Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
   4 *
   5 *  PowerPC version
   6 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   7 * Copyright (C) 2001 IBM
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
  10 *
  11 *  Derived from "arch/i386/kernel/signal.c"
  12 *    Copyright (C) 1991, 1992 Linus Torvalds
  13 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
  14 */
  15
  16#include <linux/sched.h>
  17#include <linux/mm.h>
  18#include <linux/smp.h>
  19#include <linux/kernel.h>
  20#include <linux/signal.h>
  21#include <linux/errno.h>
  22#include <linux/elf.h>
  23#include <linux/ptrace.h>
  24#include <linux/pagemap.h>
  25#include <linux/ratelimit.h>
  26#include <linux/syscalls.h>
  27#ifdef CONFIG_PPC64
  28#include <linux/compat.h>
  29#else
  30#include <linux/wait.h>
  31#include <linux/unistd.h>
  32#include <linux/stddef.h>
  33#include <linux/tty.h>
  34#include <linux/binfmts.h>
  35#endif
  36
  37#include <linux/uaccess.h>
  38#include <asm/cacheflush.h>
  39#include <asm/syscalls.h>
  40#include <asm/sigcontext.h>
  41#include <asm/vdso.h>
  42#include <asm/switch_to.h>
  43#include <asm/tm.h>
  44#include <asm/asm-prototypes.h>
  45#ifdef CONFIG_PPC64
  46#include <asm/syscalls_32.h>
  47#include <asm/unistd.h>
  48#else
  49#include <asm/ucontext.h>
  50#endif
  51
  52#include "signal.h"
  53
  54
  55#ifdef CONFIG_PPC64
  56#define old_sigaction	old_sigaction32
  57#define sigcontext	sigcontext32
  58#define mcontext	mcontext32
  59#define ucontext	ucontext32
  60
 
 
  61/*
  62 * Userspace code may pass a ucontext which doesn't include VSX added
  63 * at the end.  We need to check for this case.
  64 */
  65#define UCONTEXTSIZEWITHOUTVSX \
  66		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
  67
  68/*
  69 * Returning 0 means we return to userspace via
  70 * ret_from_except and thus restore all user
  71 * registers from *regs.  This is what we need
  72 * to do when a signal has been delivered.
  73 */
  74
  75#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
  76#undef __SIGNAL_FRAMESIZE
  77#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
  78#undef ELF_NVRREG
  79#define ELF_NVRREG	ELF_NVRREG32
  80
  81/*
  82 * Functions for flipping sigsets (thanks to brain dead generic
  83 * implementation that makes things simple for little endian only)
  84 */
  85#define unsafe_put_sigset_t	unsafe_put_compat_sigset
  86#define unsafe_get_sigset_t	unsafe_get_compat_sigset
 
 
 
 
 
 
 
 
  87
  88#define to_user_ptr(p)		ptr_to_compat(p)
  89#define from_user_ptr(p)	compat_ptr(p)
  90
  91static __always_inline int
  92__unsafe_save_general_regs(struct pt_regs *regs, struct mcontext __user *frame)
  93{
  94	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
  95	int val, i;
  96
 
 
  97	for (i = 0; i <= PT_RESULT; i ++) {
  98		/* Force usr to alway see softe as 1 (interrupts enabled) */
  99		if (i == PT_SOFTE)
 100			val = 1;
 101		else
 102			val = gregs[i];
 103
 104		unsafe_put_user(val, &frame->mc_gregs[i], failed);
 
 105	}
 106	return 0;
 107
 108failed:
 109	return 1;
 110}
 111
 112static __always_inline int
 113__unsafe_restore_general_regs(struct pt_regs *regs, struct mcontext __user *sr)
 114{
 115	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 116	int i;
 117
 118	for (i = 0; i <= PT_RESULT; i++) {
 119		if ((i == PT_MSR) || (i == PT_SOFTE))
 120			continue;
 121		unsafe_get_user(gregs[i], &sr->mc_gregs[i], failed);
 
 122	}
 123	return 0;
 124
 125failed:
 126	return 1;
 127}
 128
 129#else /* CONFIG_PPC64 */
 130
 131#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
 132
 133#define unsafe_put_sigset_t(uset, set, label) do {			\
 134	sigset_t __user *__us = uset	;				\
 135	const sigset_t *__s = set;					\
 136									\
 137	unsafe_copy_to_user(__us, __s, sizeof(*__us), label);		\
 138} while (0)
 139
 140#define unsafe_get_sigset_t	unsafe_get_user_sigset
 
 
 
 141
 142#define to_user_ptr(p)		((unsigned long)(p))
 143#define from_user_ptr(p)	((void __user *)(p))
 144
 145static __always_inline int
 146__unsafe_save_general_regs(struct pt_regs *regs, struct mcontext __user *frame)
 147{
 148	unsafe_copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE, failed);
 149	return 0;
 150
 151failed:
 152	return 1;
 153}
 154
 155static __always_inline
 156int __unsafe_restore_general_regs(struct pt_regs *regs, struct mcontext __user *sr)
 157{
 158	/* copy up to but not including MSR */
 159	unsafe_copy_from_user(regs, &sr->mc_gregs, PT_MSR * sizeof(elf_greg_t), failed);
 160
 
 161	/* copy from orig_r3 (the word after the MSR) up to the end */
 162	unsafe_copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
 163			      GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t), failed);
 164
 165	return 0;
 166
 167failed:
 168	return 1;
 169}
 170#endif
 171
 172#define unsafe_save_general_regs(regs, frame, label) do {	\
 173	if (__unsafe_save_general_regs(regs, frame))		\
 174		goto label;					\
 175} while (0)
 176
 177#define unsafe_restore_general_regs(regs, frame, label) do {	\
 178	if (__unsafe_restore_general_regs(regs, frame))		\
 179		goto label;					\
 180} while (0)
 181
 182/*
 183 * When we have signals to deliver, we set up on the
 184 * user stack, going down from the original stack pointer:
 185 *	an ABI gap of 56 words
 186 *	an mcontext struct
 187 *	a sigcontext struct
 188 *	a gap of __SIGNAL_FRAMESIZE bytes
 189 *
 190 * Each of these things must be a multiple of 16 bytes in size. The following
 191 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
 192 *
 193 */
 194struct sigframe {
 195	struct sigcontext sctx;		/* the sigcontext */
 196	struct mcontext	mctx;		/* all the register values */
 197#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 198	struct sigcontext sctx_transact;
 199	struct mcontext	mctx_transact;
 200#endif
 201	/*
 202	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 203	 * regs and 18 fp regs below sp before decrementing it.
 204	 */
 205	int			abigap[56];
 206};
 207
 
 
 
 208/*
 209 *  When we have rt signals to deliver, we set up on the
 210 *  user stack, going down from the original stack pointer:
 211 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
 212 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
 213 *  (the +16 is to get the siginfo and ucontext in the same
 214 *  positions as in older kernels).
 215 *
 216 *  Each of these things must be a multiple of 16 bytes in size.
 217 *
 218 */
 219struct rt_sigframe {
 220#ifdef CONFIG_PPC64
 221	compat_siginfo_t info;
 222#else
 223	struct siginfo info;
 224#endif
 225	struct ucontext	uc;
 226#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 227	struct ucontext	uc_transact;
 228#endif
 229	/*
 230	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 231	 * regs and 18 fp regs below sp before decrementing it.
 232	 */
 233	int			abigap[56];
 234};
 235
 236unsigned long get_min_sigframe_size_32(void)
 237{
 238	return max(sizeof(struct rt_sigframe) + __SIGNAL_FRAMESIZE + 16,
 239		   sizeof(struct sigframe) + __SIGNAL_FRAMESIZE);
 240}
 241
 242/*
 243 * Save the current user registers on the user stack.
 244 * We only save the altivec/spe registers if the process has used
 245 * altivec/spe instructions at some point.
 246 */
 247static void prepare_save_user_regs(int ctx_has_vsx_region)
 
 
 248{
 
 
 249	/* Make sure floating point registers are stored in regs */
 250	flush_fp_to_thread(current);
 251#ifdef CONFIG_ALTIVEC
 252	if (current->thread.used_vr)
 253		flush_altivec_to_thread(current);
 254	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 255		current->thread.vrsave = mfspr(SPRN_VRSAVE);
 256#endif
 257#ifdef CONFIG_VSX
 258	if (current->thread.used_vsr && ctx_has_vsx_region)
 259		flush_vsx_to_thread(current);
 260#endif
 261#ifdef CONFIG_SPE
 262	if (current->thread.used_spe)
 263		flush_spe_to_thread(current);
 264#endif
 265}
 266
 267static __always_inline int
 268__unsafe_save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
 269			struct mcontext __user *tm_frame, int ctx_has_vsx_region)
 270{
 271	unsigned long msr = regs->msr;
 272
 273	/* save general registers */
 274	unsafe_save_general_regs(regs, frame, failed);
 
 275
 276#ifdef CONFIG_ALTIVEC
 277	/* save altivec registers */
 278	if (current->thread.used_vr) {
 279		unsafe_copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 280				    ELF_NVRREG * sizeof(vector128), failed);
 
 
 281		/* set MSR_VEC in the saved MSR value to indicate that
 282		   frame->mc_vregs contains valid data */
 283		msr |= MSR_VEC;
 284	}
 285	/* else assert((regs->msr & MSR_VEC) == 0) */
 286
 287	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 288	 * use altivec. Since VSCR only contains 32 bits saved in the least
 289	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 290	 * most significant bits of that same vector. --BenH
 291	 * Note that the current VRSAVE value is in the SPR at this point.
 292	 */
 293	unsafe_put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32],
 294			failed);
 
 
 295#endif /* CONFIG_ALTIVEC */
 296	unsafe_copy_fpr_to_user(&frame->mc_fregs, current, failed);
 
 297
 298	/*
 299	 * Clear the MSR VSX bit to indicate there is no valid state attached
 300	 * to this context, except in the specific case below where we set it.
 301	 */
 302	msr &= ~MSR_VSX;
 303#ifdef CONFIG_VSX
 304	/*
 305	 * Copy VSR 0-31 upper half from thread_struct to local
 306	 * buffer, then write that to userspace.  Also set MSR_VSX in
 307	 * the saved MSR value to indicate that frame->mc_vregs
 308	 * contains valid data
 309	 */
 310	if (current->thread.used_vsr && ctx_has_vsx_region) {
 311		unsafe_copy_vsx_to_user(&frame->mc_vsregs, current, failed);
 
 
 312		msr |= MSR_VSX;
 313	}
 314#endif /* CONFIG_VSX */
 315#ifdef CONFIG_SPE
 316	/* save spe registers */
 317	if (current->thread.used_spe) {
 318		unsafe_copy_to_user(&frame->mc_vregs, current->thread.evr,
 319				    ELF_NEVRREG * sizeof(u32), failed);
 
 
 320		/* set MSR_SPE in the saved MSR value to indicate that
 321		   frame->mc_vregs contains valid data */
 322		msr |= MSR_SPE;
 323	}
 324	/* else assert((regs->msr & MSR_SPE) == 0) */
 325
 326	/* We always copy to/from spefscr */
 327	unsafe_put_user(current->thread.spefscr,
 328			(u32 __user *)&frame->mc_vregs + ELF_NEVRREG, failed);
 329#endif /* CONFIG_SPE */
 330
 331	unsafe_put_user(msr, &frame->mc_gregs[PT_MSR], failed);
 332
 333	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
 334	 * can check it on the restore to see if TM is active
 335	 */
 336	if (tm_frame)
 337		unsafe_put_user(0, &tm_frame->mc_gregs[PT_MSR], failed);
 338
 339	return 0;
 
 
 
 
 
 
 
 340
 341failed:
 342	return 1;
 343}
 344
 345#define unsafe_save_user_regs(regs, frame, tm_frame, has_vsx, label) do { \
 346	if (__unsafe_save_user_regs(regs, frame, tm_frame, has_vsx))	\
 347		goto label;						\
 348} while (0)
 349
 350#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 351/*
 352 * Save the current user registers on the user stack.
 353 * We only save the altivec/spe registers if the process has used
 354 * altivec/spe instructions at some point.
 355 * We also save the transactional registers to a second ucontext in the
 356 * frame.
 357 *
 358 * See __unsafe_save_user_regs() and signal_64.c:setup_tm_sigcontexts().
 359 */
 360static void prepare_save_tm_user_regs(void)
 
 
 
 361{
 362	WARN_ON(tm_suspend_disabled);
 363
 364	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 365		current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
 366}
 367
 368static __always_inline int
 369save_tm_user_regs_unsafe(struct pt_regs *regs, struct mcontext __user *frame,
 370			 struct mcontext __user *tm_frame, unsigned long msr)
 371{
 372	/* Save both sets of general registers */
 373	unsafe_save_general_regs(&current->thread.ckpt_regs, frame, failed);
 374	unsafe_save_general_regs(regs, tm_frame, failed);
 
 375
 376	/* Stash the top half of the 64bit MSR into the 32bit MSR word
 377	 * of the transactional mcontext.  This way we have a backward-compatible
 378	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
 379	 * also look at what type of transaction (T or S) was active at the
 380	 * time of the signal.
 381	 */
 382	unsafe_put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR], failed);
 
 383
 
 384	/* save altivec registers */
 385	if (current->thread.used_vr) {
 386		unsafe_copy_to_user(&frame->mc_vregs, &current->thread.ckvr_state,
 387				    ELF_NVRREG * sizeof(vector128), failed);
 388		if (msr & MSR_VEC)
 389			unsafe_copy_to_user(&tm_frame->mc_vregs,
 390					    &current->thread.vr_state,
 391					    ELF_NVRREG * sizeof(vector128), failed);
 392		else
 393			unsafe_copy_to_user(&tm_frame->mc_vregs,
 394					    &current->thread.ckvr_state,
 395					    ELF_NVRREG * sizeof(vector128), failed);
 
 
 
 
 396
 397		/* set MSR_VEC in the saved MSR value to indicate that
 398		 * frame->mc_vregs contains valid data
 399		 */
 400		msr |= MSR_VEC;
 401	}
 402
 403	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 404	 * use altivec. Since VSCR only contains 32 bits saved in the least
 405	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 406	 * most significant bits of that same vector. --BenH
 407	 */
 408	unsafe_put_user(current->thread.ckvrsave,
 409			(u32 __user *)&frame->mc_vregs[32], failed);
 410	if (msr & MSR_VEC)
 411		unsafe_put_user(current->thread.vrsave,
 412				(u32 __user *)&tm_frame->mc_vregs[32], failed);
 413	else
 414		unsafe_put_user(current->thread.ckvrsave,
 415				(u32 __user *)&tm_frame->mc_vregs[32], failed);
 
 
 
 
 
 
 
 416
 417	unsafe_copy_ckfpr_to_user(&frame->mc_fregs, current, failed);
 418	if (msr & MSR_FP)
 419		unsafe_copy_fpr_to_user(&tm_frame->mc_fregs, current, failed);
 420	else
 421		unsafe_copy_ckfpr_to_user(&tm_frame->mc_fregs, current, failed);
 
 
 
 
 422
 
 423	/*
 424	 * Copy VSR 0-31 upper half from thread_struct to local
 425	 * buffer, then write that to userspace.  Also set MSR_VSX in
 426	 * the saved MSR value to indicate that frame->mc_vregs
 427	 * contains valid data
 428	 */
 429	if (current->thread.used_vsr) {
 430		unsafe_copy_ckvsx_to_user(&frame->mc_vsregs, current, failed);
 431		if (msr & MSR_VSX)
 432			unsafe_copy_vsx_to_user(&tm_frame->mc_vsregs, current, failed);
 433		else
 434			unsafe_copy_ckvsx_to_user(&tm_frame->mc_vsregs, current, failed);
 
 
 
 
 
 435
 436		msr |= MSR_VSX;
 437	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 438
 439	unsafe_put_user(msr, &frame->mc_gregs[PT_MSR], failed);
 440
 441	return 0;
 
 442
 443failed:
 444	return 1;
 445}
 446#else
 447static void prepare_save_tm_user_regs(void) { }
 
 
 
 
 
 448
 449static __always_inline int
 450save_tm_user_regs_unsafe(struct pt_regs *regs, struct mcontext __user *frame,
 451			 struct mcontext __user *tm_frame, unsigned long msr)
 452{
 453	return 0;
 454}
 455#endif
 456
 457#define unsafe_save_tm_user_regs(regs, frame, tm_frame, msr, label) do { \
 458	if (save_tm_user_regs_unsafe(regs, frame, tm_frame, msr))	\
 459		goto label;						\
 460} while (0)
 461
 462/*
 463 * Restore the current user register values from the user stack,
 464 * (except for MSR).
 465 */
 466static long restore_user_regs(struct pt_regs *regs,
 467			      struct mcontext __user *sr, int sig)
 468{
 
 469	unsigned int save_r2 = 0;
 470	unsigned long msr;
 471#ifdef CONFIG_VSX
 472	int i;
 473#endif
 474
 475	if (!user_read_access_begin(sr, sizeof(*sr)))
 476		return 1;
 477	/*
 478	 * restore general registers but not including MSR or SOFTE. Also
 479	 * take care of keeping r2 (TLS) intact if not a signal
 480	 */
 481	if (!sig)
 482		save_r2 = (unsigned int)regs->gpr[2];
 483	unsafe_restore_general_regs(regs, sr, failed);
 484	set_trap_norestart(regs);
 485	unsafe_get_user(msr, &sr->mc_gregs[PT_MSR], failed);
 486	if (!sig)
 487		regs->gpr[2] = (unsigned long) save_r2;
 
 
 488
 489	/* if doing signal return, restore the previous little-endian mode */
 490	if (sig)
 491		regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (msr & MSR_LE));
 492
 493#ifdef CONFIG_ALTIVEC
 494	/*
 495	 * Force the process to reload the altivec registers from
 496	 * current->thread when it next does altivec instructions
 497	 */
 498	regs_set_return_msr(regs, regs->msr & ~MSR_VEC);
 499	if (msr & MSR_VEC) {
 500		/* restore altivec registers from the stack */
 501		unsafe_copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 502				      sizeof(sr->mc_vregs), failed);
 
 503		current->thread.used_vr = true;
 504	} else if (current->thread.used_vr)
 505		memset(&current->thread.vr_state, 0,
 506		       ELF_NVRREG * sizeof(vector128));
 507
 508	/* Always get VRSAVE back */
 509	unsafe_get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32], failed);
 
 510	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 511		mtspr(SPRN_VRSAVE, current->thread.vrsave);
 512#endif /* CONFIG_ALTIVEC */
 513	unsafe_copy_fpr_from_user(current, &sr->mc_fregs, failed);
 
 514
 515#ifdef CONFIG_VSX
 516	/*
 517	 * Force the process to reload the VSX registers from
 518	 * current->thread when it next does VSX instruction.
 519	 */
 520	regs_set_return_msr(regs, regs->msr & ~MSR_VSX);
 521	if (msr & MSR_VSX) {
 522		/*
 523		 * Restore altivec registers from the stack to a local
 524		 * buffer, then write this out to the thread_struct
 525		 */
 526		unsafe_copy_vsx_from_user(current, &sr->mc_vsregs, failed);
 
 527		current->thread.used_vsr = true;
 528	} else if (current->thread.used_vsr)
 529		for (i = 0; i < 32 ; i++)
 530			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 531#endif /* CONFIG_VSX */
 532	/*
 533	 * force the process to reload the FP registers from
 534	 * current->thread when it next does FP instructions
 535	 */
 536	regs_set_return_msr(regs, regs->msr & ~(MSR_FP | MSR_FE0 | MSR_FE1));
 537
 538#ifdef CONFIG_SPE
 539	/*
 540	 * Force the process to reload the spe registers from
 541	 * current->thread when it next does spe instructions.
 542	 * Since this is user ABI, we must enforce the sizing.
 543	 */
 544	BUILD_BUG_ON(sizeof(current->thread.spe) != ELF_NEVRREG * sizeof(u32));
 545	regs_set_return_msr(regs, regs->msr & ~MSR_SPE);
 546	if (msr & MSR_SPE) {
 547		/* restore spe registers from the stack */
 548		unsafe_copy_from_user(&current->thread.spe, &sr->mc_vregs,
 549				      sizeof(current->thread.spe), failed);
 
 550		current->thread.used_spe = true;
 551	} else if (current->thread.used_spe)
 552		memset(&current->thread.spe, 0, sizeof(current->thread.spe));
 553
 554	/* Always get SPEFSCR back */
 555	unsafe_get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG, failed);
 
 556#endif /* CONFIG_SPE */
 557
 558	user_read_access_end();
 559	return 0;
 560
 561failed:
 562	user_read_access_end();
 563	return 1;
 564}
 565
 566#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 567/*
 568 * Restore the current user register values from the user stack, except for
 569 * MSR, and recheckpoint the original checkpointed register state for processes
 570 * in transactions.
 571 */
 572static long restore_tm_user_regs(struct pt_regs *regs,
 573				 struct mcontext __user *sr,
 574				 struct mcontext __user *tm_sr)
 575{
 
 576	unsigned long msr, msr_hi;
 
 577	int i;
 
 578
 579	if (tm_suspend_disabled)
 580		return 1;
 581	/*
 582	 * restore general registers but not including MSR or SOFTE. Also
 583	 * take care of keeping r2 (TLS) intact if not a signal.
 584	 * See comment in signal_64.c:restore_tm_sigcontexts();
 585	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
 586	 * were set by the signal delivery.
 587	 */
 588	if (!user_read_access_begin(sr, sizeof(*sr)))
 589		return 1;
 590
 591	unsafe_restore_general_regs(&current->thread.ckpt_regs, sr, failed);
 592	unsafe_get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP], failed);
 593	unsafe_get_user(msr, &sr->mc_gregs[PT_MSR], failed);
 
 
 594
 595	/* Restore the previous little-endian mode */
 596	regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (msr & MSR_LE));
 597
 598	regs_set_return_msr(regs, regs->msr & ~MSR_VEC);
 
 599	if (msr & MSR_VEC) {
 600		/* restore altivec registers from the stack */
 601		unsafe_copy_from_user(&current->thread.ckvr_state, &sr->mc_vregs,
 602				      sizeof(sr->mc_vregs), failed);
 
 
 
 
 603		current->thread.used_vr = true;
 604	} else if (current->thread.used_vr) {
 605		memset(&current->thread.vr_state, 0,
 606		       ELF_NVRREG * sizeof(vector128));
 607		memset(&current->thread.ckvr_state, 0,
 608		       ELF_NVRREG * sizeof(vector128));
 609	}
 610
 611	/* Always get VRSAVE back */
 612	unsafe_get_user(current->thread.ckvrsave,
 613			(u32 __user *)&sr->mc_vregs[32], failed);
 
 
 
 614	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 615		mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
 
 616
 617	regs_set_return_msr(regs, regs->msr & ~(MSR_FP | MSR_FE0 | MSR_FE1));
 618
 619	unsafe_copy_fpr_from_user(current, &sr->mc_fregs, failed);
 
 
 620
 621	regs_set_return_msr(regs, regs->msr & ~MSR_VSX);
 
 622	if (msr & MSR_VSX) {
 623		/*
 624		 * Restore altivec registers from the stack to a local
 625		 * buffer, then write this out to the thread_struct
 626		 */
 627		unsafe_copy_ckvsx_from_user(current, &sr->mc_vsregs, failed);
 
 
 628		current->thread.used_vsr = true;
 629	} else if (current->thread.used_vsr)
 630		for (i = 0; i < 32 ; i++) {
 631			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 632			current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 633		}
 
 634
 635	user_read_access_end();
 
 
 
 
 
 
 
 
 
 
 
 636
 637	if (!user_read_access_begin(tm_sr, sizeof(*tm_sr)))
 
 
 638		return 1;
 639
 640	unsafe_restore_general_regs(regs, tm_sr, failed);
 641
 642	/* restore altivec registers from the stack */
 643	if (msr & MSR_VEC)
 644		unsafe_copy_from_user(&current->thread.vr_state, &tm_sr->mc_vregs,
 645				      sizeof(sr->mc_vregs), failed);
 646
 647	/* Always get VRSAVE back */
 648	unsafe_get_user(current->thread.vrsave,
 649			(u32 __user *)&tm_sr->mc_vregs[32], failed);
 650
 651	unsafe_copy_ckfpr_from_user(current, &tm_sr->mc_fregs, failed);
 652
 653	if (msr & MSR_VSX) {
 654		/*
 655		 * Restore altivec registers from the stack to a local
 656		 * buffer, then write this out to the thread_struct
 657		 */
 658		unsafe_copy_vsx_from_user(current, &tm_sr->mc_vsregs, failed);
 659		current->thread.used_vsr = true;
 660	}
 661
 662	/* Get the top half of the MSR from the user context */
 663	unsafe_get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR], failed);
 
 664	msr_hi <<= 32;
 665
 666	user_read_access_end();
 667
 668	/* If TM bits are set to the reserved value, it's an invalid context */
 669	if (MSR_TM_RESV(msr_hi))
 670		return 1;
 671
 672	/*
 673	 * Disabling preemption, since it is unsafe to be preempted
 674	 * with MSR[TS] set without recheckpointing.
 675	 */
 676	preempt_disable();
 677
 678	/*
 679	 * CAUTION:
 680	 * After regs->MSR[TS] being updated, make sure that get_user(),
 681	 * put_user() or similar functions are *not* called. These
 682	 * functions can generate page faults which will cause the process
 683	 * to be de-scheduled with MSR[TS] set but without calling
 684	 * tm_recheckpoint(). This can cause a bug.
 685	 *
 686	 * Pull in the MSR TM bits from the user context
 687	 */
 688	regs_set_return_msr(regs, (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK));
 689	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
 690	 * registers, including FP and V[S]Rs.  After recheckpointing, the
 691	 * transactional versions should be loaded.
 692	 */
 693	tm_enable();
 694	/* Make sure the transaction is marked as failed */
 695	current->thread.tm_texasr |= TEXASR_FS;
 696	/* This loads the checkpointed FP/VEC state, if used */
 697	tm_recheckpoint(&current->thread);
 698
 699	/* This loads the speculative FP/VEC state, if used */
 700	msr_check_and_set(msr & (MSR_FP | MSR_VEC));
 701	if (msr & MSR_FP) {
 702		load_fp_state(&current->thread.fp_state);
 703		regs_set_return_msr(regs, regs->msr | (MSR_FP | current->thread.fpexc_mode));
 704	}
 
 705	if (msr & MSR_VEC) {
 706		load_vr_state(&current->thread.vr_state);
 707		regs_set_return_msr(regs, regs->msr | MSR_VEC);
 708	}
 
 709
 710	preempt_enable();
 711
 712	return 0;
 713
 714failed:
 715	user_read_access_end();
 716	return 1;
 717}
 718#else
 719static long restore_tm_user_regs(struct pt_regs *regs, struct mcontext __user *sr,
 720				 struct mcontext __user *tm_sr)
 721{
 722	return 0;
 723}
 724#endif
 725
 726#ifdef CONFIG_PPC64
 727
 728#define copy_siginfo_to_user	copy_siginfo_to_user32
 729
 730#endif /* CONFIG_PPC64 */
 731
 732/*
 733 * Set up a signal frame for a "real-time" signal handler
 734 * (one which gets siginfo).
 735 */
 736int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
 737		       struct task_struct *tsk)
 738{
 739	struct rt_sigframe __user *frame;
 740	struct mcontext __user *mctx;
 741	struct mcontext __user *tm_mctx = NULL;
 
 742	unsigned long newsp = 0;
 
 743	unsigned long tramp;
 744	struct pt_regs *regs = tsk->thread.regs;
 
 745	/* Save the thread's msr before get_tm_stackpointer() changes it */
 746	unsigned long msr = regs->msr;
 747
 748	/* Set up Signal Frame */
 749	frame = get_sigframe(ksig, tsk, sizeof(*frame), 1);
 750	mctx = &frame->uc.uc_mcontext;
 751#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 752	tm_mctx = &frame->uc_transact.uc_mcontext;
 753#endif
 754	if (MSR_TM_ACTIVE(msr))
 755		prepare_save_tm_user_regs();
 756	else
 757		prepare_save_user_regs(1);
 758
 759	if (!user_access_begin(frame, sizeof(*frame)))
 
 
 
 
 
 
 760		goto badframe;
 761
 762	/* Put the siginfo & fill in most of the ucontext */
 763	unsafe_put_user(0, &frame->uc.uc_flags, failed);
 764#ifdef CONFIG_PPC64
 765	unsafe_compat_save_altstack(&frame->uc.uc_stack, regs->gpr[1], failed);
 766#else
 767	unsafe_save_altstack(&frame->uc.uc_stack, regs->gpr[1], failed);
 768#endif
 769	unsafe_put_user(to_user_ptr(&frame->uc.uc_mcontext), &frame->uc.uc_regs, failed);
 770
 771	if (MSR_TM_ACTIVE(msr)) {
 772#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 773		unsafe_put_user((unsigned long)&frame->uc_transact,
 774				&frame->uc.uc_link, failed);
 775		unsafe_put_user((unsigned long)tm_mctx,
 776				&frame->uc_transact.uc_regs, failed);
 777#endif
 778		unsafe_save_tm_user_regs(regs, mctx, tm_mctx, msr, failed);
 779	} else {
 780		unsafe_put_user(0, &frame->uc.uc_link, failed);
 781		unsafe_save_user_regs(regs, mctx, tm_mctx, 1, failed);
 782	}
 783
 784	/* Save user registers on the stack */
 785	if (tsk->mm->context.vdso) {
 786		tramp = VDSO32_SYMBOL(tsk->mm->context.vdso, sigtramp_rt32);
 
 
 
 787	} else {
 788		tramp = (unsigned long)mctx->mc_pad;
 789		unsafe_put_user(PPC_RAW_LI(_R0, __NR_rt_sigreturn), &mctx->mc_pad[0], failed);
 790		unsafe_put_user(PPC_RAW_SC(), &mctx->mc_pad[1], failed);
 791		asm("dcbst %y0; sync; icbi %y0; sync" :: "Z" (mctx->mc_pad[0]));
 792	}
 793	unsafe_put_sigset_t(&frame->uc.uc_sigmask, oldset, failed);
 794
 795	user_access_end();
 796
 797	if (copy_siginfo_to_user(&frame->info, &ksig->info))
 798		goto badframe;
 799
 800	regs->link = tramp;
 801
 802#ifdef CONFIG_PPC_FPU_REGS
 803	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
 804#endif
 805
 806	/* create a stack frame for the caller of the handler */
 807	newsp = ((unsigned long)frame) - (__SIGNAL_FRAMESIZE + 16);
 808	if (put_user(regs->gpr[1], (u32 __user *)newsp))
 809		goto badframe;
 810
 811	/* Fill registers for signal handler */
 812	regs->gpr[1] = newsp;
 813	regs->gpr[3] = ksig->sig;
 814	regs->gpr[4] = (unsigned long)&frame->info;
 815	regs->gpr[5] = (unsigned long)&frame->uc;
 816	regs->gpr[6] = (unsigned long)frame;
 817	regs_set_return_ip(regs, (unsigned long) ksig->ka.sa.sa_handler);
 818	/* enter the signal handler in native-endian mode */
 819	regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (MSR_KERNEL & MSR_LE));
 820
 821	return 0;
 822
 823failed:
 824	user_access_end();
 825
 826badframe:
 827	signal_fault(tsk, regs, "handle_rt_signal32", frame);
 828
 829	return 1;
 830}
 831
 832/*
 833 * OK, we're invoking a handler
 834 */
 835int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
 836		struct task_struct *tsk)
 837{
 838	struct sigcontext __user *sc;
 839	struct sigframe __user *frame;
 840	struct mcontext __user *mctx;
 841	struct mcontext __user *tm_mctx = NULL;
 842	unsigned long newsp = 0;
 843	unsigned long tramp;
 844	struct pt_regs *regs = tsk->thread.regs;
 845	/* Save the thread's msr before get_tm_stackpointer() changes it */
 846	unsigned long msr = regs->msr;
 847
 848	/* Set up Signal Frame */
 849	frame = get_sigframe(ksig, tsk, sizeof(*frame), 1);
 850	mctx = &frame->mctx;
 851#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 852	tm_mctx = &frame->mctx_transact;
 853#endif
 854	if (MSR_TM_ACTIVE(msr))
 855		prepare_save_tm_user_regs();
 
 
 
 
 
 
 856	else
 857		prepare_save_user_regs(1);
 858
 859	if (!user_access_begin(frame, sizeof(*frame)))
 860		goto badframe;
 861	sc = (struct sigcontext __user *) &frame->sctx;
 862
 863#if _NSIG != 64
 864#error "Please adjust handle_signal()"
 865#endif
 866	unsafe_put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler, failed);
 867	unsafe_put_user(oldset->sig[0], &sc->oldmask, failed);
 868#ifdef CONFIG_PPC64
 869	unsafe_put_user((oldset->sig[0] >> 32), &sc->_unused[3], failed);
 870#else
 871	unsafe_put_user(oldset->sig[1], &sc->_unused[3], failed);
 872#endif
 873	unsafe_put_user(to_user_ptr(mctx), &sc->regs, failed);
 874	unsafe_put_user(ksig->sig, &sc->signal, failed);
 875
 876	if (MSR_TM_ACTIVE(msr))
 877		unsafe_save_tm_user_regs(regs, mctx, tm_mctx, msr, failed);
 878	else
 879		unsafe_save_user_regs(regs, mctx, tm_mctx, 1, failed);
 880
 881	if (tsk->mm->context.vdso) {
 882		tramp = VDSO32_SYMBOL(tsk->mm->context.vdso, sigtramp32);
 883	} else {
 884		tramp = (unsigned long)mctx->mc_pad;
 885		unsafe_put_user(PPC_RAW_LI(_R0, __NR_sigreturn), &mctx->mc_pad[0], failed);
 886		unsafe_put_user(PPC_RAW_SC(), &mctx->mc_pad[1], failed);
 887		asm("dcbst %y0; sync; icbi %y0; sync" :: "Z" (mctx->mc_pad[0]));
 888	}
 889	user_access_end();
 890
 891	regs->link = tramp;
 892
 893#ifdef CONFIG_PPC_FPU_REGS
 894	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
 895#endif
 896
 897	/* create a stack frame for the caller of the handler */
 898	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
 
 899	if (put_user(regs->gpr[1], (u32 __user *)newsp))
 900		goto badframe;
 901
 
 902	regs->gpr[1] = newsp;
 903	regs->gpr[3] = ksig->sig;
 904	regs->gpr[4] = (unsigned long) sc;
 905	regs_set_return_ip(regs, (unsigned long) ksig->ka.sa.sa_handler);
 
 
 906	/* enter the signal handler in native-endian mode */
 907	regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (MSR_KERNEL & MSR_LE));
 908
 909	return 0;
 910
 911failed:
 912	user_access_end();
 913
 914badframe:
 915	signal_fault(tsk, regs, "handle_signal32", frame);
 
 
 
 
 
 916
 917	return 1;
 918}
 919
 920static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
 921{
 922	sigset_t set;
 923	struct mcontext __user *mcp;
 924
 925	if (!user_read_access_begin(ucp, sizeof(*ucp)))
 926		return -EFAULT;
 927
 928	unsafe_get_sigset_t(&set, &ucp->uc_sigmask, failed);
 929#ifdef CONFIG_PPC64
 930	{
 931		u32 cmcp;
 932
 933		unsafe_get_user(cmcp, &ucp->uc_regs, failed);
 
 934		mcp = (struct mcontext __user *)(u64)cmcp;
 
 935	}
 936#else
 937	unsafe_get_user(mcp, &ucp->uc_regs, failed);
 
 
 
 938#endif
 939	user_read_access_end();
 940
 941	set_current_blocked(&set);
 942	if (restore_user_regs(regs, mcp, sig))
 943		return -EFAULT;
 944
 945	return 0;
 946
 947failed:
 948	user_read_access_end();
 949	return -EFAULT;
 950}
 951
 952#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 953static int do_setcontext_tm(struct ucontext __user *ucp,
 954			    struct ucontext __user *tm_ucp,
 955			    struct pt_regs *regs)
 956{
 957	sigset_t set;
 958	struct mcontext __user *mcp;
 959	struct mcontext __user *tm_mcp;
 960	u32 cmcp;
 961	u32 tm_cmcp;
 962
 963	if (!user_read_access_begin(ucp, sizeof(*ucp)))
 964		return -EFAULT;
 965
 966	unsafe_get_sigset_t(&set, &ucp->uc_sigmask, failed);
 967	unsafe_get_user(cmcp, &ucp->uc_regs, failed);
 968
 969	user_read_access_end();
 970
 971	if (__get_user(tm_cmcp, &tm_ucp->uc_regs))
 972		return -EFAULT;
 973	mcp = (struct mcontext __user *)(u64)cmcp;
 974	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
 975	/* no need to check access_ok(mcp), since mcp < 4GB */
 976
 977	set_current_blocked(&set);
 978	if (restore_tm_user_regs(regs, mcp, tm_mcp))
 979		return -EFAULT;
 980
 981	return 0;
 982
 983failed:
 984	user_read_access_end();
 985	return -EFAULT;
 986}
 987#endif
 988
 989#ifdef CONFIG_PPC64
 990COMPAT_SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
 991		       struct ucontext __user *, new_ctx, int, ctx_size)
 992#else
 993SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
 994		       struct ucontext __user *, new_ctx, long, ctx_size)
 995#endif
 996{
 997	struct pt_regs *regs = current_pt_regs();
 998	int ctx_has_vsx_region = 0;
 999
1000#ifdef CONFIG_PPC64
1001	unsigned long new_msr = 0;
1002
1003	if (new_ctx) {
1004		struct mcontext __user *mcp;
1005		u32 cmcp;
1006
1007		/*
1008		 * Get pointer to the real mcontext.  No need for
1009		 * access_ok since we are dealing with compat
1010		 * pointers.
1011		 */
1012		if (__get_user(cmcp, &new_ctx->uc_regs))
1013			return -EFAULT;
1014		mcp = (struct mcontext __user *)(u64)cmcp;
1015		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1016			return -EFAULT;
1017	}
1018	/*
1019	 * Check that the context is not smaller than the original
1020	 * size (with VMX but without VSX)
1021	 */
1022	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1023		return -EINVAL;
1024	/*
1025	 * If the new context state sets the MSR VSX bits but
1026	 * it doesn't provide VSX state.
1027	 */
1028	if ((ctx_size < sizeof(struct ucontext)) &&
1029	    (new_msr & MSR_VSX))
1030		return -EINVAL;
1031	/* Does the context have enough room to store VSX data? */
1032	if (ctx_size >= sizeof(struct ucontext))
1033		ctx_has_vsx_region = 1;
1034#else
1035	/* Context size is for future use. Right now, we only make sure
1036	 * we are passed something we understand
1037	 */
1038	if (ctx_size < sizeof(struct ucontext))
1039		return -EINVAL;
1040#endif
1041	if (old_ctx != NULL) {
1042		struct mcontext __user *mctx;
1043
1044		/*
1045		 * old_ctx might not be 16-byte aligned, in which
1046		 * case old_ctx->uc_mcontext won't be either.
1047		 * Because we have the old_ctx->uc_pad2 field
1048		 * before old_ctx->uc_mcontext, we need to round down
1049		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1050		 */
1051		mctx = (struct mcontext __user *)
1052			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1053		prepare_save_user_regs(ctx_has_vsx_region);
1054		if (!user_write_access_begin(old_ctx, ctx_size))
 
 
1055			return -EFAULT;
1056		unsafe_save_user_regs(regs, mctx, NULL, ctx_has_vsx_region, failed);
1057		unsafe_put_sigset_t(&old_ctx->uc_sigmask, &current->blocked, failed);
1058		unsafe_put_user(to_user_ptr(mctx), &old_ctx->uc_regs, failed);
1059		user_write_access_end();
1060	}
1061	if (new_ctx == NULL)
1062		return 0;
1063	if (!access_ok(new_ctx, ctx_size) ||
1064	    fault_in_readable((char __user *)new_ctx, ctx_size))
1065		return -EFAULT;
1066
1067	/*
1068	 * If we get a fault copying the context into the kernel's
1069	 * image of the user's registers, we can't just return -EFAULT
1070	 * because the user's registers will be corrupted.  For instance
1071	 * the NIP value may have been updated but not some of the
1072	 * other registers.  Given that we have done the access_ok
1073	 * and successfully read the first and last bytes of the region
1074	 * above, this should only happen in an out-of-memory situation
1075	 * or if another thread unmaps the region containing the context.
1076	 * We kill the task with a SIGSEGV in this situation.
1077	 */
1078	if (do_setcontext(new_ctx, regs, 0)) {
1079		force_exit_sig(SIGSEGV);
1080		return -EFAULT;
1081	}
1082
1083	set_thread_flag(TIF_RESTOREALL);
1084	return 0;
1085
1086failed:
1087	user_write_access_end();
1088	return -EFAULT;
1089}
1090
1091#ifdef CONFIG_PPC64
1092COMPAT_SYSCALL_DEFINE0(rt_sigreturn)
1093#else
1094SYSCALL_DEFINE0(rt_sigreturn)
1095#endif
1096{
1097	struct rt_sigframe __user *rt_sf;
1098	struct pt_regs *regs = current_pt_regs();
1099	int tm_restore = 0;
1100#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1101	struct ucontext __user *uc_transact;
1102	unsigned long msr_hi;
1103	unsigned long tmp;
1104#endif
1105	/* Always make any pending restarted system calls return -EINTR */
1106	current->restart_block.fn = do_no_restart_syscall;
1107
1108	rt_sf = (struct rt_sigframe __user *)
1109		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1110	if (!access_ok(rt_sf, sizeof(*rt_sf)))
1111		goto bad;
1112
1113#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1114	/*
1115	 * If there is a transactional state then throw it away.
1116	 * The purpose of a sigreturn is to destroy all traces of the
1117	 * signal frame, this includes any transactional state created
1118	 * within in. We only check for suspended as we can never be
1119	 * active in the kernel, we are active, there is nothing better to
1120	 * do than go ahead and Bad Thing later.
1121	 * The cause is not important as there will never be a
1122	 * recheckpoint so it's not user visible.
1123	 */
1124	if (MSR_TM_SUSPENDED(mfmsr()))
1125		tm_reclaim_current(0);
1126
1127	if (__get_user(tmp, &rt_sf->uc.uc_link))
1128		goto bad;
1129	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1130	if (uc_transact) {
1131		u32 cmcp;
1132		struct mcontext __user *mcp;
1133
1134		if (__get_user(cmcp, &uc_transact->uc_regs))
1135			return -EFAULT;
1136		mcp = (struct mcontext __user *)(u64)cmcp;
1137		/* The top 32 bits of the MSR are stashed in the transactional
1138		 * ucontext. */
1139		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1140			goto bad;
1141
1142		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1143			/* Trying to start TM on non TM system */
1144			if (!cpu_has_feature(CPU_FTR_TM))
1145				goto bad;
1146			/* We only recheckpoint on return if we're
1147			 * transaction.
1148			 */
1149			tm_restore = 1;
1150			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1151				goto bad;
1152		}
1153	}
1154	if (!tm_restore) {
1155		/*
1156		 * Unset regs->msr because ucontext MSR TS is not
1157		 * set, and recheckpoint was not called. This avoid
1158		 * hitting a TM Bad thing at RFID
1159		 */
1160		regs_set_return_msr(regs, regs->msr & ~MSR_TS_MASK);
1161	}
1162	/* Fall through, for non-TM restore */
1163#endif
1164	if (!tm_restore)
1165		if (do_setcontext(&rt_sf->uc, regs, 1))
1166			goto bad;
1167
1168	/*
1169	 * It's not clear whether or why it is desirable to save the
1170	 * sigaltstack setting on signal delivery and restore it on
1171	 * signal return.  But other architectures do this and we have
1172	 * always done it up until now so it is probably better not to
1173	 * change it.  -- paulus
1174	 */
1175#ifdef CONFIG_PPC64
1176	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1177		goto bad;
1178#else
1179	if (restore_altstack(&rt_sf->uc.uc_stack))
1180		goto bad;
1181#endif
1182	set_thread_flag(TIF_RESTOREALL);
1183	return 0;
1184
1185 bad:
1186	signal_fault(current, regs, "sys_rt_sigreturn", rt_sf);
 
 
 
 
 
1187
1188	force_sig(SIGSEGV);
1189	return 0;
1190}
1191
1192#ifdef CONFIG_PPC32
1193SYSCALL_DEFINE3(debug_setcontext, struct ucontext __user *, ctx,
1194			 int, ndbg, struct sig_dbg_op __user *, dbg)
1195{
1196	struct pt_regs *regs = current_pt_regs();
1197	struct sig_dbg_op op;
1198	int i;
1199	unsigned long new_msr = regs->msr;
1200#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1201	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1202#endif
1203
1204	for (i=0; i<ndbg; i++) {
1205		if (copy_from_user(&op, dbg + i, sizeof(op)))
1206			return -EFAULT;
1207		switch (op.dbg_type) {
1208		case SIG_DBG_SINGLE_STEPPING:
1209#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1210			if (op.dbg_value) {
1211				new_msr |= MSR_DE;
1212				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1213			} else {
1214				new_dbcr0 &= ~DBCR0_IC;
1215				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1216						current->thread.debug.dbcr1)) {
1217					new_msr &= ~MSR_DE;
1218					new_dbcr0 &= ~DBCR0_IDM;
1219				}
1220			}
1221#else
1222			if (op.dbg_value)
1223				new_msr |= MSR_SE;
1224			else
1225				new_msr &= ~MSR_SE;
1226#endif
1227			break;
1228		case SIG_DBG_BRANCH_TRACING:
1229#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1230			return -EINVAL;
1231#else
1232			if (op.dbg_value)
1233				new_msr |= MSR_BE;
1234			else
1235				new_msr &= ~MSR_BE;
1236#endif
1237			break;
1238
1239		default:
1240			return -EINVAL;
1241		}
1242	}
1243
1244	/* We wait until here to actually install the values in the
1245	   registers so if we fail in the above loop, it will not
1246	   affect the contents of these registers.  After this point,
1247	   failure is a problem, anyway, and it's very unlikely unless
1248	   the user is really doing something wrong. */
1249	regs_set_return_msr(regs, new_msr);
1250#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1251	current->thread.debug.dbcr0 = new_dbcr0;
1252#endif
1253
1254	if (!access_ok(ctx, sizeof(*ctx)) ||
1255	    fault_in_readable((char __user *)ctx, sizeof(*ctx)))
1256		return -EFAULT;
1257
1258	/*
1259	 * If we get a fault copying the context into the kernel's
1260	 * image of the user's registers, we can't just return -EFAULT
1261	 * because the user's registers will be corrupted.  For instance
1262	 * the NIP value may have been updated but not some of the
1263	 * other registers.  Given that we have done the access_ok
1264	 * and successfully read the first and last bytes of the region
1265	 * above, this should only happen in an out-of-memory situation
1266	 * or if another thread unmaps the region containing the context.
1267	 * We kill the task with a SIGSEGV in this situation.
1268	 */
1269	if (do_setcontext(ctx, regs, 1)) {
1270		signal_fault(current, regs, "sys_debug_setcontext", ctx);
 
 
 
 
 
1271
1272		force_sig(SIGSEGV);
1273		goto out;
1274	}
1275
1276	/*
1277	 * It's not clear whether or why it is desirable to save the
1278	 * sigaltstack setting on signal delivery and restore it on
1279	 * signal return.  But other architectures do this and we have
1280	 * always done it up until now so it is probably better not to
1281	 * change it.  -- paulus
1282	 */
1283	restore_altstack(&ctx->uc_stack);
1284
1285	set_thread_flag(TIF_RESTOREALL);
1286 out:
1287	return 0;
1288}
1289#endif
1290
1291/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1292 * Do a signal return; undo the signal stack.
1293 */
1294#ifdef CONFIG_PPC64
1295COMPAT_SYSCALL_DEFINE0(sigreturn)
1296#else
1297SYSCALL_DEFINE0(sigreturn)
1298#endif
1299{
1300	struct pt_regs *regs = current_pt_regs();
1301	struct sigframe __user *sf;
1302	struct sigcontext __user *sc;
1303	struct sigcontext sigctx;
1304	struct mcontext __user *sr;
 
1305	sigset_t set;
1306	struct mcontext __user *mcp;
1307	struct mcontext __user *tm_mcp = NULL;
1308	unsigned long long msr_hi = 0;
 
1309
1310	/* Always make any pending restarted system calls return -EINTR */
1311	current->restart_block.fn = do_no_restart_syscall;
1312
1313	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1314	sc = &sf->sctx;
 
1315	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1316		goto badframe;
1317
1318#ifdef CONFIG_PPC64
1319	/*
1320	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1321	 * unused part of the signal stackframe
1322	 */
1323	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1324#else
1325	set.sig[0] = sigctx.oldmask;
1326	set.sig[1] = sigctx._unused[3];
1327#endif
1328	set_current_blocked(&set);
1329
1330	mcp = (struct mcontext __user *)&sf->mctx;
1331#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 
1332	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1333	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1334		goto badframe;
1335#endif
1336	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1337		if (!cpu_has_feature(CPU_FTR_TM))
1338			goto badframe;
1339		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1340			goto badframe;
1341	} else {
 
 
1342		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1343		if (restore_user_regs(regs, sr, 1)) {
1344			signal_fault(current, regs, "sys_sigreturn", sr);
1345
1346			force_sig(SIGSEGV);
1347			return 0;
1348		}
1349	}
1350
1351	set_thread_flag(TIF_RESTOREALL);
1352	return 0;
1353
1354badframe:
1355	signal_fault(current, regs, "sys_sigreturn", sc);
 
 
 
 
 
1356
1357	force_sig(SIGSEGV);
1358	return 0;
1359}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
   4 *
   5 *  PowerPC version
   6 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   7 * Copyright (C) 2001 IBM
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
  10 *
  11 *  Derived from "arch/i386/kernel/signal.c"
  12 *    Copyright (C) 1991, 1992 Linus Torvalds
  13 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
  14 */
  15
  16#include <linux/sched.h>
  17#include <linux/mm.h>
  18#include <linux/smp.h>
  19#include <linux/kernel.h>
  20#include <linux/signal.h>
  21#include <linux/errno.h>
  22#include <linux/elf.h>
  23#include <linux/ptrace.h>
  24#include <linux/pagemap.h>
  25#include <linux/ratelimit.h>
  26#include <linux/syscalls.h>
  27#ifdef CONFIG_PPC64
  28#include <linux/compat.h>
  29#else
  30#include <linux/wait.h>
  31#include <linux/unistd.h>
  32#include <linux/stddef.h>
  33#include <linux/tty.h>
  34#include <linux/binfmts.h>
  35#endif
  36
  37#include <linux/uaccess.h>
  38#include <asm/cacheflush.h>
  39#include <asm/syscalls.h>
  40#include <asm/sigcontext.h>
  41#include <asm/vdso.h>
  42#include <asm/switch_to.h>
  43#include <asm/tm.h>
  44#include <asm/asm-prototypes.h>
  45#ifdef CONFIG_PPC64
  46#include "ppc32.h"
  47#include <asm/unistd.h>
  48#else
  49#include <asm/ucontext.h>
  50#endif
  51
  52#include "signal.h"
  53
  54
  55#ifdef CONFIG_PPC64
  56#define old_sigaction	old_sigaction32
  57#define sigcontext	sigcontext32
  58#define mcontext	mcontext32
  59#define ucontext	ucontext32
  60
  61#define __save_altstack __compat_save_altstack
  62
  63/*
  64 * Userspace code may pass a ucontext which doesn't include VSX added
  65 * at the end.  We need to check for this case.
  66 */
  67#define UCONTEXTSIZEWITHOUTVSX \
  68		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
  69
  70/*
  71 * Returning 0 means we return to userspace via
  72 * ret_from_except and thus restore all user
  73 * registers from *regs.  This is what we need
  74 * to do when a signal has been delivered.
  75 */
  76
  77#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
  78#undef __SIGNAL_FRAMESIZE
  79#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
  80#undef ELF_NVRREG
  81#define ELF_NVRREG	ELF_NVRREG32
  82
  83/*
  84 * Functions for flipping sigsets (thanks to brain dead generic
  85 * implementation that makes things simple for little endian only)
  86 */
  87static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
  88{
  89	return put_compat_sigset(uset, set, sizeof(*uset));
  90}
  91
  92static inline int get_sigset_t(sigset_t *set,
  93			       const compat_sigset_t __user *uset)
  94{
  95	return get_compat_sigset(set, uset);
  96}
  97
  98#define to_user_ptr(p)		ptr_to_compat(p)
  99#define from_user_ptr(p)	compat_ptr(p)
 100
 101static inline int save_general_regs(struct pt_regs *regs,
 102		struct mcontext __user *frame)
 103{
 104	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 105	int val, i;
 106
 107	WARN_ON(!FULL_REGS(regs));
 108
 109	for (i = 0; i <= PT_RESULT; i ++) {
 110		/* Force usr to alway see softe as 1 (interrupts enabled) */
 111		if (i == PT_SOFTE)
 112			val = 1;
 113		else
 114			val = gregs[i];
 115
 116		if (__put_user(val, &frame->mc_gregs[i]))
 117			return -EFAULT;
 118	}
 119	return 0;
 
 
 
 120}
 121
 122static inline int restore_general_regs(struct pt_regs *regs,
 123		struct mcontext __user *sr)
 124{
 125	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 126	int i;
 127
 128	for (i = 0; i <= PT_RESULT; i++) {
 129		if ((i == PT_MSR) || (i == PT_SOFTE))
 130			continue;
 131		if (__get_user(gregs[i], &sr->mc_gregs[i]))
 132			return -EFAULT;
 133	}
 134	return 0;
 
 
 
 135}
 136
 137#else /* CONFIG_PPC64 */
 138
 139#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
 140
 141static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
 142{
 143	return copy_to_user(uset, set, sizeof(*uset));
 144}
 
 
 145
 146static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
 147{
 148	return copy_from_user(set, uset, sizeof(*uset));
 149}
 150
 151#define to_user_ptr(p)		((unsigned long)(p))
 152#define from_user_ptr(p)	((void __user *)(p))
 153
 154static inline int save_general_regs(struct pt_regs *regs,
 155		struct mcontext __user *frame)
 156{
 157	WARN_ON(!FULL_REGS(regs));
 158	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
 
 
 
 159}
 160
 161static inline int restore_general_regs(struct pt_regs *regs,
 162		struct mcontext __user *sr)
 163{
 164	/* copy up to but not including MSR */
 165	if (__copy_from_user(regs, &sr->mc_gregs,
 166				PT_MSR * sizeof(elf_greg_t)))
 167		return -EFAULT;
 168	/* copy from orig_r3 (the word after the MSR) up to the end */
 169	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
 170				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
 171		return -EFAULT;
 172	return 0;
 
 
 
 173}
 174#endif
 175
 
 
 
 
 
 
 
 
 
 
 176/*
 177 * When we have signals to deliver, we set up on the
 178 * user stack, going down from the original stack pointer:
 179 *	an ABI gap of 56 words
 180 *	an mcontext struct
 181 *	a sigcontext struct
 182 *	a gap of __SIGNAL_FRAMESIZE bytes
 183 *
 184 * Each of these things must be a multiple of 16 bytes in size. The following
 185 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
 186 *
 187 */
 188struct sigframe {
 189	struct sigcontext sctx;		/* the sigcontext */
 190	struct mcontext	mctx;		/* all the register values */
 191#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 192	struct sigcontext sctx_transact;
 193	struct mcontext	mctx_transact;
 194#endif
 195	/*
 196	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 197	 * regs and 18 fp regs below sp before decrementing it.
 198	 */
 199	int			abigap[56];
 200};
 201
 202/* We use the mc_pad field for the signal return trampoline. */
 203#define tramp	mc_pad
 204
 205/*
 206 *  When we have rt signals to deliver, we set up on the
 207 *  user stack, going down from the original stack pointer:
 208 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
 209 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
 210 *  (the +16 is to get the siginfo and ucontext in the same
 211 *  positions as in older kernels).
 212 *
 213 *  Each of these things must be a multiple of 16 bytes in size.
 214 *
 215 */
 216struct rt_sigframe {
 217#ifdef CONFIG_PPC64
 218	compat_siginfo_t info;
 219#else
 220	struct siginfo info;
 221#endif
 222	struct ucontext	uc;
 223#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 224	struct ucontext	uc_transact;
 225#endif
 226	/*
 227	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 228	 * regs and 18 fp regs below sp before decrementing it.
 229	 */
 230	int			abigap[56];
 231};
 232
 
 
 
 
 
 
 233/*
 234 * Save the current user registers on the user stack.
 235 * We only save the altivec/spe registers if the process has used
 236 * altivec/spe instructions at some point.
 237 */
 238static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
 239			  struct mcontext __user *tm_frame, int sigret,
 240			  int ctx_has_vsx_region)
 241{
 242	unsigned long msr = regs->msr;
 243
 244	/* Make sure floating point registers are stored in regs */
 245	flush_fp_to_thread(current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246
 247	/* save general registers */
 248	if (save_general_regs(regs, frame))
 249		return 1;
 250
 251#ifdef CONFIG_ALTIVEC
 252	/* save altivec registers */
 253	if (current->thread.used_vr) {
 254		flush_altivec_to_thread(current);
 255		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 256				   ELF_NVRREG * sizeof(vector128)))
 257			return 1;
 258		/* set MSR_VEC in the saved MSR value to indicate that
 259		   frame->mc_vregs contains valid data */
 260		msr |= MSR_VEC;
 261	}
 262	/* else assert((regs->msr & MSR_VEC) == 0) */
 263
 264	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 265	 * use altivec. Since VSCR only contains 32 bits saved in the least
 266	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 267	 * most significant bits of that same vector. --BenH
 268	 * Note that the current VRSAVE value is in the SPR at this point.
 269	 */
 270	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 271		current->thread.vrsave = mfspr(SPRN_VRSAVE);
 272	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
 273		return 1;
 274#endif /* CONFIG_ALTIVEC */
 275	if (copy_fpr_to_user(&frame->mc_fregs, current))
 276		return 1;
 277
 278	/*
 279	 * Clear the MSR VSX bit to indicate there is no valid state attached
 280	 * to this context, except in the specific case below where we set it.
 281	 */
 282	msr &= ~MSR_VSX;
 283#ifdef CONFIG_VSX
 284	/*
 285	 * Copy VSR 0-31 upper half from thread_struct to local
 286	 * buffer, then write that to userspace.  Also set MSR_VSX in
 287	 * the saved MSR value to indicate that frame->mc_vregs
 288	 * contains valid data
 289	 */
 290	if (current->thread.used_vsr && ctx_has_vsx_region) {
 291		flush_vsx_to_thread(current);
 292		if (copy_vsx_to_user(&frame->mc_vsregs, current))
 293			return 1;
 294		msr |= MSR_VSX;
 295	}
 296#endif /* CONFIG_VSX */
 297#ifdef CONFIG_SPE
 298	/* save spe registers */
 299	if (current->thread.used_spe) {
 300		flush_spe_to_thread(current);
 301		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 302				   ELF_NEVRREG * sizeof(u32)))
 303			return 1;
 304		/* set MSR_SPE in the saved MSR value to indicate that
 305		   frame->mc_vregs contains valid data */
 306		msr |= MSR_SPE;
 307	}
 308	/* else assert((regs->msr & MSR_SPE) == 0) */
 309
 310	/* We always copy to/from spefscr */
 311	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 312		return 1;
 313#endif /* CONFIG_SPE */
 314
 315	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 316		return 1;
 317	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
 318	 * can check it on the restore to see if TM is active
 319	 */
 320	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
 321		return 1;
 322
 323	if (sigret) {
 324		/* Set up the sigreturn trampoline: li 0,sigret; sc */
 325		if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0])
 326		    || __put_user(PPC_INST_SC, &frame->tramp[1]))
 327			return 1;
 328		flush_icache_range((unsigned long) &frame->tramp[0],
 329				   (unsigned long) &frame->tramp[2]);
 330	}
 331
 332	return 0;
 
 333}
 334
 
 
 
 
 
 335#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 336/*
 337 * Save the current user registers on the user stack.
 338 * We only save the altivec/spe registers if the process has used
 339 * altivec/spe instructions at some point.
 340 * We also save the transactional registers to a second ucontext in the
 341 * frame.
 342 *
 343 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
 344 */
 345static int save_tm_user_regs(struct pt_regs *regs,
 346			     struct mcontext __user *frame,
 347			     struct mcontext __user *tm_frame, int sigret,
 348			     unsigned long msr)
 349{
 350	WARN_ON(tm_suspend_disabled);
 351
 
 
 
 
 
 
 
 
 352	/* Save both sets of general registers */
 353	if (save_general_regs(&current->thread.ckpt_regs, frame)
 354	    || save_general_regs(regs, tm_frame))
 355		return 1;
 356
 357	/* Stash the top half of the 64bit MSR into the 32bit MSR word
 358	 * of the transactional mcontext.  This way we have a backward-compatible
 359	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
 360	 * also look at what type of transaction (T or S) was active at the
 361	 * time of the signal.
 362	 */
 363	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
 364		return 1;
 365
 366#ifdef CONFIG_ALTIVEC
 367	/* save altivec registers */
 368	if (current->thread.used_vr) {
 369		if (__copy_to_user(&frame->mc_vregs, &current->thread.ckvr_state,
 370				   ELF_NVRREG * sizeof(vector128)))
 371			return 1;
 372		if (msr & MSR_VEC) {
 373			if (__copy_to_user(&tm_frame->mc_vregs,
 374					   &current->thread.vr_state,
 375					   ELF_NVRREG * sizeof(vector128)))
 376				return 1;
 377		} else {
 378			if (__copy_to_user(&tm_frame->mc_vregs,
 379					   &current->thread.ckvr_state,
 380					   ELF_NVRREG * sizeof(vector128)))
 381				return 1;
 382		}
 383
 384		/* set MSR_VEC in the saved MSR value to indicate that
 385		 * frame->mc_vregs contains valid data
 386		 */
 387		msr |= MSR_VEC;
 388	}
 389
 390	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 391	 * use altivec. Since VSCR only contains 32 bits saved in the least
 392	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 393	 * most significant bits of that same vector. --BenH
 394	 */
 395	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 396		current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
 397	if (__put_user(current->thread.ckvrsave,
 398		       (u32 __user *)&frame->mc_vregs[32]))
 399		return 1;
 400	if (msr & MSR_VEC) {
 401		if (__put_user(current->thread.vrsave,
 402			       (u32 __user *)&tm_frame->mc_vregs[32]))
 403			return 1;
 404	} else {
 405		if (__put_user(current->thread.ckvrsave,
 406			       (u32 __user *)&tm_frame->mc_vregs[32]))
 407			return 1;
 408	}
 409#endif /* CONFIG_ALTIVEC */
 410
 411	if (copy_ckfpr_to_user(&frame->mc_fregs, current))
 412		return 1;
 413	if (msr & MSR_FP) {
 414		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
 415			return 1;
 416	} else {
 417		if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current))
 418			return 1;
 419	}
 420
 421#ifdef CONFIG_VSX
 422	/*
 423	 * Copy VSR 0-31 upper half from thread_struct to local
 424	 * buffer, then write that to userspace.  Also set MSR_VSX in
 425	 * the saved MSR value to indicate that frame->mc_vregs
 426	 * contains valid data
 427	 */
 428	if (current->thread.used_vsr) {
 429		if (copy_ckvsx_to_user(&frame->mc_vsregs, current))
 430			return 1;
 431		if (msr & MSR_VSX) {
 432			if (copy_vsx_to_user(&tm_frame->mc_vsregs,
 433						      current))
 434				return 1;
 435		} else {
 436			if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current))
 437				return 1;
 438		}
 439
 440		msr |= MSR_VSX;
 441	}
 442#endif /* CONFIG_VSX */
 443#ifdef CONFIG_SPE
 444	/* SPE regs are not checkpointed with TM, so this section is
 445	 * simply the same as in save_user_regs().
 446	 */
 447	if (current->thread.used_spe) {
 448		flush_spe_to_thread(current);
 449		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 450				   ELF_NEVRREG * sizeof(u32)))
 451			return 1;
 452		/* set MSR_SPE in the saved MSR value to indicate that
 453		 * frame->mc_vregs contains valid data */
 454		msr |= MSR_SPE;
 455	}
 456
 457	/* We always copy to/from spefscr */
 458	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 459		return 1;
 460#endif /* CONFIG_SPE */
 461
 462	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 463		return 1;
 464	if (sigret) {
 465		/* Set up the sigreturn trampoline: li 0,sigret; sc */
 466		if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0])
 467		    || __put_user(PPC_INST_SC, &frame->tramp[1]))
 468			return 1;
 469		flush_icache_range((unsigned long) &frame->tramp[0],
 470				   (unsigned long) &frame->tramp[2]);
 471	}
 472
 
 
 
 
 473	return 0;
 474}
 475#endif
 476
 
 
 
 
 
 477/*
 478 * Restore the current user register values from the user stack,
 479 * (except for MSR).
 480 */
 481static long restore_user_regs(struct pt_regs *regs,
 482			      struct mcontext __user *sr, int sig)
 483{
 484	long err;
 485	unsigned int save_r2 = 0;
 486	unsigned long msr;
 487#ifdef CONFIG_VSX
 488	int i;
 489#endif
 490
 
 
 491	/*
 492	 * restore general registers but not including MSR or SOFTE. Also
 493	 * take care of keeping r2 (TLS) intact if not a signal
 494	 */
 495	if (!sig)
 496		save_r2 = (unsigned int)regs->gpr[2];
 497	err = restore_general_regs(regs, sr);
 498	set_trap_norestart(regs);
 499	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 500	if (!sig)
 501		regs->gpr[2] = (unsigned long) save_r2;
 502	if (err)
 503		return 1;
 504
 505	/* if doing signal return, restore the previous little-endian mode */
 506	if (sig)
 507		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 508
 509#ifdef CONFIG_ALTIVEC
 510	/*
 511	 * Force the process to reload the altivec registers from
 512	 * current->thread when it next does altivec instructions
 513	 */
 514	regs->msr &= ~MSR_VEC;
 515	if (msr & MSR_VEC) {
 516		/* restore altivec registers from the stack */
 517		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 518				     sizeof(sr->mc_vregs)))
 519			return 1;
 520		current->thread.used_vr = true;
 521	} else if (current->thread.used_vr)
 522		memset(&current->thread.vr_state, 0,
 523		       ELF_NVRREG * sizeof(vector128));
 524
 525	/* Always get VRSAVE back */
 526	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
 527		return 1;
 528	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 529		mtspr(SPRN_VRSAVE, current->thread.vrsave);
 530#endif /* CONFIG_ALTIVEC */
 531	if (copy_fpr_from_user(current, &sr->mc_fregs))
 532		return 1;
 533
 534#ifdef CONFIG_VSX
 535	/*
 536	 * Force the process to reload the VSX registers from
 537	 * current->thread when it next does VSX instruction.
 538	 */
 539	regs->msr &= ~MSR_VSX;
 540	if (msr & MSR_VSX) {
 541		/*
 542		 * Restore altivec registers from the stack to a local
 543		 * buffer, then write this out to the thread_struct
 544		 */
 545		if (copy_vsx_from_user(current, &sr->mc_vsregs))
 546			return 1;
 547		current->thread.used_vsr = true;
 548	} else if (current->thread.used_vsr)
 549		for (i = 0; i < 32 ; i++)
 550			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 551#endif /* CONFIG_VSX */
 552	/*
 553	 * force the process to reload the FP registers from
 554	 * current->thread when it next does FP instructions
 555	 */
 556	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 557
 558#ifdef CONFIG_SPE
 559	/* force the process to reload the spe registers from
 560	   current->thread when it next does spe instructions */
 561	regs->msr &= ~MSR_SPE;
 
 
 
 
 562	if (msr & MSR_SPE) {
 563		/* restore spe registers from the stack */
 564		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 565				     ELF_NEVRREG * sizeof(u32)))
 566			return 1;
 567		current->thread.used_spe = true;
 568	} else if (current->thread.used_spe)
 569		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 570
 571	/* Always get SPEFSCR back */
 572	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
 573		return 1;
 574#endif /* CONFIG_SPE */
 575
 
 576	return 0;
 
 
 
 
 577}
 578
 579#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 580/*
 581 * Restore the current user register values from the user stack, except for
 582 * MSR, and recheckpoint the original checkpointed register state for processes
 583 * in transactions.
 584 */
 585static long restore_tm_user_regs(struct pt_regs *regs,
 586				 struct mcontext __user *sr,
 587				 struct mcontext __user *tm_sr)
 588{
 589	long err;
 590	unsigned long msr, msr_hi;
 591#ifdef CONFIG_VSX
 592	int i;
 593#endif
 594
 595	if (tm_suspend_disabled)
 596		return 1;
 597	/*
 598	 * restore general registers but not including MSR or SOFTE. Also
 599	 * take care of keeping r2 (TLS) intact if not a signal.
 600	 * See comment in signal_64.c:restore_tm_sigcontexts();
 601	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
 602	 * were set by the signal delivery.
 603	 */
 604	err = restore_general_regs(regs, tm_sr);
 605	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
 606
 607	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
 608
 609	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 610	if (err)
 611		return 1;
 612
 613	/* Restore the previous little-endian mode */
 614	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 615
 616#ifdef CONFIG_ALTIVEC
 617	regs->msr &= ~MSR_VEC;
 618	if (msr & MSR_VEC) {
 619		/* restore altivec registers from the stack */
 620		if (__copy_from_user(&current->thread.ckvr_state, &sr->mc_vregs,
 621				     sizeof(sr->mc_vregs)) ||
 622		    __copy_from_user(&current->thread.vr_state,
 623				     &tm_sr->mc_vregs,
 624				     sizeof(sr->mc_vregs)))
 625			return 1;
 626		current->thread.used_vr = true;
 627	} else if (current->thread.used_vr) {
 628		memset(&current->thread.vr_state, 0,
 629		       ELF_NVRREG * sizeof(vector128));
 630		memset(&current->thread.ckvr_state, 0,
 631		       ELF_NVRREG * sizeof(vector128));
 632	}
 633
 634	/* Always get VRSAVE back */
 635	if (__get_user(current->thread.ckvrsave,
 636		       (u32 __user *)&sr->mc_vregs[32]) ||
 637	    __get_user(current->thread.vrsave,
 638		       (u32 __user *)&tm_sr->mc_vregs[32]))
 639		return 1;
 640	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 641		mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
 642#endif /* CONFIG_ALTIVEC */
 643
 644	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 645
 646	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
 647	    copy_ckfpr_from_user(current, &tm_sr->mc_fregs))
 648		return 1;
 649
 650#ifdef CONFIG_VSX
 651	regs->msr &= ~MSR_VSX;
 652	if (msr & MSR_VSX) {
 653		/*
 654		 * Restore altivec registers from the stack to a local
 655		 * buffer, then write this out to the thread_struct
 656		 */
 657		if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) ||
 658		    copy_ckvsx_from_user(current, &sr->mc_vsregs))
 659			return 1;
 660		current->thread.used_vsr = true;
 661	} else if (current->thread.used_vsr)
 662		for (i = 0; i < 32 ; i++) {
 663			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 664			current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 665		}
 666#endif /* CONFIG_VSX */
 667
 668#ifdef CONFIG_SPE
 669	/* SPE regs are not checkpointed with TM, so this section is
 670	 * simply the same as in restore_user_regs().
 671	 */
 672	regs->msr &= ~MSR_SPE;
 673	if (msr & MSR_SPE) {
 674		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 675				     ELF_NEVRREG * sizeof(u32)))
 676			return 1;
 677		current->thread.used_spe = true;
 678	} else if (current->thread.used_spe)
 679		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 680
 681	/* Always get SPEFSCR back */
 682	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
 683		       + ELF_NEVRREG))
 684		return 1;
 685#endif /* CONFIG_SPE */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686
 687	/* Get the top half of the MSR from the user context */
 688	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
 689		return 1;
 690	msr_hi <<= 32;
 
 
 
 691	/* If TM bits are set to the reserved value, it's an invalid context */
 692	if (MSR_TM_RESV(msr_hi))
 693		return 1;
 694
 695	/*
 696	 * Disabling preemption, since it is unsafe to be preempted
 697	 * with MSR[TS] set without recheckpointing.
 698	 */
 699	preempt_disable();
 700
 701	/*
 702	 * CAUTION:
 703	 * After regs->MSR[TS] being updated, make sure that get_user(),
 704	 * put_user() or similar functions are *not* called. These
 705	 * functions can generate page faults which will cause the process
 706	 * to be de-scheduled with MSR[TS] set but without calling
 707	 * tm_recheckpoint(). This can cause a bug.
 708	 *
 709	 * Pull in the MSR TM bits from the user context
 710	 */
 711	regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
 712	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
 713	 * registers, including FP and V[S]Rs.  After recheckpointing, the
 714	 * transactional versions should be loaded.
 715	 */
 716	tm_enable();
 717	/* Make sure the transaction is marked as failed */
 718	current->thread.tm_texasr |= TEXASR_FS;
 719	/* This loads the checkpointed FP/VEC state, if used */
 720	tm_recheckpoint(&current->thread);
 721
 722	/* This loads the speculative FP/VEC state, if used */
 723	msr_check_and_set(msr & (MSR_FP | MSR_VEC));
 724	if (msr & MSR_FP) {
 725		load_fp_state(&current->thread.fp_state);
 726		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
 727	}
 728#ifdef CONFIG_ALTIVEC
 729	if (msr & MSR_VEC) {
 730		load_vr_state(&current->thread.vr_state);
 731		regs->msr |= MSR_VEC;
 732	}
 733#endif
 734
 735	preempt_enable();
 736
 737	return 0;
 
 
 
 
 
 
 
 
 
 
 738}
 739#endif
 740
 741#ifdef CONFIG_PPC64
 742
 743#define copy_siginfo_to_user	copy_siginfo_to_user32
 744
 745#endif /* CONFIG_PPC64 */
 746
 747/*
 748 * Set up a signal frame for a "real-time" signal handler
 749 * (one which gets siginfo).
 750 */
 751int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
 752		       struct task_struct *tsk)
 753{
 754	struct rt_sigframe __user *rt_sf;
 755	struct mcontext __user *frame;
 756	struct mcontext __user *tm_frame = NULL;
 757	void __user *addr;
 758	unsigned long newsp = 0;
 759	int sigret;
 760	unsigned long tramp;
 761	struct pt_regs *regs = tsk->thread.regs;
 762#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 763	/* Save the thread's msr before get_tm_stackpointer() changes it */
 764	unsigned long msr = regs->msr;
 
 
 
 
 
 
 765#endif
 
 
 
 
 766
 767	BUG_ON(tsk != current);
 768
 769	/* Set up Signal Frame */
 770	/* Put a Real Time Context onto stack */
 771	rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1);
 772	addr = rt_sf;
 773	if (unlikely(rt_sf == NULL))
 774		goto badframe;
 775
 776	/* Put the siginfo & fill in most of the ucontext */
 777	if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
 778	    || __put_user(0, &rt_sf->uc.uc_flags)
 779	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
 780	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
 781		    &rt_sf->uc.uc_regs)
 782	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
 783		goto badframe;
 
 
 
 
 
 
 
 
 
 
 
 
 
 784
 785	/* Save user registers on the stack */
 786	frame = &rt_sf->uc.uc_mcontext;
 787	addr = frame;
 788	if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) {
 789		sigret = 0;
 790		tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp;
 791	} else {
 792		sigret = __NR_rt_sigreturn;
 793		tramp = (unsigned long) frame->tramp;
 
 
 794	}
 
 
 
 
 
 
 
 
 795
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 797	tm_frame = &rt_sf->uc_transact.uc_mcontext;
 798	if (MSR_TM_ACTIVE(msr)) {
 799		if (__put_user((unsigned long)&rt_sf->uc_transact,
 800			       &rt_sf->uc.uc_link) ||
 801		    __put_user((unsigned long)tm_frame,
 802			       &rt_sf->uc_transact.uc_regs))
 803			goto badframe;
 804		if (save_tm_user_regs(regs, frame, tm_frame, sigret, msr))
 805			goto badframe;
 806	}
 807	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808#endif
 809	{
 810		if (__put_user(0, &rt_sf->uc.uc_link))
 811			goto badframe;
 812		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
 813			goto badframe;
 
 
 
 
 
 
 
 
 
 
 814	}
 
 
 815	regs->link = tramp;
 816
 
 817	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
 
 818
 819	/* create a stack frame for the caller of the handler */
 820	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
 821	addr = (void __user *)regs->gpr[1];
 822	if (put_user(regs->gpr[1], (u32 __user *)newsp))
 823		goto badframe;
 824
 825	/* Fill registers for signal handler */
 826	regs->gpr[1] = newsp;
 827	regs->gpr[3] = ksig->sig;
 828	regs->gpr[4] = (unsigned long) &rt_sf->info;
 829	regs->gpr[5] = (unsigned long) &rt_sf->uc;
 830	regs->gpr[6] = (unsigned long) rt_sf;
 831	regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
 832	/* enter the signal handler in native-endian mode */
 833	regs->msr &= ~MSR_LE;
 834	regs->msr |= (MSR_KERNEL & MSR_LE);
 835	return 0;
 836
 
 
 
 837badframe:
 838	if (show_unhandled_signals)
 839		printk_ratelimited(KERN_INFO
 840				   "%s[%d]: bad frame in handle_rt_signal32: "
 841				   "%p nip %08lx lr %08lx\n",
 842				   tsk->comm, tsk->pid,
 843				   addr, regs->nip, regs->link);
 844
 845	return 1;
 846}
 847
 848static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
 849{
 850	sigset_t set;
 851	struct mcontext __user *mcp;
 852
 853	if (get_sigset_t(&set, &ucp->uc_sigmask))
 854		return -EFAULT;
 
 
 855#ifdef CONFIG_PPC64
 856	{
 857		u32 cmcp;
 858
 859		if (__get_user(cmcp, &ucp->uc_regs))
 860			return -EFAULT;
 861		mcp = (struct mcontext __user *)(u64)cmcp;
 862		/* no need to check access_ok(mcp), since mcp < 4GB */
 863	}
 864#else
 865	if (__get_user(mcp, &ucp->uc_regs))
 866		return -EFAULT;
 867	if (!access_ok(mcp, sizeof(*mcp)))
 868		return -EFAULT;
 869#endif
 
 
 870	set_current_blocked(&set);
 871	if (restore_user_regs(regs, mcp, sig))
 872		return -EFAULT;
 873
 874	return 0;
 
 
 
 
 875}
 876
 877#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 878static int do_setcontext_tm(struct ucontext __user *ucp,
 879			    struct ucontext __user *tm_ucp,
 880			    struct pt_regs *regs)
 881{
 882	sigset_t set;
 883	struct mcontext __user *mcp;
 884	struct mcontext __user *tm_mcp;
 885	u32 cmcp;
 886	u32 tm_cmcp;
 887
 888	if (get_sigset_t(&set, &ucp->uc_sigmask))
 889		return -EFAULT;
 890
 891	if (__get_user(cmcp, &ucp->uc_regs) ||
 892	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
 
 
 
 
 893		return -EFAULT;
 894	mcp = (struct mcontext __user *)(u64)cmcp;
 895	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
 896	/* no need to check access_ok(mcp), since mcp < 4GB */
 897
 898	set_current_blocked(&set);
 899	if (restore_tm_user_regs(regs, mcp, tm_mcp))
 900		return -EFAULT;
 901
 902	return 0;
 
 
 
 
 903}
 904#endif
 905
 906#ifdef CONFIG_PPC64
 907COMPAT_SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
 908		       struct ucontext __user *, new_ctx, int, ctx_size)
 909#else
 910SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
 911		       struct ucontext __user *, new_ctx, long, ctx_size)
 912#endif
 913{
 914	struct pt_regs *regs = current_pt_regs();
 915	int ctx_has_vsx_region = 0;
 916
 917#ifdef CONFIG_PPC64
 918	unsigned long new_msr = 0;
 919
 920	if (new_ctx) {
 921		struct mcontext __user *mcp;
 922		u32 cmcp;
 923
 924		/*
 925		 * Get pointer to the real mcontext.  No need for
 926		 * access_ok since we are dealing with compat
 927		 * pointers.
 928		 */
 929		if (__get_user(cmcp, &new_ctx->uc_regs))
 930			return -EFAULT;
 931		mcp = (struct mcontext __user *)(u64)cmcp;
 932		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
 933			return -EFAULT;
 934	}
 935	/*
 936	 * Check that the context is not smaller than the original
 937	 * size (with VMX but without VSX)
 938	 */
 939	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
 940		return -EINVAL;
 941	/*
 942	 * If the new context state sets the MSR VSX bits but
 943	 * it doesn't provide VSX state.
 944	 */
 945	if ((ctx_size < sizeof(struct ucontext)) &&
 946	    (new_msr & MSR_VSX))
 947		return -EINVAL;
 948	/* Does the context have enough room to store VSX data? */
 949	if (ctx_size >= sizeof(struct ucontext))
 950		ctx_has_vsx_region = 1;
 951#else
 952	/* Context size is for future use. Right now, we only make sure
 953	 * we are passed something we understand
 954	 */
 955	if (ctx_size < sizeof(struct ucontext))
 956		return -EINVAL;
 957#endif
 958	if (old_ctx != NULL) {
 959		struct mcontext __user *mctx;
 960
 961		/*
 962		 * old_ctx might not be 16-byte aligned, in which
 963		 * case old_ctx->uc_mcontext won't be either.
 964		 * Because we have the old_ctx->uc_pad2 field
 965		 * before old_ctx->uc_mcontext, we need to round down
 966		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
 967		 */
 968		mctx = (struct mcontext __user *)
 969			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
 970		if (!access_ok(old_ctx, ctx_size)
 971		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
 972		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
 973		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
 974			return -EFAULT;
 
 
 
 
 975	}
 976	if (new_ctx == NULL)
 977		return 0;
 978	if (!access_ok(new_ctx, ctx_size) ||
 979	    fault_in_pages_readable((u8 __user *)new_ctx, ctx_size))
 980		return -EFAULT;
 981
 982	/*
 983	 * If we get a fault copying the context into the kernel's
 984	 * image of the user's registers, we can't just return -EFAULT
 985	 * because the user's registers will be corrupted.  For instance
 986	 * the NIP value may have been updated but not some of the
 987	 * other registers.  Given that we have done the access_ok
 988	 * and successfully read the first and last bytes of the region
 989	 * above, this should only happen in an out-of-memory situation
 990	 * or if another thread unmaps the region containing the context.
 991	 * We kill the task with a SIGSEGV in this situation.
 992	 */
 993	if (do_setcontext(new_ctx, regs, 0))
 994		do_exit(SIGSEGV);
 
 
 995
 996	set_thread_flag(TIF_RESTOREALL);
 997	return 0;
 
 
 
 
 998}
 999
1000#ifdef CONFIG_PPC64
1001COMPAT_SYSCALL_DEFINE0(rt_sigreturn)
1002#else
1003SYSCALL_DEFINE0(rt_sigreturn)
1004#endif
1005{
1006	struct rt_sigframe __user *rt_sf;
1007	struct pt_regs *regs = current_pt_regs();
1008	int tm_restore = 0;
1009#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1010	struct ucontext __user *uc_transact;
1011	unsigned long msr_hi;
1012	unsigned long tmp;
1013#endif
1014	/* Always make any pending restarted system calls return -EINTR */
1015	current->restart_block.fn = do_no_restart_syscall;
1016
1017	rt_sf = (struct rt_sigframe __user *)
1018		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1019	if (!access_ok(rt_sf, sizeof(*rt_sf)))
1020		goto bad;
1021
1022#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1023	/*
1024	 * If there is a transactional state then throw it away.
1025	 * The purpose of a sigreturn is to destroy all traces of the
1026	 * signal frame, this includes any transactional state created
1027	 * within in. We only check for suspended as we can never be
1028	 * active in the kernel, we are active, there is nothing better to
1029	 * do than go ahead and Bad Thing later.
1030	 * The cause is not important as there will never be a
1031	 * recheckpoint so it's not user visible.
1032	 */
1033	if (MSR_TM_SUSPENDED(mfmsr()))
1034		tm_reclaim_current(0);
1035
1036	if (__get_user(tmp, &rt_sf->uc.uc_link))
1037		goto bad;
1038	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1039	if (uc_transact) {
1040		u32 cmcp;
1041		struct mcontext __user *mcp;
1042
1043		if (__get_user(cmcp, &uc_transact->uc_regs))
1044			return -EFAULT;
1045		mcp = (struct mcontext __user *)(u64)cmcp;
1046		/* The top 32 bits of the MSR are stashed in the transactional
1047		 * ucontext. */
1048		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1049			goto bad;
1050
1051		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1052			/* Trying to start TM on non TM system */
1053			if (!cpu_has_feature(CPU_FTR_TM))
1054				goto bad;
1055			/* We only recheckpoint on return if we're
1056			 * transaction.
1057			 */
1058			tm_restore = 1;
1059			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1060				goto bad;
1061		}
1062	}
1063	if (!tm_restore) {
1064		/*
1065		 * Unset regs->msr because ucontext MSR TS is not
1066		 * set, and recheckpoint was not called. This avoid
1067		 * hitting a TM Bad thing at RFID
1068		 */
1069		regs->msr &= ~MSR_TS_MASK;
1070	}
1071	/* Fall through, for non-TM restore */
1072#endif
1073	if (!tm_restore)
1074		if (do_setcontext(&rt_sf->uc, regs, 1))
1075			goto bad;
1076
1077	/*
1078	 * It's not clear whether or why it is desirable to save the
1079	 * sigaltstack setting on signal delivery and restore it on
1080	 * signal return.  But other architectures do this and we have
1081	 * always done it up until now so it is probably better not to
1082	 * change it.  -- paulus
1083	 */
1084#ifdef CONFIG_PPC64
1085	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1086		goto bad;
1087#else
1088	if (restore_altstack(&rt_sf->uc.uc_stack))
1089		goto bad;
1090#endif
1091	set_thread_flag(TIF_RESTOREALL);
1092	return 0;
1093
1094 bad:
1095	if (show_unhandled_signals)
1096		printk_ratelimited(KERN_INFO
1097				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1098				   "%p nip %08lx lr %08lx\n",
1099				   current->comm, current->pid,
1100				   rt_sf, regs->nip, regs->link);
1101
1102	force_sig(SIGSEGV);
1103	return 0;
1104}
1105
1106#ifdef CONFIG_PPC32
1107SYSCALL_DEFINE3(debug_setcontext, struct ucontext __user *, ctx,
1108			 int, ndbg, struct sig_dbg_op __user *, dbg)
1109{
1110	struct pt_regs *regs = current_pt_regs();
1111	struct sig_dbg_op op;
1112	int i;
1113	unsigned long new_msr = regs->msr;
1114#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1115	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1116#endif
1117
1118	for (i=0; i<ndbg; i++) {
1119		if (copy_from_user(&op, dbg + i, sizeof(op)))
1120			return -EFAULT;
1121		switch (op.dbg_type) {
1122		case SIG_DBG_SINGLE_STEPPING:
1123#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1124			if (op.dbg_value) {
1125				new_msr |= MSR_DE;
1126				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1127			} else {
1128				new_dbcr0 &= ~DBCR0_IC;
1129				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1130						current->thread.debug.dbcr1)) {
1131					new_msr &= ~MSR_DE;
1132					new_dbcr0 &= ~DBCR0_IDM;
1133				}
1134			}
1135#else
1136			if (op.dbg_value)
1137				new_msr |= MSR_SE;
1138			else
1139				new_msr &= ~MSR_SE;
1140#endif
1141			break;
1142		case SIG_DBG_BRANCH_TRACING:
1143#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1144			return -EINVAL;
1145#else
1146			if (op.dbg_value)
1147				new_msr |= MSR_BE;
1148			else
1149				new_msr &= ~MSR_BE;
1150#endif
1151			break;
1152
1153		default:
1154			return -EINVAL;
1155		}
1156	}
1157
1158	/* We wait until here to actually install the values in the
1159	   registers so if we fail in the above loop, it will not
1160	   affect the contents of these registers.  After this point,
1161	   failure is a problem, anyway, and it's very unlikely unless
1162	   the user is really doing something wrong. */
1163	regs->msr = new_msr;
1164#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1165	current->thread.debug.dbcr0 = new_dbcr0;
1166#endif
1167
1168	if (!access_ok(ctx, sizeof(*ctx)) ||
1169	    fault_in_pages_readable((u8 __user *)ctx, sizeof(*ctx)))
1170		return -EFAULT;
1171
1172	/*
1173	 * If we get a fault copying the context into the kernel's
1174	 * image of the user's registers, we can't just return -EFAULT
1175	 * because the user's registers will be corrupted.  For instance
1176	 * the NIP value may have been updated but not some of the
1177	 * other registers.  Given that we have done the access_ok
1178	 * and successfully read the first and last bytes of the region
1179	 * above, this should only happen in an out-of-memory situation
1180	 * or if another thread unmaps the region containing the context.
1181	 * We kill the task with a SIGSEGV in this situation.
1182	 */
1183	if (do_setcontext(ctx, regs, 1)) {
1184		if (show_unhandled_signals)
1185			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1186					   "sys_debug_setcontext: %p nip %08lx "
1187					   "lr %08lx\n",
1188					   current->comm, current->pid,
1189					   ctx, regs->nip, regs->link);
1190
1191		force_sig(SIGSEGV);
1192		goto out;
1193	}
1194
1195	/*
1196	 * It's not clear whether or why it is desirable to save the
1197	 * sigaltstack setting on signal delivery and restore it on
1198	 * signal return.  But other architectures do this and we have
1199	 * always done it up until now so it is probably better not to
1200	 * change it.  -- paulus
1201	 */
1202	restore_altstack(&ctx->uc_stack);
1203
1204	set_thread_flag(TIF_RESTOREALL);
1205 out:
1206	return 0;
1207}
1208#endif
1209
1210/*
1211 * OK, we're invoking a handler
1212 */
1213int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
1214		struct task_struct *tsk)
1215{
1216	struct sigcontext __user *sc;
1217	struct sigframe __user *frame;
1218	struct mcontext __user *tm_mctx = NULL;
1219	unsigned long newsp = 0;
1220	int sigret;
1221	unsigned long tramp;
1222	struct pt_regs *regs = tsk->thread.regs;
1223#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1224	/* Save the thread's msr before get_tm_stackpointer() changes it */
1225	unsigned long msr = regs->msr;
1226#endif
1227
1228	BUG_ON(tsk != current);
1229
1230	/* Set up Signal Frame */
1231	frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1);
1232	if (unlikely(frame == NULL))
1233		goto badframe;
1234	sc = (struct sigcontext __user *) &frame->sctx;
1235
1236#if _NSIG != 64
1237#error "Please adjust handle_signal()"
1238#endif
1239	if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1240	    || __put_user(oldset->sig[0], &sc->oldmask)
1241#ifdef CONFIG_PPC64
1242	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1243#else
1244	    || __put_user(oldset->sig[1], &sc->_unused[3])
1245#endif
1246	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1247	    || __put_user(ksig->sig, &sc->signal))
1248		goto badframe;
1249
1250	if (vdso32_sigtramp && tsk->mm->context.vdso_base) {
1251		sigret = 0;
1252		tramp = tsk->mm->context.vdso_base + vdso32_sigtramp;
1253	} else {
1254		sigret = __NR_sigreturn;
1255		tramp = (unsigned long) frame->mctx.tramp;
1256	}
1257
1258#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1259	tm_mctx = &frame->mctx_transact;
1260	if (MSR_TM_ACTIVE(msr)) {
1261		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1262				      sigret, msr))
1263			goto badframe;
1264	}
1265	else
1266#endif
1267	{
1268		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1269			goto badframe;
1270	}
1271
1272	regs->link = tramp;
1273
1274	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1275
1276	/* create a stack frame for the caller of the handler */
1277	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1278	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1279		goto badframe;
1280
1281	regs->gpr[1] = newsp;
1282	regs->gpr[3] = ksig->sig;
1283	regs->gpr[4] = (unsigned long) sc;
1284	regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1285	/* enter the signal handler in big-endian mode */
1286	regs->msr &= ~MSR_LE;
1287	return 0;
1288
1289badframe:
1290	if (show_unhandled_signals)
1291		printk_ratelimited(KERN_INFO
1292				   "%s[%d]: bad frame in handle_signal32: "
1293				   "%p nip %08lx lr %08lx\n",
1294				   tsk->comm, tsk->pid,
1295				   frame, regs->nip, regs->link);
1296
1297	return 1;
1298}
1299
1300/*
1301 * Do a signal return; undo the signal stack.
1302 */
1303#ifdef CONFIG_PPC64
1304COMPAT_SYSCALL_DEFINE0(sigreturn)
1305#else
1306SYSCALL_DEFINE0(sigreturn)
1307#endif
1308{
1309	struct pt_regs *regs = current_pt_regs();
1310	struct sigframe __user *sf;
1311	struct sigcontext __user *sc;
1312	struct sigcontext sigctx;
1313	struct mcontext __user *sr;
1314	void __user *addr;
1315	sigset_t set;
1316#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1317	struct mcontext __user *mcp, *tm_mcp;
1318	unsigned long msr_hi;
1319#endif
1320
1321	/* Always make any pending restarted system calls return -EINTR */
1322	current->restart_block.fn = do_no_restart_syscall;
1323
1324	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1325	sc = &sf->sctx;
1326	addr = sc;
1327	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1328		goto badframe;
1329
1330#ifdef CONFIG_PPC64
1331	/*
1332	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1333	 * unused part of the signal stackframe
1334	 */
1335	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1336#else
1337	set.sig[0] = sigctx.oldmask;
1338	set.sig[1] = sigctx._unused[3];
1339#endif
1340	set_current_blocked(&set);
1341
 
1342#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1343	mcp = (struct mcontext __user *)&sf->mctx;
1344	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1345	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1346		goto badframe;
 
1347	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1348		if (!cpu_has_feature(CPU_FTR_TM))
1349			goto badframe;
1350		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1351			goto badframe;
1352	} else
1353#endif
1354	{
1355		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1356		addr = sr;
1357		if (!access_ok(sr, sizeof(*sr))
1358		    || restore_user_regs(regs, sr, 1))
1359			goto badframe;
 
 
1360	}
1361
1362	set_thread_flag(TIF_RESTOREALL);
1363	return 0;
1364
1365badframe:
1366	if (show_unhandled_signals)
1367		printk_ratelimited(KERN_INFO
1368				   "%s[%d]: bad frame in sys_sigreturn: "
1369				   "%p nip %08lx lr %08lx\n",
1370				   current->comm, current->pid,
1371				   addr, regs->nip, regs->link);
1372
1373	force_sig(SIGSEGV);
1374	return 0;
1375}