Loading...
1/* SPDX-License-Identifier: GPL-2.0-or-later
2** -*- mode: asm -*-
3**
4** head.S -- This file contains the initial boot code for the
5** Linux/68k kernel.
6**
7** Copyright 1993 by Hamish Macdonald
8**
9** 68040 fixes by Michael Rausch
10** 68060 fixes by Roman Hodek
11** MMU cleanup by Randy Thelen
12** Final MMU cleanup by Roman Zippel
13**
14** Atari support by Andreas Schwab, using ideas of Robert de Vries
15** and Bjoern Brauel
16** VME Support by Richard Hirst
17**
18** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
19** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
20** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
21** 95/11/18 Richard Hirst: Added MVME166 support
22** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
23** Magnum- and FX-alternate ram
24** 98/04/25 Phil Blundell: added HP300 support
25** 1998/08/30 David Kilzer: Added support for font_desc structures
26** for linux-2.1.115
27** 1999/02/11 Richard Zidlicky: added Q40 support (initial version 99/01/01)
28** 2004/05/13 Kars de Jong: Finalised HP300 support
29*/
30
31/*
32 * Linux startup code.
33 *
34 * At this point, the boot loader has:
35 * Disabled interrupts
36 * Disabled caches
37 * Put us in supervisor state.
38 *
39 * The kernel setup code takes the following steps:
40 * . Raise interrupt level
41 * . Set up initial kernel memory mapping.
42 * . This sets up a mapping of the 4M of memory the kernel is located in.
43 * . It also does a mapping of any initial machine specific areas.
44 * . Enable the MMU
45 * . Enable cache memories
46 * . Jump to kernel startup
47 *
48 * Much of the file restructuring was to accomplish:
49 * 1) Remove register dependency through-out the file.
50 * 2) Increase use of subroutines to perform functions
51 * 3) Increase readability of the code
52 *
53 * Of course, readability is a subjective issue, so it will never be
54 * argued that that goal was accomplished. It was merely a goal.
55 * A key way to help make code more readable is to give good
56 * documentation. So, the first thing you will find is exhaustive
57 * write-ups on the structure of the file, and the features of the
58 * functional subroutines.
59 *
60 * General Structure:
61 * ------------------
62 * Without a doubt the single largest chunk of head.S is spent
63 * mapping the kernel and I/O physical space into the logical range
64 * for the kernel.
65 * There are new subroutines and data structures to make MMU
66 * support cleaner and easier to understand.
67 * First, you will find a routine call "mmu_map" which maps
68 * a logical to a physical region for some length given a cache
69 * type on behalf of the caller. This routine makes writing the
70 * actual per-machine specific code very simple.
71 * A central part of the code, but not a subroutine in itself,
72 * is the mmu_init code which is broken down into mapping the kernel
73 * (the same for all machines) and mapping machine-specific I/O
74 * regions.
75 * Also, there will be a description of engaging the MMU and
76 * caches.
77 * You will notice that there is a chunk of code which
78 * can emit the entire MMU mapping of the machine. This is present
79 * only in debug modes and can be very helpful.
80 * Further, there is a new console driver in head.S that is
81 * also only engaged in debug mode. Currently, it's only supported
82 * on the Macintosh class of machines. However, it is hoped that
83 * others will plug-in support for specific machines.
84 *
85 * ######################################################################
86 *
87 * mmu_map
88 * -------
89 * mmu_map was written for two key reasons. First, it was clear
90 * that it was very difficult to read the previous code for mapping
91 * regions of memory. Second, the Macintosh required such extensive
92 * memory allocations that it didn't make sense to propagate the
93 * existing code any further.
94 * mmu_map requires some parameters:
95 *
96 * mmu_map (logical, physical, length, cache_type)
97 *
98 * While this essentially describes the function in the abstract, you'll
99 * find more indepth description of other parameters at the implementation site.
100 *
101 * mmu_get_root_table_entry
102 * ------------------------
103 * mmu_get_ptr_table_entry
104 * -----------------------
105 * mmu_get_page_table_entry
106 * ------------------------
107 *
108 * These routines are used by other mmu routines to get a pointer into
109 * a table, if necessary a new table is allocated. These routines are working
110 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
111 * table needs of course only to be allocated once in mmu_get_root_table_entry,
112 * so that here also some mmu specific initialization is done. The second page
113 * at the start of the kernel (the first page is unmapped later) is used for
114 * the kernel_pg_dir. It must be at a position known at link time (as it's used
115 * to initialize the init task struct) and since it needs special cache
116 * settings, it's the easiest to use this page, the rest of the page is used
117 * for further pointer tables.
118 * mmu_get_page_table_entry allocates always a whole page for page tables, this
119 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
120 * to manage page tables in smaller pieces as nearly all mappings have that
121 * size.
122 *
123 * ######################################################################
124 *
125 *
126 * ######################################################################
127 *
128 * mmu_engage
129 * ----------
130 * Thanks to a small helping routine enabling the mmu got quite simple
131 * and there is only one way left. mmu_engage makes a complete a new mapping
132 * that only includes the absolute necessary to be able to jump to the final
133 * position and to restore the original mapping.
134 * As this code doesn't need a transparent translation register anymore this
135 * means all registers are free to be used by machines that needs them for
136 * other purposes.
137 *
138 * ######################################################################
139 *
140 * mmu_print
141 * ---------
142 * This algorithm will print out the page tables of the system as
143 * appropriate for an 030 or an 040. This is useful for debugging purposes
144 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
145 *
146 * ######################################################################
147 *
148 * console_init
149 * ------------
150 * The console is also able to be turned off. The console in head.S
151 * is specifically for debugging and can be very useful. It is surrounded by
152 * #ifdef / #endif clauses so it doesn't have to ship in known-good
153 * kernels. It's basic algorithm is to determine the size of the screen
154 * (in height/width and bit depth) and then use that information for
155 * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for
156 * debugging so I can see more good data. But it was trivial to add support
157 * for both fonts, so I included it.
158 * Also, the algorithm for plotting pixels is abstracted so that in
159 * theory other platforms could add support for different kinds of frame
160 * buffers. This could be very useful.
161 *
162 * console_put_penguin
163 * -------------------
164 * An important part of any Linux bring up is the penguin and there's
165 * nothing like getting the Penguin on the screen! This algorithm will work
166 * on any machine for which there is a console_plot_pixel.
167 *
168 * console_scroll
169 * --------------
170 * My hope is that the scroll algorithm does the right thing on the
171 * various platforms, but it wouldn't be hard to add the test conditions
172 * and new code if it doesn't.
173 *
174 * console_putc
175 * -------------
176 *
177 * ######################################################################
178 *
179 * Register usage has greatly simplified within head.S. Every subroutine
180 * saves and restores all registers that it modifies (except it returns a
181 * value in there of course). So the only register that needs to be initialized
182 * is the stack pointer.
183 * All other init code and data is now placed in the init section, so it will
184 * be automatically freed at the end of the kernel initialization.
185 *
186 * ######################################################################
187 *
188 * options
189 * -------
190 * There are many options available in a build of this file. I've
191 * taken the time to describe them here to save you the time of searching
192 * for them and trying to understand what they mean.
193 *
194 * CONFIG_xxx: These are the obvious machine configuration defines created
195 * during configuration. These are defined in autoconf.h.
196 *
197 * CONSOLE_DEBUG: Only supports a Mac frame buffer but could easily be
198 * extended to support other platforms.
199 *
200 * TEST_MMU: This is a test harness for running on any given machine but
201 * getting an MMU dump for another class of machine. The classes of machines
202 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
203 * and any of the models (030, 040, 060, etc.).
204 *
205 * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed
206 * When head.S boots on Atari, Amiga, Macintosh, and VME
207 * machines. At that point the underlying logic will be
208 * believed to be solid enough to be trusted, and TEST_MMU
209 * can be dropped. Do note that that will clean up the
210 * head.S code significantly as large blocks of #if/#else
211 * clauses can be removed.
212 *
213 * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into
214 * determing why devices don't appear to work. A test case was to remove
215 * the cacheability of the kernel bits.
216 *
217 * MMU_PRINT: There is a routine built into head.S that can display the
218 * MMU data structures. It outputs its result through the serial_putc
219 * interface. So where ever that winds up driving data, that's where the
220 * mmu struct will appear.
221 *
222 * SERIAL_DEBUG: There are a series of putc() macro statements
223 * scattered through out the code to give progress of status to the
224 * person sitting at the console. This constant determines whether those
225 * are used.
226 *
227 * DEBUG: This is the standard DEBUG flag that can be set for building
228 * the kernel. It has the effect adding additional tests into
229 * the code.
230 *
231 * FONT_6x11:
232 * FONT_8x8:
233 * FONT_8x16:
234 * In theory these could be determined at run time or handed
235 * over by the booter. But, let's be real, it's a fine hard
236 * coded value. (But, you will notice the code is run-time
237 * flexible!) A pointer to the font's struct font_desc
238 * is kept locally in Lconsole_font. It is used to determine
239 * font size information dynamically.
240 *
241 * Atari constants:
242 * USE_PRINTER: Use the printer port for serial debug.
243 * USE_SCC_B: Use the SCC port A (Serial2) for serial debug.
244 * USE_SCC_A: Use the SCC port B (Modem2) for serial debug.
245 * USE_MFP: Use the ST-MFP port (Modem1) for serial debug.
246 *
247 * Macintosh constants:
248 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug.
249 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug.
250 */
251
252#include <linux/linkage.h>
253#include <linux/init.h>
254#include <linux/pgtable.h>
255#include <asm/bootinfo.h>
256#include <asm/bootinfo-amiga.h>
257#include <asm/bootinfo-atari.h>
258#include <asm/bootinfo-hp300.h>
259#include <asm/bootinfo-mac.h>
260#include <asm/bootinfo-q40.h>
261#include <asm/bootinfo-virt.h>
262#include <asm/bootinfo-vme.h>
263#include <asm/setup.h>
264#include <asm/entry.h>
265#include <asm/page.h>
266#include <asm/asm-offsets.h>
267#ifdef CONFIG_MAC
268# include <asm/machw.h>
269#endif
270
271#ifdef CONFIG_EARLY_PRINTK
272# define SERIAL_DEBUG
273# if defined(CONFIG_MAC) && defined(CONFIG_FONT_SUPPORT)
274# define CONSOLE_DEBUG
275# endif
276#endif
277
278#undef MMU_PRINT
279#undef MMU_NOCACHE_KERNEL
280#undef DEBUG
281
282/*
283 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
284 * The 8x8 font is harder to read but fits more on the screen.
285 */
286#define FONT_8x8 /* default */
287/* #define FONT_8x16 */ /* 2nd choice */
288/* #define FONT_6x11 */ /* 3rd choice */
289
290.globl kernel_pg_dir
291.globl availmem
292.globl m68k_init_mapped_size
293.globl m68k_pgtable_cachemode
294.globl m68k_supervisor_cachemode
295#ifdef CONFIG_MVME16x
296.globl mvme_bdid
297#endif
298#ifdef CONFIG_Q40
299.globl q40_mem_cptr
300#endif
301
302CPUTYPE_040 = 1 /* indicates an 040 */
303CPUTYPE_060 = 2 /* indicates an 060 */
304CPUTYPE_0460 = 3 /* if either above are set, this is set */
305CPUTYPE_020 = 4 /* indicates an 020 */
306
307/* Translation control register */
308TC_ENABLE = 0x8000
309TC_PAGE8K = 0x4000
310TC_PAGE4K = 0x0000
311
312/* Transparent translation registers */
313TTR_ENABLE = 0x8000 /* enable transparent translation */
314TTR_ANYMODE = 0x4000 /* user and kernel mode access */
315TTR_KERNELMODE = 0x2000 /* only kernel mode access */
316TTR_USERMODE = 0x0000 /* only user mode access */
317TTR_CI = 0x0400 /* inhibit cache */
318TTR_RW = 0x0200 /* read/write mode */
319TTR_RWM = 0x0100 /* read/write mask */
320TTR_FCB2 = 0x0040 /* function code base bit 2 */
321TTR_FCB1 = 0x0020 /* function code base bit 1 */
322TTR_FCB0 = 0x0010 /* function code base bit 0 */
323TTR_FCM2 = 0x0004 /* function code mask bit 2 */
324TTR_FCM1 = 0x0002 /* function code mask bit 1 */
325TTR_FCM0 = 0x0001 /* function code mask bit 0 */
326
327/* Cache Control registers */
328CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */
329CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */
330CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */
331CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */
332CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */
333CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */
334CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */
335CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */
336CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */
337CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */
338CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */
339CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */
340CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */
341CC3_CLR_D = 0x00000800 /* clear data cache (68030) */
342CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */
343CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */
344CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */
345CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */
346CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */
347CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */
348CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */
349CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */
350
351/* Miscellaneous definitions */
352PAGESIZE = 4096
353PAGESHIFT = 12
354
355ROOT_TABLE_SIZE = 128
356PTR_TABLE_SIZE = 128
357PAGE_TABLE_SIZE = 64
358ROOT_INDEX_SHIFT = 25
359PTR_INDEX_SHIFT = 18
360PAGE_INDEX_SHIFT = 12
361
362#ifdef DEBUG
363/* When debugging use readable names for labels */
364#ifdef __STDC__
365#define L(name) .head.S.##name
366#else
367#define L(name) .head.S./**/name
368#endif
369#else
370#ifdef __STDC__
371#define L(name) .L##name
372#else
373#define L(name) .L/**/name
374#endif
375#endif
376
377/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
378#ifndef __INITDATA
379#define __INITDATA .data
380#define __FINIT .previous
381#endif
382
383/* Several macros to make the writing of subroutines easier:
384 * - func_start marks the beginning of the routine which setups the frame
385 * register and saves the registers, it also defines another macro
386 * to automatically restore the registers again.
387 * - func_return marks the end of the routine and simply calls the prepared
388 * macro to restore registers and jump back to the caller.
389 * - func_define generates another macro to automatically put arguments
390 * onto the stack call the subroutine and cleanup the stack again.
391 */
392
393/* Within subroutines these macros can be used to access the arguments
394 * on the stack. With STACK some allocated memory on the stack can be
395 * accessed and ARG0 points to the return address (used by mmu_engage).
396 */
397#define STACK %a6@(stackstart)
398#define ARG0 %a6@(4)
399#define ARG1 %a6@(8)
400#define ARG2 %a6@(12)
401#define ARG3 %a6@(16)
402#define ARG4 %a6@(20)
403
404.macro func_start name,saveregs,stack=0
405L(\name):
406 linkw %a6,#-\stack
407 moveml \saveregs,%sp@-
408.set stackstart,-\stack
409
410.macro func_return_\name
411 moveml %sp@+,\saveregs
412 unlk %a6
413 rts
414.endm
415.endm
416
417.macro func_return name
418 func_return_\name
419.endm
420
421.macro func_call name
422 jbsr L(\name)
423.endm
424
425.macro move_stack nr,arg1,arg2,arg3,arg4
426.if \nr
427 move_stack "(\nr-1)",\arg2,\arg3,\arg4
428 movel \arg1,%sp@-
429.endif
430.endm
431
432.macro func_define name,nr=0
433.macro \name arg1,arg2,arg3,arg4
434 move_stack \nr,\arg1,\arg2,\arg3,\arg4
435 func_call \name
436.if \nr
437 lea %sp@(\nr*4),%sp
438.endif
439.endm
440.endm
441
442func_define mmu_map,4
443func_define mmu_map_tt,4
444func_define mmu_fixup_page_mmu_cache,1
445func_define mmu_temp_map,2
446func_define mmu_engage
447func_define mmu_get_root_table_entry,1
448func_define mmu_get_ptr_table_entry,2
449func_define mmu_get_page_table_entry,2
450func_define mmu_print
451func_define get_new_page
452#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
453func_define set_leds
454#endif
455
456.macro mmu_map_eq arg1,arg2,arg3
457 mmu_map \arg1,\arg1,\arg2,\arg3
458.endm
459
460.macro get_bi_record record
461 pea \record
462 func_call get_bi_record
463 addql #4,%sp
464.endm
465
466func_define serial_putc,1
467func_define console_putc,1
468
469func_define console_init
470func_define console_put_penguin
471func_define console_plot_pixel,3
472func_define console_scroll
473
474.macro putc ch
475#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
476 pea \ch
477#endif
478#ifdef CONSOLE_DEBUG
479 func_call console_putc
480#endif
481#ifdef SERIAL_DEBUG
482 func_call serial_putc
483#endif
484#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
485 addql #4,%sp
486#endif
487.endm
488
489.macro dputc ch
490#ifdef DEBUG
491 putc \ch
492#endif
493.endm
494
495func_define putn,1
496
497.macro dputn nr
498#ifdef DEBUG
499 putn \nr
500#endif
501.endm
502
503.macro puts string
504#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
505 __INITDATA
506.Lstr\@:
507 .string "\string"
508 __FINIT
509 pea %pc@(.Lstr\@)
510 func_call puts
511 addql #4,%sp
512#endif
513.endm
514
515.macro dputs string
516#ifdef DEBUG
517 puts "\string"
518#endif
519.endm
520
521#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
522#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
523#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
524#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
525#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
526#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
527#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
528#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
529#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
530#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
531#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
532#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
533#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
534#define is_not_virt(lab) cmpl &MACH_VIRT,%pc@(m68k_machtype); jne lab
535
536#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
537 jeq 42f; \
538 cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
539 jne lab ;\
540 42:\
541
542#define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
543#define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
544#define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
545#define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
546#define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
547#define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
548#define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
549
550/* On the HP300 we use the on-board LEDs for debug output before
551 the console is running. Writing a 1 bit turns the corresponding LED
552 _off_ - on the 340 bit 7 is towards the back panel of the machine. */
553.macro leds mask
554#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
555 hasnt_leds(.Lled\@)
556 pea \mask
557 func_call set_leds
558 addql #4,%sp
559.Lled\@:
560#endif
561.endm
562
563__HEAD
564ENTRY(_stext)
565/*
566 * Version numbers of the bootinfo interface
567 * The area from _stext to _start will later be used as kernel pointer table
568 */
569 bras 1f /* Jump over bootinfo version numbers */
570
571 .long BOOTINFOV_MAGIC
572 .long MACH_AMIGA, AMIGA_BOOTI_VERSION
573 .long MACH_ATARI, ATARI_BOOTI_VERSION
574 .long MACH_MVME147, MVME147_BOOTI_VERSION
575 .long MACH_MVME16x, MVME16x_BOOTI_VERSION
576 .long MACH_BVME6000, BVME6000_BOOTI_VERSION
577 .long MACH_MAC, MAC_BOOTI_VERSION
578 .long MACH_Q40, Q40_BOOTI_VERSION
579 .long MACH_HP300, HP300_BOOTI_VERSION
580 .long 0
5811: jra __start
582
583.equ kernel_pg_dir,_stext
584
585.equ .,_stext+PAGESIZE
586
587ENTRY(_start)
588 jra __start
589__INIT
590ENTRY(__start)
591/*
592 * Setup initial stack pointer
593 */
594 lea %pc@(_stext),%sp
595
596/*
597 * Record the CPU and machine type.
598 */
599 get_bi_record BI_MACHTYPE
600 lea %pc@(m68k_machtype),%a1
601 movel %a0@,%a1@
602
603 get_bi_record BI_FPUTYPE
604 lea %pc@(m68k_fputype),%a1
605 movel %a0@,%a1@
606
607 get_bi_record BI_MMUTYPE
608 lea %pc@(m68k_mmutype),%a1
609 movel %a0@,%a1@
610
611 get_bi_record BI_CPUTYPE
612 lea %pc@(m68k_cputype),%a1
613 movel %a0@,%a1@
614
615 leds 0x1
616
617#ifdef CONFIG_MAC
618/*
619 * For Macintosh, we need to determine the display parameters early (at least
620 * while debugging it).
621 */
622
623 is_not_mac(L(test_notmac))
624
625 get_bi_record BI_MAC_VADDR
626 lea %pc@(L(mac_videobase)),%a1
627 movel %a0@,%a1@
628
629 get_bi_record BI_MAC_VDEPTH
630 lea %pc@(L(mac_videodepth)),%a1
631 movel %a0@,%a1@
632
633 get_bi_record BI_MAC_VDIM
634 lea %pc@(L(mac_dimensions)),%a1
635 movel %a0@,%a1@
636
637 get_bi_record BI_MAC_VROW
638 lea %pc@(L(mac_rowbytes)),%a1
639 movel %a0@,%a1@
640
641 get_bi_record BI_MAC_SCCBASE
642 lea %pc@(L(mac_sccbase)),%a1
643 movel %a0@,%a1@
644
645L(test_notmac):
646#endif /* CONFIG_MAC */
647
648#ifdef CONFIG_VIRT
649 is_not_virt(L(test_notvirt))
650
651 get_bi_record BI_VIRT_GF_TTY_BASE
652 lea %pc@(L(virt_gf_tty_base)),%a1
653 movel %a0@,%a1@
654L(test_notvirt):
655#endif /* CONFIG_VIRT */
656
657/*
658 * There are ultimately two pieces of information we want for all kinds of
659 * processors CpuType and CacheBits. The CPUTYPE was passed in from booter
660 * and is converted here from a booter type definition to a separate bit
661 * number which allows for the standard is_0x0 macro tests.
662 */
663 movel %pc@(m68k_cputype),%d0
664 /*
665 * Assume it's an 030
666 */
667 clrl %d1
668
669 /*
670 * Test the BootInfo cputype for 060
671 */
672 btst #CPUB_68060,%d0
673 jeq 1f
674 bset #CPUTYPE_060,%d1
675 bset #CPUTYPE_0460,%d1
676 jra 3f
6771:
678 /*
679 * Test the BootInfo cputype for 040
680 */
681 btst #CPUB_68040,%d0
682 jeq 2f
683 bset #CPUTYPE_040,%d1
684 bset #CPUTYPE_0460,%d1
685 jra 3f
6862:
687 /*
688 * Test the BootInfo cputype for 020
689 */
690 btst #CPUB_68020,%d0
691 jeq 3f
692 bset #CPUTYPE_020,%d1
693 jra 3f
6943:
695 /*
696 * Record the cpu type
697 */
698 lea %pc@(L(cputype)),%a0
699 movel %d1,%a0@
700
701 /*
702 * NOTE:
703 *
704 * Now the macros are valid:
705 * is_040_or_060
706 * is_not_040_or_060
707 * is_040
708 * is_060
709 * is_not_060
710 */
711
712 /*
713 * Determine the cache mode for pages holding MMU tables
714 * and for supervisor mode, unused for '020 and '030
715 */
716 clrl %d0
717 clrl %d1
718
719 is_not_040_or_060(L(save_cachetype))
720
721 /*
722 * '040 or '060
723 * d1 := cacheable write-through
724 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
725 * but we have been using write-through since at least 2.0.29 so I
726 * guess it is OK.
727 */
728#ifdef CONFIG_060_WRITETHROUGH
729 /*
730 * If this is a 68060 board using drivers with cache coherency
731 * problems, then supervisor memory accesses need to be write-through
732 * also; otherwise, we want copyback.
733 */
734
735 is_not_060(1f)
736 movel #_PAGE_CACHE040W,%d0
737 jra L(save_cachetype)
738#endif /* CONFIG_060_WRITETHROUGH */
7391:
740 movew #_PAGE_CACHE040,%d0
741
742 movel #_PAGE_CACHE040W,%d1
743
744L(save_cachetype):
745 /* Save cache mode for supervisor mode and page tables
746 */
747 lea %pc@(m68k_supervisor_cachemode),%a0
748 movel %d0,%a0@
749 lea %pc@(m68k_pgtable_cachemode),%a0
750 movel %d1,%a0@
751
752/*
753 * raise interrupt level
754 */
755 movew #0x2700,%sr
756
757/*
758 If running on an Atari, determine the I/O base of the
759 serial port and test if we are running on a Medusa or Hades.
760 This test is necessary here, because on the Hades the serial
761 port is only accessible in the high I/O memory area.
762
763 The test whether it is a Medusa is done by writing to the byte at
764 phys. 0x0. This should result in a bus error on all other machines.
765
766 ...should, but doesn't. The Afterburner040 for the Falcon has the
767 same behaviour (0x0..0x7 are no ROM shadow). So we have to do
768 another test to distinguish Medusa and AB040. This is a
769 read attempt for 0x00ff82fe phys. that should bus error on a Falcon
770 (+AB040), but is in the range where the Medusa always asserts DTACK.
771
772 The test for the Hades is done by reading address 0xb0000000. This
773 should give a bus error on the Medusa.
774 */
775
776#ifdef CONFIG_ATARI
777 is_not_atari(L(notypetest))
778
779 /* get special machine type (Medusa/Hades/AB40) */
780 moveq #0,%d3 /* default if tag doesn't exist */
781 get_bi_record BI_ATARI_MCH_TYPE
782 tstl %d0
783 jbmi 1f
784 movel %a0@,%d3
785 lea %pc@(atari_mch_type),%a0
786 movel %d3,%a0@
7871:
788 /* On the Hades, the iobase must be set up before opening the
789 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
790 moveq #0,%d0
791 cmpl #ATARI_MACH_HADES,%d3
792 jbne 1f
793 movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */
7941: lea %pc@(L(iobase)),%a0
795 movel %d0,%a0@
796
797L(notypetest):
798#endif
799
800#ifdef CONFIG_VME
801 is_mvme147(L(getvmetype))
802 is_bvme6000(L(getvmetype))
803 is_not_mvme16x(L(gvtdone))
804
805 /* See if the loader has specified the BI_VME_TYPE tag. Recent
806 * versions of VMELILO and TFTPLILO do this. We have to do this
807 * early so we know how to handle console output. If the tag
808 * doesn't exist then we use the Bug for output on MVME16x.
809 */
810L(getvmetype):
811 get_bi_record BI_VME_TYPE
812 tstl %d0
813 jbmi 1f
814 movel %a0@,%d3
815 lea %pc@(vme_brdtype),%a0
816 movel %d3,%a0@
8171:
818#ifdef CONFIG_MVME16x
819 is_not_mvme16x(L(gvtdone))
820
821 /* Need to get the BRD_ID info to differentiate between 162, 167,
822 * etc. This is available as a BI_VME_BRDINFO tag with later
823 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
824 */
825 get_bi_record BI_VME_BRDINFO
826 tstl %d0
827 jpl 1f
828
829 /* Get pointer to board ID data from Bug */
830 movel %d2,%sp@-
831 trap #15
832 .word 0x70 /* trap 0x70 - .BRD_ID */
833 movel %sp@+,%a0
8341:
835 lea %pc@(mvme_bdid),%a1
836 /* Structure is 32 bytes long */
837 movel %a0@+,%a1@+
838 movel %a0@+,%a1@+
839 movel %a0@+,%a1@+
840 movel %a0@+,%a1@+
841 movel %a0@+,%a1@+
842 movel %a0@+,%a1@+
843 movel %a0@+,%a1@+
844 movel %a0@+,%a1@+
845#endif
846
847L(gvtdone):
848
849#endif
850
851#ifdef CONFIG_HP300
852 is_not_hp300(L(nothp))
853
854 /* Get the address of the UART for serial debugging */
855 get_bi_record BI_HP300_UART_ADDR
856 tstl %d0
857 jbmi 1f
858 movel %a0@,%d3
859 lea %pc@(L(uartbase)),%a0
860 movel %d3,%a0@
861 get_bi_record BI_HP300_UART_SCODE
862 tstl %d0
863 jbmi 1f
864 movel %a0@,%d3
865 lea %pc@(L(uart_scode)),%a0
866 movel %d3,%a0@
8671:
868L(nothp):
869#endif
870
871/*
872 * Initialize serial port
873 */
874 jbsr L(serial_init)
875
876/*
877 * Initialize console
878 */
879#ifdef CONFIG_MAC
880 is_not_mac(L(nocon))
881# ifdef CONSOLE_DEBUG
882 console_init
883# ifdef CONFIG_LOGO
884 console_put_penguin
885# endif /* CONFIG_LOGO */
886# endif /* CONSOLE_DEBUG */
887L(nocon):
888#endif /* CONFIG_MAC */
889
890
891 putc '\n'
892 putc 'A'
893 leds 0x2
894 dputn %pc@(L(cputype))
895 dputn %pc@(m68k_supervisor_cachemode)
896 dputn %pc@(m68k_pgtable_cachemode)
897 dputc '\n'
898
899/*
900 * Save physical start address of kernel
901 */
902 lea %pc@(L(phys_kernel_start)),%a0
903 lea %pc@(_stext),%a1
904 subl #_stext,%a1
905 addl #PAGE_OFFSET,%a1
906 movel %a1,%a0@
907
908 putc 'B'
909
910 leds 0x4
911
912/*
913 * mmu_init
914 *
915 * This block of code does what's necessary to map in the various kinds
916 * of machines for execution of Linux.
917 * First map the first 4, 8, or 16 MB of kernel code & data
918 */
919
920 get_bi_record BI_MEMCHUNK
921 movel %a0@(4),%d0
922 movel #16*1024*1024,%d1
923 cmpl %d0,%d1
924 jls 1f
925 lsrl #1,%d1
926 cmpl %d0,%d1
927 jls 1f
928 lsrl #1,%d1
9291:
930 lea %pc@(m68k_init_mapped_size),%a0
931 movel %d1,%a0@
932 mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),%d1,\
933 %pc@(m68k_supervisor_cachemode)
934
935 putc 'C'
936
937#ifdef CONFIG_AMIGA
938
939L(mmu_init_amiga):
940
941 is_not_amiga(L(mmu_init_not_amiga))
942/*
943 * mmu_init_amiga
944 */
945
946 putc 'D'
947
948 is_not_040_or_060(1f)
949
950 /*
951 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
952 */
953 mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
954 /*
955 * Map the Zorro III I/O space with transparent translation
956 * for frame buffer memory etc.
957 */
958 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
959
960 jbra L(mmu_init_done)
961
9621:
963 /*
964 * 030: Map the 32Meg range physical 0x0 up to logical 0x8000.0000
965 */
966 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
967 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
968
969 jbra L(mmu_init_done)
970
971L(mmu_init_not_amiga):
972#endif
973
974#ifdef CONFIG_ATARI
975
976L(mmu_init_atari):
977
978 is_not_atari(L(mmu_init_not_atari))
979
980 putc 'E'
981
982/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
983 the last 16 MB of virtual address space to the first 16 MB (i.e.
984 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
985 needed. I/O ranges are marked non-cachable.
986
987 For the Medusa it is better to map the I/O region transparently
988 (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
989 accessible only in the high area.
990
991 On the Hades all I/O registers are only accessible in the high
992 area.
993*/
994
995 /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
996 moveq #0,%d0
997 movel %pc@(atari_mch_type),%d3
998 cmpl #ATARI_MACH_MEDUSA,%d3
999 jbeq 2f
1000 cmpl #ATARI_MACH_HADES,%d3
1001 jbne 1f
10022: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
10031: movel %d0,%d3
1004
1005 is_040_or_060(L(spata68040))
1006
1007 /* Map everything non-cacheable, though not all parts really
1008 * need to disable caches (crucial only for 0xff8000..0xffffff
1009 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1010 * isn't really used, except for sometimes peeking into the
1011 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1012 * this. */
1013 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1014
1015 jbra L(mmu_init_done)
1016
1017L(spata68040):
1018
1019 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1020
1021 jbra L(mmu_init_done)
1022
1023L(mmu_init_not_atari):
1024#endif
1025
1026#ifdef CONFIG_Q40
1027 is_not_q40(L(notq40))
1028 /*
1029 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1030 * non-cached serialized etc..
1031 * this includes master chip, DAC, RTC and ISA ports
1032 * 0xfe000000-0xfeffffff is for screen and ROM
1033 */
1034
1035 putc 'Q'
1036
1037 mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1038 mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1039
1040 jbra L(mmu_init_done)
1041
1042L(notq40):
1043#endif
1044
1045#ifdef CONFIG_HP300
1046 is_not_hp300(L(nothp300))
1047
1048 /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1049 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1050 * The ROM mapping is needed because the LEDs are mapped there too.
1051 */
1052
1053 is_040(1f)
1054
1055 /*
1056 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1057 */
1058 mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1059
1060 jbra L(mmu_init_done)
1061
10621:
1063 /*
1064 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1065 */
1066 mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1067
1068 jbra L(mmu_init_done)
1069
1070L(nothp300):
1071#endif /* CONFIG_HP300 */
1072
1073#ifdef CONFIG_MVME147
1074
1075 is_not_mvme147(L(not147))
1076
1077 /*
1078 * On MVME147 we have already created kernel page tables for
1079 * 4MB of RAM at address 0, so now need to do a transparent
1080 * mapping of the top of memory space. Make it 0.5GByte for now,
1081 * so we can access on-board i/o areas.
1082 */
1083
1084 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1085
1086 jbra L(mmu_init_done)
1087
1088L(not147):
1089#endif /* CONFIG_MVME147 */
1090
1091#ifdef CONFIG_MVME16x
1092
1093 is_not_mvme16x(L(not16x))
1094
1095 /*
1096 * On MVME16x we have already created kernel page tables for
1097 * 4MB of RAM at address 0, so now need to do a transparent
1098 * mapping of the top of memory space. Make it 0.5GByte for now.
1099 * Supervisor only access, so transparent mapping doesn't
1100 * clash with User code virtual address space.
1101 * this covers IO devices, PROM and SRAM. The PROM and SRAM
1102 * mapping is needed to allow 167Bug to run.
1103 * IO is in the range 0xfff00000 to 0xfffeffff.
1104 * PROM is 0xff800000->0xffbfffff and SRAM is
1105 * 0xffe00000->0xffe1ffff.
1106 */
1107
1108 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1109
1110 jbra L(mmu_init_done)
1111
1112L(not16x):
1113#endif /* CONFIG_MVME162 | CONFIG_MVME167 */
1114
1115#ifdef CONFIG_BVME6000
1116
1117 is_not_bvme6000(L(not6000))
1118
1119 /*
1120 * On BVME6000 we have already created kernel page tables for
1121 * 4MB of RAM at address 0, so now need to do a transparent
1122 * mapping of the top of memory space. Make it 0.5GByte for now,
1123 * so we can access on-board i/o areas.
1124 * Supervisor only access, so transparent mapping doesn't
1125 * clash with User code virtual address space.
1126 */
1127
1128 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1129
1130 jbra L(mmu_init_done)
1131
1132L(not6000):
1133#endif /* CONFIG_BVME6000 */
1134
1135/*
1136 * mmu_init_mac
1137 *
1138 * The Macintosh mappings are less clear.
1139 *
1140 * Even as of this writing, it is unclear how the
1141 * Macintosh mappings will be done. However, as
1142 * the first author of this code I'm proposing the
1143 * following model:
1144 *
1145 * Map the kernel (that's already done),
1146 * Map the I/O (on most machines that's the
1147 * 0x5000.0000 ... 0x5300.0000 range,
1148 * Map the video frame buffer using as few pages
1149 * as absolutely (this requirement mostly stems from
1150 * the fact that when the frame buffer is at
1151 * 0x0000.0000 then we know there is valid RAM just
1152 * above the screen that we don't want to waste!).
1153 *
1154 * By the way, if the frame buffer is at 0x0000.0000
1155 * then the Macintosh is known as an RBV based Mac.
1156 *
1157 * By the way 2, the code currently maps in a bunch of
1158 * regions. But I'd like to cut that out. (And move most
1159 * of the mappings up into the kernel proper ... or only
1160 * map what's necessary.)
1161 */
1162
1163#ifdef CONFIG_MAC
1164
1165L(mmu_init_mac):
1166
1167 is_not_mac(L(mmu_init_not_mac))
1168
1169 putc 'F'
1170
1171 is_not_040_or_060(1f)
1172
1173 moveq #_PAGE_NOCACHE_S,%d3
1174 jbra 2f
11751:
1176 moveq #_PAGE_NOCACHE030,%d3
11772:
1178 /*
1179 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1180 * we simply map the 4MB that contains the videomem
1181 */
1182
1183 movel #VIDEOMEMMASK,%d0
1184 andl %pc@(L(mac_videobase)),%d0
1185
1186 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1187 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1188 mmu_map_eq #0x40000000,#0x02000000,%d3
1189 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1190 mmu_map_eq #0x50000000,#0x03000000,%d3
1191 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1192 mmu_map_tt #1,#0xf8000000,#0x08000000,%d3
1193
1194 jbra L(mmu_init_done)
1195
1196L(mmu_init_not_mac):
1197#endif
1198
1199#ifdef CONFIG_SUN3X
1200 is_not_sun3x(L(notsun3x))
1201
1202 /* oh, the pain.. We're gonna want the prom code after
1203 * starting the MMU, so we copy the mappings, translating
1204 * from 8k -> 4k pages as we go.
1205 */
1206
1207 /* copy maps from 0xfee00000 to 0xff000000 */
1208 movel #0xfee00000, %d0
1209 moveq #ROOT_INDEX_SHIFT, %d1
1210 lsrl %d1,%d0
1211 mmu_get_root_table_entry %d0
1212
1213 movel #0xfee00000, %d0
1214 moveq #PTR_INDEX_SHIFT, %d1
1215 lsrl %d1,%d0
1216 andl #PTR_TABLE_SIZE-1, %d0
1217 mmu_get_ptr_table_entry %a0,%d0
1218
1219 movel #0xfee00000, %d0
1220 moveq #PAGE_INDEX_SHIFT, %d1
1221 lsrl %d1,%d0
1222 andl #PAGE_TABLE_SIZE-1, %d0
1223 mmu_get_page_table_entry %a0,%d0
1224
1225 /* this is where the prom page table lives */
1226 movel 0xfefe00d4, %a1
1227 movel %a1@, %a1
1228
1229 movel #((0x200000 >> 13)-1), %d1
1230
12311:
1232 movel %a1@+, %d3
1233 movel %d3,%a0@+
1234 addl #0x1000,%d3
1235 movel %d3,%a0@+
1236
1237 dbra %d1,1b
1238
1239 /* setup tt1 for I/O */
1240 mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1241 jbra L(mmu_init_done)
1242
1243L(notsun3x):
1244#endif
1245
1246#ifdef CONFIG_VIRT
1247 is_not_virt(L(novirt))
1248 mmu_map_tt #1,#0xFF000000,#0x01000000,#_PAGE_NOCACHE_S
1249 jbra L(mmu_init_done)
1250L(novirt):
1251#endif
1252
1253#ifdef CONFIG_APOLLO
1254 is_not_apollo(L(notapollo))
1255
1256 putc 'P'
1257 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1258
1259L(notapollo):
1260 jbra L(mmu_init_done)
1261#endif
1262
1263L(mmu_init_done):
1264
1265 putc 'G'
1266 leds 0x8
1267
1268/*
1269 * mmu_fixup
1270 *
1271 * On the 040 class machines, all pages that are used for the
1272 * mmu have to be fixed up. According to Motorola, pages holding mmu
1273 * tables should be non-cacheable on a '040 and write-through on a
1274 * '060. But analysis of the reasons for this, and practical
1275 * experience, showed that write-through also works on a '040.
1276 *
1277 * Allocated memory so far goes from kernel_end to memory_start that
1278 * is used for all kind of tables, for that the cache attributes
1279 * are now fixed.
1280 */
1281L(mmu_fixup):
1282
1283 is_not_040_or_060(L(mmu_fixup_done))
1284
1285#ifdef MMU_NOCACHE_KERNEL
1286 jbra L(mmu_fixup_done)
1287#endif
1288
1289 /* first fix the page at the start of the kernel, that
1290 * contains also kernel_pg_dir.
1291 */
1292 movel %pc@(L(phys_kernel_start)),%d0
1293 subl #PAGE_OFFSET,%d0
1294 lea %pc@(_stext),%a0
1295 subl %d0,%a0
1296 mmu_fixup_page_mmu_cache %a0
1297
1298 movel %pc@(L(kernel_end)),%a0
1299 subl %d0,%a0
1300 movel %pc@(L(memory_start)),%a1
1301 subl %d0,%a1
1302 bra 2f
13031:
1304 mmu_fixup_page_mmu_cache %a0
1305 addw #PAGESIZE,%a0
13062:
1307 cmpl %a0,%a1
1308 jgt 1b
1309
1310L(mmu_fixup_done):
1311
1312#ifdef MMU_PRINT
1313 mmu_print
1314#endif
1315
1316/*
1317 * mmu_engage
1318 *
1319 * This chunk of code performs the gruesome task of engaging the MMU.
1320 * The reason it's gruesome is because when the MMU becomes engaged it
1321 * maps logical addresses to physical addresses. The Program Counter
1322 * register is then passed through the MMU before the next instruction
1323 * is fetched (the instruction following the engage MMU instruction).
1324 * This may mean one of two things:
1325 * 1. The Program Counter falls within the logical address space of
1326 * the kernel of which there are two sub-possibilities:
1327 * A. The PC maps to the correct instruction (logical PC == physical
1328 * code location), or
1329 * B. The PC does not map through and the processor will read some
1330 * data (or instruction) which is not the logically next instr.
1331 * As you can imagine, A is good and B is bad.
1332 * Alternatively,
1333 * 2. The Program Counter does not map through the MMU. The processor
1334 * will take a Bus Error.
1335 * Clearly, 2 is bad.
1336 * It doesn't take a wiz kid to figure you want 1.A.
1337 * This code creates that possibility.
1338 * There are two possible 1.A. states (we now ignore the other above states):
1339 * A. The kernel is located at physical memory addressed the same as
1340 * the logical memory for the kernel, i.e., 0x01000.
1341 * B. The kernel is located some where else. e.g., 0x0400.0000
1342 *
1343 * Under some conditions the Macintosh can look like A or B.
1344 * [A friend and I once noted that Apple hardware engineers should be
1345 * wacked twice each day: once when they show up at work (as in, Whack!,
1346 * "This is for the screwy hardware we know you're going to design today."),
1347 * and also at the end of the day (as in, Whack! "I don't know what
1348 * you designed today, but I'm sure it wasn't good."). -- rst]
1349 *
1350 * This code works on the following premise:
1351 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1352 * then create a mapping for the kernel at logical 0x8000.0000 to
1353 * the physical location of the pc. And, create a transparent
1354 * translation register for the first 16 Meg. Then, after the MMU
1355 * is engaged, the PC can be moved up into the 0x8000.0000 range
1356 * and then the transparent translation can be turned off and then
1357 * the PC can jump to the correct logical location and it will be
1358 * home (finally). This is essentially the code that the Amiga used
1359 * to use. Now, it's generalized for all processors. Which means
1360 * that a fresh (but temporary) mapping has to be created. The mapping
1361 * is made in page 0 (an as of yet unused location -- except for the
1362 * stack!). This temporary mapping will only require 1 pointer table
1363 * and a single page table (it can map 256K).
1364 *
1365 * OK, alternatively, imagine that the Program Counter is not within
1366 * the first 16 Meg. Then, just use Transparent Translation registers
1367 * to do the right thing.
1368 *
1369 * Last, if _start is already at 0x01000, then there's nothing special
1370 * to do (in other words, in a degenerate case of the first case above,
1371 * do nothing).
1372 *
1373 * Let's do it.
1374 *
1375 *
1376 */
1377
1378 putc 'H'
1379
1380 mmu_engage
1381
1382/*
1383 * After this point no new memory is allocated and
1384 * the start of available memory is stored in availmem.
1385 * (The bootmem allocator requires now the physical address.)
1386 */
1387
1388 movel L(memory_start),availmem
1389
1390#ifdef CONFIG_AMIGA
1391 is_not_amiga(1f)
1392 /* fixup the Amiga custom register location before printing */
1393 clrl L(custom)
13941:
1395#endif
1396
1397#ifdef CONFIG_ATARI
1398 is_not_atari(1f)
1399 /* fixup the Atari iobase register location before printing */
1400 movel #0xff000000,L(iobase)
14011:
1402#endif
1403
1404#ifdef CONFIG_MAC
1405 is_not_mac(1f)
1406 movel #~VIDEOMEMMASK,%d0
1407 andl L(mac_videobase),%d0
1408 addl #VIDEOMEMBASE,%d0
1409 movel %d0,L(mac_videobase)
1410#ifdef CONSOLE_DEBUG
1411 movel %pc@(L(phys_kernel_start)),%d0
1412 subl #PAGE_OFFSET,%d0
1413 subl %d0,L(console_font)
1414 subl %d0,L(console_font_data)
1415#endif
1416 orl #0x50000000,L(mac_sccbase)
14171:
1418#endif
1419
1420#ifdef CONFIG_HP300
1421 is_not_hp300(2f)
1422 /*
1423 * Fix up the iobase register to point to the new location of the LEDs.
1424 */
1425 movel #0xf0000000,L(iobase)
1426
1427 /*
1428 * Energise the FPU and caches.
1429 */
1430 is_040(1f)
1431 movel #0x60,0xf05f400c
1432 jbra 2f
1433
1434 /*
1435 * 040: slightly different, apparently.
1436 */
14371: movew #0,0xf05f400e
1438 movew #0x64,0xf05f400e
14392:
1440#endif
1441
1442#ifdef CONFIG_SUN3X
1443 is_not_sun3x(1f)
1444
1445 /* enable copro */
1446 oriw #0x4000,0x61000000
14471:
1448#endif
1449
1450#ifdef CONFIG_APOLLO
1451 is_not_apollo(1f)
1452
1453 /*
1454 * Fix up the iobase before printing
1455 */
1456 movel #0x80000000,L(iobase)
14571:
1458#endif
1459
1460 putc 'I'
1461 leds 0x10
1462
1463/*
1464 * Enable caches
1465 */
1466
1467 is_not_040_or_060(L(cache_not_680460))
1468
1469L(cache680460):
1470 .chip 68040
1471 nop
1472 cpusha %bc
1473 nop
1474
1475 is_060(L(cache68060))
1476
1477 movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0
1478 /* MMU stuff works in copyback mode now, so enable the cache */
1479 movec %d0,%cacr
1480 jra L(cache_done)
1481
1482L(cache68060):
1483 movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1484 /* MMU stuff works in copyback mode now, so enable the cache */
1485 movec %d0,%cacr
1486 /* enable superscalar dispatch in PCR */
1487 moveq #1,%d0
1488 .chip 68060
1489 movec %d0,%pcr
1490
1491 jbra L(cache_done)
1492L(cache_not_680460):
1493L(cache68030):
1494 .chip 68030
1495 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1496 movec %d0,%cacr
1497
1498 jra L(cache_done)
1499 .chip 68k
1500L(cache_done):
1501
1502 putc 'J'
1503
1504/*
1505 * Setup initial stack pointer
1506 */
1507 lea init_task,%curptr
1508 lea init_thread_union+THREAD_SIZE,%sp
1509
1510 putc 'K'
1511
1512 subl %a6,%a6 /* clear a6 for gdb */
1513
1514/*
1515 * The new 64bit printf support requires an early exception initialization.
1516 */
1517 jbsr base_trap_init
1518
1519/* jump to the kernel start */
1520
1521 putc '\n'
1522 leds 0x55
1523
1524 jbsr start_kernel
1525
1526/*
1527 * Find a tag record in the bootinfo structure
1528 * The bootinfo structure is located right after the kernel
1529 * Returns: d0: size (-1 if not found)
1530 * a0: data pointer (end-of-records if not found)
1531 */
1532func_start get_bi_record,%d1
1533
1534 movel ARG1,%d0
1535 lea %pc@(_end),%a0
15361: tstw %a0@(BIR_TAG)
1537 jeq 3f
1538 cmpw %a0@(BIR_TAG),%d0
1539 jeq 2f
1540 addw %a0@(BIR_SIZE),%a0
1541 jra 1b
15422: moveq #0,%d0
1543 movew %a0@(BIR_SIZE),%d0
1544 lea %a0@(BIR_DATA),%a0
1545 jra 4f
15463: moveq #-1,%d0
1547 lea %a0@(BIR_SIZE),%a0
15484:
1549func_return get_bi_record
1550
1551
1552/*
1553 * MMU Initialization Begins Here
1554 *
1555 * The structure of the MMU tables on the 68k machines
1556 * is thus:
1557 * Root Table
1558 * Logical addresses are translated through
1559 * a hierarchical translation mechanism where the high-order
1560 * seven bits of the logical address (LA) are used as an
1561 * index into the "root table." Each entry in the root
1562 * table has a bit which specifies if it's a valid pointer to a
1563 * pointer table. Each entry defines a 32Meg range of memory.
1564 * If an entry is invalid then that logical range of 32M is
1565 * invalid and references to that range of memory (when the MMU
1566 * is enabled) will fault. If the entry is valid, then it does
1567 * one of two things. On 040/060 class machines, it points to
1568 * a pointer table which then describes more finely the memory
1569 * within that 32M range. On 020/030 class machines, a technique
1570 * called "early terminating descriptors" are used. This technique
1571 * allows an entire 32Meg to be described by a single entry in the
1572 * root table. Thus, this entry in the root table, contains the
1573 * physical address of the memory or I/O at the logical address
1574 * which the entry represents and it also contains the necessary
1575 * cache bits for this region.
1576 *
1577 * Pointer Tables
1578 * Per the Root Table, there will be one or more
1579 * pointer tables. Each pointer table defines a 32M range.
1580 * Not all of the 32M range need be defined. Again, the next
1581 * seven bits of the logical address are used an index into
1582 * the pointer table to point to page tables (if the pointer
1583 * is valid). There will undoubtedly be more than one
1584 * pointer table for the kernel because each pointer table
1585 * defines a range of only 32M. Valid pointer table entries
1586 * point to page tables, or are early terminating entries
1587 * themselves.
1588 *
1589 * Page Tables
1590 * Per the Pointer Tables, each page table entry points
1591 * to the physical page in memory that supports the logical
1592 * address that translates to the particular index.
1593 *
1594 * In short, the Logical Address gets translated as follows:
1595 * bits 31..26 - index into the Root Table
1596 * bits 25..18 - index into the Pointer Table
1597 * bits 17..12 - index into the Page Table
1598 * bits 11..0 - offset into a particular 4K page
1599 *
1600 * The algorithms which follow do one thing: they abstract
1601 * the MMU hardware. For example, there are three kinds of
1602 * cache settings that are relevant. Either, memory is
1603 * being mapped in which case it is either Kernel Code (or
1604 * the RamDisk) or it is MMU data. On the 030, the MMU data
1605 * option also describes the kernel. Or, I/O is being mapped
1606 * in which case it has its own kind of cache bits. There
1607 * are constants which abstract these notions from the code that
1608 * actually makes the call to map some range of memory.
1609 *
1610 *
1611 *
1612 */
1613
1614#ifdef MMU_PRINT
1615/*
1616 * mmu_print
1617 *
1618 * This algorithm will print out the current MMU mappings.
1619 *
1620 * Input:
1621 * %a5 points to the root table. Everything else is calculated
1622 * from this.
1623 */
1624
1625#define mmu_next_valid 0
1626#define mmu_start_logical 4
1627#define mmu_next_logical 8
1628#define mmu_start_physical 12
1629#define mmu_next_physical 16
1630
1631#define MMU_PRINT_INVALID -1
1632#define MMU_PRINT_VALID 1
1633#define MMU_PRINT_UNINITED 0
1634
1635#define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1636
1637func_start mmu_print,%a0-%a6/%d0-%d7
1638
1639 movel %pc@(L(kernel_pgdir_ptr)),%a5
1640 lea %pc@(L(mmu_print_data)),%a0
1641 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1642
1643 is_not_040_or_060(mmu_030_print)
1644
1645mmu_040_print:
1646 puts "\nMMU040\n"
1647 puts "rp:"
1648 putn %a5
1649 putc '\n'
1650#if 0
1651 /*
1652 * The following #if/#endif block is a tight algorithm for dumping the 040
1653 * MMU Map in gory detail. It really isn't that practical unless the
1654 * MMU Map algorithm appears to go awry and you need to debug it at the
1655 * entry per entry level.
1656 */
1657 movel #ROOT_TABLE_SIZE,%d5
1658#if 0
1659 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings,
1660 subql #1,%d5 | they (might) work
1661#endif
16621: tstl %d5
1663 jbeq mmu_print_done
1664 subq #1,%d5
1665 movel %a5@+,%d7
1666 btst #1,%d7
1667 jbeq 1b
1668
16692: putn %d7
1670 andil #0xFFFFFE00,%d7
1671 movel %d7,%a4
1672 movel #PTR_TABLE_SIZE,%d4
1673 putc ' '
16743: tstl %d4
1675 jbeq 11f
1676 subq #1,%d4
1677 movel %a4@+,%d7
1678 btst #1,%d7
1679 jbeq 3b
1680
16814: putn %d7
1682 andil #0xFFFFFF00,%d7
1683 movel %d7,%a3
1684 movel #PAGE_TABLE_SIZE,%d3
16855: movel #8,%d2
16866: tstl %d3
1687 jbeq 31f
1688 subq #1,%d3
1689 movel %a3@+,%d6
1690 btst #0,%d6
1691 jbeq 6b
16927: tstl %d2
1693 jbeq 8f
1694 subq #1,%d2
1695 putc ' '
1696 jbra 91f
16978: putc '\n'
1698 movel #8+1+8+1+1,%d2
16999: putc ' '
1700 dbra %d2,9b
1701 movel #7,%d2
170291: putn %d6
1703 jbra 6b
1704
170531: putc '\n'
1706 movel #8+1,%d2
170732: putc ' '
1708 dbra %d2,32b
1709 jbra 3b
1710
171111: putc '\n'
1712 jbra 1b
1713#endif /* MMU 040 Dumping code that's gory and detailed */
1714
1715 lea %pc@(kernel_pg_dir),%a5
1716 movel %a5,%a0 /* a0 has the address of the root table ptr */
1717 movel #0x00000000,%a4 /* logical address */
1718 moveql #0,%d0
171940:
1720 /* Increment the logical address and preserve in d5 */
1721 movel %a4,%d5
1722 addil #PAGESIZE<<13,%d5
1723 movel %a0@+,%d6
1724 btst #1,%d6
1725 jbne 41f
1726 jbsr mmu_print_tuple_invalidate
1727 jbra 48f
172841:
1729 movel #0,%d1
1730 andil #0xfffffe00,%d6
1731 movel %d6,%a1
173242:
1733 movel %a4,%d5
1734 addil #PAGESIZE<<6,%d5
1735 movel %a1@+,%d6
1736 btst #1,%d6
1737 jbne 43f
1738 jbsr mmu_print_tuple_invalidate
1739 jbra 47f
174043:
1741 movel #0,%d2
1742 andil #0xffffff00,%d6
1743 movel %d6,%a2
174444:
1745 movel %a4,%d5
1746 addil #PAGESIZE,%d5
1747 movel %a2@+,%d6
1748 btst #0,%d6
1749 jbne 45f
1750 jbsr mmu_print_tuple_invalidate
1751 jbra 46f
175245:
1753 moveml %d0-%d1,%sp@-
1754 movel %a4,%d0
1755 movel %d6,%d1
1756 andil #0xfffff4e0,%d1
1757 lea %pc@(mmu_040_print_flags),%a6
1758 jbsr mmu_print_tuple
1759 moveml %sp@+,%d0-%d1
176046:
1761 movel %d5,%a4
1762 addq #1,%d2
1763 cmpib #64,%d2
1764 jbne 44b
176547:
1766 movel %d5,%a4
1767 addq #1,%d1
1768 cmpib #128,%d1
1769 jbne 42b
177048:
1771 movel %d5,%a4 /* move to the next logical address */
1772 addq #1,%d0
1773 cmpib #128,%d0
1774 jbne 40b
1775
1776 .chip 68040
1777 movec %dtt1,%d0
1778 movel %d0,%d1
1779 andiw #0x8000,%d1 /* is it valid ? */
1780 jbeq 1f /* No, bail out */
1781
1782 movel %d0,%d1
1783 andil #0xff000000,%d1 /* Get the address */
1784 putn %d1
1785 puts "=="
1786 putn %d1
1787
1788 movel %d0,%d6
1789 jbsr mmu_040_print_flags_tt
17901:
1791 movec %dtt0,%d0
1792 movel %d0,%d1
1793 andiw #0x8000,%d1 /* is it valid ? */
1794 jbeq 1f /* No, bail out */
1795
1796 movel %d0,%d1
1797 andil #0xff000000,%d1 /* Get the address */
1798 putn %d1
1799 puts "=="
1800 putn %d1
1801
1802 movel %d0,%d6
1803 jbsr mmu_040_print_flags_tt
18041:
1805 .chip 68k
1806
1807 jbra mmu_print_done
1808
1809mmu_040_print_flags:
1810 btstl #10,%d6
1811 putZc(' ','G') /* global bit */
1812 btstl #7,%d6
1813 putZc(' ','S') /* supervisor bit */
1814mmu_040_print_flags_tt:
1815 btstl #6,%d6
1816 jbne 3f
1817 putc 'C'
1818 btstl #5,%d6
1819 putZc('w','c') /* write through or copy-back */
1820 jbra 4f
18213:
1822 putc 'N'
1823 btstl #5,%d6
1824 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */
18254:
1826 rts
1827
1828mmu_030_print_flags:
1829 btstl #6,%d6
1830 putZc('C','I') /* write through or copy-back */
1831 rts
1832
1833mmu_030_print:
1834 puts "\nMMU030\n"
1835 puts "\nrp:"
1836 putn %a5
1837 putc '\n'
1838 movel %a5,%d0
1839 andil #0xfffffff0,%d0
1840 movel %d0,%a0
1841 movel #0x00000000,%a4 /* logical address */
1842 movel #0,%d0
184330:
1844 movel %a4,%d5
1845 addil #PAGESIZE<<13,%d5
1846 movel %a0@+,%d6
1847 btst #1,%d6 /* is it a table ptr? */
1848 jbne 31f /* yes */
1849 btst #0,%d6 /* is it early terminating? */
1850 jbeq 1f /* no */
1851 jbsr mmu_030_print_helper
1852 jbra 38f
18531:
1854 jbsr mmu_print_tuple_invalidate
1855 jbra 38f
185631:
1857 movel #0,%d1
1858 andil #0xfffffff0,%d6
1859 movel %d6,%a1
186032:
1861 movel %a4,%d5
1862 addil #PAGESIZE<<6,%d5
1863 movel %a1@+,%d6
1864 btst #1,%d6 /* is it a table ptr? */
1865 jbne 33f /* yes */
1866 btst #0,%d6 /* is it a page descriptor? */
1867 jbeq 1f /* no */
1868 jbsr mmu_030_print_helper
1869 jbra 37f
18701:
1871 jbsr mmu_print_tuple_invalidate
1872 jbra 37f
187333:
1874 movel #0,%d2
1875 andil #0xfffffff0,%d6
1876 movel %d6,%a2
187734:
1878 movel %a4,%d5
1879 addil #PAGESIZE,%d5
1880 movel %a2@+,%d6
1881 btst #0,%d6
1882 jbne 35f
1883 jbsr mmu_print_tuple_invalidate
1884 jbra 36f
188535:
1886 jbsr mmu_030_print_helper
188736:
1888 movel %d5,%a4
1889 addq #1,%d2
1890 cmpib #64,%d2
1891 jbne 34b
189237:
1893 movel %d5,%a4
1894 addq #1,%d1
1895 cmpib #128,%d1
1896 jbne 32b
189738:
1898 movel %d5,%a4 /* move to the next logical address */
1899 addq #1,%d0
1900 cmpib #128,%d0
1901 jbne 30b
1902
1903mmu_print_done:
1904 puts "\n"
1905
1906func_return mmu_print
1907
1908
1909mmu_030_print_helper:
1910 moveml %d0-%d1,%sp@-
1911 movel %a4,%d0
1912 movel %d6,%d1
1913 lea %pc@(mmu_030_print_flags),%a6
1914 jbsr mmu_print_tuple
1915 moveml %sp@+,%d0-%d1
1916 rts
1917
1918mmu_print_tuple_invalidate:
1919 moveml %a0/%d7,%sp@-
1920
1921 lea %pc@(L(mmu_print_data)),%a0
1922 tstl %a0@(mmu_next_valid)
1923 jbmi mmu_print_tuple_invalidate_exit
1924
1925 movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1926
1927 putn %a4
1928
1929 puts "##\n"
1930
1931mmu_print_tuple_invalidate_exit:
1932 moveml %sp@+,%a0/%d7
1933 rts
1934
1935
1936mmu_print_tuple:
1937 moveml %d0-%d7/%a0,%sp@-
1938
1939 lea %pc@(L(mmu_print_data)),%a0
1940
1941 tstl %a0@(mmu_next_valid)
1942 jble mmu_print_tuple_print
1943
1944 cmpl %a0@(mmu_next_physical),%d1
1945 jbeq mmu_print_tuple_increment
1946
1947mmu_print_tuple_print:
1948 putn %d0
1949 puts "->"
1950 putn %d1
1951
1952 movel %d1,%d6
1953 jbsr %a6@
1954
1955mmu_print_tuple_record:
1956 movel #MMU_PRINT_VALID,%a0@(mmu_next_valid)
1957
1958 movel %d1,%a0@(mmu_next_physical)
1959
1960mmu_print_tuple_increment:
1961 movel %d5,%d7
1962 subl %a4,%d7
1963 addl %d7,%a0@(mmu_next_physical)
1964
1965mmu_print_tuple_exit:
1966 moveml %sp@+,%d0-%d7/%a0
1967 rts
1968
1969mmu_print_machine_cpu_types:
1970 puts "machine: "
1971
1972 is_not_amiga(1f)
1973 puts "amiga"
1974 jbra 9f
19751:
1976 is_not_atari(2f)
1977 puts "atari"
1978 jbra 9f
19792:
1980 is_not_mac(3f)
1981 puts "macintosh"
1982 jbra 9f
19833: puts "unknown"
19849: putc '\n'
1985
1986 puts "cputype: 0"
1987 is_not_060(1f)
1988 putc '6'
1989 jbra 9f
19901:
1991 is_not_040_or_060(2f)
1992 putc '4'
1993 jbra 9f
19942: putc '3'
19959: putc '0'
1996 putc '\n'
1997
1998 rts
1999#endif /* MMU_PRINT */
2000
2001/*
2002 * mmu_map_tt
2003 *
2004 * This is a specific function which works on all 680x0 machines.
2005 * On 030, 040 & 060 it will attempt to use Transparent Translation
2006 * registers (tt1).
2007 * On 020 it will call the standard mmu_map which will use early
2008 * terminating descriptors.
2009 */
2010func_start mmu_map_tt,%d0/%d1/%a0,4
2011
2012 dputs "mmu_map_tt:"
2013 dputn ARG1
2014 dputn ARG2
2015 dputn ARG3
2016 dputn ARG4
2017 dputc '\n'
2018
2019 is_020(L(do_map))
2020
2021 /* Extract the highest bit set
2022 */
2023 bfffo ARG3{#0,#32},%d1
2024 cmpw #8,%d1
2025 jcc L(do_map)
2026
2027 /* And get the mask
2028 */
2029 moveq #-1,%d0
2030 lsrl %d1,%d0
2031 lsrl #1,%d0
2032
2033 /* Mask the address
2034 */
2035 movel %d0,%d1
2036 notl %d1
2037 andl ARG2,%d1
2038
2039 /* Generate the upper 16bit of the tt register
2040 */
2041 lsrl #8,%d0
2042 orl %d0,%d1
2043 clrw %d1
2044
2045 is_040_or_060(L(mmu_map_tt_040))
2046
2047 /* set 030 specific bits (read/write access for supervisor mode
2048 * (highest function code set, lower two bits masked))
2049 */
2050 orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2051 movel ARG4,%d0
2052 btst #6,%d0
2053 jeq 1f
2054 orw #TTR_CI,%d1
2055
20561: lea STACK,%a0
2057 dputn %d1
2058 movel %d1,%a0@
2059 .chip 68030
2060 tstl ARG1
2061 jne 1f
2062 pmove %a0@,%tt0
2063 jra 2f
20641: pmove %a0@,%tt1
20652: .chip 68k
2066 jra L(mmu_map_tt_done)
2067
2068 /* set 040 specific bits
2069 */
2070L(mmu_map_tt_040):
2071 orw #TTR_ENABLE+TTR_KERNELMODE,%d1
2072 orl ARG4,%d1
2073 dputn %d1
2074
2075 .chip 68040
2076 tstl ARG1
2077 jne 1f
2078 movec %d1,%itt0
2079 movec %d1,%dtt0
2080 jra 2f
20811: movec %d1,%itt1
2082 movec %d1,%dtt1
20832: .chip 68k
2084
2085 jra L(mmu_map_tt_done)
2086
2087L(do_map):
2088 mmu_map_eq ARG2,ARG3,ARG4
2089
2090L(mmu_map_tt_done):
2091
2092func_return mmu_map_tt
2093
2094/*
2095 * mmu_map
2096 *
2097 * This routine will map a range of memory using a pointer
2098 * table and allocate the pages on the fly from the kernel.
2099 * The pointer table does not have to be already linked into
2100 * the root table, this routine will do that if necessary.
2101 *
2102 * NOTE
2103 * This routine will assert failure and use the serial_putc
2104 * routines in the case of a run-time error. For example,
2105 * if the address is already mapped.
2106 *
2107 * NOTE-2
2108 * This routine will use early terminating descriptors
2109 * where possible for the 68020+68851 and 68030 type
2110 * processors.
2111 */
2112func_start mmu_map,%d0-%d4/%a0-%a4
2113
2114 dputs "\nmmu_map:"
2115 dputn ARG1
2116 dputn ARG2
2117 dputn ARG3
2118 dputn ARG4
2119 dputc '\n'
2120
2121 /* Get logical address and round it down to 256KB
2122 */
2123 movel ARG1,%d0
2124 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2125 movel %d0,%a3
2126
2127 /* Get the end address
2128 */
2129 movel ARG1,%a4
2130 addl ARG3,%a4
2131 subql #1,%a4
2132
2133 /* Get physical address and round it down to 256KB
2134 */
2135 movel ARG2,%d0
2136 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2137 movel %d0,%a2
2138
2139 /* Add page attributes to the physical address
2140 */
2141 movel ARG4,%d0
2142 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2143 addw %d0,%a2
2144
2145 dputn %a2
2146 dputn %a3
2147 dputn %a4
2148
2149 is_not_040_or_060(L(mmu_map_030))
2150
2151 addw #_PAGE_GLOBAL040,%a2
2152/*
2153 * MMU 040 & 060 Support
2154 *
2155 * The MMU usage for the 040 and 060 is different enough from
2156 * the 030 and 68851 that there is separate code. This comment
2157 * block describes the data structures and algorithms built by
2158 * this code.
2159 *
2160 * The 040 does not support early terminating descriptors, as
2161 * the 030 does. Therefore, a third level of table is needed
2162 * for the 040, and that would be the page table. In Linux,
2163 * page tables are allocated directly from the memory above the
2164 * kernel.
2165 *
2166 */
2167
2168L(mmu_map_040):
2169 /* Calculate the offset into the root table
2170 */
2171 movel %a3,%d0
2172 moveq #ROOT_INDEX_SHIFT,%d1
2173 lsrl %d1,%d0
2174 mmu_get_root_table_entry %d0
2175
2176 /* Calculate the offset into the pointer table
2177 */
2178 movel %a3,%d0
2179 moveq #PTR_INDEX_SHIFT,%d1
2180 lsrl %d1,%d0
2181 andl #PTR_TABLE_SIZE-1,%d0
2182 mmu_get_ptr_table_entry %a0,%d0
2183
2184 /* Calculate the offset into the page table
2185 */
2186 movel %a3,%d0
2187 moveq #PAGE_INDEX_SHIFT,%d1
2188 lsrl %d1,%d0
2189 andl #PAGE_TABLE_SIZE-1,%d0
2190 mmu_get_page_table_entry %a0,%d0
2191
2192 /* The page table entry must not no be busy
2193 */
2194 tstl %a0@
2195 jne L(mmu_map_error)
2196
2197 /* Do the mapping and advance the pointers
2198 */
2199 movel %a2,%a0@
22002:
2201 addw #PAGESIZE,%a2
2202 addw #PAGESIZE,%a3
2203
2204 /* Ready with mapping?
2205 */
2206 lea %a3@(-1),%a0
2207 cmpl %a0,%a4
2208 jhi L(mmu_map_040)
2209 jra L(mmu_map_done)
2210
2211L(mmu_map_030):
2212 /* Calculate the offset into the root table
2213 */
2214 movel %a3,%d0
2215 moveq #ROOT_INDEX_SHIFT,%d1
2216 lsrl %d1,%d0
2217 mmu_get_root_table_entry %d0
2218
2219 /* Check if logical address 32MB aligned,
2220 * so we can try to map it once
2221 */
2222 movel %a3,%d0
2223 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2224 jne 1f
2225
2226 /* Is there enough to map for 32MB at once
2227 */
2228 lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2229 cmpl %a1,%a4
2230 jcs 1f
2231
2232 addql #1,%a1
2233
2234 /* The root table entry must not no be busy
2235 */
2236 tstl %a0@
2237 jne L(mmu_map_error)
2238
2239 /* Do the mapping and advance the pointers
2240 */
2241 dputs "early term1"
2242 dputn %a2
2243 dputn %a3
2244 dputn %a1
2245 dputc '\n'
2246 movel %a2,%a0@
2247
2248 movel %a1,%a3
2249 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2250 jra L(mmu_mapnext_030)
22511:
2252 /* Calculate the offset into the pointer table
2253 */
2254 movel %a3,%d0
2255 moveq #PTR_INDEX_SHIFT,%d1
2256 lsrl %d1,%d0
2257 andl #PTR_TABLE_SIZE-1,%d0
2258 mmu_get_ptr_table_entry %a0,%d0
2259
2260 /* The pointer table entry must not no be busy
2261 */
2262 tstl %a0@
2263 jne L(mmu_map_error)
2264
2265 /* Do the mapping and advance the pointers
2266 */
2267 dputs "early term2"
2268 dputn %a2
2269 dputn %a3
2270 dputc '\n'
2271 movel %a2,%a0@
2272
2273 addl #PAGE_TABLE_SIZE*PAGESIZE,%a2
2274 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3
2275
2276L(mmu_mapnext_030):
2277 /* Ready with mapping?
2278 */
2279 lea %a3@(-1),%a0
2280 cmpl %a0,%a4
2281 jhi L(mmu_map_030)
2282 jra L(mmu_map_done)
2283
2284L(mmu_map_error):
2285
2286 dputs "mmu_map error:"
2287 dputn %a2
2288 dputn %a3
2289 dputc '\n'
2290
2291L(mmu_map_done):
2292
2293func_return mmu_map
2294
2295/*
2296 * mmu_fixup
2297 *
2298 * On the 040 class machines, all pages that are used for the
2299 * mmu have to be fixed up.
2300 */
2301
2302func_start mmu_fixup_page_mmu_cache,%d0/%a0
2303
2304 dputs "mmu_fixup_page_mmu_cache"
2305 dputn ARG1
2306
2307 /* Calculate the offset into the root table
2308 */
2309 movel ARG1,%d0
2310 moveq #ROOT_INDEX_SHIFT,%d1
2311 lsrl %d1,%d0
2312 mmu_get_root_table_entry %d0
2313
2314 /* Calculate the offset into the pointer table
2315 */
2316 movel ARG1,%d0
2317 moveq #PTR_INDEX_SHIFT,%d1
2318 lsrl %d1,%d0
2319 andl #PTR_TABLE_SIZE-1,%d0
2320 mmu_get_ptr_table_entry %a0,%d0
2321
2322 /* Calculate the offset into the page table
2323 */
2324 movel ARG1,%d0
2325 moveq #PAGE_INDEX_SHIFT,%d1
2326 lsrl %d1,%d0
2327 andl #PAGE_TABLE_SIZE-1,%d0
2328 mmu_get_page_table_entry %a0,%d0
2329
2330 movel %a0@,%d0
2331 andil #_CACHEMASK040,%d0
2332 orl %pc@(m68k_pgtable_cachemode),%d0
2333 movel %d0,%a0@
2334
2335 dputc '\n'
2336
2337func_return mmu_fixup_page_mmu_cache
2338
2339/*
2340 * mmu_temp_map
2341 *
2342 * create a temporary mapping to enable the mmu,
2343 * this we don't need any transparation translation tricks.
2344 */
2345
2346func_start mmu_temp_map,%d0/%d1/%a0/%a1
2347
2348 dputs "mmu_temp_map"
2349 dputn ARG1
2350 dputn ARG2
2351 dputc '\n'
2352
2353 lea %pc@(L(temp_mmap_mem)),%a1
2354
2355 /* Calculate the offset in the root table
2356 */
2357 movel ARG2,%d0
2358 moveq #ROOT_INDEX_SHIFT,%d1
2359 lsrl %d1,%d0
2360 mmu_get_root_table_entry %d0
2361
2362 /* Check if the table is temporary allocated, so we have to reuse it
2363 */
2364 movel %a0@,%d0
2365 cmpl %pc@(L(memory_start)),%d0
2366 jcc 1f
2367
2368 /* Temporary allocate a ptr table and insert it into the root table
2369 */
2370 movel %a1@,%d0
2371 addl #PTR_TABLE_SIZE*4,%a1@
2372 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2373 movel %d0,%a0@
2374 dputs " (new)"
23751:
2376 dputn %d0
2377 /* Mask the root table entry for the ptr table
2378 */
2379 andw #-ROOT_TABLE_SIZE,%d0
2380 movel %d0,%a0
2381
2382 /* Calculate the offset into the pointer table
2383 */
2384 movel ARG2,%d0
2385 moveq #PTR_INDEX_SHIFT,%d1
2386 lsrl %d1,%d0
2387 andl #PTR_TABLE_SIZE-1,%d0
2388 lea %a0@(%d0*4),%a0
2389 dputn %a0
2390
2391 /* Check if a temporary page table is already allocated
2392 */
2393 movel %a0@,%d0
2394 jne 1f
2395
2396 /* Temporary allocate a page table and insert it into the ptr table
2397 */
2398 movel %a1@,%d0
2399 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2400 alignment restriction for pointer tables on the '0[46]0. */
2401 addl #512,%a1@
2402 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2403 movel %d0,%a0@
2404 dputs " (new)"
24051:
2406 dputn %d0
2407 /* Mask the ptr table entry for the page table
2408 */
2409 andw #-PTR_TABLE_SIZE,%d0
2410 movel %d0,%a0
2411
2412 /* Calculate the offset into the page table
2413 */
2414 movel ARG2,%d0
2415 moveq #PAGE_INDEX_SHIFT,%d1
2416 lsrl %d1,%d0
2417 andl #PAGE_TABLE_SIZE-1,%d0
2418 lea %a0@(%d0*4),%a0
2419 dputn %a0
2420
2421 /* Insert the address into the page table
2422 */
2423 movel ARG1,%d0
2424 andw #-PAGESIZE,%d0
2425 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2426 movel %d0,%a0@
2427 dputn %d0
2428
2429 dputc '\n'
2430
2431func_return mmu_temp_map
2432
2433func_start mmu_engage,%d0-%d2/%a0-%a3
2434
2435 moveq #ROOT_TABLE_SIZE-1,%d0
2436 /* Temporarily use a different root table. */
2437 lea %pc@(L(kernel_pgdir_ptr)),%a0
2438 movel %a0@,%a2
2439 movel %pc@(L(memory_start)),%a1
2440 movel %a1,%a0@
2441 movel %a2,%a0
24421:
2443 movel %a0@+,%a1@+
2444 dbra %d0,1b
2445
2446 lea %pc@(L(temp_mmap_mem)),%a0
2447 movel %a1,%a0@
2448
2449 movew #PAGESIZE-1,%d0
24501:
2451 clrl %a1@+
2452 dbra %d0,1b
2453
2454 lea %pc@(1b),%a0
2455 movel #1b,%a1
2456 /* Skip temp mappings if phys == virt */
2457 cmpl %a0,%a1
2458 jeq 1f
2459
2460 mmu_temp_map %a0,%a0
2461 mmu_temp_map %a0,%a1
2462
2463 addw #PAGESIZE,%a0
2464 addw #PAGESIZE,%a1
2465 mmu_temp_map %a0,%a0
2466 mmu_temp_map %a0,%a1
24671:
2468 movel %pc@(L(memory_start)),%a3
2469 movel %pc@(L(phys_kernel_start)),%d2
2470
2471 is_not_040_or_060(L(mmu_engage_030))
2472
2473L(mmu_engage_040):
2474 .chip 68040
2475 nop
2476 cinva %bc
2477 nop
2478 pflusha
2479 nop
2480 movec %a3,%srp
2481 movel #TC_ENABLE+TC_PAGE4K,%d0
2482 movec %d0,%tc /* enable the MMU */
2483 jmp 1f:l
24841: nop
2485 movec %a2,%srp
2486 nop
2487 cinva %bc
2488 nop
2489 pflusha
2490 .chip 68k
2491 jra L(mmu_engage_cleanup)
2492
2493L(mmu_engage_030_temp):
2494 .space 12
2495L(mmu_engage_030):
2496 .chip 68030
2497 lea %pc@(L(mmu_engage_030_temp)),%a0
2498 movel #0x80000002,%a0@
2499 movel %a3,%a0@(4)
2500 movel #0x0808,%d0
2501 movec %d0,%cacr
2502 pmove %a0@,%srp
2503 pflusha
2504 /*
2505 * enable,super root enable,4096 byte pages,7 bit root index,
2506 * 7 bit pointer index, 6 bit page table index.
2507 */
2508 movel #0x82c07760,%a0@(8)
2509 pmove %a0@(8),%tc /* enable the MMU */
2510 jmp 1f:l
25111: movel %a2,%a0@(4)
2512 movel #0x0808,%d0
2513 movec %d0,%cacr
2514 pmove %a0@,%srp
2515 pflusha
2516 .chip 68k
2517
2518L(mmu_engage_cleanup):
2519 subl #PAGE_OFFSET,%d2
2520 subl %d2,%a2
2521 movel %a2,L(kernel_pgdir_ptr)
2522 subl %d2,%fp
2523 subl %d2,%sp
2524 subl %d2,ARG0
2525
2526func_return mmu_engage
2527
2528func_start mmu_get_root_table_entry,%d0/%a1
2529
2530#if 0
2531 dputs "mmu_get_root_table_entry:"
2532 dputn ARG1
2533 dputs " ="
2534#endif
2535
2536 movel %pc@(L(kernel_pgdir_ptr)),%a0
2537 tstl %a0
2538 jne 2f
2539
2540 dputs "\nmmu_init:"
2541
2542 /* Find the start of free memory, get_bi_record does this for us,
2543 * as the bootinfo structure is located directly behind the kernel
2544 * we simply search for the last entry.
2545 */
2546 get_bi_record BI_LAST
2547 addw #PAGESIZE-1,%a0
2548 movel %a0,%d0
2549 andw #-PAGESIZE,%d0
2550
2551 dputn %d0
2552
2553 lea %pc@(L(memory_start)),%a0
2554 movel %d0,%a0@
2555 lea %pc@(L(kernel_end)),%a0
2556 movel %d0,%a0@
2557
2558 /* we have to return the first page at _stext since the init code
2559 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2560 * page is used for further ptr tables in get_ptr_table.
2561 */
2562 lea %pc@(_stext),%a0
2563 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2564 movel %a0,%a1@
2565 addl #ROOT_TABLE_SIZE*4,%a1@
2566
2567 lea %pc@(L(mmu_num_pointer_tables)),%a1
2568 addql #1,%a1@
2569
2570 /* clear the page
2571 */
2572 movel %a0,%a1
2573 movew #PAGESIZE/4-1,%d0
25741:
2575 clrl %a1@+
2576 dbra %d0,1b
2577
2578 lea %pc@(L(kernel_pgdir_ptr)),%a1
2579 movel %a0,%a1@
2580
2581 dputn %a0
2582 dputc '\n'
25832:
2584 movel ARG1,%d0
2585 lea %a0@(%d0*4),%a0
2586
2587#if 0
2588 dputn %a0
2589 dputc '\n'
2590#endif
2591
2592func_return mmu_get_root_table_entry
2593
2594
2595
2596func_start mmu_get_ptr_table_entry,%d0/%a1
2597
2598#if 0
2599 dputs "mmu_get_ptr_table_entry:"
2600 dputn ARG1
2601 dputn ARG2
2602 dputs " ="
2603#endif
2604
2605 movel ARG1,%a0
2606 movel %a0@,%d0
2607 jne 2f
2608
2609 /* Keep track of the number of pointer tables we use
2610 */
2611 dputs "\nmmu_get_new_ptr_table:"
2612 lea %pc@(L(mmu_num_pointer_tables)),%a0
2613 movel %a0@,%d0
2614 addql #1,%a0@
2615
2616 /* See if there is a free pointer table in our cache of pointer tables
2617 */
2618 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2619 andw #7,%d0
2620 jne 1f
2621
2622 /* Get a new pointer table page from above the kernel memory
2623 */
2624 get_new_page
2625 movel %a0,%a1@
26261:
2627 /* There is an unused pointer table in our cache... use it
2628 */
2629 movel %a1@,%d0
2630 addl #PTR_TABLE_SIZE*4,%a1@
2631
2632 dputn %d0
2633 dputc '\n'
2634
2635 /* Insert the new pointer table into the root table
2636 */
2637 movel ARG1,%a0
2638 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2639 movel %d0,%a0@
26402:
2641 /* Extract the pointer table entry
2642 */
2643 andw #-PTR_TABLE_SIZE,%d0
2644 movel %d0,%a0
2645 movel ARG2,%d0
2646 lea %a0@(%d0*4),%a0
2647
2648#if 0
2649 dputn %a0
2650 dputc '\n'
2651#endif
2652
2653func_return mmu_get_ptr_table_entry
2654
2655
2656func_start mmu_get_page_table_entry,%d0/%a1
2657
2658#if 0
2659 dputs "mmu_get_page_table_entry:"
2660 dputn ARG1
2661 dputn ARG2
2662 dputs " ="
2663#endif
2664
2665 movel ARG1,%a0
2666 movel %a0@,%d0
2667 jne 2f
2668
2669 /* If the page table entry doesn't exist, we allocate a complete new
2670 * page and use it as one continuous big page table which can cover
2671 * 4MB of memory, nearly almost all mappings have that alignment.
2672 */
2673 get_new_page
2674 addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0
2675
2676 /* align pointer table entry for a page of page tables
2677 */
2678 movel ARG1,%d0
2679 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2680 movel %d0,%a1
2681
2682 /* Insert the page tables into the pointer entries
2683 */
2684 moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
26851:
2686 movel %a0,%a1@+
2687 lea %a0@(PAGE_TABLE_SIZE*4),%a0
2688 dbra %d0,1b
2689
2690 /* Now we can get the initialized pointer table entry
2691 */
2692 movel ARG1,%a0
2693 movel %a0@,%d0
26942:
2695 /* Extract the page table entry
2696 */
2697 andw #-PAGE_TABLE_SIZE,%d0
2698 movel %d0,%a0
2699 movel ARG2,%d0
2700 lea %a0@(%d0*4),%a0
2701
2702#if 0
2703 dputn %a0
2704 dputc '\n'
2705#endif
2706
2707func_return mmu_get_page_table_entry
2708
2709/*
2710 * get_new_page
2711 *
2712 * Return a new page from the memory start and clear it.
2713 */
2714func_start get_new_page,%d0/%a1
2715
2716 dputs "\nget_new_page:"
2717
2718 /* allocate the page and adjust memory_start
2719 */
2720 lea %pc@(L(memory_start)),%a0
2721 movel %a0@,%a1
2722 addl #PAGESIZE,%a0@
2723
2724 /* clear the new page
2725 */
2726 movel %a1,%a0
2727 movew #PAGESIZE/4-1,%d0
27281:
2729 clrl %a1@+
2730 dbra %d0,1b
2731
2732 dputn %a0
2733 dputc '\n'
2734
2735func_return get_new_page
2736
2737
2738
2739/*
2740 * Debug output support
2741 * Atarians have a choice between the parallel port, the serial port
2742 * from the MFP or a serial port of the SCC
2743 */
2744
2745#ifdef CONFIG_MAC
2746/* You may define either or both of these. */
2747#define MAC_USE_SCC_A /* Modem port */
2748#define MAC_USE_SCC_B /* Printer port */
2749
2750#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2751/* Initialisation table for SCC with 3.6864 MHz PCLK */
2752L(scc_initable_mac):
2753 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2754 .byte 3,0xc0 /* receiver: 8 bpc */
2755 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2756 .byte 10,0 /* NRZ */
2757 .byte 11,0x50 /* use baud rate generator */
2758 .byte 12,1,13,0 /* 38400 baud */
2759 .byte 14,1 /* Baud rate generator enable */
2760 .byte 3,0xc1 /* enable receiver */
2761 .byte 5,0xea /* enable transmitter */
2762 .byte -1
2763 .even
2764#endif
2765#endif /* CONFIG_MAC */
2766
2767#ifdef CONFIG_ATARI
2768/* #define USE_PRINTER */
2769/* #define USE_SCC_B */
2770/* #define USE_SCC_A */
2771#define USE_MFP
2772
2773#if defined(USE_SCC_A) || defined(USE_SCC_B)
2774/* Initialisation table for SCC with 7.9872 MHz PCLK */
2775/* PCLK == 8.0539 gives baud == 9680.1 */
2776L(scc_initable_atari):
2777 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2778 .byte 3,0xc0 /* receiver: 8 bpc */
2779 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2780 .byte 10,0 /* NRZ */
2781 .byte 11,0x50 /* use baud rate generator */
2782 .byte 12,24,13,0 /* 9600 baud */
2783 .byte 14,2,14,3 /* use master clock for BRG, enable */
2784 .byte 3,0xc1 /* enable receiver */
2785 .byte 5,0xea /* enable transmitter */
2786 .byte -1
2787 .even
2788#endif
2789
2790#ifdef USE_PRINTER
2791
2792LPSG_SELECT = 0xff8800
2793LPSG_READ = 0xff8800
2794LPSG_WRITE = 0xff8802
2795LPSG_IO_A = 14
2796LPSG_IO_B = 15
2797LPSG_CONTROL = 7
2798LSTMFP_GPIP = 0xfffa01
2799LSTMFP_DDR = 0xfffa05
2800LSTMFP_IERB = 0xfffa09
2801
2802#elif defined(USE_SCC_B)
2803
2804LSCC_CTRL = 0xff8c85
2805LSCC_DATA = 0xff8c87
2806
2807#elif defined(USE_SCC_A)
2808
2809LSCC_CTRL = 0xff8c81
2810LSCC_DATA = 0xff8c83
2811
2812#elif defined(USE_MFP)
2813
2814LMFP_UCR = 0xfffa29
2815LMFP_TDCDR = 0xfffa1d
2816LMFP_TDDR = 0xfffa25
2817LMFP_TSR = 0xfffa2d
2818LMFP_UDR = 0xfffa2f
2819
2820#endif
2821#endif /* CONFIG_ATARI */
2822
2823/*
2824 * Serial port output support.
2825 */
2826
2827/*
2828 * Initialize serial port hardware
2829 */
2830func_start serial_init,%d0/%d1/%a0/%a1
2831 /*
2832 * Some of the register usage that follows
2833 * CONFIG_AMIGA
2834 * a0 = pointer to boot info record
2835 * d0 = boot info offset
2836 * CONFIG_ATARI
2837 * a0 = address of SCC
2838 * a1 = Liobase address/address of scc_initable_atari
2839 * d0 = init data for serial port
2840 * CONFIG_MAC
2841 * a0 = address of SCC
2842 * a1 = address of scc_initable_mac
2843 * d0 = init data for serial port
2844 */
2845
2846#ifdef CONFIG_AMIGA
2847#define SERIAL_DTR 7
2848#define SERIAL_CNTRL CIABBASE+C_PRA
2849
2850 is_not_amiga(1f)
2851 lea %pc@(L(custom)),%a0
2852 movel #-ZTWOBASE,%a0@
2853 bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2854 get_bi_record BI_AMIGA_SERPER
2855 movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2856| movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE
28571:
2858#endif
2859
2860#ifdef CONFIG_ATARI
2861 is_not_atari(4f)
2862 movel %pc@(L(iobase)),%a1
2863#if defined(USE_PRINTER)
2864 bclr #0,%a1@(LSTMFP_IERB)
2865 bclr #0,%a1@(LSTMFP_DDR)
2866 moveb #LPSG_CONTROL,%a1@(LPSG_SELECT)
2867 moveb #0xff,%a1@(LPSG_WRITE)
2868 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
2869 clrb %a1@(LPSG_WRITE)
2870 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
2871 moveb %a1@(LPSG_READ),%d0
2872 bset #5,%d0
2873 moveb %d0,%a1@(LPSG_WRITE)
2874#elif defined(USE_SCC_A) || defined(USE_SCC_B)
2875 lea %a1@(LSCC_CTRL),%a0
2876 /* Reset SCC register pointer */
2877 moveb %a0@,%d0
2878 /* Reset SCC device: write register pointer then register value */
2879 moveb #9,%a0@
2880 moveb #0xc0,%a0@
2881 /* Wait for 5 PCLK cycles, which is about 63 CPU cycles */
2882 /* 5 / 7.9872 MHz = approx. 0.63 us = 63 / 100 MHz */
2883 movel #32,%d0
28842:
2885 subq #1,%d0
2886 jne 2b
2887 /* Initialize channel */
2888 lea %pc@(L(scc_initable_atari)),%a1
28892: moveb %a1@+,%d0
2890 jmi 3f
2891 moveb %d0,%a0@
2892 moveb %a1@+,%a0@
2893 jra 2b
28943: clrb %a0@
2895#elif defined(USE_MFP)
2896 bclr #1,%a1@(LMFP_TSR)
2897 moveb #0x88,%a1@(LMFP_UCR)
2898 andb #0x70,%a1@(LMFP_TDCDR)
2899 moveb #2,%a1@(LMFP_TDDR)
2900 orb #1,%a1@(LMFP_TDCDR)
2901 bset #1,%a1@(LMFP_TSR)
2902#endif
2903 jra L(serial_init_done)
29044:
2905#endif
2906
2907#ifdef CONFIG_MAC
2908 is_not_mac(L(serial_init_not_mac))
2909#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2910#define mac_scc_cha_b_ctrl_offset 0x0
2911#define mac_scc_cha_a_ctrl_offset 0x2
2912#define mac_scc_cha_b_data_offset 0x4
2913#define mac_scc_cha_a_data_offset 0x6
2914 movel %pc@(L(mac_sccbase)),%a0
2915 /* Reset SCC register pointer */
2916 moveb %a0@(mac_scc_cha_a_ctrl_offset),%d0
2917 /* Reset SCC device: write register pointer then register value */
2918 moveb #9,%a0@(mac_scc_cha_a_ctrl_offset)
2919 moveb #0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2920 /* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2921 /* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2922 movel #35,%d0
29235:
2924 subq #1,%d0
2925 jne 5b
2926#endif
2927#ifdef MAC_USE_SCC_A
2928 /* Initialize channel A */
2929 lea %pc@(L(scc_initable_mac)),%a1
29305: moveb %a1@+,%d0
2931 jmi 6f
2932 moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset)
2933 moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2934 jra 5b
29356:
2936#endif /* MAC_USE_SCC_A */
2937#ifdef MAC_USE_SCC_B
2938 /* Initialize channel B */
2939 lea %pc@(L(scc_initable_mac)),%a1
29407: moveb %a1@+,%d0
2941 jmi 8f
2942 moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset)
2943 moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2944 jra 7b
29458:
2946#endif /* MAC_USE_SCC_B */
2947 jra L(serial_init_done)
2948L(serial_init_not_mac):
2949#endif /* CONFIG_MAC */
2950
2951#ifdef CONFIG_Q40
2952 is_not_q40(2f)
2953/* debug output goes into SRAM, so we don't do it unless requested
2954 - check for '%LX$' signature in SRAM */
2955 lea %pc@(q40_mem_cptr),%a1
2956 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */
2957 move.l #0xff020000,%a1
2958 cmp.b #'%',%a1@
2959 bne 2f /*nodbg*/
2960 addq.w #4,%a1
2961 cmp.b #'L',%a1@
2962 bne 2f /*nodbg*/
2963 addq.w #4,%a1
2964 cmp.b #'X',%a1@
2965 bne 2f /*nodbg*/
2966 addq.w #4,%a1
2967 cmp.b #'$',%a1@
2968 bne 2f /*nodbg*/
2969 /* signature OK */
2970 lea %pc@(L(q40_do_debug)),%a1
2971 tas %a1@
2972/*nodbg: q40_do_debug is 0 by default*/
29732:
2974#endif
2975
2976#ifdef CONFIG_MVME16x
2977 is_not_mvme16x(L(serial_init_not_mvme16x))
2978 moveb #0x10,M167_PCSCCMICR
2979 moveb #0x10,M167_PCSCCTICR
2980 moveb #0x10,M167_PCSCCRICR
2981 jra L(serial_init_done)
2982L(serial_init_not_mvme16x):
2983#endif
2984
2985#ifdef CONFIG_APOLLO
2986/* We count on the PROM initializing SIO1 */
2987#endif
2988
2989#ifdef CONFIG_HP300
2990/* We count on the boot loader initialising the UART */
2991#endif
2992
2993L(serial_init_done):
2994func_return serial_init
2995
2996/*
2997 * Output character on serial port.
2998 */
2999func_start serial_putc,%d0/%d1/%a0/%a1
3000
3001 movel ARG1,%d0
3002 cmpib #'\n',%d0
3003 jbne 1f
3004
3005 /* A little safe recursion is good for the soul */
3006 serial_putc #'\r'
30071:
3008
3009#ifdef CONFIG_AMIGA
3010 is_not_amiga(2f)
3011 andw #0x00ff,%d0
3012 oriw #0x0100,%d0
3013 movel %pc@(L(custom)),%a0
3014 movew %d0,%a0@(CUSTOMBASE+C_SERDAT)
30151: movew %a0@(CUSTOMBASE+C_SERDATR),%d0
3016 andw #0x2000,%d0
3017 jeq 1b
3018 jra L(serial_putc_done)
30192:
3020#endif
3021
3022#ifdef CONFIG_MAC
3023 is_not_mac(5f)
3024#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
3025 movel %pc@(L(mac_sccbase)),%a1
3026#endif
3027#ifdef MAC_USE_SCC_A
30283: btst #2,%a1@(mac_scc_cha_a_ctrl_offset)
3029 jeq 3b
3030 moveb %d0,%a1@(mac_scc_cha_a_data_offset)
3031#endif /* MAC_USE_SCC_A */
3032#ifdef MAC_USE_SCC_B
30334: btst #2,%a1@(mac_scc_cha_b_ctrl_offset)
3034 jeq 4b
3035 moveb %d0,%a1@(mac_scc_cha_b_data_offset)
3036#endif /* MAC_USE_SCC_B */
3037 jra L(serial_putc_done)
30385:
3039#endif /* CONFIG_MAC */
3040
3041#ifdef CONFIG_ATARI
3042 is_not_atari(4f)
3043 movel %pc@(L(iobase)),%a1
3044#if defined(USE_PRINTER)
30453: btst #0,%a1@(LSTMFP_GPIP)
3046 jne 3b
3047 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
3048 moveb %d0,%a1@(LPSG_WRITE)
3049 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
3050 moveb %a1@(LPSG_READ),%d0
3051 bclr #5,%d0
3052 moveb %d0,%a1@(LPSG_WRITE)
3053 nop
3054 nop
3055 bset #5,%d0
3056 moveb %d0,%a1@(LPSG_WRITE)
3057#elif defined(USE_SCC_A) || defined(USE_SCC_B)
30583: btst #2,%a1@(LSCC_CTRL)
3059 jeq 3b
3060 moveb %d0,%a1@(LSCC_DATA)
3061#elif defined(USE_MFP)
30623: btst #7,%a1@(LMFP_TSR)
3063 jeq 3b
3064 moveb %d0,%a1@(LMFP_UDR)
3065#endif
3066 jra L(serial_putc_done)
30674:
3068#endif /* CONFIG_ATARI */
3069
3070#ifdef CONFIG_MVME147
3071 is_not_mvme147(2f)
30721: btst #2,M147_SCC_CTRL_A
3073 jeq 1b
3074 moveb %d0,M147_SCC_DATA_A
3075 jbra L(serial_putc_done)
30762:
3077#endif
3078
3079#ifdef CONFIG_MVME16x
3080 is_not_mvme16x(2f)
3081 /*
3082 * If the loader gave us a board type then we can use that to
3083 * select an appropriate output routine; otherwise we just use
3084 * the Bug code. If we have to use the Bug that means the Bug
3085 * workspace has to be valid, which means the Bug has to use
3086 * the SRAM, which is non-standard.
3087 */
3088 moveml %d0-%d7/%a2-%a6,%sp@-
3089 movel vme_brdtype,%d1
3090 jeq 1f | No tag - use the Bug
3091 cmpi #VME_TYPE_MVME162,%d1
3092 jeq 6f
3093 cmpi #VME_TYPE_MVME172,%d1
3094 jne 5f
3095 /* 162/172; it's an SCC */
30966: btst #2,M162_SCC_CTRL_A
3097 nop
3098 nop
3099 nop
3100 jeq 6b
3101 moveb #8,M162_SCC_CTRL_A
3102 nop
3103 nop
3104 nop
3105 moveb %d0,M162_SCC_CTRL_A
3106 jra 3f
31075:
3108 /* 166/167/177; it's a CD2401 */
3109 moveb #0,M167_CYCAR
3110 moveb M167_CYIER,%d2
3111 moveb #0x02,M167_CYIER
31127:
3113 btst #5,M167_PCSCCTICR
3114 jeq 7b
3115 moveb M167_PCTPIACKR,%d1
3116 moveb M167_CYLICR,%d1
3117 jeq 8f
3118 moveb #0x08,M167_CYTEOIR
3119 jra 7b
31208:
3121 moveb %d0,M167_CYTDR
3122 moveb #0,M167_CYTEOIR
3123 moveb %d2,M167_CYIER
3124 jra 3f
31251:
3126 moveb %d0,%sp@-
3127 trap #15
3128 .word 0x0020 /* TRAP 0x020 */
31293:
3130 moveml %sp@+,%d0-%d7/%a2-%a6
3131 jbra L(serial_putc_done)
31322:
3133#endif /* CONFIG_MVME16x */
3134
3135#ifdef CONFIG_BVME6000
3136 is_not_bvme6000(2f)
3137 /*
3138 * The BVME6000 machine has a serial port ...
3139 */
31401: btst #2,BVME_SCC_CTRL_A
3141 jeq 1b
3142 moveb %d0,BVME_SCC_DATA_A
3143 jbra L(serial_putc_done)
31442:
3145#endif
3146
3147#ifdef CONFIG_SUN3X
3148 is_not_sun3x(2f)
3149 movel %d0,-(%sp)
3150 movel 0xFEFE0018,%a1
3151 jbsr (%a1)
3152 addq #4,%sp
3153 jbra L(serial_putc_done)
31542:
3155#endif
3156
3157#ifdef CONFIG_Q40
3158 is_not_q40(2f)
3159 tst.l %pc@(L(q40_do_debug)) /* only debug if requested */
3160 beq 2f
3161 lea %pc@(q40_mem_cptr),%a1
3162 move.l %a1@,%a0
3163 move.b %d0,%a0@
3164 addq.l #4,%a0
3165 move.l %a0,%a1@
3166 jbra L(serial_putc_done)
31672:
3168#endif
3169
3170#ifdef CONFIG_APOLLO
3171 is_not_apollo(2f)
3172 movl %pc@(L(iobase)),%a1
3173 moveb %d0,%a1@(LTHRB0)
31741: moveb %a1@(LSRB0),%d0
3175 andb #0x4,%d0
3176 beq 1b
3177 jbra L(serial_putc_done)
31782:
3179#endif
3180
3181#ifdef CONFIG_HP300
3182 is_not_hp300(3f)
3183 movl %pc@(L(iobase)),%a1
3184 addl %pc@(L(uartbase)),%a1
3185 movel %pc@(L(uart_scode)),%d1 /* Check the scode */
3186 jmi 3f /* Unset? Exit */
3187 cmpi #256,%d1 /* APCI scode? */
3188 jeq 2f
31891: moveb %a1@(DCALSR),%d1 /* Output to DCA */
3190 andb #0x20,%d1
3191 beq 1b
3192 moveb %d0,%a1@(DCADATA)
3193 jbra L(serial_putc_done)
31942: moveb %a1@(APCILSR),%d1 /* Output to APCI */
3195 andb #0x20,%d1
3196 beq 2b
3197 moveb %d0,%a1@(APCIDATA)
3198 jbra L(serial_putc_done)
31993:
3200#endif
3201
3202#ifdef CONFIG_VIRT
3203 is_not_virt(1f)
3204
3205 movel L(virt_gf_tty_base),%a1
3206 movel %d0,%a1@(GF_PUT_CHAR)
32071:
3208#endif
3209
3210L(serial_putc_done):
3211func_return serial_putc
3212
3213/*
3214 * Output a string.
3215 */
3216func_start puts,%d0/%a0
3217
3218 movel ARG1,%a0
3219 jra 2f
32201:
3221#ifdef CONSOLE_DEBUG
3222 console_putc %d0
3223#endif
3224#ifdef SERIAL_DEBUG
3225 serial_putc %d0
3226#endif
32272: moveb %a0@+,%d0
3228 jne 1b
3229
3230func_return puts
3231
3232/*
3233 * Output number in hex notation.
3234 */
3235
3236func_start putn,%d0-%d2
3237
3238 putc ' '
3239
3240 movel ARG1,%d0
3241 moveq #7,%d1
32421: roll #4,%d0
3243 move %d0,%d2
3244 andb #0x0f,%d2
3245 addb #'0',%d2
3246 cmpb #'9',%d2
3247 jls 2f
3248 addb #'A'-('9'+1),%d2
32492:
3250#ifdef CONSOLE_DEBUG
3251 console_putc %d2
3252#endif
3253#ifdef SERIAL_DEBUG
3254 serial_putc %d2
3255#endif
3256 dbra %d1,1b
3257
3258func_return putn
3259
3260#ifdef CONFIG_EARLY_PRINTK
3261/*
3262 * This routine takes its parameters on the stack. It then
3263 * turns around and calls the internal routines. This routine
3264 * is used by the boot console.
3265 *
3266 * The calling parameters are:
3267 * void debug_cons_nputs(const char *str, unsigned length)
3268 *
3269 * This routine does NOT understand variable arguments only
3270 * simple strings!
3271 */
3272ENTRY(debug_cons_nputs)
3273 moveml %d0/%d1/%a0,%sp@-
3274 movew %sr,%sp@-
3275 ori #0x0700,%sr
3276 movel %sp@(18),%a0 /* fetch parameter */
3277 movel %sp@(22),%d1 /* fetch parameter */
3278 jra 2f
32791:
3280#ifdef CONSOLE_DEBUG
3281 console_putc %d0
3282#endif
3283#ifdef SERIAL_DEBUG
3284 serial_putc %d0
3285#endif
3286 subq #1,%d1
32872: jeq 3f
3288 moveb %a0@+,%d0
3289 jne 1b
32903:
3291 movew %sp@+,%sr
3292 moveml %sp@+,%d0/%d1/%a0
3293 rts
3294#endif /* CONFIG_EARLY_PRINTK */
3295
3296#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3297func_start set_leds,%d0/%a0
3298 movel ARG1,%d0
3299#ifdef CONFIG_HP300
3300 is_not_hp300(1f)
3301 movel %pc@(L(iobase)),%a0
3302 moveb %d0,%a0@(0x1ffff)
3303 jra 2f
3304#endif
33051:
3306#ifdef CONFIG_APOLLO
3307 movel %pc@(L(iobase)),%a0
3308 lsll #8,%d0
3309 eorw #0xff00,%d0
3310 moveb %d0,%a0@(LCPUCTRL)
3311#endif
33122:
3313func_return set_leds
3314#endif
3315
3316#ifdef CONSOLE_DEBUG
3317/*
3318 * For continuity, see the data alignment
3319 * to which this structure is tied.
3320 */
3321#define Lconsole_struct_cur_column 0
3322#define Lconsole_struct_cur_row 4
3323#define Lconsole_struct_num_columns 8
3324#define Lconsole_struct_num_rows 12
3325#define Lconsole_struct_left_edge 16
3326
3327func_start console_init,%a0-%a4/%d0-%d7
3328 /*
3329 * Some of the register usage that follows
3330 * a0 = pointer to boot_info
3331 * a1 = pointer to screen
3332 * a2 = pointer to console_globals
3333 * d3 = pixel width of screen
3334 * d4 = pixel height of screen
3335 * (d3,d4) ~= (x,y) of a point just below
3336 * and to the right of the screen
3337 * NOT on the screen!
3338 * d5 = number of bytes per scan line
3339 * d6 = number of bytes on the entire screen
3340 */
3341
3342 lea %pc@(L(console_globals)),%a2
3343 movel %pc@(L(mac_videobase)),%a1
3344 movel %pc@(L(mac_rowbytes)),%d5
3345 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */
3346 movel %d3,%d4
3347 swap %d4 /* -> high byte */
3348 andl #0xffff,%d3 /* d3 = screen width in pixels */
3349 andl #0xffff,%d4 /* d4 = screen height in pixels */
3350
3351 movel %d5,%d6
3352| subl #20,%d6
3353 mulul %d4,%d6 /* scan line bytes x num scan lines */
3354 divul #8,%d6 /* we'll clear 8 bytes at a time */
3355 moveq #-1,%d0 /* Mac_black */
3356 subq #1,%d6
3357
3358L(console_clear_loop):
3359 movel %d0,%a1@+
3360 movel %d0,%a1@+
3361 dbra %d6,L(console_clear_loop)
3362
3363 /* Calculate font size */
3364
3365#if defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3366 lea %pc@(font_vga_8x8),%a0
3367#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3368 lea %pc@(font_vga_8x16),%a0
3369#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3370 lea %pc@(font_vga_6x11),%a0
3371#elif defined(CONFIG_FONT_8x8) /* default */
3372 lea %pc@(font_vga_8x8),%a0
3373#else /* no compiled-in font */
3374 lea 0,%a0
3375#endif
3376
3377 /*
3378 * At this point we make a shift in register usage
3379 * a1 = address of console_font pointer
3380 */
3381 lea %pc@(L(console_font)),%a1
3382 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */
3383 tstl %a0
3384 jeq 1f
3385 lea %pc@(L(console_font_data)),%a4
3386 movel %a0@(FONT_DESC_DATA),%d0
3387 subl #L(console_font),%a1
3388 addl %a1,%d0
3389 movel %d0,%a4@
3390
3391 /*
3392 * Calculate global maxs
3393 * Note - we can use either an
3394 * 8 x 16 or 8 x 8 character font
3395 * 6 x 11 also supported
3396 */
3397 /* ASSERT: a0 = contents of Lconsole_font */
3398 movel %d3,%d0 /* screen width in pixels */
3399 divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */
3400
3401 movel %d4,%d1 /* screen height in pixels */
3402 divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */
3403
3404 movel %d0,%a2@(Lconsole_struct_num_columns)
3405 movel %d1,%a2@(Lconsole_struct_num_rows)
3406
3407 /*
3408 * Clear the current row and column
3409 */
3410 clrl %a2@(Lconsole_struct_cur_column)
3411 clrl %a2@(Lconsole_struct_cur_row)
3412 clrl %a2@(Lconsole_struct_left_edge)
3413
3414 /*
3415 * Initialization is complete
3416 */
34171:
3418func_return console_init
3419
3420#ifdef CONFIG_LOGO
3421func_start console_put_penguin,%a0-%a1/%d0-%d7
3422 /*
3423 * Get 'that_penguin' onto the screen in the upper right corner
3424 * penguin is 64 x 74 pixels, align against right edge of screen
3425 */
3426 lea %pc@(L(mac_dimensions)),%a0
3427 movel %a0@,%d0
3428 andil #0xffff,%d0
3429 subil #64,%d0 /* snug up against the right edge */
3430 clrl %d1 /* start at the top */
3431 movel #73,%d7
3432 lea %pc@(L(that_penguin)),%a1
3433L(console_penguin_row):
3434 movel #31,%d6
3435L(console_penguin_pixel_pair):
3436 moveb %a1@,%d2
3437 lsrb #4,%d2
3438 console_plot_pixel %d0,%d1,%d2
3439 addq #1,%d0
3440 moveb %a1@+,%d2
3441 console_plot_pixel %d0,%d1,%d2
3442 addq #1,%d0
3443 dbra %d6,L(console_penguin_pixel_pair)
3444
3445 subil #64,%d0
3446 addq #1,%d1
3447 dbra %d7,L(console_penguin_row)
3448
3449func_return console_put_penguin
3450
3451/* include penguin bitmap */
3452L(that_penguin):
3453#include "../mac/mac_penguin.S"
3454#endif
3455
3456 /*
3457 * Calculate source and destination addresses
3458 * output a1 = dest
3459 * a2 = source
3460 */
3461
3462func_start console_scroll,%a0-%a4/%d0-%d7
3463 lea %pc@(L(mac_videobase)),%a0
3464 movel %a0@,%a1
3465 movel %a1,%a2
3466 lea %pc@(L(mac_rowbytes)),%a0
3467 movel %a0@,%d5
3468 movel %pc@(L(console_font)),%a0
3469 tstl %a0
3470 jeq 1f
3471 mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */
3472 addal %d5,%a2
3473
3474 /*
3475 * Get dimensions
3476 */
3477 lea %pc@(L(mac_dimensions)),%a0
3478 movel %a0@,%d3
3479 movel %d3,%d4
3480 swap %d4
3481 andl #0xffff,%d3 /* d3 = screen width in pixels */
3482 andl #0xffff,%d4 /* d4 = screen height in pixels */
3483
3484 /*
3485 * Calculate number of bytes to move
3486 */
3487 lea %pc@(L(mac_rowbytes)),%a0
3488 movel %a0@,%d6
3489 movel %pc@(L(console_font)),%a0
3490 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */
3491 mulul %d4,%d6 /* scan line bytes x num scan lines */
3492 divul #32,%d6 /* we'll move 8 longs at a time */
3493 subq #1,%d6
3494
3495L(console_scroll_loop):
3496 movel %a2@+,%a1@+
3497 movel %a2@+,%a1@+
3498 movel %a2@+,%a1@+
3499 movel %a2@+,%a1@+
3500 movel %a2@+,%a1@+
3501 movel %a2@+,%a1@+
3502 movel %a2@+,%a1@+
3503 movel %a2@+,%a1@+
3504 dbra %d6,L(console_scroll_loop)
3505
3506 lea %pc@(L(mac_rowbytes)),%a0
3507 movel %a0@,%d6
3508 movel %pc@(L(console_font)),%a0
3509 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */
3510 divul #32,%d6 /* we'll move 8 words at a time */
3511 subq #1,%d6
3512
3513 moveq #-1,%d0
3514L(console_scroll_clear_loop):
3515 movel %d0,%a1@+
3516 movel %d0,%a1@+
3517 movel %d0,%a1@+
3518 movel %d0,%a1@+
3519 movel %d0,%a1@+
3520 movel %d0,%a1@+
3521 movel %d0,%a1@+
3522 movel %d0,%a1@+
3523 dbra %d6,L(console_scroll_clear_loop)
3524
35251:
3526func_return console_scroll
3527
3528
3529func_start console_putc,%a0/%a1/%d0-%d7
3530
3531 is_not_mac(L(console_exit))
3532 tstl %pc@(L(console_font))
3533 jeq L(console_exit)
3534
3535 /* Output character in d7 on console.
3536 */
3537 movel ARG1,%d7
3538 cmpib #'\n',%d7
3539 jbne 1f
3540
3541 /* A little safe recursion is good for the soul */
3542 console_putc #'\r'
35431:
3544 lea %pc@(L(console_globals)),%a0
3545
3546 cmpib #10,%d7
3547 jne L(console_not_lf)
3548 movel %a0@(Lconsole_struct_cur_row),%d0
3549 addil #1,%d0
3550 movel %d0,%a0@(Lconsole_struct_cur_row)
3551 movel %a0@(Lconsole_struct_num_rows),%d1
3552 cmpl %d1,%d0
3553 jcs 1f
3554 subil #1,%d0
3555 movel %d0,%a0@(Lconsole_struct_cur_row)
3556 console_scroll
35571:
3558 jra L(console_exit)
3559
3560L(console_not_lf):
3561 cmpib #13,%d7
3562 jne L(console_not_cr)
3563 clrl %a0@(Lconsole_struct_cur_column)
3564 jra L(console_exit)
3565
3566L(console_not_cr):
3567 cmpib #1,%d7
3568 jne L(console_not_home)
3569 clrl %a0@(Lconsole_struct_cur_row)
3570 clrl %a0@(Lconsole_struct_cur_column)
3571 jra L(console_exit)
3572
3573/*
3574 * At this point we know that the %d7 character is going to be
3575 * rendered on the screen. Register usage is -
3576 * a0 = pointer to console globals
3577 * a1 = font data
3578 * d0 = cursor column
3579 * d1 = cursor row to draw the character
3580 * d7 = character number
3581 */
3582L(console_not_home):
3583 movel %a0@(Lconsole_struct_cur_column),%d0
3584 addql #1,%a0@(Lconsole_struct_cur_column)
3585 movel %a0@(Lconsole_struct_num_columns),%d1
3586 cmpl %d1,%d0
3587 jcs 1f
3588 console_putc #'\n' /* recursion is OK! */
35891:
3590 movel %a0@(Lconsole_struct_cur_row),%d1
3591
3592 /*
3593 * At this point we make a shift in register usage
3594 * a0 = address of pointer to font data (fbcon_font_desc)
3595 */
3596 movel %pc@(L(console_font)),%a0
3597 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */
3598 andl #0x000000ff,%d7
3599 /* ASSERT: a0 = contents of Lconsole_font */
3600 mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */
3601 addl %d7,%a1 /* a1 = points to char image */
3602
3603 /*
3604 * At this point we make a shift in register usage
3605 * d0 = pixel coordinate, x
3606 * d1 = pixel coordinate, y
3607 * d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3608 * d3 = font scan line data (8 pixels)
3609 * d6 = count down for the font's pixel width (8)
3610 * d7 = count down for the font's pixel count in height
3611 */
3612 /* ASSERT: a0 = contents of Lconsole_font */
3613 mulul %a0@(FONT_DESC_WIDTH),%d0
3614 mulul %a0@(FONT_DESC_HEIGHT),%d1
3615 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */
3616 subq #1,%d7
3617L(console_read_char_scanline):
3618 moveb %a1@+,%d3
3619
3620 /* ASSERT: a0 = contents of Lconsole_font */
3621 movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */
3622 subql #1,%d6
3623
3624L(console_do_font_scanline):
3625 lslb #1,%d3
3626 scsb %d2 /* convert 1 bit into a byte */
3627 console_plot_pixel %d0,%d1,%d2
3628 addq #1,%d0
3629 dbra %d6,L(console_do_font_scanline)
3630
3631 /* ASSERT: a0 = contents of Lconsole_font */
3632 subl %a0@(FONT_DESC_WIDTH),%d0
3633 addq #1,%d1
3634 dbra %d7,L(console_read_char_scanline)
3635
3636L(console_exit):
3637func_return console_putc
3638
3639 /*
3640 * Input:
3641 * d0 = x coordinate
3642 * d1 = y coordinate
3643 * d2 = (bit 0) 1/0 for white/black (!)
3644 * All registers are preserved
3645 */
3646func_start console_plot_pixel,%a0-%a1/%d0-%d4
3647
3648 movel %pc@(L(mac_videobase)),%a1
3649 movel %pc@(L(mac_videodepth)),%d3
3650 movel ARG1,%d0
3651 movel ARG2,%d1
3652 mulul %pc@(L(mac_rowbytes)),%d1
3653 movel ARG3,%d2
3654
3655 /*
3656 * Register usage:
3657 * d0 = x coord becomes byte offset into frame buffer
3658 * d1 = y coord
3659 * d2 = black or white (0/1)
3660 * d3 = video depth
3661 * d4 = temp of x (d0) for many bit depths
3662 */
3663L(test_1bit):
3664 cmpb #1,%d3
3665 jbne L(test_2bit)
3666 movel %d0,%d4 /* we need the low order 3 bits! */
3667 divul #8,%d0
3668 addal %d0,%a1
3669 addal %d1,%a1
3670 andb #7,%d4
3671 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */
3672 andb #1,%d2
3673 jbne L(white_1)
3674 bsetb %d4,%a1@
3675 jbra L(console_plot_pixel_exit)
3676L(white_1):
3677 bclrb %d4,%a1@
3678 jbra L(console_plot_pixel_exit)
3679
3680L(test_2bit):
3681 cmpb #2,%d3
3682 jbne L(test_4bit)
3683 movel %d0,%d4 /* we need the low order 2 bits! */
3684 divul #4,%d0
3685 addal %d0,%a1
3686 addal %d1,%a1
3687 andb #3,%d4
3688 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */
3689 lsll #1,%d4 /* ! */
3690 andb #1,%d2
3691 jbne L(white_2)
3692 bsetb %d4,%a1@
3693 addq #1,%d4
3694 bsetb %d4,%a1@
3695 jbra L(console_plot_pixel_exit)
3696L(white_2):
3697 bclrb %d4,%a1@
3698 addq #1,%d4
3699 bclrb %d4,%a1@
3700 jbra L(console_plot_pixel_exit)
3701
3702L(test_4bit):
3703 cmpb #4,%d3
3704 jbne L(test_8bit)
3705 movel %d0,%d4 /* we need the low order bit! */
3706 divul #2,%d0
3707 addal %d0,%a1
3708 addal %d1,%a1
3709 andb #1,%d4
3710 eorb #1,%d4
3711 lsll #2,%d4 /* ! */
3712 andb #1,%d2
3713 jbne L(white_4)
3714 bsetb %d4,%a1@
3715 addq #1,%d4
3716 bsetb %d4,%a1@
3717 addq #1,%d4
3718 bsetb %d4,%a1@
3719 addq #1,%d4
3720 bsetb %d4,%a1@
3721 jbra L(console_plot_pixel_exit)
3722L(white_4):
3723 bclrb %d4,%a1@
3724 addq #1,%d4
3725 bclrb %d4,%a1@
3726 addq #1,%d4
3727 bclrb %d4,%a1@
3728 addq #1,%d4
3729 bclrb %d4,%a1@
3730 jbra L(console_plot_pixel_exit)
3731
3732L(test_8bit):
3733 cmpb #8,%d3
3734 jbne L(test_16bit)
3735 addal %d0,%a1
3736 addal %d1,%a1
3737 andb #1,%d2
3738 jbne L(white_8)
3739 moveb #0xff,%a1@
3740 jbra L(console_plot_pixel_exit)
3741L(white_8):
3742 clrb %a1@
3743 jbra L(console_plot_pixel_exit)
3744
3745L(test_16bit):
3746 cmpb #16,%d3
3747 jbne L(console_plot_pixel_exit)
3748 addal %d0,%a1
3749 addal %d0,%a1
3750 addal %d1,%a1
3751 andb #1,%d2
3752 jbne L(white_16)
3753 clrw %a1@
3754 jbra L(console_plot_pixel_exit)
3755L(white_16):
3756 movew #0x0fff,%a1@
3757 jbra L(console_plot_pixel_exit)
3758
3759L(console_plot_pixel_exit):
3760func_return console_plot_pixel
3761#endif /* CONSOLE_DEBUG */
3762
3763
3764__INITDATA
3765 .align 4
3766
3767m68k_init_mapped_size:
3768 .long 0
3769
3770#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3771 defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3772L(custom):
3773L(iobase):
3774 .long 0
3775#endif
3776
3777#ifdef CONSOLE_DEBUG
3778L(console_globals):
3779 .long 0 /* cursor column */
3780 .long 0 /* cursor row */
3781 .long 0 /* max num columns */
3782 .long 0 /* max num rows */
3783 .long 0 /* left edge */
3784L(console_font):
3785 .long 0 /* pointer to console font (struct font_desc) */
3786L(console_font_data):
3787 .long 0 /* pointer to console font data */
3788#endif /* CONSOLE_DEBUG */
3789
3790#if defined(MMU_PRINT)
3791L(mmu_print_data):
3792 .long 0 /* valid flag */
3793 .long 0 /* start logical */
3794 .long 0 /* next logical */
3795 .long 0 /* start physical */
3796 .long 0 /* next physical */
3797#endif /* MMU_PRINT */
3798
3799L(cputype):
3800 .long 0
3801L(mmu_cached_pointer_tables):
3802 .long 0
3803L(mmu_num_pointer_tables):
3804 .long 0
3805L(phys_kernel_start):
3806 .long 0
3807L(kernel_end):
3808 .long 0
3809L(memory_start):
3810 .long 0
3811L(kernel_pgdir_ptr):
3812 .long 0
3813L(temp_mmap_mem):
3814 .long 0
3815
3816#if defined (CONFIG_MVME147)
3817M147_SCC_CTRL_A = 0xfffe3002
3818M147_SCC_DATA_A = 0xfffe3003
3819#endif
3820
3821#if defined (CONFIG_MVME16x)
3822M162_SCC_CTRL_A = 0xfff45005
3823M167_CYCAR = 0xfff450ee
3824M167_CYIER = 0xfff45011
3825M167_CYLICR = 0xfff45026
3826M167_CYTEOIR = 0xfff45085
3827M167_CYTDR = 0xfff450f8
3828M167_PCSCCMICR = 0xfff4201d
3829M167_PCSCCTICR = 0xfff4201e
3830M167_PCSCCRICR = 0xfff4201f
3831M167_PCTPIACKR = 0xfff42025
3832#endif
3833
3834#if defined (CONFIG_BVME6000)
3835BVME_SCC_CTRL_A = 0xffb0000b
3836BVME_SCC_DATA_A = 0xffb0000f
3837#endif
3838
3839#if defined(CONFIG_MAC)
3840L(mac_videobase):
3841 .long 0
3842L(mac_videodepth):
3843 .long 0
3844L(mac_dimensions):
3845 .long 0
3846L(mac_rowbytes):
3847 .long 0
3848L(mac_sccbase):
3849 .long 0
3850#endif /* CONFIG_MAC */
3851
3852#if defined (CONFIG_APOLLO)
3853LSRB0 = 0x10412
3854LTHRB0 = 0x10416
3855LCPUCTRL = 0x10100
3856#endif
3857
3858#if defined(CONFIG_HP300)
3859DCADATA = 0x11
3860DCALSR = 0x1b
3861APCIDATA = 0x00
3862APCILSR = 0x14
3863L(uartbase):
3864 .long 0
3865L(uart_scode):
3866 .long -1
3867#endif
3868
3869__FINIT
3870 .data
3871 .align 4
3872
3873availmem:
3874 .long 0
3875m68k_pgtable_cachemode:
3876 .long 0
3877m68k_supervisor_cachemode:
3878 .long 0
3879#if defined(CONFIG_MVME16x)
3880mvme_bdid:
3881 .long 0,0,0,0,0,0,0,0
3882#endif
3883#if defined(CONFIG_Q40)
3884q40_mem_cptr:
3885 .long 0
3886L(q40_do_debug):
3887 .long 0
3888#endif
3889
3890#if defined(CONFIG_VIRT)
3891GF_PUT_CHAR = 0x00
3892L(virt_gf_tty_base):
3893 .long 0
3894#endif /* CONFIG_VIRT */
1/* -*- mode: asm -*-
2**
3** head.S -- This file contains the initial boot code for the
4** Linux/68k kernel.
5**
6** Copyright 1993 by Hamish Macdonald
7**
8** 68040 fixes by Michael Rausch
9** 68060 fixes by Roman Hodek
10** MMU cleanup by Randy Thelen
11** Final MMU cleanup by Roman Zippel
12**
13** Atari support by Andreas Schwab, using ideas of Robert de Vries
14** and Bjoern Brauel
15** VME Support by Richard Hirst
16**
17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20** 95/11/18 Richard Hirst: Added MVME166 support
21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22** Magnum- and FX-alternate ram
23** 98/04/25 Phil Blundell: added HP300 support
24** 1998/08/30 David Kilzer: Added support for font_desc structures
25** for linux-2.1.115
26** 1999/02/11 Richard Zidlicky: added Q40 support (initial version 99/01/01)
27** 2004/05/13 Kars de Jong: Finalised HP300 support
28**
29** This file is subject to the terms and conditions of the GNU General Public
30** License. See the file README.legal in the main directory of this archive
31** for more details.
32**
33*/
34
35/*
36 * Linux startup code.
37 *
38 * At this point, the boot loader has:
39 * Disabled interrupts
40 * Disabled caches
41 * Put us in supervisor state.
42 *
43 * The kernel setup code takes the following steps:
44 * . Raise interrupt level
45 * . Set up initial kernel memory mapping.
46 * . This sets up a mapping of the 4M of memory the kernel is located in.
47 * . It also does a mapping of any initial machine specific areas.
48 * . Enable the MMU
49 * . Enable cache memories
50 * . Jump to kernel startup
51 *
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
56 *
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished. It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation. So, the first thing you will find is exaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
63 *
64 * General Structure:
65 * ------------------
66 * Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
68 * for the kernel.
69 * There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 * First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller. This routine makes writing the
74 * actual per-machine specific code very simple.
75 * A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
78 * regions.
79 * Also, there will be a description of engaging the MMU and
80 * caches.
81 * You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine. This is present
83 * only in debug modes and can be very helpful.
84 * Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode. Currently, it's only supported
86 * on the Macintosh class of machines. However, it is hoped that
87 * others will plug-in support for specific machines.
88 *
89 * ######################################################################
90 *
91 * mmu_map
92 * -------
93 * mmu_map was written for two key reasons. First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory. Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 * mmu_map requires some parameters:
99 *
100 * mmu_map (logical, physical, length, cache_type)
101 *
102 * While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
104 *
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
111 *
112 * These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
125 * size.
126 *
127 * ######################################################################
128 *
129 *
130 * ######################################################################
131 *
132 * mmu_engage
133 * ----------
134 * Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * position and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
140 * other purposes.
141 *
142 * ######################################################################
143 *
144 * mmu_print
145 * ---------
146 * This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040. This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
149 *
150 * ######################################################################
151 *
152 * console_init
153 * ------------
154 * The console is also able to be turned off. The console in head.S
155 * is specifically for debugging and can be very useful. It is surrounded by
156 * #ifdef / #endif clauses so it doesn't have to ship in known-good
157 * kernels. It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for
160 * debugging so I can see more good data. But it was trivial to add support
161 * for both fonts, so I included it.
162 * Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers. This could be very useful.
165 *
166 * console_put_penguin
167 * -------------------
168 * An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen! This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
171 *
172 * console_scroll
173 * --------------
174 * My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
177 *
178 * console_putc
179 * -------------
180 *
181 * ######################################################################
182 *
183 * Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
189 *
190 * ######################################################################
191 *
192 * options
193 * -------
194 * There are many options available in a build of this file. I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
197 *
198 * CONFIG_xxx: These are the obvious machine configuration defines created
199 * during configuration. These are defined in autoconf.h.
200 *
201 * CONSOLE_DEBUG: Only supports a Mac frame buffer but could easily be
202 * extended to support other platforms.
203 *
204 * TEST_MMU: This is a test harness for running on any given machine but
205 * getting an MMU dump for another class of machine. The classes of machines
206 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
207 * and any of the models (030, 040, 060, etc.).
208 *
209 * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed
210 * When head.S boots on Atari, Amiga, Macintosh, and VME
211 * machines. At that point the underlying logic will be
212 * believed to be solid enough to be trusted, and TEST_MMU
213 * can be dropped. Do note that that will clean up the
214 * head.S code significantly as large blocks of #if/#else
215 * clauses can be removed.
216 *
217 * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into
218 * determing why devices don't appear to work. A test case was to remove
219 * the cacheability of the kernel bits.
220 *
221 * MMU_PRINT: There is a routine built into head.S that can display the
222 * MMU data structures. It outputs its result through the serial_putc
223 * interface. So where ever that winds up driving data, that's where the
224 * mmu struct will appear.
225 *
226 * SERIAL_DEBUG: There are a series of putc() macro statements
227 * scattered through out the code to give progress of status to the
228 * person sitting at the console. This constant determines whether those
229 * are used.
230 *
231 * DEBUG: This is the standard DEBUG flag that can be set for building
232 * the kernel. It has the effect adding additional tests into
233 * the code.
234 *
235 * FONT_6x11:
236 * FONT_8x8:
237 * FONT_8x16:
238 * In theory these could be determined at run time or handed
239 * over by the booter. But, let's be real, it's a fine hard
240 * coded value. (But, you will notice the code is run-time
241 * flexible!) A pointer to the font's struct font_desc
242 * is kept locally in Lconsole_font. It is used to determine
243 * font size information dynamically.
244 *
245 * Atari constants:
246 * USE_PRINTER: Use the printer port for serial debug.
247 * USE_SCC_B: Use the SCC port A (Serial2) for serial debug.
248 * USE_SCC_A: Use the SCC port B (Modem2) for serial debug.
249 * USE_MFP: Use the ST-MFP port (Modem1) for serial debug.
250 *
251 * Macintosh constants:
252 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug.
253 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug.
254 */
255
256#include <linux/linkage.h>
257#include <linux/init.h>
258#include <linux/pgtable.h>
259#include <asm/bootinfo.h>
260#include <asm/bootinfo-amiga.h>
261#include <asm/bootinfo-atari.h>
262#include <asm/bootinfo-hp300.h>
263#include <asm/bootinfo-mac.h>
264#include <asm/bootinfo-q40.h>
265#include <asm/bootinfo-vme.h>
266#include <asm/setup.h>
267#include <asm/entry.h>
268#include <asm/page.h>
269#include <asm/asm-offsets.h>
270#ifdef CONFIG_MAC
271# include <asm/machw.h>
272#endif
273
274#ifdef CONFIG_EARLY_PRINTK
275# define SERIAL_DEBUG
276# if defined(CONFIG_MAC) && defined(CONFIG_FONT_SUPPORT)
277# define CONSOLE_DEBUG
278# endif
279#endif
280
281#undef MMU_PRINT
282#undef MMU_NOCACHE_KERNEL
283#undef DEBUG
284
285/*
286 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
287 * The 8x8 font is harder to read but fits more on the screen.
288 */
289#define FONT_8x8 /* default */
290/* #define FONT_8x16 */ /* 2nd choice */
291/* #define FONT_6x11 */ /* 3rd choice */
292
293.globl kernel_pg_dir
294.globl availmem
295.globl m68k_init_mapped_size
296.globl m68k_pgtable_cachemode
297.globl m68k_supervisor_cachemode
298#ifdef CONFIG_MVME16x
299.globl mvme_bdid
300#endif
301#ifdef CONFIG_Q40
302.globl q40_mem_cptr
303#endif
304
305CPUTYPE_040 = 1 /* indicates an 040 */
306CPUTYPE_060 = 2 /* indicates an 060 */
307CPUTYPE_0460 = 3 /* if either above are set, this is set */
308CPUTYPE_020 = 4 /* indicates an 020 */
309
310/* Translation control register */
311TC_ENABLE = 0x8000
312TC_PAGE8K = 0x4000
313TC_PAGE4K = 0x0000
314
315/* Transparent translation registers */
316TTR_ENABLE = 0x8000 /* enable transparent translation */
317TTR_ANYMODE = 0x4000 /* user and kernel mode access */
318TTR_KERNELMODE = 0x2000 /* only kernel mode access */
319TTR_USERMODE = 0x0000 /* only user mode access */
320TTR_CI = 0x0400 /* inhibit cache */
321TTR_RW = 0x0200 /* read/write mode */
322TTR_RWM = 0x0100 /* read/write mask */
323TTR_FCB2 = 0x0040 /* function code base bit 2 */
324TTR_FCB1 = 0x0020 /* function code base bit 1 */
325TTR_FCB0 = 0x0010 /* function code base bit 0 */
326TTR_FCM2 = 0x0004 /* function code mask bit 2 */
327TTR_FCM1 = 0x0002 /* function code mask bit 1 */
328TTR_FCM0 = 0x0001 /* function code mask bit 0 */
329
330/* Cache Control registers */
331CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */
332CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */
333CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */
334CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */
335CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */
336CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */
337CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */
338CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */
339CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */
340CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */
341CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */
342CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */
343CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */
344CC3_CLR_D = 0x00000800 /* clear data cache (68030) */
345CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */
346CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */
347CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */
348CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */
349CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */
350CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */
351CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */
352CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */
353
354/* Miscellaneous definitions */
355PAGESIZE = 4096
356PAGESHIFT = 12
357
358ROOT_TABLE_SIZE = 128
359PTR_TABLE_SIZE = 128
360PAGE_TABLE_SIZE = 64
361ROOT_INDEX_SHIFT = 25
362PTR_INDEX_SHIFT = 18
363PAGE_INDEX_SHIFT = 12
364
365#ifdef DEBUG
366/* When debugging use readable names for labels */
367#ifdef __STDC__
368#define L(name) .head.S.##name
369#else
370#define L(name) .head.S./**/name
371#endif
372#else
373#ifdef __STDC__
374#define L(name) .L##name
375#else
376#define L(name) .L/**/name
377#endif
378#endif
379
380/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
381#ifndef __INITDATA
382#define __INITDATA .data
383#define __FINIT .previous
384#endif
385
386/* Several macros to make the writing of subroutines easier:
387 * - func_start marks the beginning of the routine which setups the frame
388 * register and saves the registers, it also defines another macro
389 * to automatically restore the registers again.
390 * - func_return marks the end of the routine and simply calls the prepared
391 * macro to restore registers and jump back to the caller.
392 * - func_define generates another macro to automatically put arguments
393 * onto the stack call the subroutine and cleanup the stack again.
394 */
395
396/* Within subroutines these macros can be used to access the arguments
397 * on the stack. With STACK some allocated memory on the stack can be
398 * accessed and ARG0 points to the return address (used by mmu_engage).
399 */
400#define STACK %a6@(stackstart)
401#define ARG0 %a6@(4)
402#define ARG1 %a6@(8)
403#define ARG2 %a6@(12)
404#define ARG3 %a6@(16)
405#define ARG4 %a6@(20)
406
407.macro func_start name,saveregs,stack=0
408L(\name):
409 linkw %a6,#-\stack
410 moveml \saveregs,%sp@-
411.set stackstart,-\stack
412
413.macro func_return_\name
414 moveml %sp@+,\saveregs
415 unlk %a6
416 rts
417.endm
418.endm
419
420.macro func_return name
421 func_return_\name
422.endm
423
424.macro func_call name
425 jbsr L(\name)
426.endm
427
428.macro move_stack nr,arg1,arg2,arg3,arg4
429.if \nr
430 move_stack "(\nr-1)",\arg2,\arg3,\arg4
431 movel \arg1,%sp@-
432.endif
433.endm
434
435.macro func_define name,nr=0
436.macro \name arg1,arg2,arg3,arg4
437 move_stack \nr,\arg1,\arg2,\arg3,\arg4
438 func_call \name
439.if \nr
440 lea %sp@(\nr*4),%sp
441.endif
442.endm
443.endm
444
445func_define mmu_map,4
446func_define mmu_map_tt,4
447func_define mmu_fixup_page_mmu_cache,1
448func_define mmu_temp_map,2
449func_define mmu_engage
450func_define mmu_get_root_table_entry,1
451func_define mmu_get_ptr_table_entry,2
452func_define mmu_get_page_table_entry,2
453func_define mmu_print
454func_define get_new_page
455#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
456func_define set_leds
457#endif
458
459.macro mmu_map_eq arg1,arg2,arg3
460 mmu_map \arg1,\arg1,\arg2,\arg3
461.endm
462
463.macro get_bi_record record
464 pea \record
465 func_call get_bi_record
466 addql #4,%sp
467.endm
468
469func_define serial_putc,1
470func_define console_putc,1
471
472func_define console_init
473func_define console_put_penguin
474func_define console_plot_pixel,3
475func_define console_scroll
476
477.macro putc ch
478#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
479 pea \ch
480#endif
481#ifdef CONSOLE_DEBUG
482 func_call console_putc
483#endif
484#ifdef SERIAL_DEBUG
485 func_call serial_putc
486#endif
487#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
488 addql #4,%sp
489#endif
490.endm
491
492.macro dputc ch
493#ifdef DEBUG
494 putc \ch
495#endif
496.endm
497
498func_define putn,1
499
500.macro dputn nr
501#ifdef DEBUG
502 putn \nr
503#endif
504.endm
505
506.macro puts string
507#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
508 __INITDATA
509.Lstr\@:
510 .string "\string"
511 __FINIT
512 pea %pc@(.Lstr\@)
513 func_call puts
514 addql #4,%sp
515#endif
516.endm
517
518.macro dputs string
519#ifdef DEBUG
520 puts "\string"
521#endif
522.endm
523
524#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
525#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
526#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
527#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
528#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
529#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
530#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
531#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
532#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
533#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
534#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
535#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
536#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
537
538#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
539 jeq 42f; \
540 cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
541 jne lab ;\
542 42:\
543
544#define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
545#define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
546#define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
547#define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
548#define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
549#define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
550#define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
551
552/* On the HP300 we use the on-board LEDs for debug output before
553 the console is running. Writing a 1 bit turns the corresponding LED
554 _off_ - on the 340 bit 7 is towards the back panel of the machine. */
555.macro leds mask
556#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
557 hasnt_leds(.Lled\@)
558 pea \mask
559 func_call set_leds
560 addql #4,%sp
561.Lled\@:
562#endif
563.endm
564
565__HEAD
566ENTRY(_stext)
567/*
568 * Version numbers of the bootinfo interface
569 * The area from _stext to _start will later be used as kernel pointer table
570 */
571 bras 1f /* Jump over bootinfo version numbers */
572
573 .long BOOTINFOV_MAGIC
574 .long MACH_AMIGA, AMIGA_BOOTI_VERSION
575 .long MACH_ATARI, ATARI_BOOTI_VERSION
576 .long MACH_MVME147, MVME147_BOOTI_VERSION
577 .long MACH_MVME16x, MVME16x_BOOTI_VERSION
578 .long MACH_BVME6000, BVME6000_BOOTI_VERSION
579 .long MACH_MAC, MAC_BOOTI_VERSION
580 .long MACH_Q40, Q40_BOOTI_VERSION
581 .long MACH_HP300, HP300_BOOTI_VERSION
582 .long 0
5831: jra __start
584
585.equ kernel_pg_dir,_stext
586
587.equ .,_stext+PAGESIZE
588
589ENTRY(_start)
590 jra __start
591__INIT
592ENTRY(__start)
593/*
594 * Setup initial stack pointer
595 */
596 lea %pc@(_stext),%sp
597
598/*
599 * Record the CPU and machine type.
600 */
601 get_bi_record BI_MACHTYPE
602 lea %pc@(m68k_machtype),%a1
603 movel %a0@,%a1@
604
605 get_bi_record BI_FPUTYPE
606 lea %pc@(m68k_fputype),%a1
607 movel %a0@,%a1@
608
609 get_bi_record BI_MMUTYPE
610 lea %pc@(m68k_mmutype),%a1
611 movel %a0@,%a1@
612
613 get_bi_record BI_CPUTYPE
614 lea %pc@(m68k_cputype),%a1
615 movel %a0@,%a1@
616
617 leds 0x1
618
619#ifdef CONFIG_MAC
620/*
621 * For Macintosh, we need to determine the display parameters early (at least
622 * while debugging it).
623 */
624
625 is_not_mac(L(test_notmac))
626
627 get_bi_record BI_MAC_VADDR
628 lea %pc@(L(mac_videobase)),%a1
629 movel %a0@,%a1@
630
631 get_bi_record BI_MAC_VDEPTH
632 lea %pc@(L(mac_videodepth)),%a1
633 movel %a0@,%a1@
634
635 get_bi_record BI_MAC_VDIM
636 lea %pc@(L(mac_dimensions)),%a1
637 movel %a0@,%a1@
638
639 get_bi_record BI_MAC_VROW
640 lea %pc@(L(mac_rowbytes)),%a1
641 movel %a0@,%a1@
642
643 get_bi_record BI_MAC_SCCBASE
644 lea %pc@(L(mac_sccbase)),%a1
645 movel %a0@,%a1@
646
647L(test_notmac):
648#endif /* CONFIG_MAC */
649
650
651/*
652 * There are ultimately two pieces of information we want for all kinds of
653 * processors CpuType and CacheBits. The CPUTYPE was passed in from booter
654 * and is converted here from a booter type definition to a separate bit
655 * number which allows for the standard is_0x0 macro tests.
656 */
657 movel %pc@(m68k_cputype),%d0
658 /*
659 * Assume it's an 030
660 */
661 clrl %d1
662
663 /*
664 * Test the BootInfo cputype for 060
665 */
666 btst #CPUB_68060,%d0
667 jeq 1f
668 bset #CPUTYPE_060,%d1
669 bset #CPUTYPE_0460,%d1
670 jra 3f
6711:
672 /*
673 * Test the BootInfo cputype for 040
674 */
675 btst #CPUB_68040,%d0
676 jeq 2f
677 bset #CPUTYPE_040,%d1
678 bset #CPUTYPE_0460,%d1
679 jra 3f
6802:
681 /*
682 * Test the BootInfo cputype for 020
683 */
684 btst #CPUB_68020,%d0
685 jeq 3f
686 bset #CPUTYPE_020,%d1
687 jra 3f
6883:
689 /*
690 * Record the cpu type
691 */
692 lea %pc@(L(cputype)),%a0
693 movel %d1,%a0@
694
695 /*
696 * NOTE:
697 *
698 * Now the macros are valid:
699 * is_040_or_060
700 * is_not_040_or_060
701 * is_040
702 * is_060
703 * is_not_060
704 */
705
706 /*
707 * Determine the cache mode for pages holding MMU tables
708 * and for supervisor mode, unused for '020 and '030
709 */
710 clrl %d0
711 clrl %d1
712
713 is_not_040_or_060(L(save_cachetype))
714
715 /*
716 * '040 or '060
717 * d1 := cacheable write-through
718 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
719 * but we have been using write-through since at least 2.0.29 so I
720 * guess it is OK.
721 */
722#ifdef CONFIG_060_WRITETHROUGH
723 /*
724 * If this is a 68060 board using drivers with cache coherency
725 * problems, then supervisor memory accesses need to be write-through
726 * also; otherwise, we want copyback.
727 */
728
729 is_not_060(1f)
730 movel #_PAGE_CACHE040W,%d0
731 jra L(save_cachetype)
732#endif /* CONFIG_060_WRITETHROUGH */
7331:
734 movew #_PAGE_CACHE040,%d0
735
736 movel #_PAGE_CACHE040W,%d1
737
738L(save_cachetype):
739 /* Save cache mode for supervisor mode and page tables
740 */
741 lea %pc@(m68k_supervisor_cachemode),%a0
742 movel %d0,%a0@
743 lea %pc@(m68k_pgtable_cachemode),%a0
744 movel %d1,%a0@
745
746/*
747 * raise interrupt level
748 */
749 movew #0x2700,%sr
750
751/*
752 If running on an Atari, determine the I/O base of the
753 serial port and test if we are running on a Medusa or Hades.
754 This test is necessary here, because on the Hades the serial
755 port is only accessible in the high I/O memory area.
756
757 The test whether it is a Medusa is done by writing to the byte at
758 phys. 0x0. This should result in a bus error on all other machines.
759
760 ...should, but doesn't. The Afterburner040 for the Falcon has the
761 same behaviour (0x0..0x7 are no ROM shadow). So we have to do
762 another test to distinguish Medusa and AB040. This is a
763 read attempt for 0x00ff82fe phys. that should bus error on a Falcon
764 (+AB040), but is in the range where the Medusa always asserts DTACK.
765
766 The test for the Hades is done by reading address 0xb0000000. This
767 should give a bus error on the Medusa.
768 */
769
770#ifdef CONFIG_ATARI
771 is_not_atari(L(notypetest))
772
773 /* get special machine type (Medusa/Hades/AB40) */
774 moveq #0,%d3 /* default if tag doesn't exist */
775 get_bi_record BI_ATARI_MCH_TYPE
776 tstl %d0
777 jbmi 1f
778 movel %a0@,%d3
779 lea %pc@(atari_mch_type),%a0
780 movel %d3,%a0@
7811:
782 /* On the Hades, the iobase must be set up before opening the
783 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
784 moveq #0,%d0
785 cmpl #ATARI_MACH_HADES,%d3
786 jbne 1f
787 movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */
7881: lea %pc@(L(iobase)),%a0
789 movel %d0,%a0@
790
791L(notypetest):
792#endif
793
794#ifdef CONFIG_VME
795 is_mvme147(L(getvmetype))
796 is_bvme6000(L(getvmetype))
797 is_not_mvme16x(L(gvtdone))
798
799 /* See if the loader has specified the BI_VME_TYPE tag. Recent
800 * versions of VMELILO and TFTPLILO do this. We have to do this
801 * early so we know how to handle console output. If the tag
802 * doesn't exist then we use the Bug for output on MVME16x.
803 */
804L(getvmetype):
805 get_bi_record BI_VME_TYPE
806 tstl %d0
807 jbmi 1f
808 movel %a0@,%d3
809 lea %pc@(vme_brdtype),%a0
810 movel %d3,%a0@
8111:
812#ifdef CONFIG_MVME16x
813 is_not_mvme16x(L(gvtdone))
814
815 /* Need to get the BRD_ID info to differentiate between 162, 167,
816 * etc. This is available as a BI_VME_BRDINFO tag with later
817 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
818 */
819 get_bi_record BI_VME_BRDINFO
820 tstl %d0
821 jpl 1f
822
823 /* Get pointer to board ID data from Bug */
824 movel %d2,%sp@-
825 trap #15
826 .word 0x70 /* trap 0x70 - .BRD_ID */
827 movel %sp@+,%a0
8281:
829 lea %pc@(mvme_bdid),%a1
830 /* Structure is 32 bytes long */
831 movel %a0@+,%a1@+
832 movel %a0@+,%a1@+
833 movel %a0@+,%a1@+
834 movel %a0@+,%a1@+
835 movel %a0@+,%a1@+
836 movel %a0@+,%a1@+
837 movel %a0@+,%a1@+
838 movel %a0@+,%a1@+
839#endif
840
841L(gvtdone):
842
843#endif
844
845#ifdef CONFIG_HP300
846 is_not_hp300(L(nothp))
847
848 /* Get the address of the UART for serial debugging */
849 get_bi_record BI_HP300_UART_ADDR
850 tstl %d0
851 jbmi 1f
852 movel %a0@,%d3
853 lea %pc@(L(uartbase)),%a0
854 movel %d3,%a0@
855 get_bi_record BI_HP300_UART_SCODE
856 tstl %d0
857 jbmi 1f
858 movel %a0@,%d3
859 lea %pc@(L(uart_scode)),%a0
860 movel %d3,%a0@
8611:
862L(nothp):
863#endif
864
865/*
866 * Initialize serial port
867 */
868 jbsr L(serial_init)
869
870/*
871 * Initialize console
872 */
873#ifdef CONFIG_MAC
874 is_not_mac(L(nocon))
875# ifdef CONSOLE_DEBUG
876 console_init
877# ifdef CONFIG_LOGO
878 console_put_penguin
879# endif /* CONFIG_LOGO */
880# endif /* CONSOLE_DEBUG */
881L(nocon):
882#endif /* CONFIG_MAC */
883
884
885 putc '\n'
886 putc 'A'
887 leds 0x2
888 dputn %pc@(L(cputype))
889 dputn %pc@(m68k_supervisor_cachemode)
890 dputn %pc@(m68k_pgtable_cachemode)
891 dputc '\n'
892
893/*
894 * Save physical start address of kernel
895 */
896 lea %pc@(L(phys_kernel_start)),%a0
897 lea %pc@(_stext),%a1
898 subl #_stext,%a1
899 addl #PAGE_OFFSET,%a1
900 movel %a1,%a0@
901
902 putc 'B'
903
904 leds 0x4
905
906/*
907 * mmu_init
908 *
909 * This block of code does what's necessary to map in the various kinds
910 * of machines for execution of Linux.
911 * First map the first 4, 8, or 16 MB of kernel code & data
912 */
913
914 get_bi_record BI_MEMCHUNK
915 movel %a0@(4),%d0
916 movel #16*1024*1024,%d1
917 cmpl %d0,%d1
918 jls 1f
919 lsrl #1,%d1
920 cmpl %d0,%d1
921 jls 1f
922 lsrl #1,%d1
9231:
924 lea %pc@(m68k_init_mapped_size),%a0
925 movel %d1,%a0@
926 mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),%d1,\
927 %pc@(m68k_supervisor_cachemode)
928
929 putc 'C'
930
931#ifdef CONFIG_AMIGA
932
933L(mmu_init_amiga):
934
935 is_not_amiga(L(mmu_init_not_amiga))
936/*
937 * mmu_init_amiga
938 */
939
940 putc 'D'
941
942 is_not_040_or_060(1f)
943
944 /*
945 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
946 */
947 mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
948 /*
949 * Map the Zorro III I/O space with transparent translation
950 * for frame buffer memory etc.
951 */
952 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
953
954 jbra L(mmu_init_done)
955
9561:
957 /*
958 * 030: Map the 32Meg range physical 0x0 up to logical 0x8000.0000
959 */
960 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
961 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
962
963 jbra L(mmu_init_done)
964
965L(mmu_init_not_amiga):
966#endif
967
968#ifdef CONFIG_ATARI
969
970L(mmu_init_atari):
971
972 is_not_atari(L(mmu_init_not_atari))
973
974 putc 'E'
975
976/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
977 the last 16 MB of virtual address space to the first 16 MB (i.e.
978 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
979 needed. I/O ranges are marked non-cachable.
980
981 For the Medusa it is better to map the I/O region transparently
982 (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
983 accessible only in the high area.
984
985 On the Hades all I/O registers are only accessible in the high
986 area.
987*/
988
989 /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
990 moveq #0,%d0
991 movel %pc@(atari_mch_type),%d3
992 cmpl #ATARI_MACH_MEDUSA,%d3
993 jbeq 2f
994 cmpl #ATARI_MACH_HADES,%d3
995 jbne 1f
9962: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
9971: movel %d0,%d3
998
999 is_040_or_060(L(spata68040))
1000
1001 /* Map everything non-cacheable, though not all parts really
1002 * need to disable caches (crucial only for 0xff8000..0xffffff
1003 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1004 * isn't really used, except for sometimes peeking into the
1005 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1006 * this. */
1007 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1008
1009 jbra L(mmu_init_done)
1010
1011L(spata68040):
1012
1013 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1014
1015 jbra L(mmu_init_done)
1016
1017L(mmu_init_not_atari):
1018#endif
1019
1020#ifdef CONFIG_Q40
1021 is_not_q40(L(notq40))
1022 /*
1023 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1024 * non-cached serialized etc..
1025 * this includes master chip, DAC, RTC and ISA ports
1026 * 0xfe000000-0xfeffffff is for screen and ROM
1027 */
1028
1029 putc 'Q'
1030
1031 mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1032 mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1033
1034 jbra L(mmu_init_done)
1035
1036L(notq40):
1037#endif
1038
1039#ifdef CONFIG_HP300
1040 is_not_hp300(L(nothp300))
1041
1042 /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1043 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1044 * The ROM mapping is needed because the LEDs are mapped there too.
1045 */
1046
1047 is_040(1f)
1048
1049 /*
1050 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1051 */
1052 mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1053
1054 jbra L(mmu_init_done)
1055
10561:
1057 /*
1058 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1059 */
1060 mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1061
1062 jbra L(mmu_init_done)
1063
1064L(nothp300):
1065#endif /* CONFIG_HP300 */
1066
1067#ifdef CONFIG_MVME147
1068
1069 is_not_mvme147(L(not147))
1070
1071 /*
1072 * On MVME147 we have already created kernel page tables for
1073 * 4MB of RAM at address 0, so now need to do a transparent
1074 * mapping of the top of memory space. Make it 0.5GByte for now,
1075 * so we can access on-board i/o areas.
1076 */
1077
1078 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1079
1080 jbra L(mmu_init_done)
1081
1082L(not147):
1083#endif /* CONFIG_MVME147 */
1084
1085#ifdef CONFIG_MVME16x
1086
1087 is_not_mvme16x(L(not16x))
1088
1089 /*
1090 * On MVME16x we have already created kernel page tables for
1091 * 4MB of RAM at address 0, so now need to do a transparent
1092 * mapping of the top of memory space. Make it 0.5GByte for now.
1093 * Supervisor only access, so transparent mapping doesn't
1094 * clash with User code virtual address space.
1095 * this covers IO devices, PROM and SRAM. The PROM and SRAM
1096 * mapping is needed to allow 167Bug to run.
1097 * IO is in the range 0xfff00000 to 0xfffeffff.
1098 * PROM is 0xff800000->0xffbfffff and SRAM is
1099 * 0xffe00000->0xffe1ffff.
1100 */
1101
1102 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1103
1104 jbra L(mmu_init_done)
1105
1106L(not16x):
1107#endif /* CONFIG_MVME162 | CONFIG_MVME167 */
1108
1109#ifdef CONFIG_BVME6000
1110
1111 is_not_bvme6000(L(not6000))
1112
1113 /*
1114 * On BVME6000 we have already created kernel page tables for
1115 * 4MB of RAM at address 0, so now need to do a transparent
1116 * mapping of the top of memory space. Make it 0.5GByte for now,
1117 * so we can access on-board i/o areas.
1118 * Supervisor only access, so transparent mapping doesn't
1119 * clash with User code virtual address space.
1120 */
1121
1122 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1123
1124 jbra L(mmu_init_done)
1125
1126L(not6000):
1127#endif /* CONFIG_BVME6000 */
1128
1129/*
1130 * mmu_init_mac
1131 *
1132 * The Macintosh mappings are less clear.
1133 *
1134 * Even as of this writing, it is unclear how the
1135 * Macintosh mappings will be done. However, as
1136 * the first author of this code I'm proposing the
1137 * following model:
1138 *
1139 * Map the kernel (that's already done),
1140 * Map the I/O (on most machines that's the
1141 * 0x5000.0000 ... 0x5300.0000 range,
1142 * Map the video frame buffer using as few pages
1143 * as absolutely (this requirement mostly stems from
1144 * the fact that when the frame buffer is at
1145 * 0x0000.0000 then we know there is valid RAM just
1146 * above the screen that we don't want to waste!).
1147 *
1148 * By the way, if the frame buffer is at 0x0000.0000
1149 * then the Macintosh is known as an RBV based Mac.
1150 *
1151 * By the way 2, the code currently maps in a bunch of
1152 * regions. But I'd like to cut that out. (And move most
1153 * of the mappings up into the kernel proper ... or only
1154 * map what's necessary.)
1155 */
1156
1157#ifdef CONFIG_MAC
1158
1159L(mmu_init_mac):
1160
1161 is_not_mac(L(mmu_init_not_mac))
1162
1163 putc 'F'
1164
1165 is_not_040_or_060(1f)
1166
1167 moveq #_PAGE_NOCACHE_S,%d3
1168 jbra 2f
11691:
1170 moveq #_PAGE_NOCACHE030,%d3
11712:
1172 /*
1173 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1174 * we simply map the 4MB that contains the videomem
1175 */
1176
1177 movel #VIDEOMEMMASK,%d0
1178 andl %pc@(L(mac_videobase)),%d0
1179
1180 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1181 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1182 mmu_map_eq #0x40000000,#0x02000000,%d3
1183 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1184 mmu_map_eq #0x50000000,#0x03000000,%d3
1185 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1186 mmu_map_tt #1,#0xf8000000,#0x08000000,%d3
1187
1188 jbra L(mmu_init_done)
1189
1190L(mmu_init_not_mac):
1191#endif
1192
1193#ifdef CONFIG_SUN3X
1194 is_not_sun3x(L(notsun3x))
1195
1196 /* oh, the pain.. We're gonna want the prom code after
1197 * starting the MMU, so we copy the mappings, translating
1198 * from 8k -> 4k pages as we go.
1199 */
1200
1201 /* copy maps from 0xfee00000 to 0xff000000 */
1202 movel #0xfee00000, %d0
1203 moveq #ROOT_INDEX_SHIFT, %d1
1204 lsrl %d1,%d0
1205 mmu_get_root_table_entry %d0
1206
1207 movel #0xfee00000, %d0
1208 moveq #PTR_INDEX_SHIFT, %d1
1209 lsrl %d1,%d0
1210 andl #PTR_TABLE_SIZE-1, %d0
1211 mmu_get_ptr_table_entry %a0,%d0
1212
1213 movel #0xfee00000, %d0
1214 moveq #PAGE_INDEX_SHIFT, %d1
1215 lsrl %d1,%d0
1216 andl #PAGE_TABLE_SIZE-1, %d0
1217 mmu_get_page_table_entry %a0,%d0
1218
1219 /* this is where the prom page table lives */
1220 movel 0xfefe00d4, %a1
1221 movel %a1@, %a1
1222
1223 movel #((0x200000 >> 13)-1), %d1
1224
12251:
1226 movel %a1@+, %d3
1227 movel %d3,%a0@+
1228 addl #0x1000,%d3
1229 movel %d3,%a0@+
1230
1231 dbra %d1,1b
1232
1233 /* setup tt1 for I/O */
1234 mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1235 jbra L(mmu_init_done)
1236
1237L(notsun3x):
1238#endif
1239
1240#ifdef CONFIG_APOLLO
1241 is_not_apollo(L(notapollo))
1242
1243 putc 'P'
1244 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1245
1246L(notapollo):
1247 jbra L(mmu_init_done)
1248#endif
1249
1250L(mmu_init_done):
1251
1252 putc 'G'
1253 leds 0x8
1254
1255/*
1256 * mmu_fixup
1257 *
1258 * On the 040 class machines, all pages that are used for the
1259 * mmu have to be fixed up. According to Motorola, pages holding mmu
1260 * tables should be non-cacheable on a '040 and write-through on a
1261 * '060. But analysis of the reasons for this, and practical
1262 * experience, showed that write-through also works on a '040.
1263 *
1264 * Allocated memory so far goes from kernel_end to memory_start that
1265 * is used for all kind of tables, for that the cache attributes
1266 * are now fixed.
1267 */
1268L(mmu_fixup):
1269
1270 is_not_040_or_060(L(mmu_fixup_done))
1271
1272#ifdef MMU_NOCACHE_KERNEL
1273 jbra L(mmu_fixup_done)
1274#endif
1275
1276 /* first fix the page at the start of the kernel, that
1277 * contains also kernel_pg_dir.
1278 */
1279 movel %pc@(L(phys_kernel_start)),%d0
1280 subl #PAGE_OFFSET,%d0
1281 lea %pc@(_stext),%a0
1282 subl %d0,%a0
1283 mmu_fixup_page_mmu_cache %a0
1284
1285 movel %pc@(L(kernel_end)),%a0
1286 subl %d0,%a0
1287 movel %pc@(L(memory_start)),%a1
1288 subl %d0,%a1
1289 bra 2f
12901:
1291 mmu_fixup_page_mmu_cache %a0
1292 addw #PAGESIZE,%a0
12932:
1294 cmpl %a0,%a1
1295 jgt 1b
1296
1297L(mmu_fixup_done):
1298
1299#ifdef MMU_PRINT
1300 mmu_print
1301#endif
1302
1303/*
1304 * mmu_engage
1305 *
1306 * This chunk of code performs the gruesome task of engaging the MMU.
1307 * The reason its gruesome is because when the MMU becomes engaged it
1308 * maps logical addresses to physical addresses. The Program Counter
1309 * register is then passed through the MMU before the next instruction
1310 * is fetched (the instruction following the engage MMU instruction).
1311 * This may mean one of two things:
1312 * 1. The Program Counter falls within the logical address space of
1313 * the kernel of which there are two sub-possibilities:
1314 * A. The PC maps to the correct instruction (logical PC == physical
1315 * code location), or
1316 * B. The PC does not map through and the processor will read some
1317 * data (or instruction) which is not the logically next instr.
1318 * As you can imagine, A is good and B is bad.
1319 * Alternatively,
1320 * 2. The Program Counter does not map through the MMU. The processor
1321 * will take a Bus Error.
1322 * Clearly, 2 is bad.
1323 * It doesn't take a wiz kid to figure you want 1.A.
1324 * This code creates that possibility.
1325 * There are two possible 1.A. states (we now ignore the other above states):
1326 * A. The kernel is located at physical memory addressed the same as
1327 * the logical memory for the kernel, i.e., 0x01000.
1328 * B. The kernel is located some where else. e.g., 0x0400.0000
1329 *
1330 * Under some conditions the Macintosh can look like A or B.
1331 * [A friend and I once noted that Apple hardware engineers should be
1332 * wacked twice each day: once when they show up at work (as in, Whack!,
1333 * "This is for the screwy hardware we know you're going to design today."),
1334 * and also at the end of the day (as in, Whack! "I don't know what
1335 * you designed today, but I'm sure it wasn't good."). -- rst]
1336 *
1337 * This code works on the following premise:
1338 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1339 * then create a mapping for the kernel at logical 0x8000.0000 to
1340 * the physical location of the pc. And, create a transparent
1341 * translation register for the first 16 Meg. Then, after the MMU
1342 * is engaged, the PC can be moved up into the 0x8000.0000 range
1343 * and then the transparent translation can be turned off and then
1344 * the PC can jump to the correct logical location and it will be
1345 * home (finally). This is essentially the code that the Amiga used
1346 * to use. Now, it's generalized for all processors. Which means
1347 * that a fresh (but temporary) mapping has to be created. The mapping
1348 * is made in page 0 (an as of yet unused location -- except for the
1349 * stack!). This temporary mapping will only require 1 pointer table
1350 * and a single page table (it can map 256K).
1351 *
1352 * OK, alternatively, imagine that the Program Counter is not within
1353 * the first 16 Meg. Then, just use Transparent Translation registers
1354 * to do the right thing.
1355 *
1356 * Last, if _start is already at 0x01000, then there's nothing special
1357 * to do (in other words, in a degenerate case of the first case above,
1358 * do nothing).
1359 *
1360 * Let's do it.
1361 *
1362 *
1363 */
1364
1365 putc 'H'
1366
1367 mmu_engage
1368
1369/*
1370 * After this point no new memory is allocated and
1371 * the start of available memory is stored in availmem.
1372 * (The bootmem allocator requires now the physicall address.)
1373 */
1374
1375 movel L(memory_start),availmem
1376
1377#ifdef CONFIG_AMIGA
1378 is_not_amiga(1f)
1379 /* fixup the Amiga custom register location before printing */
1380 clrl L(custom)
13811:
1382#endif
1383
1384#ifdef CONFIG_ATARI
1385 is_not_atari(1f)
1386 /* fixup the Atari iobase register location before printing */
1387 movel #0xff000000,L(iobase)
13881:
1389#endif
1390
1391#ifdef CONFIG_MAC
1392 is_not_mac(1f)
1393 movel #~VIDEOMEMMASK,%d0
1394 andl L(mac_videobase),%d0
1395 addl #VIDEOMEMBASE,%d0
1396 movel %d0,L(mac_videobase)
1397#ifdef CONSOLE_DEBUG
1398 movel %pc@(L(phys_kernel_start)),%d0
1399 subl #PAGE_OFFSET,%d0
1400 subl %d0,L(console_font)
1401 subl %d0,L(console_font_data)
1402#endif
1403 orl #0x50000000,L(mac_sccbase)
14041:
1405#endif
1406
1407#ifdef CONFIG_HP300
1408 is_not_hp300(2f)
1409 /*
1410 * Fix up the iobase register to point to the new location of the LEDs.
1411 */
1412 movel #0xf0000000,L(iobase)
1413
1414 /*
1415 * Energise the FPU and caches.
1416 */
1417 is_040(1f)
1418 movel #0x60,0xf05f400c
1419 jbra 2f
1420
1421 /*
1422 * 040: slightly different, apparently.
1423 */
14241: movew #0,0xf05f400e
1425 movew #0x64,0xf05f400e
14262:
1427#endif
1428
1429#ifdef CONFIG_SUN3X
1430 is_not_sun3x(1f)
1431
1432 /* enable copro */
1433 oriw #0x4000,0x61000000
14341:
1435#endif
1436
1437#ifdef CONFIG_APOLLO
1438 is_not_apollo(1f)
1439
1440 /*
1441 * Fix up the iobase before printing
1442 */
1443 movel #0x80000000,L(iobase)
14441:
1445#endif
1446
1447 putc 'I'
1448 leds 0x10
1449
1450/*
1451 * Enable caches
1452 */
1453
1454 is_not_040_or_060(L(cache_not_680460))
1455
1456L(cache680460):
1457 .chip 68040
1458 nop
1459 cpusha %bc
1460 nop
1461
1462 is_060(L(cache68060))
1463
1464 movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0
1465 /* MMU stuff works in copyback mode now, so enable the cache */
1466 movec %d0,%cacr
1467 jra L(cache_done)
1468
1469L(cache68060):
1470 movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1471 /* MMU stuff works in copyback mode now, so enable the cache */
1472 movec %d0,%cacr
1473 /* enable superscalar dispatch in PCR */
1474 moveq #1,%d0
1475 .chip 68060
1476 movec %d0,%pcr
1477
1478 jbra L(cache_done)
1479L(cache_not_680460):
1480L(cache68030):
1481 .chip 68030
1482 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1483 movec %d0,%cacr
1484
1485 jra L(cache_done)
1486 .chip 68k
1487L(cache_done):
1488
1489 putc 'J'
1490
1491/*
1492 * Setup initial stack pointer
1493 */
1494 lea init_task,%curptr
1495 lea init_thread_union+THREAD_SIZE,%sp
1496
1497 putc 'K'
1498
1499 subl %a6,%a6 /* clear a6 for gdb */
1500
1501/*
1502 * The new 64bit printf support requires an early exception initialization.
1503 */
1504 jbsr base_trap_init
1505
1506/* jump to the kernel start */
1507
1508 putc '\n'
1509 leds 0x55
1510
1511 jbsr start_kernel
1512
1513/*
1514 * Find a tag record in the bootinfo structure
1515 * The bootinfo structure is located right after the kernel
1516 * Returns: d0: size (-1 if not found)
1517 * a0: data pointer (end-of-records if not found)
1518 */
1519func_start get_bi_record,%d1
1520
1521 movel ARG1,%d0
1522 lea %pc@(_end),%a0
15231: tstw %a0@(BIR_TAG)
1524 jeq 3f
1525 cmpw %a0@(BIR_TAG),%d0
1526 jeq 2f
1527 addw %a0@(BIR_SIZE),%a0
1528 jra 1b
15292: moveq #0,%d0
1530 movew %a0@(BIR_SIZE),%d0
1531 lea %a0@(BIR_DATA),%a0
1532 jra 4f
15333: moveq #-1,%d0
1534 lea %a0@(BIR_SIZE),%a0
15354:
1536func_return get_bi_record
1537
1538
1539/*
1540 * MMU Initialization Begins Here
1541 *
1542 * The structure of the MMU tables on the 68k machines
1543 * is thus:
1544 * Root Table
1545 * Logical addresses are translated through
1546 * a hierarchical translation mechanism where the high-order
1547 * seven bits of the logical address (LA) are used as an
1548 * index into the "root table." Each entry in the root
1549 * table has a bit which specifies if it's a valid pointer to a
1550 * pointer table. Each entry defines a 32KMeg range of memory.
1551 * If an entry is invalid then that logical range of 32M is
1552 * invalid and references to that range of memory (when the MMU
1553 * is enabled) will fault. If the entry is valid, then it does
1554 * one of two things. On 040/060 class machines, it points to
1555 * a pointer table which then describes more finely the memory
1556 * within that 32M range. On 020/030 class machines, a technique
1557 * called "early terminating descriptors" are used. This technique
1558 * allows an entire 32Meg to be described by a single entry in the
1559 * root table. Thus, this entry in the root table, contains the
1560 * physical address of the memory or I/O at the logical address
1561 * which the entry represents and it also contains the necessary
1562 * cache bits for this region.
1563 *
1564 * Pointer Tables
1565 * Per the Root Table, there will be one or more
1566 * pointer tables. Each pointer table defines a 32M range.
1567 * Not all of the 32M range need be defined. Again, the next
1568 * seven bits of the logical address are used an index into
1569 * the pointer table to point to page tables (if the pointer
1570 * is valid). There will undoubtedly be more than one
1571 * pointer table for the kernel because each pointer table
1572 * defines a range of only 32M. Valid pointer table entries
1573 * point to page tables, or are early terminating entries
1574 * themselves.
1575 *
1576 * Page Tables
1577 * Per the Pointer Tables, each page table entry points
1578 * to the physical page in memory that supports the logical
1579 * address that translates to the particular index.
1580 *
1581 * In short, the Logical Address gets translated as follows:
1582 * bits 31..26 - index into the Root Table
1583 * bits 25..18 - index into the Pointer Table
1584 * bits 17..12 - index into the Page Table
1585 * bits 11..0 - offset into a particular 4K page
1586 *
1587 * The algorithms which follows do one thing: they abstract
1588 * the MMU hardware. For example, there are three kinds of
1589 * cache settings that are relevant. Either, memory is
1590 * being mapped in which case it is either Kernel Code (or
1591 * the RamDisk) or it is MMU data. On the 030, the MMU data
1592 * option also describes the kernel. Or, I/O is being mapped
1593 * in which case it has its own kind of cache bits. There
1594 * are constants which abstract these notions from the code that
1595 * actually makes the call to map some range of memory.
1596 *
1597 *
1598 *
1599 */
1600
1601#ifdef MMU_PRINT
1602/*
1603 * mmu_print
1604 *
1605 * This algorithm will print out the current MMU mappings.
1606 *
1607 * Input:
1608 * %a5 points to the root table. Everything else is calculated
1609 * from this.
1610 */
1611
1612#define mmu_next_valid 0
1613#define mmu_start_logical 4
1614#define mmu_next_logical 8
1615#define mmu_start_physical 12
1616#define mmu_next_physical 16
1617
1618#define MMU_PRINT_INVALID -1
1619#define MMU_PRINT_VALID 1
1620#define MMU_PRINT_UNINITED 0
1621
1622#define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1623
1624func_start mmu_print,%a0-%a6/%d0-%d7
1625
1626 movel %pc@(L(kernel_pgdir_ptr)),%a5
1627 lea %pc@(L(mmu_print_data)),%a0
1628 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1629
1630 is_not_040_or_060(mmu_030_print)
1631
1632mmu_040_print:
1633 puts "\nMMU040\n"
1634 puts "rp:"
1635 putn %a5
1636 putc '\n'
1637#if 0
1638 /*
1639 * The following #if/#endif block is a tight algorithm for dumping the 040
1640 * MMU Map in gory detail. It really isn't that practical unless the
1641 * MMU Map algorithm appears to go awry and you need to debug it at the
1642 * entry per entry level.
1643 */
1644 movel #ROOT_TABLE_SIZE,%d5
1645#if 0
1646 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings,
1647 subql #1,%d5 | they (might) work
1648#endif
16491: tstl %d5
1650 jbeq mmu_print_done
1651 subq #1,%d5
1652 movel %a5@+,%d7
1653 btst #1,%d7
1654 jbeq 1b
1655
16562: putn %d7
1657 andil #0xFFFFFE00,%d7
1658 movel %d7,%a4
1659 movel #PTR_TABLE_SIZE,%d4
1660 putc ' '
16613: tstl %d4
1662 jbeq 11f
1663 subq #1,%d4
1664 movel %a4@+,%d7
1665 btst #1,%d7
1666 jbeq 3b
1667
16684: putn %d7
1669 andil #0xFFFFFF00,%d7
1670 movel %d7,%a3
1671 movel #PAGE_TABLE_SIZE,%d3
16725: movel #8,%d2
16736: tstl %d3
1674 jbeq 31f
1675 subq #1,%d3
1676 movel %a3@+,%d6
1677 btst #0,%d6
1678 jbeq 6b
16797: tstl %d2
1680 jbeq 8f
1681 subq #1,%d2
1682 putc ' '
1683 jbra 91f
16848: putc '\n'
1685 movel #8+1+8+1+1,%d2
16869: putc ' '
1687 dbra %d2,9b
1688 movel #7,%d2
168991: putn %d6
1690 jbra 6b
1691
169231: putc '\n'
1693 movel #8+1,%d2
169432: putc ' '
1695 dbra %d2,32b
1696 jbra 3b
1697
169811: putc '\n'
1699 jbra 1b
1700#endif /* MMU 040 Dumping code that's gory and detailed */
1701
1702 lea %pc@(kernel_pg_dir),%a5
1703 movel %a5,%a0 /* a0 has the address of the root table ptr */
1704 movel #0x00000000,%a4 /* logical address */
1705 moveql #0,%d0
170640:
1707 /* Increment the logical address and preserve in d5 */
1708 movel %a4,%d5
1709 addil #PAGESIZE<<13,%d5
1710 movel %a0@+,%d6
1711 btst #1,%d6
1712 jbne 41f
1713 jbsr mmu_print_tuple_invalidate
1714 jbra 48f
171541:
1716 movel #0,%d1
1717 andil #0xfffffe00,%d6
1718 movel %d6,%a1
171942:
1720 movel %a4,%d5
1721 addil #PAGESIZE<<6,%d5
1722 movel %a1@+,%d6
1723 btst #1,%d6
1724 jbne 43f
1725 jbsr mmu_print_tuple_invalidate
1726 jbra 47f
172743:
1728 movel #0,%d2
1729 andil #0xffffff00,%d6
1730 movel %d6,%a2
173144:
1732 movel %a4,%d5
1733 addil #PAGESIZE,%d5
1734 movel %a2@+,%d6
1735 btst #0,%d6
1736 jbne 45f
1737 jbsr mmu_print_tuple_invalidate
1738 jbra 46f
173945:
1740 moveml %d0-%d1,%sp@-
1741 movel %a4,%d0
1742 movel %d6,%d1
1743 andil #0xfffff4e0,%d1
1744 lea %pc@(mmu_040_print_flags),%a6
1745 jbsr mmu_print_tuple
1746 moveml %sp@+,%d0-%d1
174746:
1748 movel %d5,%a4
1749 addq #1,%d2
1750 cmpib #64,%d2
1751 jbne 44b
175247:
1753 movel %d5,%a4
1754 addq #1,%d1
1755 cmpib #128,%d1
1756 jbne 42b
175748:
1758 movel %d5,%a4 /* move to the next logical address */
1759 addq #1,%d0
1760 cmpib #128,%d0
1761 jbne 40b
1762
1763 .chip 68040
1764 movec %dtt1,%d0
1765 movel %d0,%d1
1766 andiw #0x8000,%d1 /* is it valid ? */
1767 jbeq 1f /* No, bail out */
1768
1769 movel %d0,%d1
1770 andil #0xff000000,%d1 /* Get the address */
1771 putn %d1
1772 puts "=="
1773 putn %d1
1774
1775 movel %d0,%d6
1776 jbsr mmu_040_print_flags_tt
17771:
1778 movec %dtt0,%d0
1779 movel %d0,%d1
1780 andiw #0x8000,%d1 /* is it valid ? */
1781 jbeq 1f /* No, bail out */
1782
1783 movel %d0,%d1
1784 andil #0xff000000,%d1 /* Get the address */
1785 putn %d1
1786 puts "=="
1787 putn %d1
1788
1789 movel %d0,%d6
1790 jbsr mmu_040_print_flags_tt
17911:
1792 .chip 68k
1793
1794 jbra mmu_print_done
1795
1796mmu_040_print_flags:
1797 btstl #10,%d6
1798 putZc(' ','G') /* global bit */
1799 btstl #7,%d6
1800 putZc(' ','S') /* supervisor bit */
1801mmu_040_print_flags_tt:
1802 btstl #6,%d6
1803 jbne 3f
1804 putc 'C'
1805 btstl #5,%d6
1806 putZc('w','c') /* write through or copy-back */
1807 jbra 4f
18083:
1809 putc 'N'
1810 btstl #5,%d6
1811 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */
18124:
1813 rts
1814
1815mmu_030_print_flags:
1816 btstl #6,%d6
1817 putZc('C','I') /* write through or copy-back */
1818 rts
1819
1820mmu_030_print:
1821 puts "\nMMU030\n"
1822 puts "\nrp:"
1823 putn %a5
1824 putc '\n'
1825 movel %a5,%d0
1826 andil #0xfffffff0,%d0
1827 movel %d0,%a0
1828 movel #0x00000000,%a4 /* logical address */
1829 movel #0,%d0
183030:
1831 movel %a4,%d5
1832 addil #PAGESIZE<<13,%d5
1833 movel %a0@+,%d6
1834 btst #1,%d6 /* is it a table ptr? */
1835 jbne 31f /* yes */
1836 btst #0,%d6 /* is it early terminating? */
1837 jbeq 1f /* no */
1838 jbsr mmu_030_print_helper
1839 jbra 38f
18401:
1841 jbsr mmu_print_tuple_invalidate
1842 jbra 38f
184331:
1844 movel #0,%d1
1845 andil #0xfffffff0,%d6
1846 movel %d6,%a1
184732:
1848 movel %a4,%d5
1849 addil #PAGESIZE<<6,%d5
1850 movel %a1@+,%d6
1851 btst #1,%d6 /* is it a table ptr? */
1852 jbne 33f /* yes */
1853 btst #0,%d6 /* is it a page descriptor? */
1854 jbeq 1f /* no */
1855 jbsr mmu_030_print_helper
1856 jbra 37f
18571:
1858 jbsr mmu_print_tuple_invalidate
1859 jbra 37f
186033:
1861 movel #0,%d2
1862 andil #0xfffffff0,%d6
1863 movel %d6,%a2
186434:
1865 movel %a4,%d5
1866 addil #PAGESIZE,%d5
1867 movel %a2@+,%d6
1868 btst #0,%d6
1869 jbne 35f
1870 jbsr mmu_print_tuple_invalidate
1871 jbra 36f
187235:
1873 jbsr mmu_030_print_helper
187436:
1875 movel %d5,%a4
1876 addq #1,%d2
1877 cmpib #64,%d2
1878 jbne 34b
187937:
1880 movel %d5,%a4
1881 addq #1,%d1
1882 cmpib #128,%d1
1883 jbne 32b
188438:
1885 movel %d5,%a4 /* move to the next logical address */
1886 addq #1,%d0
1887 cmpib #128,%d0
1888 jbne 30b
1889
1890mmu_print_done:
1891 puts "\n"
1892
1893func_return mmu_print
1894
1895
1896mmu_030_print_helper:
1897 moveml %d0-%d1,%sp@-
1898 movel %a4,%d0
1899 movel %d6,%d1
1900 lea %pc@(mmu_030_print_flags),%a6
1901 jbsr mmu_print_tuple
1902 moveml %sp@+,%d0-%d1
1903 rts
1904
1905mmu_print_tuple_invalidate:
1906 moveml %a0/%d7,%sp@-
1907
1908 lea %pc@(L(mmu_print_data)),%a0
1909 tstl %a0@(mmu_next_valid)
1910 jbmi mmu_print_tuple_invalidate_exit
1911
1912 movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1913
1914 putn %a4
1915
1916 puts "##\n"
1917
1918mmu_print_tuple_invalidate_exit:
1919 moveml %sp@+,%a0/%d7
1920 rts
1921
1922
1923mmu_print_tuple:
1924 moveml %d0-%d7/%a0,%sp@-
1925
1926 lea %pc@(L(mmu_print_data)),%a0
1927
1928 tstl %a0@(mmu_next_valid)
1929 jble mmu_print_tuple_print
1930
1931 cmpl %a0@(mmu_next_physical),%d1
1932 jbeq mmu_print_tuple_increment
1933
1934mmu_print_tuple_print:
1935 putn %d0
1936 puts "->"
1937 putn %d1
1938
1939 movel %d1,%d6
1940 jbsr %a6@
1941
1942mmu_print_tuple_record:
1943 movel #MMU_PRINT_VALID,%a0@(mmu_next_valid)
1944
1945 movel %d1,%a0@(mmu_next_physical)
1946
1947mmu_print_tuple_increment:
1948 movel %d5,%d7
1949 subl %a4,%d7
1950 addl %d7,%a0@(mmu_next_physical)
1951
1952mmu_print_tuple_exit:
1953 moveml %sp@+,%d0-%d7/%a0
1954 rts
1955
1956mmu_print_machine_cpu_types:
1957 puts "machine: "
1958
1959 is_not_amiga(1f)
1960 puts "amiga"
1961 jbra 9f
19621:
1963 is_not_atari(2f)
1964 puts "atari"
1965 jbra 9f
19662:
1967 is_not_mac(3f)
1968 puts "macintosh"
1969 jbra 9f
19703: puts "unknown"
19719: putc '\n'
1972
1973 puts "cputype: 0"
1974 is_not_060(1f)
1975 putc '6'
1976 jbra 9f
19771:
1978 is_not_040_or_060(2f)
1979 putc '4'
1980 jbra 9f
19812: putc '3'
19829: putc '0'
1983 putc '\n'
1984
1985 rts
1986#endif /* MMU_PRINT */
1987
1988/*
1989 * mmu_map_tt
1990 *
1991 * This is a specific function which works on all 680x0 machines.
1992 * On 030, 040 & 060 it will attempt to use Transparent Translation
1993 * registers (tt1).
1994 * On 020 it will call the standard mmu_map which will use early
1995 * terminating descriptors.
1996 */
1997func_start mmu_map_tt,%d0/%d1/%a0,4
1998
1999 dputs "mmu_map_tt:"
2000 dputn ARG1
2001 dputn ARG2
2002 dputn ARG3
2003 dputn ARG4
2004 dputc '\n'
2005
2006 is_020(L(do_map))
2007
2008 /* Extract the highest bit set
2009 */
2010 bfffo ARG3{#0,#32},%d1
2011 cmpw #8,%d1
2012 jcc L(do_map)
2013
2014 /* And get the mask
2015 */
2016 moveq #-1,%d0
2017 lsrl %d1,%d0
2018 lsrl #1,%d0
2019
2020 /* Mask the address
2021 */
2022 movel %d0,%d1
2023 notl %d1
2024 andl ARG2,%d1
2025
2026 /* Generate the upper 16bit of the tt register
2027 */
2028 lsrl #8,%d0
2029 orl %d0,%d1
2030 clrw %d1
2031
2032 is_040_or_060(L(mmu_map_tt_040))
2033
2034 /* set 030 specific bits (read/write access for supervisor mode
2035 * (highest function code set, lower two bits masked))
2036 */
2037 orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2038 movel ARG4,%d0
2039 btst #6,%d0
2040 jeq 1f
2041 orw #TTR_CI,%d1
2042
20431: lea STACK,%a0
2044 dputn %d1
2045 movel %d1,%a0@
2046 .chip 68030
2047 tstl ARG1
2048 jne 1f
2049 pmove %a0@,%tt0
2050 jra 2f
20511: pmove %a0@,%tt1
20522: .chip 68k
2053 jra L(mmu_map_tt_done)
2054
2055 /* set 040 specific bits
2056 */
2057L(mmu_map_tt_040):
2058 orw #TTR_ENABLE+TTR_KERNELMODE,%d1
2059 orl ARG4,%d1
2060 dputn %d1
2061
2062 .chip 68040
2063 tstl ARG1
2064 jne 1f
2065 movec %d1,%itt0
2066 movec %d1,%dtt0
2067 jra 2f
20681: movec %d1,%itt1
2069 movec %d1,%dtt1
20702: .chip 68k
2071
2072 jra L(mmu_map_tt_done)
2073
2074L(do_map):
2075 mmu_map_eq ARG2,ARG3,ARG4
2076
2077L(mmu_map_tt_done):
2078
2079func_return mmu_map_tt
2080
2081/*
2082 * mmu_map
2083 *
2084 * This routine will map a range of memory using a pointer
2085 * table and allocating the pages on the fly from the kernel.
2086 * The pointer table does not have to be already linked into
2087 * the root table, this routine will do that if necessary.
2088 *
2089 * NOTE
2090 * This routine will assert failure and use the serial_putc
2091 * routines in the case of a run-time error. For example,
2092 * if the address is already mapped.
2093 *
2094 * NOTE-2
2095 * This routine will use early terminating descriptors
2096 * where possible for the 68020+68851 and 68030 type
2097 * processors.
2098 */
2099func_start mmu_map,%d0-%d4/%a0-%a4
2100
2101 dputs "\nmmu_map:"
2102 dputn ARG1
2103 dputn ARG2
2104 dputn ARG3
2105 dputn ARG4
2106 dputc '\n'
2107
2108 /* Get logical address and round it down to 256KB
2109 */
2110 movel ARG1,%d0
2111 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2112 movel %d0,%a3
2113
2114 /* Get the end address
2115 */
2116 movel ARG1,%a4
2117 addl ARG3,%a4
2118 subql #1,%a4
2119
2120 /* Get physical address and round it down to 256KB
2121 */
2122 movel ARG2,%d0
2123 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2124 movel %d0,%a2
2125
2126 /* Add page attributes to the physical address
2127 */
2128 movel ARG4,%d0
2129 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2130 addw %d0,%a2
2131
2132 dputn %a2
2133 dputn %a3
2134 dputn %a4
2135
2136 is_not_040_or_060(L(mmu_map_030))
2137
2138 addw #_PAGE_GLOBAL040,%a2
2139/*
2140 * MMU 040 & 060 Support
2141 *
2142 * The MMU usage for the 040 and 060 is different enough from
2143 * the 030 and 68851 that there is separate code. This comment
2144 * block describes the data structures and algorithms built by
2145 * this code.
2146 *
2147 * The 040 does not support early terminating descriptors, as
2148 * the 030 does. Therefore, a third level of table is needed
2149 * for the 040, and that would be the page table. In Linux,
2150 * page tables are allocated directly from the memory above the
2151 * kernel.
2152 *
2153 */
2154
2155L(mmu_map_040):
2156 /* Calculate the offset into the root table
2157 */
2158 movel %a3,%d0
2159 moveq #ROOT_INDEX_SHIFT,%d1
2160 lsrl %d1,%d0
2161 mmu_get_root_table_entry %d0
2162
2163 /* Calculate the offset into the pointer table
2164 */
2165 movel %a3,%d0
2166 moveq #PTR_INDEX_SHIFT,%d1
2167 lsrl %d1,%d0
2168 andl #PTR_TABLE_SIZE-1,%d0
2169 mmu_get_ptr_table_entry %a0,%d0
2170
2171 /* Calculate the offset into the page table
2172 */
2173 movel %a3,%d0
2174 moveq #PAGE_INDEX_SHIFT,%d1
2175 lsrl %d1,%d0
2176 andl #PAGE_TABLE_SIZE-1,%d0
2177 mmu_get_page_table_entry %a0,%d0
2178
2179 /* The page table entry must not no be busy
2180 */
2181 tstl %a0@
2182 jne L(mmu_map_error)
2183
2184 /* Do the mapping and advance the pointers
2185 */
2186 movel %a2,%a0@
21872:
2188 addw #PAGESIZE,%a2
2189 addw #PAGESIZE,%a3
2190
2191 /* Ready with mapping?
2192 */
2193 lea %a3@(-1),%a0
2194 cmpl %a0,%a4
2195 jhi L(mmu_map_040)
2196 jra L(mmu_map_done)
2197
2198L(mmu_map_030):
2199 /* Calculate the offset into the root table
2200 */
2201 movel %a3,%d0
2202 moveq #ROOT_INDEX_SHIFT,%d1
2203 lsrl %d1,%d0
2204 mmu_get_root_table_entry %d0
2205
2206 /* Check if logical address 32MB aligned,
2207 * so we can try to map it once
2208 */
2209 movel %a3,%d0
2210 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2211 jne 1f
2212
2213 /* Is there enough to map for 32MB at once
2214 */
2215 lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2216 cmpl %a1,%a4
2217 jcs 1f
2218
2219 addql #1,%a1
2220
2221 /* The root table entry must not no be busy
2222 */
2223 tstl %a0@
2224 jne L(mmu_map_error)
2225
2226 /* Do the mapping and advance the pointers
2227 */
2228 dputs "early term1"
2229 dputn %a2
2230 dputn %a3
2231 dputn %a1
2232 dputc '\n'
2233 movel %a2,%a0@
2234
2235 movel %a1,%a3
2236 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2237 jra L(mmu_mapnext_030)
22381:
2239 /* Calculate the offset into the pointer table
2240 */
2241 movel %a3,%d0
2242 moveq #PTR_INDEX_SHIFT,%d1
2243 lsrl %d1,%d0
2244 andl #PTR_TABLE_SIZE-1,%d0
2245 mmu_get_ptr_table_entry %a0,%d0
2246
2247 /* The pointer table entry must not no be busy
2248 */
2249 tstl %a0@
2250 jne L(mmu_map_error)
2251
2252 /* Do the mapping and advance the pointers
2253 */
2254 dputs "early term2"
2255 dputn %a2
2256 dputn %a3
2257 dputc '\n'
2258 movel %a2,%a0@
2259
2260 addl #PAGE_TABLE_SIZE*PAGESIZE,%a2
2261 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3
2262
2263L(mmu_mapnext_030):
2264 /* Ready with mapping?
2265 */
2266 lea %a3@(-1),%a0
2267 cmpl %a0,%a4
2268 jhi L(mmu_map_030)
2269 jra L(mmu_map_done)
2270
2271L(mmu_map_error):
2272
2273 dputs "mmu_map error:"
2274 dputn %a2
2275 dputn %a3
2276 dputc '\n'
2277
2278L(mmu_map_done):
2279
2280func_return mmu_map
2281
2282/*
2283 * mmu_fixup
2284 *
2285 * On the 040 class machines, all pages that are used for the
2286 * mmu have to be fixed up.
2287 */
2288
2289func_start mmu_fixup_page_mmu_cache,%d0/%a0
2290
2291 dputs "mmu_fixup_page_mmu_cache"
2292 dputn ARG1
2293
2294 /* Calculate the offset into the root table
2295 */
2296 movel ARG1,%d0
2297 moveq #ROOT_INDEX_SHIFT,%d1
2298 lsrl %d1,%d0
2299 mmu_get_root_table_entry %d0
2300
2301 /* Calculate the offset into the pointer table
2302 */
2303 movel ARG1,%d0
2304 moveq #PTR_INDEX_SHIFT,%d1
2305 lsrl %d1,%d0
2306 andl #PTR_TABLE_SIZE-1,%d0
2307 mmu_get_ptr_table_entry %a0,%d0
2308
2309 /* Calculate the offset into the page table
2310 */
2311 movel ARG1,%d0
2312 moveq #PAGE_INDEX_SHIFT,%d1
2313 lsrl %d1,%d0
2314 andl #PAGE_TABLE_SIZE-1,%d0
2315 mmu_get_page_table_entry %a0,%d0
2316
2317 movel %a0@,%d0
2318 andil #_CACHEMASK040,%d0
2319 orl %pc@(m68k_pgtable_cachemode),%d0
2320 movel %d0,%a0@
2321
2322 dputc '\n'
2323
2324func_return mmu_fixup_page_mmu_cache
2325
2326/*
2327 * mmu_temp_map
2328 *
2329 * create a temporary mapping to enable the mmu,
2330 * this we don't need any transparation translation tricks.
2331 */
2332
2333func_start mmu_temp_map,%d0/%d1/%a0/%a1
2334
2335 dputs "mmu_temp_map"
2336 dputn ARG1
2337 dputn ARG2
2338 dputc '\n'
2339
2340 lea %pc@(L(temp_mmap_mem)),%a1
2341
2342 /* Calculate the offset in the root table
2343 */
2344 movel ARG2,%d0
2345 moveq #ROOT_INDEX_SHIFT,%d1
2346 lsrl %d1,%d0
2347 mmu_get_root_table_entry %d0
2348
2349 /* Check if the table is temporary allocated, so we have to reuse it
2350 */
2351 movel %a0@,%d0
2352 cmpl %pc@(L(memory_start)),%d0
2353 jcc 1f
2354
2355 /* Temporary allocate a ptr table and insert it into the root table
2356 */
2357 movel %a1@,%d0
2358 addl #PTR_TABLE_SIZE*4,%a1@
2359 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2360 movel %d0,%a0@
2361 dputs " (new)"
23621:
2363 dputn %d0
2364 /* Mask the root table entry for the ptr table
2365 */
2366 andw #-ROOT_TABLE_SIZE,%d0
2367 movel %d0,%a0
2368
2369 /* Calculate the offset into the pointer table
2370 */
2371 movel ARG2,%d0
2372 moveq #PTR_INDEX_SHIFT,%d1
2373 lsrl %d1,%d0
2374 andl #PTR_TABLE_SIZE-1,%d0
2375 lea %a0@(%d0*4),%a0
2376 dputn %a0
2377
2378 /* Check if a temporary page table is already allocated
2379 */
2380 movel %a0@,%d0
2381 jne 1f
2382
2383 /* Temporary allocate a page table and insert it into the ptr table
2384 */
2385 movel %a1@,%d0
2386 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2387 alignment restriction for pointer tables on the '0[46]0. */
2388 addl #512,%a1@
2389 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2390 movel %d0,%a0@
2391 dputs " (new)"
23921:
2393 dputn %d0
2394 /* Mask the ptr table entry for the page table
2395 */
2396 andw #-PTR_TABLE_SIZE,%d0
2397 movel %d0,%a0
2398
2399 /* Calculate the offset into the page table
2400 */
2401 movel ARG2,%d0
2402 moveq #PAGE_INDEX_SHIFT,%d1
2403 lsrl %d1,%d0
2404 andl #PAGE_TABLE_SIZE-1,%d0
2405 lea %a0@(%d0*4),%a0
2406 dputn %a0
2407
2408 /* Insert the address into the page table
2409 */
2410 movel ARG1,%d0
2411 andw #-PAGESIZE,%d0
2412 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2413 movel %d0,%a0@
2414 dputn %d0
2415
2416 dputc '\n'
2417
2418func_return mmu_temp_map
2419
2420func_start mmu_engage,%d0-%d2/%a0-%a3
2421
2422 moveq #ROOT_TABLE_SIZE-1,%d0
2423 /* Temporarily use a different root table. */
2424 lea %pc@(L(kernel_pgdir_ptr)),%a0
2425 movel %a0@,%a2
2426 movel %pc@(L(memory_start)),%a1
2427 movel %a1,%a0@
2428 movel %a2,%a0
24291:
2430 movel %a0@+,%a1@+
2431 dbra %d0,1b
2432
2433 lea %pc@(L(temp_mmap_mem)),%a0
2434 movel %a1,%a0@
2435
2436 movew #PAGESIZE-1,%d0
24371:
2438 clrl %a1@+
2439 dbra %d0,1b
2440
2441 lea %pc@(1b),%a0
2442 movel #1b,%a1
2443 /* Skip temp mappings if phys == virt */
2444 cmpl %a0,%a1
2445 jeq 1f
2446
2447 mmu_temp_map %a0,%a0
2448 mmu_temp_map %a0,%a1
2449
2450 addw #PAGESIZE,%a0
2451 addw #PAGESIZE,%a1
2452 mmu_temp_map %a0,%a0
2453 mmu_temp_map %a0,%a1
24541:
2455 movel %pc@(L(memory_start)),%a3
2456 movel %pc@(L(phys_kernel_start)),%d2
2457
2458 is_not_040_or_060(L(mmu_engage_030))
2459
2460L(mmu_engage_040):
2461 .chip 68040
2462 nop
2463 cinva %bc
2464 nop
2465 pflusha
2466 nop
2467 movec %a3,%srp
2468 movel #TC_ENABLE+TC_PAGE4K,%d0
2469 movec %d0,%tc /* enable the MMU */
2470 jmp 1f:l
24711: nop
2472 movec %a2,%srp
2473 nop
2474 cinva %bc
2475 nop
2476 pflusha
2477 .chip 68k
2478 jra L(mmu_engage_cleanup)
2479
2480L(mmu_engage_030_temp):
2481 .space 12
2482L(mmu_engage_030):
2483 .chip 68030
2484 lea %pc@(L(mmu_engage_030_temp)),%a0
2485 movel #0x80000002,%a0@
2486 movel %a3,%a0@(4)
2487 movel #0x0808,%d0
2488 movec %d0,%cacr
2489 pmove %a0@,%srp
2490 pflusha
2491 /*
2492 * enable,super root enable,4096 byte pages,7 bit root index,
2493 * 7 bit pointer index, 6 bit page table index.
2494 */
2495 movel #0x82c07760,%a0@(8)
2496 pmove %a0@(8),%tc /* enable the MMU */
2497 jmp 1f:l
24981: movel %a2,%a0@(4)
2499 movel #0x0808,%d0
2500 movec %d0,%cacr
2501 pmove %a0@,%srp
2502 pflusha
2503 .chip 68k
2504
2505L(mmu_engage_cleanup):
2506 subl #PAGE_OFFSET,%d2
2507 subl %d2,%a2
2508 movel %a2,L(kernel_pgdir_ptr)
2509 subl %d2,%fp
2510 subl %d2,%sp
2511 subl %d2,ARG0
2512
2513func_return mmu_engage
2514
2515func_start mmu_get_root_table_entry,%d0/%a1
2516
2517#if 0
2518 dputs "mmu_get_root_table_entry:"
2519 dputn ARG1
2520 dputs " ="
2521#endif
2522
2523 movel %pc@(L(kernel_pgdir_ptr)),%a0
2524 tstl %a0
2525 jne 2f
2526
2527 dputs "\nmmu_init:"
2528
2529 /* Find the start of free memory, get_bi_record does this for us,
2530 * as the bootinfo structure is located directly behind the kernel
2531 * and and we simply search for the last entry.
2532 */
2533 get_bi_record BI_LAST
2534 addw #PAGESIZE-1,%a0
2535 movel %a0,%d0
2536 andw #-PAGESIZE,%d0
2537
2538 dputn %d0
2539
2540 lea %pc@(L(memory_start)),%a0
2541 movel %d0,%a0@
2542 lea %pc@(L(kernel_end)),%a0
2543 movel %d0,%a0@
2544
2545 /* we have to return the first page at _stext since the init code
2546 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2547 * page is used for further ptr tables in get_ptr_table.
2548 */
2549 lea %pc@(_stext),%a0
2550 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2551 movel %a0,%a1@
2552 addl #ROOT_TABLE_SIZE*4,%a1@
2553
2554 lea %pc@(L(mmu_num_pointer_tables)),%a1
2555 addql #1,%a1@
2556
2557 /* clear the page
2558 */
2559 movel %a0,%a1
2560 movew #PAGESIZE/4-1,%d0
25611:
2562 clrl %a1@+
2563 dbra %d0,1b
2564
2565 lea %pc@(L(kernel_pgdir_ptr)),%a1
2566 movel %a0,%a1@
2567
2568 dputn %a0
2569 dputc '\n'
25702:
2571 movel ARG1,%d0
2572 lea %a0@(%d0*4),%a0
2573
2574#if 0
2575 dputn %a0
2576 dputc '\n'
2577#endif
2578
2579func_return mmu_get_root_table_entry
2580
2581
2582
2583func_start mmu_get_ptr_table_entry,%d0/%a1
2584
2585#if 0
2586 dputs "mmu_get_ptr_table_entry:"
2587 dputn ARG1
2588 dputn ARG2
2589 dputs " ="
2590#endif
2591
2592 movel ARG1,%a0
2593 movel %a0@,%d0
2594 jne 2f
2595
2596 /* Keep track of the number of pointer tables we use
2597 */
2598 dputs "\nmmu_get_new_ptr_table:"
2599 lea %pc@(L(mmu_num_pointer_tables)),%a0
2600 movel %a0@,%d0
2601 addql #1,%a0@
2602
2603 /* See if there is a free pointer table in our cache of pointer tables
2604 */
2605 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2606 andw #7,%d0
2607 jne 1f
2608
2609 /* Get a new pointer table page from above the kernel memory
2610 */
2611 get_new_page
2612 movel %a0,%a1@
26131:
2614 /* There is an unused pointer table in our cache... use it
2615 */
2616 movel %a1@,%d0
2617 addl #PTR_TABLE_SIZE*4,%a1@
2618
2619 dputn %d0
2620 dputc '\n'
2621
2622 /* Insert the new pointer table into the root table
2623 */
2624 movel ARG1,%a0
2625 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2626 movel %d0,%a0@
26272:
2628 /* Extract the pointer table entry
2629 */
2630 andw #-PTR_TABLE_SIZE,%d0
2631 movel %d0,%a0
2632 movel ARG2,%d0
2633 lea %a0@(%d0*4),%a0
2634
2635#if 0
2636 dputn %a0
2637 dputc '\n'
2638#endif
2639
2640func_return mmu_get_ptr_table_entry
2641
2642
2643func_start mmu_get_page_table_entry,%d0/%a1
2644
2645#if 0
2646 dputs "mmu_get_page_table_entry:"
2647 dputn ARG1
2648 dputn ARG2
2649 dputs " ="
2650#endif
2651
2652 movel ARG1,%a0
2653 movel %a0@,%d0
2654 jne 2f
2655
2656 /* If the page table entry doesn't exist, we allocate a complete new
2657 * page and use it as one continues big page table which can cover
2658 * 4MB of memory, nearly almost all mappings have that alignment.
2659 */
2660 get_new_page
2661 addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0
2662
2663 /* align pointer table entry for a page of page tables
2664 */
2665 movel ARG1,%d0
2666 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2667 movel %d0,%a1
2668
2669 /* Insert the page tables into the pointer entries
2670 */
2671 moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
26721:
2673 movel %a0,%a1@+
2674 lea %a0@(PAGE_TABLE_SIZE*4),%a0
2675 dbra %d0,1b
2676
2677 /* Now we can get the initialized pointer table entry
2678 */
2679 movel ARG1,%a0
2680 movel %a0@,%d0
26812:
2682 /* Extract the page table entry
2683 */
2684 andw #-PAGE_TABLE_SIZE,%d0
2685 movel %d0,%a0
2686 movel ARG2,%d0
2687 lea %a0@(%d0*4),%a0
2688
2689#if 0
2690 dputn %a0
2691 dputc '\n'
2692#endif
2693
2694func_return mmu_get_page_table_entry
2695
2696/*
2697 * get_new_page
2698 *
2699 * Return a new page from the memory start and clear it.
2700 */
2701func_start get_new_page,%d0/%a1
2702
2703 dputs "\nget_new_page:"
2704
2705 /* allocate the page and adjust memory_start
2706 */
2707 lea %pc@(L(memory_start)),%a0
2708 movel %a0@,%a1
2709 addl #PAGESIZE,%a0@
2710
2711 /* clear the new page
2712 */
2713 movel %a1,%a0
2714 movew #PAGESIZE/4-1,%d0
27151:
2716 clrl %a1@+
2717 dbra %d0,1b
2718
2719 dputn %a0
2720 dputc '\n'
2721
2722func_return get_new_page
2723
2724
2725
2726/*
2727 * Debug output support
2728 * Atarians have a choice between the parallel port, the serial port
2729 * from the MFP or a serial port of the SCC
2730 */
2731
2732#ifdef CONFIG_MAC
2733/* You may define either or both of these. */
2734#define MAC_USE_SCC_A /* Modem port */
2735#define MAC_USE_SCC_B /* Printer port */
2736
2737#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2738/* Initialisation table for SCC with 3.6864 MHz PCLK */
2739L(scc_initable_mac):
2740 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2741 .byte 3,0xc0 /* receiver: 8 bpc */
2742 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2743 .byte 10,0 /* NRZ */
2744 .byte 11,0x50 /* use baud rate generator */
2745 .byte 12,1,13,0 /* 38400 baud */
2746 .byte 14,1 /* Baud rate generator enable */
2747 .byte 3,0xc1 /* enable receiver */
2748 .byte 5,0xea /* enable transmitter */
2749 .byte -1
2750 .even
2751#endif
2752#endif /* CONFIG_MAC */
2753
2754#ifdef CONFIG_ATARI
2755/* #define USE_PRINTER */
2756/* #define USE_SCC_B */
2757/* #define USE_SCC_A */
2758#define USE_MFP
2759
2760#if defined(USE_SCC_A) || defined(USE_SCC_B)
2761/* Initialisation table for SCC with 7.9872 MHz PCLK */
2762/* PCLK == 8.0539 gives baud == 9680.1 */
2763L(scc_initable_atari):
2764 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2765 .byte 3,0xc0 /* receiver: 8 bpc */
2766 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2767 .byte 10,0 /* NRZ */
2768 .byte 11,0x50 /* use baud rate generator */
2769 .byte 12,24,13,0 /* 9600 baud */
2770 .byte 14,2,14,3 /* use master clock for BRG, enable */
2771 .byte 3,0xc1 /* enable receiver */
2772 .byte 5,0xea /* enable transmitter */
2773 .byte -1
2774 .even
2775#endif
2776
2777#ifdef USE_PRINTER
2778
2779LPSG_SELECT = 0xff8800
2780LPSG_READ = 0xff8800
2781LPSG_WRITE = 0xff8802
2782LPSG_IO_A = 14
2783LPSG_IO_B = 15
2784LPSG_CONTROL = 7
2785LSTMFP_GPIP = 0xfffa01
2786LSTMFP_DDR = 0xfffa05
2787LSTMFP_IERB = 0xfffa09
2788
2789#elif defined(USE_SCC_B)
2790
2791LSCC_CTRL = 0xff8c85
2792LSCC_DATA = 0xff8c87
2793
2794#elif defined(USE_SCC_A)
2795
2796LSCC_CTRL = 0xff8c81
2797LSCC_DATA = 0xff8c83
2798
2799#elif defined(USE_MFP)
2800
2801LMFP_UCR = 0xfffa29
2802LMFP_TDCDR = 0xfffa1d
2803LMFP_TDDR = 0xfffa25
2804LMFP_TSR = 0xfffa2d
2805LMFP_UDR = 0xfffa2f
2806
2807#endif
2808#endif /* CONFIG_ATARI */
2809
2810/*
2811 * Serial port output support.
2812 */
2813
2814/*
2815 * Initialize serial port hardware
2816 */
2817func_start serial_init,%d0/%d1/%a0/%a1
2818 /*
2819 * Some of the register usage that follows
2820 * CONFIG_AMIGA
2821 * a0 = pointer to boot info record
2822 * d0 = boot info offset
2823 * CONFIG_ATARI
2824 * a0 = address of SCC
2825 * a1 = Liobase address/address of scc_initable_atari
2826 * d0 = init data for serial port
2827 * CONFIG_MAC
2828 * a0 = address of SCC
2829 * a1 = address of scc_initable_mac
2830 * d0 = init data for serial port
2831 */
2832
2833#ifdef CONFIG_AMIGA
2834#define SERIAL_DTR 7
2835#define SERIAL_CNTRL CIABBASE+C_PRA
2836
2837 is_not_amiga(1f)
2838 lea %pc@(L(custom)),%a0
2839 movel #-ZTWOBASE,%a0@
2840 bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2841 get_bi_record BI_AMIGA_SERPER
2842 movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2843| movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE
28441:
2845#endif
2846
2847#ifdef CONFIG_ATARI
2848 is_not_atari(4f)
2849 movel %pc@(L(iobase)),%a1
2850#if defined(USE_PRINTER)
2851 bclr #0,%a1@(LSTMFP_IERB)
2852 bclr #0,%a1@(LSTMFP_DDR)
2853 moveb #LPSG_CONTROL,%a1@(LPSG_SELECT)
2854 moveb #0xff,%a1@(LPSG_WRITE)
2855 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
2856 clrb %a1@(LPSG_WRITE)
2857 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
2858 moveb %a1@(LPSG_READ),%d0
2859 bset #5,%d0
2860 moveb %d0,%a1@(LPSG_WRITE)
2861#elif defined(USE_SCC_A) || defined(USE_SCC_B)
2862 lea %a1@(LSCC_CTRL),%a0
2863 /* Reset SCC register pointer */
2864 moveb %a0@,%d0
2865 /* Reset SCC device: write register pointer then register value */
2866 moveb #9,%a0@
2867 moveb #0xc0,%a0@
2868 /* Wait for 5 PCLK cycles, which is about 63 CPU cycles */
2869 /* 5 / 7.9872 MHz = approx. 0.63 us = 63 / 100 MHz */
2870 movel #32,%d0
28712:
2872 subq #1,%d0
2873 jne 2b
2874 /* Initialize channel */
2875 lea %pc@(L(scc_initable_atari)),%a1
28762: moveb %a1@+,%d0
2877 jmi 3f
2878 moveb %d0,%a0@
2879 moveb %a1@+,%a0@
2880 jra 2b
28813: clrb %a0@
2882#elif defined(USE_MFP)
2883 bclr #1,%a1@(LMFP_TSR)
2884 moveb #0x88,%a1@(LMFP_UCR)
2885 andb #0x70,%a1@(LMFP_TDCDR)
2886 moveb #2,%a1@(LMFP_TDDR)
2887 orb #1,%a1@(LMFP_TDCDR)
2888 bset #1,%a1@(LMFP_TSR)
2889#endif
2890 jra L(serial_init_done)
28914:
2892#endif
2893
2894#ifdef CONFIG_MAC
2895 is_not_mac(L(serial_init_not_mac))
2896#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2897#define mac_scc_cha_b_ctrl_offset 0x0
2898#define mac_scc_cha_a_ctrl_offset 0x2
2899#define mac_scc_cha_b_data_offset 0x4
2900#define mac_scc_cha_a_data_offset 0x6
2901 movel %pc@(L(mac_sccbase)),%a0
2902 /* Reset SCC register pointer */
2903 moveb %a0@(mac_scc_cha_a_ctrl_offset),%d0
2904 /* Reset SCC device: write register pointer then register value */
2905 moveb #9,%a0@(mac_scc_cha_a_ctrl_offset)
2906 moveb #0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2907 /* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2908 /* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2909 movel #35,%d0
29105:
2911 subq #1,%d0
2912 jne 5b
2913#endif
2914#ifdef MAC_USE_SCC_A
2915 /* Initialize channel A */
2916 lea %pc@(L(scc_initable_mac)),%a1
29175: moveb %a1@+,%d0
2918 jmi 6f
2919 moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset)
2920 moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2921 jra 5b
29226:
2923#endif /* MAC_USE_SCC_A */
2924#ifdef MAC_USE_SCC_B
2925 /* Initialize channel B */
2926 lea %pc@(L(scc_initable_mac)),%a1
29277: moveb %a1@+,%d0
2928 jmi 8f
2929 moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset)
2930 moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2931 jra 7b
29328:
2933#endif /* MAC_USE_SCC_B */
2934 jra L(serial_init_done)
2935L(serial_init_not_mac):
2936#endif /* CONFIG_MAC */
2937
2938#ifdef CONFIG_Q40
2939 is_not_q40(2f)
2940/* debug output goes into SRAM, so we don't do it unless requested
2941 - check for '%LX$' signature in SRAM */
2942 lea %pc@(q40_mem_cptr),%a1
2943 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */
2944 move.l #0xff020000,%a1
2945 cmp.b #'%',%a1@
2946 bne 2f /*nodbg*/
2947 addq.w #4,%a1
2948 cmp.b #'L',%a1@
2949 bne 2f /*nodbg*/
2950 addq.w #4,%a1
2951 cmp.b #'X',%a1@
2952 bne 2f /*nodbg*/
2953 addq.w #4,%a1
2954 cmp.b #'$',%a1@
2955 bne 2f /*nodbg*/
2956 /* signature OK */
2957 lea %pc@(L(q40_do_debug)),%a1
2958 tas %a1@
2959/*nodbg: q40_do_debug is 0 by default*/
29602:
2961#endif
2962
2963#ifdef CONFIG_MVME16x
2964 is_not_mvme16x(L(serial_init_not_mvme16x))
2965 moveb #0x10,M167_PCSCCMICR
2966 moveb #0x10,M167_PCSCCTICR
2967 moveb #0x10,M167_PCSCCRICR
2968 jra L(serial_init_done)
2969L(serial_init_not_mvme16x):
2970#endif
2971
2972#ifdef CONFIG_APOLLO
2973/* We count on the PROM initializing SIO1 */
2974#endif
2975
2976#ifdef CONFIG_HP300
2977/* We count on the boot loader initialising the UART */
2978#endif
2979
2980L(serial_init_done):
2981func_return serial_init
2982
2983/*
2984 * Output character on serial port.
2985 */
2986func_start serial_putc,%d0/%d1/%a0/%a1
2987
2988 movel ARG1,%d0
2989 cmpib #'\n',%d0
2990 jbne 1f
2991
2992 /* A little safe recursion is good for the soul */
2993 serial_putc #'\r'
29941:
2995
2996#ifdef CONFIG_AMIGA
2997 is_not_amiga(2f)
2998 andw #0x00ff,%d0
2999 oriw #0x0100,%d0
3000 movel %pc@(L(custom)),%a0
3001 movew %d0,%a0@(CUSTOMBASE+C_SERDAT)
30021: movew %a0@(CUSTOMBASE+C_SERDATR),%d0
3003 andw #0x2000,%d0
3004 jeq 1b
3005 jra L(serial_putc_done)
30062:
3007#endif
3008
3009#ifdef CONFIG_MAC
3010 is_not_mac(5f)
3011#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
3012 movel %pc@(L(mac_sccbase)),%a1
3013#endif
3014#ifdef MAC_USE_SCC_A
30153: btst #2,%a1@(mac_scc_cha_a_ctrl_offset)
3016 jeq 3b
3017 moveb %d0,%a1@(mac_scc_cha_a_data_offset)
3018#endif /* MAC_USE_SCC_A */
3019#ifdef MAC_USE_SCC_B
30204: btst #2,%a1@(mac_scc_cha_b_ctrl_offset)
3021 jeq 4b
3022 moveb %d0,%a1@(mac_scc_cha_b_data_offset)
3023#endif /* MAC_USE_SCC_B */
3024 jra L(serial_putc_done)
30255:
3026#endif /* CONFIG_MAC */
3027
3028#ifdef CONFIG_ATARI
3029 is_not_atari(4f)
3030 movel %pc@(L(iobase)),%a1
3031#if defined(USE_PRINTER)
30323: btst #0,%a1@(LSTMFP_GPIP)
3033 jne 3b
3034 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
3035 moveb %d0,%a1@(LPSG_WRITE)
3036 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
3037 moveb %a1@(LPSG_READ),%d0
3038 bclr #5,%d0
3039 moveb %d0,%a1@(LPSG_WRITE)
3040 nop
3041 nop
3042 bset #5,%d0
3043 moveb %d0,%a1@(LPSG_WRITE)
3044#elif defined(USE_SCC_A) || defined(USE_SCC_B)
30453: btst #2,%a1@(LSCC_CTRL)
3046 jeq 3b
3047 moveb %d0,%a1@(LSCC_DATA)
3048#elif defined(USE_MFP)
30493: btst #7,%a1@(LMFP_TSR)
3050 jeq 3b
3051 moveb %d0,%a1@(LMFP_UDR)
3052#endif
3053 jra L(serial_putc_done)
30544:
3055#endif /* CONFIG_ATARI */
3056
3057#ifdef CONFIG_MVME147
3058 is_not_mvme147(2f)
30591: btst #2,M147_SCC_CTRL_A
3060 jeq 1b
3061 moveb %d0,M147_SCC_DATA_A
3062 jbra L(serial_putc_done)
30632:
3064#endif
3065
3066#ifdef CONFIG_MVME16x
3067 is_not_mvme16x(2f)
3068 /*
3069 * If the loader gave us a board type then we can use that to
3070 * select an appropriate output routine; otherwise we just use
3071 * the Bug code. If we have to use the Bug that means the Bug
3072 * workspace has to be valid, which means the Bug has to use
3073 * the SRAM, which is non-standard.
3074 */
3075 moveml %d0-%d7/%a2-%a6,%sp@-
3076 movel vme_brdtype,%d1
3077 jeq 1f | No tag - use the Bug
3078 cmpi #VME_TYPE_MVME162,%d1
3079 jeq 6f
3080 cmpi #VME_TYPE_MVME172,%d1
3081 jne 5f
3082 /* 162/172; it's an SCC */
30836: btst #2,M162_SCC_CTRL_A
3084 nop
3085 nop
3086 nop
3087 jeq 6b
3088 moveb #8,M162_SCC_CTRL_A
3089 nop
3090 nop
3091 nop
3092 moveb %d0,M162_SCC_CTRL_A
3093 jra 3f
30945:
3095 /* 166/167/177; it's a CD2401 */
3096 moveb #0,M167_CYCAR
3097 moveb M167_CYIER,%d2
3098 moveb #0x02,M167_CYIER
30997:
3100 btst #5,M167_PCSCCTICR
3101 jeq 7b
3102 moveb M167_PCTPIACKR,%d1
3103 moveb M167_CYLICR,%d1
3104 jeq 8f
3105 moveb #0x08,M167_CYTEOIR
3106 jra 7b
31078:
3108 moveb %d0,M167_CYTDR
3109 moveb #0,M167_CYTEOIR
3110 moveb %d2,M167_CYIER
3111 jra 3f
31121:
3113 moveb %d0,%sp@-
3114 trap #15
3115 .word 0x0020 /* TRAP 0x020 */
31163:
3117 moveml %sp@+,%d0-%d7/%a2-%a6
3118 jbra L(serial_putc_done)
31192:
3120#endif /* CONFIG_MVME16x */
3121
3122#ifdef CONFIG_BVME6000
3123 is_not_bvme6000(2f)
3124 /*
3125 * The BVME6000 machine has a serial port ...
3126 */
31271: btst #2,BVME_SCC_CTRL_A
3128 jeq 1b
3129 moveb %d0,BVME_SCC_DATA_A
3130 jbra L(serial_putc_done)
31312:
3132#endif
3133
3134#ifdef CONFIG_SUN3X
3135 is_not_sun3x(2f)
3136 movel %d0,-(%sp)
3137 movel 0xFEFE0018,%a1
3138 jbsr (%a1)
3139 addq #4,%sp
3140 jbra L(serial_putc_done)
31412:
3142#endif
3143
3144#ifdef CONFIG_Q40
3145 is_not_q40(2f)
3146 tst.l %pc@(L(q40_do_debug)) /* only debug if requested */
3147 beq 2f
3148 lea %pc@(q40_mem_cptr),%a1
3149 move.l %a1@,%a0
3150 move.b %d0,%a0@
3151 addq.l #4,%a0
3152 move.l %a0,%a1@
3153 jbra L(serial_putc_done)
31542:
3155#endif
3156
3157#ifdef CONFIG_APOLLO
3158 is_not_apollo(2f)
3159 movl %pc@(L(iobase)),%a1
3160 moveb %d0,%a1@(LTHRB0)
31611: moveb %a1@(LSRB0),%d0
3162 andb #0x4,%d0
3163 beq 1b
3164 jbra L(serial_putc_done)
31652:
3166#endif
3167
3168#ifdef CONFIG_HP300
3169 is_not_hp300(3f)
3170 movl %pc@(L(iobase)),%a1
3171 addl %pc@(L(uartbase)),%a1
3172 movel %pc@(L(uart_scode)),%d1 /* Check the scode */
3173 jmi 3f /* Unset? Exit */
3174 cmpi #256,%d1 /* APCI scode? */
3175 jeq 2f
31761: moveb %a1@(DCALSR),%d1 /* Output to DCA */
3177 andb #0x20,%d1
3178 beq 1b
3179 moveb %d0,%a1@(DCADATA)
3180 jbra L(serial_putc_done)
31812: moveb %a1@(APCILSR),%d1 /* Output to APCI */
3182 andb #0x20,%d1
3183 beq 2b
3184 moveb %d0,%a1@(APCIDATA)
3185 jbra L(serial_putc_done)
31863:
3187#endif
3188
3189L(serial_putc_done):
3190func_return serial_putc
3191
3192/*
3193 * Output a string.
3194 */
3195func_start puts,%d0/%a0
3196
3197 movel ARG1,%a0
3198 jra 2f
31991:
3200#ifdef CONSOLE_DEBUG
3201 console_putc %d0
3202#endif
3203#ifdef SERIAL_DEBUG
3204 serial_putc %d0
3205#endif
32062: moveb %a0@+,%d0
3207 jne 1b
3208
3209func_return puts
3210
3211/*
3212 * Output number in hex notation.
3213 */
3214
3215func_start putn,%d0-%d2
3216
3217 putc ' '
3218
3219 movel ARG1,%d0
3220 moveq #7,%d1
32211: roll #4,%d0
3222 move %d0,%d2
3223 andb #0x0f,%d2
3224 addb #'0',%d2
3225 cmpb #'9',%d2
3226 jls 2f
3227 addb #'A'-('9'+1),%d2
32282:
3229#ifdef CONSOLE_DEBUG
3230 console_putc %d2
3231#endif
3232#ifdef SERIAL_DEBUG
3233 serial_putc %d2
3234#endif
3235 dbra %d1,1b
3236
3237func_return putn
3238
3239#ifdef CONFIG_EARLY_PRINTK
3240/*
3241 * This routine takes its parameters on the stack. It then
3242 * turns around and calls the internal routines. This routine
3243 * is used by the boot console.
3244 *
3245 * The calling parameters are:
3246 * void debug_cons_nputs(const char *str, unsigned length)
3247 *
3248 * This routine does NOT understand variable arguments only
3249 * simple strings!
3250 */
3251ENTRY(debug_cons_nputs)
3252 moveml %d0/%d1/%a0,%sp@-
3253 movew %sr,%sp@-
3254 ori #0x0700,%sr
3255 movel %sp@(18),%a0 /* fetch parameter */
3256 movel %sp@(22),%d1 /* fetch parameter */
3257 jra 2f
32581:
3259#ifdef CONSOLE_DEBUG
3260 console_putc %d0
3261#endif
3262#ifdef SERIAL_DEBUG
3263 serial_putc %d0
3264#endif
3265 subq #1,%d1
32662: jeq 3f
3267 moveb %a0@+,%d0
3268 jne 1b
32693:
3270 movew %sp@+,%sr
3271 moveml %sp@+,%d0/%d1/%a0
3272 rts
3273#endif /* CONFIG_EARLY_PRINTK */
3274
3275#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3276func_start set_leds,%d0/%a0
3277 movel ARG1,%d0
3278#ifdef CONFIG_HP300
3279 is_not_hp300(1f)
3280 movel %pc@(L(iobase)),%a0
3281 moveb %d0,%a0@(0x1ffff)
3282 jra 2f
3283#endif
32841:
3285#ifdef CONFIG_APOLLO
3286 movel %pc@(L(iobase)),%a0
3287 lsll #8,%d0
3288 eorw #0xff00,%d0
3289 moveb %d0,%a0@(LCPUCTRL)
3290#endif
32912:
3292func_return set_leds
3293#endif
3294
3295#ifdef CONSOLE_DEBUG
3296/*
3297 * For continuity, see the data alignment
3298 * to which this structure is tied.
3299 */
3300#define Lconsole_struct_cur_column 0
3301#define Lconsole_struct_cur_row 4
3302#define Lconsole_struct_num_columns 8
3303#define Lconsole_struct_num_rows 12
3304#define Lconsole_struct_left_edge 16
3305
3306func_start console_init,%a0-%a4/%d0-%d7
3307 /*
3308 * Some of the register usage that follows
3309 * a0 = pointer to boot_info
3310 * a1 = pointer to screen
3311 * a2 = pointer to console_globals
3312 * d3 = pixel width of screen
3313 * d4 = pixel height of screen
3314 * (d3,d4) ~= (x,y) of a point just below
3315 * and to the right of the screen
3316 * NOT on the screen!
3317 * d5 = number of bytes per scan line
3318 * d6 = number of bytes on the entire screen
3319 */
3320
3321 lea %pc@(L(console_globals)),%a2
3322 movel %pc@(L(mac_videobase)),%a1
3323 movel %pc@(L(mac_rowbytes)),%d5
3324 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */
3325 movel %d3,%d4
3326 swap %d4 /* -> high byte */
3327 andl #0xffff,%d3 /* d3 = screen width in pixels */
3328 andl #0xffff,%d4 /* d4 = screen height in pixels */
3329
3330 movel %d5,%d6
3331| subl #20,%d6
3332 mulul %d4,%d6 /* scan line bytes x num scan lines */
3333 divul #8,%d6 /* we'll clear 8 bytes at a time */
3334 moveq #-1,%d0 /* Mac_black */
3335 subq #1,%d6
3336
3337L(console_clear_loop):
3338 movel %d0,%a1@+
3339 movel %d0,%a1@+
3340 dbra %d6,L(console_clear_loop)
3341
3342 /* Calculate font size */
3343
3344#if defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3345 lea %pc@(font_vga_8x8),%a0
3346#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3347 lea %pc@(font_vga_8x16),%a0
3348#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3349 lea %pc@(font_vga_6x11),%a0
3350#elif defined(CONFIG_FONT_8x8) /* default */
3351 lea %pc@(font_vga_8x8),%a0
3352#else /* no compiled-in font */
3353 lea 0,%a0
3354#endif
3355
3356 /*
3357 * At this point we make a shift in register usage
3358 * a1 = address of console_font pointer
3359 */
3360 lea %pc@(L(console_font)),%a1
3361 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */
3362 tstl %a0
3363 jeq 1f
3364 lea %pc@(L(console_font_data)),%a4
3365 movel %a0@(FONT_DESC_DATA),%d0
3366 subl #L(console_font),%a1
3367 addl %a1,%d0
3368 movel %d0,%a4@
3369
3370 /*
3371 * Calculate global maxs
3372 * Note - we can use either an
3373 * 8 x 16 or 8 x 8 character font
3374 * 6 x 11 also supported
3375 */
3376 /* ASSERT: a0 = contents of Lconsole_font */
3377 movel %d3,%d0 /* screen width in pixels */
3378 divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */
3379
3380 movel %d4,%d1 /* screen height in pixels */
3381 divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */
3382
3383 movel %d0,%a2@(Lconsole_struct_num_columns)
3384 movel %d1,%a2@(Lconsole_struct_num_rows)
3385
3386 /*
3387 * Clear the current row and column
3388 */
3389 clrl %a2@(Lconsole_struct_cur_column)
3390 clrl %a2@(Lconsole_struct_cur_row)
3391 clrl %a2@(Lconsole_struct_left_edge)
3392
3393 /*
3394 * Initialization is complete
3395 */
33961:
3397func_return console_init
3398
3399#ifdef CONFIG_LOGO
3400func_start console_put_penguin,%a0-%a1/%d0-%d7
3401 /*
3402 * Get 'that_penguin' onto the screen in the upper right corner
3403 * penguin is 64 x 74 pixels, align against right edge of screen
3404 */
3405 lea %pc@(L(mac_dimensions)),%a0
3406 movel %a0@,%d0
3407 andil #0xffff,%d0
3408 subil #64,%d0 /* snug up against the right edge */
3409 clrl %d1 /* start at the top */
3410 movel #73,%d7
3411 lea %pc@(L(that_penguin)),%a1
3412L(console_penguin_row):
3413 movel #31,%d6
3414L(console_penguin_pixel_pair):
3415 moveb %a1@,%d2
3416 lsrb #4,%d2
3417 console_plot_pixel %d0,%d1,%d2
3418 addq #1,%d0
3419 moveb %a1@+,%d2
3420 console_plot_pixel %d0,%d1,%d2
3421 addq #1,%d0
3422 dbra %d6,L(console_penguin_pixel_pair)
3423
3424 subil #64,%d0
3425 addq #1,%d1
3426 dbra %d7,L(console_penguin_row)
3427
3428func_return console_put_penguin
3429
3430/* include penguin bitmap */
3431L(that_penguin):
3432#include "../mac/mac_penguin.S"
3433#endif
3434
3435 /*
3436 * Calculate source and destination addresses
3437 * output a1 = dest
3438 * a2 = source
3439 */
3440
3441func_start console_scroll,%a0-%a4/%d0-%d7
3442 lea %pc@(L(mac_videobase)),%a0
3443 movel %a0@,%a1
3444 movel %a1,%a2
3445 lea %pc@(L(mac_rowbytes)),%a0
3446 movel %a0@,%d5
3447 movel %pc@(L(console_font)),%a0
3448 tstl %a0
3449 jeq 1f
3450 mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */
3451 addal %d5,%a2
3452
3453 /*
3454 * Get dimensions
3455 */
3456 lea %pc@(L(mac_dimensions)),%a0
3457 movel %a0@,%d3
3458 movel %d3,%d4
3459 swap %d4
3460 andl #0xffff,%d3 /* d3 = screen width in pixels */
3461 andl #0xffff,%d4 /* d4 = screen height in pixels */
3462
3463 /*
3464 * Calculate number of bytes to move
3465 */
3466 lea %pc@(L(mac_rowbytes)),%a0
3467 movel %a0@,%d6
3468 movel %pc@(L(console_font)),%a0
3469 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */
3470 mulul %d4,%d6 /* scan line bytes x num scan lines */
3471 divul #32,%d6 /* we'll move 8 longs at a time */
3472 subq #1,%d6
3473
3474L(console_scroll_loop):
3475 movel %a2@+,%a1@+
3476 movel %a2@+,%a1@+
3477 movel %a2@+,%a1@+
3478 movel %a2@+,%a1@+
3479 movel %a2@+,%a1@+
3480 movel %a2@+,%a1@+
3481 movel %a2@+,%a1@+
3482 movel %a2@+,%a1@+
3483 dbra %d6,L(console_scroll_loop)
3484
3485 lea %pc@(L(mac_rowbytes)),%a0
3486 movel %a0@,%d6
3487 movel %pc@(L(console_font)),%a0
3488 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */
3489 divul #32,%d6 /* we'll move 8 words at a time */
3490 subq #1,%d6
3491
3492 moveq #-1,%d0
3493L(console_scroll_clear_loop):
3494 movel %d0,%a1@+
3495 movel %d0,%a1@+
3496 movel %d0,%a1@+
3497 movel %d0,%a1@+
3498 movel %d0,%a1@+
3499 movel %d0,%a1@+
3500 movel %d0,%a1@+
3501 movel %d0,%a1@+
3502 dbra %d6,L(console_scroll_clear_loop)
3503
35041:
3505func_return console_scroll
3506
3507
3508func_start console_putc,%a0/%a1/%d0-%d7
3509
3510 is_not_mac(L(console_exit))
3511 tstl %pc@(L(console_font))
3512 jeq L(console_exit)
3513
3514 /* Output character in d7 on console.
3515 */
3516 movel ARG1,%d7
3517 cmpib #'\n',%d7
3518 jbne 1f
3519
3520 /* A little safe recursion is good for the soul */
3521 console_putc #'\r'
35221:
3523 lea %pc@(L(console_globals)),%a0
3524
3525 cmpib #10,%d7
3526 jne L(console_not_lf)
3527 movel %a0@(Lconsole_struct_cur_row),%d0
3528 addil #1,%d0
3529 movel %d0,%a0@(Lconsole_struct_cur_row)
3530 movel %a0@(Lconsole_struct_num_rows),%d1
3531 cmpl %d1,%d0
3532 jcs 1f
3533 subil #1,%d0
3534 movel %d0,%a0@(Lconsole_struct_cur_row)
3535 console_scroll
35361:
3537 jra L(console_exit)
3538
3539L(console_not_lf):
3540 cmpib #13,%d7
3541 jne L(console_not_cr)
3542 clrl %a0@(Lconsole_struct_cur_column)
3543 jra L(console_exit)
3544
3545L(console_not_cr):
3546 cmpib #1,%d7
3547 jne L(console_not_home)
3548 clrl %a0@(Lconsole_struct_cur_row)
3549 clrl %a0@(Lconsole_struct_cur_column)
3550 jra L(console_exit)
3551
3552/*
3553 * At this point we know that the %d7 character is going to be
3554 * rendered on the screen. Register usage is -
3555 * a0 = pointer to console globals
3556 * a1 = font data
3557 * d0 = cursor column
3558 * d1 = cursor row to draw the character
3559 * d7 = character number
3560 */
3561L(console_not_home):
3562 movel %a0@(Lconsole_struct_cur_column),%d0
3563 addql #1,%a0@(Lconsole_struct_cur_column)
3564 movel %a0@(Lconsole_struct_num_columns),%d1
3565 cmpl %d1,%d0
3566 jcs 1f
3567 console_putc #'\n' /* recursion is OK! */
35681:
3569 movel %a0@(Lconsole_struct_cur_row),%d1
3570
3571 /*
3572 * At this point we make a shift in register usage
3573 * a0 = address of pointer to font data (fbcon_font_desc)
3574 */
3575 movel %pc@(L(console_font)),%a0
3576 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */
3577 andl #0x000000ff,%d7
3578 /* ASSERT: a0 = contents of Lconsole_font */
3579 mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */
3580 addl %d7,%a1 /* a1 = points to char image */
3581
3582 /*
3583 * At this point we make a shift in register usage
3584 * d0 = pixel coordinate, x
3585 * d1 = pixel coordinate, y
3586 * d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3587 * d3 = font scan line data (8 pixels)
3588 * d6 = count down for the font's pixel width (8)
3589 * d7 = count down for the font's pixel count in height
3590 */
3591 /* ASSERT: a0 = contents of Lconsole_font */
3592 mulul %a0@(FONT_DESC_WIDTH),%d0
3593 mulul %a0@(FONT_DESC_HEIGHT),%d1
3594 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */
3595 subq #1,%d7
3596L(console_read_char_scanline):
3597 moveb %a1@+,%d3
3598
3599 /* ASSERT: a0 = contents of Lconsole_font */
3600 movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */
3601 subql #1,%d6
3602
3603L(console_do_font_scanline):
3604 lslb #1,%d3
3605 scsb %d2 /* convert 1 bit into a byte */
3606 console_plot_pixel %d0,%d1,%d2
3607 addq #1,%d0
3608 dbra %d6,L(console_do_font_scanline)
3609
3610 /* ASSERT: a0 = contents of Lconsole_font */
3611 subl %a0@(FONT_DESC_WIDTH),%d0
3612 addq #1,%d1
3613 dbra %d7,L(console_read_char_scanline)
3614
3615L(console_exit):
3616func_return console_putc
3617
3618 /*
3619 * Input:
3620 * d0 = x coordinate
3621 * d1 = y coordinate
3622 * d2 = (bit 0) 1/0 for white/black (!)
3623 * All registers are preserved
3624 */
3625func_start console_plot_pixel,%a0-%a1/%d0-%d4
3626
3627 movel %pc@(L(mac_videobase)),%a1
3628 movel %pc@(L(mac_videodepth)),%d3
3629 movel ARG1,%d0
3630 movel ARG2,%d1
3631 mulul %pc@(L(mac_rowbytes)),%d1
3632 movel ARG3,%d2
3633
3634 /*
3635 * Register usage:
3636 * d0 = x coord becomes byte offset into frame buffer
3637 * d1 = y coord
3638 * d2 = black or white (0/1)
3639 * d3 = video depth
3640 * d4 = temp of x (d0) for many bit depths
3641 */
3642L(test_1bit):
3643 cmpb #1,%d3
3644 jbne L(test_2bit)
3645 movel %d0,%d4 /* we need the low order 3 bits! */
3646 divul #8,%d0
3647 addal %d0,%a1
3648 addal %d1,%a1
3649 andb #7,%d4
3650 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */
3651 andb #1,%d2
3652 jbne L(white_1)
3653 bsetb %d4,%a1@
3654 jbra L(console_plot_pixel_exit)
3655L(white_1):
3656 bclrb %d4,%a1@
3657 jbra L(console_plot_pixel_exit)
3658
3659L(test_2bit):
3660 cmpb #2,%d3
3661 jbne L(test_4bit)
3662 movel %d0,%d4 /* we need the low order 2 bits! */
3663 divul #4,%d0
3664 addal %d0,%a1
3665 addal %d1,%a1
3666 andb #3,%d4
3667 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */
3668 lsll #1,%d4 /* ! */
3669 andb #1,%d2
3670 jbne L(white_2)
3671 bsetb %d4,%a1@
3672 addq #1,%d4
3673 bsetb %d4,%a1@
3674 jbra L(console_plot_pixel_exit)
3675L(white_2):
3676 bclrb %d4,%a1@
3677 addq #1,%d4
3678 bclrb %d4,%a1@
3679 jbra L(console_plot_pixel_exit)
3680
3681L(test_4bit):
3682 cmpb #4,%d3
3683 jbne L(test_8bit)
3684 movel %d0,%d4 /* we need the low order bit! */
3685 divul #2,%d0
3686 addal %d0,%a1
3687 addal %d1,%a1
3688 andb #1,%d4
3689 eorb #1,%d4
3690 lsll #2,%d4 /* ! */
3691 andb #1,%d2
3692 jbne L(white_4)
3693 bsetb %d4,%a1@
3694 addq #1,%d4
3695 bsetb %d4,%a1@
3696 addq #1,%d4
3697 bsetb %d4,%a1@
3698 addq #1,%d4
3699 bsetb %d4,%a1@
3700 jbra L(console_plot_pixel_exit)
3701L(white_4):
3702 bclrb %d4,%a1@
3703 addq #1,%d4
3704 bclrb %d4,%a1@
3705 addq #1,%d4
3706 bclrb %d4,%a1@
3707 addq #1,%d4
3708 bclrb %d4,%a1@
3709 jbra L(console_plot_pixel_exit)
3710
3711L(test_8bit):
3712 cmpb #8,%d3
3713 jbne L(test_16bit)
3714 addal %d0,%a1
3715 addal %d1,%a1
3716 andb #1,%d2
3717 jbne L(white_8)
3718 moveb #0xff,%a1@
3719 jbra L(console_plot_pixel_exit)
3720L(white_8):
3721 clrb %a1@
3722 jbra L(console_plot_pixel_exit)
3723
3724L(test_16bit):
3725 cmpb #16,%d3
3726 jbne L(console_plot_pixel_exit)
3727 addal %d0,%a1
3728 addal %d0,%a1
3729 addal %d1,%a1
3730 andb #1,%d2
3731 jbne L(white_16)
3732 clrw %a1@
3733 jbra L(console_plot_pixel_exit)
3734L(white_16):
3735 movew #0x0fff,%a1@
3736 jbra L(console_plot_pixel_exit)
3737
3738L(console_plot_pixel_exit):
3739func_return console_plot_pixel
3740#endif /* CONSOLE_DEBUG */
3741
3742
3743__INITDATA
3744 .align 4
3745
3746m68k_init_mapped_size:
3747 .long 0
3748
3749#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3750 defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3751L(custom):
3752L(iobase):
3753 .long 0
3754#endif
3755
3756#ifdef CONSOLE_DEBUG
3757L(console_globals):
3758 .long 0 /* cursor column */
3759 .long 0 /* cursor row */
3760 .long 0 /* max num columns */
3761 .long 0 /* max num rows */
3762 .long 0 /* left edge */
3763L(console_font):
3764 .long 0 /* pointer to console font (struct font_desc) */
3765L(console_font_data):
3766 .long 0 /* pointer to console font data */
3767#endif /* CONSOLE_DEBUG */
3768
3769#if defined(MMU_PRINT)
3770L(mmu_print_data):
3771 .long 0 /* valid flag */
3772 .long 0 /* start logical */
3773 .long 0 /* next logical */
3774 .long 0 /* start physical */
3775 .long 0 /* next physical */
3776#endif /* MMU_PRINT */
3777
3778L(cputype):
3779 .long 0
3780L(mmu_cached_pointer_tables):
3781 .long 0
3782L(mmu_num_pointer_tables):
3783 .long 0
3784L(phys_kernel_start):
3785 .long 0
3786L(kernel_end):
3787 .long 0
3788L(memory_start):
3789 .long 0
3790L(kernel_pgdir_ptr):
3791 .long 0
3792L(temp_mmap_mem):
3793 .long 0
3794
3795#if defined (CONFIG_MVME147)
3796M147_SCC_CTRL_A = 0xfffe3002
3797M147_SCC_DATA_A = 0xfffe3003
3798#endif
3799
3800#if defined (CONFIG_MVME16x)
3801M162_SCC_CTRL_A = 0xfff45005
3802M167_CYCAR = 0xfff450ee
3803M167_CYIER = 0xfff45011
3804M167_CYLICR = 0xfff45026
3805M167_CYTEOIR = 0xfff45085
3806M167_CYTDR = 0xfff450f8
3807M167_PCSCCMICR = 0xfff4201d
3808M167_PCSCCTICR = 0xfff4201e
3809M167_PCSCCRICR = 0xfff4201f
3810M167_PCTPIACKR = 0xfff42025
3811#endif
3812
3813#if defined (CONFIG_BVME6000)
3814BVME_SCC_CTRL_A = 0xffb0000b
3815BVME_SCC_DATA_A = 0xffb0000f
3816#endif
3817
3818#if defined(CONFIG_MAC)
3819L(mac_videobase):
3820 .long 0
3821L(mac_videodepth):
3822 .long 0
3823L(mac_dimensions):
3824 .long 0
3825L(mac_rowbytes):
3826 .long 0
3827L(mac_sccbase):
3828 .long 0
3829#endif /* CONFIG_MAC */
3830
3831#if defined (CONFIG_APOLLO)
3832LSRB0 = 0x10412
3833LTHRB0 = 0x10416
3834LCPUCTRL = 0x10100
3835#endif
3836
3837#if defined(CONFIG_HP300)
3838DCADATA = 0x11
3839DCALSR = 0x1b
3840APCIDATA = 0x00
3841APCILSR = 0x14
3842L(uartbase):
3843 .long 0
3844L(uart_scode):
3845 .long -1
3846#endif
3847
3848__FINIT
3849 .data
3850 .align 4
3851
3852availmem:
3853 .long 0
3854m68k_pgtable_cachemode:
3855 .long 0
3856m68k_supervisor_cachemode:
3857 .long 0
3858#if defined(CONFIG_MVME16x)
3859mvme_bdid:
3860 .long 0,0,0,0,0,0,0,0
3861#endif
3862#if defined(CONFIG_Q40)
3863q40_mem_cptr:
3864 .long 0
3865L(q40_do_debug):
3866 .long 0
3867#endif