Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Block driver for media (i.e., flash cards)
4 *
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
7 *
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
11 *
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 *
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 *
18 * Author: Andrew Christian
19 * 28 May 2002
20 */
21#include <linux/moduleparam.h>
22#include <linux/module.h>
23#include <linux/init.h>
24
25#include <linux/kernel.h>
26#include <linux/fs.h>
27#include <linux/slab.h>
28#include <linux/errno.h>
29#include <linux/hdreg.h>
30#include <linux/kdev_t.h>
31#include <linux/kref.h>
32#include <linux/blkdev.h>
33#include <linux/cdev.h>
34#include <linux/mutex.h>
35#include <linux/scatterlist.h>
36#include <linux/string_helpers.h>
37#include <linux/delay.h>
38#include <linux/capability.h>
39#include <linux/compat.h>
40#include <linux/pm_runtime.h>
41#include <linux/idr.h>
42#include <linux/debugfs.h>
43
44#include <linux/mmc/ioctl.h>
45#include <linux/mmc/card.h>
46#include <linux/mmc/host.h>
47#include <linux/mmc/mmc.h>
48#include <linux/mmc/sd.h>
49
50#include <linux/uaccess.h>
51
52#include "queue.h"
53#include "block.h"
54#include "core.h"
55#include "card.h"
56#include "crypto.h"
57#include "host.h"
58#include "bus.h"
59#include "mmc_ops.h"
60#include "quirks.h"
61#include "sd_ops.h"
62
63MODULE_ALIAS("mmc:block");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "mmcblk."
68
69/*
70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72 * second software timer to timeout the whole request, so 10 seconds should be
73 * ample.
74 */
75#define MMC_BLK_TIMEOUT_MS (10 * 1000)
76#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78
79static DEFINE_MUTEX(block_mutex);
80
81/*
82 * The defaults come from config options but can be overriden by module
83 * or bootarg options.
84 */
85static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86
87/*
88 * We've only got one major, so number of mmcblk devices is
89 * limited to (1 << 20) / number of minors per device. It is also
90 * limited by the MAX_DEVICES below.
91 */
92static int max_devices;
93
94#define MAX_DEVICES 256
95
96static DEFINE_IDA(mmc_blk_ida);
97static DEFINE_IDA(mmc_rpmb_ida);
98
99struct mmc_blk_busy_data {
100 struct mmc_card *card;
101 u32 status;
102};
103
104/*
105 * There is one mmc_blk_data per slot.
106 */
107struct mmc_blk_data {
108 struct device *parent;
109 struct gendisk *disk;
110 struct mmc_queue queue;
111 struct list_head part;
112 struct list_head rpmbs;
113
114 unsigned int flags;
115#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
116#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
117
118 struct kref kref;
119 unsigned int read_only;
120 unsigned int part_type;
121 unsigned int reset_done;
122#define MMC_BLK_READ BIT(0)
123#define MMC_BLK_WRITE BIT(1)
124#define MMC_BLK_DISCARD BIT(2)
125#define MMC_BLK_SECDISCARD BIT(3)
126#define MMC_BLK_CQE_RECOVERY BIT(4)
127#define MMC_BLK_TRIM BIT(5)
128
129 /*
130 * Only set in main mmc_blk_data associated
131 * with mmc_card with dev_set_drvdata, and keeps
132 * track of the current selected device partition.
133 */
134 unsigned int part_curr;
135#define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */
136 int area_type;
137
138 /* debugfs files (only in main mmc_blk_data) */
139 struct dentry *status_dentry;
140 struct dentry *ext_csd_dentry;
141};
142
143/* Device type for RPMB character devices */
144static dev_t mmc_rpmb_devt;
145
146/* Bus type for RPMB character devices */
147static struct bus_type mmc_rpmb_bus_type = {
148 .name = "mmc_rpmb",
149};
150
151/**
152 * struct mmc_rpmb_data - special RPMB device type for these areas
153 * @dev: the device for the RPMB area
154 * @chrdev: character device for the RPMB area
155 * @id: unique device ID number
156 * @part_index: partition index (0 on first)
157 * @md: parent MMC block device
158 * @node: list item, so we can put this device on a list
159 */
160struct mmc_rpmb_data {
161 struct device dev;
162 struct cdev chrdev;
163 int id;
164 unsigned int part_index;
165 struct mmc_blk_data *md;
166 struct list_head node;
167};
168
169static DEFINE_MUTEX(open_lock);
170
171module_param(perdev_minors, int, 0444);
172MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
173
174static inline int mmc_blk_part_switch(struct mmc_card *card,
175 unsigned int part_type);
176static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
177 struct mmc_card *card,
178 int recovery_mode,
179 struct mmc_queue *mq);
180static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
181static int mmc_spi_err_check(struct mmc_card *card);
182static int mmc_blk_busy_cb(void *cb_data, bool *busy);
183
184static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
185{
186 struct mmc_blk_data *md;
187
188 mutex_lock(&open_lock);
189 md = disk->private_data;
190 if (md && !kref_get_unless_zero(&md->kref))
191 md = NULL;
192 mutex_unlock(&open_lock);
193
194 return md;
195}
196
197static inline int mmc_get_devidx(struct gendisk *disk)
198{
199 int devidx = disk->first_minor / perdev_minors;
200 return devidx;
201}
202
203static void mmc_blk_kref_release(struct kref *ref)
204{
205 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
206 int devidx;
207
208 devidx = mmc_get_devidx(md->disk);
209 ida_simple_remove(&mmc_blk_ida, devidx);
210
211 mutex_lock(&open_lock);
212 md->disk->private_data = NULL;
213 mutex_unlock(&open_lock);
214
215 put_disk(md->disk);
216 kfree(md);
217}
218
219static void mmc_blk_put(struct mmc_blk_data *md)
220{
221 kref_put(&md->kref, mmc_blk_kref_release);
222}
223
224static ssize_t power_ro_lock_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
226{
227 int ret;
228 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
229 struct mmc_card *card = md->queue.card;
230 int locked = 0;
231
232 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
233 locked = 2;
234 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
235 locked = 1;
236
237 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
238
239 mmc_blk_put(md);
240
241 return ret;
242}
243
244static ssize_t power_ro_lock_store(struct device *dev,
245 struct device_attribute *attr, const char *buf, size_t count)
246{
247 int ret;
248 struct mmc_blk_data *md, *part_md;
249 struct mmc_queue *mq;
250 struct request *req;
251 unsigned long set;
252
253 if (kstrtoul(buf, 0, &set))
254 return -EINVAL;
255
256 if (set != 1)
257 return count;
258
259 md = mmc_blk_get(dev_to_disk(dev));
260 mq = &md->queue;
261
262 /* Dispatch locking to the block layer */
263 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
264 if (IS_ERR(req)) {
265 count = PTR_ERR(req);
266 goto out_put;
267 }
268 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
269 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
270 blk_execute_rq(req, false);
271 ret = req_to_mmc_queue_req(req)->drv_op_result;
272 blk_mq_free_request(req);
273
274 if (!ret) {
275 pr_info("%s: Locking boot partition ro until next power on\n",
276 md->disk->disk_name);
277 set_disk_ro(md->disk, 1);
278
279 list_for_each_entry(part_md, &md->part, part)
280 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
281 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
282 set_disk_ro(part_md->disk, 1);
283 }
284 }
285out_put:
286 mmc_blk_put(md);
287 return count;
288}
289
290static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
291 power_ro_lock_show, power_ro_lock_store);
292
293static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
294 char *buf)
295{
296 int ret;
297 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
298
299 ret = snprintf(buf, PAGE_SIZE, "%d\n",
300 get_disk_ro(dev_to_disk(dev)) ^
301 md->read_only);
302 mmc_blk_put(md);
303 return ret;
304}
305
306static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
307 const char *buf, size_t count)
308{
309 int ret;
310 char *end;
311 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
312 unsigned long set = simple_strtoul(buf, &end, 0);
313 if (end == buf) {
314 ret = -EINVAL;
315 goto out;
316 }
317
318 set_disk_ro(dev_to_disk(dev), set || md->read_only);
319 ret = count;
320out:
321 mmc_blk_put(md);
322 return ret;
323}
324
325static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
326
327static struct attribute *mmc_disk_attrs[] = {
328 &dev_attr_force_ro.attr,
329 &dev_attr_ro_lock_until_next_power_on.attr,
330 NULL,
331};
332
333static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
334 struct attribute *a, int n)
335{
336 struct device *dev = kobj_to_dev(kobj);
337 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
338 umode_t mode = a->mode;
339
340 if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
341 (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
342 md->queue.card->ext_csd.boot_ro_lockable) {
343 mode = S_IRUGO;
344 if (!(md->queue.card->ext_csd.boot_ro_lock &
345 EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
346 mode |= S_IWUSR;
347 }
348
349 mmc_blk_put(md);
350 return mode;
351}
352
353static const struct attribute_group mmc_disk_attr_group = {
354 .is_visible = mmc_disk_attrs_is_visible,
355 .attrs = mmc_disk_attrs,
356};
357
358static const struct attribute_group *mmc_disk_attr_groups[] = {
359 &mmc_disk_attr_group,
360 NULL,
361};
362
363static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
364{
365 struct mmc_blk_data *md = mmc_blk_get(disk);
366 int ret = -ENXIO;
367
368 mutex_lock(&block_mutex);
369 if (md) {
370 ret = 0;
371 if ((mode & BLK_OPEN_WRITE) && md->read_only) {
372 mmc_blk_put(md);
373 ret = -EROFS;
374 }
375 }
376 mutex_unlock(&block_mutex);
377
378 return ret;
379}
380
381static void mmc_blk_release(struct gendisk *disk)
382{
383 struct mmc_blk_data *md = disk->private_data;
384
385 mutex_lock(&block_mutex);
386 mmc_blk_put(md);
387 mutex_unlock(&block_mutex);
388}
389
390static int
391mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
392{
393 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
394 geo->heads = 4;
395 geo->sectors = 16;
396 return 0;
397}
398
399struct mmc_blk_ioc_data {
400 struct mmc_ioc_cmd ic;
401 unsigned char *buf;
402 u64 buf_bytes;
403 unsigned int flags;
404#define MMC_BLK_IOC_DROP BIT(0) /* drop this mrq */
405#define MMC_BLK_IOC_SBC BIT(1) /* use mrq.sbc */
406
407 struct mmc_rpmb_data *rpmb;
408};
409
410static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
411 struct mmc_ioc_cmd __user *user)
412{
413 struct mmc_blk_ioc_data *idata;
414 int err;
415
416 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
417 if (!idata) {
418 err = -ENOMEM;
419 goto out;
420 }
421
422 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
423 err = -EFAULT;
424 goto idata_err;
425 }
426
427 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
428 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
429 err = -EOVERFLOW;
430 goto idata_err;
431 }
432
433 if (!idata->buf_bytes) {
434 idata->buf = NULL;
435 return idata;
436 }
437
438 idata->buf = memdup_user((void __user *)(unsigned long)
439 idata->ic.data_ptr, idata->buf_bytes);
440 if (IS_ERR(idata->buf)) {
441 err = PTR_ERR(idata->buf);
442 goto idata_err;
443 }
444
445 return idata;
446
447idata_err:
448 kfree(idata);
449out:
450 return ERR_PTR(err);
451}
452
453static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
454 struct mmc_blk_ioc_data *idata)
455{
456 struct mmc_ioc_cmd *ic = &idata->ic;
457
458 if (copy_to_user(&(ic_ptr->response), ic->response,
459 sizeof(ic->response)))
460 return -EFAULT;
461
462 if (!idata->ic.write_flag) {
463 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
464 idata->buf, idata->buf_bytes))
465 return -EFAULT;
466 }
467
468 return 0;
469}
470
471static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
472 struct mmc_blk_ioc_data **idatas, int i)
473{
474 struct mmc_command cmd = {}, sbc = {};
475 struct mmc_data data = {};
476 struct mmc_request mrq = {};
477 struct scatterlist sg;
478 bool r1b_resp;
479 unsigned int busy_timeout_ms;
480 int err;
481 unsigned int target_part;
482 struct mmc_blk_ioc_data *idata = idatas[i];
483 struct mmc_blk_ioc_data *prev_idata = NULL;
484
485 if (!card || !md || !idata)
486 return -EINVAL;
487
488 if (idata->flags & MMC_BLK_IOC_DROP)
489 return 0;
490
491 if (idata->flags & MMC_BLK_IOC_SBC)
492 prev_idata = idatas[i - 1];
493
494 /*
495 * The RPMB accesses comes in from the character device, so we
496 * need to target these explicitly. Else we just target the
497 * partition type for the block device the ioctl() was issued
498 * on.
499 */
500 if (idata->rpmb) {
501 /* Support multiple RPMB partitions */
502 target_part = idata->rpmb->part_index;
503 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
504 } else {
505 target_part = md->part_type;
506 }
507
508 cmd.opcode = idata->ic.opcode;
509 cmd.arg = idata->ic.arg;
510 cmd.flags = idata->ic.flags;
511
512 if (idata->buf_bytes) {
513 data.sg = &sg;
514 data.sg_len = 1;
515 data.blksz = idata->ic.blksz;
516 data.blocks = idata->ic.blocks;
517
518 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
519
520 if (idata->ic.write_flag)
521 data.flags = MMC_DATA_WRITE;
522 else
523 data.flags = MMC_DATA_READ;
524
525 /* data.flags must already be set before doing this. */
526 mmc_set_data_timeout(&data, card);
527
528 /* Allow overriding the timeout_ns for empirical tuning. */
529 if (idata->ic.data_timeout_ns)
530 data.timeout_ns = idata->ic.data_timeout_ns;
531
532 mrq.data = &data;
533 }
534
535 mrq.cmd = &cmd;
536
537 err = mmc_blk_part_switch(card, target_part);
538 if (err)
539 return err;
540
541 if (idata->ic.is_acmd) {
542 err = mmc_app_cmd(card->host, card);
543 if (err)
544 return err;
545 }
546
547 if (idata->rpmb || prev_idata) {
548 sbc.opcode = MMC_SET_BLOCK_COUNT;
549 /*
550 * We don't do any blockcount validation because the max size
551 * may be increased by a future standard. We just copy the
552 * 'Reliable Write' bit here.
553 */
554 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
555 if (prev_idata)
556 sbc.arg = prev_idata->ic.arg;
557 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
558 mrq.sbc = &sbc;
559 }
560
561 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
562 (cmd.opcode == MMC_SWITCH))
563 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
564
565 /* If it's an R1B response we need some more preparations. */
566 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
567 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
568 if (r1b_resp)
569 mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
570
571 mmc_wait_for_req(card->host, &mrq);
572 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
573
574 if (prev_idata) {
575 memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
576 if (sbc.error) {
577 dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
578 __func__, sbc.error);
579 return sbc.error;
580 }
581 }
582
583 if (cmd.error) {
584 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
585 __func__, cmd.error);
586 return cmd.error;
587 }
588 if (data.error) {
589 dev_err(mmc_dev(card->host), "%s: data error %d\n",
590 __func__, data.error);
591 return data.error;
592 }
593
594 /*
595 * Make sure the cache of the PARTITION_CONFIG register and
596 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
597 * changed it successfully.
598 */
599 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
600 (cmd.opcode == MMC_SWITCH)) {
601 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
602 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
603
604 /*
605 * Update cache so the next mmc_blk_part_switch call operates
606 * on up-to-date data.
607 */
608 card->ext_csd.part_config = value;
609 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
610 }
611
612 /*
613 * Make sure to update CACHE_CTRL in case it was changed. The cache
614 * will get turned back on if the card is re-initialized, e.g.
615 * suspend/resume or hw reset in recovery.
616 */
617 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
618 (cmd.opcode == MMC_SWITCH)) {
619 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
620
621 card->ext_csd.cache_ctrl = value;
622 }
623
624 /*
625 * According to the SD specs, some commands require a delay after
626 * issuing the command.
627 */
628 if (idata->ic.postsleep_min_us)
629 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
630
631 if (mmc_host_is_spi(card->host)) {
632 if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
633 return mmc_spi_err_check(card);
634 return err;
635 }
636
637 /*
638 * Ensure RPMB, writes and R1B responses are completed by polling with
639 * CMD13. Note that, usually we don't need to poll when using HW busy
640 * detection, but here it's needed since some commands may indicate the
641 * error through the R1 status bits.
642 */
643 if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
644 struct mmc_blk_busy_data cb_data = {
645 .card = card,
646 };
647
648 err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
649 &mmc_blk_busy_cb, &cb_data);
650
651 idata->ic.response[0] = cb_data.status;
652 }
653
654 return err;
655}
656
657static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
658 struct mmc_ioc_cmd __user *ic_ptr,
659 struct mmc_rpmb_data *rpmb)
660{
661 struct mmc_blk_ioc_data *idata;
662 struct mmc_blk_ioc_data *idatas[1];
663 struct mmc_queue *mq;
664 struct mmc_card *card;
665 int err = 0, ioc_err = 0;
666 struct request *req;
667
668 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
669 if (IS_ERR(idata))
670 return PTR_ERR(idata);
671 /* This will be NULL on non-RPMB ioctl():s */
672 idata->rpmb = rpmb;
673
674 card = md->queue.card;
675 if (IS_ERR(card)) {
676 err = PTR_ERR(card);
677 goto cmd_done;
678 }
679
680 /*
681 * Dispatch the ioctl() into the block request queue.
682 */
683 mq = &md->queue;
684 req = blk_mq_alloc_request(mq->queue,
685 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
686 if (IS_ERR(req)) {
687 err = PTR_ERR(req);
688 goto cmd_done;
689 }
690 idatas[0] = idata;
691 req_to_mmc_queue_req(req)->drv_op =
692 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
693 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
694 req_to_mmc_queue_req(req)->drv_op_data = idatas;
695 req_to_mmc_queue_req(req)->ioc_count = 1;
696 blk_execute_rq(req, false);
697 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
698 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
699 blk_mq_free_request(req);
700
701cmd_done:
702 kfree(idata->buf);
703 kfree(idata);
704 return ioc_err ? ioc_err : err;
705}
706
707static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
708 struct mmc_ioc_multi_cmd __user *user,
709 struct mmc_rpmb_data *rpmb)
710{
711 struct mmc_blk_ioc_data **idata = NULL;
712 struct mmc_ioc_cmd __user *cmds = user->cmds;
713 struct mmc_card *card;
714 struct mmc_queue *mq;
715 int err = 0, ioc_err = 0;
716 __u64 num_of_cmds;
717 unsigned int i, n;
718 struct request *req;
719
720 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
721 sizeof(num_of_cmds)))
722 return -EFAULT;
723
724 if (!num_of_cmds)
725 return 0;
726
727 if (num_of_cmds > MMC_IOC_MAX_CMDS)
728 return -EINVAL;
729
730 n = num_of_cmds;
731 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
732 if (!idata)
733 return -ENOMEM;
734
735 for (i = 0; i < n; i++) {
736 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
737 if (IS_ERR(idata[i])) {
738 err = PTR_ERR(idata[i]);
739 n = i;
740 goto cmd_err;
741 }
742 /* This will be NULL on non-RPMB ioctl():s */
743 idata[i]->rpmb = rpmb;
744 }
745
746 card = md->queue.card;
747 if (IS_ERR(card)) {
748 err = PTR_ERR(card);
749 goto cmd_err;
750 }
751
752
753 /*
754 * Dispatch the ioctl()s into the block request queue.
755 */
756 mq = &md->queue;
757 req = blk_mq_alloc_request(mq->queue,
758 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
759 if (IS_ERR(req)) {
760 err = PTR_ERR(req);
761 goto cmd_err;
762 }
763 req_to_mmc_queue_req(req)->drv_op =
764 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
765 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
766 req_to_mmc_queue_req(req)->drv_op_data = idata;
767 req_to_mmc_queue_req(req)->ioc_count = n;
768 blk_execute_rq(req, false);
769 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
770
771 /* copy to user if data and response */
772 for (i = 0; i < n && !err; i++)
773 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
774
775 blk_mq_free_request(req);
776
777cmd_err:
778 for (i = 0; i < n; i++) {
779 kfree(idata[i]->buf);
780 kfree(idata[i]);
781 }
782 kfree(idata);
783 return ioc_err ? ioc_err : err;
784}
785
786static int mmc_blk_check_blkdev(struct block_device *bdev)
787{
788 /*
789 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
790 * whole block device, not on a partition. This prevents overspray
791 * between sibling partitions.
792 */
793 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
794 return -EPERM;
795 return 0;
796}
797
798static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
799 unsigned int cmd, unsigned long arg)
800{
801 struct mmc_blk_data *md;
802 int ret;
803
804 switch (cmd) {
805 case MMC_IOC_CMD:
806 ret = mmc_blk_check_blkdev(bdev);
807 if (ret)
808 return ret;
809 md = mmc_blk_get(bdev->bd_disk);
810 if (!md)
811 return -EINVAL;
812 ret = mmc_blk_ioctl_cmd(md,
813 (struct mmc_ioc_cmd __user *)arg,
814 NULL);
815 mmc_blk_put(md);
816 return ret;
817 case MMC_IOC_MULTI_CMD:
818 ret = mmc_blk_check_blkdev(bdev);
819 if (ret)
820 return ret;
821 md = mmc_blk_get(bdev->bd_disk);
822 if (!md)
823 return -EINVAL;
824 ret = mmc_blk_ioctl_multi_cmd(md,
825 (struct mmc_ioc_multi_cmd __user *)arg,
826 NULL);
827 mmc_blk_put(md);
828 return ret;
829 default:
830 return -EINVAL;
831 }
832}
833
834#ifdef CONFIG_COMPAT
835static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
836 unsigned int cmd, unsigned long arg)
837{
838 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
839}
840#endif
841
842static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
843 sector_t *sector)
844{
845 struct mmc_blk_data *md;
846 int ret;
847
848 md = mmc_blk_get(disk);
849 if (!md)
850 return -EINVAL;
851
852 if (md->queue.card)
853 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
854 else
855 ret = -ENODEV;
856
857 mmc_blk_put(md);
858
859 return ret;
860}
861
862static const struct block_device_operations mmc_bdops = {
863 .open = mmc_blk_open,
864 .release = mmc_blk_release,
865 .getgeo = mmc_blk_getgeo,
866 .owner = THIS_MODULE,
867 .ioctl = mmc_blk_ioctl,
868#ifdef CONFIG_COMPAT
869 .compat_ioctl = mmc_blk_compat_ioctl,
870#endif
871 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector,
872};
873
874static int mmc_blk_part_switch_pre(struct mmc_card *card,
875 unsigned int part_type)
876{
877 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB;
878 int ret = 0;
879
880 if ((part_type & mask) == mask) {
881 if (card->ext_csd.cmdq_en) {
882 ret = mmc_cmdq_disable(card);
883 if (ret)
884 return ret;
885 }
886 mmc_retune_pause(card->host);
887 }
888
889 return ret;
890}
891
892static int mmc_blk_part_switch_post(struct mmc_card *card,
893 unsigned int part_type)
894{
895 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB;
896 int ret = 0;
897
898 if ((part_type & mask) == mask) {
899 mmc_retune_unpause(card->host);
900 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
901 ret = mmc_cmdq_enable(card);
902 }
903
904 return ret;
905}
906
907static inline int mmc_blk_part_switch(struct mmc_card *card,
908 unsigned int part_type)
909{
910 int ret = 0;
911 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
912
913 if (main_md->part_curr == part_type)
914 return 0;
915
916 if (mmc_card_mmc(card)) {
917 u8 part_config = card->ext_csd.part_config;
918
919 ret = mmc_blk_part_switch_pre(card, part_type);
920 if (ret)
921 return ret;
922
923 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
924 part_config |= part_type;
925
926 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
927 EXT_CSD_PART_CONFIG, part_config,
928 card->ext_csd.part_time);
929 if (ret) {
930 mmc_blk_part_switch_post(card, part_type);
931 return ret;
932 }
933
934 card->ext_csd.part_config = part_config;
935
936 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
937 }
938
939 main_md->part_curr = part_type;
940 return ret;
941}
942
943static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
944{
945 int err;
946 u32 result;
947 __be32 *blocks;
948
949 struct mmc_request mrq = {};
950 struct mmc_command cmd = {};
951 struct mmc_data data = {};
952
953 struct scatterlist sg;
954
955 err = mmc_app_cmd(card->host, card);
956 if (err)
957 return err;
958
959 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
960 cmd.arg = 0;
961 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
962
963 data.blksz = 4;
964 data.blocks = 1;
965 data.flags = MMC_DATA_READ;
966 data.sg = &sg;
967 data.sg_len = 1;
968 mmc_set_data_timeout(&data, card);
969
970 mrq.cmd = &cmd;
971 mrq.data = &data;
972
973 blocks = kmalloc(4, GFP_KERNEL);
974 if (!blocks)
975 return -ENOMEM;
976
977 sg_init_one(&sg, blocks, 4);
978
979 mmc_wait_for_req(card->host, &mrq);
980
981 result = ntohl(*blocks);
982 kfree(blocks);
983
984 if (cmd.error || data.error)
985 return -EIO;
986
987 *written_blocks = result;
988
989 return 0;
990}
991
992static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
993{
994 if (host->actual_clock)
995 return host->actual_clock / 1000;
996
997 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
998 if (host->ios.clock)
999 return host->ios.clock / 2000;
1000
1001 /* How can there be no clock */
1002 WARN_ON_ONCE(1);
1003 return 100; /* 100 kHz is minimum possible value */
1004}
1005
1006static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1007 struct mmc_data *data)
1008{
1009 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1010 unsigned int khz;
1011
1012 if (data->timeout_clks) {
1013 khz = mmc_blk_clock_khz(host);
1014 ms += DIV_ROUND_UP(data->timeout_clks, khz);
1015 }
1016
1017 return ms;
1018}
1019
1020/*
1021 * Attempts to reset the card and get back to the requested partition.
1022 * Therefore any error here must result in cancelling the block layer
1023 * request, it must not be reattempted without going through the mmc_blk
1024 * partition sanity checks.
1025 */
1026static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1027 int type)
1028{
1029 int err;
1030 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1031
1032 if (md->reset_done & type)
1033 return -EEXIST;
1034
1035 md->reset_done |= type;
1036 err = mmc_hw_reset(host->card);
1037 /*
1038 * A successful reset will leave the card in the main partition, but
1039 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1040 * in that case.
1041 */
1042 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1043 if (err)
1044 return err;
1045 /* Ensure we switch back to the correct partition */
1046 if (mmc_blk_part_switch(host->card, md->part_type))
1047 /*
1048 * We have failed to get back into the correct
1049 * partition, so we need to abort the whole request.
1050 */
1051 return -ENODEV;
1052 return 0;
1053}
1054
1055static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1056{
1057 md->reset_done &= ~type;
1058}
1059
1060static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1061{
1062 struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1063 int i;
1064
1065 for (i = 1; i < mq_rq->ioc_count; i++) {
1066 if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1067 mmc_op_multi(idata[i]->ic.opcode)) {
1068 idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1069 idata[i]->flags |= MMC_BLK_IOC_SBC;
1070 }
1071 }
1072}
1073
1074/*
1075 * The non-block commands come back from the block layer after it queued it and
1076 * processed it with all other requests and then they get issued in this
1077 * function.
1078 */
1079static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1080{
1081 struct mmc_queue_req *mq_rq;
1082 struct mmc_card *card = mq->card;
1083 struct mmc_blk_data *md = mq->blkdata;
1084 struct mmc_blk_ioc_data **idata;
1085 bool rpmb_ioctl;
1086 u8 **ext_csd;
1087 u32 status;
1088 int ret;
1089 int i;
1090
1091 mq_rq = req_to_mmc_queue_req(req);
1092 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1093
1094 switch (mq_rq->drv_op) {
1095 case MMC_DRV_OP_IOCTL:
1096 if (card->ext_csd.cmdq_en) {
1097 ret = mmc_cmdq_disable(card);
1098 if (ret)
1099 break;
1100 }
1101
1102 mmc_blk_check_sbc(mq_rq);
1103
1104 fallthrough;
1105 case MMC_DRV_OP_IOCTL_RPMB:
1106 idata = mq_rq->drv_op_data;
1107 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1108 ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1109 if (ret)
1110 break;
1111 }
1112 /* Always switch back to main area after RPMB access */
1113 if (rpmb_ioctl)
1114 mmc_blk_part_switch(card, 0);
1115 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1116 mmc_cmdq_enable(card);
1117 break;
1118 case MMC_DRV_OP_BOOT_WP:
1119 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1120 card->ext_csd.boot_ro_lock |
1121 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1122 card->ext_csd.part_time);
1123 if (ret)
1124 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1125 md->disk->disk_name, ret);
1126 else
1127 card->ext_csd.boot_ro_lock |=
1128 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1129 break;
1130 case MMC_DRV_OP_GET_CARD_STATUS:
1131 ret = mmc_send_status(card, &status);
1132 if (!ret)
1133 ret = status;
1134 break;
1135 case MMC_DRV_OP_GET_EXT_CSD:
1136 ext_csd = mq_rq->drv_op_data;
1137 ret = mmc_get_ext_csd(card, ext_csd);
1138 break;
1139 default:
1140 pr_err("%s: unknown driver specific operation\n",
1141 md->disk->disk_name);
1142 ret = -EINVAL;
1143 break;
1144 }
1145 mq_rq->drv_op_result = ret;
1146 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1147}
1148
1149static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1150 int type, unsigned int erase_arg)
1151{
1152 struct mmc_blk_data *md = mq->blkdata;
1153 struct mmc_card *card = md->queue.card;
1154 unsigned int from, nr;
1155 int err = 0;
1156 blk_status_t status = BLK_STS_OK;
1157
1158 if (!mmc_can_erase(card)) {
1159 status = BLK_STS_NOTSUPP;
1160 goto fail;
1161 }
1162
1163 from = blk_rq_pos(req);
1164 nr = blk_rq_sectors(req);
1165
1166 do {
1167 err = 0;
1168 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1169 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1170 INAND_CMD38_ARG_EXT_CSD,
1171 erase_arg == MMC_TRIM_ARG ?
1172 INAND_CMD38_ARG_TRIM :
1173 INAND_CMD38_ARG_ERASE,
1174 card->ext_csd.generic_cmd6_time);
1175 }
1176 if (!err)
1177 err = mmc_erase(card, from, nr, erase_arg);
1178 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1179 if (err)
1180 status = BLK_STS_IOERR;
1181 else
1182 mmc_blk_reset_success(md, type);
1183fail:
1184 blk_mq_end_request(req, status);
1185}
1186
1187static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1188{
1189 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1190}
1191
1192static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1193{
1194 struct mmc_blk_data *md = mq->blkdata;
1195 struct mmc_card *card = md->queue.card;
1196 unsigned int arg = card->erase_arg;
1197
1198 if (mmc_card_broken_sd_discard(card))
1199 arg = SD_ERASE_ARG;
1200
1201 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1202}
1203
1204static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1205 struct request *req)
1206{
1207 struct mmc_blk_data *md = mq->blkdata;
1208 struct mmc_card *card = md->queue.card;
1209 unsigned int from, nr, arg;
1210 int err = 0, type = MMC_BLK_SECDISCARD;
1211 blk_status_t status = BLK_STS_OK;
1212
1213 if (!(mmc_can_secure_erase_trim(card))) {
1214 status = BLK_STS_NOTSUPP;
1215 goto out;
1216 }
1217
1218 from = blk_rq_pos(req);
1219 nr = blk_rq_sectors(req);
1220
1221 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1222 arg = MMC_SECURE_TRIM1_ARG;
1223 else
1224 arg = MMC_SECURE_ERASE_ARG;
1225
1226retry:
1227 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1228 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1229 INAND_CMD38_ARG_EXT_CSD,
1230 arg == MMC_SECURE_TRIM1_ARG ?
1231 INAND_CMD38_ARG_SECTRIM1 :
1232 INAND_CMD38_ARG_SECERASE,
1233 card->ext_csd.generic_cmd6_time);
1234 if (err)
1235 goto out_retry;
1236 }
1237
1238 err = mmc_erase(card, from, nr, arg);
1239 if (err == -EIO)
1240 goto out_retry;
1241 if (err) {
1242 status = BLK_STS_IOERR;
1243 goto out;
1244 }
1245
1246 if (arg == MMC_SECURE_TRIM1_ARG) {
1247 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1248 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1249 INAND_CMD38_ARG_EXT_CSD,
1250 INAND_CMD38_ARG_SECTRIM2,
1251 card->ext_csd.generic_cmd6_time);
1252 if (err)
1253 goto out_retry;
1254 }
1255
1256 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1257 if (err == -EIO)
1258 goto out_retry;
1259 if (err) {
1260 status = BLK_STS_IOERR;
1261 goto out;
1262 }
1263 }
1264
1265out_retry:
1266 if (err && !mmc_blk_reset(md, card->host, type))
1267 goto retry;
1268 if (!err)
1269 mmc_blk_reset_success(md, type);
1270out:
1271 blk_mq_end_request(req, status);
1272}
1273
1274static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1275{
1276 struct mmc_blk_data *md = mq->blkdata;
1277 struct mmc_card *card = md->queue.card;
1278 int ret = 0;
1279
1280 ret = mmc_flush_cache(card->host);
1281 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1282}
1283
1284/*
1285 * Reformat current write as a reliable write, supporting
1286 * both legacy and the enhanced reliable write MMC cards.
1287 * In each transfer we'll handle only as much as a single
1288 * reliable write can handle, thus finish the request in
1289 * partial completions.
1290 */
1291static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1292 struct mmc_card *card,
1293 struct request *req)
1294{
1295 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1296 /* Legacy mode imposes restrictions on transfers. */
1297 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1298 brq->data.blocks = 1;
1299
1300 if (brq->data.blocks > card->ext_csd.rel_sectors)
1301 brq->data.blocks = card->ext_csd.rel_sectors;
1302 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1303 brq->data.blocks = 1;
1304 }
1305}
1306
1307#define CMD_ERRORS_EXCL_OOR \
1308 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1309 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1310 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1311 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1312 R1_CC_ERROR | /* Card controller error */ \
1313 R1_ERROR) /* General/unknown error */
1314
1315#define CMD_ERRORS \
1316 (CMD_ERRORS_EXCL_OOR | \
1317 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1318
1319static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1320{
1321 u32 val;
1322
1323 /*
1324 * Per the SD specification(physical layer version 4.10)[1],
1325 * section 4.3.3, it explicitly states that "When the last
1326 * block of user area is read using CMD18, the host should
1327 * ignore OUT_OF_RANGE error that may occur even the sequence
1328 * is correct". And JESD84-B51 for eMMC also has a similar
1329 * statement on section 6.8.3.
1330 *
1331 * Multiple block read/write could be done by either predefined
1332 * method, namely CMD23, or open-ending mode. For open-ending mode,
1333 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1334 *
1335 * However the spec[1] doesn't tell us whether we should also
1336 * ignore that for predefined method. But per the spec[1], section
1337 * 4.15 Set Block Count Command, it says"If illegal block count
1338 * is set, out of range error will be indicated during read/write
1339 * operation (For example, data transfer is stopped at user area
1340 * boundary)." In another word, we could expect a out of range error
1341 * in the response for the following CMD18/25. And if argument of
1342 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1343 * we could also expect to get a -ETIMEDOUT or any error number from
1344 * the host drivers due to missing data response(for write)/data(for
1345 * read), as the cards will stop the data transfer by itself per the
1346 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1347 */
1348
1349 if (!brq->stop.error) {
1350 bool oor_with_open_end;
1351 /* If there is no error yet, check R1 response */
1352
1353 val = brq->stop.resp[0] & CMD_ERRORS;
1354 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1355
1356 if (val && !oor_with_open_end)
1357 brq->stop.error = -EIO;
1358 }
1359}
1360
1361static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1362 int recovery_mode, bool *do_rel_wr_p,
1363 bool *do_data_tag_p)
1364{
1365 struct mmc_blk_data *md = mq->blkdata;
1366 struct mmc_card *card = md->queue.card;
1367 struct mmc_blk_request *brq = &mqrq->brq;
1368 struct request *req = mmc_queue_req_to_req(mqrq);
1369 bool do_rel_wr, do_data_tag;
1370
1371 /*
1372 * Reliable writes are used to implement Forced Unit Access and
1373 * are supported only on MMCs.
1374 */
1375 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1376 rq_data_dir(req) == WRITE &&
1377 (md->flags & MMC_BLK_REL_WR);
1378
1379 memset(brq, 0, sizeof(struct mmc_blk_request));
1380
1381 mmc_crypto_prepare_req(mqrq);
1382
1383 brq->mrq.data = &brq->data;
1384 brq->mrq.tag = req->tag;
1385
1386 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1387 brq->stop.arg = 0;
1388
1389 if (rq_data_dir(req) == READ) {
1390 brq->data.flags = MMC_DATA_READ;
1391 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1392 } else {
1393 brq->data.flags = MMC_DATA_WRITE;
1394 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1395 }
1396
1397 brq->data.blksz = 512;
1398 brq->data.blocks = blk_rq_sectors(req);
1399 brq->data.blk_addr = blk_rq_pos(req);
1400
1401 /*
1402 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1403 * The eMMC will give "high" priority tasks priority over "simple"
1404 * priority tasks. Here we always set "simple" priority by not setting
1405 * MMC_DATA_PRIO.
1406 */
1407
1408 /*
1409 * The block layer doesn't support all sector count
1410 * restrictions, so we need to be prepared for too big
1411 * requests.
1412 */
1413 if (brq->data.blocks > card->host->max_blk_count)
1414 brq->data.blocks = card->host->max_blk_count;
1415
1416 if (brq->data.blocks > 1) {
1417 /*
1418 * Some SD cards in SPI mode return a CRC error or even lock up
1419 * completely when trying to read the last block using a
1420 * multiblock read command.
1421 */
1422 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1423 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1424 get_capacity(md->disk)))
1425 brq->data.blocks--;
1426
1427 /*
1428 * After a read error, we redo the request one (native) sector
1429 * at a time in order to accurately determine which
1430 * sectors can be read successfully.
1431 */
1432 if (recovery_mode)
1433 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1434
1435 /*
1436 * Some controllers have HW issues while operating
1437 * in multiple I/O mode
1438 */
1439 if (card->host->ops->multi_io_quirk)
1440 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1441 (rq_data_dir(req) == READ) ?
1442 MMC_DATA_READ : MMC_DATA_WRITE,
1443 brq->data.blocks);
1444 }
1445
1446 if (do_rel_wr) {
1447 mmc_apply_rel_rw(brq, card, req);
1448 brq->data.flags |= MMC_DATA_REL_WR;
1449 }
1450
1451 /*
1452 * Data tag is used only during writing meta data to speed
1453 * up write and any subsequent read of this meta data
1454 */
1455 do_data_tag = card->ext_csd.data_tag_unit_size &&
1456 (req->cmd_flags & REQ_META) &&
1457 (rq_data_dir(req) == WRITE) &&
1458 ((brq->data.blocks * brq->data.blksz) >=
1459 card->ext_csd.data_tag_unit_size);
1460
1461 if (do_data_tag)
1462 brq->data.flags |= MMC_DATA_DAT_TAG;
1463
1464 mmc_set_data_timeout(&brq->data, card);
1465
1466 brq->data.sg = mqrq->sg;
1467 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1468
1469 /*
1470 * Adjust the sg list so it is the same size as the
1471 * request.
1472 */
1473 if (brq->data.blocks != blk_rq_sectors(req)) {
1474 int i, data_size = brq->data.blocks << 9;
1475 struct scatterlist *sg;
1476
1477 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1478 data_size -= sg->length;
1479 if (data_size <= 0) {
1480 sg->length += data_size;
1481 i++;
1482 break;
1483 }
1484 }
1485 brq->data.sg_len = i;
1486 }
1487
1488 if (do_rel_wr_p)
1489 *do_rel_wr_p = do_rel_wr;
1490
1491 if (do_data_tag_p)
1492 *do_data_tag_p = do_data_tag;
1493}
1494
1495#define MMC_CQE_RETRIES 2
1496
1497static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1498{
1499 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1500 struct mmc_request *mrq = &mqrq->brq.mrq;
1501 struct request_queue *q = req->q;
1502 struct mmc_host *host = mq->card->host;
1503 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1504 unsigned long flags;
1505 bool put_card;
1506 int err;
1507
1508 mmc_cqe_post_req(host, mrq);
1509
1510 if (mrq->cmd && mrq->cmd->error)
1511 err = mrq->cmd->error;
1512 else if (mrq->data && mrq->data->error)
1513 err = mrq->data->error;
1514 else
1515 err = 0;
1516
1517 if (err) {
1518 if (mqrq->retries++ < MMC_CQE_RETRIES)
1519 blk_mq_requeue_request(req, true);
1520 else
1521 blk_mq_end_request(req, BLK_STS_IOERR);
1522 } else if (mrq->data) {
1523 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1524 blk_mq_requeue_request(req, true);
1525 else
1526 __blk_mq_end_request(req, BLK_STS_OK);
1527 } else if (mq->in_recovery) {
1528 blk_mq_requeue_request(req, true);
1529 } else {
1530 blk_mq_end_request(req, BLK_STS_OK);
1531 }
1532
1533 spin_lock_irqsave(&mq->lock, flags);
1534
1535 mq->in_flight[issue_type] -= 1;
1536
1537 put_card = (mmc_tot_in_flight(mq) == 0);
1538
1539 mmc_cqe_check_busy(mq);
1540
1541 spin_unlock_irqrestore(&mq->lock, flags);
1542
1543 if (!mq->cqe_busy)
1544 blk_mq_run_hw_queues(q, true);
1545
1546 if (put_card)
1547 mmc_put_card(mq->card, &mq->ctx);
1548}
1549
1550void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1551{
1552 struct mmc_card *card = mq->card;
1553 struct mmc_host *host = card->host;
1554 int err;
1555
1556 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1557
1558 err = mmc_cqe_recovery(host);
1559 if (err)
1560 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1561 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1562
1563 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1564}
1565
1566static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1567{
1568 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1569 brq.mrq);
1570 struct request *req = mmc_queue_req_to_req(mqrq);
1571 struct request_queue *q = req->q;
1572 struct mmc_queue *mq = q->queuedata;
1573
1574 /*
1575 * Block layer timeouts race with completions which means the normal
1576 * completion path cannot be used during recovery.
1577 */
1578 if (mq->in_recovery)
1579 mmc_blk_cqe_complete_rq(mq, req);
1580 else if (likely(!blk_should_fake_timeout(req->q)))
1581 blk_mq_complete_request(req);
1582}
1583
1584static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1585{
1586 mrq->done = mmc_blk_cqe_req_done;
1587 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1588
1589 return mmc_cqe_start_req(host, mrq);
1590}
1591
1592static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1593 struct request *req)
1594{
1595 struct mmc_blk_request *brq = &mqrq->brq;
1596
1597 memset(brq, 0, sizeof(*brq));
1598
1599 brq->mrq.cmd = &brq->cmd;
1600 brq->mrq.tag = req->tag;
1601
1602 return &brq->mrq;
1603}
1604
1605static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1606{
1607 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1608 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1609
1610 mrq->cmd->opcode = MMC_SWITCH;
1611 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1612 (EXT_CSD_FLUSH_CACHE << 16) |
1613 (1 << 8) |
1614 EXT_CSD_CMD_SET_NORMAL;
1615 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1616
1617 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1618}
1619
1620static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1621{
1622 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1623 struct mmc_host *host = mq->card->host;
1624 int err;
1625
1626 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1627 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1628 mmc_pre_req(host, &mqrq->brq.mrq);
1629
1630 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1631 if (err)
1632 mmc_post_req(host, &mqrq->brq.mrq, err);
1633
1634 return err;
1635}
1636
1637static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1638{
1639 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1640 struct mmc_host *host = mq->card->host;
1641
1642 if (host->hsq_enabled)
1643 return mmc_blk_hsq_issue_rw_rq(mq, req);
1644
1645 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1646
1647 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1648}
1649
1650static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1651 struct mmc_card *card,
1652 int recovery_mode,
1653 struct mmc_queue *mq)
1654{
1655 u32 readcmd, writecmd;
1656 struct mmc_blk_request *brq = &mqrq->brq;
1657 struct request *req = mmc_queue_req_to_req(mqrq);
1658 struct mmc_blk_data *md = mq->blkdata;
1659 bool do_rel_wr, do_data_tag;
1660
1661 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1662
1663 brq->mrq.cmd = &brq->cmd;
1664
1665 brq->cmd.arg = blk_rq_pos(req);
1666 if (!mmc_card_blockaddr(card))
1667 brq->cmd.arg <<= 9;
1668 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1669
1670 if (brq->data.blocks > 1 || do_rel_wr) {
1671 /* SPI multiblock writes terminate using a special
1672 * token, not a STOP_TRANSMISSION request.
1673 */
1674 if (!mmc_host_is_spi(card->host) ||
1675 rq_data_dir(req) == READ)
1676 brq->mrq.stop = &brq->stop;
1677 readcmd = MMC_READ_MULTIPLE_BLOCK;
1678 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1679 } else {
1680 brq->mrq.stop = NULL;
1681 readcmd = MMC_READ_SINGLE_BLOCK;
1682 writecmd = MMC_WRITE_BLOCK;
1683 }
1684 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1685
1686 /*
1687 * Pre-defined multi-block transfers are preferable to
1688 * open ended-ones (and necessary for reliable writes).
1689 * However, it is not sufficient to just send CMD23,
1690 * and avoid the final CMD12, as on an error condition
1691 * CMD12 (stop) needs to be sent anyway. This, coupled
1692 * with Auto-CMD23 enhancements provided by some
1693 * hosts, means that the complexity of dealing
1694 * with this is best left to the host. If CMD23 is
1695 * supported by card and host, we'll fill sbc in and let
1696 * the host deal with handling it correctly. This means
1697 * that for hosts that don't expose MMC_CAP_CMD23, no
1698 * change of behavior will be observed.
1699 *
1700 * N.B: Some MMC cards experience perf degradation.
1701 * We'll avoid using CMD23-bounded multiblock writes for
1702 * these, while retaining features like reliable writes.
1703 */
1704 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1705 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1706 do_data_tag)) {
1707 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1708 brq->sbc.arg = brq->data.blocks |
1709 (do_rel_wr ? (1 << 31) : 0) |
1710 (do_data_tag ? (1 << 29) : 0);
1711 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1712 brq->mrq.sbc = &brq->sbc;
1713 }
1714}
1715
1716#define MMC_MAX_RETRIES 5
1717#define MMC_DATA_RETRIES 2
1718#define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1719
1720static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1721{
1722 struct mmc_command cmd = {
1723 .opcode = MMC_STOP_TRANSMISSION,
1724 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1725 /* Some hosts wait for busy anyway, so provide a busy timeout */
1726 .busy_timeout = timeout,
1727 };
1728
1729 return mmc_wait_for_cmd(card->host, &cmd, 5);
1730}
1731
1732static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1733{
1734 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1735 struct mmc_blk_request *brq = &mqrq->brq;
1736 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1737 int err;
1738
1739 mmc_retune_hold_now(card->host);
1740
1741 mmc_blk_send_stop(card, timeout);
1742
1743 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1744
1745 mmc_retune_release(card->host);
1746
1747 return err;
1748}
1749
1750#define MMC_READ_SINGLE_RETRIES 2
1751
1752/* Single (native) sector read during recovery */
1753static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1754{
1755 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1756 struct mmc_request *mrq = &mqrq->brq.mrq;
1757 struct mmc_card *card = mq->card;
1758 struct mmc_host *host = card->host;
1759 blk_status_t error = BLK_STS_OK;
1760 size_t bytes_per_read = queue_physical_block_size(mq->queue);
1761
1762 do {
1763 u32 status;
1764 int err;
1765 int retries = 0;
1766
1767 while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1768 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1769
1770 mmc_wait_for_req(host, mrq);
1771
1772 err = mmc_send_status(card, &status);
1773 if (err)
1774 goto error_exit;
1775
1776 if (!mmc_host_is_spi(host) &&
1777 !mmc_ready_for_data(status)) {
1778 err = mmc_blk_fix_state(card, req);
1779 if (err)
1780 goto error_exit;
1781 }
1782
1783 if (!mrq->cmd->error)
1784 break;
1785 }
1786
1787 if (mrq->cmd->error ||
1788 mrq->data->error ||
1789 (!mmc_host_is_spi(host) &&
1790 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1791 error = BLK_STS_IOERR;
1792 else
1793 error = BLK_STS_OK;
1794
1795 } while (blk_update_request(req, error, bytes_per_read));
1796
1797 return;
1798
1799error_exit:
1800 mrq->data->bytes_xfered = 0;
1801 blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1802 /* Let it try the remaining request again */
1803 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1804 mqrq->retries = MMC_MAX_RETRIES - 1;
1805}
1806
1807static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1808{
1809 return !!brq->mrq.sbc;
1810}
1811
1812static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1813{
1814 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1815}
1816
1817/*
1818 * Check for errors the host controller driver might not have seen such as
1819 * response mode errors or invalid card state.
1820 */
1821static bool mmc_blk_status_error(struct request *req, u32 status)
1822{
1823 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1824 struct mmc_blk_request *brq = &mqrq->brq;
1825 struct mmc_queue *mq = req->q->queuedata;
1826 u32 stop_err_bits;
1827
1828 if (mmc_host_is_spi(mq->card->host))
1829 return false;
1830
1831 stop_err_bits = mmc_blk_stop_err_bits(brq);
1832
1833 return brq->cmd.resp[0] & CMD_ERRORS ||
1834 brq->stop.resp[0] & stop_err_bits ||
1835 status & stop_err_bits ||
1836 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1837}
1838
1839static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1840{
1841 return !brq->sbc.error && !brq->cmd.error &&
1842 !(brq->cmd.resp[0] & CMD_ERRORS);
1843}
1844
1845/*
1846 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1847 * policy:
1848 * 1. A request that has transferred at least some data is considered
1849 * successful and will be requeued if there is remaining data to
1850 * transfer.
1851 * 2. Otherwise the number of retries is incremented and the request
1852 * will be requeued if there are remaining retries.
1853 * 3. Otherwise the request will be errored out.
1854 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1855 * mqrq->retries. So there are only 4 possible actions here:
1856 * 1. do not accept the bytes_xfered value i.e. set it to zero
1857 * 2. change mqrq->retries to determine the number of retries
1858 * 3. try to reset the card
1859 * 4. read one sector at a time
1860 */
1861static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1862{
1863 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1864 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1865 struct mmc_blk_request *brq = &mqrq->brq;
1866 struct mmc_blk_data *md = mq->blkdata;
1867 struct mmc_card *card = mq->card;
1868 u32 status;
1869 u32 blocks;
1870 int err;
1871
1872 /*
1873 * Some errors the host driver might not have seen. Set the number of
1874 * bytes transferred to zero in that case.
1875 */
1876 err = __mmc_send_status(card, &status, 0);
1877 if (err || mmc_blk_status_error(req, status))
1878 brq->data.bytes_xfered = 0;
1879
1880 mmc_retune_release(card->host);
1881
1882 /*
1883 * Try again to get the status. This also provides an opportunity for
1884 * re-tuning.
1885 */
1886 if (err)
1887 err = __mmc_send_status(card, &status, 0);
1888
1889 /*
1890 * Nothing more to do after the number of bytes transferred has been
1891 * updated and there is no card.
1892 */
1893 if (err && mmc_detect_card_removed(card->host))
1894 return;
1895
1896 /* Try to get back to "tran" state */
1897 if (!mmc_host_is_spi(mq->card->host) &&
1898 (err || !mmc_ready_for_data(status)))
1899 err = mmc_blk_fix_state(mq->card, req);
1900
1901 /*
1902 * Special case for SD cards where the card might record the number of
1903 * blocks written.
1904 */
1905 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1906 rq_data_dir(req) == WRITE) {
1907 if (mmc_sd_num_wr_blocks(card, &blocks))
1908 brq->data.bytes_xfered = 0;
1909 else
1910 brq->data.bytes_xfered = blocks << 9;
1911 }
1912
1913 /* Reset if the card is in a bad state */
1914 if (!mmc_host_is_spi(mq->card->host) &&
1915 err && mmc_blk_reset(md, card->host, type)) {
1916 pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1917 mqrq->retries = MMC_NO_RETRIES;
1918 return;
1919 }
1920
1921 /*
1922 * If anything was done, just return and if there is anything remaining
1923 * on the request it will get requeued.
1924 */
1925 if (brq->data.bytes_xfered)
1926 return;
1927
1928 /* Reset before last retry */
1929 if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1930 mmc_blk_reset(md, card->host, type))
1931 return;
1932
1933 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1934 if (brq->sbc.error || brq->cmd.error)
1935 return;
1936
1937 /* Reduce the remaining retries for data errors */
1938 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1939 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1940 return;
1941 }
1942
1943 if (rq_data_dir(req) == READ && brq->data.blocks >
1944 queue_physical_block_size(mq->queue) >> 9) {
1945 /* Read one (native) sector at a time */
1946 mmc_blk_read_single(mq, req);
1947 return;
1948 }
1949}
1950
1951static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1952{
1953 mmc_blk_eval_resp_error(brq);
1954
1955 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1956 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1957}
1958
1959static int mmc_spi_err_check(struct mmc_card *card)
1960{
1961 u32 status = 0;
1962 int err;
1963
1964 /*
1965 * SPI does not have a TRAN state we have to wait on, instead the
1966 * card is ready again when it no longer holds the line LOW.
1967 * We still have to ensure two things here before we know the write
1968 * was successful:
1969 * 1. The card has not disconnected during busy and we actually read our
1970 * own pull-up, thinking it was still connected, so ensure it
1971 * still responds.
1972 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1973 * just reconnected card after being disconnected during busy.
1974 */
1975 err = __mmc_send_status(card, &status, 0);
1976 if (err)
1977 return err;
1978 /* All R1 and R2 bits of SPI are errors in our case */
1979 if (status)
1980 return -EIO;
1981 return 0;
1982}
1983
1984static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1985{
1986 struct mmc_blk_busy_data *data = cb_data;
1987 u32 status = 0;
1988 int err;
1989
1990 err = mmc_send_status(data->card, &status);
1991 if (err)
1992 return err;
1993
1994 /* Accumulate response error bits. */
1995 data->status |= status;
1996
1997 *busy = !mmc_ready_for_data(status);
1998 return 0;
1999}
2000
2001static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2002{
2003 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2004 struct mmc_blk_busy_data cb_data;
2005 int err;
2006
2007 if (rq_data_dir(req) == READ)
2008 return 0;
2009
2010 if (mmc_host_is_spi(card->host)) {
2011 err = mmc_spi_err_check(card);
2012 if (err)
2013 mqrq->brq.data.bytes_xfered = 0;
2014 return err;
2015 }
2016
2017 cb_data.card = card;
2018 cb_data.status = 0;
2019 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
2020 &mmc_blk_busy_cb, &cb_data);
2021
2022 /*
2023 * Do not assume data transferred correctly if there are any error bits
2024 * set.
2025 */
2026 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2027 mqrq->brq.data.bytes_xfered = 0;
2028 err = err ? err : -EIO;
2029 }
2030
2031 /* Copy the exception bit so it will be seen later on */
2032 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2033 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2034
2035 return err;
2036}
2037
2038static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2039 struct request *req)
2040{
2041 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2042
2043 mmc_blk_reset_success(mq->blkdata, type);
2044}
2045
2046static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2047{
2048 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2049 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2050
2051 if (nr_bytes) {
2052 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2053 blk_mq_requeue_request(req, true);
2054 else
2055 __blk_mq_end_request(req, BLK_STS_OK);
2056 } else if (!blk_rq_bytes(req)) {
2057 __blk_mq_end_request(req, BLK_STS_IOERR);
2058 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2059 blk_mq_requeue_request(req, true);
2060 } else {
2061 if (mmc_card_removed(mq->card))
2062 req->rq_flags |= RQF_QUIET;
2063 blk_mq_end_request(req, BLK_STS_IOERR);
2064 }
2065}
2066
2067static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2068 struct mmc_queue_req *mqrq)
2069{
2070 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2071 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2072 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2073}
2074
2075static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2076 struct mmc_queue_req *mqrq)
2077{
2078 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2079 mmc_run_bkops(mq->card);
2080}
2081
2082static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2083{
2084 struct mmc_queue_req *mqrq =
2085 container_of(mrq, struct mmc_queue_req, brq.mrq);
2086 struct request *req = mmc_queue_req_to_req(mqrq);
2087 struct request_queue *q = req->q;
2088 struct mmc_queue *mq = q->queuedata;
2089 struct mmc_host *host = mq->card->host;
2090 unsigned long flags;
2091
2092 if (mmc_blk_rq_error(&mqrq->brq) ||
2093 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2094 spin_lock_irqsave(&mq->lock, flags);
2095 mq->recovery_needed = true;
2096 mq->recovery_req = req;
2097 spin_unlock_irqrestore(&mq->lock, flags);
2098
2099 host->cqe_ops->cqe_recovery_start(host);
2100
2101 schedule_work(&mq->recovery_work);
2102 return;
2103 }
2104
2105 mmc_blk_rw_reset_success(mq, req);
2106
2107 /*
2108 * Block layer timeouts race with completions which means the normal
2109 * completion path cannot be used during recovery.
2110 */
2111 if (mq->in_recovery)
2112 mmc_blk_cqe_complete_rq(mq, req);
2113 else if (likely(!blk_should_fake_timeout(req->q)))
2114 blk_mq_complete_request(req);
2115}
2116
2117void mmc_blk_mq_complete(struct request *req)
2118{
2119 struct mmc_queue *mq = req->q->queuedata;
2120 struct mmc_host *host = mq->card->host;
2121
2122 if (host->cqe_enabled)
2123 mmc_blk_cqe_complete_rq(mq, req);
2124 else if (likely(!blk_should_fake_timeout(req->q)))
2125 mmc_blk_mq_complete_rq(mq, req);
2126}
2127
2128static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2129 struct request *req)
2130{
2131 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2132 struct mmc_host *host = mq->card->host;
2133
2134 if (mmc_blk_rq_error(&mqrq->brq) ||
2135 mmc_blk_card_busy(mq->card, req)) {
2136 mmc_blk_mq_rw_recovery(mq, req);
2137 } else {
2138 mmc_blk_rw_reset_success(mq, req);
2139 mmc_retune_release(host);
2140 }
2141
2142 mmc_blk_urgent_bkops(mq, mqrq);
2143}
2144
2145static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2146{
2147 unsigned long flags;
2148 bool put_card;
2149
2150 spin_lock_irqsave(&mq->lock, flags);
2151
2152 mq->in_flight[issue_type] -= 1;
2153
2154 put_card = (mmc_tot_in_flight(mq) == 0);
2155
2156 spin_unlock_irqrestore(&mq->lock, flags);
2157
2158 if (put_card)
2159 mmc_put_card(mq->card, &mq->ctx);
2160}
2161
2162static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2163 bool can_sleep)
2164{
2165 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2166 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2167 struct mmc_request *mrq = &mqrq->brq.mrq;
2168 struct mmc_host *host = mq->card->host;
2169
2170 mmc_post_req(host, mrq, 0);
2171
2172 /*
2173 * Block layer timeouts race with completions which means the normal
2174 * completion path cannot be used during recovery.
2175 */
2176 if (mq->in_recovery) {
2177 mmc_blk_mq_complete_rq(mq, req);
2178 } else if (likely(!blk_should_fake_timeout(req->q))) {
2179 if (can_sleep)
2180 blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2181 else
2182 blk_mq_complete_request(req);
2183 }
2184
2185 mmc_blk_mq_dec_in_flight(mq, issue_type);
2186}
2187
2188void mmc_blk_mq_recovery(struct mmc_queue *mq)
2189{
2190 struct request *req = mq->recovery_req;
2191 struct mmc_host *host = mq->card->host;
2192 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2193
2194 mq->recovery_req = NULL;
2195 mq->rw_wait = false;
2196
2197 if (mmc_blk_rq_error(&mqrq->brq)) {
2198 mmc_retune_hold_now(host);
2199 mmc_blk_mq_rw_recovery(mq, req);
2200 }
2201
2202 mmc_blk_urgent_bkops(mq, mqrq);
2203
2204 mmc_blk_mq_post_req(mq, req, true);
2205}
2206
2207static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2208 struct request **prev_req)
2209{
2210 if (mmc_host_done_complete(mq->card->host))
2211 return;
2212
2213 mutex_lock(&mq->complete_lock);
2214
2215 if (!mq->complete_req)
2216 goto out_unlock;
2217
2218 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2219
2220 if (prev_req)
2221 *prev_req = mq->complete_req;
2222 else
2223 mmc_blk_mq_post_req(mq, mq->complete_req, true);
2224
2225 mq->complete_req = NULL;
2226
2227out_unlock:
2228 mutex_unlock(&mq->complete_lock);
2229}
2230
2231void mmc_blk_mq_complete_work(struct work_struct *work)
2232{
2233 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2234 complete_work);
2235
2236 mmc_blk_mq_complete_prev_req(mq, NULL);
2237}
2238
2239static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2240{
2241 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2242 brq.mrq);
2243 struct request *req = mmc_queue_req_to_req(mqrq);
2244 struct request_queue *q = req->q;
2245 struct mmc_queue *mq = q->queuedata;
2246 struct mmc_host *host = mq->card->host;
2247 unsigned long flags;
2248
2249 if (!mmc_host_done_complete(host)) {
2250 bool waiting;
2251
2252 /*
2253 * We cannot complete the request in this context, so record
2254 * that there is a request to complete, and that a following
2255 * request does not need to wait (although it does need to
2256 * complete complete_req first).
2257 */
2258 spin_lock_irqsave(&mq->lock, flags);
2259 mq->complete_req = req;
2260 mq->rw_wait = false;
2261 waiting = mq->waiting;
2262 spin_unlock_irqrestore(&mq->lock, flags);
2263
2264 /*
2265 * If 'waiting' then the waiting task will complete this
2266 * request, otherwise queue a work to do it. Note that
2267 * complete_work may still race with the dispatch of a following
2268 * request.
2269 */
2270 if (waiting)
2271 wake_up(&mq->wait);
2272 else
2273 queue_work(mq->card->complete_wq, &mq->complete_work);
2274
2275 return;
2276 }
2277
2278 /* Take the recovery path for errors or urgent background operations */
2279 if (mmc_blk_rq_error(&mqrq->brq) ||
2280 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2281 spin_lock_irqsave(&mq->lock, flags);
2282 mq->recovery_needed = true;
2283 mq->recovery_req = req;
2284 spin_unlock_irqrestore(&mq->lock, flags);
2285 wake_up(&mq->wait);
2286 schedule_work(&mq->recovery_work);
2287 return;
2288 }
2289
2290 mmc_blk_rw_reset_success(mq, req);
2291
2292 mq->rw_wait = false;
2293 wake_up(&mq->wait);
2294
2295 /* context unknown */
2296 mmc_blk_mq_post_req(mq, req, false);
2297}
2298
2299static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2300{
2301 unsigned long flags;
2302 bool done;
2303
2304 /*
2305 * Wait while there is another request in progress, but not if recovery
2306 * is needed. Also indicate whether there is a request waiting to start.
2307 */
2308 spin_lock_irqsave(&mq->lock, flags);
2309 if (mq->recovery_needed) {
2310 *err = -EBUSY;
2311 done = true;
2312 } else {
2313 done = !mq->rw_wait;
2314 }
2315 mq->waiting = !done;
2316 spin_unlock_irqrestore(&mq->lock, flags);
2317
2318 return done;
2319}
2320
2321static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2322{
2323 int err = 0;
2324
2325 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2326
2327 /* Always complete the previous request if there is one */
2328 mmc_blk_mq_complete_prev_req(mq, prev_req);
2329
2330 return err;
2331}
2332
2333static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2334 struct request *req)
2335{
2336 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2337 struct mmc_host *host = mq->card->host;
2338 struct request *prev_req = NULL;
2339 int err = 0;
2340
2341 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2342
2343 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2344
2345 mmc_pre_req(host, &mqrq->brq.mrq);
2346
2347 err = mmc_blk_rw_wait(mq, &prev_req);
2348 if (err)
2349 goto out_post_req;
2350
2351 mq->rw_wait = true;
2352
2353 err = mmc_start_request(host, &mqrq->brq.mrq);
2354
2355 if (prev_req)
2356 mmc_blk_mq_post_req(mq, prev_req, true);
2357
2358 if (err)
2359 mq->rw_wait = false;
2360
2361 /* Release re-tuning here where there is no synchronization required */
2362 if (err || mmc_host_done_complete(host))
2363 mmc_retune_release(host);
2364
2365out_post_req:
2366 if (err)
2367 mmc_post_req(host, &mqrq->brq.mrq, err);
2368
2369 return err;
2370}
2371
2372static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2373{
2374 if (host->cqe_enabled)
2375 return host->cqe_ops->cqe_wait_for_idle(host);
2376
2377 return mmc_blk_rw_wait(mq, NULL);
2378}
2379
2380enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2381{
2382 struct mmc_blk_data *md = mq->blkdata;
2383 struct mmc_card *card = md->queue.card;
2384 struct mmc_host *host = card->host;
2385 int ret;
2386
2387 ret = mmc_blk_part_switch(card, md->part_type);
2388 if (ret)
2389 return MMC_REQ_FAILED_TO_START;
2390
2391 switch (mmc_issue_type(mq, req)) {
2392 case MMC_ISSUE_SYNC:
2393 ret = mmc_blk_wait_for_idle(mq, host);
2394 if (ret)
2395 return MMC_REQ_BUSY;
2396 switch (req_op(req)) {
2397 case REQ_OP_DRV_IN:
2398 case REQ_OP_DRV_OUT:
2399 mmc_blk_issue_drv_op(mq, req);
2400 break;
2401 case REQ_OP_DISCARD:
2402 mmc_blk_issue_discard_rq(mq, req);
2403 break;
2404 case REQ_OP_SECURE_ERASE:
2405 mmc_blk_issue_secdiscard_rq(mq, req);
2406 break;
2407 case REQ_OP_WRITE_ZEROES:
2408 mmc_blk_issue_trim_rq(mq, req);
2409 break;
2410 case REQ_OP_FLUSH:
2411 mmc_blk_issue_flush(mq, req);
2412 break;
2413 default:
2414 WARN_ON_ONCE(1);
2415 return MMC_REQ_FAILED_TO_START;
2416 }
2417 return MMC_REQ_FINISHED;
2418 case MMC_ISSUE_DCMD:
2419 case MMC_ISSUE_ASYNC:
2420 switch (req_op(req)) {
2421 case REQ_OP_FLUSH:
2422 if (!mmc_cache_enabled(host)) {
2423 blk_mq_end_request(req, BLK_STS_OK);
2424 return MMC_REQ_FINISHED;
2425 }
2426 ret = mmc_blk_cqe_issue_flush(mq, req);
2427 break;
2428 case REQ_OP_WRITE:
2429 card->written_flag = true;
2430 fallthrough;
2431 case REQ_OP_READ:
2432 if (host->cqe_enabled)
2433 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2434 else
2435 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2436 break;
2437 default:
2438 WARN_ON_ONCE(1);
2439 ret = -EINVAL;
2440 }
2441 if (!ret)
2442 return MMC_REQ_STARTED;
2443 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2444 default:
2445 WARN_ON_ONCE(1);
2446 return MMC_REQ_FAILED_TO_START;
2447 }
2448}
2449
2450static inline int mmc_blk_readonly(struct mmc_card *card)
2451{
2452 return mmc_card_readonly(card) ||
2453 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2454}
2455
2456static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2457 struct device *parent,
2458 sector_t size,
2459 bool default_ro,
2460 const char *subname,
2461 int area_type,
2462 unsigned int part_type)
2463{
2464 struct mmc_blk_data *md;
2465 int devidx, ret;
2466 char cap_str[10];
2467 bool cache_enabled = false;
2468 bool fua_enabled = false;
2469
2470 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2471 if (devidx < 0) {
2472 /*
2473 * We get -ENOSPC because there are no more any available
2474 * devidx. The reason may be that, either userspace haven't yet
2475 * unmounted the partitions, which postpones mmc_blk_release()
2476 * from being called, or the device has more partitions than
2477 * what we support.
2478 */
2479 if (devidx == -ENOSPC)
2480 dev_err(mmc_dev(card->host),
2481 "no more device IDs available\n");
2482
2483 return ERR_PTR(devidx);
2484 }
2485
2486 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2487 if (!md) {
2488 ret = -ENOMEM;
2489 goto out;
2490 }
2491
2492 md->area_type = area_type;
2493
2494 /*
2495 * Set the read-only status based on the supported commands
2496 * and the write protect switch.
2497 */
2498 md->read_only = mmc_blk_readonly(card);
2499
2500 md->disk = mmc_init_queue(&md->queue, card);
2501 if (IS_ERR(md->disk)) {
2502 ret = PTR_ERR(md->disk);
2503 goto err_kfree;
2504 }
2505
2506 INIT_LIST_HEAD(&md->part);
2507 INIT_LIST_HEAD(&md->rpmbs);
2508 kref_init(&md->kref);
2509
2510 md->queue.blkdata = md;
2511 md->part_type = part_type;
2512
2513 md->disk->major = MMC_BLOCK_MAJOR;
2514 md->disk->minors = perdev_minors;
2515 md->disk->first_minor = devidx * perdev_minors;
2516 md->disk->fops = &mmc_bdops;
2517 md->disk->private_data = md;
2518 md->parent = parent;
2519 set_disk_ro(md->disk, md->read_only || default_ro);
2520 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2521 md->disk->flags |= GENHD_FL_NO_PART;
2522
2523 /*
2524 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2525 *
2526 * - be set for removable media with permanent block devices
2527 * - be unset for removable block devices with permanent media
2528 *
2529 * Since MMC block devices clearly fall under the second
2530 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2531 * should use the block device creation/destruction hotplug
2532 * messages to tell when the card is present.
2533 */
2534
2535 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2536 "mmcblk%u%s", card->host->index, subname ? subname : "");
2537
2538 set_capacity(md->disk, size);
2539
2540 if (mmc_host_cmd23(card->host)) {
2541 if ((mmc_card_mmc(card) &&
2542 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2543 (mmc_card_sd(card) &&
2544 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2545 md->flags |= MMC_BLK_CMD23;
2546 }
2547
2548 if (md->flags & MMC_BLK_CMD23 &&
2549 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2550 card->ext_csd.rel_sectors)) {
2551 md->flags |= MMC_BLK_REL_WR;
2552 fua_enabled = true;
2553 cache_enabled = true;
2554 }
2555 if (mmc_cache_enabled(card->host))
2556 cache_enabled = true;
2557
2558 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2559
2560 string_get_size((u64)size, 512, STRING_UNITS_2,
2561 cap_str, sizeof(cap_str));
2562 pr_info("%s: %s %s %s%s\n",
2563 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2564 cap_str, md->read_only ? " (ro)" : "");
2565
2566 /* used in ->open, must be set before add_disk: */
2567 if (area_type == MMC_BLK_DATA_AREA_MAIN)
2568 dev_set_drvdata(&card->dev, md);
2569 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2570 if (ret)
2571 goto err_put_disk;
2572 return md;
2573
2574 err_put_disk:
2575 put_disk(md->disk);
2576 blk_mq_free_tag_set(&md->queue.tag_set);
2577 err_kfree:
2578 kfree(md);
2579 out:
2580 ida_simple_remove(&mmc_blk_ida, devidx);
2581 return ERR_PTR(ret);
2582}
2583
2584static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2585{
2586 sector_t size;
2587
2588 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2589 /*
2590 * The EXT_CSD sector count is in number or 512 byte
2591 * sectors.
2592 */
2593 size = card->ext_csd.sectors;
2594 } else {
2595 /*
2596 * The CSD capacity field is in units of read_blkbits.
2597 * set_capacity takes units of 512 bytes.
2598 */
2599 size = (typeof(sector_t))card->csd.capacity
2600 << (card->csd.read_blkbits - 9);
2601 }
2602
2603 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2604 MMC_BLK_DATA_AREA_MAIN, 0);
2605}
2606
2607static int mmc_blk_alloc_part(struct mmc_card *card,
2608 struct mmc_blk_data *md,
2609 unsigned int part_type,
2610 sector_t size,
2611 bool default_ro,
2612 const char *subname,
2613 int area_type)
2614{
2615 struct mmc_blk_data *part_md;
2616
2617 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2618 subname, area_type, part_type);
2619 if (IS_ERR(part_md))
2620 return PTR_ERR(part_md);
2621 list_add(&part_md->part, &md->part);
2622
2623 return 0;
2624}
2625
2626/**
2627 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2628 * @filp: the character device file
2629 * @cmd: the ioctl() command
2630 * @arg: the argument from userspace
2631 *
2632 * This will essentially just redirect the ioctl()s coming in over to
2633 * the main block device spawning the RPMB character device.
2634 */
2635static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2636 unsigned long arg)
2637{
2638 struct mmc_rpmb_data *rpmb = filp->private_data;
2639 int ret;
2640
2641 switch (cmd) {
2642 case MMC_IOC_CMD:
2643 ret = mmc_blk_ioctl_cmd(rpmb->md,
2644 (struct mmc_ioc_cmd __user *)arg,
2645 rpmb);
2646 break;
2647 case MMC_IOC_MULTI_CMD:
2648 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2649 (struct mmc_ioc_multi_cmd __user *)arg,
2650 rpmb);
2651 break;
2652 default:
2653 ret = -EINVAL;
2654 break;
2655 }
2656
2657 return ret;
2658}
2659
2660#ifdef CONFIG_COMPAT
2661static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2662 unsigned long arg)
2663{
2664 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2665}
2666#endif
2667
2668static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2669{
2670 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2671 struct mmc_rpmb_data, chrdev);
2672
2673 get_device(&rpmb->dev);
2674 filp->private_data = rpmb;
2675 mmc_blk_get(rpmb->md->disk);
2676
2677 return nonseekable_open(inode, filp);
2678}
2679
2680static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2681{
2682 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2683 struct mmc_rpmb_data, chrdev);
2684
2685 mmc_blk_put(rpmb->md);
2686 put_device(&rpmb->dev);
2687
2688 return 0;
2689}
2690
2691static const struct file_operations mmc_rpmb_fileops = {
2692 .release = mmc_rpmb_chrdev_release,
2693 .open = mmc_rpmb_chrdev_open,
2694 .owner = THIS_MODULE,
2695 .llseek = no_llseek,
2696 .unlocked_ioctl = mmc_rpmb_ioctl,
2697#ifdef CONFIG_COMPAT
2698 .compat_ioctl = mmc_rpmb_ioctl_compat,
2699#endif
2700};
2701
2702static void mmc_blk_rpmb_device_release(struct device *dev)
2703{
2704 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2705
2706 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2707 kfree(rpmb);
2708}
2709
2710static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2711 struct mmc_blk_data *md,
2712 unsigned int part_index,
2713 sector_t size,
2714 const char *subname)
2715{
2716 int devidx, ret;
2717 char rpmb_name[DISK_NAME_LEN];
2718 char cap_str[10];
2719 struct mmc_rpmb_data *rpmb;
2720
2721 /* This creates the minor number for the RPMB char device */
2722 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2723 if (devidx < 0)
2724 return devidx;
2725
2726 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2727 if (!rpmb) {
2728 ida_simple_remove(&mmc_rpmb_ida, devidx);
2729 return -ENOMEM;
2730 }
2731
2732 snprintf(rpmb_name, sizeof(rpmb_name),
2733 "mmcblk%u%s", card->host->index, subname ? subname : "");
2734
2735 rpmb->id = devidx;
2736 rpmb->part_index = part_index;
2737 rpmb->dev.init_name = rpmb_name;
2738 rpmb->dev.bus = &mmc_rpmb_bus_type;
2739 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2740 rpmb->dev.parent = &card->dev;
2741 rpmb->dev.release = mmc_blk_rpmb_device_release;
2742 device_initialize(&rpmb->dev);
2743 dev_set_drvdata(&rpmb->dev, rpmb);
2744 rpmb->md = md;
2745
2746 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2747 rpmb->chrdev.owner = THIS_MODULE;
2748 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2749 if (ret) {
2750 pr_err("%s: could not add character device\n", rpmb_name);
2751 goto out_put_device;
2752 }
2753
2754 list_add(&rpmb->node, &md->rpmbs);
2755
2756 string_get_size((u64)size, 512, STRING_UNITS_2,
2757 cap_str, sizeof(cap_str));
2758
2759 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2760 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2761 MAJOR(mmc_rpmb_devt), rpmb->id);
2762
2763 return 0;
2764
2765out_put_device:
2766 put_device(&rpmb->dev);
2767 return ret;
2768}
2769
2770static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2771
2772{
2773 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2774 put_device(&rpmb->dev);
2775}
2776
2777/* MMC Physical partitions consist of two boot partitions and
2778 * up to four general purpose partitions.
2779 * For each partition enabled in EXT_CSD a block device will be allocatedi
2780 * to provide access to the partition.
2781 */
2782
2783static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2784{
2785 int idx, ret;
2786
2787 if (!mmc_card_mmc(card))
2788 return 0;
2789
2790 for (idx = 0; idx < card->nr_parts; idx++) {
2791 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2792 /*
2793 * RPMB partitions does not provide block access, they
2794 * are only accessed using ioctl():s. Thus create
2795 * special RPMB block devices that do not have a
2796 * backing block queue for these.
2797 */
2798 ret = mmc_blk_alloc_rpmb_part(card, md,
2799 card->part[idx].part_cfg,
2800 card->part[idx].size >> 9,
2801 card->part[idx].name);
2802 if (ret)
2803 return ret;
2804 } else if (card->part[idx].size) {
2805 ret = mmc_blk_alloc_part(card, md,
2806 card->part[idx].part_cfg,
2807 card->part[idx].size >> 9,
2808 card->part[idx].force_ro,
2809 card->part[idx].name,
2810 card->part[idx].area_type);
2811 if (ret)
2812 return ret;
2813 }
2814 }
2815
2816 return 0;
2817}
2818
2819static void mmc_blk_remove_req(struct mmc_blk_data *md)
2820{
2821 /*
2822 * Flush remaining requests and free queues. It is freeing the queue
2823 * that stops new requests from being accepted.
2824 */
2825 del_gendisk(md->disk);
2826 mmc_cleanup_queue(&md->queue);
2827 mmc_blk_put(md);
2828}
2829
2830static void mmc_blk_remove_parts(struct mmc_card *card,
2831 struct mmc_blk_data *md)
2832{
2833 struct list_head *pos, *q;
2834 struct mmc_blk_data *part_md;
2835 struct mmc_rpmb_data *rpmb;
2836
2837 /* Remove RPMB partitions */
2838 list_for_each_safe(pos, q, &md->rpmbs) {
2839 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2840 list_del(pos);
2841 mmc_blk_remove_rpmb_part(rpmb);
2842 }
2843 /* Remove block partitions */
2844 list_for_each_safe(pos, q, &md->part) {
2845 part_md = list_entry(pos, struct mmc_blk_data, part);
2846 list_del(pos);
2847 mmc_blk_remove_req(part_md);
2848 }
2849}
2850
2851#ifdef CONFIG_DEBUG_FS
2852
2853static int mmc_dbg_card_status_get(void *data, u64 *val)
2854{
2855 struct mmc_card *card = data;
2856 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2857 struct mmc_queue *mq = &md->queue;
2858 struct request *req;
2859 int ret;
2860
2861 /* Ask the block layer about the card status */
2862 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2863 if (IS_ERR(req))
2864 return PTR_ERR(req);
2865 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2866 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2867 blk_execute_rq(req, false);
2868 ret = req_to_mmc_queue_req(req)->drv_op_result;
2869 if (ret >= 0) {
2870 *val = ret;
2871 ret = 0;
2872 }
2873 blk_mq_free_request(req);
2874
2875 return ret;
2876}
2877DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2878 NULL, "%08llx\n");
2879
2880/* That is two digits * 512 + 1 for newline */
2881#define EXT_CSD_STR_LEN 1025
2882
2883static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2884{
2885 struct mmc_card *card = inode->i_private;
2886 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2887 struct mmc_queue *mq = &md->queue;
2888 struct request *req;
2889 char *buf;
2890 ssize_t n = 0;
2891 u8 *ext_csd;
2892 int err, i;
2893
2894 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2895 if (!buf)
2896 return -ENOMEM;
2897
2898 /* Ask the block layer for the EXT CSD */
2899 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2900 if (IS_ERR(req)) {
2901 err = PTR_ERR(req);
2902 goto out_free;
2903 }
2904 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2905 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2906 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2907 blk_execute_rq(req, false);
2908 err = req_to_mmc_queue_req(req)->drv_op_result;
2909 blk_mq_free_request(req);
2910 if (err) {
2911 pr_err("FAILED %d\n", err);
2912 goto out_free;
2913 }
2914
2915 for (i = 0; i < 512; i++)
2916 n += sprintf(buf + n, "%02x", ext_csd[i]);
2917 n += sprintf(buf + n, "\n");
2918
2919 if (n != EXT_CSD_STR_LEN) {
2920 err = -EINVAL;
2921 kfree(ext_csd);
2922 goto out_free;
2923 }
2924
2925 filp->private_data = buf;
2926 kfree(ext_csd);
2927 return 0;
2928
2929out_free:
2930 kfree(buf);
2931 return err;
2932}
2933
2934static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2935 size_t cnt, loff_t *ppos)
2936{
2937 char *buf = filp->private_data;
2938
2939 return simple_read_from_buffer(ubuf, cnt, ppos,
2940 buf, EXT_CSD_STR_LEN);
2941}
2942
2943static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2944{
2945 kfree(file->private_data);
2946 return 0;
2947}
2948
2949static const struct file_operations mmc_dbg_ext_csd_fops = {
2950 .open = mmc_ext_csd_open,
2951 .read = mmc_ext_csd_read,
2952 .release = mmc_ext_csd_release,
2953 .llseek = default_llseek,
2954};
2955
2956static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2957{
2958 struct dentry *root;
2959
2960 if (!card->debugfs_root)
2961 return;
2962
2963 root = card->debugfs_root;
2964
2965 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2966 md->status_dentry =
2967 debugfs_create_file_unsafe("status", 0400, root,
2968 card,
2969 &mmc_dbg_card_status_fops);
2970 }
2971
2972 if (mmc_card_mmc(card)) {
2973 md->ext_csd_dentry =
2974 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2975 &mmc_dbg_ext_csd_fops);
2976 }
2977}
2978
2979static void mmc_blk_remove_debugfs(struct mmc_card *card,
2980 struct mmc_blk_data *md)
2981{
2982 if (!card->debugfs_root)
2983 return;
2984
2985 debugfs_remove(md->status_dentry);
2986 md->status_dentry = NULL;
2987
2988 debugfs_remove(md->ext_csd_dentry);
2989 md->ext_csd_dentry = NULL;
2990}
2991
2992#else
2993
2994static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2995{
2996}
2997
2998static void mmc_blk_remove_debugfs(struct mmc_card *card,
2999 struct mmc_blk_data *md)
3000{
3001}
3002
3003#endif /* CONFIG_DEBUG_FS */
3004
3005static int mmc_blk_probe(struct mmc_card *card)
3006{
3007 struct mmc_blk_data *md;
3008 int ret = 0;
3009
3010 /*
3011 * Check that the card supports the command class(es) we need.
3012 */
3013 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3014 return -ENODEV;
3015
3016 mmc_fixup_device(card, mmc_blk_fixups);
3017
3018 card->complete_wq = alloc_workqueue("mmc_complete",
3019 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3020 if (!card->complete_wq) {
3021 pr_err("Failed to create mmc completion workqueue");
3022 return -ENOMEM;
3023 }
3024
3025 md = mmc_blk_alloc(card);
3026 if (IS_ERR(md)) {
3027 ret = PTR_ERR(md);
3028 goto out_free;
3029 }
3030
3031 ret = mmc_blk_alloc_parts(card, md);
3032 if (ret)
3033 goto out;
3034
3035 /* Add two debugfs entries */
3036 mmc_blk_add_debugfs(card, md);
3037
3038 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3039 pm_runtime_use_autosuspend(&card->dev);
3040
3041 /*
3042 * Don't enable runtime PM for SD-combo cards here. Leave that
3043 * decision to be taken during the SDIO init sequence instead.
3044 */
3045 if (!mmc_card_sd_combo(card)) {
3046 pm_runtime_set_active(&card->dev);
3047 pm_runtime_enable(&card->dev);
3048 }
3049
3050 return 0;
3051
3052out:
3053 mmc_blk_remove_parts(card, md);
3054 mmc_blk_remove_req(md);
3055out_free:
3056 destroy_workqueue(card->complete_wq);
3057 return ret;
3058}
3059
3060static void mmc_blk_remove(struct mmc_card *card)
3061{
3062 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3063
3064 mmc_blk_remove_debugfs(card, md);
3065 mmc_blk_remove_parts(card, md);
3066 pm_runtime_get_sync(&card->dev);
3067 if (md->part_curr != md->part_type) {
3068 mmc_claim_host(card->host);
3069 mmc_blk_part_switch(card, md->part_type);
3070 mmc_release_host(card->host);
3071 }
3072 if (!mmc_card_sd_combo(card))
3073 pm_runtime_disable(&card->dev);
3074 pm_runtime_put_noidle(&card->dev);
3075 mmc_blk_remove_req(md);
3076 destroy_workqueue(card->complete_wq);
3077}
3078
3079static int _mmc_blk_suspend(struct mmc_card *card)
3080{
3081 struct mmc_blk_data *part_md;
3082 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3083
3084 if (md) {
3085 mmc_queue_suspend(&md->queue);
3086 list_for_each_entry(part_md, &md->part, part) {
3087 mmc_queue_suspend(&part_md->queue);
3088 }
3089 }
3090 return 0;
3091}
3092
3093static void mmc_blk_shutdown(struct mmc_card *card)
3094{
3095 _mmc_blk_suspend(card);
3096}
3097
3098#ifdef CONFIG_PM_SLEEP
3099static int mmc_blk_suspend(struct device *dev)
3100{
3101 struct mmc_card *card = mmc_dev_to_card(dev);
3102
3103 return _mmc_blk_suspend(card);
3104}
3105
3106static int mmc_blk_resume(struct device *dev)
3107{
3108 struct mmc_blk_data *part_md;
3109 struct mmc_blk_data *md = dev_get_drvdata(dev);
3110
3111 if (md) {
3112 /*
3113 * Resume involves the card going into idle state,
3114 * so current partition is always the main one.
3115 */
3116 md->part_curr = md->part_type;
3117 mmc_queue_resume(&md->queue);
3118 list_for_each_entry(part_md, &md->part, part) {
3119 mmc_queue_resume(&part_md->queue);
3120 }
3121 }
3122 return 0;
3123}
3124#endif
3125
3126static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3127
3128static struct mmc_driver mmc_driver = {
3129 .drv = {
3130 .name = "mmcblk",
3131 .pm = &mmc_blk_pm_ops,
3132 },
3133 .probe = mmc_blk_probe,
3134 .remove = mmc_blk_remove,
3135 .shutdown = mmc_blk_shutdown,
3136};
3137
3138static int __init mmc_blk_init(void)
3139{
3140 int res;
3141
3142 res = bus_register(&mmc_rpmb_bus_type);
3143 if (res < 0) {
3144 pr_err("mmcblk: could not register RPMB bus type\n");
3145 return res;
3146 }
3147 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3148 if (res < 0) {
3149 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3150 goto out_bus_unreg;
3151 }
3152
3153 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3154 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3155
3156 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3157
3158 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3159 if (res)
3160 goto out_chrdev_unreg;
3161
3162 res = mmc_register_driver(&mmc_driver);
3163 if (res)
3164 goto out_blkdev_unreg;
3165
3166 return 0;
3167
3168out_blkdev_unreg:
3169 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3170out_chrdev_unreg:
3171 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3172out_bus_unreg:
3173 bus_unregister(&mmc_rpmb_bus_type);
3174 return res;
3175}
3176
3177static void __exit mmc_blk_exit(void)
3178{
3179 mmc_unregister_driver(&mmc_driver);
3180 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3181 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3182 bus_unregister(&mmc_rpmb_bus_type);
3183}
3184
3185module_init(mmc_blk_init);
3186module_exit(mmc_blk_exit);
3187
3188MODULE_LICENSE("GPL");
3189MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Block driver for media (i.e., flash cards)
4 *
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
7 *
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
11 *
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 *
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 *
18 * Author: Andrew Christian
19 * 28 May 2002
20 */
21#include <linux/moduleparam.h>
22#include <linux/module.h>
23#include <linux/init.h>
24
25#include <linux/kernel.h>
26#include <linux/fs.h>
27#include <linux/slab.h>
28#include <linux/errno.h>
29#include <linux/hdreg.h>
30#include <linux/kdev_t.h>
31#include <linux/kref.h>
32#include <linux/blkdev.h>
33#include <linux/cdev.h>
34#include <linux/mutex.h>
35#include <linux/scatterlist.h>
36#include <linux/string_helpers.h>
37#include <linux/delay.h>
38#include <linux/capability.h>
39#include <linux/compat.h>
40#include <linux/pm_runtime.h>
41#include <linux/idr.h>
42#include <linux/debugfs.h>
43
44#include <linux/mmc/ioctl.h>
45#include <linux/mmc/card.h>
46#include <linux/mmc/host.h>
47#include <linux/mmc/mmc.h>
48#include <linux/mmc/sd.h>
49
50#include <linux/uaccess.h>
51
52#include "queue.h"
53#include "block.h"
54#include "core.h"
55#include "card.h"
56#include "crypto.h"
57#include "host.h"
58#include "bus.h"
59#include "mmc_ops.h"
60#include "quirks.h"
61#include "sd_ops.h"
62
63MODULE_ALIAS("mmc:block");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "mmcblk."
68
69/*
70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72 * second software timer to timeout the whole request, so 10 seconds should be
73 * ample.
74 */
75#define MMC_BLK_TIMEOUT_MS (10 * 1000)
76#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78
79#define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
80 (rq_data_dir(req) == WRITE))
81static DEFINE_MUTEX(block_mutex);
82
83/*
84 * The defaults come from config options but can be overriden by module
85 * or bootarg options.
86 */
87static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
88
89/*
90 * We've only got one major, so number of mmcblk devices is
91 * limited to (1 << 20) / number of minors per device. It is also
92 * limited by the MAX_DEVICES below.
93 */
94static int max_devices;
95
96#define MAX_DEVICES 256
97
98static DEFINE_IDA(mmc_blk_ida);
99static DEFINE_IDA(mmc_rpmb_ida);
100
101struct mmc_blk_busy_data {
102 struct mmc_card *card;
103 u32 status;
104};
105
106/*
107 * There is one mmc_blk_data per slot.
108 */
109struct mmc_blk_data {
110 struct device *parent;
111 struct gendisk *disk;
112 struct mmc_queue queue;
113 struct list_head part;
114 struct list_head rpmbs;
115
116 unsigned int flags;
117#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
118#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
119
120 struct kref kref;
121 unsigned int read_only;
122 unsigned int part_type;
123 unsigned int reset_done;
124#define MMC_BLK_READ BIT(0)
125#define MMC_BLK_WRITE BIT(1)
126#define MMC_BLK_DISCARD BIT(2)
127#define MMC_BLK_SECDISCARD BIT(3)
128#define MMC_BLK_CQE_RECOVERY BIT(4)
129
130 /*
131 * Only set in main mmc_blk_data associated
132 * with mmc_card with dev_set_drvdata, and keeps
133 * track of the current selected device partition.
134 */
135 unsigned int part_curr;
136 struct device_attribute force_ro;
137 struct device_attribute power_ro_lock;
138 int area_type;
139
140 /* debugfs files (only in main mmc_blk_data) */
141 struct dentry *status_dentry;
142 struct dentry *ext_csd_dentry;
143};
144
145/* Device type for RPMB character devices */
146static dev_t mmc_rpmb_devt;
147
148/* Bus type for RPMB character devices */
149static struct bus_type mmc_rpmb_bus_type = {
150 .name = "mmc_rpmb",
151};
152
153/**
154 * struct mmc_rpmb_data - special RPMB device type for these areas
155 * @dev: the device for the RPMB area
156 * @chrdev: character device for the RPMB area
157 * @id: unique device ID number
158 * @part_index: partition index (0 on first)
159 * @md: parent MMC block device
160 * @node: list item, so we can put this device on a list
161 */
162struct mmc_rpmb_data {
163 struct device dev;
164 struct cdev chrdev;
165 int id;
166 unsigned int part_index;
167 struct mmc_blk_data *md;
168 struct list_head node;
169};
170
171static DEFINE_MUTEX(open_lock);
172
173module_param(perdev_minors, int, 0444);
174MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
175
176static inline int mmc_blk_part_switch(struct mmc_card *card,
177 unsigned int part_type);
178static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
179 struct mmc_card *card,
180 int disable_multi,
181 struct mmc_queue *mq);
182static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
183
184static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
185{
186 struct mmc_blk_data *md;
187
188 mutex_lock(&open_lock);
189 md = disk->private_data;
190 if (md && !kref_get_unless_zero(&md->kref))
191 md = NULL;
192 mutex_unlock(&open_lock);
193
194 return md;
195}
196
197static inline int mmc_get_devidx(struct gendisk *disk)
198{
199 int devidx = disk->first_minor / perdev_minors;
200 return devidx;
201}
202
203static void mmc_blk_kref_release(struct kref *ref)
204{
205 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
206 int devidx;
207
208 devidx = mmc_get_devidx(md->disk);
209 ida_simple_remove(&mmc_blk_ida, devidx);
210
211 mutex_lock(&open_lock);
212 md->disk->private_data = NULL;
213 mutex_unlock(&open_lock);
214
215 put_disk(md->disk);
216 kfree(md);
217}
218
219static void mmc_blk_put(struct mmc_blk_data *md)
220{
221 kref_put(&md->kref, mmc_blk_kref_release);
222}
223
224static ssize_t power_ro_lock_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
226{
227 int ret;
228 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
229 struct mmc_card *card = md->queue.card;
230 int locked = 0;
231
232 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
233 locked = 2;
234 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
235 locked = 1;
236
237 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
238
239 mmc_blk_put(md);
240
241 return ret;
242}
243
244static ssize_t power_ro_lock_store(struct device *dev,
245 struct device_attribute *attr, const char *buf, size_t count)
246{
247 int ret;
248 struct mmc_blk_data *md, *part_md;
249 struct mmc_queue *mq;
250 struct request *req;
251 unsigned long set;
252
253 if (kstrtoul(buf, 0, &set))
254 return -EINVAL;
255
256 if (set != 1)
257 return count;
258
259 md = mmc_blk_get(dev_to_disk(dev));
260 mq = &md->queue;
261
262 /* Dispatch locking to the block layer */
263 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
264 if (IS_ERR(req)) {
265 count = PTR_ERR(req);
266 goto out_put;
267 }
268 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
269 blk_execute_rq(NULL, req, 0);
270 ret = req_to_mmc_queue_req(req)->drv_op_result;
271 blk_put_request(req);
272
273 if (!ret) {
274 pr_info("%s: Locking boot partition ro until next power on\n",
275 md->disk->disk_name);
276 set_disk_ro(md->disk, 1);
277
278 list_for_each_entry(part_md, &md->part, part)
279 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
280 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
281 set_disk_ro(part_md->disk, 1);
282 }
283 }
284out_put:
285 mmc_blk_put(md);
286 return count;
287}
288
289static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
290 char *buf)
291{
292 int ret;
293 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
294
295 ret = snprintf(buf, PAGE_SIZE, "%d\n",
296 get_disk_ro(dev_to_disk(dev)) ^
297 md->read_only);
298 mmc_blk_put(md);
299 return ret;
300}
301
302static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
303 const char *buf, size_t count)
304{
305 int ret;
306 char *end;
307 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
308 unsigned long set = simple_strtoul(buf, &end, 0);
309 if (end == buf) {
310 ret = -EINVAL;
311 goto out;
312 }
313
314 set_disk_ro(dev_to_disk(dev), set || md->read_only);
315 ret = count;
316out:
317 mmc_blk_put(md);
318 return ret;
319}
320
321static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
322{
323 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
324 int ret = -ENXIO;
325
326 mutex_lock(&block_mutex);
327 if (md) {
328 ret = 0;
329 if ((mode & FMODE_WRITE) && md->read_only) {
330 mmc_blk_put(md);
331 ret = -EROFS;
332 }
333 }
334 mutex_unlock(&block_mutex);
335
336 return ret;
337}
338
339static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
340{
341 struct mmc_blk_data *md = disk->private_data;
342
343 mutex_lock(&block_mutex);
344 mmc_blk_put(md);
345 mutex_unlock(&block_mutex);
346}
347
348static int
349mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
350{
351 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
352 geo->heads = 4;
353 geo->sectors = 16;
354 return 0;
355}
356
357struct mmc_blk_ioc_data {
358 struct mmc_ioc_cmd ic;
359 unsigned char *buf;
360 u64 buf_bytes;
361 struct mmc_rpmb_data *rpmb;
362};
363
364static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
365 struct mmc_ioc_cmd __user *user)
366{
367 struct mmc_blk_ioc_data *idata;
368 int err;
369
370 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
371 if (!idata) {
372 err = -ENOMEM;
373 goto out;
374 }
375
376 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
377 err = -EFAULT;
378 goto idata_err;
379 }
380
381 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
382 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
383 err = -EOVERFLOW;
384 goto idata_err;
385 }
386
387 if (!idata->buf_bytes) {
388 idata->buf = NULL;
389 return idata;
390 }
391
392 idata->buf = memdup_user((void __user *)(unsigned long)
393 idata->ic.data_ptr, idata->buf_bytes);
394 if (IS_ERR(idata->buf)) {
395 err = PTR_ERR(idata->buf);
396 goto idata_err;
397 }
398
399 return idata;
400
401idata_err:
402 kfree(idata);
403out:
404 return ERR_PTR(err);
405}
406
407static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
408 struct mmc_blk_ioc_data *idata)
409{
410 struct mmc_ioc_cmd *ic = &idata->ic;
411
412 if (copy_to_user(&(ic_ptr->response), ic->response,
413 sizeof(ic->response)))
414 return -EFAULT;
415
416 if (!idata->ic.write_flag) {
417 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
418 idata->buf, idata->buf_bytes))
419 return -EFAULT;
420 }
421
422 return 0;
423}
424
425static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
426 struct mmc_blk_ioc_data *idata)
427{
428 struct mmc_command cmd = {}, sbc = {};
429 struct mmc_data data = {};
430 struct mmc_request mrq = {};
431 struct scatterlist sg;
432 int err;
433 unsigned int target_part;
434
435 if (!card || !md || !idata)
436 return -EINVAL;
437
438 /*
439 * The RPMB accesses comes in from the character device, so we
440 * need to target these explicitly. Else we just target the
441 * partition type for the block device the ioctl() was issued
442 * on.
443 */
444 if (idata->rpmb) {
445 /* Support multiple RPMB partitions */
446 target_part = idata->rpmb->part_index;
447 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
448 } else {
449 target_part = md->part_type;
450 }
451
452 cmd.opcode = idata->ic.opcode;
453 cmd.arg = idata->ic.arg;
454 cmd.flags = idata->ic.flags;
455
456 if (idata->buf_bytes) {
457 data.sg = &sg;
458 data.sg_len = 1;
459 data.blksz = idata->ic.blksz;
460 data.blocks = idata->ic.blocks;
461
462 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
463
464 if (idata->ic.write_flag)
465 data.flags = MMC_DATA_WRITE;
466 else
467 data.flags = MMC_DATA_READ;
468
469 /* data.flags must already be set before doing this. */
470 mmc_set_data_timeout(&data, card);
471
472 /* Allow overriding the timeout_ns for empirical tuning. */
473 if (idata->ic.data_timeout_ns)
474 data.timeout_ns = idata->ic.data_timeout_ns;
475
476 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
477 /*
478 * Pretend this is a data transfer and rely on the
479 * host driver to compute timeout. When all host
480 * drivers support cmd.cmd_timeout for R1B, this
481 * can be changed to:
482 *
483 * mrq.data = NULL;
484 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
485 */
486 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
487 }
488
489 mrq.data = &data;
490 }
491
492 mrq.cmd = &cmd;
493
494 err = mmc_blk_part_switch(card, target_part);
495 if (err)
496 return err;
497
498 if (idata->ic.is_acmd) {
499 err = mmc_app_cmd(card->host, card);
500 if (err)
501 return err;
502 }
503
504 if (idata->rpmb) {
505 sbc.opcode = MMC_SET_BLOCK_COUNT;
506 /*
507 * We don't do any blockcount validation because the max size
508 * may be increased by a future standard. We just copy the
509 * 'Reliable Write' bit here.
510 */
511 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
512 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
513 mrq.sbc = &sbc;
514 }
515
516 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
517 (cmd.opcode == MMC_SWITCH))
518 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
519
520 mmc_wait_for_req(card->host, &mrq);
521 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
522
523 if (cmd.error) {
524 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
525 __func__, cmd.error);
526 return cmd.error;
527 }
528 if (data.error) {
529 dev_err(mmc_dev(card->host), "%s: data error %d\n",
530 __func__, data.error);
531 return data.error;
532 }
533
534 /*
535 * Make sure the cache of the PARTITION_CONFIG register and
536 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
537 * changed it successfully.
538 */
539 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
540 (cmd.opcode == MMC_SWITCH)) {
541 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
542 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
543
544 /*
545 * Update cache so the next mmc_blk_part_switch call operates
546 * on up-to-date data.
547 */
548 card->ext_csd.part_config = value;
549 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
550 }
551
552 /*
553 * Make sure to update CACHE_CTRL in case it was changed. The cache
554 * will get turned back on if the card is re-initialized, e.g.
555 * suspend/resume or hw reset in recovery.
556 */
557 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
558 (cmd.opcode == MMC_SWITCH)) {
559 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
560
561 card->ext_csd.cache_ctrl = value;
562 }
563
564 /*
565 * According to the SD specs, some commands require a delay after
566 * issuing the command.
567 */
568 if (idata->ic.postsleep_min_us)
569 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
570
571 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
572 /*
573 * Ensure RPMB/R1B command has completed by polling CMD13
574 * "Send Status".
575 */
576 err = mmc_poll_for_busy(card, MMC_BLK_TIMEOUT_MS, false,
577 MMC_BUSY_IO);
578 }
579
580 return err;
581}
582
583static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
584 struct mmc_ioc_cmd __user *ic_ptr,
585 struct mmc_rpmb_data *rpmb)
586{
587 struct mmc_blk_ioc_data *idata;
588 struct mmc_blk_ioc_data *idatas[1];
589 struct mmc_queue *mq;
590 struct mmc_card *card;
591 int err = 0, ioc_err = 0;
592 struct request *req;
593
594 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
595 if (IS_ERR(idata))
596 return PTR_ERR(idata);
597 /* This will be NULL on non-RPMB ioctl():s */
598 idata->rpmb = rpmb;
599
600 card = md->queue.card;
601 if (IS_ERR(card)) {
602 err = PTR_ERR(card);
603 goto cmd_done;
604 }
605
606 /*
607 * Dispatch the ioctl() into the block request queue.
608 */
609 mq = &md->queue;
610 req = blk_get_request(mq->queue,
611 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
612 if (IS_ERR(req)) {
613 err = PTR_ERR(req);
614 goto cmd_done;
615 }
616 idatas[0] = idata;
617 req_to_mmc_queue_req(req)->drv_op =
618 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
619 req_to_mmc_queue_req(req)->drv_op_data = idatas;
620 req_to_mmc_queue_req(req)->ioc_count = 1;
621 blk_execute_rq(NULL, req, 0);
622 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
623 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
624 blk_put_request(req);
625
626cmd_done:
627 kfree(idata->buf);
628 kfree(idata);
629 return ioc_err ? ioc_err : err;
630}
631
632static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
633 struct mmc_ioc_multi_cmd __user *user,
634 struct mmc_rpmb_data *rpmb)
635{
636 struct mmc_blk_ioc_data **idata = NULL;
637 struct mmc_ioc_cmd __user *cmds = user->cmds;
638 struct mmc_card *card;
639 struct mmc_queue *mq;
640 int i, err = 0, ioc_err = 0;
641 __u64 num_of_cmds;
642 struct request *req;
643
644 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
645 sizeof(num_of_cmds)))
646 return -EFAULT;
647
648 if (!num_of_cmds)
649 return 0;
650
651 if (num_of_cmds > MMC_IOC_MAX_CMDS)
652 return -EINVAL;
653
654 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
655 if (!idata)
656 return -ENOMEM;
657
658 for (i = 0; i < num_of_cmds; i++) {
659 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
660 if (IS_ERR(idata[i])) {
661 err = PTR_ERR(idata[i]);
662 num_of_cmds = i;
663 goto cmd_err;
664 }
665 /* This will be NULL on non-RPMB ioctl():s */
666 idata[i]->rpmb = rpmb;
667 }
668
669 card = md->queue.card;
670 if (IS_ERR(card)) {
671 err = PTR_ERR(card);
672 goto cmd_err;
673 }
674
675
676 /*
677 * Dispatch the ioctl()s into the block request queue.
678 */
679 mq = &md->queue;
680 req = blk_get_request(mq->queue,
681 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
682 if (IS_ERR(req)) {
683 err = PTR_ERR(req);
684 goto cmd_err;
685 }
686 req_to_mmc_queue_req(req)->drv_op =
687 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
688 req_to_mmc_queue_req(req)->drv_op_data = idata;
689 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
690 blk_execute_rq(NULL, req, 0);
691 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
692
693 /* copy to user if data and response */
694 for (i = 0; i < num_of_cmds && !err; i++)
695 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
696
697 blk_put_request(req);
698
699cmd_err:
700 for (i = 0; i < num_of_cmds; i++) {
701 kfree(idata[i]->buf);
702 kfree(idata[i]);
703 }
704 kfree(idata);
705 return ioc_err ? ioc_err : err;
706}
707
708static int mmc_blk_check_blkdev(struct block_device *bdev)
709{
710 /*
711 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
712 * whole block device, not on a partition. This prevents overspray
713 * between sibling partitions.
714 */
715 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
716 return -EPERM;
717 return 0;
718}
719
720static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
721 unsigned int cmd, unsigned long arg)
722{
723 struct mmc_blk_data *md;
724 int ret;
725
726 switch (cmd) {
727 case MMC_IOC_CMD:
728 ret = mmc_blk_check_blkdev(bdev);
729 if (ret)
730 return ret;
731 md = mmc_blk_get(bdev->bd_disk);
732 if (!md)
733 return -EINVAL;
734 ret = mmc_blk_ioctl_cmd(md,
735 (struct mmc_ioc_cmd __user *)arg,
736 NULL);
737 mmc_blk_put(md);
738 return ret;
739 case MMC_IOC_MULTI_CMD:
740 ret = mmc_blk_check_blkdev(bdev);
741 if (ret)
742 return ret;
743 md = mmc_blk_get(bdev->bd_disk);
744 if (!md)
745 return -EINVAL;
746 ret = mmc_blk_ioctl_multi_cmd(md,
747 (struct mmc_ioc_multi_cmd __user *)arg,
748 NULL);
749 mmc_blk_put(md);
750 return ret;
751 default:
752 return -EINVAL;
753 }
754}
755
756#ifdef CONFIG_COMPAT
757static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
758 unsigned int cmd, unsigned long arg)
759{
760 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
761}
762#endif
763
764static const struct block_device_operations mmc_bdops = {
765 .open = mmc_blk_open,
766 .release = mmc_blk_release,
767 .getgeo = mmc_blk_getgeo,
768 .owner = THIS_MODULE,
769 .ioctl = mmc_blk_ioctl,
770#ifdef CONFIG_COMPAT
771 .compat_ioctl = mmc_blk_compat_ioctl,
772#endif
773};
774
775static int mmc_blk_part_switch_pre(struct mmc_card *card,
776 unsigned int part_type)
777{
778 int ret = 0;
779
780 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
781 if (card->ext_csd.cmdq_en) {
782 ret = mmc_cmdq_disable(card);
783 if (ret)
784 return ret;
785 }
786 mmc_retune_pause(card->host);
787 }
788
789 return ret;
790}
791
792static int mmc_blk_part_switch_post(struct mmc_card *card,
793 unsigned int part_type)
794{
795 int ret = 0;
796
797 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
798 mmc_retune_unpause(card->host);
799 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
800 ret = mmc_cmdq_enable(card);
801 }
802
803 return ret;
804}
805
806static inline int mmc_blk_part_switch(struct mmc_card *card,
807 unsigned int part_type)
808{
809 int ret = 0;
810 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
811
812 if (main_md->part_curr == part_type)
813 return 0;
814
815 if (mmc_card_mmc(card)) {
816 u8 part_config = card->ext_csd.part_config;
817
818 ret = mmc_blk_part_switch_pre(card, part_type);
819 if (ret)
820 return ret;
821
822 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
823 part_config |= part_type;
824
825 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
826 EXT_CSD_PART_CONFIG, part_config,
827 card->ext_csd.part_time);
828 if (ret) {
829 mmc_blk_part_switch_post(card, part_type);
830 return ret;
831 }
832
833 card->ext_csd.part_config = part_config;
834
835 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
836 }
837
838 main_md->part_curr = part_type;
839 return ret;
840}
841
842static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
843{
844 int err;
845 u32 result;
846 __be32 *blocks;
847
848 struct mmc_request mrq = {};
849 struct mmc_command cmd = {};
850 struct mmc_data data = {};
851
852 struct scatterlist sg;
853
854 cmd.opcode = MMC_APP_CMD;
855 cmd.arg = card->rca << 16;
856 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
857
858 err = mmc_wait_for_cmd(card->host, &cmd, 0);
859 if (err)
860 return err;
861 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
862 return -EIO;
863
864 memset(&cmd, 0, sizeof(struct mmc_command));
865
866 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
867 cmd.arg = 0;
868 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
869
870 data.blksz = 4;
871 data.blocks = 1;
872 data.flags = MMC_DATA_READ;
873 data.sg = &sg;
874 data.sg_len = 1;
875 mmc_set_data_timeout(&data, card);
876
877 mrq.cmd = &cmd;
878 mrq.data = &data;
879
880 blocks = kmalloc(4, GFP_KERNEL);
881 if (!blocks)
882 return -ENOMEM;
883
884 sg_init_one(&sg, blocks, 4);
885
886 mmc_wait_for_req(card->host, &mrq);
887
888 result = ntohl(*blocks);
889 kfree(blocks);
890
891 if (cmd.error || data.error)
892 return -EIO;
893
894 *written_blocks = result;
895
896 return 0;
897}
898
899static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
900{
901 if (host->actual_clock)
902 return host->actual_clock / 1000;
903
904 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
905 if (host->ios.clock)
906 return host->ios.clock / 2000;
907
908 /* How can there be no clock */
909 WARN_ON_ONCE(1);
910 return 100; /* 100 kHz is minimum possible value */
911}
912
913static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
914 struct mmc_data *data)
915{
916 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
917 unsigned int khz;
918
919 if (data->timeout_clks) {
920 khz = mmc_blk_clock_khz(host);
921 ms += DIV_ROUND_UP(data->timeout_clks, khz);
922 }
923
924 return ms;
925}
926
927static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
928 int type)
929{
930 int err;
931
932 if (md->reset_done & type)
933 return -EEXIST;
934
935 md->reset_done |= type;
936 err = mmc_hw_reset(host);
937 /* Ensure we switch back to the correct partition */
938 if (err) {
939 struct mmc_blk_data *main_md =
940 dev_get_drvdata(&host->card->dev);
941 int part_err;
942
943 main_md->part_curr = main_md->part_type;
944 part_err = mmc_blk_part_switch(host->card, md->part_type);
945 if (part_err) {
946 /*
947 * We have failed to get back into the correct
948 * partition, so we need to abort the whole request.
949 */
950 return -ENODEV;
951 }
952 }
953 return err;
954}
955
956static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
957{
958 md->reset_done &= ~type;
959}
960
961/*
962 * The non-block commands come back from the block layer after it queued it and
963 * processed it with all other requests and then they get issued in this
964 * function.
965 */
966static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
967{
968 struct mmc_queue_req *mq_rq;
969 struct mmc_card *card = mq->card;
970 struct mmc_blk_data *md = mq->blkdata;
971 struct mmc_blk_ioc_data **idata;
972 bool rpmb_ioctl;
973 u8 **ext_csd;
974 u32 status;
975 int ret;
976 int i;
977
978 mq_rq = req_to_mmc_queue_req(req);
979 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
980
981 switch (mq_rq->drv_op) {
982 case MMC_DRV_OP_IOCTL:
983 if (card->ext_csd.cmdq_en) {
984 ret = mmc_cmdq_disable(card);
985 if (ret)
986 break;
987 }
988 fallthrough;
989 case MMC_DRV_OP_IOCTL_RPMB:
990 idata = mq_rq->drv_op_data;
991 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
992 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
993 if (ret)
994 break;
995 }
996 /* Always switch back to main area after RPMB access */
997 if (rpmb_ioctl)
998 mmc_blk_part_switch(card, 0);
999 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1000 mmc_cmdq_enable(card);
1001 break;
1002 case MMC_DRV_OP_BOOT_WP:
1003 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1004 card->ext_csd.boot_ro_lock |
1005 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1006 card->ext_csd.part_time);
1007 if (ret)
1008 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1009 md->disk->disk_name, ret);
1010 else
1011 card->ext_csd.boot_ro_lock |=
1012 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1013 break;
1014 case MMC_DRV_OP_GET_CARD_STATUS:
1015 ret = mmc_send_status(card, &status);
1016 if (!ret)
1017 ret = status;
1018 break;
1019 case MMC_DRV_OP_GET_EXT_CSD:
1020 ext_csd = mq_rq->drv_op_data;
1021 ret = mmc_get_ext_csd(card, ext_csd);
1022 break;
1023 default:
1024 pr_err("%s: unknown driver specific operation\n",
1025 md->disk->disk_name);
1026 ret = -EINVAL;
1027 break;
1028 }
1029 mq_rq->drv_op_result = ret;
1030 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1031}
1032
1033static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1034{
1035 struct mmc_blk_data *md = mq->blkdata;
1036 struct mmc_card *card = md->queue.card;
1037 unsigned int from, nr;
1038 int err = 0, type = MMC_BLK_DISCARD;
1039 blk_status_t status = BLK_STS_OK;
1040
1041 if (!mmc_can_erase(card)) {
1042 status = BLK_STS_NOTSUPP;
1043 goto fail;
1044 }
1045
1046 from = blk_rq_pos(req);
1047 nr = blk_rq_sectors(req);
1048
1049 do {
1050 err = 0;
1051 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1052 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1053 INAND_CMD38_ARG_EXT_CSD,
1054 card->erase_arg == MMC_TRIM_ARG ?
1055 INAND_CMD38_ARG_TRIM :
1056 INAND_CMD38_ARG_ERASE,
1057 card->ext_csd.generic_cmd6_time);
1058 }
1059 if (!err)
1060 err = mmc_erase(card, from, nr, card->erase_arg);
1061 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1062 if (err)
1063 status = BLK_STS_IOERR;
1064 else
1065 mmc_blk_reset_success(md, type);
1066fail:
1067 blk_mq_end_request(req, status);
1068}
1069
1070static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1071 struct request *req)
1072{
1073 struct mmc_blk_data *md = mq->blkdata;
1074 struct mmc_card *card = md->queue.card;
1075 unsigned int from, nr, arg;
1076 int err = 0, type = MMC_BLK_SECDISCARD;
1077 blk_status_t status = BLK_STS_OK;
1078
1079 if (!(mmc_can_secure_erase_trim(card))) {
1080 status = BLK_STS_NOTSUPP;
1081 goto out;
1082 }
1083
1084 from = blk_rq_pos(req);
1085 nr = blk_rq_sectors(req);
1086
1087 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1088 arg = MMC_SECURE_TRIM1_ARG;
1089 else
1090 arg = MMC_SECURE_ERASE_ARG;
1091
1092retry:
1093 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1094 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1095 INAND_CMD38_ARG_EXT_CSD,
1096 arg == MMC_SECURE_TRIM1_ARG ?
1097 INAND_CMD38_ARG_SECTRIM1 :
1098 INAND_CMD38_ARG_SECERASE,
1099 card->ext_csd.generic_cmd6_time);
1100 if (err)
1101 goto out_retry;
1102 }
1103
1104 err = mmc_erase(card, from, nr, arg);
1105 if (err == -EIO)
1106 goto out_retry;
1107 if (err) {
1108 status = BLK_STS_IOERR;
1109 goto out;
1110 }
1111
1112 if (arg == MMC_SECURE_TRIM1_ARG) {
1113 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1114 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1115 INAND_CMD38_ARG_EXT_CSD,
1116 INAND_CMD38_ARG_SECTRIM2,
1117 card->ext_csd.generic_cmd6_time);
1118 if (err)
1119 goto out_retry;
1120 }
1121
1122 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1123 if (err == -EIO)
1124 goto out_retry;
1125 if (err) {
1126 status = BLK_STS_IOERR;
1127 goto out;
1128 }
1129 }
1130
1131out_retry:
1132 if (err && !mmc_blk_reset(md, card->host, type))
1133 goto retry;
1134 if (!err)
1135 mmc_blk_reset_success(md, type);
1136out:
1137 blk_mq_end_request(req, status);
1138}
1139
1140static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1141{
1142 struct mmc_blk_data *md = mq->blkdata;
1143 struct mmc_card *card = md->queue.card;
1144 int ret = 0;
1145
1146 ret = mmc_flush_cache(card->host);
1147 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1148}
1149
1150/*
1151 * Reformat current write as a reliable write, supporting
1152 * both legacy and the enhanced reliable write MMC cards.
1153 * In each transfer we'll handle only as much as a single
1154 * reliable write can handle, thus finish the request in
1155 * partial completions.
1156 */
1157static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1158 struct mmc_card *card,
1159 struct request *req)
1160{
1161 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1162 /* Legacy mode imposes restrictions on transfers. */
1163 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1164 brq->data.blocks = 1;
1165
1166 if (brq->data.blocks > card->ext_csd.rel_sectors)
1167 brq->data.blocks = card->ext_csd.rel_sectors;
1168 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1169 brq->data.blocks = 1;
1170 }
1171}
1172
1173#define CMD_ERRORS_EXCL_OOR \
1174 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1175 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1176 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1177 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1178 R1_CC_ERROR | /* Card controller error */ \
1179 R1_ERROR) /* General/unknown error */
1180
1181#define CMD_ERRORS \
1182 (CMD_ERRORS_EXCL_OOR | \
1183 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1184
1185static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1186{
1187 u32 val;
1188
1189 /*
1190 * Per the SD specification(physical layer version 4.10)[1],
1191 * section 4.3.3, it explicitly states that "When the last
1192 * block of user area is read using CMD18, the host should
1193 * ignore OUT_OF_RANGE error that may occur even the sequence
1194 * is correct". And JESD84-B51 for eMMC also has a similar
1195 * statement on section 6.8.3.
1196 *
1197 * Multiple block read/write could be done by either predefined
1198 * method, namely CMD23, or open-ending mode. For open-ending mode,
1199 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1200 *
1201 * However the spec[1] doesn't tell us whether we should also
1202 * ignore that for predefined method. But per the spec[1], section
1203 * 4.15 Set Block Count Command, it says"If illegal block count
1204 * is set, out of range error will be indicated during read/write
1205 * operation (For example, data transfer is stopped at user area
1206 * boundary)." In another word, we could expect a out of range error
1207 * in the response for the following CMD18/25. And if argument of
1208 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1209 * we could also expect to get a -ETIMEDOUT or any error number from
1210 * the host drivers due to missing data response(for write)/data(for
1211 * read), as the cards will stop the data transfer by itself per the
1212 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1213 */
1214
1215 if (!brq->stop.error) {
1216 bool oor_with_open_end;
1217 /* If there is no error yet, check R1 response */
1218
1219 val = brq->stop.resp[0] & CMD_ERRORS;
1220 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1221
1222 if (val && !oor_with_open_end)
1223 brq->stop.error = -EIO;
1224 }
1225}
1226
1227static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1228 int disable_multi, bool *do_rel_wr_p,
1229 bool *do_data_tag_p)
1230{
1231 struct mmc_blk_data *md = mq->blkdata;
1232 struct mmc_card *card = md->queue.card;
1233 struct mmc_blk_request *brq = &mqrq->brq;
1234 struct request *req = mmc_queue_req_to_req(mqrq);
1235 bool do_rel_wr, do_data_tag;
1236
1237 /*
1238 * Reliable writes are used to implement Forced Unit Access and
1239 * are supported only on MMCs.
1240 */
1241 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1242 rq_data_dir(req) == WRITE &&
1243 (md->flags & MMC_BLK_REL_WR);
1244
1245 memset(brq, 0, sizeof(struct mmc_blk_request));
1246
1247 mmc_crypto_prepare_req(mqrq);
1248
1249 brq->mrq.data = &brq->data;
1250 brq->mrq.tag = req->tag;
1251
1252 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1253 brq->stop.arg = 0;
1254
1255 if (rq_data_dir(req) == READ) {
1256 brq->data.flags = MMC_DATA_READ;
1257 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1258 } else {
1259 brq->data.flags = MMC_DATA_WRITE;
1260 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1261 }
1262
1263 brq->data.blksz = 512;
1264 brq->data.blocks = blk_rq_sectors(req);
1265 brq->data.blk_addr = blk_rq_pos(req);
1266
1267 /*
1268 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1269 * The eMMC will give "high" priority tasks priority over "simple"
1270 * priority tasks. Here we always set "simple" priority by not setting
1271 * MMC_DATA_PRIO.
1272 */
1273
1274 /*
1275 * The block layer doesn't support all sector count
1276 * restrictions, so we need to be prepared for too big
1277 * requests.
1278 */
1279 if (brq->data.blocks > card->host->max_blk_count)
1280 brq->data.blocks = card->host->max_blk_count;
1281
1282 if (brq->data.blocks > 1) {
1283 /*
1284 * Some SD cards in SPI mode return a CRC error or even lock up
1285 * completely when trying to read the last block using a
1286 * multiblock read command.
1287 */
1288 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1289 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1290 get_capacity(md->disk)))
1291 brq->data.blocks--;
1292
1293 /*
1294 * After a read error, we redo the request one sector
1295 * at a time in order to accurately determine which
1296 * sectors can be read successfully.
1297 */
1298 if (disable_multi)
1299 brq->data.blocks = 1;
1300
1301 /*
1302 * Some controllers have HW issues while operating
1303 * in multiple I/O mode
1304 */
1305 if (card->host->ops->multi_io_quirk)
1306 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1307 (rq_data_dir(req) == READ) ?
1308 MMC_DATA_READ : MMC_DATA_WRITE,
1309 brq->data.blocks);
1310 }
1311
1312 if (do_rel_wr) {
1313 mmc_apply_rel_rw(brq, card, req);
1314 brq->data.flags |= MMC_DATA_REL_WR;
1315 }
1316
1317 /*
1318 * Data tag is used only during writing meta data to speed
1319 * up write and any subsequent read of this meta data
1320 */
1321 do_data_tag = card->ext_csd.data_tag_unit_size &&
1322 (req->cmd_flags & REQ_META) &&
1323 (rq_data_dir(req) == WRITE) &&
1324 ((brq->data.blocks * brq->data.blksz) >=
1325 card->ext_csd.data_tag_unit_size);
1326
1327 if (do_data_tag)
1328 brq->data.flags |= MMC_DATA_DAT_TAG;
1329
1330 mmc_set_data_timeout(&brq->data, card);
1331
1332 brq->data.sg = mqrq->sg;
1333 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1334
1335 /*
1336 * Adjust the sg list so it is the same size as the
1337 * request.
1338 */
1339 if (brq->data.blocks != blk_rq_sectors(req)) {
1340 int i, data_size = brq->data.blocks << 9;
1341 struct scatterlist *sg;
1342
1343 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1344 data_size -= sg->length;
1345 if (data_size <= 0) {
1346 sg->length += data_size;
1347 i++;
1348 break;
1349 }
1350 }
1351 brq->data.sg_len = i;
1352 }
1353
1354 if (do_rel_wr_p)
1355 *do_rel_wr_p = do_rel_wr;
1356
1357 if (do_data_tag_p)
1358 *do_data_tag_p = do_data_tag;
1359}
1360
1361#define MMC_CQE_RETRIES 2
1362
1363static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1364{
1365 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1366 struct mmc_request *mrq = &mqrq->brq.mrq;
1367 struct request_queue *q = req->q;
1368 struct mmc_host *host = mq->card->host;
1369 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1370 unsigned long flags;
1371 bool put_card;
1372 int err;
1373
1374 mmc_cqe_post_req(host, mrq);
1375
1376 if (mrq->cmd && mrq->cmd->error)
1377 err = mrq->cmd->error;
1378 else if (mrq->data && mrq->data->error)
1379 err = mrq->data->error;
1380 else
1381 err = 0;
1382
1383 if (err) {
1384 if (mqrq->retries++ < MMC_CQE_RETRIES)
1385 blk_mq_requeue_request(req, true);
1386 else
1387 blk_mq_end_request(req, BLK_STS_IOERR);
1388 } else if (mrq->data) {
1389 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1390 blk_mq_requeue_request(req, true);
1391 else
1392 __blk_mq_end_request(req, BLK_STS_OK);
1393 } else {
1394 blk_mq_end_request(req, BLK_STS_OK);
1395 }
1396
1397 spin_lock_irqsave(&mq->lock, flags);
1398
1399 mq->in_flight[issue_type] -= 1;
1400
1401 put_card = (mmc_tot_in_flight(mq) == 0);
1402
1403 mmc_cqe_check_busy(mq);
1404
1405 spin_unlock_irqrestore(&mq->lock, flags);
1406
1407 if (!mq->cqe_busy)
1408 blk_mq_run_hw_queues(q, true);
1409
1410 if (put_card)
1411 mmc_put_card(mq->card, &mq->ctx);
1412}
1413
1414void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1415{
1416 struct mmc_card *card = mq->card;
1417 struct mmc_host *host = card->host;
1418 int err;
1419
1420 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1421
1422 err = mmc_cqe_recovery(host);
1423 if (err)
1424 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1425 else
1426 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1427
1428 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1429}
1430
1431static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1432{
1433 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1434 brq.mrq);
1435 struct request *req = mmc_queue_req_to_req(mqrq);
1436 struct request_queue *q = req->q;
1437 struct mmc_queue *mq = q->queuedata;
1438
1439 /*
1440 * Block layer timeouts race with completions which means the normal
1441 * completion path cannot be used during recovery.
1442 */
1443 if (mq->in_recovery)
1444 mmc_blk_cqe_complete_rq(mq, req);
1445 else if (likely(!blk_should_fake_timeout(req->q)))
1446 blk_mq_complete_request(req);
1447}
1448
1449static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1450{
1451 mrq->done = mmc_blk_cqe_req_done;
1452 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1453
1454 return mmc_cqe_start_req(host, mrq);
1455}
1456
1457static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1458 struct request *req)
1459{
1460 struct mmc_blk_request *brq = &mqrq->brq;
1461
1462 memset(brq, 0, sizeof(*brq));
1463
1464 brq->mrq.cmd = &brq->cmd;
1465 brq->mrq.tag = req->tag;
1466
1467 return &brq->mrq;
1468}
1469
1470static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1471{
1472 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1473 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1474
1475 mrq->cmd->opcode = MMC_SWITCH;
1476 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1477 (EXT_CSD_FLUSH_CACHE << 16) |
1478 (1 << 8) |
1479 EXT_CSD_CMD_SET_NORMAL;
1480 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1481
1482 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1483}
1484
1485static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1486{
1487 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1488 struct mmc_host *host = mq->card->host;
1489 int err;
1490
1491 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1492 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1493 mmc_pre_req(host, &mqrq->brq.mrq);
1494
1495 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1496 if (err)
1497 mmc_post_req(host, &mqrq->brq.mrq, err);
1498
1499 return err;
1500}
1501
1502static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1503{
1504 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1505 struct mmc_host *host = mq->card->host;
1506
1507 if (host->hsq_enabled)
1508 return mmc_blk_hsq_issue_rw_rq(mq, req);
1509
1510 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1511
1512 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1513}
1514
1515static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1516 struct mmc_card *card,
1517 int disable_multi,
1518 struct mmc_queue *mq)
1519{
1520 u32 readcmd, writecmd;
1521 struct mmc_blk_request *brq = &mqrq->brq;
1522 struct request *req = mmc_queue_req_to_req(mqrq);
1523 struct mmc_blk_data *md = mq->blkdata;
1524 bool do_rel_wr, do_data_tag;
1525
1526 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1527
1528 brq->mrq.cmd = &brq->cmd;
1529
1530 brq->cmd.arg = blk_rq_pos(req);
1531 if (!mmc_card_blockaddr(card))
1532 brq->cmd.arg <<= 9;
1533 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1534
1535 if (brq->data.blocks > 1 || do_rel_wr) {
1536 /* SPI multiblock writes terminate using a special
1537 * token, not a STOP_TRANSMISSION request.
1538 */
1539 if (!mmc_host_is_spi(card->host) ||
1540 rq_data_dir(req) == READ)
1541 brq->mrq.stop = &brq->stop;
1542 readcmd = MMC_READ_MULTIPLE_BLOCK;
1543 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1544 } else {
1545 brq->mrq.stop = NULL;
1546 readcmd = MMC_READ_SINGLE_BLOCK;
1547 writecmd = MMC_WRITE_BLOCK;
1548 }
1549 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1550
1551 /*
1552 * Pre-defined multi-block transfers are preferable to
1553 * open ended-ones (and necessary for reliable writes).
1554 * However, it is not sufficient to just send CMD23,
1555 * and avoid the final CMD12, as on an error condition
1556 * CMD12 (stop) needs to be sent anyway. This, coupled
1557 * with Auto-CMD23 enhancements provided by some
1558 * hosts, means that the complexity of dealing
1559 * with this is best left to the host. If CMD23 is
1560 * supported by card and host, we'll fill sbc in and let
1561 * the host deal with handling it correctly. This means
1562 * that for hosts that don't expose MMC_CAP_CMD23, no
1563 * change of behavior will be observed.
1564 *
1565 * N.B: Some MMC cards experience perf degradation.
1566 * We'll avoid using CMD23-bounded multiblock writes for
1567 * these, while retaining features like reliable writes.
1568 */
1569 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1570 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1571 do_data_tag)) {
1572 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1573 brq->sbc.arg = brq->data.blocks |
1574 (do_rel_wr ? (1 << 31) : 0) |
1575 (do_data_tag ? (1 << 29) : 0);
1576 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1577 brq->mrq.sbc = &brq->sbc;
1578 }
1579}
1580
1581#define MMC_MAX_RETRIES 5
1582#define MMC_DATA_RETRIES 2
1583#define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1584
1585static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1586{
1587 struct mmc_command cmd = {
1588 .opcode = MMC_STOP_TRANSMISSION,
1589 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1590 /* Some hosts wait for busy anyway, so provide a busy timeout */
1591 .busy_timeout = timeout,
1592 };
1593
1594 return mmc_wait_for_cmd(card->host, &cmd, 5);
1595}
1596
1597static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1598{
1599 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1600 struct mmc_blk_request *brq = &mqrq->brq;
1601 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1602 int err;
1603
1604 mmc_retune_hold_now(card->host);
1605
1606 mmc_blk_send_stop(card, timeout);
1607
1608 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1609
1610 mmc_retune_release(card->host);
1611
1612 return err;
1613}
1614
1615#define MMC_READ_SINGLE_RETRIES 2
1616
1617/* Single sector read during recovery */
1618static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1619{
1620 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1621 struct mmc_request *mrq = &mqrq->brq.mrq;
1622 struct mmc_card *card = mq->card;
1623 struct mmc_host *host = card->host;
1624 blk_status_t error = BLK_STS_OK;
1625 int retries = 0;
1626
1627 do {
1628 u32 status;
1629 int err;
1630
1631 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1632
1633 mmc_wait_for_req(host, mrq);
1634
1635 err = mmc_send_status(card, &status);
1636 if (err)
1637 goto error_exit;
1638
1639 if (!mmc_host_is_spi(host) &&
1640 !mmc_ready_for_data(status)) {
1641 err = mmc_blk_fix_state(card, req);
1642 if (err)
1643 goto error_exit;
1644 }
1645
1646 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1647 continue;
1648
1649 retries = 0;
1650
1651 if (mrq->cmd->error ||
1652 mrq->data->error ||
1653 (!mmc_host_is_spi(host) &&
1654 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1655 error = BLK_STS_IOERR;
1656 else
1657 error = BLK_STS_OK;
1658
1659 } while (blk_update_request(req, error, 512));
1660
1661 return;
1662
1663error_exit:
1664 mrq->data->bytes_xfered = 0;
1665 blk_update_request(req, BLK_STS_IOERR, 512);
1666 /* Let it try the remaining request again */
1667 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1668 mqrq->retries = MMC_MAX_RETRIES - 1;
1669}
1670
1671static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1672{
1673 return !!brq->mrq.sbc;
1674}
1675
1676static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1677{
1678 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1679}
1680
1681/*
1682 * Check for errors the host controller driver might not have seen such as
1683 * response mode errors or invalid card state.
1684 */
1685static bool mmc_blk_status_error(struct request *req, u32 status)
1686{
1687 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1688 struct mmc_blk_request *brq = &mqrq->brq;
1689 struct mmc_queue *mq = req->q->queuedata;
1690 u32 stop_err_bits;
1691
1692 if (mmc_host_is_spi(mq->card->host))
1693 return false;
1694
1695 stop_err_bits = mmc_blk_stop_err_bits(brq);
1696
1697 return brq->cmd.resp[0] & CMD_ERRORS ||
1698 brq->stop.resp[0] & stop_err_bits ||
1699 status & stop_err_bits ||
1700 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1701}
1702
1703static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1704{
1705 return !brq->sbc.error && !brq->cmd.error &&
1706 !(brq->cmd.resp[0] & CMD_ERRORS);
1707}
1708
1709/*
1710 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1711 * policy:
1712 * 1. A request that has transferred at least some data is considered
1713 * successful and will be requeued if there is remaining data to
1714 * transfer.
1715 * 2. Otherwise the number of retries is incremented and the request
1716 * will be requeued if there are remaining retries.
1717 * 3. Otherwise the request will be errored out.
1718 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1719 * mqrq->retries. So there are only 4 possible actions here:
1720 * 1. do not accept the bytes_xfered value i.e. set it to zero
1721 * 2. change mqrq->retries to determine the number of retries
1722 * 3. try to reset the card
1723 * 4. read one sector at a time
1724 */
1725static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1726{
1727 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1728 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1729 struct mmc_blk_request *brq = &mqrq->brq;
1730 struct mmc_blk_data *md = mq->blkdata;
1731 struct mmc_card *card = mq->card;
1732 u32 status;
1733 u32 blocks;
1734 int err;
1735
1736 /*
1737 * Some errors the host driver might not have seen. Set the number of
1738 * bytes transferred to zero in that case.
1739 */
1740 err = __mmc_send_status(card, &status, 0);
1741 if (err || mmc_blk_status_error(req, status))
1742 brq->data.bytes_xfered = 0;
1743
1744 mmc_retune_release(card->host);
1745
1746 /*
1747 * Try again to get the status. This also provides an opportunity for
1748 * re-tuning.
1749 */
1750 if (err)
1751 err = __mmc_send_status(card, &status, 0);
1752
1753 /*
1754 * Nothing more to do after the number of bytes transferred has been
1755 * updated and there is no card.
1756 */
1757 if (err && mmc_detect_card_removed(card->host))
1758 return;
1759
1760 /* Try to get back to "tran" state */
1761 if (!mmc_host_is_spi(mq->card->host) &&
1762 (err || !mmc_ready_for_data(status)))
1763 err = mmc_blk_fix_state(mq->card, req);
1764
1765 /*
1766 * Special case for SD cards where the card might record the number of
1767 * blocks written.
1768 */
1769 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1770 rq_data_dir(req) == WRITE) {
1771 if (mmc_sd_num_wr_blocks(card, &blocks))
1772 brq->data.bytes_xfered = 0;
1773 else
1774 brq->data.bytes_xfered = blocks << 9;
1775 }
1776
1777 /* Reset if the card is in a bad state */
1778 if (!mmc_host_is_spi(mq->card->host) &&
1779 err && mmc_blk_reset(md, card->host, type)) {
1780 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1781 mqrq->retries = MMC_NO_RETRIES;
1782 return;
1783 }
1784
1785 /*
1786 * If anything was done, just return and if there is anything remaining
1787 * on the request it will get requeued.
1788 */
1789 if (brq->data.bytes_xfered)
1790 return;
1791
1792 /* Reset before last retry */
1793 if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1794 mmc_blk_reset(md, card->host, type);
1795
1796 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1797 if (brq->sbc.error || brq->cmd.error)
1798 return;
1799
1800 /* Reduce the remaining retries for data errors */
1801 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1802 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1803 return;
1804 }
1805
1806 /* FIXME: Missing single sector read for large sector size */
1807 if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1808 brq->data.blocks > 1) {
1809 /* Read one sector at a time */
1810 mmc_blk_read_single(mq, req);
1811 return;
1812 }
1813}
1814
1815static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1816{
1817 mmc_blk_eval_resp_error(brq);
1818
1819 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1820 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1821}
1822
1823static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1824{
1825 struct mmc_blk_busy_data *data = cb_data;
1826 u32 status = 0;
1827 int err;
1828
1829 err = mmc_send_status(data->card, &status);
1830 if (err)
1831 return err;
1832
1833 /* Accumulate response error bits. */
1834 data->status |= status;
1835
1836 *busy = !mmc_ready_for_data(status);
1837 return 0;
1838}
1839
1840static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1841{
1842 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1843 struct mmc_blk_busy_data cb_data;
1844 int err;
1845
1846 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1847 return 0;
1848
1849 cb_data.card = card;
1850 cb_data.status = 0;
1851 err = __mmc_poll_for_busy(card, MMC_BLK_TIMEOUT_MS, &mmc_blk_busy_cb,
1852 &cb_data);
1853
1854 /*
1855 * Do not assume data transferred correctly if there are any error bits
1856 * set.
1857 */
1858 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1859 mqrq->brq.data.bytes_xfered = 0;
1860 err = err ? err : -EIO;
1861 }
1862
1863 /* Copy the exception bit so it will be seen later on */
1864 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1865 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1866
1867 return err;
1868}
1869
1870static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1871 struct request *req)
1872{
1873 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1874
1875 mmc_blk_reset_success(mq->blkdata, type);
1876}
1877
1878static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1879{
1880 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1881 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1882
1883 if (nr_bytes) {
1884 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1885 blk_mq_requeue_request(req, true);
1886 else
1887 __blk_mq_end_request(req, BLK_STS_OK);
1888 } else if (!blk_rq_bytes(req)) {
1889 __blk_mq_end_request(req, BLK_STS_IOERR);
1890 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1891 blk_mq_requeue_request(req, true);
1892 } else {
1893 if (mmc_card_removed(mq->card))
1894 req->rq_flags |= RQF_QUIET;
1895 blk_mq_end_request(req, BLK_STS_IOERR);
1896 }
1897}
1898
1899static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1900 struct mmc_queue_req *mqrq)
1901{
1902 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1903 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1904 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1905}
1906
1907static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1908 struct mmc_queue_req *mqrq)
1909{
1910 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1911 mmc_run_bkops(mq->card);
1912}
1913
1914static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1915{
1916 struct mmc_queue_req *mqrq =
1917 container_of(mrq, struct mmc_queue_req, brq.mrq);
1918 struct request *req = mmc_queue_req_to_req(mqrq);
1919 struct request_queue *q = req->q;
1920 struct mmc_queue *mq = q->queuedata;
1921 struct mmc_host *host = mq->card->host;
1922 unsigned long flags;
1923
1924 if (mmc_blk_rq_error(&mqrq->brq) ||
1925 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1926 spin_lock_irqsave(&mq->lock, flags);
1927 mq->recovery_needed = true;
1928 mq->recovery_req = req;
1929 spin_unlock_irqrestore(&mq->lock, flags);
1930
1931 host->cqe_ops->cqe_recovery_start(host);
1932
1933 schedule_work(&mq->recovery_work);
1934 return;
1935 }
1936
1937 mmc_blk_rw_reset_success(mq, req);
1938
1939 /*
1940 * Block layer timeouts race with completions which means the normal
1941 * completion path cannot be used during recovery.
1942 */
1943 if (mq->in_recovery)
1944 mmc_blk_cqe_complete_rq(mq, req);
1945 else if (likely(!blk_should_fake_timeout(req->q)))
1946 blk_mq_complete_request(req);
1947}
1948
1949void mmc_blk_mq_complete(struct request *req)
1950{
1951 struct mmc_queue *mq = req->q->queuedata;
1952 struct mmc_host *host = mq->card->host;
1953
1954 if (host->cqe_enabled)
1955 mmc_blk_cqe_complete_rq(mq, req);
1956 else if (likely(!blk_should_fake_timeout(req->q)))
1957 mmc_blk_mq_complete_rq(mq, req);
1958}
1959
1960static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1961 struct request *req)
1962{
1963 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1964 struct mmc_host *host = mq->card->host;
1965
1966 if (mmc_blk_rq_error(&mqrq->brq) ||
1967 mmc_blk_card_busy(mq->card, req)) {
1968 mmc_blk_mq_rw_recovery(mq, req);
1969 } else {
1970 mmc_blk_rw_reset_success(mq, req);
1971 mmc_retune_release(host);
1972 }
1973
1974 mmc_blk_urgent_bkops(mq, mqrq);
1975}
1976
1977static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1978{
1979 unsigned long flags;
1980 bool put_card;
1981
1982 spin_lock_irqsave(&mq->lock, flags);
1983
1984 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1985
1986 put_card = (mmc_tot_in_flight(mq) == 0);
1987
1988 spin_unlock_irqrestore(&mq->lock, flags);
1989
1990 if (put_card)
1991 mmc_put_card(mq->card, &mq->ctx);
1992}
1993
1994static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1995{
1996 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1997 struct mmc_request *mrq = &mqrq->brq.mrq;
1998 struct mmc_host *host = mq->card->host;
1999
2000 mmc_post_req(host, mrq, 0);
2001
2002 /*
2003 * Block layer timeouts race with completions which means the normal
2004 * completion path cannot be used during recovery.
2005 */
2006 if (mq->in_recovery)
2007 mmc_blk_mq_complete_rq(mq, req);
2008 else if (likely(!blk_should_fake_timeout(req->q)))
2009 blk_mq_complete_request(req);
2010
2011 mmc_blk_mq_dec_in_flight(mq, req);
2012}
2013
2014void mmc_blk_mq_recovery(struct mmc_queue *mq)
2015{
2016 struct request *req = mq->recovery_req;
2017 struct mmc_host *host = mq->card->host;
2018 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2019
2020 mq->recovery_req = NULL;
2021 mq->rw_wait = false;
2022
2023 if (mmc_blk_rq_error(&mqrq->brq)) {
2024 mmc_retune_hold_now(host);
2025 mmc_blk_mq_rw_recovery(mq, req);
2026 }
2027
2028 mmc_blk_urgent_bkops(mq, mqrq);
2029
2030 mmc_blk_mq_post_req(mq, req);
2031}
2032
2033static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2034 struct request **prev_req)
2035{
2036 if (mmc_host_done_complete(mq->card->host))
2037 return;
2038
2039 mutex_lock(&mq->complete_lock);
2040
2041 if (!mq->complete_req)
2042 goto out_unlock;
2043
2044 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2045
2046 if (prev_req)
2047 *prev_req = mq->complete_req;
2048 else
2049 mmc_blk_mq_post_req(mq, mq->complete_req);
2050
2051 mq->complete_req = NULL;
2052
2053out_unlock:
2054 mutex_unlock(&mq->complete_lock);
2055}
2056
2057void mmc_blk_mq_complete_work(struct work_struct *work)
2058{
2059 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2060 complete_work);
2061
2062 mmc_blk_mq_complete_prev_req(mq, NULL);
2063}
2064
2065static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2066{
2067 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2068 brq.mrq);
2069 struct request *req = mmc_queue_req_to_req(mqrq);
2070 struct request_queue *q = req->q;
2071 struct mmc_queue *mq = q->queuedata;
2072 struct mmc_host *host = mq->card->host;
2073 unsigned long flags;
2074
2075 if (!mmc_host_done_complete(host)) {
2076 bool waiting;
2077
2078 /*
2079 * We cannot complete the request in this context, so record
2080 * that there is a request to complete, and that a following
2081 * request does not need to wait (although it does need to
2082 * complete complete_req first).
2083 */
2084 spin_lock_irqsave(&mq->lock, flags);
2085 mq->complete_req = req;
2086 mq->rw_wait = false;
2087 waiting = mq->waiting;
2088 spin_unlock_irqrestore(&mq->lock, flags);
2089
2090 /*
2091 * If 'waiting' then the waiting task will complete this
2092 * request, otherwise queue a work to do it. Note that
2093 * complete_work may still race with the dispatch of a following
2094 * request.
2095 */
2096 if (waiting)
2097 wake_up(&mq->wait);
2098 else
2099 queue_work(mq->card->complete_wq, &mq->complete_work);
2100
2101 return;
2102 }
2103
2104 /* Take the recovery path for errors or urgent background operations */
2105 if (mmc_blk_rq_error(&mqrq->brq) ||
2106 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2107 spin_lock_irqsave(&mq->lock, flags);
2108 mq->recovery_needed = true;
2109 mq->recovery_req = req;
2110 spin_unlock_irqrestore(&mq->lock, flags);
2111 wake_up(&mq->wait);
2112 schedule_work(&mq->recovery_work);
2113 return;
2114 }
2115
2116 mmc_blk_rw_reset_success(mq, req);
2117
2118 mq->rw_wait = false;
2119 wake_up(&mq->wait);
2120
2121 mmc_blk_mq_post_req(mq, req);
2122}
2123
2124static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2125{
2126 unsigned long flags;
2127 bool done;
2128
2129 /*
2130 * Wait while there is another request in progress, but not if recovery
2131 * is needed. Also indicate whether there is a request waiting to start.
2132 */
2133 spin_lock_irqsave(&mq->lock, flags);
2134 if (mq->recovery_needed) {
2135 *err = -EBUSY;
2136 done = true;
2137 } else {
2138 done = !mq->rw_wait;
2139 }
2140 mq->waiting = !done;
2141 spin_unlock_irqrestore(&mq->lock, flags);
2142
2143 return done;
2144}
2145
2146static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2147{
2148 int err = 0;
2149
2150 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2151
2152 /* Always complete the previous request if there is one */
2153 mmc_blk_mq_complete_prev_req(mq, prev_req);
2154
2155 return err;
2156}
2157
2158static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2159 struct request *req)
2160{
2161 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2162 struct mmc_host *host = mq->card->host;
2163 struct request *prev_req = NULL;
2164 int err = 0;
2165
2166 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2167
2168 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2169
2170 mmc_pre_req(host, &mqrq->brq.mrq);
2171
2172 err = mmc_blk_rw_wait(mq, &prev_req);
2173 if (err)
2174 goto out_post_req;
2175
2176 mq->rw_wait = true;
2177
2178 err = mmc_start_request(host, &mqrq->brq.mrq);
2179
2180 if (prev_req)
2181 mmc_blk_mq_post_req(mq, prev_req);
2182
2183 if (err)
2184 mq->rw_wait = false;
2185
2186 /* Release re-tuning here where there is no synchronization required */
2187 if (err || mmc_host_done_complete(host))
2188 mmc_retune_release(host);
2189
2190out_post_req:
2191 if (err)
2192 mmc_post_req(host, &mqrq->brq.mrq, err);
2193
2194 return err;
2195}
2196
2197static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2198{
2199 if (host->cqe_enabled)
2200 return host->cqe_ops->cqe_wait_for_idle(host);
2201
2202 return mmc_blk_rw_wait(mq, NULL);
2203}
2204
2205enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2206{
2207 struct mmc_blk_data *md = mq->blkdata;
2208 struct mmc_card *card = md->queue.card;
2209 struct mmc_host *host = card->host;
2210 int ret;
2211
2212 ret = mmc_blk_part_switch(card, md->part_type);
2213 if (ret)
2214 return MMC_REQ_FAILED_TO_START;
2215
2216 switch (mmc_issue_type(mq, req)) {
2217 case MMC_ISSUE_SYNC:
2218 ret = mmc_blk_wait_for_idle(mq, host);
2219 if (ret)
2220 return MMC_REQ_BUSY;
2221 switch (req_op(req)) {
2222 case REQ_OP_DRV_IN:
2223 case REQ_OP_DRV_OUT:
2224 mmc_blk_issue_drv_op(mq, req);
2225 break;
2226 case REQ_OP_DISCARD:
2227 mmc_blk_issue_discard_rq(mq, req);
2228 break;
2229 case REQ_OP_SECURE_ERASE:
2230 mmc_blk_issue_secdiscard_rq(mq, req);
2231 break;
2232 case REQ_OP_FLUSH:
2233 mmc_blk_issue_flush(mq, req);
2234 break;
2235 default:
2236 WARN_ON_ONCE(1);
2237 return MMC_REQ_FAILED_TO_START;
2238 }
2239 return MMC_REQ_FINISHED;
2240 case MMC_ISSUE_DCMD:
2241 case MMC_ISSUE_ASYNC:
2242 switch (req_op(req)) {
2243 case REQ_OP_FLUSH:
2244 if (!mmc_cache_enabled(host)) {
2245 blk_mq_end_request(req, BLK_STS_OK);
2246 return MMC_REQ_FINISHED;
2247 }
2248 ret = mmc_blk_cqe_issue_flush(mq, req);
2249 break;
2250 case REQ_OP_READ:
2251 case REQ_OP_WRITE:
2252 if (host->cqe_enabled)
2253 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2254 else
2255 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2256 break;
2257 default:
2258 WARN_ON_ONCE(1);
2259 ret = -EINVAL;
2260 }
2261 if (!ret)
2262 return MMC_REQ_STARTED;
2263 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2264 default:
2265 WARN_ON_ONCE(1);
2266 return MMC_REQ_FAILED_TO_START;
2267 }
2268}
2269
2270static inline int mmc_blk_readonly(struct mmc_card *card)
2271{
2272 return mmc_card_readonly(card) ||
2273 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2274}
2275
2276static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2277 struct device *parent,
2278 sector_t size,
2279 bool default_ro,
2280 const char *subname,
2281 int area_type)
2282{
2283 struct mmc_blk_data *md;
2284 int devidx, ret;
2285 char cap_str[10];
2286
2287 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2288 if (devidx < 0) {
2289 /*
2290 * We get -ENOSPC because there are no more any available
2291 * devidx. The reason may be that, either userspace haven't yet
2292 * unmounted the partitions, which postpones mmc_blk_release()
2293 * from being called, or the device has more partitions than
2294 * what we support.
2295 */
2296 if (devidx == -ENOSPC)
2297 dev_err(mmc_dev(card->host),
2298 "no more device IDs available\n");
2299
2300 return ERR_PTR(devidx);
2301 }
2302
2303 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2304 if (!md) {
2305 ret = -ENOMEM;
2306 goto out;
2307 }
2308
2309 md->area_type = area_type;
2310
2311 /*
2312 * Set the read-only status based on the supported commands
2313 * and the write protect switch.
2314 */
2315 md->read_only = mmc_blk_readonly(card);
2316
2317 md->disk = mmc_init_queue(&md->queue, card);
2318 if (IS_ERR(md->disk)) {
2319 ret = PTR_ERR(md->disk);
2320 goto err_kfree;
2321 }
2322
2323 INIT_LIST_HEAD(&md->part);
2324 INIT_LIST_HEAD(&md->rpmbs);
2325 kref_init(&md->kref);
2326
2327 md->queue.blkdata = md;
2328
2329 md->disk->major = MMC_BLOCK_MAJOR;
2330 md->disk->minors = perdev_minors;
2331 md->disk->first_minor = devidx * perdev_minors;
2332 md->disk->fops = &mmc_bdops;
2333 md->disk->private_data = md;
2334 md->parent = parent;
2335 set_disk_ro(md->disk, md->read_only || default_ro);
2336 md->disk->flags = GENHD_FL_EXT_DEVT;
2337 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2338 md->disk->flags |= GENHD_FL_NO_PART_SCAN
2339 | GENHD_FL_SUPPRESS_PARTITION_INFO;
2340
2341 /*
2342 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2343 *
2344 * - be set for removable media with permanent block devices
2345 * - be unset for removable block devices with permanent media
2346 *
2347 * Since MMC block devices clearly fall under the second
2348 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2349 * should use the block device creation/destruction hotplug
2350 * messages to tell when the card is present.
2351 */
2352
2353 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2354 "mmcblk%u%s", card->host->index, subname ? subname : "");
2355
2356 set_capacity(md->disk, size);
2357
2358 if (mmc_host_cmd23(card->host)) {
2359 if ((mmc_card_mmc(card) &&
2360 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2361 (mmc_card_sd(card) &&
2362 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2363 md->flags |= MMC_BLK_CMD23;
2364 }
2365
2366 if (mmc_card_mmc(card) &&
2367 md->flags & MMC_BLK_CMD23 &&
2368 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2369 card->ext_csd.rel_sectors)) {
2370 md->flags |= MMC_BLK_REL_WR;
2371 blk_queue_write_cache(md->queue.queue, true, true);
2372 }
2373
2374 string_get_size((u64)size, 512, STRING_UNITS_2,
2375 cap_str, sizeof(cap_str));
2376 pr_info("%s: %s %s %s %s\n",
2377 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2378 cap_str, md->read_only ? "(ro)" : "");
2379
2380 return md;
2381
2382 err_kfree:
2383 kfree(md);
2384 out:
2385 ida_simple_remove(&mmc_blk_ida, devidx);
2386 return ERR_PTR(ret);
2387}
2388
2389static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2390{
2391 sector_t size;
2392
2393 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2394 /*
2395 * The EXT_CSD sector count is in number or 512 byte
2396 * sectors.
2397 */
2398 size = card->ext_csd.sectors;
2399 } else {
2400 /*
2401 * The CSD capacity field is in units of read_blkbits.
2402 * set_capacity takes units of 512 bytes.
2403 */
2404 size = (typeof(sector_t))card->csd.capacity
2405 << (card->csd.read_blkbits - 9);
2406 }
2407
2408 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2409 MMC_BLK_DATA_AREA_MAIN);
2410}
2411
2412static int mmc_blk_alloc_part(struct mmc_card *card,
2413 struct mmc_blk_data *md,
2414 unsigned int part_type,
2415 sector_t size,
2416 bool default_ro,
2417 const char *subname,
2418 int area_type)
2419{
2420 struct mmc_blk_data *part_md;
2421
2422 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2423 subname, area_type);
2424 if (IS_ERR(part_md))
2425 return PTR_ERR(part_md);
2426 part_md->part_type = part_type;
2427 list_add(&part_md->part, &md->part);
2428
2429 return 0;
2430}
2431
2432/**
2433 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2434 * @filp: the character device file
2435 * @cmd: the ioctl() command
2436 * @arg: the argument from userspace
2437 *
2438 * This will essentially just redirect the ioctl()s coming in over to
2439 * the main block device spawning the RPMB character device.
2440 */
2441static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2442 unsigned long arg)
2443{
2444 struct mmc_rpmb_data *rpmb = filp->private_data;
2445 int ret;
2446
2447 switch (cmd) {
2448 case MMC_IOC_CMD:
2449 ret = mmc_blk_ioctl_cmd(rpmb->md,
2450 (struct mmc_ioc_cmd __user *)arg,
2451 rpmb);
2452 break;
2453 case MMC_IOC_MULTI_CMD:
2454 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2455 (struct mmc_ioc_multi_cmd __user *)arg,
2456 rpmb);
2457 break;
2458 default:
2459 ret = -EINVAL;
2460 break;
2461 }
2462
2463 return ret;
2464}
2465
2466#ifdef CONFIG_COMPAT
2467static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2468 unsigned long arg)
2469{
2470 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2471}
2472#endif
2473
2474static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2475{
2476 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2477 struct mmc_rpmb_data, chrdev);
2478
2479 get_device(&rpmb->dev);
2480 filp->private_data = rpmb;
2481 mmc_blk_get(rpmb->md->disk);
2482
2483 return nonseekable_open(inode, filp);
2484}
2485
2486static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2487{
2488 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2489 struct mmc_rpmb_data, chrdev);
2490
2491 mmc_blk_put(rpmb->md);
2492 put_device(&rpmb->dev);
2493
2494 return 0;
2495}
2496
2497static const struct file_operations mmc_rpmb_fileops = {
2498 .release = mmc_rpmb_chrdev_release,
2499 .open = mmc_rpmb_chrdev_open,
2500 .owner = THIS_MODULE,
2501 .llseek = no_llseek,
2502 .unlocked_ioctl = mmc_rpmb_ioctl,
2503#ifdef CONFIG_COMPAT
2504 .compat_ioctl = mmc_rpmb_ioctl_compat,
2505#endif
2506};
2507
2508static void mmc_blk_rpmb_device_release(struct device *dev)
2509{
2510 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2511
2512 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2513 kfree(rpmb);
2514}
2515
2516static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2517 struct mmc_blk_data *md,
2518 unsigned int part_index,
2519 sector_t size,
2520 const char *subname)
2521{
2522 int devidx, ret;
2523 char rpmb_name[DISK_NAME_LEN];
2524 char cap_str[10];
2525 struct mmc_rpmb_data *rpmb;
2526
2527 /* This creates the minor number for the RPMB char device */
2528 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2529 if (devidx < 0)
2530 return devidx;
2531
2532 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2533 if (!rpmb) {
2534 ida_simple_remove(&mmc_rpmb_ida, devidx);
2535 return -ENOMEM;
2536 }
2537
2538 snprintf(rpmb_name, sizeof(rpmb_name),
2539 "mmcblk%u%s", card->host->index, subname ? subname : "");
2540
2541 rpmb->id = devidx;
2542 rpmb->part_index = part_index;
2543 rpmb->dev.init_name = rpmb_name;
2544 rpmb->dev.bus = &mmc_rpmb_bus_type;
2545 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2546 rpmb->dev.parent = &card->dev;
2547 rpmb->dev.release = mmc_blk_rpmb_device_release;
2548 device_initialize(&rpmb->dev);
2549 dev_set_drvdata(&rpmb->dev, rpmb);
2550 rpmb->md = md;
2551
2552 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2553 rpmb->chrdev.owner = THIS_MODULE;
2554 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2555 if (ret) {
2556 pr_err("%s: could not add character device\n", rpmb_name);
2557 goto out_put_device;
2558 }
2559
2560 list_add(&rpmb->node, &md->rpmbs);
2561
2562 string_get_size((u64)size, 512, STRING_UNITS_2,
2563 cap_str, sizeof(cap_str));
2564
2565 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2566 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2567 MAJOR(mmc_rpmb_devt), rpmb->id);
2568
2569 return 0;
2570
2571out_put_device:
2572 put_device(&rpmb->dev);
2573 return ret;
2574}
2575
2576static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2577
2578{
2579 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2580 put_device(&rpmb->dev);
2581}
2582
2583/* MMC Physical partitions consist of two boot partitions and
2584 * up to four general purpose partitions.
2585 * For each partition enabled in EXT_CSD a block device will be allocatedi
2586 * to provide access to the partition.
2587 */
2588
2589static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2590{
2591 int idx, ret;
2592
2593 if (!mmc_card_mmc(card))
2594 return 0;
2595
2596 for (idx = 0; idx < card->nr_parts; idx++) {
2597 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2598 /*
2599 * RPMB partitions does not provide block access, they
2600 * are only accessed using ioctl():s. Thus create
2601 * special RPMB block devices that do not have a
2602 * backing block queue for these.
2603 */
2604 ret = mmc_blk_alloc_rpmb_part(card, md,
2605 card->part[idx].part_cfg,
2606 card->part[idx].size >> 9,
2607 card->part[idx].name);
2608 if (ret)
2609 return ret;
2610 } else if (card->part[idx].size) {
2611 ret = mmc_blk_alloc_part(card, md,
2612 card->part[idx].part_cfg,
2613 card->part[idx].size >> 9,
2614 card->part[idx].force_ro,
2615 card->part[idx].name,
2616 card->part[idx].area_type);
2617 if (ret)
2618 return ret;
2619 }
2620 }
2621
2622 return 0;
2623}
2624
2625static void mmc_blk_remove_req(struct mmc_blk_data *md)
2626{
2627 struct mmc_card *card;
2628
2629 if (md) {
2630 /*
2631 * Flush remaining requests and free queues. It
2632 * is freeing the queue that stops new requests
2633 * from being accepted.
2634 */
2635 card = md->queue.card;
2636 if (md->disk->flags & GENHD_FL_UP) {
2637 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2638 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2639 card->ext_csd.boot_ro_lockable)
2640 device_remove_file(disk_to_dev(md->disk),
2641 &md->power_ro_lock);
2642
2643 del_gendisk(md->disk);
2644 }
2645 mmc_cleanup_queue(&md->queue);
2646 mmc_blk_put(md);
2647 }
2648}
2649
2650static void mmc_blk_remove_parts(struct mmc_card *card,
2651 struct mmc_blk_data *md)
2652{
2653 struct list_head *pos, *q;
2654 struct mmc_blk_data *part_md;
2655 struct mmc_rpmb_data *rpmb;
2656
2657 /* Remove RPMB partitions */
2658 list_for_each_safe(pos, q, &md->rpmbs) {
2659 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2660 list_del(pos);
2661 mmc_blk_remove_rpmb_part(rpmb);
2662 }
2663 /* Remove block partitions */
2664 list_for_each_safe(pos, q, &md->part) {
2665 part_md = list_entry(pos, struct mmc_blk_data, part);
2666 list_del(pos);
2667 mmc_blk_remove_req(part_md);
2668 }
2669}
2670
2671static int mmc_add_disk(struct mmc_blk_data *md)
2672{
2673 int ret;
2674 struct mmc_card *card = md->queue.card;
2675
2676 device_add_disk(md->parent, md->disk, NULL);
2677 md->force_ro.show = force_ro_show;
2678 md->force_ro.store = force_ro_store;
2679 sysfs_attr_init(&md->force_ro.attr);
2680 md->force_ro.attr.name = "force_ro";
2681 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2682 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2683 if (ret)
2684 goto force_ro_fail;
2685
2686 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2687 card->ext_csd.boot_ro_lockable) {
2688 umode_t mode;
2689
2690 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2691 mode = S_IRUGO;
2692 else
2693 mode = S_IRUGO | S_IWUSR;
2694
2695 md->power_ro_lock.show = power_ro_lock_show;
2696 md->power_ro_lock.store = power_ro_lock_store;
2697 sysfs_attr_init(&md->power_ro_lock.attr);
2698 md->power_ro_lock.attr.mode = mode;
2699 md->power_ro_lock.attr.name =
2700 "ro_lock_until_next_power_on";
2701 ret = device_create_file(disk_to_dev(md->disk),
2702 &md->power_ro_lock);
2703 if (ret)
2704 goto power_ro_lock_fail;
2705 }
2706 return ret;
2707
2708power_ro_lock_fail:
2709 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2710force_ro_fail:
2711 del_gendisk(md->disk);
2712
2713 return ret;
2714}
2715
2716#ifdef CONFIG_DEBUG_FS
2717
2718static int mmc_dbg_card_status_get(void *data, u64 *val)
2719{
2720 struct mmc_card *card = data;
2721 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2722 struct mmc_queue *mq = &md->queue;
2723 struct request *req;
2724 int ret;
2725
2726 /* Ask the block layer about the card status */
2727 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2728 if (IS_ERR(req))
2729 return PTR_ERR(req);
2730 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2731 blk_execute_rq(NULL, req, 0);
2732 ret = req_to_mmc_queue_req(req)->drv_op_result;
2733 if (ret >= 0) {
2734 *val = ret;
2735 ret = 0;
2736 }
2737 blk_put_request(req);
2738
2739 return ret;
2740}
2741DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2742 NULL, "%08llx\n");
2743
2744/* That is two digits * 512 + 1 for newline */
2745#define EXT_CSD_STR_LEN 1025
2746
2747static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2748{
2749 struct mmc_card *card = inode->i_private;
2750 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2751 struct mmc_queue *mq = &md->queue;
2752 struct request *req;
2753 char *buf;
2754 ssize_t n = 0;
2755 u8 *ext_csd;
2756 int err, i;
2757
2758 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2759 if (!buf)
2760 return -ENOMEM;
2761
2762 /* Ask the block layer for the EXT CSD */
2763 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2764 if (IS_ERR(req)) {
2765 err = PTR_ERR(req);
2766 goto out_free;
2767 }
2768 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2769 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2770 blk_execute_rq(NULL, req, 0);
2771 err = req_to_mmc_queue_req(req)->drv_op_result;
2772 blk_put_request(req);
2773 if (err) {
2774 pr_err("FAILED %d\n", err);
2775 goto out_free;
2776 }
2777
2778 for (i = 0; i < 512; i++)
2779 n += sprintf(buf + n, "%02x", ext_csd[i]);
2780 n += sprintf(buf + n, "\n");
2781
2782 if (n != EXT_CSD_STR_LEN) {
2783 err = -EINVAL;
2784 kfree(ext_csd);
2785 goto out_free;
2786 }
2787
2788 filp->private_data = buf;
2789 kfree(ext_csd);
2790 return 0;
2791
2792out_free:
2793 kfree(buf);
2794 return err;
2795}
2796
2797static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2798 size_t cnt, loff_t *ppos)
2799{
2800 char *buf = filp->private_data;
2801
2802 return simple_read_from_buffer(ubuf, cnt, ppos,
2803 buf, EXT_CSD_STR_LEN);
2804}
2805
2806static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2807{
2808 kfree(file->private_data);
2809 return 0;
2810}
2811
2812static const struct file_operations mmc_dbg_ext_csd_fops = {
2813 .open = mmc_ext_csd_open,
2814 .read = mmc_ext_csd_read,
2815 .release = mmc_ext_csd_release,
2816 .llseek = default_llseek,
2817};
2818
2819static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2820{
2821 struct dentry *root;
2822
2823 if (!card->debugfs_root)
2824 return 0;
2825
2826 root = card->debugfs_root;
2827
2828 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2829 md->status_dentry =
2830 debugfs_create_file_unsafe("status", 0400, root,
2831 card,
2832 &mmc_dbg_card_status_fops);
2833 if (!md->status_dentry)
2834 return -EIO;
2835 }
2836
2837 if (mmc_card_mmc(card)) {
2838 md->ext_csd_dentry =
2839 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2840 &mmc_dbg_ext_csd_fops);
2841 if (!md->ext_csd_dentry)
2842 return -EIO;
2843 }
2844
2845 return 0;
2846}
2847
2848static void mmc_blk_remove_debugfs(struct mmc_card *card,
2849 struct mmc_blk_data *md)
2850{
2851 if (!card->debugfs_root)
2852 return;
2853
2854 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2855 debugfs_remove(md->status_dentry);
2856 md->status_dentry = NULL;
2857 }
2858
2859 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2860 debugfs_remove(md->ext_csd_dentry);
2861 md->ext_csd_dentry = NULL;
2862 }
2863}
2864
2865#else
2866
2867static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2868{
2869 return 0;
2870}
2871
2872static void mmc_blk_remove_debugfs(struct mmc_card *card,
2873 struct mmc_blk_data *md)
2874{
2875}
2876
2877#endif /* CONFIG_DEBUG_FS */
2878
2879static int mmc_blk_probe(struct mmc_card *card)
2880{
2881 struct mmc_blk_data *md, *part_md;
2882 int ret = 0;
2883
2884 /*
2885 * Check that the card supports the command class(es) we need.
2886 */
2887 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2888 return -ENODEV;
2889
2890 mmc_fixup_device(card, mmc_blk_fixups);
2891
2892 card->complete_wq = alloc_workqueue("mmc_complete",
2893 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2894 if (!card->complete_wq) {
2895 pr_err("Failed to create mmc completion workqueue");
2896 return -ENOMEM;
2897 }
2898
2899 md = mmc_blk_alloc(card);
2900 if (IS_ERR(md)) {
2901 ret = PTR_ERR(md);
2902 goto out_free;
2903 }
2904
2905 ret = mmc_blk_alloc_parts(card, md);
2906 if (ret)
2907 goto out;
2908
2909 dev_set_drvdata(&card->dev, md);
2910
2911 ret = mmc_add_disk(md);
2912 if (ret)
2913 goto out;
2914
2915 list_for_each_entry(part_md, &md->part, part) {
2916 ret = mmc_add_disk(part_md);
2917 if (ret)
2918 goto out;
2919 }
2920
2921 /* Add two debugfs entries */
2922 mmc_blk_add_debugfs(card, md);
2923
2924 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2925 pm_runtime_use_autosuspend(&card->dev);
2926
2927 /*
2928 * Don't enable runtime PM for SD-combo cards here. Leave that
2929 * decision to be taken during the SDIO init sequence instead.
2930 */
2931 if (card->type != MMC_TYPE_SD_COMBO) {
2932 pm_runtime_set_active(&card->dev);
2933 pm_runtime_enable(&card->dev);
2934 }
2935
2936 return 0;
2937
2938out:
2939 mmc_blk_remove_parts(card, md);
2940 mmc_blk_remove_req(md);
2941out_free:
2942 destroy_workqueue(card->complete_wq);
2943 return ret;
2944}
2945
2946static void mmc_blk_remove(struct mmc_card *card)
2947{
2948 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2949
2950 mmc_blk_remove_debugfs(card, md);
2951 mmc_blk_remove_parts(card, md);
2952 pm_runtime_get_sync(&card->dev);
2953 if (md->part_curr != md->part_type) {
2954 mmc_claim_host(card->host);
2955 mmc_blk_part_switch(card, md->part_type);
2956 mmc_release_host(card->host);
2957 }
2958 if (card->type != MMC_TYPE_SD_COMBO)
2959 pm_runtime_disable(&card->dev);
2960 pm_runtime_put_noidle(&card->dev);
2961 mmc_blk_remove_req(md);
2962 dev_set_drvdata(&card->dev, NULL);
2963 destroy_workqueue(card->complete_wq);
2964}
2965
2966static int _mmc_blk_suspend(struct mmc_card *card)
2967{
2968 struct mmc_blk_data *part_md;
2969 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2970
2971 if (md) {
2972 mmc_queue_suspend(&md->queue);
2973 list_for_each_entry(part_md, &md->part, part) {
2974 mmc_queue_suspend(&part_md->queue);
2975 }
2976 }
2977 return 0;
2978}
2979
2980static void mmc_blk_shutdown(struct mmc_card *card)
2981{
2982 _mmc_blk_suspend(card);
2983}
2984
2985#ifdef CONFIG_PM_SLEEP
2986static int mmc_blk_suspend(struct device *dev)
2987{
2988 struct mmc_card *card = mmc_dev_to_card(dev);
2989
2990 return _mmc_blk_suspend(card);
2991}
2992
2993static int mmc_blk_resume(struct device *dev)
2994{
2995 struct mmc_blk_data *part_md;
2996 struct mmc_blk_data *md = dev_get_drvdata(dev);
2997
2998 if (md) {
2999 /*
3000 * Resume involves the card going into idle state,
3001 * so current partition is always the main one.
3002 */
3003 md->part_curr = md->part_type;
3004 mmc_queue_resume(&md->queue);
3005 list_for_each_entry(part_md, &md->part, part) {
3006 mmc_queue_resume(&part_md->queue);
3007 }
3008 }
3009 return 0;
3010}
3011#endif
3012
3013static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3014
3015static struct mmc_driver mmc_driver = {
3016 .drv = {
3017 .name = "mmcblk",
3018 .pm = &mmc_blk_pm_ops,
3019 },
3020 .probe = mmc_blk_probe,
3021 .remove = mmc_blk_remove,
3022 .shutdown = mmc_blk_shutdown,
3023};
3024
3025static int __init mmc_blk_init(void)
3026{
3027 int res;
3028
3029 res = bus_register(&mmc_rpmb_bus_type);
3030 if (res < 0) {
3031 pr_err("mmcblk: could not register RPMB bus type\n");
3032 return res;
3033 }
3034 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3035 if (res < 0) {
3036 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3037 goto out_bus_unreg;
3038 }
3039
3040 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3041 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3042
3043 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3044
3045 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3046 if (res)
3047 goto out_chrdev_unreg;
3048
3049 res = mmc_register_driver(&mmc_driver);
3050 if (res)
3051 goto out_blkdev_unreg;
3052
3053 return 0;
3054
3055out_blkdev_unreg:
3056 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3057out_chrdev_unreg:
3058 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3059out_bus_unreg:
3060 bus_unregister(&mmc_rpmb_bus_type);
3061 return res;
3062}
3063
3064static void __exit mmc_blk_exit(void)
3065{
3066 mmc_unregister_driver(&mmc_driver);
3067 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3068 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3069 bus_unregister(&mmc_rpmb_bus_type);
3070}
3071
3072module_init(mmc_blk_init);
3073module_exit(mmc_blk_exit);
3074
3075MODULE_LICENSE("GPL");
3076MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3077