 card = md->queue.card;
2630 if (md->disk->flags & GENHD_FL_UP) {
2631 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2632 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2633 card->ext_csd.boot_ro_lockable)
2634 device_remove_file(disk_to_dev(md->disk),
2635 &md->power_ro_lock);
2636
2637 del_gendisk(md->disk);
2638 }
2639 mmc_cleanup_queue(&md->queue);
2640 mmc_blk_put(md);
2641 }
2642}
2643
2644static void mmc_blk_remove_parts(struct mmc_card *card,
2645 struct mmc_blk_data *md)
2646{
2647 struct list_head *pos, *q;
2648 struct mmc_blk_data *part_md;
2649 struct mmc_rpmb_data *rpmb;
2650
2651 /* Remove RPMB partitions */
2652 list_for_each_safe(pos, q, &md->rpmbs) {
2653 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2654 list_del(pos);
2655 mmc_blk_remove_rpmb_part(rpmb);
2656 }
2657 /* Remove block partitions */
2658 list_for_each_safe(pos, q, &md->part) {
2659 part_md = list_entry(pos, struct mmc_blk_data, part);
2660 list_del(pos);
2661 mmc_blk_remove_req(part_md);
2662 }
2663}
2664
2665static int mmc_add_disk(struct mmc_blk_data *md)
2666{
2667 int ret;
2668 struct mmc_card *card = md->queue.card;
2669
2670 device_add_disk(md->parent, md->disk, NULL);
2671 md->force_ro.show = force_ro_show;
2672 md->force_ro.store = force_ro_store;
2673 sysfs_attr_init(&md->force_ro.attr);
2674 md->force_ro.attr.name = "force_ro";
2675 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2676 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2677 if (ret)
2678 goto force_ro_fail;
2679
2680 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2681 card->ext_csd.boot_ro_lockable) {
2682 umode_t mode;
2683
2684 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2685 mode = S_IRUGO;
2686 else
2687 mode = S_IRUGO | S_IWUSR;
2688
2689 md->power_ro_lock.show = power_ro_lock_show;
2690 md->power_ro_lock.store = power_ro_lock_store;
2691 sysfs_attr_init(&md->power_ro_lock.attr);
2692 md->power_ro_lock.attr.mode = mode;
2693 md->power_ro_lock.attr.name =
2694 "ro_lock_until_next_power_on";
2695 ret = device_create_file(disk_to_dev(md->disk),
2696 &md->power_ro_lock);
2697 if (ret)
2698 goto power_ro_lock_fail;
2699 }
2700 return ret;
2701
2702power_ro_lock_fail:
2703 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2704force_ro_fail:
2705 del_gendisk(md->disk);
2706
2707 return ret;
2708}
2709
2710#ifdef CONFIG_DEBUG_FS
2711
2712static int mmc_dbg_card_status_get(void *data, u64 *val)
2713{
2714 struct mmc_card *card = data;
2715 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2716 struct mmc_queue *mq = &md->queue;
2717 struct request *req;
2718 int ret;
2719
2720 /* Ask the block layer about the card status */
2721 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2722 if (IS_ERR(req))
2723 return PTR_ERR(req);
2724 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2725 blk_execute_rq(mq->queue, NULL, req, 0);
2726 ret = req_to_mmc_queue_req(req)->drv_op_result;
2727 if (ret >= 0) {
2728 *val = ret;
2729 ret = 0;
2730 }
2731 blk_put_request(req);
2732
2733 return ret;
2734}
2735DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2736 NULL, "%08llx\n");
2737
2738/* That is two digits * 512 + 1 for newline */
2739#define EXT_CSD_STR_LEN 1025
2740
2741static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2742{
2743 struct mmc_card *card = inode->i_private;
2744 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2745 struct mmc_queue *mq = &md->queue;
2746 struct request *req;
2747 char *buf;
2748 ssize_t n = 0;
2749 u8 *ext_csd;
2750 int err, i;
2751
2752 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2753 if (!buf)
2754 return -ENOMEM;
2755
2756 /* Ask the block layer for the EXT CSD */
2757 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2758 if (IS_ERR(req)) {
2759 err = PTR_ERR(req);
2760 goto out_free;
2761 }
2762 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2763 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2764 blk_execute_rq(mq->queue, NULL, req, 0);
2765 err = req_to_mmc_queue_req(req)->drv_op_result;
2766 blk_put_request(req);
2767 if (err) {
2768 pr_err("FAILED %d\n", err);
2769 goto out_free;
2770 }
2771
2772 for (i = 0; i < 512; i++)
2773 n += sprintf(buf + n, "%02x", ext_csd[i]);
2774 n += sprintf(buf + n, "\n");
2775
2776 if (n != EXT_CSD_STR_LEN) {
2777 err = -EINVAL;
2778 kfree(ext_csd);
2779 goto out_free;
2780 }
2781
2782 filp->private_data = buf;
2783 kfree(ext_csd);
2784 return 0;
2785
2786out_free:
2787 kfree(buf);
2788 return err;
2789}
2790
2791static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2792 size_t cnt, loff_t *ppos)
2793{
2794 char *buf = filp->private_data;
2795
2796 return simple_read_from_buffer(ubuf, cnt, ppos,
2797 buf, EXT_CSD_STR_LEN);
2798}
2799
2800static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2801{
2802 kfree(file->private_data);
2803 return 0;
2804}
2805
2806static const struct file_operations mmc_dbg_ext_csd_fops = {
2807 .open = mmc_ext_csd_open,
2808 .read = mmc_ext_csd_read,
2809 .release = mmc_ext_csd_release,
2810 .llseek = default_llseek,
2811};
2812
2813static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2814{
2815 struct dentry *root;
2816
2817 if (!card->debugfs_root)
2818 return 0;
2819
2820 root = card->debugfs_root;
2821
2822 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2823 md->status_dentry =
2824 debugfs_create_file_unsafe("status", 0400, root,
2825 card,
2826 &mmc_dbg_card_status_fops);
2827 if (!md->status_dentry)
2828 return -EIO;
2829 }
2830
2831 if (mmc_card_mmc(card)) {
2832 md->ext_csd_dentry =
2833 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2834 &mmc_dbg_ext_csd_fops);
2835 if (!md->ext_csd_dentry)
2836 return -EIO;
2837 }
2838
2839 return 0;
2840}
2841
2842static void mmc_blk_remove_debugfs(struct mmc_card *card,
2843 struct mmc_blk_data *md)
2844{
2845 if (!card->debugfs_root)
2846 return;
2847
2848 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2849 debugfs_remove(md->status_dentry);
2850 md->status_dentry = NULL;
2851 }
2852
2853 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2854 debugfs_remove(md->ext_csd_dentry);
2855 md->ext_csd_dentry = NULL;
2856 }
2857}
2858
2859#else
2860
2861static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2862{
2863 return 0;
2864}
2865
2866static void mmc_blk_remove_debugfs(struct mmc_card *card,
2867 struct mmc_blk_data *md)
2868{
2869}
2870
2871#endif /* CONFIG_DEBUG_FS */
2872
2873static int mmc_blk_probe(struct mmc_card *card)
2874{
2875 struct mmc_blk_data *md, *part_md;
2876 char cap_str[10];
2877
2878 /*
2879 * Check that the card supports the command class(es) we need.
2880 */
2881 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2882 return -ENODEV;
2883
2884 mmc_fixup_device(card, mmc_blk_fixups);
2885
2886 card->complete_wq = alloc_workqueue("mmc_complete",
2887 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2888 if (unlikely(!card->complete_wq)) {
2889 pr_err("Failed to create mmc completion workqueue");
2890 return -ENOMEM;
2891 }
2892
2893 md = mmc_blk_alloc(card);
2894 if (IS_ERR(md))
2895 return PTR_ERR(md);
2896
2897 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2898 cap_str, sizeof(cap_str));
2899 pr_info("%s: %s %s %s %s\n",
2900 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2901 cap_str, md->read_only ? "(ro)" : "");
2902
2903 if (mmc_blk_alloc_parts(card, md))
2904 goto out;
2905
2906 dev_set_drvdata(&card->dev, md);
2907
2908 if (mmc_add_disk(md))
2909 goto out;
2910
2911 list_for_each_entry(part_md, &md->part, part) {
2912 if (mmc_add_disk(part_md))
2913 goto out;
2914 }
2915
2916 /* Add two debugfs entries */
2917 mmc_blk_add_debugfs(card, md);
2918
2919 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2920 pm_runtime_use_autosuspend(&card->dev);
2921
2922 /*
2923 * Don't enable runtime PM for SD-combo cards here. Leave that
2924 * decision to be taken during the SDIO init sequence instead.
2925 */
2926 if (card->type != MMC_TYPE_SD_COMBO) {
2927 pm_runtime_set_active(&card->dev);
2928 pm_runtime_enable(&card->dev);
2929 }
2930
2931 return 0;
2932
2933 out:
2934 mmc_blk_remove_parts(card, md);
2935 mmc_blk_remove_req(md);
2936 return 0;
2937}
2938
2939static void mmc_blk_remove(struct mmc_card *card)
2940{
2941 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2942
2943 mmc_blk_remove_debugfs(card, md);
2944 mmc_blk_remove_parts(card, md);
2945 pm_runtime_get_sync(&card->dev);
2946 if (md->part_curr != md->part_type) {
2947 mmc_claim_host(card->host);
2948 mmc_blk_part_switch(card, md->part_type);
2949 mmc_release_host(card->host);
2950 }
2951 if (card->type != MMC_TYPE_SD_COMBO)
2952 pm_runtime_disable(&card->dev);
2953 pm_runtime_put_noidle(&card->dev);
2954 mmc_blk_remove_req(md);
2955 dev_set_drvdata(&card->dev, NULL);
2956 destroy_workqueue(card->complete_wq);
2957}
2958
2959static int _mmc_blk_suspend(struct mmc_card *card)
2960{
2961 struct mmc_blk_data *part_md;
2962 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2963
2964 if (md) {
2965 mmc_queue_suspend(&md->queue);
2966 list_for_each_entry(part_md, &md->part, part) {
2967 mmc_queue_suspend(&part_md->queue);
2968 }
2969 }
2970 return 0;
2971}
2972
2973static void mmc_blk_shutdown(struct mmc_card *card)
2974{
2975 _mmc_blk_suspend(card);
2976}
2977
2978#ifdef CONFIG_PM_SLEEP
2979static int mmc_blk_suspend(struct device *dev)
2980{
2981 struct mmc_card *card = mmc_dev_to_card(dev);
2982
2983 return _mmc_blk_suspend(card);
2984}
2985
2986static int mmc_blk_resume(struct device *dev)
2987{
2988 struct mmc_blk_data *part_md;
2989 struct mmc_blk_data *md = dev_get_drvdata(dev);
2990
2991 if (md) {
2992 /*
2993 * Resume involves the card going into idle state,
2994 * so current partition is always the main one.
2995 */
2996 md->part_curr = md->part_type;
2997 mmc_queue_resume(&md->queue);
2998 list_for_each_entry(part_md, &md->part, part) {
2999 mmc_queue_resume(&part_md->queue);
3000 }
3001 }
3002 return 0;
3003}
3004#endif
3005
3006static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3007
3008static struct mmc_driver mmc_driver = {
3009 .drv = {
3010 .name = "mmcblk",
3011 .pm = &mmc_blk_pm_ops,
3012 },
3013 .probe = mmc_blk_probe,
3014 .remove = mmc_blk_remove,
3015 .shutdown = mmc_blk_shutdown,
3016};
3017
3018static int __init mmc_blk_init(void)
3019{
3020 int res;
3021
3022 res = bus_register(&mmc_rpmb_bus_type);
3023 if (res < 0) {
3024 pr_err("mmcblk: could not register RPMB bus type\n");
3025 return res;
3026 }
3027 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3028 if (res < 0) {
3029 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3030 goto out_bus_unreg;
3031 }
3032
3033 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3034 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3035
3036 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3037
3038 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3039 if (res)
3040 goto out_chrdev_unreg;
3041
3042 res = mmc_register_driver(&mmc_driver);
3043 if (res)
3044 goto out_blkdev_unreg;
3045
3046 return 0;
3047
3048out_blkdev_unreg:
3049 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3050out_chrdev_unreg:
3051 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3052out_bus_unreg:
3053 bus_unregister(&mmc_rpmb_bus_type);
3054 return res;
3055}
3056
3057static void __exit mmc_blk_exit(void)
3058{
3059 mmc_unregister_driver(&mmc_driver);
3060 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3061 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3062 bus_unregister(&mmc_rpmb_bus_type);
3063}
3064
3065module_init(mmc_blk_init);
3066module_exit(mmc_blk_exit);
3067
3068MODULE_LICENSE("GPL");
3069MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3070