Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
   4 *
   5 *  PowerPC version
   6 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   7 * Copyright (C) 2001 IBM
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
  10 *
  11 *  Derived from "arch/i386/kernel/signal.c"
  12 *    Copyright (C) 1991, 1992 Linus Torvalds
  13 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
 
 
 
 
 
  14 */
  15
  16#include <linux/sched.h>
  17#include <linux/mm.h>
  18#include <linux/smp.h>
  19#include <linux/kernel.h>
  20#include <linux/signal.h>
  21#include <linux/errno.h>
  22#include <linux/elf.h>
  23#include <linux/ptrace.h>
  24#include <linux/pagemap.h>
  25#include <linux/ratelimit.h>
  26#include <linux/syscalls.h>
  27#ifdef CONFIG_PPC64
 
  28#include <linux/compat.h>
  29#else
  30#include <linux/wait.h>
  31#include <linux/unistd.h>
  32#include <linux/stddef.h>
  33#include <linux/tty.h>
  34#include <linux/binfmts.h>
  35#endif
  36
  37#include <linux/uaccess.h>
  38#include <asm/cacheflush.h>
  39#include <asm/syscalls.h>
  40#include <asm/sigcontext.h>
  41#include <asm/vdso.h>
  42#include <asm/switch_to.h>
  43#include <asm/tm.h>
  44#include <asm/asm-prototypes.h>
  45#ifdef CONFIG_PPC64
  46#include <asm/syscalls_32.h>
  47#include <asm/unistd.h>
  48#else
  49#include <asm/ucontext.h>
 
  50#endif
  51
  52#include "signal.h"
  53
 
  54
  55#ifdef CONFIG_PPC64
 
 
 
 
  56#define old_sigaction	old_sigaction32
  57#define sigcontext	sigcontext32
  58#define mcontext	mcontext32
  59#define ucontext	ucontext32
  60
 
 
  61/*
  62 * Userspace code may pass a ucontext which doesn't include VSX added
  63 * at the end.  We need to check for this case.
  64 */
  65#define UCONTEXTSIZEWITHOUTVSX \
  66		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
  67
  68/*
  69 * Returning 0 means we return to userspace via
  70 * ret_from_except and thus restore all user
  71 * registers from *regs.  This is what we need
  72 * to do when a signal has been delivered.
  73 */
  74
  75#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
  76#undef __SIGNAL_FRAMESIZE
  77#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
  78#undef ELF_NVRREG
  79#define ELF_NVRREG	ELF_NVRREG32
  80
  81/*
  82 * Functions for flipping sigsets (thanks to brain dead generic
  83 * implementation that makes things simple for little endian only)
  84 */
  85#define unsafe_put_sigset_t	unsafe_put_compat_sigset
  86#define unsafe_get_sigset_t	unsafe_get_compat_sigset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87
  88#define to_user_ptr(p)		ptr_to_compat(p)
  89#define from_user_ptr(p)	compat_ptr(p)
  90
  91static __always_inline int
  92__unsafe_save_general_regs(struct pt_regs *regs, struct mcontext __user *frame)
  93{
  94	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
  95	int val, i;
  96
  97	for (i = 0; i <= PT_RESULT; i ++) {
  98		/* Force usr to alway see softe as 1 (interrupts enabled) */
  99		if (i == PT_SOFTE)
 100			val = 1;
 101		else
 102			val = gregs[i];
 103
 104		unsafe_put_user(val, &frame->mc_gregs[i], failed);
 
 
 
 
 105	}
 106	return 0;
 107
 108failed:
 109	return 1;
 110}
 111
 112static __always_inline int
 113__unsafe_restore_general_regs(struct pt_regs *regs, struct mcontext __user *sr)
 114{
 115	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 116	int i;
 117
 118	for (i = 0; i <= PT_RESULT; i++) {
 119		if ((i == PT_MSR) || (i == PT_SOFTE))
 120			continue;
 121		unsafe_get_user(gregs[i], &sr->mc_gregs[i], failed);
 
 122	}
 123	return 0;
 124
 125failed:
 126	return 1;
 127}
 128
 129#else /* CONFIG_PPC64 */
 130
 131#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
 132
 133#define unsafe_put_sigset_t(uset, set, label) do {			\
 134	sigset_t __user *__us = uset	;				\
 135	const sigset_t *__s = set;					\
 136									\
 137	unsafe_copy_to_user(__us, __s, sizeof(*__us), label);		\
 138} while (0)
 139
 140#define unsafe_get_sigset_t	unsafe_get_user_sigset
 
 
 
 141
 142#define to_user_ptr(p)		((unsigned long)(p))
 143#define from_user_ptr(p)	((void __user *)(p))
 144
 145static __always_inline int
 146__unsafe_save_general_regs(struct pt_regs *regs, struct mcontext __user *frame)
 147{
 148	unsafe_copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE, failed);
 149	return 0;
 150
 151failed:
 152	return 1;
 153}
 154
 155static __always_inline
 156int __unsafe_restore_general_regs(struct pt_regs *regs, struct mcontext __user *sr)
 157{
 158	/* copy up to but not including MSR */
 159	unsafe_copy_from_user(regs, &sr->mc_gregs, PT_MSR * sizeof(elf_greg_t), failed);
 160
 
 161	/* copy from orig_r3 (the word after the MSR) up to the end */
 162	unsafe_copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
 163			      GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t), failed);
 164
 165	return 0;
 166
 167failed:
 168	return 1;
 169}
 170#endif
 171
 172#define unsafe_save_general_regs(regs, frame, label) do {	\
 173	if (__unsafe_save_general_regs(regs, frame))		\
 174		goto label;					\
 175} while (0)
 176
 177#define unsafe_restore_general_regs(regs, frame, label) do {	\
 178	if (__unsafe_restore_general_regs(regs, frame))		\
 179		goto label;					\
 180} while (0)
 181
 182/*
 183 * When we have signals to deliver, we set up on the
 184 * user stack, going down from the original stack pointer:
 185 *	an ABI gap of 56 words
 186 *	an mcontext struct
 187 *	a sigcontext struct
 188 *	a gap of __SIGNAL_FRAMESIZE bytes
 189 *
 190 * Each of these things must be a multiple of 16 bytes in size. The following
 191 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
 192 *
 193 */
 194struct sigframe {
 195	struct sigcontext sctx;		/* the sigcontext */
 196	struct mcontext	mctx;		/* all the register values */
 197#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 198	struct sigcontext sctx_transact;
 199	struct mcontext	mctx_transact;
 200#endif
 201	/*
 202	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 203	 * regs and 18 fp regs below sp before decrementing it.
 204	 */
 205	int			abigap[56];
 206};
 207
 
 
 
 208/*
 209 *  When we have rt signals to deliver, we set up on the
 210 *  user stack, going down from the original stack pointer:
 211 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
 212 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
 213 *  (the +16 is to get the siginfo and ucontext in the same
 214 *  positions as in older kernels).
 215 *
 216 *  Each of these things must be a multiple of 16 bytes in size.
 217 *
 218 */
 219struct rt_sigframe {
 220#ifdef CONFIG_PPC64
 221	compat_siginfo_t info;
 222#else
 223	struct siginfo info;
 224#endif
 225	struct ucontext	uc;
 226#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 227	struct ucontext	uc_transact;
 228#endif
 229	/*
 230	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 231	 * regs and 18 fp regs below sp before decrementing it.
 232	 */
 233	int			abigap[56];
 234};
 235
 236unsigned long get_min_sigframe_size_32(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237{
 238	return max(sizeof(struct rt_sigframe) + __SIGNAL_FRAMESIZE + 16,
 239		   sizeof(struct sigframe) + __SIGNAL_FRAMESIZE);
 
 
 
 
 
 
 
 
 240}
 241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242/*
 243 * Save the current user registers on the user stack.
 244 * We only save the altivec/spe registers if the process has used
 245 * altivec/spe instructions at some point.
 246 */
 247static void prepare_save_user_regs(int ctx_has_vsx_region)
 
 
 248{
 
 
 249	/* Make sure floating point registers are stored in regs */
 250	flush_fp_to_thread(current);
 251#ifdef CONFIG_ALTIVEC
 252	if (current->thread.used_vr)
 253		flush_altivec_to_thread(current);
 254	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 255		current->thread.vrsave = mfspr(SPRN_VRSAVE);
 256#endif
 257#ifdef CONFIG_VSX
 258	if (current->thread.used_vsr && ctx_has_vsx_region)
 259		flush_vsx_to_thread(current);
 260#endif
 261#ifdef CONFIG_SPE
 262	if (current->thread.used_spe)
 263		flush_spe_to_thread(current);
 264#endif
 265}
 266
 267static __always_inline int
 268__unsafe_save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
 269			struct mcontext __user *tm_frame, int ctx_has_vsx_region)
 270{
 271	unsigned long msr = regs->msr;
 272
 273	/* save general registers */
 274	unsafe_save_general_regs(regs, frame, failed);
 
 275
 276#ifdef CONFIG_ALTIVEC
 277	/* save altivec registers */
 278	if (current->thread.used_vr) {
 279		unsafe_copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 280				    ELF_NVRREG * sizeof(vector128), failed);
 
 
 281		/* set MSR_VEC in the saved MSR value to indicate that
 282		   frame->mc_vregs contains valid data */
 283		msr |= MSR_VEC;
 284	}
 285	/* else assert((regs->msr & MSR_VEC) == 0) */
 286
 287	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 288	 * use altivec. Since VSCR only contains 32 bits saved in the least
 289	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 290	 * most significant bits of that same vector. --BenH
 291	 * Note that the current VRSAVE value is in the SPR at this point.
 292	 */
 293	unsafe_put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32],
 294			failed);
 
 
 295#endif /* CONFIG_ALTIVEC */
 296	unsafe_copy_fpr_to_user(&frame->mc_fregs, current, failed);
 
 297
 298	/*
 299	 * Clear the MSR VSX bit to indicate there is no valid state attached
 300	 * to this context, except in the specific case below where we set it.
 301	 */
 302	msr &= ~MSR_VSX;
 303#ifdef CONFIG_VSX
 304	/*
 305	 * Copy VSR 0-31 upper half from thread_struct to local
 306	 * buffer, then write that to userspace.  Also set MSR_VSX in
 307	 * the saved MSR value to indicate that frame->mc_vregs
 308	 * contains valid data
 309	 */
 310	if (current->thread.used_vsr && ctx_has_vsx_region) {
 311		unsafe_copy_vsx_to_user(&frame->mc_vsregs, current, failed);
 
 
 312		msr |= MSR_VSX;
 313	}
 314#endif /* CONFIG_VSX */
 315#ifdef CONFIG_SPE
 316	/* save spe registers */
 317	if (current->thread.used_spe) {
 318		unsafe_copy_to_user(&frame->mc_vregs, current->thread.evr,
 319				    ELF_NEVRREG * sizeof(u32), failed);
 
 
 320		/* set MSR_SPE in the saved MSR value to indicate that
 321		   frame->mc_vregs contains valid data */
 322		msr |= MSR_SPE;
 323	}
 324	/* else assert((regs->msr & MSR_SPE) == 0) */
 325
 326	/* We always copy to/from spefscr */
 327	unsafe_put_user(current->thread.spefscr,
 328			(u32 __user *)&frame->mc_vregs + ELF_NEVRREG, failed);
 329#endif /* CONFIG_SPE */
 330
 331	unsafe_put_user(msr, &frame->mc_gregs[PT_MSR], failed);
 332
 333	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
 334	 * can check it on the restore to see if TM is active
 335	 */
 336	if (tm_frame)
 337		unsafe_put_user(0, &tm_frame->mc_gregs[PT_MSR], failed);
 338
 339	return 0;
 
 
 
 
 
 
 
 340
 341failed:
 342	return 1;
 343}
 344
 345#define unsafe_save_user_regs(regs, frame, tm_frame, has_vsx, label) do { \
 346	if (__unsafe_save_user_regs(regs, frame, tm_frame, has_vsx))	\
 347		goto label;						\
 348} while (0)
 349
 350#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 351/*
 352 * Save the current user registers on the user stack.
 353 * We only save the altivec/spe registers if the process has used
 354 * altivec/spe instructions at some point.
 355 * We also save the transactional registers to a second ucontext in the
 356 * frame.
 357 *
 358 * See __unsafe_save_user_regs() and signal_64.c:setup_tm_sigcontexts().
 359 */
 360static void prepare_save_tm_user_regs(void)
 
 
 361{
 362	WARN_ON(tm_suspend_disabled);
 363
 364	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 365		current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
 366}
 
 
 
 
 
 
 367
 368static __always_inline int
 369save_tm_user_regs_unsafe(struct pt_regs *regs, struct mcontext __user *frame,
 370			 struct mcontext __user *tm_frame, unsigned long msr)
 371{
 372	/* Save both sets of general registers */
 373	unsafe_save_general_regs(&current->thread.ckpt_regs, frame, failed);
 374	unsafe_save_general_regs(regs, tm_frame, failed);
 
 375
 376	/* Stash the top half of the 64bit MSR into the 32bit MSR word
 377	 * of the transactional mcontext.  This way we have a backward-compatible
 378	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
 379	 * also look at what type of transaction (T or S) was active at the
 380	 * time of the signal.
 381	 */
 382	unsafe_put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR], failed);
 
 383
 
 384	/* save altivec registers */
 385	if (current->thread.used_vr) {
 386		unsafe_copy_to_user(&frame->mc_vregs, &current->thread.ckvr_state,
 387				    ELF_NVRREG * sizeof(vector128), failed);
 388		if (msr & MSR_VEC)
 389			unsafe_copy_to_user(&tm_frame->mc_vregs,
 390					    &current->thread.vr_state,
 391					    ELF_NVRREG * sizeof(vector128), failed);
 392		else
 393			unsafe_copy_to_user(&tm_frame->mc_vregs,
 394					    &current->thread.ckvr_state,
 395					    ELF_NVRREG * sizeof(vector128), failed);
 
 
 
 
 
 396
 397		/* set MSR_VEC in the saved MSR value to indicate that
 398		 * frame->mc_vregs contains valid data
 399		 */
 400		msr |= MSR_VEC;
 401	}
 402
 403	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 404	 * use altivec. Since VSCR only contains 32 bits saved in the least
 405	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 406	 * most significant bits of that same vector. --BenH
 407	 */
 408	unsafe_put_user(current->thread.ckvrsave,
 409			(u32 __user *)&frame->mc_vregs[32], failed);
 410	if (msr & MSR_VEC)
 411		unsafe_put_user(current->thread.vrsave,
 412				(u32 __user *)&tm_frame->mc_vregs[32], failed);
 413	else
 414		unsafe_put_user(current->thread.ckvrsave,
 415				(u32 __user *)&tm_frame->mc_vregs[32], failed);
 
 
 
 
 
 
 
 416
 417	unsafe_copy_ckfpr_to_user(&frame->mc_fregs, current, failed);
 418	if (msr & MSR_FP)
 419		unsafe_copy_fpr_to_user(&tm_frame->mc_fregs, current, failed);
 420	else
 421		unsafe_copy_ckfpr_to_user(&tm_frame->mc_fregs, current, failed);
 
 
 
 
 422
 
 423	/*
 424	 * Copy VSR 0-31 upper half from thread_struct to local
 425	 * buffer, then write that to userspace.  Also set MSR_VSX in
 426	 * the saved MSR value to indicate that frame->mc_vregs
 427	 * contains valid data
 428	 */
 429	if (current->thread.used_vsr) {
 430		unsafe_copy_ckvsx_to_user(&frame->mc_vsregs, current, failed);
 431		if (msr & MSR_VSX)
 432			unsafe_copy_vsx_to_user(&tm_frame->mc_vsregs, current, failed);
 433		else
 434			unsafe_copy_ckvsx_to_user(&tm_frame->mc_vsregs, current, failed);
 
 
 
 
 
 
 435
 436		msr |= MSR_VSX;
 437	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 438
 439	unsafe_put_user(msr, &frame->mc_gregs[PT_MSR], failed);
 440
 441	return 0;
 
 442
 443failed:
 444	return 1;
 445}
 446#else
 447static void prepare_save_tm_user_regs(void) { }
 
 
 
 
 
 448
 449static __always_inline int
 450save_tm_user_regs_unsafe(struct pt_regs *regs, struct mcontext __user *frame,
 451			 struct mcontext __user *tm_frame, unsigned long msr)
 452{
 453	return 0;
 454}
 455#endif
 456
 457#define unsafe_save_tm_user_regs(regs, frame, tm_frame, msr, label) do { \
 458	if (save_tm_user_regs_unsafe(regs, frame, tm_frame, msr))	\
 459		goto label;						\
 460} while (0)
 461
 462/*
 463 * Restore the current user register values from the user stack,
 464 * (except for MSR).
 465 */
 466static long restore_user_regs(struct pt_regs *regs,
 467			      struct mcontext __user *sr, int sig)
 468{
 
 469	unsigned int save_r2 = 0;
 470	unsigned long msr;
 471#ifdef CONFIG_VSX
 472	int i;
 473#endif
 474
 475	if (!user_read_access_begin(sr, sizeof(*sr)))
 476		return 1;
 477	/*
 478	 * restore general registers but not including MSR or SOFTE. Also
 479	 * take care of keeping r2 (TLS) intact if not a signal
 480	 */
 481	if (!sig)
 482		save_r2 = (unsigned int)regs->gpr[2];
 483	unsafe_restore_general_regs(regs, sr, failed);
 484	set_trap_norestart(regs);
 485	unsafe_get_user(msr, &sr->mc_gregs[PT_MSR], failed);
 486	if (!sig)
 487		regs->gpr[2] = (unsigned long) save_r2;
 
 
 488
 489	/* if doing signal return, restore the previous little-endian mode */
 490	if (sig)
 491		regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (msr & MSR_LE));
 
 
 
 
 
 
 
 
 
 492
 493#ifdef CONFIG_ALTIVEC
 494	/*
 495	 * Force the process to reload the altivec registers from
 496	 * current->thread when it next does altivec instructions
 497	 */
 498	regs_set_return_msr(regs, regs->msr & ~MSR_VEC);
 499	if (msr & MSR_VEC) {
 500		/* restore altivec registers from the stack */
 501		unsafe_copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 502				      sizeof(sr->mc_vregs), failed);
 503		current->thread.used_vr = true;
 504	} else if (current->thread.used_vr)
 505		memset(&current->thread.vr_state, 0,
 506		       ELF_NVRREG * sizeof(vector128));
 507
 508	/* Always get VRSAVE back */
 509	unsafe_get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32], failed);
 
 510	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 511		mtspr(SPRN_VRSAVE, current->thread.vrsave);
 512#endif /* CONFIG_ALTIVEC */
 513	unsafe_copy_fpr_from_user(current, &sr->mc_fregs, failed);
 
 514
 515#ifdef CONFIG_VSX
 516	/*
 517	 * Force the process to reload the VSX registers from
 518	 * current->thread when it next does VSX instruction.
 519	 */
 520	regs_set_return_msr(regs, regs->msr & ~MSR_VSX);
 521	if (msr & MSR_VSX) {
 522		/*
 523		 * Restore altivec registers from the stack to a local
 524		 * buffer, then write this out to the thread_struct
 525		 */
 526		unsafe_copy_vsx_from_user(current, &sr->mc_vsregs, failed);
 527		current->thread.used_vsr = true;
 528	} else if (current->thread.used_vsr)
 529		for (i = 0; i < 32 ; i++)
 530			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 531#endif /* CONFIG_VSX */
 532	/*
 533	 * force the process to reload the FP registers from
 534	 * current->thread when it next does FP instructions
 535	 */
 536	regs_set_return_msr(regs, regs->msr & ~(MSR_FP | MSR_FE0 | MSR_FE1));
 537
 538#ifdef CONFIG_SPE
 539	/*
 540	 * Force the process to reload the spe registers from
 541	 * current->thread when it next does spe instructions.
 542	 * Since this is user ABI, we must enforce the sizing.
 543	 */
 544	BUILD_BUG_ON(sizeof(current->thread.spe) != ELF_NEVRREG * sizeof(u32));
 545	regs_set_return_msr(regs, regs->msr & ~MSR_SPE);
 546	if (msr & MSR_SPE) {
 547		/* restore spe registers from the stack */
 548		unsafe_copy_from_user(&current->thread.spe, &sr->mc_vregs,
 549				      sizeof(current->thread.spe), failed);
 550		current->thread.used_spe = true;
 551	} else if (current->thread.used_spe)
 552		memset(&current->thread.spe, 0, sizeof(current->thread.spe));
 553
 554	/* Always get SPEFSCR back */
 555	unsafe_get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG, failed);
 
 556#endif /* CONFIG_SPE */
 557
 558	user_read_access_end();
 559	return 0;
 560
 561failed:
 562	user_read_access_end();
 563	return 1;
 564}
 565
 566#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 567/*
 568 * Restore the current user register values from the user stack, except for
 569 * MSR, and recheckpoint the original checkpointed register state for processes
 570 * in transactions.
 571 */
 572static long restore_tm_user_regs(struct pt_regs *regs,
 573				 struct mcontext __user *sr,
 574				 struct mcontext __user *tm_sr)
 575{
 
 576	unsigned long msr, msr_hi;
 
 577	int i;
 
 578
 579	if (tm_suspend_disabled)
 580		return 1;
 581	/*
 582	 * restore general registers but not including MSR or SOFTE. Also
 583	 * take care of keeping r2 (TLS) intact if not a signal.
 584	 * See comment in signal_64.c:restore_tm_sigcontexts();
 585	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
 586	 * were set by the signal delivery.
 587	 */
 588	if (!user_read_access_begin(sr, sizeof(*sr)))
 589		return 1;
 590
 591	unsafe_restore_general_regs(&current->thread.ckpt_regs, sr, failed);
 592	unsafe_get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP], failed);
 593	unsafe_get_user(msr, &sr->mc_gregs[PT_MSR], failed);
 
 
 594
 595	/* Restore the previous little-endian mode */
 596	regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (msr & MSR_LE));
 597
 598	regs_set_return_msr(regs, regs->msr & ~MSR_VEC);
 
 
 
 
 
 
 
 
 
 
 599	if (msr & MSR_VEC) {
 600		/* restore altivec registers from the stack */
 601		unsafe_copy_from_user(&current->thread.ckvr_state, &sr->mc_vregs,
 602				      sizeof(sr->mc_vregs), failed);
 603		current->thread.used_vr = true;
 
 
 
 604	} else if (current->thread.used_vr) {
 605		memset(&current->thread.vr_state, 0,
 606		       ELF_NVRREG * sizeof(vector128));
 607		memset(&current->thread.ckvr_state, 0,
 608		       ELF_NVRREG * sizeof(vector128));
 609	}
 610
 611	/* Always get VRSAVE back */
 612	unsafe_get_user(current->thread.ckvrsave,
 613			(u32 __user *)&sr->mc_vregs[32], failed);
 
 
 
 614	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 615		mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
 
 616
 617	regs_set_return_msr(regs, regs->msr & ~(MSR_FP | MSR_FE0 | MSR_FE1));
 618
 619	unsafe_copy_fpr_from_user(current, &sr->mc_fregs, failed);
 
 
 620
 621	regs_set_return_msr(regs, regs->msr & ~MSR_VSX);
 
 622	if (msr & MSR_VSX) {
 623		/*
 624		 * Restore altivec registers from the stack to a local
 625		 * buffer, then write this out to the thread_struct
 626		 */
 627		unsafe_copy_ckvsx_from_user(current, &sr->mc_vsregs, failed);
 628		current->thread.used_vsr = true;
 
 629	} else if (current->thread.used_vsr)
 630		for (i = 0; i < 32 ; i++) {
 631			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 632			current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 633		}
 
 634
 635	user_read_access_end();
 636
 637	if (!user_read_access_begin(tm_sr, sizeof(*tm_sr)))
 638		return 1;
 639
 640	unsafe_restore_general_regs(regs, tm_sr, failed);
 641
 642	/* restore altivec registers from the stack */
 643	if (msr & MSR_VEC)
 644		unsafe_copy_from_user(&current->thread.vr_state, &tm_sr->mc_vregs,
 645				      sizeof(sr->mc_vregs), failed);
 646
 647	/* Always get VRSAVE back */
 648	unsafe_get_user(current->thread.vrsave,
 649			(u32 __user *)&tm_sr->mc_vregs[32], failed);
 650
 651	unsafe_copy_ckfpr_from_user(current, &tm_sr->mc_fregs, failed);
 652
 653	if (msr & MSR_VSX) {
 654		/*
 655		 * Restore altivec registers from the stack to a local
 656		 * buffer, then write this out to the thread_struct
 657		 */
 658		unsafe_copy_vsx_from_user(current, &tm_sr->mc_vsregs, failed);
 659		current->thread.used_vsr = true;
 660	}
 661
 662	/* Get the top half of the MSR from the user context */
 663	unsafe_get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR], failed);
 664	msr_hi <<= 32;
 665
 666	user_read_access_end();
 667
 668	/* If TM bits are set to the reserved value, it's an invalid context */
 669	if (MSR_TM_RESV(msr_hi))
 
 670		return 1;
 
 671
 672	/*
 673	 * Disabling preemption, since it is unsafe to be preempted
 674	 * with MSR[TS] set without recheckpointing.
 675	 */
 676	preempt_disable();
 677
 678	/*
 679	 * CAUTION:
 680	 * After regs->MSR[TS] being updated, make sure that get_user(),
 681	 * put_user() or similar functions are *not* called. These
 682	 * functions can generate page faults which will cause the process
 683	 * to be de-scheduled with MSR[TS] set but without calling
 684	 * tm_recheckpoint(). This can cause a bug.
 685	 *
 686	 * Pull in the MSR TM bits from the user context
 687	 */
 688	regs_set_return_msr(regs, (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK));
 689	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
 690	 * registers, including FP and V[S]Rs.  After recheckpointing, the
 691	 * transactional versions should be loaded.
 692	 */
 693	tm_enable();
 694	/* Make sure the transaction is marked as failed */
 695	current->thread.tm_texasr |= TEXASR_FS;
 696	/* This loads the checkpointed FP/VEC state, if used */
 697	tm_recheckpoint(&current->thread);
 
 
 
 
 
 698
 699	/* This loads the speculative FP/VEC state, if used */
 700	msr_check_and_set(msr & (MSR_FP | MSR_VEC));
 701	if (msr & MSR_FP) {
 702		load_fp_state(&current->thread.fp_state);
 703		regs_set_return_msr(regs, regs->msr | (MSR_FP | current->thread.fpexc_mode));
 704	}
 
 705	if (msr & MSR_VEC) {
 706		load_vr_state(&current->thread.vr_state);
 707		regs_set_return_msr(regs, regs->msr | MSR_VEC);
 708	}
 
 709
 710	preempt_enable();
 711
 712	return 0;
 713
 714failed:
 715	user_read_access_end();
 716	return 1;
 717}
 718#else
 719static long restore_tm_user_regs(struct pt_regs *regs, struct mcontext __user *sr,
 720				 struct mcontext __user *tm_sr)
 721{
 722	return 0;
 723}
 724#endif
 725
 726#ifdef CONFIG_PPC64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727
 728#define copy_siginfo_to_user	copy_siginfo_to_user32
 729
 
 
 
 
 
 
 
 
 
 
 
 730#endif /* CONFIG_PPC64 */
 731
 732/*
 733 * Set up a signal frame for a "real-time" signal handler
 734 * (one which gets siginfo).
 735 */
 736int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
 737		       struct task_struct *tsk)
 
 738{
 739	struct rt_sigframe __user *frame;
 740	struct mcontext __user *mctx;
 741	struct mcontext __user *tm_mctx = NULL;
 
 742	unsigned long newsp = 0;
 
 743	unsigned long tramp;
 744	struct pt_regs *regs = tsk->thread.regs;
 745	/* Save the thread's msr before get_tm_stackpointer() changes it */
 746	unsigned long msr = regs->msr;
 747
 748	/* Set up Signal Frame */
 749	frame = get_sigframe(ksig, tsk, sizeof(*frame), 1);
 750	mctx = &frame->uc.uc_mcontext;
 751#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 752	tm_mctx = &frame->uc_transact.uc_mcontext;
 753#endif
 754	if (MSR_TM_ACTIVE(msr))
 755		prepare_save_tm_user_regs();
 756	else
 757		prepare_save_user_regs(1);
 758
 759	if (!user_access_begin(frame, sizeof(*frame)))
 760		goto badframe;
 761
 762	/* Put the siginfo & fill in most of the ucontext */
 763	unsafe_put_user(0, &frame->uc.uc_flags, failed);
 764#ifdef CONFIG_PPC64
 765	unsafe_compat_save_altstack(&frame->uc.uc_stack, regs->gpr[1], failed);
 766#else
 767	unsafe_save_altstack(&frame->uc.uc_stack, regs->gpr[1], failed);
 768#endif
 769	unsafe_put_user(to_user_ptr(&frame->uc.uc_mcontext), &frame->uc.uc_regs, failed);
 770
 771	if (MSR_TM_ACTIVE(msr)) {
 772#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 773		unsafe_put_user((unsigned long)&frame->uc_transact,
 774				&frame->uc.uc_link, failed);
 775		unsafe_put_user((unsigned long)tm_mctx,
 776				&frame->uc_transact.uc_regs, failed);
 777#endif
 778		unsafe_save_tm_user_regs(regs, mctx, tm_mctx, msr, failed);
 779	} else {
 780		unsafe_put_user(0, &frame->uc.uc_link, failed);
 781		unsafe_save_user_regs(regs, mctx, tm_mctx, 1, failed);
 782	}
 783
 784	/* Save user registers on the stack */
 785	if (tsk->mm->context.vdso) {
 786		tramp = VDSO32_SYMBOL(tsk->mm->context.vdso, sigtramp_rt32);
 
 
 
 787	} else {
 788		tramp = (unsigned long)mctx->mc_pad;
 789		unsafe_put_user(PPC_RAW_LI(_R0, __NR_rt_sigreturn), &mctx->mc_pad[0], failed);
 790		unsafe_put_user(PPC_RAW_SC(), &mctx->mc_pad[1], failed);
 791		asm("dcbst %y0; sync; icbi %y0; sync" :: "Z" (mctx->mc_pad[0]));
 792	}
 793	unsafe_put_sigset_t(&frame->uc.uc_sigmask, oldset, failed);
 794
 795	user_access_end();
 796
 797	if (copy_siginfo_to_user(&frame->info, &ksig->info))
 798		goto badframe;
 799
 800	regs->link = tramp;
 801
 802#ifdef CONFIG_PPC_FPU_REGS
 803	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
 804#endif
 805
 806	/* create a stack frame for the caller of the handler */
 807	newsp = ((unsigned long)frame) - (__SIGNAL_FRAMESIZE + 16);
 808	if (put_user(regs->gpr[1], (u32 __user *)newsp))
 809		goto badframe;
 810
 811	/* Fill registers for signal handler */
 812	regs->gpr[1] = newsp;
 813	regs->gpr[3] = ksig->sig;
 814	regs->gpr[4] = (unsigned long)&frame->info;
 815	regs->gpr[5] = (unsigned long)&frame->uc;
 816	regs->gpr[6] = (unsigned long)frame;
 817	regs_set_return_ip(regs, (unsigned long) ksig->ka.sa.sa_handler);
 818	/* enter the signal handler in native-endian mode */
 819	regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (MSR_KERNEL & MSR_LE));
 820
 821	return 0;
 822
 823failed:
 824	user_access_end();
 825
 826badframe:
 827	signal_fault(tsk, regs, "handle_rt_signal32", frame);
 828
 829	return 1;
 830}
 831
 832/*
 833 * OK, we're invoking a handler
 834 */
 835int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
 836		struct task_struct *tsk)
 837{
 838	struct sigcontext __user *sc;
 839	struct sigframe __user *frame;
 840	struct mcontext __user *mctx;
 841	struct mcontext __user *tm_mctx = NULL;
 842	unsigned long newsp = 0;
 843	unsigned long tramp;
 844	struct pt_regs *regs = tsk->thread.regs;
 845	/* Save the thread's msr before get_tm_stackpointer() changes it */
 846	unsigned long msr = regs->msr;
 847
 848	/* Set up Signal Frame */
 849	frame = get_sigframe(ksig, tsk, sizeof(*frame), 1);
 850	mctx = &frame->mctx;
 851#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 852	tm_mctx = &frame->mctx_transact;
 853#endif
 854	if (MSR_TM_ACTIVE(msr))
 855		prepare_save_tm_user_regs();
 
 
 
 
 
 
 856	else
 857		prepare_save_user_regs(1);
 858
 859	if (!user_access_begin(frame, sizeof(*frame)))
 860		goto badframe;
 861	sc = (struct sigcontext __user *) &frame->sctx;
 862
 863#if _NSIG != 64
 864#error "Please adjust handle_signal()"
 865#endif
 866	unsafe_put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler, failed);
 867	unsafe_put_user(oldset->sig[0], &sc->oldmask, failed);
 868#ifdef CONFIG_PPC64
 869	unsafe_put_user((oldset->sig[0] >> 32), &sc->_unused[3], failed);
 870#else
 871	unsafe_put_user(oldset->sig[1], &sc->_unused[3], failed);
 872#endif
 873	unsafe_put_user(to_user_ptr(mctx), &sc->regs, failed);
 874	unsafe_put_user(ksig->sig, &sc->signal, failed);
 875
 876	if (MSR_TM_ACTIVE(msr))
 877		unsafe_save_tm_user_regs(regs, mctx, tm_mctx, msr, failed);
 878	else
 879		unsafe_save_user_regs(regs, mctx, tm_mctx, 1, failed);
 880
 881	if (tsk->mm->context.vdso) {
 882		tramp = VDSO32_SYMBOL(tsk->mm->context.vdso, sigtramp32);
 883	} else {
 884		tramp = (unsigned long)mctx->mc_pad;
 885		unsafe_put_user(PPC_RAW_LI(_R0, __NR_sigreturn), &mctx->mc_pad[0], failed);
 886		unsafe_put_user(PPC_RAW_SC(), &mctx->mc_pad[1], failed);
 887		asm("dcbst %y0; sync; icbi %y0; sync" :: "Z" (mctx->mc_pad[0]));
 888	}
 889	user_access_end();
 890
 891	regs->link = tramp;
 892
 893#ifdef CONFIG_PPC_FPU_REGS
 894	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
 895#endif
 896
 897	/* create a stack frame for the caller of the handler */
 898	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
 
 899	if (put_user(regs->gpr[1], (u32 __user *)newsp))
 900		goto badframe;
 901
 
 902	regs->gpr[1] = newsp;
 903	regs->gpr[3] = ksig->sig;
 904	regs->gpr[4] = (unsigned long) sc;
 905	regs_set_return_ip(regs, (unsigned long) ksig->ka.sa.sa_handler);
 
 
 906	/* enter the signal handler in native-endian mode */
 907	regs_set_return_msr(regs, (regs->msr & ~MSR_LE) | (MSR_KERNEL & MSR_LE));
 908
 909	return 0;
 910
 911failed:
 912	user_access_end();
 913
 914badframe:
 915	signal_fault(tsk, regs, "handle_signal32", frame);
 
 
 
 
 
 
 
 
 
 916
 917	return 1;
 
 918}
 919
 920static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
 921{
 922	sigset_t set;
 923	struct mcontext __user *mcp;
 924
 925	if (!user_read_access_begin(ucp, sizeof(*ucp)))
 926		return -EFAULT;
 927
 928	unsafe_get_sigset_t(&set, &ucp->uc_sigmask, failed);
 929#ifdef CONFIG_PPC64
 930	{
 931		u32 cmcp;
 932
 933		unsafe_get_user(cmcp, &ucp->uc_regs, failed);
 
 934		mcp = (struct mcontext __user *)(u64)cmcp;
 
 935	}
 936#else
 937	unsafe_get_user(mcp, &ucp->uc_regs, failed);
 
 
 
 938#endif
 939	user_read_access_end();
 940
 941	set_current_blocked(&set);
 942	if (restore_user_regs(regs, mcp, sig))
 943		return -EFAULT;
 944
 945	return 0;
 946
 947failed:
 948	user_read_access_end();
 949	return -EFAULT;
 950}
 951
 952#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 953static int do_setcontext_tm(struct ucontext __user *ucp,
 954			    struct ucontext __user *tm_ucp,
 955			    struct pt_regs *regs)
 956{
 957	sigset_t set;
 958	struct mcontext __user *mcp;
 959	struct mcontext __user *tm_mcp;
 960	u32 cmcp;
 961	u32 tm_cmcp;
 962
 963	if (!user_read_access_begin(ucp, sizeof(*ucp)))
 964		return -EFAULT;
 965
 966	unsafe_get_sigset_t(&set, &ucp->uc_sigmask, failed);
 967	unsafe_get_user(cmcp, &ucp->uc_regs, failed);
 968
 969	user_read_access_end();
 970
 971	if (__get_user(tm_cmcp, &tm_ucp->uc_regs))
 972		return -EFAULT;
 973	mcp = (struct mcontext __user *)(u64)cmcp;
 974	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
 975	/* no need to check access_ok(mcp), since mcp < 4GB */
 976
 977	set_current_blocked(&set);
 978	if (restore_tm_user_regs(regs, mcp, tm_mcp))
 979		return -EFAULT;
 980
 981	return 0;
 982
 983failed:
 984	user_read_access_end();
 985	return -EFAULT;
 986}
 987#endif
 988
 989#ifdef CONFIG_PPC64
 990COMPAT_SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
 991		       struct ucontext __user *, new_ctx, int, ctx_size)
 992#else
 993SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
 994		       struct ucontext __user *, new_ctx, long, ctx_size)
 995#endif
 996{
 997	struct pt_regs *regs = current_pt_regs();
 998	int ctx_has_vsx_region = 0;
 999
1000#ifdef CONFIG_PPC64
1001	unsigned long new_msr = 0;
1002
1003	if (new_ctx) {
1004		struct mcontext __user *mcp;
1005		u32 cmcp;
1006
1007		/*
1008		 * Get pointer to the real mcontext.  No need for
1009		 * access_ok since we are dealing with compat
1010		 * pointers.
1011		 */
1012		if (__get_user(cmcp, &new_ctx->uc_regs))
1013			return -EFAULT;
1014		mcp = (struct mcontext __user *)(u64)cmcp;
1015		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1016			return -EFAULT;
1017	}
1018	/*
1019	 * Check that the context is not smaller than the original
1020	 * size (with VMX but without VSX)
1021	 */
1022	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1023		return -EINVAL;
1024	/*
1025	 * If the new context state sets the MSR VSX bits but
1026	 * it doesn't provide VSX state.
1027	 */
1028	if ((ctx_size < sizeof(struct ucontext)) &&
1029	    (new_msr & MSR_VSX))
1030		return -EINVAL;
1031	/* Does the context have enough room to store VSX data? */
1032	if (ctx_size >= sizeof(struct ucontext))
1033		ctx_has_vsx_region = 1;
1034#else
1035	/* Context size is for future use. Right now, we only make sure
1036	 * we are passed something we understand
1037	 */
1038	if (ctx_size < sizeof(struct ucontext))
1039		return -EINVAL;
1040#endif
1041	if (old_ctx != NULL) {
1042		struct mcontext __user *mctx;
1043
1044		/*
1045		 * old_ctx might not be 16-byte aligned, in which
1046		 * case old_ctx->uc_mcontext won't be either.
1047		 * Because we have the old_ctx->uc_pad2 field
1048		 * before old_ctx->uc_mcontext, we need to round down
1049		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1050		 */
1051		mctx = (struct mcontext __user *)
1052			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1053		prepare_save_user_regs(ctx_has_vsx_region);
1054		if (!user_write_access_begin(old_ctx, ctx_size))
 
 
1055			return -EFAULT;
1056		unsafe_save_user_regs(regs, mctx, NULL, ctx_has_vsx_region, failed);
1057		unsafe_put_sigset_t(&old_ctx->uc_sigmask, &current->blocked, failed);
1058		unsafe_put_user(to_user_ptr(mctx), &old_ctx->uc_regs, failed);
1059		user_write_access_end();
1060	}
1061	if (new_ctx == NULL)
1062		return 0;
1063	if (!access_ok(new_ctx, ctx_size) ||
1064	    fault_in_readable((char __user *)new_ctx, ctx_size))
 
1065		return -EFAULT;
1066
1067	/*
1068	 * If we get a fault copying the context into the kernel's
1069	 * image of the user's registers, we can't just return -EFAULT
1070	 * because the user's registers will be corrupted.  For instance
1071	 * the NIP value may have been updated but not some of the
1072	 * other registers.  Given that we have done the access_ok
1073	 * and successfully read the first and last bytes of the region
1074	 * above, this should only happen in an out-of-memory situation
1075	 * or if another thread unmaps the region containing the context.
1076	 * We kill the task with a SIGSEGV in this situation.
1077	 */
1078	if (do_setcontext(new_ctx, regs, 0)) {
1079		force_exit_sig(SIGSEGV);
1080		return -EFAULT;
1081	}
1082
1083	set_thread_flag(TIF_RESTOREALL);
1084	return 0;
1085
1086failed:
1087	user_write_access_end();
1088	return -EFAULT;
1089}
1090
1091#ifdef CONFIG_PPC64
1092COMPAT_SYSCALL_DEFINE0(rt_sigreturn)
1093#else
1094SYSCALL_DEFINE0(rt_sigreturn)
1095#endif
1096{
1097	struct rt_sigframe __user *rt_sf;
1098	struct pt_regs *regs = current_pt_regs();
1099	int tm_restore = 0;
1100#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1101	struct ucontext __user *uc_transact;
1102	unsigned long msr_hi;
1103	unsigned long tmp;
 
1104#endif
1105	/* Always make any pending restarted system calls return -EINTR */
1106	current->restart_block.fn = do_no_restart_syscall;
1107
1108	rt_sf = (struct rt_sigframe __user *)
1109		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1110	if (!access_ok(rt_sf, sizeof(*rt_sf)))
1111		goto bad;
1112
1113#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1114	/*
1115	 * If there is a transactional state then throw it away.
1116	 * The purpose of a sigreturn is to destroy all traces of the
1117	 * signal frame, this includes any transactional state created
1118	 * within in. We only check for suspended as we can never be
1119	 * active in the kernel, we are active, there is nothing better to
1120	 * do than go ahead and Bad Thing later.
1121	 * The cause is not important as there will never be a
1122	 * recheckpoint so it's not user visible.
1123	 */
1124	if (MSR_TM_SUSPENDED(mfmsr()))
1125		tm_reclaim_current(0);
1126
1127	if (__get_user(tmp, &rt_sf->uc.uc_link))
1128		goto bad;
1129	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1130	if (uc_transact) {
1131		u32 cmcp;
1132		struct mcontext __user *mcp;
1133
1134		if (__get_user(cmcp, &uc_transact->uc_regs))
1135			return -EFAULT;
1136		mcp = (struct mcontext __user *)(u64)cmcp;
1137		/* The top 32 bits of the MSR are stashed in the transactional
1138		 * ucontext. */
1139		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1140			goto bad;
1141
1142		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1143			/* Trying to start TM on non TM system */
1144			if (!cpu_has_feature(CPU_FTR_TM))
1145				goto bad;
1146			/* We only recheckpoint on return if we're
1147			 * transaction.
1148			 */
1149			tm_restore = 1;
1150			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1151				goto bad;
1152		}
1153	}
1154	if (!tm_restore) {
1155		/*
1156		 * Unset regs->msr because ucontext MSR TS is not
1157		 * set, and recheckpoint was not called. This avoid
1158		 * hitting a TM Bad thing at RFID
1159		 */
1160		regs_set_return_msr(regs, regs->msr & ~MSR_TS_MASK);
1161	}
1162	/* Fall through, for non-TM restore */
1163#endif
1164	if (!tm_restore)
1165		if (do_setcontext(&rt_sf->uc, regs, 1))
1166			goto bad;
 
 
1167
1168	/*
1169	 * It's not clear whether or why it is desirable to save the
1170	 * sigaltstack setting on signal delivery and restore it on
1171	 * signal return.  But other architectures do this and we have
1172	 * always done it up until now so it is probably better not to
1173	 * change it.  -- paulus
1174	 */
1175#ifdef CONFIG_PPC64
1176	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1177		goto bad;
1178#else
1179	if (restore_altstack(&rt_sf->uc.uc_stack))
1180		goto bad;
1181#endif
1182	set_thread_flag(TIF_RESTOREALL);
1183	return 0;
1184
1185 bad:
1186	signal_fault(current, regs, "sys_rt_sigreturn", rt_sf);
 
 
 
 
 
1187
1188	force_sig(SIGSEGV);
1189	return 0;
1190}
1191
1192#ifdef CONFIG_PPC32
1193SYSCALL_DEFINE3(debug_setcontext, struct ucontext __user *, ctx,
1194			 int, ndbg, struct sig_dbg_op __user *, dbg)
 
 
1195{
1196	struct pt_regs *regs = current_pt_regs();
1197	struct sig_dbg_op op;
1198	int i;
 
1199	unsigned long new_msr = regs->msr;
1200#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1201	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1202#endif
1203
1204	for (i=0; i<ndbg; i++) {
1205		if (copy_from_user(&op, dbg + i, sizeof(op)))
1206			return -EFAULT;
1207		switch (op.dbg_type) {
1208		case SIG_DBG_SINGLE_STEPPING:
1209#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1210			if (op.dbg_value) {
1211				new_msr |= MSR_DE;
1212				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1213			} else {
1214				new_dbcr0 &= ~DBCR0_IC;
1215				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1216						current->thread.debug.dbcr1)) {
1217					new_msr &= ~MSR_DE;
1218					new_dbcr0 &= ~DBCR0_IDM;
1219				}
1220			}
1221#else
1222			if (op.dbg_value)
1223				new_msr |= MSR_SE;
1224			else
1225				new_msr &= ~MSR_SE;
1226#endif
1227			break;
1228		case SIG_DBG_BRANCH_TRACING:
1229#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1230			return -EINVAL;
1231#else
1232			if (op.dbg_value)
1233				new_msr |= MSR_BE;
1234			else
1235				new_msr &= ~MSR_BE;
1236#endif
1237			break;
1238
1239		default:
1240			return -EINVAL;
1241		}
1242	}
1243
1244	/* We wait until here to actually install the values in the
1245	   registers so if we fail in the above loop, it will not
1246	   affect the contents of these registers.  After this point,
1247	   failure is a problem, anyway, and it's very unlikely unless
1248	   the user is really doing something wrong. */
1249	regs_set_return_msr(regs, new_msr);
1250#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1251	current->thread.debug.dbcr0 = new_dbcr0;
1252#endif
1253
1254	if (!access_ok(ctx, sizeof(*ctx)) ||
1255	    fault_in_readable((char __user *)ctx, sizeof(*ctx)))
 
1256		return -EFAULT;
1257
1258	/*
1259	 * If we get a fault copying the context into the kernel's
1260	 * image of the user's registers, we can't just return -EFAULT
1261	 * because the user's registers will be corrupted.  For instance
1262	 * the NIP value may have been updated but not some of the
1263	 * other registers.  Given that we have done the access_ok
1264	 * and successfully read the first and last bytes of the region
1265	 * above, this should only happen in an out-of-memory situation
1266	 * or if another thread unmaps the region containing the context.
1267	 * We kill the task with a SIGSEGV in this situation.
1268	 */
1269	if (do_setcontext(ctx, regs, 1)) {
1270		signal_fault(current, regs, "sys_debug_setcontext", ctx);
 
 
 
 
 
1271
1272		force_sig(SIGSEGV);
1273		goto out;
1274	}
1275
1276	/*
1277	 * It's not clear whether or why it is desirable to save the
1278	 * sigaltstack setting on signal delivery and restore it on
1279	 * signal return.  But other architectures do this and we have
1280	 * always done it up until now so it is probably better not to
1281	 * change it.  -- paulus
1282	 */
1283	restore_altstack(&ctx->uc_stack);
1284
1285	set_thread_flag(TIF_RESTOREALL);
1286 out:
1287	return 0;
1288}
1289#endif
1290
1291/*
1292 * Do a signal return; undo the signal stack.
1293 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1294#ifdef CONFIG_PPC64
1295COMPAT_SYSCALL_DEFINE0(sigreturn)
1296#else
1297SYSCALL_DEFINE0(sigreturn)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1298#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299{
1300	struct pt_regs *regs = current_pt_regs();
1301	struct sigframe __user *sf;
1302	struct sigcontext __user *sc;
1303	struct sigcontext sigctx;
1304	struct mcontext __user *sr;
 
1305	sigset_t set;
1306	struct mcontext __user *mcp;
1307	struct mcontext __user *tm_mcp = NULL;
1308	unsigned long long msr_hi = 0;
 
1309
1310	/* Always make any pending restarted system calls return -EINTR */
1311	current->restart_block.fn = do_no_restart_syscall;
1312
1313	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1314	sc = &sf->sctx;
 
1315	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1316		goto badframe;
1317
1318#ifdef CONFIG_PPC64
1319	/*
1320	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1321	 * unused part of the signal stackframe
1322	 */
1323	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1324#else
1325	set.sig[0] = sigctx.oldmask;
1326	set.sig[1] = sigctx._unused[3];
1327#endif
1328	set_current_blocked(&set);
1329
1330	mcp = (struct mcontext __user *)&sf->mctx;
1331#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 
1332	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1333	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1334		goto badframe;
1335#endif
1336	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1337		if (!cpu_has_feature(CPU_FTR_TM))
1338			goto badframe;
1339		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1340			goto badframe;
1341	} else {
 
 
1342		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1343		if (restore_user_regs(regs, sr, 1)) {
1344			signal_fault(current, regs, "sys_sigreturn", sr);
1345
1346			force_sig(SIGSEGV);
1347			return 0;
1348		}
1349	}
1350
1351	set_thread_flag(TIF_RESTOREALL);
1352	return 0;
1353
1354badframe:
1355	signal_fault(current, regs, "sys_sigreturn", sc);
 
 
 
 
 
1356
1357	force_sig(SIGSEGV);
1358	return 0;
1359}
v3.15
 
   1/*
   2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
   3 *
   4 *  PowerPC version
   5 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   6 * Copyright (C) 2001 IBM
   7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
   9 *
  10 *  Derived from "arch/i386/kernel/signal.c"
  11 *    Copyright (C) 1991, 1992 Linus Torvalds
  12 *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
  13 *
  14 *  This program is free software; you can redistribute it and/or
  15 *  modify it under the terms of the GNU General Public License
  16 *  as published by the Free Software Foundation; either version
  17 *  2 of the License, or (at your option) any later version.
  18 */
  19
  20#include <linux/sched.h>
  21#include <linux/mm.h>
  22#include <linux/smp.h>
  23#include <linux/kernel.h>
  24#include <linux/signal.h>
  25#include <linux/errno.h>
  26#include <linux/elf.h>
  27#include <linux/ptrace.h>
 
  28#include <linux/ratelimit.h>
 
  29#ifdef CONFIG_PPC64
  30#include <linux/syscalls.h>
  31#include <linux/compat.h>
  32#else
  33#include <linux/wait.h>
  34#include <linux/unistd.h>
  35#include <linux/stddef.h>
  36#include <linux/tty.h>
  37#include <linux/binfmts.h>
  38#endif
  39
  40#include <asm/uaccess.h>
  41#include <asm/cacheflush.h>
  42#include <asm/syscalls.h>
  43#include <asm/sigcontext.h>
  44#include <asm/vdso.h>
  45#include <asm/switch_to.h>
  46#include <asm/tm.h>
 
  47#ifdef CONFIG_PPC64
  48#include "ppc32.h"
  49#include <asm/unistd.h>
  50#else
  51#include <asm/ucontext.h>
  52#include <asm/pgtable.h>
  53#endif
  54
  55#include "signal.h"
  56
  57#undef DEBUG_SIG
  58
  59#ifdef CONFIG_PPC64
  60#define sys_rt_sigreturn	compat_sys_rt_sigreturn
  61#define sys_swapcontext	compat_sys_swapcontext
  62#define sys_sigreturn	compat_sys_sigreturn
  63
  64#define old_sigaction	old_sigaction32
  65#define sigcontext	sigcontext32
  66#define mcontext	mcontext32
  67#define ucontext	ucontext32
  68
  69#define __save_altstack __compat_save_altstack
  70
  71/*
  72 * Userspace code may pass a ucontext which doesn't include VSX added
  73 * at the end.  We need to check for this case.
  74 */
  75#define UCONTEXTSIZEWITHOUTVSX \
  76		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
  77
  78/*
  79 * Returning 0 means we return to userspace via
  80 * ret_from_except and thus restore all user
  81 * registers from *regs.  This is what we need
  82 * to do when a signal has been delivered.
  83 */
  84
  85#define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
  86#undef __SIGNAL_FRAMESIZE
  87#define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
  88#undef ELF_NVRREG
  89#define ELF_NVRREG	ELF_NVRREG32
  90
  91/*
  92 * Functions for flipping sigsets (thanks to brain dead generic
  93 * implementation that makes things simple for little endian only)
  94 */
  95static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
  96{
  97	compat_sigset_t	cset;
  98
  99	switch (_NSIG_WORDS) {
 100	case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
 101		cset.sig[7] = set->sig[3] >> 32;
 102	case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
 103		cset.sig[5] = set->sig[2] >> 32;
 104	case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
 105		cset.sig[3] = set->sig[1] >> 32;
 106	case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
 107		cset.sig[1] = set->sig[0] >> 32;
 108	}
 109	return copy_to_user(uset, &cset, sizeof(*uset));
 110}
 111
 112static inline int get_sigset_t(sigset_t *set,
 113			       const compat_sigset_t __user *uset)
 114{
 115	compat_sigset_t s32;
 116
 117	if (copy_from_user(&s32, uset, sizeof(*uset)))
 118		return -EFAULT;
 119
 120	/*
 121	 * Swap the 2 words of the 64-bit sigset_t (they are stored
 122	 * in the "wrong" endian in 32-bit user storage).
 123	 */
 124	switch (_NSIG_WORDS) {
 125	case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
 126	case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
 127	case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
 128	case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
 129	}
 130	return 0;
 131}
 132
 133#define to_user_ptr(p)		ptr_to_compat(p)
 134#define from_user_ptr(p)	compat_ptr(p)
 135
 136static inline int save_general_regs(struct pt_regs *regs,
 137		struct mcontext __user *frame)
 138{
 139	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 140	int i;
 141
 142	WARN_ON(!FULL_REGS(regs));
 
 
 
 
 
 143
 144	for (i = 0; i <= PT_RESULT; i ++) {
 145		if (i == 14 && !FULL_REGS(regs))
 146			i = 32;
 147		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
 148			return -EFAULT;
 149	}
 150	return 0;
 
 
 
 151}
 152
 153static inline int restore_general_regs(struct pt_regs *regs,
 154		struct mcontext __user *sr)
 155{
 156	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
 157	int i;
 158
 159	for (i = 0; i <= PT_RESULT; i++) {
 160		if ((i == PT_MSR) || (i == PT_SOFTE))
 161			continue;
 162		if (__get_user(gregs[i], &sr->mc_gregs[i]))
 163			return -EFAULT;
 164	}
 165	return 0;
 
 
 
 166}
 167
 168#else /* CONFIG_PPC64 */
 169
 170#define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
 171
 172static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
 173{
 174	return copy_to_user(uset, set, sizeof(*uset));
 175}
 
 
 176
 177static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
 178{
 179	return copy_from_user(set, uset, sizeof(*uset));
 180}
 181
 182#define to_user_ptr(p)		((unsigned long)(p))
 183#define from_user_ptr(p)	((void __user *)(p))
 184
 185static inline int save_general_regs(struct pt_regs *regs,
 186		struct mcontext __user *frame)
 187{
 188	WARN_ON(!FULL_REGS(regs));
 189	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
 
 
 
 190}
 191
 192static inline int restore_general_regs(struct pt_regs *regs,
 193		struct mcontext __user *sr)
 194{
 195	/* copy up to but not including MSR */
 196	if (__copy_from_user(regs, &sr->mc_gregs,
 197				PT_MSR * sizeof(elf_greg_t)))
 198		return -EFAULT;
 199	/* copy from orig_r3 (the word after the MSR) up to the end */
 200	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
 201				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
 202		return -EFAULT;
 203	return 0;
 
 
 
 204}
 205#endif
 206
 
 
 
 
 
 
 
 
 
 
 207/*
 208 * When we have signals to deliver, we set up on the
 209 * user stack, going down from the original stack pointer:
 210 *	an ABI gap of 56 words
 211 *	an mcontext struct
 212 *	a sigcontext struct
 213 *	a gap of __SIGNAL_FRAMESIZE bytes
 214 *
 215 * Each of these things must be a multiple of 16 bytes in size. The following
 216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
 217 *
 218 */
 219struct sigframe {
 220	struct sigcontext sctx;		/* the sigcontext */
 221	struct mcontext	mctx;		/* all the register values */
 222#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 223	struct sigcontext sctx_transact;
 224	struct mcontext	mctx_transact;
 225#endif
 226	/*
 227	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 228	 * regs and 18 fp regs below sp before decrementing it.
 229	 */
 230	int			abigap[56];
 231};
 232
 233/* We use the mc_pad field for the signal return trampoline. */
 234#define tramp	mc_pad
 235
 236/*
 237 *  When we have rt signals to deliver, we set up on the
 238 *  user stack, going down from the original stack pointer:
 239 *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
 240 *	a gap of __SIGNAL_FRAMESIZE+16 bytes
 241 *  (the +16 is to get the siginfo and ucontext in the same
 242 *  positions as in older kernels).
 243 *
 244 *  Each of these things must be a multiple of 16 bytes in size.
 245 *
 246 */
 247struct rt_sigframe {
 248#ifdef CONFIG_PPC64
 249	compat_siginfo_t info;
 250#else
 251	struct siginfo info;
 252#endif
 253	struct ucontext	uc;
 254#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 255	struct ucontext	uc_transact;
 256#endif
 257	/*
 258	 * Programs using the rs6000/xcoff abi can save up to 19 gp
 259	 * regs and 18 fp regs below sp before decrementing it.
 260	 */
 261	int			abigap[56];
 262};
 263
 264#ifdef CONFIG_VSX
 265unsigned long copy_fpr_to_user(void __user *to,
 266			       struct task_struct *task)
 267{
 268	u64 buf[ELF_NFPREG];
 269	int i;
 270
 271	/* save FPR copy to local buffer then write to the thread_struct */
 272	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 273		buf[i] = task->thread.TS_FPR(i);
 274	buf[i] = task->thread.fp_state.fpscr;
 275	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 276}
 277
 278unsigned long copy_fpr_from_user(struct task_struct *task,
 279				 void __user *from)
 280{
 281	u64 buf[ELF_NFPREG];
 282	int i;
 283
 284	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 285		return 1;
 286	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 287		task->thread.TS_FPR(i) = buf[i];
 288	task->thread.fp_state.fpscr = buf[i];
 289
 290	return 0;
 291}
 292
 293unsigned long copy_vsx_to_user(void __user *to,
 294			       struct task_struct *task)
 295{
 296	u64 buf[ELF_NVSRHALFREG];
 297	int i;
 298
 299	/* save FPR copy to local buffer then write to the thread_struct */
 300	for (i = 0; i < ELF_NVSRHALFREG; i++)
 301		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
 302	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 303}
 304
 305unsigned long copy_vsx_from_user(struct task_struct *task,
 306				 void __user *from)
 307{
 308	u64 buf[ELF_NVSRHALFREG];
 309	int i;
 310
 311	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 312		return 1;
 313	for (i = 0; i < ELF_NVSRHALFREG ; i++)
 314		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 315	return 0;
 316}
 317
 318#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 319unsigned long copy_transact_fpr_to_user(void __user *to,
 320				  struct task_struct *task)
 321{
 322	u64 buf[ELF_NFPREG];
 323	int i;
 324
 325	/* save FPR copy to local buffer then write to the thread_struct */
 326	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 327		buf[i] = task->thread.TS_TRANS_FPR(i);
 328	buf[i] = task->thread.transact_fp.fpscr;
 329	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
 330}
 331
 332unsigned long copy_transact_fpr_from_user(struct task_struct *task,
 333					  void __user *from)
 334{
 335	u64 buf[ELF_NFPREG];
 336	int i;
 337
 338	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
 339		return 1;
 340	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
 341		task->thread.TS_TRANS_FPR(i) = buf[i];
 342	task->thread.transact_fp.fpscr = buf[i];
 343
 344	return 0;
 345}
 346
 347unsigned long copy_transact_vsx_to_user(void __user *to,
 348				  struct task_struct *task)
 349{
 350	u64 buf[ELF_NVSRHALFREG];
 351	int i;
 352
 353	/* save FPR copy to local buffer then write to the thread_struct */
 354	for (i = 0; i < ELF_NVSRHALFREG; i++)
 355		buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET];
 356	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
 357}
 358
 359unsigned long copy_transact_vsx_from_user(struct task_struct *task,
 360					  void __user *from)
 361{
 362	u64 buf[ELF_NVSRHALFREG];
 363	int i;
 364
 365	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
 366		return 1;
 367	for (i = 0; i < ELF_NVSRHALFREG ; i++)
 368		task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i];
 369	return 0;
 370}
 371#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 372#else
 373inline unsigned long copy_fpr_to_user(void __user *to,
 374				      struct task_struct *task)
 375{
 376	return __copy_to_user(to, task->thread.fp_state.fpr,
 377			      ELF_NFPREG * sizeof(double));
 378}
 379
 380inline unsigned long copy_fpr_from_user(struct task_struct *task,
 381					void __user *from)
 382{
 383	return __copy_from_user(task->thread.fp_state.fpr, from,
 384			      ELF_NFPREG * sizeof(double));
 385}
 386
 387#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 388inline unsigned long copy_transact_fpr_to_user(void __user *to,
 389					 struct task_struct *task)
 390{
 391	return __copy_to_user(to, task->thread.transact_fp.fpr,
 392			      ELF_NFPREG * sizeof(double));
 393}
 394
 395inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
 396						 void __user *from)
 397{
 398	return __copy_from_user(task->thread.transact_fp.fpr, from,
 399				ELF_NFPREG * sizeof(double));
 400}
 401#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 402#endif
 403
 404/*
 405 * Save the current user registers on the user stack.
 406 * We only save the altivec/spe registers if the process has used
 407 * altivec/spe instructions at some point.
 408 */
 409static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
 410			  struct mcontext __user *tm_frame, int sigret,
 411			  int ctx_has_vsx_region)
 412{
 413	unsigned long msr = regs->msr;
 414
 415	/* Make sure floating point registers are stored in regs */
 416	flush_fp_to_thread(current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417
 418	/* save general registers */
 419	if (save_general_regs(regs, frame))
 420		return 1;
 421
 422#ifdef CONFIG_ALTIVEC
 423	/* save altivec registers */
 424	if (current->thread.used_vr) {
 425		flush_altivec_to_thread(current);
 426		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 427				   ELF_NVRREG * sizeof(vector128)))
 428			return 1;
 429		/* set MSR_VEC in the saved MSR value to indicate that
 430		   frame->mc_vregs contains valid data */
 431		msr |= MSR_VEC;
 432	}
 433	/* else assert((regs->msr & MSR_VEC) == 0) */
 434
 435	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 436	 * use altivec. Since VSCR only contains 32 bits saved in the least
 437	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 438	 * most significant bits of that same vector. --BenH
 439	 * Note that the current VRSAVE value is in the SPR at this point.
 440	 */
 441	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 442		current->thread.vrsave = mfspr(SPRN_VRSAVE);
 443	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
 444		return 1;
 445#endif /* CONFIG_ALTIVEC */
 446	if (copy_fpr_to_user(&frame->mc_fregs, current))
 447		return 1;
 448
 449	/*
 450	 * Clear the MSR VSX bit to indicate there is no valid state attached
 451	 * to this context, except in the specific case below where we set it.
 452	 */
 453	msr &= ~MSR_VSX;
 454#ifdef CONFIG_VSX
 455	/*
 456	 * Copy VSR 0-31 upper half from thread_struct to local
 457	 * buffer, then write that to userspace.  Also set MSR_VSX in
 458	 * the saved MSR value to indicate that frame->mc_vregs
 459	 * contains valid data
 460	 */
 461	if (current->thread.used_vsr && ctx_has_vsx_region) {
 462		__giveup_vsx(current);
 463		if (copy_vsx_to_user(&frame->mc_vsregs, current))
 464			return 1;
 465		msr |= MSR_VSX;
 466	}
 467#endif /* CONFIG_VSX */
 468#ifdef CONFIG_SPE
 469	/* save spe registers */
 470	if (current->thread.used_spe) {
 471		flush_spe_to_thread(current);
 472		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 473				   ELF_NEVRREG * sizeof(u32)))
 474			return 1;
 475		/* set MSR_SPE in the saved MSR value to indicate that
 476		   frame->mc_vregs contains valid data */
 477		msr |= MSR_SPE;
 478	}
 479	/* else assert((regs->msr & MSR_SPE) == 0) */
 480
 481	/* We always copy to/from spefscr */
 482	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 483		return 1;
 484#endif /* CONFIG_SPE */
 485
 486	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 487		return 1;
 488	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
 489	 * can check it on the restore to see if TM is active
 490	 */
 491	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
 492		return 1;
 493
 494	if (sigret) {
 495		/* Set up the sigreturn trampoline: li r0,sigret; sc */
 496		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
 497		    || __put_user(0x44000002UL, &frame->tramp[1]))
 498			return 1;
 499		flush_icache_range((unsigned long) &frame->tramp[0],
 500				   (unsigned long) &frame->tramp[2]);
 501	}
 502
 503	return 0;
 
 504}
 505
 
 
 
 
 
 506#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 507/*
 508 * Save the current user registers on the user stack.
 509 * We only save the altivec/spe registers if the process has used
 510 * altivec/spe instructions at some point.
 511 * We also save the transactional registers to a second ucontext in the
 512 * frame.
 513 *
 514 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
 515 */
 516static int save_tm_user_regs(struct pt_regs *regs,
 517			     struct mcontext __user *frame,
 518			     struct mcontext __user *tm_frame, int sigret)
 519{
 520	unsigned long msr = regs->msr;
 521
 522	/* Remove TM bits from thread's MSR.  The MSR in the sigcontext
 523	 * just indicates to userland that we were doing a transaction, but we
 524	 * don't want to return in transactional state.  This also ensures
 525	 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
 526	 */
 527	regs->msr &= ~MSR_TS_MASK;
 528
 529	/* Make sure floating point registers are stored in regs */
 530	flush_fp_to_thread(current);
 531
 
 
 
 
 532	/* Save both sets of general registers */
 533	if (save_general_regs(&current->thread.ckpt_regs, frame)
 534	    || save_general_regs(regs, tm_frame))
 535		return 1;
 536
 537	/* Stash the top half of the 64bit MSR into the 32bit MSR word
 538	 * of the transactional mcontext.  This way we have a backward-compatible
 539	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
 540	 * also look at what type of transaction (T or S) was active at the
 541	 * time of the signal.
 542	 */
 543	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
 544		return 1;
 545
 546#ifdef CONFIG_ALTIVEC
 547	/* save altivec registers */
 548	if (current->thread.used_vr) {
 549		flush_altivec_to_thread(current);
 550		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
 551				   ELF_NVRREG * sizeof(vector128)))
 552			return 1;
 553		if (msr & MSR_VEC) {
 554			if (__copy_to_user(&tm_frame->mc_vregs,
 555					   &current->thread.transact_vr,
 556					   ELF_NVRREG * sizeof(vector128)))
 557				return 1;
 558		} else {
 559			if (__copy_to_user(&tm_frame->mc_vregs,
 560					   &current->thread.vr_state,
 561					   ELF_NVRREG * sizeof(vector128)))
 562				return 1;
 563		}
 564
 565		/* set MSR_VEC in the saved MSR value to indicate that
 566		 * frame->mc_vregs contains valid data
 567		 */
 568		msr |= MSR_VEC;
 569	}
 570
 571	/* We always copy to/from vrsave, it's 0 if we don't have or don't
 572	 * use altivec. Since VSCR only contains 32 bits saved in the least
 573	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
 574	 * most significant bits of that same vector. --BenH
 575	 */
 576	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 577		current->thread.vrsave = mfspr(SPRN_VRSAVE);
 578	if (__put_user(current->thread.vrsave,
 579		       (u32 __user *)&frame->mc_vregs[32]))
 580		return 1;
 581	if (msr & MSR_VEC) {
 582		if (__put_user(current->thread.transact_vrsave,
 583			       (u32 __user *)&tm_frame->mc_vregs[32]))
 584			return 1;
 585	} else {
 586		if (__put_user(current->thread.vrsave,
 587			       (u32 __user *)&tm_frame->mc_vregs[32]))
 588			return 1;
 589	}
 590#endif /* CONFIG_ALTIVEC */
 591
 592	if (copy_fpr_to_user(&frame->mc_fregs, current))
 593		return 1;
 594	if (msr & MSR_FP) {
 595		if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
 596			return 1;
 597	} else {
 598		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
 599			return 1;
 600	}
 601
 602#ifdef CONFIG_VSX
 603	/*
 604	 * Copy VSR 0-31 upper half from thread_struct to local
 605	 * buffer, then write that to userspace.  Also set MSR_VSX in
 606	 * the saved MSR value to indicate that frame->mc_vregs
 607	 * contains valid data
 608	 */
 609	if (current->thread.used_vsr) {
 610		__giveup_vsx(current);
 611		if (copy_vsx_to_user(&frame->mc_vsregs, current))
 612			return 1;
 613		if (msr & MSR_VSX) {
 614			if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
 615						      current))
 616				return 1;
 617		} else {
 618			if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
 619				return 1;
 620		}
 621
 622		msr |= MSR_VSX;
 623	}
 624#endif /* CONFIG_VSX */
 625#ifdef CONFIG_SPE
 626	/* SPE regs are not checkpointed with TM, so this section is
 627	 * simply the same as in save_user_regs().
 628	 */
 629	if (current->thread.used_spe) {
 630		flush_spe_to_thread(current);
 631		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
 632				   ELF_NEVRREG * sizeof(u32)))
 633			return 1;
 634		/* set MSR_SPE in the saved MSR value to indicate that
 635		 * frame->mc_vregs contains valid data */
 636		msr |= MSR_SPE;
 637	}
 638
 639	/* We always copy to/from spefscr */
 640	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
 641		return 1;
 642#endif /* CONFIG_SPE */
 643
 644	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
 645		return 1;
 646	if (sigret) {
 647		/* Set up the sigreturn trampoline: li r0,sigret; sc */
 648		if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
 649		    || __put_user(0x44000002UL, &frame->tramp[1]))
 650			return 1;
 651		flush_icache_range((unsigned long) &frame->tramp[0],
 652				   (unsigned long) &frame->tramp[2]);
 653	}
 654
 
 
 
 
 655	return 0;
 656}
 657#endif
 658
 
 
 
 
 
 659/*
 660 * Restore the current user register values from the user stack,
 661 * (except for MSR).
 662 */
 663static long restore_user_regs(struct pt_regs *regs,
 664			      struct mcontext __user *sr, int sig)
 665{
 666	long err;
 667	unsigned int save_r2 = 0;
 668	unsigned long msr;
 669#ifdef CONFIG_VSX
 670	int i;
 671#endif
 672
 
 
 673	/*
 674	 * restore general registers but not including MSR or SOFTE. Also
 675	 * take care of keeping r2 (TLS) intact if not a signal
 676	 */
 677	if (!sig)
 678		save_r2 = (unsigned int)regs->gpr[2];
 679	err = restore_general_regs(regs, sr);
 680	regs->trap = 0;
 681	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 682	if (!sig)
 683		regs->gpr[2] = (unsigned long) save_r2;
 684	if (err)
 685		return 1;
 686
 687	/* if doing signal return, restore the previous little-endian mode */
 688	if (sig)
 689		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 690
 691	/*
 692	 * Do this before updating the thread state in
 693	 * current->thread.fpr/vr/evr.  That way, if we get preempted
 694	 * and another task grabs the FPU/Altivec/SPE, it won't be
 695	 * tempted to save the current CPU state into the thread_struct
 696	 * and corrupt what we are writing there.
 697	 */
 698	discard_lazy_cpu_state();
 699
 700#ifdef CONFIG_ALTIVEC
 701	/*
 702	 * Force the process to reload the altivec registers from
 703	 * current->thread when it next does altivec instructions
 704	 */
 705	regs->msr &= ~MSR_VEC;
 706	if (msr & MSR_VEC) {
 707		/* restore altivec registers from the stack */
 708		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 709				     sizeof(sr->mc_vregs)))
 710			return 1;
 711	} else if (current->thread.used_vr)
 712		memset(&current->thread.vr_state, 0,
 713		       ELF_NVRREG * sizeof(vector128));
 714
 715	/* Always get VRSAVE back */
 716	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
 717		return 1;
 718	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 719		mtspr(SPRN_VRSAVE, current->thread.vrsave);
 720#endif /* CONFIG_ALTIVEC */
 721	if (copy_fpr_from_user(current, &sr->mc_fregs))
 722		return 1;
 723
 724#ifdef CONFIG_VSX
 725	/*
 726	 * Force the process to reload the VSX registers from
 727	 * current->thread when it next does VSX instruction.
 728	 */
 729	regs->msr &= ~MSR_VSX;
 730	if (msr & MSR_VSX) {
 731		/*
 732		 * Restore altivec registers from the stack to a local
 733		 * buffer, then write this out to the thread_struct
 734		 */
 735		if (copy_vsx_from_user(current, &sr->mc_vsregs))
 736			return 1;
 737	} else if (current->thread.used_vsr)
 738		for (i = 0; i < 32 ; i++)
 739			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 740#endif /* CONFIG_VSX */
 741	/*
 742	 * force the process to reload the FP registers from
 743	 * current->thread when it next does FP instructions
 744	 */
 745	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 746
 747#ifdef CONFIG_SPE
 748	/* force the process to reload the spe registers from
 749	   current->thread when it next does spe instructions */
 750	regs->msr &= ~MSR_SPE;
 
 
 
 
 751	if (msr & MSR_SPE) {
 752		/* restore spe registers from the stack */
 753		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 754				     ELF_NEVRREG * sizeof(u32)))
 755			return 1;
 756	} else if (current->thread.used_spe)
 757		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 758
 759	/* Always get SPEFSCR back */
 760	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
 761		return 1;
 762#endif /* CONFIG_SPE */
 763
 
 764	return 0;
 
 
 
 
 765}
 766
 767#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 768/*
 769 * Restore the current user register values from the user stack, except for
 770 * MSR, and recheckpoint the original checkpointed register state for processes
 771 * in transactions.
 772 */
 773static long restore_tm_user_regs(struct pt_regs *regs,
 774				 struct mcontext __user *sr,
 775				 struct mcontext __user *tm_sr)
 776{
 777	long err;
 778	unsigned long msr, msr_hi;
 779#ifdef CONFIG_VSX
 780	int i;
 781#endif
 782
 
 
 783	/*
 784	 * restore general registers but not including MSR or SOFTE. Also
 785	 * take care of keeping r2 (TLS) intact if not a signal.
 786	 * See comment in signal_64.c:restore_tm_sigcontexts();
 787	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
 788	 * were set by the signal delivery.
 789	 */
 790	err = restore_general_regs(regs, tm_sr);
 791	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
 792
 793	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
 794
 795	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
 796	if (err)
 797		return 1;
 798
 799	/* Restore the previous little-endian mode */
 800	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
 801
 802	/*
 803	 * Do this before updating the thread state in
 804	 * current->thread.fpr/vr/evr.  That way, if we get preempted
 805	 * and another task grabs the FPU/Altivec/SPE, it won't be
 806	 * tempted to save the current CPU state into the thread_struct
 807	 * and corrupt what we are writing there.
 808	 */
 809	discard_lazy_cpu_state();
 810
 811#ifdef CONFIG_ALTIVEC
 812	regs->msr &= ~MSR_VEC;
 813	if (msr & MSR_VEC) {
 814		/* restore altivec registers from the stack */
 815		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
 816				     sizeof(sr->mc_vregs)) ||
 817		    __copy_from_user(&current->thread.transact_vr,
 818				     &tm_sr->mc_vregs,
 819				     sizeof(sr->mc_vregs)))
 820			return 1;
 821	} else if (current->thread.used_vr) {
 822		memset(&current->thread.vr_state, 0,
 823		       ELF_NVRREG * sizeof(vector128));
 824		memset(&current->thread.transact_vr, 0,
 825		       ELF_NVRREG * sizeof(vector128));
 826	}
 827
 828	/* Always get VRSAVE back */
 829	if (__get_user(current->thread.vrsave,
 830		       (u32 __user *)&sr->mc_vregs[32]) ||
 831	    __get_user(current->thread.transact_vrsave,
 832		       (u32 __user *)&tm_sr->mc_vregs[32]))
 833		return 1;
 834	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 835		mtspr(SPRN_VRSAVE, current->thread.vrsave);
 836#endif /* CONFIG_ALTIVEC */
 837
 838	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
 839
 840	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
 841	    copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
 842		return 1;
 843
 844#ifdef CONFIG_VSX
 845	regs->msr &= ~MSR_VSX;
 846	if (msr & MSR_VSX) {
 847		/*
 848		 * Restore altivec registers from the stack to a local
 849		 * buffer, then write this out to the thread_struct
 850		 */
 851		if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
 852		    copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
 853			return 1;
 854	} else if (current->thread.used_vsr)
 855		for (i = 0; i < 32 ; i++) {
 856			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
 857			current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0;
 858		}
 859#endif /* CONFIG_VSX */
 860
 861#ifdef CONFIG_SPE
 862	/* SPE regs are not checkpointed with TM, so this section is
 863	 * simply the same as in restore_user_regs().
 864	 */
 865	regs->msr &= ~MSR_SPE;
 866	if (msr & MSR_SPE) {
 867		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
 868				     ELF_NEVRREG * sizeof(u32)))
 869			return 1;
 870	} else if (current->thread.used_spe)
 871		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872
 873	/* Always get SPEFSCR back */
 874	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
 875		       + ELF_NEVRREG))
 876		return 1;
 877#endif /* CONFIG_SPE */
 878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
 880	 * registers, including FP and V[S]Rs.  After recheckpointing, the
 881	 * transactional versions should be loaded.
 882	 */
 883	tm_enable();
 884	/* Make sure the transaction is marked as failed */
 885	current->thread.tm_texasr |= TEXASR_FS;
 886	/* This loads the checkpointed FP/VEC state, if used */
 887	tm_recheckpoint(&current->thread, msr);
 888	/* Get the top half of the MSR */
 889	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
 890		return 1;
 891	/* Pull in MSR TM from user context */
 892	regs->msr = (regs->msr & ~MSR_TS_MASK) | ((msr_hi<<32) & MSR_TS_MASK);
 893
 894	/* This loads the speculative FP/VEC state, if used */
 
 895	if (msr & MSR_FP) {
 896		do_load_up_transact_fpu(&current->thread);
 897		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
 898	}
 899#ifdef CONFIG_ALTIVEC
 900	if (msr & MSR_VEC) {
 901		do_load_up_transact_altivec(&current->thread);
 902		regs->msr |= MSR_VEC;
 903	}
 904#endif
 905
 
 
 
 
 
 
 
 
 
 
 
 
 906	return 0;
 907}
 908#endif
 909
 910#ifdef CONFIG_PPC64
 911int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s)
 912{
 913	int err;
 914
 915	if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
 916		return -EFAULT;
 917
 918	/* If you change siginfo_t structure, please be sure
 919	 * this code is fixed accordingly.
 920	 * It should never copy any pad contained in the structure
 921	 * to avoid security leaks, but must copy the generic
 922	 * 3 ints plus the relevant union member.
 923	 * This routine must convert siginfo from 64bit to 32bit as well
 924	 * at the same time.
 925	 */
 926	err = __put_user(s->si_signo, &d->si_signo);
 927	err |= __put_user(s->si_errno, &d->si_errno);
 928	err |= __put_user((short)s->si_code, &d->si_code);
 929	if (s->si_code < 0)
 930		err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
 931				      SI_PAD_SIZE32);
 932	else switch(s->si_code >> 16) {
 933	case __SI_CHLD >> 16:
 934		err |= __put_user(s->si_pid, &d->si_pid);
 935		err |= __put_user(s->si_uid, &d->si_uid);
 936		err |= __put_user(s->si_utime, &d->si_utime);
 937		err |= __put_user(s->si_stime, &d->si_stime);
 938		err |= __put_user(s->si_status, &d->si_status);
 939		break;
 940	case __SI_FAULT >> 16:
 941		err |= __put_user((unsigned int)(unsigned long)s->si_addr,
 942				  &d->si_addr);
 943		break;
 944	case __SI_POLL >> 16:
 945		err |= __put_user(s->si_band, &d->si_band);
 946		err |= __put_user(s->si_fd, &d->si_fd);
 947		break;
 948	case __SI_TIMER >> 16:
 949		err |= __put_user(s->si_tid, &d->si_tid);
 950		err |= __put_user(s->si_overrun, &d->si_overrun);
 951		err |= __put_user(s->si_int, &d->si_int);
 952		break;
 953	case __SI_RT >> 16: /* This is not generated by the kernel as of now.  */
 954	case __SI_MESGQ >> 16:
 955		err |= __put_user(s->si_int, &d->si_int);
 956		/* fallthrough */
 957	case __SI_KILL >> 16:
 958	default:
 959		err |= __put_user(s->si_pid, &d->si_pid);
 960		err |= __put_user(s->si_uid, &d->si_uid);
 961		break;
 962	}
 963	return err;
 964}
 965
 966#define copy_siginfo_to_user	copy_siginfo_to_user32
 967
 968int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
 969{
 970	memset(to, 0, sizeof *to);
 971
 972	if (copy_from_user(to, from, 3*sizeof(int)) ||
 973	    copy_from_user(to->_sifields._pad,
 974			   from->_sifields._pad, SI_PAD_SIZE32))
 975		return -EFAULT;
 976
 977	return 0;
 978}
 979#endif /* CONFIG_PPC64 */
 980
 981/*
 982 * Set up a signal frame for a "real-time" signal handler
 983 * (one which gets siginfo).
 984 */
 985int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka,
 986		siginfo_t *info, sigset_t *oldset,
 987		struct pt_regs *regs)
 988{
 989	struct rt_sigframe __user *rt_sf;
 990	struct mcontext __user *frame;
 991	struct mcontext __user *tm_frame = NULL;
 992	void __user *addr;
 993	unsigned long newsp = 0;
 994	int sigret;
 995	unsigned long tramp;
 
 
 
 996
 997	/* Set up Signal Frame */
 998	/* Put a Real Time Context onto stack */
 999	rt_sf = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
1000	addr = rt_sf;
1001	if (unlikely(rt_sf == NULL))
 
 
 
 
 
 
 
1002		goto badframe;
1003
1004	/* Put the siginfo & fill in most of the ucontext */
1005	if (copy_siginfo_to_user(&rt_sf->info, info)
1006	    || __put_user(0, &rt_sf->uc.uc_flags)
1007	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
1008	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
1009		    &rt_sf->uc.uc_regs)
1010	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
1011		goto badframe;
 
 
 
 
 
 
 
 
 
 
 
 
 
1012
1013	/* Save user registers on the stack */
1014	frame = &rt_sf->uc.uc_mcontext;
1015	addr = frame;
1016	if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
1017		sigret = 0;
1018		tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
1019	} else {
1020		sigret = __NR_rt_sigreturn;
1021		tramp = (unsigned long) frame->tramp;
 
 
1022	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1025	tm_frame = &rt_sf->uc_transact.uc_mcontext;
1026	if (MSR_TM_ACTIVE(regs->msr)) {
1027		if (__put_user((unsigned long)&rt_sf->uc_transact,
1028			       &rt_sf->uc.uc_link) ||
1029		    __put_user((unsigned long)tm_frame,
1030			       &rt_sf->uc_transact.uc_regs))
1031			goto badframe;
1032		if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1033			goto badframe;
1034	}
1035	else
 
 
 
 
 
 
 
 
1036#endif
1037	{
1038		if (__put_user(0, &rt_sf->uc.uc_link))
1039			goto badframe;
1040		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1041			goto badframe;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042	}
 
 
1043	regs->link = tramp;
1044
1045	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
 
 
1046
1047	/* create a stack frame for the caller of the handler */
1048	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1049	addr = (void __user *)regs->gpr[1];
1050	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1051		goto badframe;
1052
1053	/* Fill registers for signal handler */
1054	regs->gpr[1] = newsp;
1055	regs->gpr[3] = sig;
1056	regs->gpr[4] = (unsigned long) &rt_sf->info;
1057	regs->gpr[5] = (unsigned long) &rt_sf->uc;
1058	regs->gpr[6] = (unsigned long) rt_sf;
1059	regs->nip = (unsigned long) ka->sa.sa_handler;
1060	/* enter the signal handler in native-endian mode */
1061	regs->msr &= ~MSR_LE;
1062	regs->msr |= (MSR_KERNEL & MSR_LE);
1063	return 1;
 
 
 
1064
1065badframe:
1066#ifdef DEBUG_SIG
1067	printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n",
1068	       regs, frame, newsp);
1069#endif
1070	if (show_unhandled_signals)
1071		printk_ratelimited(KERN_INFO
1072				   "%s[%d]: bad frame in handle_rt_signal32: "
1073				   "%p nip %08lx lr %08lx\n",
1074				   current->comm, current->pid,
1075				   addr, regs->nip, regs->link);
1076
1077	force_sigsegv(sig, current);
1078	return 0;
1079}
1080
1081static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1082{
1083	sigset_t set;
1084	struct mcontext __user *mcp;
1085
1086	if (get_sigset_t(&set, &ucp->uc_sigmask))
1087		return -EFAULT;
 
 
1088#ifdef CONFIG_PPC64
1089	{
1090		u32 cmcp;
1091
1092		if (__get_user(cmcp, &ucp->uc_regs))
1093			return -EFAULT;
1094		mcp = (struct mcontext __user *)(u64)cmcp;
1095		/* no need to check access_ok(mcp), since mcp < 4GB */
1096	}
1097#else
1098	if (__get_user(mcp, &ucp->uc_regs))
1099		return -EFAULT;
1100	if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1101		return -EFAULT;
1102#endif
 
 
1103	set_current_blocked(&set);
1104	if (restore_user_regs(regs, mcp, sig))
1105		return -EFAULT;
1106
1107	return 0;
 
 
 
 
1108}
1109
1110#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1111static int do_setcontext_tm(struct ucontext __user *ucp,
1112			    struct ucontext __user *tm_ucp,
1113			    struct pt_regs *regs)
1114{
1115	sigset_t set;
1116	struct mcontext __user *mcp;
1117	struct mcontext __user *tm_mcp;
1118	u32 cmcp;
1119	u32 tm_cmcp;
1120
1121	if (get_sigset_t(&set, &ucp->uc_sigmask))
1122		return -EFAULT;
1123
1124	if (__get_user(cmcp, &ucp->uc_regs) ||
1125	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
 
 
 
 
1126		return -EFAULT;
1127	mcp = (struct mcontext __user *)(u64)cmcp;
1128	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1129	/* no need to check access_ok(mcp), since mcp < 4GB */
1130
1131	set_current_blocked(&set);
1132	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1133		return -EFAULT;
1134
1135	return 0;
 
 
 
 
1136}
1137#endif
1138
1139long sys_swapcontext(struct ucontext __user *old_ctx,
1140		     struct ucontext __user *new_ctx,
1141		     int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
 
 
 
 
1142{
1143	unsigned char tmp;
1144	int ctx_has_vsx_region = 0;
1145
1146#ifdef CONFIG_PPC64
1147	unsigned long new_msr = 0;
1148
1149	if (new_ctx) {
1150		struct mcontext __user *mcp;
1151		u32 cmcp;
1152
1153		/*
1154		 * Get pointer to the real mcontext.  No need for
1155		 * access_ok since we are dealing with compat
1156		 * pointers.
1157		 */
1158		if (__get_user(cmcp, &new_ctx->uc_regs))
1159			return -EFAULT;
1160		mcp = (struct mcontext __user *)(u64)cmcp;
1161		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1162			return -EFAULT;
1163	}
1164	/*
1165	 * Check that the context is not smaller than the original
1166	 * size (with VMX but without VSX)
1167	 */
1168	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1169		return -EINVAL;
1170	/*
1171	 * If the new context state sets the MSR VSX bits but
1172	 * it doesn't provide VSX state.
1173	 */
1174	if ((ctx_size < sizeof(struct ucontext)) &&
1175	    (new_msr & MSR_VSX))
1176		return -EINVAL;
1177	/* Does the context have enough room to store VSX data? */
1178	if (ctx_size >= sizeof(struct ucontext))
1179		ctx_has_vsx_region = 1;
1180#else
1181	/* Context size is for future use. Right now, we only make sure
1182	 * we are passed something we understand
1183	 */
1184	if (ctx_size < sizeof(struct ucontext))
1185		return -EINVAL;
1186#endif
1187	if (old_ctx != NULL) {
1188		struct mcontext __user *mctx;
1189
1190		/*
1191		 * old_ctx might not be 16-byte aligned, in which
1192		 * case old_ctx->uc_mcontext won't be either.
1193		 * Because we have the old_ctx->uc_pad2 field
1194		 * before old_ctx->uc_mcontext, we need to round down
1195		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1196		 */
1197		mctx = (struct mcontext __user *)
1198			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1199		if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1200		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1201		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1202		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1203			return -EFAULT;
 
 
 
 
1204	}
1205	if (new_ctx == NULL)
1206		return 0;
1207	if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1208	    || __get_user(tmp, (u8 __user *) new_ctx)
1209	    || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1210		return -EFAULT;
1211
1212	/*
1213	 * If we get a fault copying the context into the kernel's
1214	 * image of the user's registers, we can't just return -EFAULT
1215	 * because the user's registers will be corrupted.  For instance
1216	 * the NIP value may have been updated but not some of the
1217	 * other registers.  Given that we have done the access_ok
1218	 * and successfully read the first and last bytes of the region
1219	 * above, this should only happen in an out-of-memory situation
1220	 * or if another thread unmaps the region containing the context.
1221	 * We kill the task with a SIGSEGV in this situation.
1222	 */
1223	if (do_setcontext(new_ctx, regs, 0))
1224		do_exit(SIGSEGV);
 
 
1225
1226	set_thread_flag(TIF_RESTOREALL);
1227	return 0;
 
 
 
 
1228}
1229
1230long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1231		     struct pt_regs *regs)
 
 
 
1232{
1233	struct rt_sigframe __user *rt_sf;
 
 
1234#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1235	struct ucontext __user *uc_transact;
1236	unsigned long msr_hi;
1237	unsigned long tmp;
1238	int tm_restore = 0;
1239#endif
1240	/* Always make any pending restarted system calls return -EINTR */
1241	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1242
1243	rt_sf = (struct rt_sigframe __user *)
1244		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1245	if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1246		goto bad;
 
1247#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 
 
 
 
 
 
 
 
 
 
 
 
 
1248	if (__get_user(tmp, &rt_sf->uc.uc_link))
1249		goto bad;
1250	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1251	if (uc_transact) {
1252		u32 cmcp;
1253		struct mcontext __user *mcp;
1254
1255		if (__get_user(cmcp, &uc_transact->uc_regs))
1256			return -EFAULT;
1257		mcp = (struct mcontext __user *)(u64)cmcp;
1258		/* The top 32 bits of the MSR are stashed in the transactional
1259		 * ucontext. */
1260		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1261			goto bad;
1262
1263		if (MSR_TM_ACTIVE(msr_hi<<32)) {
 
 
 
1264			/* We only recheckpoint on return if we're
1265			 * transaction.
1266			 */
1267			tm_restore = 1;
1268			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1269				goto bad;
1270		}
1271	}
 
 
 
 
 
 
 
 
 
 
1272	if (!tm_restore)
1273		/* Fall through, for non-TM restore */
1274#endif
1275	if (do_setcontext(&rt_sf->uc, regs, 1))
1276		goto bad;
1277
1278	/*
1279	 * It's not clear whether or why it is desirable to save the
1280	 * sigaltstack setting on signal delivery and restore it on
1281	 * signal return.  But other architectures do this and we have
1282	 * always done it up until now so it is probably better not to
1283	 * change it.  -- paulus
1284	 */
1285#ifdef CONFIG_PPC64
1286	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1287		goto bad;
1288#else
1289	if (restore_altstack(&rt_sf->uc.uc_stack))
1290		goto bad;
1291#endif
1292	set_thread_flag(TIF_RESTOREALL);
1293	return 0;
1294
1295 bad:
1296	if (show_unhandled_signals)
1297		printk_ratelimited(KERN_INFO
1298				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1299				   "%p nip %08lx lr %08lx\n",
1300				   current->comm, current->pid,
1301				   rt_sf, regs->nip, regs->link);
1302
1303	force_sig(SIGSEGV, current);
1304	return 0;
1305}
1306
1307#ifdef CONFIG_PPC32
1308int sys_debug_setcontext(struct ucontext __user *ctx,
1309			 int ndbg, struct sig_dbg_op __user *dbg,
1310			 int r6, int r7, int r8,
1311			 struct pt_regs *regs)
1312{
 
1313	struct sig_dbg_op op;
1314	int i;
1315	unsigned char tmp;
1316	unsigned long new_msr = regs->msr;
1317#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1318	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1319#endif
1320
1321	for (i=0; i<ndbg; i++) {
1322		if (copy_from_user(&op, dbg + i, sizeof(op)))
1323			return -EFAULT;
1324		switch (op.dbg_type) {
1325		case SIG_DBG_SINGLE_STEPPING:
1326#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1327			if (op.dbg_value) {
1328				new_msr |= MSR_DE;
1329				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1330			} else {
1331				new_dbcr0 &= ~DBCR0_IC;
1332				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1333						current->thread.debug.dbcr1)) {
1334					new_msr &= ~MSR_DE;
1335					new_dbcr0 &= ~DBCR0_IDM;
1336				}
1337			}
1338#else
1339			if (op.dbg_value)
1340				new_msr |= MSR_SE;
1341			else
1342				new_msr &= ~MSR_SE;
1343#endif
1344			break;
1345		case SIG_DBG_BRANCH_TRACING:
1346#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1347			return -EINVAL;
1348#else
1349			if (op.dbg_value)
1350				new_msr |= MSR_BE;
1351			else
1352				new_msr &= ~MSR_BE;
1353#endif
1354			break;
1355
1356		default:
1357			return -EINVAL;
1358		}
1359	}
1360
1361	/* We wait until here to actually install the values in the
1362	   registers so if we fail in the above loop, it will not
1363	   affect the contents of these registers.  After this point,
1364	   failure is a problem, anyway, and it's very unlikely unless
1365	   the user is really doing something wrong. */
1366	regs->msr = new_msr;
1367#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1368	current->thread.debug.dbcr0 = new_dbcr0;
1369#endif
1370
1371	if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1372	    || __get_user(tmp, (u8 __user *) ctx)
1373	    || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1374		return -EFAULT;
1375
1376	/*
1377	 * If we get a fault copying the context into the kernel's
1378	 * image of the user's registers, we can't just return -EFAULT
1379	 * because the user's registers will be corrupted.  For instance
1380	 * the NIP value may have been updated but not some of the
1381	 * other registers.  Given that we have done the access_ok
1382	 * and successfully read the first and last bytes of the region
1383	 * above, this should only happen in an out-of-memory situation
1384	 * or if another thread unmaps the region containing the context.
1385	 * We kill the task with a SIGSEGV in this situation.
1386	 */
1387	if (do_setcontext(ctx, regs, 1)) {
1388		if (show_unhandled_signals)
1389			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1390					   "sys_debug_setcontext: %p nip %08lx "
1391					   "lr %08lx\n",
1392					   current->comm, current->pid,
1393					   ctx, regs->nip, regs->link);
1394
1395		force_sig(SIGSEGV, current);
1396		goto out;
1397	}
1398
1399	/*
1400	 * It's not clear whether or why it is desirable to save the
1401	 * sigaltstack setting on signal delivery and restore it on
1402	 * signal return.  But other architectures do this and we have
1403	 * always done it up until now so it is probably better not to
1404	 * change it.  -- paulus
1405	 */
1406	restore_altstack(&ctx->uc_stack);
1407
1408	set_thread_flag(TIF_RESTOREALL);
1409 out:
1410	return 0;
1411}
1412#endif
1413
1414/*
1415 * OK, we're invoking a handler
1416 */
1417int handle_signal32(unsigned long sig, struct k_sigaction *ka,
1418		    siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
1419{
1420	struct sigcontext __user *sc;
1421	struct sigframe __user *frame;
1422	struct mcontext __user *tm_mctx = NULL;
1423	unsigned long newsp = 0;
1424	int sigret;
1425	unsigned long tramp;
1426
1427	/* Set up Signal Frame */
1428	frame = get_sigframe(ka, get_tm_stackpointer(regs), sizeof(*frame), 1);
1429	if (unlikely(frame == NULL))
1430		goto badframe;
1431	sc = (struct sigcontext __user *) &frame->sctx;
1432
1433#if _NSIG != 64
1434#error "Please adjust handle_signal()"
1435#endif
1436	if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler)
1437	    || __put_user(oldset->sig[0], &sc->oldmask)
1438#ifdef CONFIG_PPC64
1439	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1440#else
1441	    || __put_user(oldset->sig[1], &sc->_unused[3])
1442#endif
1443	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1444	    || __put_user(sig, &sc->signal))
1445		goto badframe;
1446
1447	if (vdso32_sigtramp && current->mm->context.vdso_base) {
1448		sigret = 0;
1449		tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1450	} else {
1451		sigret = __NR_sigreturn;
1452		tramp = (unsigned long) frame->mctx.tramp;
1453	}
1454
1455#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1456	tm_mctx = &frame->mctx_transact;
1457	if (MSR_TM_ACTIVE(regs->msr)) {
1458		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1459				      sigret))
1460			goto badframe;
1461	}
1462	else
1463#endif
1464	{
1465		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1466			goto badframe;
1467	}
1468
1469	regs->link = tramp;
1470
1471	current->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1472
1473	/* create a stack frame for the caller of the handler */
1474	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1475	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1476		goto badframe;
1477
1478	regs->gpr[1] = newsp;
1479	regs->gpr[3] = sig;
1480	regs->gpr[4] = (unsigned long) sc;
1481	regs->nip = (unsigned long) ka->sa.sa_handler;
1482	/* enter the signal handler in big-endian mode */
1483	regs->msr &= ~MSR_LE;
1484	return 1;
1485
1486badframe:
1487#ifdef DEBUG_SIG
1488	printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n",
1489	       regs, frame, newsp);
1490#endif
1491	if (show_unhandled_signals)
1492		printk_ratelimited(KERN_INFO
1493				   "%s[%d]: bad frame in handle_signal32: "
1494				   "%p nip %08lx lr %08lx\n",
1495				   current->comm, current->pid,
1496				   frame, regs->nip, regs->link);
1497
1498	force_sigsegv(sig, current);
1499	return 0;
1500}
1501
1502/*
1503 * Do a signal return; undo the signal stack.
1504 */
1505long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1506		       struct pt_regs *regs)
1507{
 
1508	struct sigframe __user *sf;
1509	struct sigcontext __user *sc;
1510	struct sigcontext sigctx;
1511	struct mcontext __user *sr;
1512	void __user *addr;
1513	sigset_t set;
1514#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1515	struct mcontext __user *mcp, *tm_mcp;
1516	unsigned long msr_hi;
1517#endif
1518
1519	/* Always make any pending restarted system calls return -EINTR */
1520	current_thread_info()->restart_block.fn = do_no_restart_syscall;
1521
1522	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1523	sc = &sf->sctx;
1524	addr = sc;
1525	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1526		goto badframe;
1527
1528#ifdef CONFIG_PPC64
1529	/*
1530	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1531	 * unused part of the signal stackframe
1532	 */
1533	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1534#else
1535	set.sig[0] = sigctx.oldmask;
1536	set.sig[1] = sigctx._unused[3];
1537#endif
1538	set_current_blocked(&set);
1539
 
1540#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1541	mcp = (struct mcontext __user *)&sf->mctx;
1542	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1543	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1544		goto badframe;
 
1545	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1546		if (!cpu_has_feature(CPU_FTR_TM))
1547			goto badframe;
1548		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1549			goto badframe;
1550	} else
1551#endif
1552	{
1553		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1554		addr = sr;
1555		if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1556		    || restore_user_regs(regs, sr, 1))
1557			goto badframe;
 
 
1558	}
1559
1560	set_thread_flag(TIF_RESTOREALL);
1561	return 0;
1562
1563badframe:
1564	if (show_unhandled_signals)
1565		printk_ratelimited(KERN_INFO
1566				   "%s[%d]: bad frame in sys_sigreturn: "
1567				   "%p nip %08lx lr %08lx\n",
1568				   current->comm, current->pid,
1569				   addr, regs->nip, regs->link);
1570
1571	force_sig(SIGSEGV, current);
1572	return 0;
1573}