Linux Audio

Check our new training course

Loading...
v6.8
   1/* SPDX-License-Identifier: GPL-2.0-or-later
   2** -*- mode: asm -*-
   3**
   4** head.S -- This file contains the initial boot code for the
   5**	     Linux/68k kernel.
   6**
   7** Copyright 1993 by Hamish Macdonald
   8**
   9** 68040 fixes by Michael Rausch
  10** 68060 fixes by Roman Hodek
  11** MMU cleanup by Randy Thelen
  12** Final MMU cleanup by Roman Zippel
  13**
  14** Atari support by Andreas Schwab, using ideas of Robert de Vries
  15** and Bjoern Brauel
  16** VME Support by Richard Hirst
  17**
  18** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
  19** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
  20** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
  21** 95/11/18 Richard Hirst: Added MVME166 support
  22** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
  23**			      Magnum- and FX-alternate ram
  24** 98/04/25 Phil Blundell: added HP300 support
  25** 1998/08/30 David Kilzer: Added support for font_desc structures
  26**            for linux-2.1.115
  27** 1999/02/11  Richard Zidlicky: added Q40 support (initial version 99/01/01)
  28** 2004/05/13 Kars de Jong: Finalised HP300 support
 
 
 
 
 
  29*/
  30
  31/*
  32 * Linux startup code.
  33 *
  34 * At this point, the boot loader has:
  35 * Disabled interrupts
  36 * Disabled caches
  37 * Put us in supervisor state.
  38 *
  39 * The kernel setup code takes the following steps:
  40 * .  Raise interrupt level
  41 * .  Set up initial kernel memory mapping.
  42 *    .  This sets up a mapping of the 4M of memory the kernel is located in.
  43 *    .  It also does a mapping of any initial machine specific areas.
  44 * .  Enable the MMU
  45 * .  Enable cache memories
  46 * .  Jump to kernel startup
  47 *
  48 * Much of the file restructuring was to accomplish:
  49 * 1) Remove register dependency through-out the file.
  50 * 2) Increase use of subroutines to perform functions
  51 * 3) Increase readability of the code
  52 *
  53 * Of course, readability is a subjective issue, so it will never be
  54 * argued that that goal was accomplished.  It was merely a goal.
  55 * A key way to help make code more readable is to give good
  56 * documentation.  So, the first thing you will find is exhaustive
  57 * write-ups on the structure of the file, and the features of the
  58 * functional subroutines.
  59 *
  60 * General Structure:
  61 * ------------------
  62 *	Without a doubt the single largest chunk of head.S is spent
  63 * mapping the kernel and I/O physical space into the logical range
  64 * for the kernel.
  65 *	There are new subroutines and data structures to make MMU
  66 * support cleaner and easier to understand.
  67 *	First, you will find a routine call "mmu_map" which maps
  68 * a logical to a physical region for some length given a cache
  69 * type on behalf of the caller.  This routine makes writing the
  70 * actual per-machine specific code very simple.
  71 *	A central part of the code, but not a subroutine in itself,
  72 * is the mmu_init code which is broken down into mapping the kernel
  73 * (the same for all machines) and mapping machine-specific I/O
  74 * regions.
  75 *	Also, there will be a description of engaging the MMU and
  76 * caches.
  77 *	You will notice that there is a chunk of code which
  78 * can emit the entire MMU mapping of the machine.  This is present
  79 * only in debug modes and can be very helpful.
  80 *	Further, there is a new console driver in head.S that is
  81 * also only engaged in debug mode.  Currently, it's only supported
  82 * on the Macintosh class of machines.  However, it is hoped that
  83 * others will plug-in support for specific machines.
  84 *
  85 * ######################################################################
  86 *
  87 * mmu_map
  88 * -------
  89 *	mmu_map was written for two key reasons.  First, it was clear
  90 * that it was very difficult to read the previous code for mapping
  91 * regions of memory.  Second, the Macintosh required such extensive
  92 * memory allocations that it didn't make sense to propagate the
  93 * existing code any further.
  94 *	mmu_map requires some parameters:
  95 *
  96 *	mmu_map (logical, physical, length, cache_type)
  97 *
  98 *	While this essentially describes the function in the abstract, you'll
  99 * find more indepth description of other parameters at the implementation site.
 100 *
 101 * mmu_get_root_table_entry
 102 * ------------------------
 103 * mmu_get_ptr_table_entry
 104 * -----------------------
 105 * mmu_get_page_table_entry
 106 * ------------------------
 107 *
 108 *	These routines are used by other mmu routines to get a pointer into
 109 * a table, if necessary a new table is allocated. These routines are working
 110 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
 111 * table needs of course only to be allocated once in mmu_get_root_table_entry,
 112 * so that here also some mmu specific initialization is done. The second page
 113 * at the start of the kernel (the first page is unmapped later) is used for
 114 * the kernel_pg_dir. It must be at a position known at link time (as it's used
 115 * to initialize the init task struct) and since it needs special cache
 116 * settings, it's the easiest to use this page, the rest of the page is used
 117 * for further pointer tables.
 118 * mmu_get_page_table_entry allocates always a whole page for page tables, this
 119 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
 120 * to manage page tables in smaller pieces as nearly all mappings have that
 121 * size.
 122 *
 123 * ######################################################################
 124 *
 125 *
 126 * ######################################################################
 127 *
 128 * mmu_engage
 129 * ----------
 130 *	Thanks to a small helping routine enabling the mmu got quite simple
 131 * and there is only one way left. mmu_engage makes a complete a new mapping
 132 * that only includes the absolute necessary to be able to jump to the final
 133 * position and to restore the original mapping.
 134 * As this code doesn't need a transparent translation register anymore this
 135 * means all registers are free to be used by machines that needs them for
 136 * other purposes.
 137 *
 138 * ######################################################################
 139 *
 140 * mmu_print
 141 * ---------
 142 *	This algorithm will print out the page tables of the system as
 143 * appropriate for an 030 or an 040.  This is useful for debugging purposes
 144 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
 145 *
 146 * ######################################################################
 147 *
 148 * console_init
 149 * ------------
 150 *	The console is also able to be turned off.  The console in head.S
 151 * is specifically for debugging and can be very useful.  It is surrounded by
 152 * #ifdef / #endif clauses so it doesn't have to ship in known-good
 153 * kernels.  It's basic algorithm is to determine the size of the screen
 154 * (in height/width and bit depth) and then use that information for
 155 * displaying an 8x8 font or an 8x16 (widthxheight).  I prefer the 8x8 for
 156 * debugging so I can see more good data.  But it was trivial to add support
 157 * for both fonts, so I included it.
 158 *	Also, the algorithm for plotting pixels is abstracted so that in
 159 * theory other platforms could add support for different kinds of frame
 160 * buffers.  This could be very useful.
 161 *
 162 * console_put_penguin
 163 * -------------------
 164 *	An important part of any Linux bring up is the penguin and there's
 165 * nothing like getting the Penguin on the screen!  This algorithm will work
 166 * on any machine for which there is a console_plot_pixel.
 167 *
 168 * console_scroll
 169 * --------------
 170 *	My hope is that the scroll algorithm does the right thing on the
 171 * various platforms, but it wouldn't be hard to add the test conditions
 172 * and new code if it doesn't.
 173 *
 174 * console_putc
 175 * -------------
 176 *
 177 * ######################################################################
 178 *
 179 *	Register usage has greatly simplified within head.S. Every subroutine
 180 * saves and restores all registers that it modifies (except it returns a
 181 * value in there of course). So the only register that needs to be initialized
 182 * is the stack pointer.
 183 * All other init code and data is now placed in the init section, so it will
 184 * be automatically freed at the end of the kernel initialization.
 185 *
 186 * ######################################################################
 187 *
 188 * options
 189 * -------
 190 *	There are many options available in a build of this file.  I've
 191 * taken the time to describe them here to save you the time of searching
 192 * for them and trying to understand what they mean.
 193 *
 194 * CONFIG_xxx:	These are the obvious machine configuration defines created
 195 * during configuration.  These are defined in autoconf.h.
 196 *
 197 * CONSOLE_DEBUG:  Only supports a Mac frame buffer but could easily be
 198 * extended to support other platforms.
 
 199 *
 200 * TEST_MMU:	This is a test harness for running on any given machine but
 201 * getting an MMU dump for another class of machine.  The classes of machines
 202 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
 203 * and any of the models (030, 040, 060, etc.).
 204 *
 205 *	NOTE:	TEST_MMU is NOT permanent!  It is scheduled to be removed
 206 *		When head.S boots on Atari, Amiga, Macintosh, and VME
 207 *		machines.  At that point the underlying logic will be
 208 *		believed to be solid enough to be trusted, and TEST_MMU
 209 *		can be dropped.  Do note that that will clean up the
 210 *		head.S code significantly as large blocks of #if/#else
 211 *		clauses can be removed.
 212 *
 213 * MMU_NOCACHE_KERNEL:	On the Macintosh platform there was an inquiry into
 214 * determing why devices don't appear to work.  A test case was to remove
 215 * the cacheability of the kernel bits.
 216 *
 217 * MMU_PRINT:	There is a routine built into head.S that can display the
 218 * MMU data structures.  It outputs its result through the serial_putc
 219 * interface.  So where ever that winds up driving data, that's where the
 220 * mmu struct will appear.
 221 *
 222 * SERIAL_DEBUG:	There are a series of putc() macro statements
 223 * scattered through out the code to give progress of status to the
 224 * person sitting at the console.  This constant determines whether those
 225 * are used.
 226 *
 227 * DEBUG:	This is the standard DEBUG flag that can be set for building
 228 *		the kernel.  It has the effect adding additional tests into
 229 *		the code.
 230 *
 231 * FONT_6x11:
 232 * FONT_8x8:
 233 * FONT_8x16:
 234 *		In theory these could be determined at run time or handed
 235 *		over by the booter.  But, let's be real, it's a fine hard
 236 *		coded value.  (But, you will notice the code is run-time
 237 *		flexible!)  A pointer to the font's struct font_desc
 238 *		is kept locally in Lconsole_font.  It is used to determine
 239 *		font size information dynamically.
 240 *
 241 * Atari constants:
 242 * USE_PRINTER:	Use the printer port for serial debug.
 243 * USE_SCC_B:	Use the SCC port A (Serial2) for serial debug.
 244 * USE_SCC_A:	Use the SCC port B (Modem2) for serial debug.
 245 * USE_MFP:	Use the ST-MFP port (Modem1) for serial debug.
 246 *
 247 * Macintosh constants:
 248 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug.
 249 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug.
 
 250 */
 251
 252#include <linux/linkage.h>
 253#include <linux/init.h>
 254#include <linux/pgtable.h>
 255#include <asm/bootinfo.h>
 256#include <asm/bootinfo-amiga.h>
 257#include <asm/bootinfo-atari.h>
 258#include <asm/bootinfo-hp300.h>
 259#include <asm/bootinfo-mac.h>
 260#include <asm/bootinfo-q40.h>
 261#include <asm/bootinfo-virt.h>
 262#include <asm/bootinfo-vme.h>
 263#include <asm/setup.h>
 264#include <asm/entry.h>
 
 265#include <asm/page.h>
 266#include <asm/asm-offsets.h>
 
 267#ifdef CONFIG_MAC
 268#  include <asm/machw.h>
 269#endif
 270
 271#ifdef CONFIG_EARLY_PRINTK
 272#  define SERIAL_DEBUG
 273#  if defined(CONFIG_MAC) && defined(CONFIG_FONT_SUPPORT)
 274#    define CONSOLE_DEBUG
 275#  endif
 
 
 
 
 276#endif
 277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278#undef MMU_PRINT
 279#undef MMU_NOCACHE_KERNEL
 
 280#undef DEBUG
 281
 282/*
 283 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
 284 * The 8x8 font is harder to read but fits more on the screen.
 285 */
 286#define FONT_8x8	/* default */
 287/* #define FONT_8x16 */	/* 2nd choice */
 288/* #define FONT_6x11 */	/* 3rd choice */
 289
 290.globl kernel_pg_dir
 291.globl availmem
 292.globl m68k_init_mapped_size
 293.globl m68k_pgtable_cachemode
 294.globl m68k_supervisor_cachemode
 295#ifdef CONFIG_MVME16x
 296.globl mvme_bdid
 297#endif
 298#ifdef CONFIG_Q40
 299.globl q40_mem_cptr
 300#endif
 301
 302CPUTYPE_040	= 1	/* indicates an 040 */
 303CPUTYPE_060	= 2	/* indicates an 060 */
 304CPUTYPE_0460	= 3	/* if either above are set, this is set */
 305CPUTYPE_020	= 4	/* indicates an 020 */
 306
 307/* Translation control register */
 308TC_ENABLE = 0x8000
 309TC_PAGE8K = 0x4000
 310TC_PAGE4K = 0x0000
 311
 312/* Transparent translation registers */
 313TTR_ENABLE	= 0x8000	/* enable transparent translation */
 314TTR_ANYMODE	= 0x4000	/* user and kernel mode access */
 315TTR_KERNELMODE	= 0x2000	/* only kernel mode access */
 316TTR_USERMODE	= 0x0000	/* only user mode access */
 317TTR_CI		= 0x0400	/* inhibit cache */
 318TTR_RW		= 0x0200	/* read/write mode */
 319TTR_RWM		= 0x0100	/* read/write mask */
 320TTR_FCB2	= 0x0040	/* function code base bit 2 */
 321TTR_FCB1	= 0x0020	/* function code base bit 1 */
 322TTR_FCB0	= 0x0010	/* function code base bit 0 */
 323TTR_FCM2	= 0x0004	/* function code mask bit 2 */
 324TTR_FCM1	= 0x0002	/* function code mask bit 1 */
 325TTR_FCM0	= 0x0001	/* function code mask bit 0 */
 326
 327/* Cache Control registers */
 328CC6_ENABLE_D	= 0x80000000	/* enable data cache (680[46]0) */
 329CC6_FREEZE_D	= 0x40000000	/* freeze data cache (68060) */
 330CC6_ENABLE_SB	= 0x20000000	/* enable store buffer (68060) */
 331CC6_PUSH_DPI	= 0x10000000	/* disable CPUSH invalidation (68060) */
 332CC6_HALF_D	= 0x08000000	/* half-cache mode for data cache (68060) */
 333CC6_ENABLE_B	= 0x00800000	/* enable branch cache (68060) */
 334CC6_CLRA_B	= 0x00400000	/* clear all entries in branch cache (68060) */
 335CC6_CLRU_B	= 0x00200000	/* clear user entries in branch cache (68060) */
 336CC6_ENABLE_I	= 0x00008000	/* enable instruction cache (680[46]0) */
 337CC6_FREEZE_I	= 0x00004000	/* freeze instruction cache (68060) */
 338CC6_HALF_I	= 0x00002000	/* half-cache mode for instruction cache (68060) */
 339CC3_ALLOC_WRITE	= 0x00002000	/* write allocate mode(68030) */
 340CC3_ENABLE_DB	= 0x00001000	/* enable data burst (68030) */
 341CC3_CLR_D	= 0x00000800	/* clear data cache (68030) */
 342CC3_CLRE_D	= 0x00000400	/* clear entry in data cache (68030) */
 343CC3_FREEZE_D	= 0x00000200	/* freeze data cache (68030) */
 344CC3_ENABLE_D	= 0x00000100	/* enable data cache (68030) */
 345CC3_ENABLE_IB	= 0x00000010	/* enable instruction burst (68030) */
 346CC3_CLR_I	= 0x00000008	/* clear instruction cache (68030) */
 347CC3_CLRE_I	= 0x00000004	/* clear entry in instruction cache (68030) */
 348CC3_FREEZE_I	= 0x00000002	/* freeze instruction cache (68030) */
 349CC3_ENABLE_I	= 0x00000001	/* enable instruction cache (68030) */
 350
 351/* Miscellaneous definitions */
 352PAGESIZE	= 4096
 353PAGESHIFT	= 12
 354
 355ROOT_TABLE_SIZE	= 128
 356PTR_TABLE_SIZE	= 128
 357PAGE_TABLE_SIZE	= 64
 358ROOT_INDEX_SHIFT = 25
 359PTR_INDEX_SHIFT  = 18
 360PAGE_INDEX_SHIFT = 12
 361
 362#ifdef DEBUG
 363/* When debugging use readable names for labels */
 364#ifdef __STDC__
 365#define L(name) .head.S.##name
 366#else
 367#define L(name) .head.S./**/name
 368#endif
 369#else
 370#ifdef __STDC__
 371#define L(name) .L##name
 372#else
 373#define L(name) .L/**/name
 374#endif
 375#endif
 376
 377/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
 378#ifndef __INITDATA
 379#define __INITDATA	.data
 380#define __FINIT		.previous
 381#endif
 382
 383/* Several macros to make the writing of subroutines easier:
 384 * - func_start marks the beginning of the routine which setups the frame
 385 *   register and saves the registers, it also defines another macro
 386 *   to automatically restore the registers again.
 387 * - func_return marks the end of the routine and simply calls the prepared
 388 *   macro to restore registers and jump back to the caller.
 389 * - func_define generates another macro to automatically put arguments
 390 *   onto the stack call the subroutine and cleanup the stack again.
 391 */
 392
 393/* Within subroutines these macros can be used to access the arguments
 394 * on the stack. With STACK some allocated memory on the stack can be
 395 * accessed and ARG0 points to the return address (used by mmu_engage).
 396 */
 397#define	STACK	%a6@(stackstart)
 398#define ARG0	%a6@(4)
 399#define ARG1	%a6@(8)
 400#define ARG2	%a6@(12)
 401#define ARG3	%a6@(16)
 402#define ARG4	%a6@(20)
 403
 404.macro	func_start	name,saveregs,stack=0
 405L(\name):
 406	linkw	%a6,#-\stack
 407	moveml	\saveregs,%sp@-
 408.set	stackstart,-\stack
 409
 410.macro	func_return_\name
 411	moveml	%sp@+,\saveregs
 412	unlk	%a6
 413	rts
 414.endm
 415.endm
 416
 417.macro	func_return	name
 418	func_return_\name
 419.endm
 420
 421.macro	func_call	name
 422	jbsr	L(\name)
 423.endm
 424
 425.macro	move_stack	nr,arg1,arg2,arg3,arg4
 426.if	\nr
 427	move_stack	"(\nr-1)",\arg2,\arg3,\arg4
 428	movel	\arg1,%sp@-
 429.endif
 430.endm
 431
 432.macro	func_define	name,nr=0
 433.macro	\name	arg1,arg2,arg3,arg4
 434	move_stack	\nr,\arg1,\arg2,\arg3,\arg4
 435	func_call	\name
 436.if	\nr
 437	lea	%sp@(\nr*4),%sp
 438.endif
 439.endm
 440.endm
 441
 442func_define	mmu_map,4
 443func_define	mmu_map_tt,4
 444func_define	mmu_fixup_page_mmu_cache,1
 445func_define	mmu_temp_map,2
 446func_define	mmu_engage
 447func_define	mmu_get_root_table_entry,1
 448func_define	mmu_get_ptr_table_entry,2
 449func_define	mmu_get_page_table_entry,2
 450func_define	mmu_print
 451func_define	get_new_page
 452#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
 453func_define	set_leds
 454#endif
 455
 456.macro	mmu_map_eq	arg1,arg2,arg3
 457	mmu_map	\arg1,\arg1,\arg2,\arg3
 458.endm
 459
 460.macro	get_bi_record	record
 461	pea	\record
 462	func_call	get_bi_record
 463	addql	#4,%sp
 464.endm
 465
 466func_define	serial_putc,1
 467func_define	console_putc,1
 468
 469func_define	console_init
 
 470func_define	console_put_penguin
 471func_define	console_plot_pixel,3
 472func_define	console_scroll
 473
 474.macro	putc	ch
 475#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
 476	pea	\ch
 477#endif
 478#ifdef CONSOLE_DEBUG
 479	func_call	console_putc
 480#endif
 481#ifdef SERIAL_DEBUG
 482	func_call	serial_putc
 483#endif
 484#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
 485	addql	#4,%sp
 486#endif
 487.endm
 488
 489.macro	dputc	ch
 490#ifdef DEBUG
 491	putc	\ch
 492#endif
 493.endm
 494
 495func_define	putn,1
 496
 497.macro	dputn	nr
 498#ifdef DEBUG
 499	putn	\nr
 500#endif
 501.endm
 502
 503.macro	puts		string
 504#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
 505	__INITDATA
 506.Lstr\@:
 507	.string	"\string"
 508	__FINIT
 509	pea	%pc@(.Lstr\@)
 510	func_call	puts
 511	addql	#4,%sp
 512#endif
 513.endm
 514
 515.macro	dputs	string
 516#ifdef DEBUG
 517	puts	"\string"
 518#endif
 519.endm
 520
 521#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
 522#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
 523#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
 524#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
 525#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
 526#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
 527#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
 528#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
 529#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
 530#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
 531#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
 532#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
 533#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
 534#define is_not_virt(lab) cmpl &MACH_VIRT,%pc@(m68k_machtype); jne lab
 535
 536#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
 537			jeq 42f; \
 538			cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
 539			jne lab ;\
 540		42:\
 541
 542#define is_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
 543#define is_not_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
 544#define is_040(lab)		btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
 545#define is_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
 546#define is_not_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
 547#define is_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
 548#define is_not_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
 549
 550/* On the HP300 we use the on-board LEDs for debug output before
 551   the console is running.  Writing a 1 bit turns the corresponding LED
 552   _off_ - on the 340 bit 7 is towards the back panel of the machine.  */
 553.macro	leds	mask
 554#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
 555	hasnt_leds(.Lled\@)
 556	pea	\mask
 557	func_call	set_leds
 558	addql	#4,%sp
 559.Lled\@:
 560#endif
 561.endm
 562
 563__HEAD
 564ENTRY(_stext)
 565/*
 566 * Version numbers of the bootinfo interface
 567 * The area from _stext to _start will later be used as kernel pointer table
 568 */
 569	bras	1f	/* Jump over bootinfo version numbers */
 570
 571	.long	BOOTINFOV_MAGIC
 572	.long	MACH_AMIGA, AMIGA_BOOTI_VERSION
 573	.long	MACH_ATARI, ATARI_BOOTI_VERSION
 574	.long	MACH_MVME147, MVME147_BOOTI_VERSION
 575	.long	MACH_MVME16x, MVME16x_BOOTI_VERSION
 576	.long	MACH_BVME6000, BVME6000_BOOTI_VERSION
 577	.long	MACH_MAC, MAC_BOOTI_VERSION
 578	.long	MACH_Q40, Q40_BOOTI_VERSION
 579	.long	MACH_HP300, HP300_BOOTI_VERSION
 580	.long	0
 5811:	jra	__start
 582
 583.equ	kernel_pg_dir,_stext
 584
 585.equ	.,_stext+PAGESIZE
 586
 587ENTRY(_start)
 588	jra	__start
 589__INIT
 590ENTRY(__start)
 591/*
 592 * Setup initial stack pointer
 593 */
 594	lea	%pc@(_stext),%sp
 595
 596/*
 597 * Record the CPU and machine type.
 598 */
 599	get_bi_record	BI_MACHTYPE
 600	lea	%pc@(m68k_machtype),%a1
 601	movel	%a0@,%a1@
 602
 603	get_bi_record	BI_FPUTYPE
 604	lea	%pc@(m68k_fputype),%a1
 605	movel	%a0@,%a1@
 606
 607	get_bi_record	BI_MMUTYPE
 608	lea	%pc@(m68k_mmutype),%a1
 609	movel	%a0@,%a1@
 610
 611	get_bi_record	BI_CPUTYPE
 612	lea	%pc@(m68k_cputype),%a1
 613	movel	%a0@,%a1@
 614
 615	leds	0x1
 616
 617#ifdef CONFIG_MAC
 618/*
 619 * For Macintosh, we need to determine the display parameters early (at least
 620 * while debugging it).
 621 */
 622
 623	is_not_mac(L(test_notmac))
 624
 625	get_bi_record	BI_MAC_VADDR
 626	lea	%pc@(L(mac_videobase)),%a1
 627	movel	%a0@,%a1@
 628
 629	get_bi_record	BI_MAC_VDEPTH
 630	lea	%pc@(L(mac_videodepth)),%a1
 631	movel	%a0@,%a1@
 632
 633	get_bi_record	BI_MAC_VDIM
 634	lea	%pc@(L(mac_dimensions)),%a1
 635	movel	%a0@,%a1@
 636
 637	get_bi_record	BI_MAC_VROW
 638	lea	%pc@(L(mac_rowbytes)),%a1
 639	movel	%a0@,%a1@
 640
 
 641	get_bi_record	BI_MAC_SCCBASE
 642	lea	%pc@(L(mac_sccbase)),%a1
 643	movel	%a0@,%a1@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644
 645L(test_notmac):
 646#endif /* CONFIG_MAC */
 647
 648#ifdef CONFIG_VIRT
 649	is_not_virt(L(test_notvirt))
 650
 651	get_bi_record BI_VIRT_GF_TTY_BASE
 652	lea	%pc@(L(virt_gf_tty_base)),%a1
 653	movel	%a0@,%a1@
 654L(test_notvirt):
 655#endif /* CONFIG_VIRT */
 656
 657/*
 658 * There are ultimately two pieces of information we want for all kinds of
 659 * processors CpuType and CacheBits.  The CPUTYPE was passed in from booter
 660 * and is converted here from a booter type definition to a separate bit
 661 * number which allows for the standard is_0x0 macro tests.
 662 */
 663	movel	%pc@(m68k_cputype),%d0
 664	/*
 665	 * Assume it's an 030
 666	 */
 667	clrl	%d1
 668
 669	/*
 670	 * Test the BootInfo cputype for 060
 671	 */
 672	btst	#CPUB_68060,%d0
 673	jeq	1f
 674	bset	#CPUTYPE_060,%d1
 675	bset	#CPUTYPE_0460,%d1
 676	jra	3f
 6771:
 678	/*
 679	 * Test the BootInfo cputype for 040
 680	 */
 681	btst	#CPUB_68040,%d0
 682	jeq	2f
 683	bset	#CPUTYPE_040,%d1
 684	bset	#CPUTYPE_0460,%d1
 685	jra	3f
 6862:
 687	/*
 688	 * Test the BootInfo cputype for 020
 689	 */
 690	btst	#CPUB_68020,%d0
 691	jeq	3f
 692	bset	#CPUTYPE_020,%d1
 693	jra	3f
 6943:
 695	/*
 696	 * Record the cpu type
 697	 */
 698	lea	%pc@(L(cputype)),%a0
 699	movel	%d1,%a0@
 700
 701	/*
 702	 * NOTE:
 703	 *
 704	 * Now the macros are valid:
 705	 *	is_040_or_060
 706	 *	is_not_040_or_060
 707	 *	is_040
 708	 *	is_060
 709	 *	is_not_060
 710	 */
 711
 712	/*
 713	 * Determine the cache mode for pages holding MMU tables
 714	 * and for supervisor mode, unused for '020 and '030
 715	 */
 716	clrl	%d0
 717	clrl	%d1
 718
 719	is_not_040_or_060(L(save_cachetype))
 720
 721	/*
 722	 * '040 or '060
 723	 * d1 := cacheable write-through
 724	 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
 725	 * but we have been using write-through since at least 2.0.29 so I
 726	 * guess it is OK.
 727	 */
 728#ifdef CONFIG_060_WRITETHROUGH
 729	/*
 730	 * If this is a 68060 board using drivers with cache coherency
 731	 * problems, then supervisor memory accesses need to be write-through
 732	 * also; otherwise, we want copyback.
 733	 */
 734
 735	is_not_060(1f)
 736	movel	#_PAGE_CACHE040W,%d0
 737	jra	L(save_cachetype)
 738#endif /* CONFIG_060_WRITETHROUGH */
 7391:
 740	movew	#_PAGE_CACHE040,%d0
 741
 742	movel	#_PAGE_CACHE040W,%d1
 743
 744L(save_cachetype):
 745	/* Save cache mode for supervisor mode and page tables
 746	 */
 747	lea	%pc@(m68k_supervisor_cachemode),%a0
 748	movel	%d0,%a0@
 749	lea	%pc@(m68k_pgtable_cachemode),%a0
 750	movel	%d1,%a0@
 751
 752/*
 753 * raise interrupt level
 754 */
 755	movew	#0x2700,%sr
 756
 757/*
 758   If running on an Atari, determine the I/O base of the
 759   serial port and test if we are running on a Medusa or Hades.
 760   This test is necessary here, because on the Hades the serial
 761   port is only accessible in the high I/O memory area.
 762
 763   The test whether it is a Medusa is done by writing to the byte at
 764   phys. 0x0. This should result in a bus error on all other machines.
 765
 766   ...should, but doesn't. The Afterburner040 for the Falcon has the
 767   same behaviour (0x0..0x7 are no ROM shadow). So we have to do
 768   another test to distinguish Medusa and AB040. This is a
 769   read attempt for 0x00ff82fe phys. that should bus error on a Falcon
 770   (+AB040), but is in the range where the Medusa always asserts DTACK.
 771
 772   The test for the Hades is done by reading address 0xb0000000. This
 773   should give a bus error on the Medusa.
 774 */
 775
 776#ifdef CONFIG_ATARI
 777	is_not_atari(L(notypetest))
 778
 779	/* get special machine type (Medusa/Hades/AB40) */
 780	moveq	#0,%d3 /* default if tag doesn't exist */
 781	get_bi_record	BI_ATARI_MCH_TYPE
 782	tstl	%d0
 783	jbmi	1f
 784	movel	%a0@,%d3
 785	lea	%pc@(atari_mch_type),%a0
 786	movel	%d3,%a0@
 7871:
 788	/* On the Hades, the iobase must be set up before opening the
 789	 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
 790	moveq	#0,%d0
 791	cmpl	#ATARI_MACH_HADES,%d3
 792	jbne	1f
 793	movel	#0xff000000,%d0		/* Hades I/O base addr: 0xff000000 */
 7941:	lea     %pc@(L(iobase)),%a0
 795	movel   %d0,%a0@
 796
 797L(notypetest):
 798#endif
 799
 800#ifdef CONFIG_VME
 801	is_mvme147(L(getvmetype))
 802	is_bvme6000(L(getvmetype))
 803	is_not_mvme16x(L(gvtdone))
 804
 805	/* See if the loader has specified the BI_VME_TYPE tag.  Recent
 806	 * versions of VMELILO and TFTPLILO do this.  We have to do this
 807	 * early so we know how to handle console output.  If the tag
 808	 * doesn't exist then we use the Bug for output on MVME16x.
 809	 */
 810L(getvmetype):
 811	get_bi_record	BI_VME_TYPE
 812	tstl	%d0
 813	jbmi	1f
 814	movel	%a0@,%d3
 815	lea	%pc@(vme_brdtype),%a0
 816	movel	%d3,%a0@
 8171:
 818#ifdef CONFIG_MVME16x
 819	is_not_mvme16x(L(gvtdone))
 820
 821	/* Need to get the BRD_ID info to differentiate between 162, 167,
 822	 * etc.  This is available as a BI_VME_BRDINFO tag with later
 823	 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
 824	 */
 825	get_bi_record	BI_VME_BRDINFO
 826	tstl	%d0
 827	jpl	1f
 828
 829	/* Get pointer to board ID data from Bug */
 830	movel	%d2,%sp@-
 831	trap	#15
 832	.word	0x70		/* trap 0x70 - .BRD_ID */
 833	movel	%sp@+,%a0
 8341:
 835	lea	%pc@(mvme_bdid),%a1
 836	/* Structure is 32 bytes long */
 837	movel	%a0@+,%a1@+
 838	movel	%a0@+,%a1@+
 839	movel	%a0@+,%a1@+
 840	movel	%a0@+,%a1@+
 841	movel	%a0@+,%a1@+
 842	movel	%a0@+,%a1@+
 843	movel	%a0@+,%a1@+
 844	movel	%a0@+,%a1@+
 845#endif
 846
 847L(gvtdone):
 848
 849#endif
 850
 851#ifdef CONFIG_HP300
 852	is_not_hp300(L(nothp))
 853
 854	/* Get the address of the UART for serial debugging */
 855	get_bi_record	BI_HP300_UART_ADDR
 856	tstl	%d0
 857	jbmi	1f
 858	movel	%a0@,%d3
 859	lea	%pc@(L(uartbase)),%a0
 860	movel	%d3,%a0@
 861	get_bi_record	BI_HP300_UART_SCODE
 862	tstl	%d0
 863	jbmi	1f
 864	movel	%a0@,%d3
 865	lea	%pc@(L(uart_scode)),%a0
 866	movel	%d3,%a0@
 8671:
 868L(nothp):
 869#endif
 870
 871/*
 872 * Initialize serial port
 873 */
 874	jbsr	L(serial_init)
 875
 876/*
 877 * Initialize console
 878 */
 879#ifdef CONFIG_MAC
 880	is_not_mac(L(nocon))
 881#  ifdef CONSOLE_DEBUG
 882	console_init
 883#    ifdef CONFIG_LOGO
 884	console_put_penguin
 885#    endif /* CONFIG_LOGO */
 886#  endif /* CONSOLE_DEBUG */
 
 887L(nocon):
 888#endif /* CONFIG_MAC */
 889
 890
 891	putc	'\n'
 892	putc	'A'
 893	leds	0x2
 894	dputn	%pc@(L(cputype))
 895	dputn	%pc@(m68k_supervisor_cachemode)
 896	dputn	%pc@(m68k_pgtable_cachemode)
 897	dputc	'\n'
 898
 899/*
 900 * Save physical start address of kernel
 901 */
 902	lea	%pc@(L(phys_kernel_start)),%a0
 903	lea	%pc@(_stext),%a1
 904	subl	#_stext,%a1
 905	addl	#PAGE_OFFSET,%a1
 906	movel	%a1,%a0@
 907
 908	putc	'B'
 909
 910	leds	0x4
 911
 912/*
 913 *	mmu_init
 914 *
 915 *	This block of code does what's necessary to map in the various kinds
 916 *	of machines for execution of Linux.
 917 *	First map the first 4, 8, or 16 MB of kernel code & data
 918 */
 919
 920	get_bi_record BI_MEMCHUNK
 921	movel	%a0@(4),%d0
 922	movel	#16*1024*1024,%d1
 923	cmpl	%d0,%d1
 924	jls	1f
 925	lsrl	#1,%d1
 926	cmpl	%d0,%d1
 927	jls	1f
 928	lsrl	#1,%d1
 9291:
 930	lea	%pc@(m68k_init_mapped_size),%a0
 931	movel	%d1,%a0@
 932	mmu_map	#PAGE_OFFSET,%pc@(L(phys_kernel_start)),%d1,\
 933		%pc@(m68k_supervisor_cachemode)
 934
 935	putc	'C'
 936
 937#ifdef CONFIG_AMIGA
 938
 939L(mmu_init_amiga):
 940
 941	is_not_amiga(L(mmu_init_not_amiga))
 942/*
 943 * mmu_init_amiga
 944 */
 945
 946	putc	'D'
 947
 948	is_not_040_or_060(1f)
 949
 950	/*
 951	 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
 952	 */
 953	mmu_map		#0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
 954	/*
 955	 * Map the Zorro III I/O space with transparent translation
 956	 * for frame buffer memory etc.
 957	 */
 958	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
 959
 960	jbra	L(mmu_init_done)
 961
 9621:
 963	/*
 964	 * 030:	Map the 32Meg range physical 0x0 up to logical 0x8000.0000
 965	 */
 966	mmu_map		#0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
 967	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
 968
 969	jbra	L(mmu_init_done)
 970
 971L(mmu_init_not_amiga):
 972#endif
 973
 974#ifdef CONFIG_ATARI
 975
 976L(mmu_init_atari):
 977
 978	is_not_atari(L(mmu_init_not_atari))
 979
 980	putc	'E'
 981
 982/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
 983   the last 16 MB of virtual address space to the first 16 MB (i.e.
 984   0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
 985   needed. I/O ranges are marked non-cachable.
 986
 987   For the Medusa it is better to map the I/O region transparently
 988   (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
 989   accessible only in the high area.
 990
 991   On the Hades all I/O registers are only accessible in the high
 992   area.
 993*/
 994
 995	/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
 996	moveq	#0,%d0
 997	movel	%pc@(atari_mch_type),%d3
 998	cmpl	#ATARI_MACH_MEDUSA,%d3
 999	jbeq	2f
1000	cmpl	#ATARI_MACH_HADES,%d3
1001	jbne	1f
10022:	movel	#0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
10031:	movel	%d0,%d3
1004
1005	is_040_or_060(L(spata68040))
1006
1007	/* Map everything non-cacheable, though not all parts really
1008	 * need to disable caches (crucial only for 0xff8000..0xffffff
1009	 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1010	 * isn't really used, except for sometimes peeking into the
1011	 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1012	 * this. */
1013	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1014
1015	jbra	L(mmu_init_done)
1016
1017L(spata68040):
1018
1019	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1020
1021	jbra	L(mmu_init_done)
1022
1023L(mmu_init_not_atari):
1024#endif
1025
1026#ifdef CONFIG_Q40
1027	is_not_q40(L(notq40))
1028	/*
1029	 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1030	 * non-cached serialized etc..
1031	 * this includes master chip, DAC, RTC and ISA ports
1032	 * 0xfe000000-0xfeffffff is for screen and ROM
1033	 */
1034
1035	putc    'Q'
1036
1037	mmu_map_tt	#0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1038	mmu_map_tt	#1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1039
1040	jbra	L(mmu_init_done)
1041
1042L(notq40):
1043#endif
1044
1045#ifdef CONFIG_HP300
1046	is_not_hp300(L(nothp300))
1047
1048	/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1049	 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1050	 * The ROM mapping is needed because the LEDs are mapped there too.
1051	 */
1052
1053	is_040(1f)
1054
1055	/*
1056	 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1057	 */
1058	mmu_map	#0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1059
1060	jbra	L(mmu_init_done)
1061
10621:
1063	/*
1064	 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1065	 */
1066	mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1067
1068	jbra	L(mmu_init_done)
1069
1070L(nothp300):
1071#endif /* CONFIG_HP300 */
1072
1073#ifdef CONFIG_MVME147
1074
1075	is_not_mvme147(L(not147))
1076
1077	/*
1078	 * On MVME147 we have already created kernel page tables for
1079	 * 4MB of RAM at address 0, so now need to do a transparent
1080	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1081	 * so we can access on-board i/o areas.
1082	 */
1083
1084	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1085
1086	jbra	L(mmu_init_done)
1087
1088L(not147):
1089#endif /* CONFIG_MVME147 */
1090
1091#ifdef CONFIG_MVME16x
1092
1093	is_not_mvme16x(L(not16x))
1094
1095	/*
1096	 * On MVME16x we have already created kernel page tables for
1097	 * 4MB of RAM at address 0, so now need to do a transparent
1098	 * mapping of the top of memory space.  Make it 0.5GByte for now.
1099	 * Supervisor only access, so transparent mapping doesn't
1100	 * clash with User code virtual address space.
1101	 * this covers IO devices, PROM and SRAM.  The PROM and SRAM
1102	 * mapping is needed to allow 167Bug to run.
1103	 * IO is in the range 0xfff00000 to 0xfffeffff.
1104	 * PROM is 0xff800000->0xffbfffff and SRAM is
1105	 * 0xffe00000->0xffe1ffff.
1106	 */
1107
1108	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1109
1110	jbra	L(mmu_init_done)
1111
1112L(not16x):
1113#endif	/* CONFIG_MVME162 | CONFIG_MVME167 */
1114
1115#ifdef CONFIG_BVME6000
1116
1117	is_not_bvme6000(L(not6000))
1118
1119	/*
1120	 * On BVME6000 we have already created kernel page tables for
1121	 * 4MB of RAM at address 0, so now need to do a transparent
1122	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1123	 * so we can access on-board i/o areas.
1124	 * Supervisor only access, so transparent mapping doesn't
1125	 * clash with User code virtual address space.
1126	 */
1127
1128	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1129
1130	jbra	L(mmu_init_done)
1131
1132L(not6000):
1133#endif /* CONFIG_BVME6000 */
1134
1135/*
1136 * mmu_init_mac
1137 *
1138 * The Macintosh mappings are less clear.
1139 *
1140 * Even as of this writing, it is unclear how the
1141 * Macintosh mappings will be done.  However, as
1142 * the first author of this code I'm proposing the
1143 * following model:
1144 *
1145 * Map the kernel (that's already done),
1146 * Map the I/O (on most machines that's the
1147 * 0x5000.0000 ... 0x5300.0000 range,
1148 * Map the video frame buffer using as few pages
1149 * as absolutely (this requirement mostly stems from
1150 * the fact that when the frame buffer is at
1151 * 0x0000.0000 then we know there is valid RAM just
1152 * above the screen that we don't want to waste!).
1153 *
1154 * By the way, if the frame buffer is at 0x0000.0000
1155 * then the Macintosh is known as an RBV based Mac.
1156 *
1157 * By the way 2, the code currently maps in a bunch of
1158 * regions.  But I'd like to cut that out.  (And move most
1159 * of the mappings up into the kernel proper ... or only
1160 * map what's necessary.)
1161 */
1162
1163#ifdef CONFIG_MAC
1164
1165L(mmu_init_mac):
1166
1167	is_not_mac(L(mmu_init_not_mac))
1168
1169	putc	'F'
1170
1171	is_not_040_or_060(1f)
1172
1173	moveq	#_PAGE_NOCACHE_S,%d3
1174	jbra	2f
11751:
1176	moveq	#_PAGE_NOCACHE030,%d3
11772:
1178	/*
1179	 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1180	 *	     we simply map the 4MB that contains the videomem
1181	 */
1182
1183	movel	#VIDEOMEMMASK,%d0
1184	andl	%pc@(L(mac_videobase)),%d0
1185
1186	mmu_map		#VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1187	/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1188	mmu_map_eq	#0x40000000,#0x02000000,%d3
1189	/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1190	mmu_map_eq	#0x50000000,#0x03000000,%d3
1191	/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1192	mmu_map_tt	#1,#0xf8000000,#0x08000000,%d3
1193
1194	jbra	L(mmu_init_done)
1195
1196L(mmu_init_not_mac):
1197#endif
1198
1199#ifdef CONFIG_SUN3X
1200	is_not_sun3x(L(notsun3x))
1201
1202	/* oh, the pain..  We're gonna want the prom code after
1203	 * starting the MMU, so we copy the mappings, translating
1204	 * from 8k -> 4k pages as we go.
1205	 */
1206
1207	/* copy maps from 0xfee00000 to 0xff000000 */
1208	movel	#0xfee00000, %d0
1209	moveq	#ROOT_INDEX_SHIFT, %d1
1210	lsrl	%d1,%d0
1211	mmu_get_root_table_entry	%d0
1212
1213	movel	#0xfee00000, %d0
1214	moveq	#PTR_INDEX_SHIFT, %d1
1215	lsrl	%d1,%d0
1216	andl	#PTR_TABLE_SIZE-1, %d0
1217	mmu_get_ptr_table_entry		%a0,%d0
1218
1219	movel	#0xfee00000, %d0
1220	moveq	#PAGE_INDEX_SHIFT, %d1
1221	lsrl	%d1,%d0
1222	andl	#PAGE_TABLE_SIZE-1, %d0
1223	mmu_get_page_table_entry	%a0,%d0
1224
1225	/* this is where the prom page table lives */
1226	movel	0xfefe00d4, %a1
1227	movel	%a1@, %a1
1228
1229	movel	#((0x200000 >> 13)-1), %d1
1230
12311:
1232	movel	%a1@+, %d3
1233	movel	%d3,%a0@+
1234	addl	#0x1000,%d3
1235	movel	%d3,%a0@+
1236
1237	dbra	%d1,1b
1238
1239	/* setup tt1 for I/O */
1240	mmu_map_tt	#1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1241	jbra	L(mmu_init_done)
1242
1243L(notsun3x):
1244#endif
1245
1246#ifdef CONFIG_VIRT
1247	is_not_virt(L(novirt))
1248	mmu_map_tt	#1,#0xFF000000,#0x01000000,#_PAGE_NOCACHE_S
1249	jbra    L(mmu_init_done)
1250L(novirt):
1251#endif
1252
1253#ifdef CONFIG_APOLLO
1254	is_not_apollo(L(notapollo))
1255
1256	putc	'P'
1257	mmu_map         #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1258
1259L(notapollo):
1260	jbra	L(mmu_init_done)
1261#endif
1262
1263L(mmu_init_done):
1264
1265	putc	'G'
1266	leds	0x8
1267
1268/*
1269 * mmu_fixup
1270 *
1271 * On the 040 class machines, all pages that are used for the
1272 * mmu have to be fixed up. According to Motorola, pages holding mmu
1273 * tables should be non-cacheable on a '040 and write-through on a
1274 * '060. But analysis of the reasons for this, and practical
1275 * experience, showed that write-through also works on a '040.
1276 *
1277 * Allocated memory so far goes from kernel_end to memory_start that
1278 * is used for all kind of tables, for that the cache attributes
1279 * are now fixed.
1280 */
1281L(mmu_fixup):
1282
1283	is_not_040_or_060(L(mmu_fixup_done))
1284
1285#ifdef MMU_NOCACHE_KERNEL
1286	jbra	L(mmu_fixup_done)
1287#endif
1288
1289	/* first fix the page at the start of the kernel, that
1290	 * contains also kernel_pg_dir.
1291	 */
1292	movel	%pc@(L(phys_kernel_start)),%d0
1293	subl	#PAGE_OFFSET,%d0
1294	lea	%pc@(_stext),%a0
1295	subl	%d0,%a0
1296	mmu_fixup_page_mmu_cache	%a0
1297
1298	movel	%pc@(L(kernel_end)),%a0
1299	subl	%d0,%a0
1300	movel	%pc@(L(memory_start)),%a1
1301	subl	%d0,%a1
1302	bra	2f
13031:
1304	mmu_fixup_page_mmu_cache	%a0
1305	addw	#PAGESIZE,%a0
13062:
1307	cmpl	%a0,%a1
1308	jgt	1b
1309
1310L(mmu_fixup_done):
1311
1312#ifdef MMU_PRINT
1313	mmu_print
1314#endif
1315
1316/*
1317 * mmu_engage
1318 *
1319 * This chunk of code performs the gruesome task of engaging the MMU.
1320 * The reason it's gruesome is because when the MMU becomes engaged it
1321 * maps logical addresses to physical addresses.  The Program Counter
1322 * register is then passed through the MMU before the next instruction
1323 * is fetched (the instruction following the engage MMU instruction).
1324 * This may mean one of two things:
1325 * 1. The Program Counter falls within the logical address space of
1326 *    the kernel of which there are two sub-possibilities:
1327 *    A. The PC maps to the correct instruction (logical PC == physical
1328 *       code location), or
1329 *    B. The PC does not map through and the processor will read some
1330 *       data (or instruction) which is not the logically next instr.
1331 *    As you can imagine, A is good and B is bad.
1332 * Alternatively,
1333 * 2. The Program Counter does not map through the MMU.  The processor
1334 *    will take a Bus Error.
1335 * Clearly, 2 is bad.
1336 * It doesn't take a wiz kid to figure you want 1.A.
1337 * This code creates that possibility.
1338 * There are two possible 1.A. states (we now ignore the other above states):
1339 * A. The kernel is located at physical memory addressed the same as
1340 *    the logical memory for the kernel, i.e., 0x01000.
1341 * B. The kernel is located some where else.  e.g., 0x0400.0000
1342 *
1343 *    Under some conditions the Macintosh can look like A or B.
1344 * [A friend and I once noted that Apple hardware engineers should be
1345 * wacked twice each day: once when they show up at work (as in, Whack!,
1346 * "This is for the screwy hardware we know you're going to design today."),
1347 * and also at the end of the day (as in, Whack! "I don't know what
1348 * you designed today, but I'm sure it wasn't good."). -- rst]
1349 *
1350 * This code works on the following premise:
1351 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1352 * then create a mapping for the kernel at logical 0x8000.0000 to
1353 * the physical location of the pc.  And, create a transparent
1354 * translation register for the first 16 Meg.  Then, after the MMU
1355 * is engaged, the PC can be moved up into the 0x8000.0000 range
1356 * and then the transparent translation can be turned off and then
1357 * the PC can jump to the correct logical location and it will be
1358 * home (finally).  This is essentially the code that the Amiga used
1359 * to use.  Now, it's generalized for all processors.  Which means
1360 * that a fresh (but temporary) mapping has to be created.  The mapping
1361 * is made in page 0 (an as of yet unused location -- except for the
1362 * stack!).  This temporary mapping will only require 1 pointer table
1363 * and a single page table (it can map 256K).
1364 *
1365 * OK, alternatively, imagine that the Program Counter is not within
1366 * the first 16 Meg.  Then, just use Transparent Translation registers
1367 * to do the right thing.
1368 *
1369 * Last, if _start is already at 0x01000, then there's nothing special
1370 * to do (in other words, in a degenerate case of the first case above,
1371 * do nothing).
1372 *
1373 * Let's do it.
1374 *
1375 *
1376 */
1377
1378	putc	'H'
1379
1380	mmu_engage
1381
1382/*
1383 * After this point no new memory is allocated and
1384 * the start of available memory is stored in availmem.
1385 * (The bootmem allocator requires now the physical address.)
1386 */
1387
1388	movel	L(memory_start),availmem
1389
1390#ifdef CONFIG_AMIGA
1391	is_not_amiga(1f)
1392	/* fixup the Amiga custom register location before printing */
1393	clrl	L(custom)
13941:
1395#endif
1396
1397#ifdef CONFIG_ATARI
1398	is_not_atari(1f)
1399	/* fixup the Atari iobase register location before printing */
1400	movel	#0xff000000,L(iobase)
14011:
1402#endif
1403
1404#ifdef CONFIG_MAC
1405	is_not_mac(1f)
1406	movel	#~VIDEOMEMMASK,%d0
1407	andl	L(mac_videobase),%d0
1408	addl	#VIDEOMEMBASE,%d0
1409	movel	%d0,L(mac_videobase)
1410#ifdef CONSOLE_DEBUG
1411	movel	%pc@(L(phys_kernel_start)),%d0
1412	subl	#PAGE_OFFSET,%d0
1413	subl	%d0,L(console_font)
1414	subl	%d0,L(console_font_data)
1415#endif
 
1416	orl	#0x50000000,L(mac_sccbase)
 
14171:
1418#endif
1419
1420#ifdef CONFIG_HP300
1421	is_not_hp300(2f)
1422	/*
1423	 * Fix up the iobase register to point to the new location of the LEDs.
1424	 */
1425	movel	#0xf0000000,L(iobase)
1426
1427	/*
1428	 * Energise the FPU and caches.
1429	 */
1430	is_040(1f)
1431	movel	#0x60,0xf05f400c
1432	jbra	2f
1433
1434	/*
1435	 * 040: slightly different, apparently.
1436	 */
14371:	movew	#0,0xf05f400e
1438	movew	#0x64,0xf05f400e
14392:
1440#endif
1441
1442#ifdef CONFIG_SUN3X
1443	is_not_sun3x(1f)
1444
1445	/* enable copro */
1446	oriw	#0x4000,0x61000000
14471:
1448#endif
1449
1450#ifdef CONFIG_APOLLO
1451	is_not_apollo(1f)
1452
1453	/*
1454	 * Fix up the iobase before printing
1455	 */
1456	movel	#0x80000000,L(iobase)
14571:
1458#endif
1459
1460	putc	'I'
1461	leds	0x10
1462
1463/*
1464 * Enable caches
1465 */
1466
1467	is_not_040_or_060(L(cache_not_680460))
1468
1469L(cache680460):
1470	.chip	68040
1471	nop
1472	cpusha	%bc
1473	nop
1474
1475	is_060(L(cache68060))
1476
1477	movel	#CC6_ENABLE_D+CC6_ENABLE_I,%d0
1478	/* MMU stuff works in copyback mode now, so enable the cache */
1479	movec	%d0,%cacr
1480	jra	L(cache_done)
1481
1482L(cache68060):
1483	movel	#CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1484	/* MMU stuff works in copyback mode now, so enable the cache */
1485	movec	%d0,%cacr
1486	/* enable superscalar dispatch in PCR */
1487	moveq	#1,%d0
1488	.chip	68060
1489	movec	%d0,%pcr
1490
1491	jbra	L(cache_done)
1492L(cache_not_680460):
1493L(cache68030):
1494	.chip	68030
1495	movel	#CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1496	movec	%d0,%cacr
1497
1498	jra	L(cache_done)
1499	.chip	68k
1500L(cache_done):
1501
1502	putc	'J'
1503
1504/*
1505 * Setup initial stack pointer
1506 */
1507	lea	init_task,%curptr
1508	lea	init_thread_union+THREAD_SIZE,%sp
1509
1510	putc	'K'
1511
1512	subl	%a6,%a6		/* clear a6 for gdb */
1513
1514/*
1515 * The new 64bit printf support requires an early exception initialization.
1516 */
1517	jbsr	base_trap_init
1518
1519/* jump to the kernel start */
1520
1521	putc	'\n'
1522	leds	0x55
1523
1524	jbsr	start_kernel
1525
1526/*
1527 * Find a tag record in the bootinfo structure
1528 * The bootinfo structure is located right after the kernel
1529 * Returns: d0: size (-1 if not found)
1530 *          a0: data pointer (end-of-records if not found)
1531 */
1532func_start	get_bi_record,%d1
1533
1534	movel	ARG1,%d0
1535	lea	%pc@(_end),%a0
15361:	tstw	%a0@(BIR_TAG)
1537	jeq	3f
1538	cmpw	%a0@(BIR_TAG),%d0
1539	jeq	2f
1540	addw	%a0@(BIR_SIZE),%a0
1541	jra	1b
15422:	moveq	#0,%d0
1543	movew	%a0@(BIR_SIZE),%d0
1544	lea	%a0@(BIR_DATA),%a0
1545	jra	4f
15463:	moveq	#-1,%d0
1547	lea	%a0@(BIR_SIZE),%a0
15484:
1549func_return	get_bi_record
1550
1551
1552/*
1553 *	MMU Initialization Begins Here
1554 *
1555 *	The structure of the MMU tables on the 68k machines
1556 *	is thus:
1557 *	Root Table
1558 *		Logical addresses are translated through
1559 *	a hierarchical translation mechanism where the high-order
1560 *	seven bits of the logical address (LA) are used as an
1561 *	index into the "root table."  Each entry in the root
1562 *	table has a bit which specifies if it's a valid pointer to a
1563 *	pointer table.  Each entry defines a 32Meg range of memory.
1564 *	If an entry is invalid then that logical range of 32M is
1565 *	invalid and references to that range of memory (when the MMU
1566 *	is enabled) will fault.  If the entry is valid, then it does
1567 *	one of two things.  On 040/060 class machines, it points to
1568 *	a pointer table which then describes more finely the memory
1569 *	within that 32M range.  On 020/030 class machines, a technique
1570 *	called "early terminating descriptors" are used.  This technique
1571 *	allows an entire 32Meg to be described by a single entry in the
1572 *	root table.  Thus, this entry in the root table, contains the
1573 *	physical address of the memory or I/O at the logical address
1574 *	which the entry represents and it also contains the necessary
1575 *	cache bits for this region.
1576 *
1577 *	Pointer Tables
1578 *		Per the Root Table, there will be one or more
1579 *	pointer tables.  Each pointer table defines a 32M range.
1580 *	Not all of the 32M range need be defined.  Again, the next
1581 *	seven bits of the logical address are used an index into
1582 *	the pointer table to point to page tables (if the pointer
1583 *	is valid).  There will undoubtedly be more than one
1584 *	pointer table for the kernel because each pointer table
1585 *	defines a range of only 32M.  Valid pointer table entries
1586 *	point to page tables, or are early terminating entries
1587 *	themselves.
1588 *
1589 *	Page Tables
1590 *		Per the Pointer Tables, each page table entry points
1591 *	to the physical page in memory that supports the logical
1592 *	address that translates to the particular index.
1593 *
1594 *	In short, the Logical Address gets translated as follows:
1595 *		bits 31..26 - index into the Root Table
1596 *		bits 25..18 - index into the Pointer Table
1597 *		bits 17..12 - index into the Page Table
1598 *		bits 11..0  - offset into a particular 4K page
1599 *
1600 *	The algorithms which follow do one thing: they abstract
1601 *	the MMU hardware.  For example, there are three kinds of
1602 *	cache settings that are relevant.  Either, memory is
1603 *	being mapped in which case it is either Kernel Code (or
1604 *	the RamDisk) or it is MMU data.  On the 030, the MMU data
1605 *	option also describes the kernel.  Or, I/O is being mapped
1606 *	in which case it has its own kind of cache bits.  There
1607 *	are constants which abstract these notions from the code that
1608 *	actually makes the call to map some range of memory.
1609 *
1610 *
1611 *
1612 */
1613
1614#ifdef MMU_PRINT
1615/*
1616 *	mmu_print
1617 *
1618 *	This algorithm will print out the current MMU mappings.
1619 *
1620 *	Input:
1621 *		%a5 points to the root table.  Everything else is calculated
1622 *			from this.
1623 */
1624
1625#define mmu_next_valid		0
1626#define mmu_start_logical	4
1627#define mmu_next_logical	8
1628#define mmu_start_physical	12
1629#define mmu_next_physical	16
1630
1631#define MMU_PRINT_INVALID		-1
1632#define MMU_PRINT_VALID			1
1633#define MMU_PRINT_UNINITED		0
1634
1635#define putZc(z,n)		jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1636
1637func_start	mmu_print,%a0-%a6/%d0-%d7
1638
1639	movel	%pc@(L(kernel_pgdir_ptr)),%a5
1640	lea	%pc@(L(mmu_print_data)),%a0
1641	movel	#MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1642
1643	is_not_040_or_060(mmu_030_print)
1644
1645mmu_040_print:
1646	puts	"\nMMU040\n"
1647	puts	"rp:"
1648	putn	%a5
1649	putc	'\n'
1650#if 0
1651	/*
1652	 * The following #if/#endif block is a tight algorithm for dumping the 040
1653	 * MMU Map in gory detail.  It really isn't that practical unless the
1654	 * MMU Map algorithm appears to go awry and you need to debug it at the
1655	 * entry per entry level.
1656	 */
1657	movel	#ROOT_TABLE_SIZE,%d5
1658#if 0
1659	movel	%a5@+,%d7		| Burn an entry to skip the kernel mappings,
1660	subql	#1,%d5			| they (might) work
1661#endif
16621:	tstl	%d5
1663	jbeq	mmu_print_done
1664	subq	#1,%d5
1665	movel	%a5@+,%d7
1666	btst	#1,%d7
1667	jbeq	1b
1668
16692:	putn	%d7
1670	andil	#0xFFFFFE00,%d7
1671	movel	%d7,%a4
1672	movel	#PTR_TABLE_SIZE,%d4
1673	putc	' '
16743:	tstl	%d4
1675	jbeq	11f
1676	subq	#1,%d4
1677	movel	%a4@+,%d7
1678	btst	#1,%d7
1679	jbeq	3b
1680
16814:	putn	%d7
1682	andil	#0xFFFFFF00,%d7
1683	movel	%d7,%a3
1684	movel	#PAGE_TABLE_SIZE,%d3
16855:	movel	#8,%d2
16866:	tstl	%d3
1687	jbeq	31f
1688	subq	#1,%d3
1689	movel	%a3@+,%d6
1690	btst	#0,%d6
1691	jbeq	6b
16927:	tstl	%d2
1693	jbeq	8f
1694	subq	#1,%d2
1695	putc	' '
1696	jbra	91f
16978:	putc	'\n'
1698	movel	#8+1+8+1+1,%d2
16999:	putc	' '
1700	dbra	%d2,9b
1701	movel	#7,%d2
170291:	putn	%d6
1703	jbra	6b
1704
170531:	putc	'\n'
1706	movel	#8+1,%d2
170732:	putc	' '
1708	dbra	%d2,32b
1709	jbra	3b
1710
171111:	putc	'\n'
1712	jbra	1b
1713#endif /* MMU 040 Dumping code that's gory and detailed */
1714
1715	lea	%pc@(kernel_pg_dir),%a5
1716	movel	%a5,%a0			/* a0 has the address of the root table ptr */
1717	movel	#0x00000000,%a4		/* logical address */
1718	moveql	#0,%d0
171940:
1720	/* Increment the logical address and preserve in d5 */
1721	movel	%a4,%d5
1722	addil	#PAGESIZE<<13,%d5
1723	movel	%a0@+,%d6
1724	btst	#1,%d6
1725	jbne	41f
1726	jbsr	mmu_print_tuple_invalidate
1727	jbra	48f
172841:
1729	movel	#0,%d1
1730	andil	#0xfffffe00,%d6
1731	movel	%d6,%a1
173242:
1733	movel	%a4,%d5
1734	addil	#PAGESIZE<<6,%d5
1735	movel	%a1@+,%d6
1736	btst	#1,%d6
1737	jbne	43f
1738	jbsr	mmu_print_tuple_invalidate
1739	jbra	47f
174043:
1741	movel	#0,%d2
1742	andil	#0xffffff00,%d6
1743	movel	%d6,%a2
174444:
1745	movel	%a4,%d5
1746	addil	#PAGESIZE,%d5
1747	movel	%a2@+,%d6
1748	btst	#0,%d6
1749	jbne	45f
1750	jbsr	mmu_print_tuple_invalidate
1751	jbra	46f
175245:
1753	moveml	%d0-%d1,%sp@-
1754	movel	%a4,%d0
1755	movel	%d6,%d1
1756	andil	#0xfffff4e0,%d1
1757	lea	%pc@(mmu_040_print_flags),%a6
1758	jbsr	mmu_print_tuple
1759	moveml	%sp@+,%d0-%d1
176046:
1761	movel	%d5,%a4
1762	addq	#1,%d2
1763	cmpib	#64,%d2
1764	jbne	44b
176547:
1766	movel	%d5,%a4
1767	addq	#1,%d1
1768	cmpib	#128,%d1
1769	jbne	42b
177048:
1771	movel	%d5,%a4			/* move to the next logical address */
1772	addq	#1,%d0
1773	cmpib	#128,%d0
1774	jbne	40b
1775
1776	.chip	68040
1777	movec	%dtt1,%d0
1778	movel	%d0,%d1
1779	andiw	#0x8000,%d1		/* is it valid ? */
1780	jbeq	1f			/* No, bail out */
1781
1782	movel	%d0,%d1
1783	andil	#0xff000000,%d1		/* Get the address */
1784	putn	%d1
1785	puts	"=="
1786	putn	%d1
1787
1788	movel	%d0,%d6
1789	jbsr	mmu_040_print_flags_tt
17901:
1791	movec	%dtt0,%d0
1792	movel	%d0,%d1
1793	andiw	#0x8000,%d1		/* is it valid ? */
1794	jbeq	1f			/* No, bail out */
1795
1796	movel	%d0,%d1
1797	andil	#0xff000000,%d1		/* Get the address */
1798	putn	%d1
1799	puts	"=="
1800	putn	%d1
1801
1802	movel	%d0,%d6
1803	jbsr	mmu_040_print_flags_tt
18041:
1805	.chip	68k
1806
1807	jbra	mmu_print_done
1808
1809mmu_040_print_flags:
1810	btstl	#10,%d6
1811	putZc(' ','G')	/* global bit */
1812	btstl	#7,%d6
1813	putZc(' ','S')	/* supervisor bit */
1814mmu_040_print_flags_tt:
1815	btstl	#6,%d6
1816	jbne	3f
1817	putc	'C'
1818	btstl	#5,%d6
1819	putZc('w','c')	/* write through or copy-back */
1820	jbra	4f
18213:
1822	putc	'N'
1823	btstl	#5,%d6
1824	putZc('s',' ')	/* serialized non-cacheable, or non-cacheable */
18254:
1826	rts
1827
1828mmu_030_print_flags:
1829	btstl	#6,%d6
1830	putZc('C','I')	/* write through or copy-back */
1831	rts
1832
1833mmu_030_print:
1834	puts	"\nMMU030\n"
1835	puts	"\nrp:"
1836	putn	%a5
1837	putc	'\n'
1838	movel	%a5,%d0
1839	andil	#0xfffffff0,%d0
1840	movel	%d0,%a0
1841	movel	#0x00000000,%a4		/* logical address */
1842	movel	#0,%d0
184330:
1844	movel	%a4,%d5
1845	addil	#PAGESIZE<<13,%d5
1846	movel	%a0@+,%d6
1847	btst	#1,%d6			/* is it a table ptr? */
1848	jbne	31f			/* yes */
1849	btst	#0,%d6			/* is it early terminating? */
1850	jbeq	1f			/* no */
1851	jbsr	mmu_030_print_helper
1852	jbra	38f
18531:
1854	jbsr	mmu_print_tuple_invalidate
1855	jbra	38f
185631:
1857	movel	#0,%d1
1858	andil	#0xfffffff0,%d6
1859	movel	%d6,%a1
186032:
1861	movel	%a4,%d5
1862	addil	#PAGESIZE<<6,%d5
1863	movel	%a1@+,%d6
1864	btst	#1,%d6			/* is it a table ptr? */
1865	jbne	33f			/* yes */
1866	btst	#0,%d6			/* is it a page descriptor? */
1867	jbeq	1f			/* no */
1868	jbsr	mmu_030_print_helper
1869	jbra	37f
18701:
1871	jbsr	mmu_print_tuple_invalidate
1872	jbra	37f
187333:
1874	movel	#0,%d2
1875	andil	#0xfffffff0,%d6
1876	movel	%d6,%a2
187734:
1878	movel	%a4,%d5
1879	addil	#PAGESIZE,%d5
1880	movel	%a2@+,%d6
1881	btst	#0,%d6
1882	jbne	35f
1883	jbsr	mmu_print_tuple_invalidate
1884	jbra	36f
188535:
1886	jbsr	mmu_030_print_helper
188736:
1888	movel	%d5,%a4
1889	addq	#1,%d2
1890	cmpib	#64,%d2
1891	jbne	34b
189237:
1893	movel	%d5,%a4
1894	addq	#1,%d1
1895	cmpib	#128,%d1
1896	jbne	32b
189738:
1898	movel	%d5,%a4			/* move to the next logical address */
1899	addq	#1,%d0
1900	cmpib	#128,%d0
1901	jbne	30b
1902
1903mmu_print_done:
1904	puts	"\n"
1905
1906func_return	mmu_print
1907
1908
1909mmu_030_print_helper:
1910	moveml	%d0-%d1,%sp@-
1911	movel	%a4,%d0
1912	movel	%d6,%d1
1913	lea	%pc@(mmu_030_print_flags),%a6
1914	jbsr	mmu_print_tuple
1915	moveml	%sp@+,%d0-%d1
1916	rts
1917
1918mmu_print_tuple_invalidate:
1919	moveml	%a0/%d7,%sp@-
1920
1921	lea	%pc@(L(mmu_print_data)),%a0
1922	tstl	%a0@(mmu_next_valid)
1923	jbmi	mmu_print_tuple_invalidate_exit
1924
1925	movel	#MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1926
1927	putn	%a4
1928
1929	puts	"##\n"
1930
1931mmu_print_tuple_invalidate_exit:
1932	moveml	%sp@+,%a0/%d7
1933	rts
1934
1935
1936mmu_print_tuple:
1937	moveml	%d0-%d7/%a0,%sp@-
1938
1939	lea	%pc@(L(mmu_print_data)),%a0
1940
1941	tstl	%a0@(mmu_next_valid)
1942	jble	mmu_print_tuple_print
1943
1944	cmpl	%a0@(mmu_next_physical),%d1
1945	jbeq	mmu_print_tuple_increment
1946
1947mmu_print_tuple_print:
1948	putn	%d0
1949	puts	"->"
1950	putn	%d1
1951
1952	movel	%d1,%d6
1953	jbsr	%a6@
1954
1955mmu_print_tuple_record:
1956	movel	#MMU_PRINT_VALID,%a0@(mmu_next_valid)
1957
1958	movel	%d1,%a0@(mmu_next_physical)
1959
1960mmu_print_tuple_increment:
1961	movel	%d5,%d7
1962	subl	%a4,%d7
1963	addl	%d7,%a0@(mmu_next_physical)
1964
1965mmu_print_tuple_exit:
1966	moveml	%sp@+,%d0-%d7/%a0
1967	rts
1968
1969mmu_print_machine_cpu_types:
1970	puts	"machine: "
1971
1972	is_not_amiga(1f)
1973	puts	"amiga"
1974	jbra	9f
19751:
1976	is_not_atari(2f)
1977	puts	"atari"
1978	jbra	9f
19792:
1980	is_not_mac(3f)
1981	puts	"macintosh"
1982	jbra	9f
19833:	puts	"unknown"
19849:	putc	'\n'
1985
1986	puts	"cputype: 0"
1987	is_not_060(1f)
1988	putc	'6'
1989	jbra	9f
19901:
1991	is_not_040_or_060(2f)
1992	putc	'4'
1993	jbra	9f
19942:	putc	'3'
19959:	putc	'0'
1996	putc	'\n'
1997
1998	rts
1999#endif /* MMU_PRINT */
2000
2001/*
2002 * mmu_map_tt
2003 *
2004 * This is a specific function which works on all 680x0 machines.
2005 * On 030, 040 & 060 it will attempt to use Transparent Translation
2006 * registers (tt1).
2007 * On 020 it will call the standard mmu_map which will use early
2008 * terminating descriptors.
2009 */
2010func_start	mmu_map_tt,%d0/%d1/%a0,4
2011
2012	dputs	"mmu_map_tt:"
2013	dputn	ARG1
2014	dputn	ARG2
2015	dputn	ARG3
2016	dputn	ARG4
2017	dputc	'\n'
2018
2019	is_020(L(do_map))
2020
2021	/* Extract the highest bit set
2022	 */
2023	bfffo	ARG3{#0,#32},%d1
2024	cmpw	#8,%d1
2025	jcc	L(do_map)
2026
2027	/* And get the mask
2028	 */
2029	moveq	#-1,%d0
2030	lsrl	%d1,%d0
2031	lsrl	#1,%d0
2032
2033	/* Mask the address
2034	 */
2035	movel	%d0,%d1
2036	notl	%d1
2037	andl	ARG2,%d1
2038
2039	/* Generate the upper 16bit of the tt register
2040	 */
2041	lsrl	#8,%d0
2042	orl	%d0,%d1
2043	clrw	%d1
2044
2045	is_040_or_060(L(mmu_map_tt_040))
2046
2047	/* set 030 specific bits (read/write access for supervisor mode
2048	 * (highest function code set, lower two bits masked))
2049	 */
2050	orw	#TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2051	movel	ARG4,%d0
2052	btst	#6,%d0
2053	jeq	1f
2054	orw	#TTR_CI,%d1
2055
20561:	lea	STACK,%a0
2057	dputn	%d1
2058	movel	%d1,%a0@
2059	.chip	68030
2060	tstl	ARG1
2061	jne	1f
2062	pmove	%a0@,%tt0
2063	jra	2f
20641:	pmove	%a0@,%tt1
20652:	.chip	68k
2066	jra	L(mmu_map_tt_done)
2067
2068	/* set 040 specific bits
2069	 */
2070L(mmu_map_tt_040):
2071	orw	#TTR_ENABLE+TTR_KERNELMODE,%d1
2072	orl	ARG4,%d1
2073	dputn	%d1
2074
2075	.chip	68040
2076	tstl	ARG1
2077	jne	1f
2078	movec	%d1,%itt0
2079	movec	%d1,%dtt0
2080	jra	2f
20811:	movec	%d1,%itt1
2082	movec	%d1,%dtt1
20832:	.chip	68k
2084
2085	jra	L(mmu_map_tt_done)
2086
2087L(do_map):
2088	mmu_map_eq	ARG2,ARG3,ARG4
2089
2090L(mmu_map_tt_done):
2091
2092func_return	mmu_map_tt
2093
2094/*
2095 *	mmu_map
2096 *
2097 *	This routine will map a range of memory using a pointer
2098 *	table and allocate the pages on the fly from the kernel.
2099 *	The pointer table does not have to be already linked into
2100 *	the root table, this routine will do that if necessary.
2101 *
2102 *	NOTE
2103 *	This routine will assert failure and use the serial_putc
2104 *	routines in the case of a run-time error.  For example,
2105 *	if the address is already mapped.
2106 *
2107 *	NOTE-2
2108 *	This routine will use early terminating descriptors
2109 *	where possible for the 68020+68851 and 68030 type
2110 *	processors.
2111 */
2112func_start	mmu_map,%d0-%d4/%a0-%a4
2113
2114	dputs	"\nmmu_map:"
2115	dputn	ARG1
2116	dputn	ARG2
2117	dputn	ARG3
2118	dputn	ARG4
2119	dputc	'\n'
2120
2121	/* Get logical address and round it down to 256KB
2122	 */
2123	movel	ARG1,%d0
2124	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2125	movel	%d0,%a3
2126
2127	/* Get the end address
2128	 */
2129	movel	ARG1,%a4
2130	addl	ARG3,%a4
2131	subql	#1,%a4
2132
2133	/* Get physical address and round it down to 256KB
2134	 */
2135	movel	ARG2,%d0
2136	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2137	movel	%d0,%a2
2138
2139	/* Add page attributes to the physical address
2140	 */
2141	movel	ARG4,%d0
2142	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2143	addw	%d0,%a2
2144
2145	dputn	%a2
2146	dputn	%a3
2147	dputn	%a4
2148
2149	is_not_040_or_060(L(mmu_map_030))
2150
2151	addw	#_PAGE_GLOBAL040,%a2
2152/*
2153 *	MMU 040 & 060 Support
2154 *
2155 *	The MMU usage for the 040 and 060 is different enough from
2156 *	the 030 and 68851 that there is separate code.  This comment
2157 *	block describes the data structures and algorithms built by
2158 *	this code.
2159 *
2160 *	The 040 does not support early terminating descriptors, as
2161 *	the 030 does.  Therefore, a third level of table is needed
2162 *	for the 040, and that would be the page table.  In Linux,
2163 *	page tables are allocated directly from the memory above the
2164 *	kernel.
2165 *
2166 */
2167
2168L(mmu_map_040):
2169	/* Calculate the offset into the root table
2170	 */
2171	movel	%a3,%d0
2172	moveq	#ROOT_INDEX_SHIFT,%d1
2173	lsrl	%d1,%d0
2174	mmu_get_root_table_entry	%d0
2175
2176	/* Calculate the offset into the pointer table
2177	 */
2178	movel	%a3,%d0
2179	moveq	#PTR_INDEX_SHIFT,%d1
2180	lsrl	%d1,%d0
2181	andl	#PTR_TABLE_SIZE-1,%d0
2182	mmu_get_ptr_table_entry		%a0,%d0
2183
2184	/* Calculate the offset into the page table
2185	 */
2186	movel	%a3,%d0
2187	moveq	#PAGE_INDEX_SHIFT,%d1
2188	lsrl	%d1,%d0
2189	andl	#PAGE_TABLE_SIZE-1,%d0
2190	mmu_get_page_table_entry	%a0,%d0
2191
2192	/* The page table entry must not no be busy
2193	 */
2194	tstl	%a0@
2195	jne	L(mmu_map_error)
2196
2197	/* Do the mapping and advance the pointers
2198	 */
2199	movel	%a2,%a0@
22002:
2201	addw	#PAGESIZE,%a2
2202	addw	#PAGESIZE,%a3
2203
2204	/* Ready with mapping?
2205	 */
2206	lea	%a3@(-1),%a0
2207	cmpl	%a0,%a4
2208	jhi	L(mmu_map_040)
2209	jra	L(mmu_map_done)
2210
2211L(mmu_map_030):
2212	/* Calculate the offset into the root table
2213	 */
2214	movel	%a3,%d0
2215	moveq	#ROOT_INDEX_SHIFT,%d1
2216	lsrl	%d1,%d0
2217	mmu_get_root_table_entry	%d0
2218
2219	/* Check if logical address 32MB aligned,
2220	 * so we can try to map it once
2221	 */
2222	movel	%a3,%d0
2223	andl	#(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2224	jne	1f
2225
2226	/* Is there enough to map for 32MB at once
2227	 */
2228	lea	%a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2229	cmpl	%a1,%a4
2230	jcs	1f
2231
2232	addql	#1,%a1
2233
2234	/* The root table entry must not no be busy
2235	 */
2236	tstl	%a0@
2237	jne	L(mmu_map_error)
2238
2239	/* Do the mapping and advance the pointers
2240	 */
2241	dputs	"early term1"
2242	dputn	%a2
2243	dputn	%a3
2244	dputn	%a1
2245	dputc	'\n'
2246	movel	%a2,%a0@
2247
2248	movel	%a1,%a3
2249	lea	%a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2250	jra	L(mmu_mapnext_030)
22511:
2252	/* Calculate the offset into the pointer table
2253	 */
2254	movel	%a3,%d0
2255	moveq	#PTR_INDEX_SHIFT,%d1
2256	lsrl	%d1,%d0
2257	andl	#PTR_TABLE_SIZE-1,%d0
2258	mmu_get_ptr_table_entry		%a0,%d0
2259
2260	/* The pointer table entry must not no be busy
2261	 */
2262	tstl	%a0@
2263	jne	L(mmu_map_error)
2264
2265	/* Do the mapping and advance the pointers
2266	 */
2267	dputs	"early term2"
2268	dputn	%a2
2269	dputn	%a3
2270	dputc	'\n'
2271	movel	%a2,%a0@
2272
2273	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a2
2274	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a3
2275
2276L(mmu_mapnext_030):
2277	/* Ready with mapping?
2278	 */
2279	lea	%a3@(-1),%a0
2280	cmpl	%a0,%a4
2281	jhi	L(mmu_map_030)
2282	jra	L(mmu_map_done)
2283
2284L(mmu_map_error):
2285
2286	dputs	"mmu_map error:"
2287	dputn	%a2
2288	dputn	%a3
2289	dputc	'\n'
2290
2291L(mmu_map_done):
2292
2293func_return	mmu_map
2294
2295/*
2296 *	mmu_fixup
2297 *
2298 *	On the 040 class machines, all pages that are used for the
2299 *	mmu have to be fixed up.
2300 */
2301
2302func_start	mmu_fixup_page_mmu_cache,%d0/%a0
2303
2304	dputs	"mmu_fixup_page_mmu_cache"
2305	dputn	ARG1
2306
2307	/* Calculate the offset into the root table
2308	 */
2309	movel	ARG1,%d0
2310	moveq	#ROOT_INDEX_SHIFT,%d1
2311	lsrl	%d1,%d0
2312	mmu_get_root_table_entry	%d0
2313
2314	/* Calculate the offset into the pointer table
2315	 */
2316	movel	ARG1,%d0
2317	moveq	#PTR_INDEX_SHIFT,%d1
2318	lsrl	%d1,%d0
2319	andl	#PTR_TABLE_SIZE-1,%d0
2320	mmu_get_ptr_table_entry		%a0,%d0
2321
2322	/* Calculate the offset into the page table
2323	 */
2324	movel	ARG1,%d0
2325	moveq	#PAGE_INDEX_SHIFT,%d1
2326	lsrl	%d1,%d0
2327	andl	#PAGE_TABLE_SIZE-1,%d0
2328	mmu_get_page_table_entry	%a0,%d0
2329
2330	movel	%a0@,%d0
2331	andil	#_CACHEMASK040,%d0
2332	orl	%pc@(m68k_pgtable_cachemode),%d0
2333	movel	%d0,%a0@
2334
2335	dputc	'\n'
2336
2337func_return	mmu_fixup_page_mmu_cache
2338
2339/*
2340 *	mmu_temp_map
2341 *
2342 *	create a temporary mapping to enable the mmu,
2343 *	this we don't need any transparation translation tricks.
2344 */
2345
2346func_start	mmu_temp_map,%d0/%d1/%a0/%a1
2347
2348	dputs	"mmu_temp_map"
2349	dputn	ARG1
2350	dputn	ARG2
2351	dputc	'\n'
2352
2353	lea	%pc@(L(temp_mmap_mem)),%a1
2354
2355	/* Calculate the offset in the root table
2356	 */
2357	movel	ARG2,%d0
2358	moveq	#ROOT_INDEX_SHIFT,%d1
2359	lsrl	%d1,%d0
2360	mmu_get_root_table_entry	%d0
2361
2362	/* Check if the table is temporary allocated, so we have to reuse it
2363	 */
2364	movel	%a0@,%d0
2365	cmpl	%pc@(L(memory_start)),%d0
2366	jcc	1f
2367
2368	/* Temporary allocate a ptr table and insert it into the root table
2369	 */
2370	movel	%a1@,%d0
2371	addl	#PTR_TABLE_SIZE*4,%a1@
2372	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2373	movel	%d0,%a0@
2374	dputs	" (new)"
23751:
2376	dputn	%d0
2377	/* Mask the root table entry for the ptr table
2378	 */
2379	andw	#-ROOT_TABLE_SIZE,%d0
2380	movel	%d0,%a0
2381
2382	/* Calculate the offset into the pointer table
2383	 */
2384	movel	ARG2,%d0
2385	moveq	#PTR_INDEX_SHIFT,%d1
2386	lsrl	%d1,%d0
2387	andl	#PTR_TABLE_SIZE-1,%d0
2388	lea	%a0@(%d0*4),%a0
2389	dputn	%a0
2390
2391	/* Check if a temporary page table is already allocated
2392	 */
2393	movel	%a0@,%d0
2394	jne	1f
2395
2396	/* Temporary allocate a page table and insert it into the ptr table
2397	 */
2398	movel	%a1@,%d0
2399	/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2400	   alignment restriction for pointer tables on the '0[46]0.  */
2401	addl	#512,%a1@
2402	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2403	movel	%d0,%a0@
2404	dputs	" (new)"
24051:
2406	dputn	%d0
2407	/* Mask the ptr table entry for the page table
2408	 */
2409	andw	#-PTR_TABLE_SIZE,%d0
2410	movel	%d0,%a0
2411
2412	/* Calculate the offset into the page table
2413	 */
2414	movel	ARG2,%d0
2415	moveq	#PAGE_INDEX_SHIFT,%d1
2416	lsrl	%d1,%d0
2417	andl	#PAGE_TABLE_SIZE-1,%d0
2418	lea	%a0@(%d0*4),%a0
2419	dputn	%a0
2420
2421	/* Insert the address into the page table
2422	 */
2423	movel	ARG1,%d0
2424	andw	#-PAGESIZE,%d0
2425	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2426	movel	%d0,%a0@
2427	dputn	%d0
2428
2429	dputc	'\n'
2430
2431func_return	mmu_temp_map
2432
2433func_start	mmu_engage,%d0-%d2/%a0-%a3
2434
2435	moveq	#ROOT_TABLE_SIZE-1,%d0
2436	/* Temporarily use a different root table.  */
2437	lea	%pc@(L(kernel_pgdir_ptr)),%a0
2438	movel	%a0@,%a2
2439	movel	%pc@(L(memory_start)),%a1
2440	movel	%a1,%a0@
2441	movel	%a2,%a0
24421:
2443	movel	%a0@+,%a1@+
2444	dbra	%d0,1b
2445
2446	lea	%pc@(L(temp_mmap_mem)),%a0
2447	movel	%a1,%a0@
2448
2449	movew	#PAGESIZE-1,%d0
24501:
2451	clrl	%a1@+
2452	dbra	%d0,1b
2453
2454	lea	%pc@(1b),%a0
2455	movel	#1b,%a1
2456	/* Skip temp mappings if phys == virt */
2457	cmpl	%a0,%a1
2458	jeq	1f
2459
2460	mmu_temp_map	%a0,%a0
2461	mmu_temp_map	%a0,%a1
2462
2463	addw	#PAGESIZE,%a0
2464	addw	#PAGESIZE,%a1
2465	mmu_temp_map	%a0,%a0
2466	mmu_temp_map	%a0,%a1
24671:
2468	movel	%pc@(L(memory_start)),%a3
2469	movel	%pc@(L(phys_kernel_start)),%d2
2470
2471	is_not_040_or_060(L(mmu_engage_030))
2472
2473L(mmu_engage_040):
2474	.chip	68040
2475	nop
2476	cinva	%bc
2477	nop
2478	pflusha
2479	nop
2480	movec	%a3,%srp
2481	movel	#TC_ENABLE+TC_PAGE4K,%d0
2482	movec	%d0,%tc		/* enable the MMU */
2483	jmp	1f:l
24841:	nop
2485	movec	%a2,%srp
2486	nop
2487	cinva	%bc
2488	nop
2489	pflusha
2490	.chip	68k
2491	jra	L(mmu_engage_cleanup)
2492
2493L(mmu_engage_030_temp):
2494	.space	12
2495L(mmu_engage_030):
2496	.chip	68030
2497	lea	%pc@(L(mmu_engage_030_temp)),%a0
2498	movel	#0x80000002,%a0@
2499	movel	%a3,%a0@(4)
2500	movel	#0x0808,%d0
2501	movec	%d0,%cacr
2502	pmove	%a0@,%srp
2503	pflusha
2504	/*
2505	 * enable,super root enable,4096 byte pages,7 bit root index,
2506	 * 7 bit pointer index, 6 bit page table index.
2507	 */
2508	movel	#0x82c07760,%a0@(8)
2509	pmove	%a0@(8),%tc	/* enable the MMU */
2510	jmp	1f:l
25111:	movel	%a2,%a0@(4)
2512	movel	#0x0808,%d0
2513	movec	%d0,%cacr
2514	pmove	%a0@,%srp
2515	pflusha
2516	.chip	68k
2517
2518L(mmu_engage_cleanup):
2519	subl	#PAGE_OFFSET,%d2
2520	subl	%d2,%a2
2521	movel	%a2,L(kernel_pgdir_ptr)
2522	subl	%d2,%fp
2523	subl	%d2,%sp
2524	subl	%d2,ARG0
2525
2526func_return	mmu_engage
2527
2528func_start	mmu_get_root_table_entry,%d0/%a1
2529
2530#if 0
2531	dputs	"mmu_get_root_table_entry:"
2532	dputn	ARG1
2533	dputs	" ="
2534#endif
2535
2536	movel	%pc@(L(kernel_pgdir_ptr)),%a0
2537	tstl	%a0
2538	jne	2f
2539
2540	dputs	"\nmmu_init:"
2541
2542	/* Find the start of free memory, get_bi_record does this for us,
2543	 * as the bootinfo structure is located directly behind the kernel
2544	 * we simply search for the last entry.
2545	 */
2546	get_bi_record	BI_LAST
2547	addw	#PAGESIZE-1,%a0
2548	movel	%a0,%d0
2549	andw	#-PAGESIZE,%d0
2550
2551	dputn	%d0
2552
2553	lea	%pc@(L(memory_start)),%a0
2554	movel	%d0,%a0@
2555	lea	%pc@(L(kernel_end)),%a0
2556	movel	%d0,%a0@
2557
2558	/* we have to return the first page at _stext since the init code
2559	 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2560	 * page is used for further ptr tables in get_ptr_table.
2561	 */
2562	lea	%pc@(_stext),%a0
2563	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2564	movel	%a0,%a1@
2565	addl	#ROOT_TABLE_SIZE*4,%a1@
2566
2567	lea	%pc@(L(mmu_num_pointer_tables)),%a1
2568	addql	#1,%a1@
2569
2570	/* clear the page
2571	 */
2572	movel	%a0,%a1
2573	movew	#PAGESIZE/4-1,%d0
25741:
2575	clrl	%a1@+
2576	dbra	%d0,1b
2577
2578	lea	%pc@(L(kernel_pgdir_ptr)),%a1
2579	movel	%a0,%a1@
2580
2581	dputn	%a0
2582	dputc	'\n'
25832:
2584	movel	ARG1,%d0
2585	lea	%a0@(%d0*4),%a0
2586
2587#if 0
2588	dputn	%a0
2589	dputc	'\n'
2590#endif
2591
2592func_return	mmu_get_root_table_entry
2593
2594
2595
2596func_start	mmu_get_ptr_table_entry,%d0/%a1
2597
2598#if 0
2599	dputs	"mmu_get_ptr_table_entry:"
2600	dputn	ARG1
2601	dputn	ARG2
2602	dputs	" ="
2603#endif
2604
2605	movel	ARG1,%a0
2606	movel	%a0@,%d0
2607	jne	2f
2608
2609	/* Keep track of the number of pointer tables we use
2610	 */
2611	dputs	"\nmmu_get_new_ptr_table:"
2612	lea	%pc@(L(mmu_num_pointer_tables)),%a0
2613	movel	%a0@,%d0
2614	addql	#1,%a0@
2615
2616	/* See if there is a free pointer table in our cache of pointer tables
2617	 */
2618	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2619	andw	#7,%d0
2620	jne	1f
2621
2622	/* Get a new pointer table page from above the kernel memory
2623	 */
2624	get_new_page
2625	movel	%a0,%a1@
26261:
2627	/* There is an unused pointer table in our cache... use it
2628	 */
2629	movel	%a1@,%d0
2630	addl	#PTR_TABLE_SIZE*4,%a1@
2631
2632	dputn	%d0
2633	dputc	'\n'
2634
2635	/* Insert the new pointer table into the root table
2636	 */
2637	movel	ARG1,%a0
2638	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2639	movel	%d0,%a0@
26402:
2641	/* Extract the pointer table entry
2642	 */
2643	andw	#-PTR_TABLE_SIZE,%d0
2644	movel	%d0,%a0
2645	movel	ARG2,%d0
2646	lea	%a0@(%d0*4),%a0
2647
2648#if 0
2649	dputn	%a0
2650	dputc	'\n'
2651#endif
2652
2653func_return	mmu_get_ptr_table_entry
2654
2655
2656func_start	mmu_get_page_table_entry,%d0/%a1
2657
2658#if 0
2659	dputs	"mmu_get_page_table_entry:"
2660	dputn	ARG1
2661	dputn	ARG2
2662	dputs	" ="
2663#endif
2664
2665	movel	ARG1,%a0
2666	movel	%a0@,%d0
2667	jne	2f
2668
2669	/* If the page table entry doesn't exist, we allocate a complete new
2670	 * page and use it as one continuous big page table which can cover
2671	 * 4MB of memory, nearly almost all mappings have that alignment.
2672	 */
2673	get_new_page
2674	addw	#_PAGE_TABLE+_PAGE_ACCESSED,%a0
2675
2676	/* align pointer table entry for a page of page tables
2677	 */
2678	movel	ARG1,%d0
2679	andw	#-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2680	movel	%d0,%a1
2681
2682	/* Insert the page tables into the pointer entries
2683	 */
2684	moveq	#PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
26851:
2686	movel	%a0,%a1@+
2687	lea	%a0@(PAGE_TABLE_SIZE*4),%a0
2688	dbra	%d0,1b
2689
2690	/* Now we can get the initialized pointer table entry
2691	 */
2692	movel	ARG1,%a0
2693	movel	%a0@,%d0
26942:
2695	/* Extract the page table entry
2696	 */
2697	andw	#-PAGE_TABLE_SIZE,%d0
2698	movel	%d0,%a0
2699	movel	ARG2,%d0
2700	lea	%a0@(%d0*4),%a0
2701
2702#if 0
2703	dputn	%a0
2704	dputc	'\n'
2705#endif
2706
2707func_return	mmu_get_page_table_entry
2708
2709/*
2710 *	get_new_page
2711 *
2712 *	Return a new page from the memory start and clear it.
2713 */
2714func_start	get_new_page,%d0/%a1
2715
2716	dputs	"\nget_new_page:"
2717
2718	/* allocate the page and adjust memory_start
2719	 */
2720	lea	%pc@(L(memory_start)),%a0
2721	movel	%a0@,%a1
2722	addl	#PAGESIZE,%a0@
2723
2724	/* clear the new page
2725	 */
2726	movel	%a1,%a0
2727	movew	#PAGESIZE/4-1,%d0
27281:
2729	clrl	%a1@+
2730	dbra	%d0,1b
2731
2732	dputn	%a0
2733	dputc	'\n'
2734
2735func_return	get_new_page
2736
2737
2738
2739/*
2740 * Debug output support
2741 * Atarians have a choice between the parallel port, the serial port
2742 * from the MFP or a serial port of the SCC
2743 */
2744
2745#ifdef CONFIG_MAC
2746/* You may define either or both of these. */
2747#define MAC_USE_SCC_A /* Modem port */
2748#define MAC_USE_SCC_B /* Printer port */
2749
2750#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2751/* Initialisation table for SCC with 3.6864 MHz PCLK */
2752L(scc_initable_mac):
 
2753	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2754	.byte	3,0xc0		/* receiver: 8 bpc */
2755	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
 
2756	.byte	10,0		/* NRZ */
2757	.byte	11,0x50		/* use baud rate generator */
2758	.byte	12,1,13,0	/* 38400 baud */
2759	.byte	14,1		/* Baud rate generator enable */
2760	.byte	3,0xc1		/* enable receiver */
2761	.byte	5,0xea		/* enable transmitter */
2762	.byte	-1
2763	.even
2764#endif
2765#endif /* CONFIG_MAC */
2766
2767#ifdef CONFIG_ATARI
2768/* #define USE_PRINTER */
2769/* #define USE_SCC_B */
2770/* #define USE_SCC_A */
2771#define USE_MFP
2772
2773#if defined(USE_SCC_A) || defined(USE_SCC_B)
2774/* Initialisation table for SCC with 7.9872 MHz PCLK */
2775/* PCLK == 8.0539 gives baud == 9680.1 */
2776L(scc_initable_atari):
 
2777	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2778	.byte	3,0xc0		/* receiver: 8 bpc */
2779	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
 
2780	.byte	10,0		/* NRZ */
2781	.byte	11,0x50		/* use baud rate generator */
2782	.byte	12,24,13,0	/* 9600 baud */
2783	.byte	14,2,14,3	/* use master clock for BRG, enable */
2784	.byte	3,0xc1		/* enable receiver */
2785	.byte	5,0xea		/* enable transmitter */
2786	.byte	-1
2787	.even
2788#endif
2789
2790#ifdef USE_PRINTER
2791
2792LPSG_SELECT	= 0xff8800
2793LPSG_READ	= 0xff8800
2794LPSG_WRITE	= 0xff8802
2795LPSG_IO_A	= 14
2796LPSG_IO_B	= 15
2797LPSG_CONTROL	= 7
2798LSTMFP_GPIP	= 0xfffa01
2799LSTMFP_DDR	= 0xfffa05
2800LSTMFP_IERB	= 0xfffa09
2801
2802#elif defined(USE_SCC_B)
2803
2804LSCC_CTRL	= 0xff8c85
2805LSCC_DATA	= 0xff8c87
2806
2807#elif defined(USE_SCC_A)
2808
2809LSCC_CTRL	= 0xff8c81
2810LSCC_DATA	= 0xff8c83
2811
2812#elif defined(USE_MFP)
2813
2814LMFP_UCR     = 0xfffa29
2815LMFP_TDCDR   = 0xfffa1d
2816LMFP_TDDR    = 0xfffa25
2817LMFP_TSR     = 0xfffa2d
2818LMFP_UDR     = 0xfffa2f
2819
2820#endif
2821#endif	/* CONFIG_ATARI */
2822
2823/*
2824 * Serial port output support.
2825 */
2826
2827/*
2828 * Initialize serial port hardware
2829 */
2830func_start	serial_init,%d0/%d1/%a0/%a1
2831	/*
2832	 *	Some of the register usage that follows
2833	 *	CONFIG_AMIGA
2834	 *		a0 = pointer to boot info record
2835	 *		d0 = boot info offset
2836	 *	CONFIG_ATARI
2837	 *		a0 = address of SCC
2838	 *		a1 = Liobase address/address of scc_initable_atari
2839	 *		d0 = init data for serial port
2840	 *	CONFIG_MAC
2841	 *		a0 = address of SCC
2842	 *		a1 = address of scc_initable_mac
2843	 *		d0 = init data for serial port
2844	 */
2845
2846#ifdef CONFIG_AMIGA
2847#define SERIAL_DTR	7
2848#define SERIAL_CNTRL	CIABBASE+C_PRA
2849
2850	is_not_amiga(1f)
2851	lea	%pc@(L(custom)),%a0
2852	movel	#-ZTWOBASE,%a0@
2853	bclr	#SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2854	get_bi_record	BI_AMIGA_SERPER
2855	movew	%a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2856|	movew	#61,CUSTOMBASE+C_SERPER-ZTWOBASE
28571:
2858#endif
2859
2860#ifdef CONFIG_ATARI
2861	is_not_atari(4f)
2862	movel	%pc@(L(iobase)),%a1
2863#if defined(USE_PRINTER)
2864	bclr	#0,%a1@(LSTMFP_IERB)
2865	bclr	#0,%a1@(LSTMFP_DDR)
2866	moveb	#LPSG_CONTROL,%a1@(LPSG_SELECT)
2867	moveb	#0xff,%a1@(LPSG_WRITE)
2868	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
2869	clrb	%a1@(LPSG_WRITE)
2870	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
2871	moveb	%a1@(LPSG_READ),%d0
2872	bset	#5,%d0
2873	moveb	%d0,%a1@(LPSG_WRITE)
2874#elif defined(USE_SCC_A) || defined(USE_SCC_B)
2875	lea	%a1@(LSCC_CTRL),%a0
2876	/* Reset SCC register pointer */
2877	moveb	%a0@,%d0
2878	/* Reset SCC device: write register pointer then register value */
2879	moveb	#9,%a0@
2880	moveb	#0xc0,%a0@
2881	/* Wait for 5 PCLK cycles, which is about 63 CPU cycles */
2882	/* 5 / 7.9872 MHz = approx. 0.63 us = 63 / 100 MHz */
2883	movel	#32,%d0
28842:
2885	subq	#1,%d0
2886	jne	2b
2887	/* Initialize channel */
2888	lea	%pc@(L(scc_initable_atari)),%a1
28892:	moveb	%a1@+,%d0
2890	jmi	3f
2891	moveb	%d0,%a0@
2892	moveb	%a1@+,%a0@
2893	jra	2b
28943:	clrb	%a0@
2895#elif defined(USE_MFP)
2896	bclr	#1,%a1@(LMFP_TSR)
2897	moveb   #0x88,%a1@(LMFP_UCR)
2898	andb	#0x70,%a1@(LMFP_TDCDR)
2899	moveb   #2,%a1@(LMFP_TDDR)
2900	orb	#1,%a1@(LMFP_TDCDR)
2901	bset	#1,%a1@(LMFP_TSR)
2902#endif
2903	jra	L(serial_init_done)
29044:
2905#endif
2906
2907#ifdef CONFIG_MAC
2908	is_not_mac(L(serial_init_not_mac))
2909#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
 
 
 
2910#define mac_scc_cha_b_ctrl_offset	0x0
2911#define mac_scc_cha_a_ctrl_offset	0x2
2912#define mac_scc_cha_b_data_offset	0x4
2913#define mac_scc_cha_a_data_offset	0x6
2914	movel	%pc@(L(mac_sccbase)),%a0
2915	/* Reset SCC register pointer */
2916	moveb	%a0@(mac_scc_cha_a_ctrl_offset),%d0
2917	/* Reset SCC device: write register pointer then register value */
2918	moveb	#9,%a0@(mac_scc_cha_a_ctrl_offset)
2919	moveb	#0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2920	/* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2921	/* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2922	movel	#35,%d0
29235:
2924	subq	#1,%d0
2925	jne	5b
2926#endif
2927#ifdef MAC_USE_SCC_A
2928	/* Initialize channel A */
 
2929	lea	%pc@(L(scc_initable_mac)),%a1
29305:	moveb	%a1@+,%d0
2931	jmi	6f
2932	moveb	%d0,%a0@(mac_scc_cha_a_ctrl_offset)
2933	moveb	%a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2934	jra	5b
29356:
2936#endif	/* MAC_USE_SCC_A */
 
2937#ifdef MAC_USE_SCC_B
2938	/* Initialize channel B */
 
 
 
2939	lea	%pc@(L(scc_initable_mac)),%a1
29407:	moveb	%a1@+,%d0
2941	jmi	8f
2942	moveb	%d0,%a0@(mac_scc_cha_b_ctrl_offset)
2943	moveb	%a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2944	jra	7b
29458:
2946#endif	/* MAC_USE_SCC_B */
 
 
2947	jra	L(serial_init_done)
2948L(serial_init_not_mac):
2949#endif	/* CONFIG_MAC */
2950
2951#ifdef CONFIG_Q40
2952	is_not_q40(2f)
2953/* debug output goes into SRAM, so we don't do it unless requested
2954   - check for '%LX$' signature in SRAM   */
2955	lea	%pc@(q40_mem_cptr),%a1
2956	move.l	#0xff020010,%a1@  /* must be inited - also used by debug=mem */
2957	move.l	#0xff020000,%a1
2958	cmp.b	#'%',%a1@
2959	bne	2f	/*nodbg*/
2960	addq.w	#4,%a1
2961	cmp.b	#'L',%a1@
2962	bne	2f	/*nodbg*/
2963	addq.w	#4,%a1
2964	cmp.b	#'X',%a1@
2965	bne	2f	/*nodbg*/
2966	addq.w	#4,%a1
2967	cmp.b	#'$',%a1@
2968	bne	2f	/*nodbg*/
2969	/* signature OK */
2970	lea	%pc@(L(q40_do_debug)),%a1
2971	tas	%a1@
2972/*nodbg: q40_do_debug is 0 by default*/
29732:
2974#endif
2975
2976#ifdef CONFIG_MVME16x
2977	is_not_mvme16x(L(serial_init_not_mvme16x))
2978	moveb	#0x10,M167_PCSCCMICR
2979	moveb	#0x10,M167_PCSCCTICR
2980	moveb	#0x10,M167_PCSCCRICR
2981	jra	L(serial_init_done)
2982L(serial_init_not_mvme16x):
2983#endif
2984
2985#ifdef CONFIG_APOLLO
2986/* We count on the PROM initializing SIO1 */
2987#endif
2988
2989#ifdef CONFIG_HP300
2990/* We count on the boot loader initialising the UART */
2991#endif
2992
2993L(serial_init_done):
2994func_return	serial_init
2995
2996/*
2997 * Output character on serial port.
2998 */
2999func_start	serial_putc,%d0/%d1/%a0/%a1
3000
3001	movel	ARG1,%d0
3002	cmpib	#'\n',%d0
3003	jbne	1f
3004
3005	/* A little safe recursion is good for the soul */
3006	serial_putc	#'\r'
30071:
3008
3009#ifdef CONFIG_AMIGA
3010	is_not_amiga(2f)
3011	andw	#0x00ff,%d0
3012	oriw	#0x0100,%d0
3013	movel	%pc@(L(custom)),%a0
3014	movew	%d0,%a0@(CUSTOMBASE+C_SERDAT)
30151:	movew	%a0@(CUSTOMBASE+C_SERDATR),%d0
3016	andw	#0x2000,%d0
3017	jeq	1b
3018	jra	L(serial_putc_done)
30192:
3020#endif
3021
3022#ifdef CONFIG_MAC
3023	is_not_mac(5f)
3024#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
3025	movel	%pc@(L(mac_sccbase)),%a1
3026#endif
3027#ifdef MAC_USE_SCC_A
 
30283:	btst	#2,%a1@(mac_scc_cha_a_ctrl_offset)
3029	jeq	3b
3030	moveb	%d0,%a1@(mac_scc_cha_a_data_offset)
3031#endif	/* MAC_USE_SCC_A */
 
3032#ifdef MAC_USE_SCC_B
 
 
 
30334:	btst	#2,%a1@(mac_scc_cha_b_ctrl_offset)
3034	jeq	4b
3035	moveb	%d0,%a1@(mac_scc_cha_b_data_offset)
3036#endif	/* MAC_USE_SCC_B */
 
 
 
3037	jra	L(serial_putc_done)
30385:
3039#endif	/* CONFIG_MAC */
3040
3041#ifdef CONFIG_ATARI
3042	is_not_atari(4f)
3043	movel	%pc@(L(iobase)),%a1
3044#if defined(USE_PRINTER)
30453:	btst	#0,%a1@(LSTMFP_GPIP)
3046	jne	3b
3047	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
3048	moveb	%d0,%a1@(LPSG_WRITE)
3049	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
3050	moveb	%a1@(LPSG_READ),%d0
3051	bclr	#5,%d0
3052	moveb	%d0,%a1@(LPSG_WRITE)
3053	nop
3054	nop
3055	bset	#5,%d0
3056	moveb	%d0,%a1@(LPSG_WRITE)
3057#elif defined(USE_SCC_A) || defined(USE_SCC_B)
30583:	btst	#2,%a1@(LSCC_CTRL)
3059	jeq	3b
3060	moveb	%d0,%a1@(LSCC_DATA)
3061#elif defined(USE_MFP)
30623:	btst	#7,%a1@(LMFP_TSR)
3063	jeq	3b
3064	moveb	%d0,%a1@(LMFP_UDR)
3065#endif
3066	jra	L(serial_putc_done)
30674:
3068#endif	/* CONFIG_ATARI */
3069
3070#ifdef CONFIG_MVME147
3071	is_not_mvme147(2f)
30721:	btst	#2,M147_SCC_CTRL_A
3073	jeq	1b
3074	moveb	%d0,M147_SCC_DATA_A
3075	jbra	L(serial_putc_done)
30762:
3077#endif
3078
3079#ifdef CONFIG_MVME16x
3080	is_not_mvme16x(2f)
3081	/*
3082	 * If the loader gave us a board type then we can use that to
3083	 * select an appropriate output routine; otherwise we just use
3084	 * the Bug code.  If we have to use the Bug that means the Bug
3085	 * workspace has to be valid, which means the Bug has to use
3086	 * the SRAM, which is non-standard.
3087	 */
3088	moveml	%d0-%d7/%a2-%a6,%sp@-
3089	movel	vme_brdtype,%d1
3090	jeq	1f			| No tag - use the Bug
3091	cmpi	#VME_TYPE_MVME162,%d1
3092	jeq	6f
3093	cmpi	#VME_TYPE_MVME172,%d1
3094	jne	5f
3095	/* 162/172; it's an SCC */
30966:	btst	#2,M162_SCC_CTRL_A
3097	nop
3098	nop
3099	nop
3100	jeq	6b
3101	moveb	#8,M162_SCC_CTRL_A
3102	nop
3103	nop
3104	nop
3105	moveb	%d0,M162_SCC_CTRL_A
3106	jra	3f
31075:
3108	/* 166/167/177; it's a CD2401 */
3109	moveb	#0,M167_CYCAR
3110	moveb	M167_CYIER,%d2
3111	moveb	#0x02,M167_CYIER
31127:
3113	btst	#5,M167_PCSCCTICR
3114	jeq	7b
3115	moveb	M167_PCTPIACKR,%d1
3116	moveb	M167_CYLICR,%d1
3117	jeq	8f
3118	moveb	#0x08,M167_CYTEOIR
3119	jra	7b
31208:
3121	moveb	%d0,M167_CYTDR
3122	moveb	#0,M167_CYTEOIR
3123	moveb	%d2,M167_CYIER
3124	jra	3f
31251:
3126	moveb	%d0,%sp@-
3127	trap	#15
3128	.word	0x0020	/* TRAP 0x020 */
31293:
3130	moveml	%sp@+,%d0-%d7/%a2-%a6
3131	jbra	L(serial_putc_done)
31322:
3133#endif /* CONFIG_MVME16x */
3134
3135#ifdef CONFIG_BVME6000
3136	is_not_bvme6000(2f)
3137	/*
3138	 * The BVME6000 machine has a serial port ...
3139	 */
31401:	btst	#2,BVME_SCC_CTRL_A
3141	jeq	1b
3142	moveb	%d0,BVME_SCC_DATA_A
3143	jbra	L(serial_putc_done)
31442:
3145#endif
3146
3147#ifdef CONFIG_SUN3X
3148	is_not_sun3x(2f)
3149	movel	%d0,-(%sp)
3150	movel	0xFEFE0018,%a1
3151	jbsr	(%a1)
3152	addq	#4,%sp
3153	jbra	L(serial_putc_done)
31542:
3155#endif
3156
3157#ifdef CONFIG_Q40
3158	is_not_q40(2f)
3159	tst.l	%pc@(L(q40_do_debug))	/* only debug if requested */
3160	beq	2f
3161	lea	%pc@(q40_mem_cptr),%a1
3162	move.l	%a1@,%a0
3163	move.b	%d0,%a0@
3164	addq.l	#4,%a0
3165	move.l	%a0,%a1@
3166	jbra    L(serial_putc_done)
31672:
3168#endif
3169
3170#ifdef CONFIG_APOLLO
3171	is_not_apollo(2f)
3172	movl    %pc@(L(iobase)),%a1
3173	moveb	%d0,%a1@(LTHRB0)
31741:      moveb   %a1@(LSRB0),%d0
3175	andb	#0x4,%d0
3176	beq	1b
3177	jbra	L(serial_putc_done)
31782:
3179#endif
3180
3181#ifdef CONFIG_HP300
3182	is_not_hp300(3f)
3183	movl    %pc@(L(iobase)),%a1
3184	addl	%pc@(L(uartbase)),%a1
3185	movel	%pc@(L(uart_scode)),%d1	/* Check the scode */
3186	jmi	3f			/* Unset? Exit */
3187	cmpi	#256,%d1		/* APCI scode? */
3188	jeq	2f
31891:      moveb   %a1@(DCALSR),%d1	/* Output to DCA */
3190	andb	#0x20,%d1
3191	beq	1b
3192	moveb	%d0,%a1@(DCADATA)
3193	jbra	L(serial_putc_done)
31942:	moveb	%a1@(APCILSR),%d1	/* Output to APCI */
3195	andb	#0x20,%d1
3196	beq	2b
3197	moveb	%d0,%a1@(APCIDATA)
3198	jbra	L(serial_putc_done)
31993:
3200#endif
3201
3202#ifdef CONFIG_VIRT
3203	is_not_virt(1f)
3204
3205	movel L(virt_gf_tty_base),%a1
3206	movel %d0,%a1@(GF_PUT_CHAR)
32071:
3208#endif
3209
3210L(serial_putc_done):
3211func_return	serial_putc
3212
3213/*
3214 * Output a string.
3215 */
3216func_start	puts,%d0/%a0
3217
3218	movel	ARG1,%a0
3219	jra	2f
32201:
3221#ifdef CONSOLE_DEBUG
3222	console_putc	%d0
3223#endif
3224#ifdef SERIAL_DEBUG
3225	serial_putc	%d0
3226#endif
32272:	moveb	%a0@+,%d0
3228	jne	1b
3229
3230func_return	puts
3231
3232/*
3233 * Output number in hex notation.
3234 */
3235
3236func_start	putn,%d0-%d2
3237
3238	putc	' '
3239
3240	movel	ARG1,%d0
3241	moveq	#7,%d1
32421:	roll	#4,%d0
3243	move	%d0,%d2
3244	andb	#0x0f,%d2
3245	addb	#'0',%d2
3246	cmpb	#'9',%d2
3247	jls	2f
3248	addb	#'A'-('9'+1),%d2
32492:
3250#ifdef CONSOLE_DEBUG
3251	console_putc	%d2
3252#endif
3253#ifdef SERIAL_DEBUG
3254	serial_putc	%d2
3255#endif
3256	dbra	%d1,1b
3257
3258func_return	putn
3259
3260#ifdef CONFIG_EARLY_PRINTK
3261/*
 
 
3262 *	This routine takes its parameters on the stack.  It then
3263 *	turns around and calls the internal routines.  This routine
3264 *	is used by the boot console.
3265 *
3266 *	The calling parameters are:
3267 *		void debug_cons_nputs(const char *str, unsigned length)
3268 *
3269 *	This routine does NOT understand variable arguments only
3270 *	simple strings!
3271 */
3272ENTRY(debug_cons_nputs)
3273	moveml	%d0/%d1/%a0,%sp@-
3274	movew	%sr,%sp@-
 
3275	ori	#0x0700,%sr
3276	movel	%sp@(18),%a0		/* fetch parameter */
3277	movel	%sp@(22),%d1		/* fetch parameter */
3278	jra	2f
32791:
3280#ifdef CONSOLE_DEBUG
3281	console_putc	%d0
3282#endif
3283#ifdef SERIAL_DEBUG
3284	serial_putc	%d0
3285#endif
3286	subq	#1,%d1
32872:	jeq	3f
3288	moveb	%a0@+,%d0
3289	jne	1b
32903:
3291	movew	%sp@+,%sr
3292	moveml	%sp@+,%d0/%d1/%a0
 
3293	rts
3294#endif /* CONFIG_EARLY_PRINTK */
3295
3296#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3297func_start	set_leds,%d0/%a0
3298	movel	ARG1,%d0
3299#ifdef CONFIG_HP300
3300	is_not_hp300(1f)
3301	movel	%pc@(L(iobase)),%a0
3302	moveb	%d0,%a0@(0x1ffff)
3303	jra	2f
3304#endif
33051:
3306#ifdef CONFIG_APOLLO
3307	movel   %pc@(L(iobase)),%a0
3308	lsll    #8,%d0
3309	eorw    #0xff00,%d0
3310	moveb	%d0,%a0@(LCPUCTRL)
3311#endif
33122:
3313func_return	set_leds
3314#endif
3315
3316#ifdef CONSOLE_DEBUG
3317/*
3318 *	For continuity, see the data alignment
3319 *	to which this structure is tied.
3320 */
3321#define Lconsole_struct_cur_column	0
3322#define Lconsole_struct_cur_row		4
3323#define Lconsole_struct_num_columns	8
3324#define Lconsole_struct_num_rows	12
3325#define Lconsole_struct_left_edge	16
 
3326
3327func_start	console_init,%a0-%a4/%d0-%d7
3328	/*
3329	 *	Some of the register usage that follows
3330	 *		a0 = pointer to boot_info
3331	 *		a1 = pointer to screen
3332	 *		a2 = pointer to console_globals
3333	 *		d3 = pixel width of screen
3334	 *		d4 = pixel height of screen
3335	 *		(d3,d4) ~= (x,y) of a point just below
3336	 *			and to the right of the screen
3337	 *			NOT on the screen!
3338	 *		d5 = number of bytes per scan line
3339	 *		d6 = number of bytes on the entire screen
3340	 */
3341
3342	lea	%pc@(L(console_globals)),%a2
3343	movel	%pc@(L(mac_videobase)),%a1
3344	movel	%pc@(L(mac_rowbytes)),%d5
3345	movel	%pc@(L(mac_dimensions)),%d3	/* -> low byte */
3346	movel	%d3,%d4
3347	swap	%d4		/* -> high byte */
3348	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3349	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3350
3351	movel	%d5,%d6
3352|	subl	#20,%d6
3353	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3354	divul	#8,%d6		/* we'll clear 8 bytes at a time */
3355	moveq	#-1,%d0		/* Mac_black */
3356	subq	#1,%d6
3357
3358L(console_clear_loop):
3359	movel	%d0,%a1@+
3360	movel	%d0,%a1@+
3361	dbra	%d6,L(console_clear_loop)
3362
3363	/* Calculate font size */
3364
3365#if   defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3366	lea	%pc@(font_vga_8x8),%a0
3367#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3368	lea	%pc@(font_vga_8x16),%a0
3369#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3370	lea	%pc@(font_vga_6x11),%a0
3371#elif defined(CONFIG_FONT_8x8) /* default */
3372	lea	%pc@(font_vga_8x8),%a0
3373#else /* no compiled-in font */
3374	lea	0,%a0
3375#endif
3376
3377	/*
3378	 *	At this point we make a shift in register usage
3379	 *	a1 = address of console_font pointer
3380	 */
3381	lea	%pc@(L(console_font)),%a1
3382	movel	%a0,%a1@	/* store pointer to struct fbcon_font_desc in console_font */
3383	tstl	%a0
3384	jeq	1f
3385	lea	%pc@(L(console_font_data)),%a4
3386	movel	%a0@(FONT_DESC_DATA),%d0
3387	subl	#L(console_font),%a1
3388	addl	%a1,%d0
3389	movel	%d0,%a4@
3390
3391	/*
3392	 *	Calculate global maxs
3393	 *	Note - we can use either an
3394	 *	8 x 16 or 8 x 8 character font
3395	 *	6 x 11 also supported
3396	 */
3397		/* ASSERT: a0 = contents of Lconsole_font */
3398	movel	%d3,%d0				/* screen width in pixels */
3399	divul	%a0@(FONT_DESC_WIDTH),%d0	/* d0 = max num chars per row */
3400
3401	movel	%d4,%d1				/* screen height in pixels */
3402	divul	%a0@(FONT_DESC_HEIGHT),%d1	/* d1 = max num rows */
3403
3404	movel	%d0,%a2@(Lconsole_struct_num_columns)
3405	movel	%d1,%a2@(Lconsole_struct_num_rows)
3406
3407	/*
3408	 *	Clear the current row and column
3409	 */
3410	clrl	%a2@(Lconsole_struct_cur_column)
3411	clrl	%a2@(Lconsole_struct_cur_row)
3412	clrl	%a2@(Lconsole_struct_left_edge)
3413
3414	/*
3415	 * Initialization is complete
3416	 */
34171:
3418func_return	console_init
3419
3420#ifdef CONFIG_LOGO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3421func_start	console_put_penguin,%a0-%a1/%d0-%d7
3422	/*
3423	 *	Get 'that_penguin' onto the screen in the upper right corner
3424	 *	penguin is 64 x 74 pixels, align against right edge of screen
3425	 */
3426	lea	%pc@(L(mac_dimensions)),%a0
3427	movel	%a0@,%d0
3428	andil	#0xffff,%d0
3429	subil	#64,%d0		/* snug up against the right edge */
3430	clrl	%d1		/* start at the top */
3431	movel	#73,%d7
3432	lea	%pc@(L(that_penguin)),%a1
3433L(console_penguin_row):
3434	movel	#31,%d6
3435L(console_penguin_pixel_pair):
3436	moveb	%a1@,%d2
3437	lsrb	#4,%d2
3438	console_plot_pixel %d0,%d1,%d2
3439	addq	#1,%d0
3440	moveb	%a1@+,%d2
3441	console_plot_pixel %d0,%d1,%d2
3442	addq	#1,%d0
3443	dbra	%d6,L(console_penguin_pixel_pair)
3444
3445	subil	#64,%d0
3446	addq	#1,%d1
3447	dbra	%d7,L(console_penguin_row)
3448
3449func_return	console_put_penguin
3450
3451/* include penguin bitmap */
3452L(that_penguin):
3453#include "../mac/mac_penguin.S"
3454#endif
3455
3456	/*
3457	 * Calculate source and destination addresses
3458	 *	output	a1 = dest
3459	 *		a2 = source
3460	 */
3461
3462func_start	console_scroll,%a0-%a4/%d0-%d7
3463	lea	%pc@(L(mac_videobase)),%a0
3464	movel	%a0@,%a1
3465	movel	%a1,%a2
3466	lea	%pc@(L(mac_rowbytes)),%a0
3467	movel	%a0@,%d5
3468	movel	%pc@(L(console_font)),%a0
3469	tstl	%a0
3470	jeq	1f
3471	mulul	%a0@(FONT_DESC_HEIGHT),%d5	/* account for # scan lines per character */
3472	addal	%d5,%a2
3473
3474	/*
3475	 * Get dimensions
3476	 */
3477	lea	%pc@(L(mac_dimensions)),%a0
3478	movel	%a0@,%d3
3479	movel	%d3,%d4
3480	swap	%d4
3481	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3482	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3483
3484	/*
3485	 * Calculate number of bytes to move
3486	 */
3487	lea	%pc@(L(mac_rowbytes)),%a0
3488	movel	%a0@,%d6
3489	movel	%pc@(L(console_font)),%a0
3490	subl	%a0@(FONT_DESC_HEIGHT),%d4	/* we're not scrolling the top row! */
3491	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3492	divul	#32,%d6		/* we'll move 8 longs at a time */
3493	subq	#1,%d6
3494
3495L(console_scroll_loop):
3496	movel	%a2@+,%a1@+
3497	movel	%a2@+,%a1@+
3498	movel	%a2@+,%a1@+
3499	movel	%a2@+,%a1@+
3500	movel	%a2@+,%a1@+
3501	movel	%a2@+,%a1@+
3502	movel	%a2@+,%a1@+
3503	movel	%a2@+,%a1@+
3504	dbra	%d6,L(console_scroll_loop)
3505
3506	lea	%pc@(L(mac_rowbytes)),%a0
3507	movel	%a0@,%d6
3508	movel	%pc@(L(console_font)),%a0
3509	mulul	%a0@(FONT_DESC_HEIGHT),%d6	/* scan line bytes x font height */
3510	divul	#32,%d6			/* we'll move 8 words at a time */
3511	subq	#1,%d6
3512
3513	moveq	#-1,%d0
3514L(console_scroll_clear_loop):
3515	movel	%d0,%a1@+
3516	movel	%d0,%a1@+
3517	movel	%d0,%a1@+
3518	movel	%d0,%a1@+
3519	movel	%d0,%a1@+
3520	movel	%d0,%a1@+
3521	movel	%d0,%a1@+
3522	movel	%d0,%a1@+
3523	dbra	%d6,L(console_scroll_clear_loop)
3524
35251:
3526func_return	console_scroll
3527
3528
3529func_start	console_putc,%a0/%a1/%d0-%d7
3530
3531	is_not_mac(L(console_exit))
3532	tstl	%pc@(L(console_font))
3533	jeq	L(console_exit)
3534
3535	/* Output character in d7 on console.
3536	 */
3537	movel	ARG1,%d7
3538	cmpib	#'\n',%d7
3539	jbne	1f
3540
3541	/* A little safe recursion is good for the soul */
3542	console_putc	#'\r'
35431:
3544	lea	%pc@(L(console_globals)),%a0
3545
3546	cmpib	#10,%d7
3547	jne	L(console_not_lf)
3548	movel	%a0@(Lconsole_struct_cur_row),%d0
3549	addil	#1,%d0
3550	movel	%d0,%a0@(Lconsole_struct_cur_row)
3551	movel	%a0@(Lconsole_struct_num_rows),%d1
3552	cmpl	%d1,%d0
3553	jcs	1f
3554	subil	#1,%d0
3555	movel	%d0,%a0@(Lconsole_struct_cur_row)
3556	console_scroll
35571:
3558	jra	L(console_exit)
3559
3560L(console_not_lf):
3561	cmpib	#13,%d7
3562	jne	L(console_not_cr)
3563	clrl	%a0@(Lconsole_struct_cur_column)
3564	jra	L(console_exit)
3565
3566L(console_not_cr):
3567	cmpib	#1,%d7
3568	jne	L(console_not_home)
3569	clrl	%a0@(Lconsole_struct_cur_row)
3570	clrl	%a0@(Lconsole_struct_cur_column)
3571	jra	L(console_exit)
3572
3573/*
3574 *	At this point we know that the %d7 character is going to be
3575 *	rendered on the screen.  Register usage is -
3576 *		a0 = pointer to console globals
3577 *		a1 = font data
3578 *		d0 = cursor column
3579 *		d1 = cursor row to draw the character
3580 *		d7 = character number
3581 */
3582L(console_not_home):
3583	movel	%a0@(Lconsole_struct_cur_column),%d0
3584	addql	#1,%a0@(Lconsole_struct_cur_column)
3585	movel	%a0@(Lconsole_struct_num_columns),%d1
3586	cmpl	%d1,%d0
3587	jcs	1f
3588	console_putc	#'\n'	/* recursion is OK! */
35891:
3590	movel	%a0@(Lconsole_struct_cur_row),%d1
3591
3592	/*
3593	 *	At this point we make a shift in register usage
3594	 *	a0 = address of pointer to font data (fbcon_font_desc)
3595	 */
3596	movel	%pc@(L(console_font)),%a0
3597	movel	%pc@(L(console_font_data)),%a1	/* Load fbcon_font_desc.data into a1 */
3598	andl	#0x000000ff,%d7
3599		/* ASSERT: a0 = contents of Lconsole_font */
3600	mulul	%a0@(FONT_DESC_HEIGHT),%d7	/* d7 = index into font data */
3601	addl	%d7,%a1			/* a1 = points to char image */
3602
3603	/*
3604	 *	At this point we make a shift in register usage
3605	 *	d0 = pixel coordinate, x
3606	 *	d1 = pixel coordinate, y
3607	 *	d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3608	 *	d3 = font scan line data (8 pixels)
3609	 *	d6 = count down for the font's pixel width (8)
3610	 *	d7 = count down for the font's pixel count in height
3611	 */
3612		/* ASSERT: a0 = contents of Lconsole_font */
3613	mulul	%a0@(FONT_DESC_WIDTH),%d0
3614	mulul	%a0@(FONT_DESC_HEIGHT),%d1
3615	movel	%a0@(FONT_DESC_HEIGHT),%d7	/* Load fbcon_font_desc.height into d7 */
3616	subq	#1,%d7
3617L(console_read_char_scanline):
3618	moveb	%a1@+,%d3
3619
3620		/* ASSERT: a0 = contents of Lconsole_font */
3621	movel	%a0@(FONT_DESC_WIDTH),%d6	/* Load fbcon_font_desc.width into d6 */
3622	subql	#1,%d6
3623
3624L(console_do_font_scanline):
3625	lslb	#1,%d3
3626	scsb	%d2		/* convert 1 bit into a byte */
3627	console_plot_pixel %d0,%d1,%d2
3628	addq	#1,%d0
3629	dbra	%d6,L(console_do_font_scanline)
3630
3631		/* ASSERT: a0 = contents of Lconsole_font */
3632	subl	%a0@(FONT_DESC_WIDTH),%d0
3633	addq	#1,%d1
3634	dbra	%d7,L(console_read_char_scanline)
3635
3636L(console_exit):
3637func_return	console_putc
3638
3639	/*
3640	 *	Input:
3641	 *		d0 = x coordinate
3642	 *		d1 = y coordinate
3643	 *		d2 = (bit 0) 1/0 for white/black (!)
3644	 *	All registers are preserved
3645	 */
3646func_start	console_plot_pixel,%a0-%a1/%d0-%d4
3647
3648	movel	%pc@(L(mac_videobase)),%a1
3649	movel	%pc@(L(mac_videodepth)),%d3
3650	movel	ARG1,%d0
3651	movel	ARG2,%d1
3652	mulul	%pc@(L(mac_rowbytes)),%d1
3653	movel	ARG3,%d2
3654
3655	/*
3656	 *	Register usage:
3657	 *		d0 = x coord becomes byte offset into frame buffer
3658	 *		d1 = y coord
3659	 *		d2 = black or white (0/1)
3660	 *		d3 = video depth
3661	 *		d4 = temp of x (d0) for many bit depths
3662	 */
3663L(test_1bit):
3664	cmpb	#1,%d3
3665	jbne	L(test_2bit)
3666	movel	%d0,%d4		/* we need the low order 3 bits! */
3667	divul	#8,%d0
3668	addal	%d0,%a1
3669	addal	%d1,%a1
3670	andb	#7,%d4
3671	eorb	#7,%d4		/* reverse the x-coordinate w/ screen-bit # */
3672	andb	#1,%d2
3673	jbne	L(white_1)
3674	bsetb	%d4,%a1@
3675	jbra	L(console_plot_pixel_exit)
3676L(white_1):
3677	bclrb	%d4,%a1@
3678	jbra	L(console_plot_pixel_exit)
3679
3680L(test_2bit):
3681	cmpb	#2,%d3
3682	jbne	L(test_4bit)
3683	movel	%d0,%d4		/* we need the low order 2 bits! */
3684	divul	#4,%d0
3685	addal	%d0,%a1
3686	addal	%d1,%a1
3687	andb	#3,%d4
3688	eorb	#3,%d4		/* reverse the x-coordinate w/ screen-bit # */
3689	lsll	#1,%d4		/* ! */
3690	andb	#1,%d2
3691	jbne	L(white_2)
3692	bsetb	%d4,%a1@
3693	addq	#1,%d4
3694	bsetb	%d4,%a1@
3695	jbra	L(console_plot_pixel_exit)
3696L(white_2):
3697	bclrb	%d4,%a1@
3698	addq	#1,%d4
3699	bclrb	%d4,%a1@
3700	jbra	L(console_plot_pixel_exit)
3701
3702L(test_4bit):
3703	cmpb	#4,%d3
3704	jbne	L(test_8bit)
3705	movel	%d0,%d4		/* we need the low order bit! */
3706	divul	#2,%d0
3707	addal	%d0,%a1
3708	addal	%d1,%a1
3709	andb	#1,%d4
3710	eorb	#1,%d4
3711	lsll	#2,%d4		/* ! */
3712	andb	#1,%d2
3713	jbne	L(white_4)
3714	bsetb	%d4,%a1@
3715	addq	#1,%d4
3716	bsetb	%d4,%a1@
3717	addq	#1,%d4
3718	bsetb	%d4,%a1@
3719	addq	#1,%d4
3720	bsetb	%d4,%a1@
3721	jbra	L(console_plot_pixel_exit)
3722L(white_4):
3723	bclrb	%d4,%a1@
3724	addq	#1,%d4
3725	bclrb	%d4,%a1@
3726	addq	#1,%d4
3727	bclrb	%d4,%a1@
3728	addq	#1,%d4
3729	bclrb	%d4,%a1@
3730	jbra	L(console_plot_pixel_exit)
3731
3732L(test_8bit):
3733	cmpb	#8,%d3
3734	jbne	L(test_16bit)
3735	addal	%d0,%a1
3736	addal	%d1,%a1
3737	andb	#1,%d2
3738	jbne	L(white_8)
3739	moveb	#0xff,%a1@
3740	jbra	L(console_plot_pixel_exit)
3741L(white_8):
3742	clrb	%a1@
3743	jbra	L(console_plot_pixel_exit)
3744
3745L(test_16bit):
3746	cmpb	#16,%d3
3747	jbne	L(console_plot_pixel_exit)
3748	addal	%d0,%a1
3749	addal	%d0,%a1
3750	addal	%d1,%a1
3751	andb	#1,%d2
3752	jbne	L(white_16)
3753	clrw	%a1@
3754	jbra	L(console_plot_pixel_exit)
3755L(white_16):
3756	movew	#0x0fff,%a1@
3757	jbra	L(console_plot_pixel_exit)
3758
3759L(console_plot_pixel_exit):
3760func_return	console_plot_pixel
3761#endif /* CONSOLE_DEBUG */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3762
 
 
 
 
3763
3764__INITDATA
3765	.align	4
3766
3767m68k_init_mapped_size:
3768	.long	0
3769
3770#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3771    defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3772L(custom):
3773L(iobase):
3774	.long 0
3775#endif
3776
3777#ifdef CONSOLE_DEBUG
3778L(console_globals):
3779	.long	0		/* cursor column */
3780	.long	0		/* cursor row */
3781	.long	0		/* max num columns */
3782	.long	0		/* max num rows */
3783	.long	0		/* left edge */
 
3784L(console_font):
3785	.long	0		/* pointer to console font (struct font_desc) */
3786L(console_font_data):
3787	.long	0		/* pointer to console font data */
3788#endif /* CONSOLE_DEBUG */
3789
3790#if defined(MMU_PRINT)
3791L(mmu_print_data):
3792	.long	0		/* valid flag */
3793	.long	0		/* start logical */
3794	.long	0		/* next logical */
3795	.long	0		/* start physical */
3796	.long	0		/* next physical */
3797#endif /* MMU_PRINT */
3798
3799L(cputype):
3800	.long	0
3801L(mmu_cached_pointer_tables):
3802	.long	0
3803L(mmu_num_pointer_tables):
3804	.long	0
3805L(phys_kernel_start):
3806	.long	0
3807L(kernel_end):
3808	.long	0
3809L(memory_start):
3810	.long	0
3811L(kernel_pgdir_ptr):
3812	.long	0
3813L(temp_mmap_mem):
3814	.long	0
3815
3816#if defined (CONFIG_MVME147)
3817M147_SCC_CTRL_A = 0xfffe3002
3818M147_SCC_DATA_A = 0xfffe3003
3819#endif
3820
3821#if defined (CONFIG_MVME16x)
3822M162_SCC_CTRL_A = 0xfff45005
3823M167_CYCAR = 0xfff450ee
3824M167_CYIER = 0xfff45011
3825M167_CYLICR = 0xfff45026
3826M167_CYTEOIR = 0xfff45085
3827M167_CYTDR = 0xfff450f8
3828M167_PCSCCMICR = 0xfff4201d
3829M167_PCSCCTICR = 0xfff4201e
3830M167_PCSCCRICR = 0xfff4201f
3831M167_PCTPIACKR = 0xfff42025
3832#endif
3833
3834#if defined (CONFIG_BVME6000)
3835BVME_SCC_CTRL_A	= 0xffb0000b
3836BVME_SCC_DATA_A	= 0xffb0000f
3837#endif
3838
3839#if defined(CONFIG_MAC)
 
 
3840L(mac_videobase):
3841	.long	0
3842L(mac_videodepth):
3843	.long	0
3844L(mac_dimensions):
3845	.long	0
3846L(mac_rowbytes):
3847	.long	0
 
3848L(mac_sccbase):
3849	.long	0
3850#endif /* CONFIG_MAC */
 
3851
3852#if defined (CONFIG_APOLLO)
3853LSRB0        = 0x10412
3854LTHRB0       = 0x10416
3855LCPUCTRL     = 0x10100
3856#endif
3857
3858#if defined(CONFIG_HP300)
3859DCADATA	     = 0x11
3860DCALSR	     = 0x1b
3861APCIDATA     = 0x00
3862APCILSR      = 0x14
3863L(uartbase):
3864	.long	0
3865L(uart_scode):
3866	.long	-1
3867#endif
3868
3869__FINIT
3870	.data
3871	.align	4
3872
3873availmem:
3874	.long	0
3875m68k_pgtable_cachemode:
3876	.long	0
3877m68k_supervisor_cachemode:
3878	.long	0
3879#if defined(CONFIG_MVME16x)
3880mvme_bdid:
3881	.long	0,0,0,0,0,0,0,0
3882#endif
3883#if defined(CONFIG_Q40)
3884q40_mem_cptr:
3885	.long	0
3886L(q40_do_debug):
3887	.long	0
3888#endif
3889
3890#if defined(CONFIG_VIRT)
3891GF_PUT_CHAR = 0x00
3892L(virt_gf_tty_base):
3893	.long 0
3894#endif /* CONFIG_VIRT */
v3.1
   1/* -*- mode: asm -*-
 
   2**
   3** head.S -- This file contains the initial boot code for the
   4**	     Linux/68k kernel.
   5**
   6** Copyright 1993 by Hamish Macdonald
   7**
   8** 68040 fixes by Michael Rausch
   9** 68060 fixes by Roman Hodek
  10** MMU cleanup by Randy Thelen
  11** Final MMU cleanup by Roman Zippel
  12**
  13** Atari support by Andreas Schwab, using ideas of Robert de Vries
  14** and Bjoern Brauel
  15** VME Support by Richard Hirst
  16**
  17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
  18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
  19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
  20** 95/11/18 Richard Hirst: Added MVME166 support
  21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
  22**			      Magnum- and FX-alternate ram
  23** 98/04/25 Phil Blundell: added HP300 support
  24** 1998/08/30 David Kilzer: Added support for font_desc structures
  25**            for linux-2.1.115
  26** 9/02/11  Richard Zidlicky: added Q40 support (initial vesion 99/01/01)
  27** 2004/05/13 Kars de Jong: Finalised HP300 support
  28**
  29** This file is subject to the terms and conditions of the GNU General Public
  30** License. See the file README.legal in the main directory of this archive
  31** for more details.
  32**
  33*/
  34
  35/*
  36 * Linux startup code.
  37 *
  38 * At this point, the boot loader has:
  39 * Disabled interrupts
  40 * Disabled caches
  41 * Put us in supervisor state.
  42 *
  43 * The kernel setup code takes the following steps:
  44 * .  Raise interrupt level
  45 * .  Set up initial kernel memory mapping.
  46 *    .  This sets up a mapping of the 4M of memory the kernel is located in.
  47 *    .  It also does a mapping of any initial machine specific areas.
  48 * .  Enable the MMU
  49 * .  Enable cache memories
  50 * .  Jump to kernel startup
  51 *
  52 * Much of the file restructuring was to accomplish:
  53 * 1) Remove register dependency through-out the file.
  54 * 2) Increase use of subroutines to perform functions
  55 * 3) Increase readability of the code
  56 *
  57 * Of course, readability is a subjective issue, so it will never be
  58 * argued that that goal was accomplished.  It was merely a goal.
  59 * A key way to help make code more readable is to give good
  60 * documentation.  So, the first thing you will find is exaustive
  61 * write-ups on the structure of the file, and the features of the
  62 * functional subroutines.
  63 *
  64 * General Structure:
  65 * ------------------
  66 *	Without a doubt the single largest chunk of head.S is spent
  67 * mapping the kernel and I/O physical space into the logical range
  68 * for the kernel.
  69 *	There are new subroutines and data structures to make MMU
  70 * support cleaner and easier to understand.
  71 *	First, you will find a routine call "mmu_map" which maps
  72 * a logical to a physical region for some length given a cache
  73 * type on behalf of the caller.  This routine makes writing the
  74 * actual per-machine specific code very simple.
  75 *	A central part of the code, but not a subroutine in itself,
  76 * is the mmu_init code which is broken down into mapping the kernel
  77 * (the same for all machines) and mapping machine-specific I/O
  78 * regions.
  79 *	Also, there will be a description of engaging the MMU and
  80 * caches.
  81 *	You will notice that there is a chunk of code which
  82 * can emit the entire MMU mapping of the machine.  This is present
  83 * only in debug modes and can be very helpful.
  84 *	Further, there is a new console driver in head.S that is
  85 * also only engaged in debug mode.  Currently, it's only supported
  86 * on the Macintosh class of machines.  However, it is hoped that
  87 * others will plug-in support for specific machines.
  88 *
  89 * ######################################################################
  90 *
  91 * mmu_map
  92 * -------
  93 *	mmu_map was written for two key reasons.  First, it was clear
  94 * that it was very difficult to read the previous code for mapping
  95 * regions of memory.  Second, the Macintosh required such extensive
  96 * memory allocations that it didn't make sense to propagate the
  97 * existing code any further.
  98 *	mmu_map requires some parameters:
  99 *
 100 *	mmu_map (logical, physical, length, cache_type)
 101 *
 102 *	While this essentially describes the function in the abstract, you'll
 103 * find more indepth description of other parameters at the implementation site.
 104 *
 105 * mmu_get_root_table_entry
 106 * ------------------------
 107 * mmu_get_ptr_table_entry
 108 * -----------------------
 109 * mmu_get_page_table_entry
 110 * ------------------------
 111 *
 112 *	These routines are used by other mmu routines to get a pointer into
 113 * a table, if necessary a new table is allocated. These routines are working
 114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
 115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
 116 * so that here also some mmu specific initialization is done. The second page
 117 * at the start of the kernel (the first page is unmapped later) is used for
 118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
 119 * to initialize the init task struct) and since it needs special cache
 120 * settings, it's the easiest to use this page, the rest of the page is used
 121 * for further pointer tables.
 122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
 123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
 124 * to manage page tables in smaller pieces as nearly all mappings have that
 125 * size.
 126 *
 127 * ######################################################################
 128 *
 129 *
 130 * ######################################################################
 131 *
 132 * mmu_engage
 133 * ----------
 134 *	Thanks to a small helping routine enabling the mmu got quite simple
 135 * and there is only one way left. mmu_engage makes a complete a new mapping
 136 * that only includes the absolute necessary to be able to jump to the final
 137 * position and to restore the original mapping.
 138 * As this code doesn't need a transparent translation register anymore this
 139 * means all registers are free to be used by machines that needs them for
 140 * other purposes.
 141 *
 142 * ######################################################################
 143 *
 144 * mmu_print
 145 * ---------
 146 *	This algorithm will print out the page tables of the system as
 147 * appropriate for an 030 or an 040.  This is useful for debugging purposes
 148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
 149 *
 150 * ######################################################################
 151 *
 152 * console_init
 153 * ------------
 154 *	The console is also able to be turned off.  The console in head.S
 155 * is specifically for debugging and can be very useful.  It is surrounded by
 156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
 157 * kernels.  It's basic algorithm is to determine the size of the screen
 158 * (in height/width and bit depth) and then use that information for
 159 * displaying an 8x8 font or an 8x16 (widthxheight).  I prefer the 8x8 for
 160 * debugging so I can see more good data.  But it was trivial to add support
 161 * for both fonts, so I included it.
 162 *	Also, the algorithm for plotting pixels is abstracted so that in
 163 * theory other platforms could add support for different kinds of frame
 164 * buffers.  This could be very useful.
 165 *
 166 * console_put_penguin
 167 * -------------------
 168 *	An important part of any Linux bring up is the penguin and there's
 169 * nothing like getting the Penguin on the screen!  This algorithm will work
 170 * on any machine for which there is a console_plot_pixel.
 171 *
 172 * console_scroll
 173 * --------------
 174 *	My hope is that the scroll algorithm does the right thing on the
 175 * various platforms, but it wouldn't be hard to add the test conditions
 176 * and new code if it doesn't.
 177 *
 178 * console_putc
 179 * -------------
 180 *
 181 * ######################################################################
 182 *
 183 *	Register usage has greatly simplified within head.S. Every subroutine
 184 * saves and restores all registers that it modifies (except it returns a
 185 * value in there of course). So the only register that needs to be initialized
 186 * is the stack pointer.
 187 * All other init code and data is now placed in the init section, so it will
 188 * be automatically freed at the end of the kernel initialization.
 189 *
 190 * ######################################################################
 191 *
 192 * options
 193 * -------
 194 *	There are many options available in a build of this file.  I've
 195 * taken the time to describe them here to save you the time of searching
 196 * for them and trying to understand what they mean.
 197 *
 198 * CONFIG_xxx:	These are the obvious machine configuration defines created
 199 * during configuration.  These are defined in autoconf.h.
 200 *
 201 * CONSOLE:	There is support for head.S console in this file.  This
 202 * console can talk to a Mac frame buffer, but could easily be extrapolated
 203 * to extend it to support other platforms.
 204 *
 205 * TEST_MMU:	This is a test harness for running on any given machine but
 206 * getting an MMU dump for another class of machine.  The classes of machines
 207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
 208 * and any of the models (030, 040, 060, etc.).
 209 *
 210 *	NOTE:	TEST_MMU is NOT permanent!  It is scheduled to be removed
 211 *		When head.S boots on Atari, Amiga, Macintosh, and VME
 212 *		machines.  At that point the underlying logic will be
 213 *		believed to be solid enough to be trusted, and TEST_MMU
 214 *		can be dropped.  Do note that that will clean up the
 215 *		head.S code significantly as large blocks of #if/#else
 216 *		clauses can be removed.
 217 *
 218 * MMU_NOCACHE_KERNEL:	On the Macintosh platform there was an inquiry into
 219 * determing why devices don't appear to work.  A test case was to remove
 220 * the cacheability of the kernel bits.
 221 *
 222 * MMU_PRINT:	There is a routine built into head.S that can display the
 223 * MMU data structures.  It outputs its result through the serial_putc
 224 * interface.  So where ever that winds up driving data, that's where the
 225 * mmu struct will appear.  On the Macintosh that's typically the console.
 226 *
 227 * SERIAL_DEBUG:	There are a series of putc() macro statements
 228 * scattered through out the code to give progress of status to the
 229 * person sitting at the console.  This constant determines whether those
 230 * are used.
 231 *
 232 * DEBUG:	This is the standard DEBUG flag that can be set for building
 233 *		the kernel.  It has the effect adding additional tests into
 234 *		the code.
 235 *
 236 * FONT_6x11:
 237 * FONT_8x8:
 238 * FONT_8x16:
 239 *		In theory these could be determined at run time or handed
 240 *		over by the booter.  But, let's be real, it's a fine hard
 241 *		coded value.  (But, you will notice the code is run-time
 242 *		flexible!)  A pointer to the font's struct font_desc
 243 *		is kept locally in Lconsole_font.  It is used to determine
 244 *		font size information dynamically.
 245 *
 246 * Atari constants:
 247 * USE_PRINTER:	Use the printer port for serial debug.
 248 * USE_SCC_B:	Use the SCC port A (Serial2) for serial debug.
 249 * USE_SCC_A:	Use the SCC port B (Modem2) for serial debug.
 250 * USE_MFP:	Use the ST-MFP port (Modem1) for serial debug.
 251 *
 252 * Macintosh constants:
 253 * MAC_SERIAL_DEBUG:	Turns on serial debug output for the Macintosh.
 254 * MAC_USE_SCC_A:	Use the SCC port A (modem) for serial debug.
 255 * MAC_USE_SCC_B:	Use the SCC port B (printer) for serial debug (default).
 256 */
 257
 258#include <linux/linkage.h>
 259#include <linux/init.h>
 
 260#include <asm/bootinfo.h>
 
 
 
 
 
 
 
 261#include <asm/setup.h>
 262#include <asm/entry.h>
 263#include <asm/pgtable.h>
 264#include <asm/page.h>
 265#include <asm/asm-offsets.h>
 266
 267#ifdef CONFIG_MAC
 
 
 268
 269#include <asm/machw.h>
 270
 271/*
 272 * Macintosh console support
 273 */
 274
 275#ifdef CONFIG_FRAMEBUFFER_CONSOLE
 276#define CONSOLE
 277#define CONSOLE_PENGUIN
 278#endif
 279
 280/*
 281 * Macintosh serial debug support; outputs boot info to the printer
 282 *   and/or modem serial ports
 283 */
 284#undef MAC_SERIAL_DEBUG
 285
 286/*
 287 * Macintosh serial debug port selection; define one or both;
 288 *   requires MAC_SERIAL_DEBUG to be defined
 289 */
 290#define MAC_USE_SCC_A		/* Macintosh modem serial port */
 291#define MAC_USE_SCC_B		/* Macintosh printer serial port */
 292
 293#endif	/* CONFIG_MAC */
 294
 295#undef MMU_PRINT
 296#undef MMU_NOCACHE_KERNEL
 297#define SERIAL_DEBUG
 298#undef DEBUG
 299
 300/*
 301 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
 302 * The 8x8 font is harder to read but fits more on the screen.
 303 */
 304#define FONT_8x8	/* default */
 305/* #define FONT_8x16 */	/* 2nd choice */
 306/* #define FONT_6x11 */	/* 3rd choice */
 307
 308.globl kernel_pg_dir
 309.globl availmem
 
 310.globl m68k_pgtable_cachemode
 311.globl m68k_supervisor_cachemode
 312#ifdef CONFIG_MVME16x
 313.globl mvme_bdid
 314#endif
 315#ifdef CONFIG_Q40
 316.globl q40_mem_cptr
 317#endif
 318
 319CPUTYPE_040	= 1	/* indicates an 040 */
 320CPUTYPE_060	= 2	/* indicates an 060 */
 321CPUTYPE_0460	= 3	/* if either above are set, this is set */
 322CPUTYPE_020	= 4	/* indicates an 020 */
 323
 324/* Translation control register */
 325TC_ENABLE = 0x8000
 326TC_PAGE8K = 0x4000
 327TC_PAGE4K = 0x0000
 328
 329/* Transparent translation registers */
 330TTR_ENABLE	= 0x8000	/* enable transparent translation */
 331TTR_ANYMODE	= 0x4000	/* user and kernel mode access */
 332TTR_KERNELMODE	= 0x2000	/* only kernel mode access */
 333TTR_USERMODE	= 0x0000	/* only user mode access */
 334TTR_CI		= 0x0400	/* inhibit cache */
 335TTR_RW		= 0x0200	/* read/write mode */
 336TTR_RWM		= 0x0100	/* read/write mask */
 337TTR_FCB2	= 0x0040	/* function code base bit 2 */
 338TTR_FCB1	= 0x0020	/* function code base bit 1 */
 339TTR_FCB0	= 0x0010	/* function code base bit 0 */
 340TTR_FCM2	= 0x0004	/* function code mask bit 2 */
 341TTR_FCM1	= 0x0002	/* function code mask bit 1 */
 342TTR_FCM0	= 0x0001	/* function code mask bit 0 */
 343
 344/* Cache Control registers */
 345CC6_ENABLE_D	= 0x80000000	/* enable data cache (680[46]0) */
 346CC6_FREEZE_D	= 0x40000000	/* freeze data cache (68060) */
 347CC6_ENABLE_SB	= 0x20000000	/* enable store buffer (68060) */
 348CC6_PUSH_DPI	= 0x10000000	/* disable CPUSH invalidation (68060) */
 349CC6_HALF_D	= 0x08000000	/* half-cache mode for data cache (68060) */
 350CC6_ENABLE_B	= 0x00800000	/* enable branch cache (68060) */
 351CC6_CLRA_B	= 0x00400000	/* clear all entries in branch cache (68060) */
 352CC6_CLRU_B	= 0x00200000	/* clear user entries in branch cache (68060) */
 353CC6_ENABLE_I	= 0x00008000	/* enable instruction cache (680[46]0) */
 354CC6_FREEZE_I	= 0x00004000	/* freeze instruction cache (68060) */
 355CC6_HALF_I	= 0x00002000	/* half-cache mode for instruction cache (68060) */
 356CC3_ALLOC_WRITE	= 0x00002000	/* write allocate mode(68030) */
 357CC3_ENABLE_DB	= 0x00001000	/* enable data burst (68030) */
 358CC3_CLR_D	= 0x00000800	/* clear data cache (68030) */
 359CC3_CLRE_D	= 0x00000400	/* clear entry in data cache (68030) */
 360CC3_FREEZE_D	= 0x00000200	/* freeze data cache (68030) */
 361CC3_ENABLE_D	= 0x00000100	/* enable data cache (68030) */
 362CC3_ENABLE_IB	= 0x00000010	/* enable instruction burst (68030) */
 363CC3_CLR_I	= 0x00000008	/* clear instruction cache (68030) */
 364CC3_CLRE_I	= 0x00000004	/* clear entry in instruction cache (68030) */
 365CC3_FREEZE_I	= 0x00000002	/* freeze instruction cache (68030) */
 366CC3_ENABLE_I	= 0x00000001	/* enable instruction cache (68030) */
 367
 368/* Miscellaneous definitions */
 369PAGESIZE	= 4096
 370PAGESHIFT	= 12
 371
 372ROOT_TABLE_SIZE	= 128
 373PTR_TABLE_SIZE	= 128
 374PAGE_TABLE_SIZE	= 64
 375ROOT_INDEX_SHIFT = 25
 376PTR_INDEX_SHIFT  = 18
 377PAGE_INDEX_SHIFT = 12
 378
 379#ifdef DEBUG
 380/* When debugging use readable names for labels */
 381#ifdef __STDC__
 382#define L(name) .head.S.##name
 383#else
 384#define L(name) .head.S./**/name
 385#endif
 386#else
 387#ifdef __STDC__
 388#define L(name) .L##name
 389#else
 390#define L(name) .L/**/name
 391#endif
 392#endif
 393
 394/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
 395#ifndef __INITDATA
 396#define __INITDATA	.data
 397#define __FINIT		.previous
 398#endif
 399
 400/* Several macros to make the writing of subroutines easier:
 401 * - func_start marks the beginning of the routine which setups the frame
 402 *   register and saves the registers, it also defines another macro
 403 *   to automatically restore the registers again.
 404 * - func_return marks the end of the routine and simply calls the prepared
 405 *   macro to restore registers and jump back to the caller.
 406 * - func_define generates another macro to automatically put arguments
 407 *   onto the stack call the subroutine and cleanup the stack again.
 408 */
 409
 410/* Within subroutines these macros can be used to access the arguments
 411 * on the stack. With STACK some allocated memory on the stack can be
 412 * accessed and ARG0 points to the return address (used by mmu_engage).
 413 */
 414#define	STACK	%a6@(stackstart)
 415#define ARG0	%a6@(4)
 416#define ARG1	%a6@(8)
 417#define ARG2	%a6@(12)
 418#define ARG3	%a6@(16)
 419#define ARG4	%a6@(20)
 420
 421.macro	func_start	name,saveregs,stack=0
 422L(\name):
 423	linkw	%a6,#-\stack
 424	moveml	\saveregs,%sp@-
 425.set	stackstart,-\stack
 426
 427.macro	func_return_\name
 428	moveml	%sp@+,\saveregs
 429	unlk	%a6
 430	rts
 431.endm
 432.endm
 433
 434.macro	func_return	name
 435	func_return_\name
 436.endm
 437
 438.macro	func_call	name
 439	jbsr	L(\name)
 440.endm
 441
 442.macro	move_stack	nr,arg1,arg2,arg3,arg4
 443.if	\nr
 444	move_stack	"(\nr-1)",\arg2,\arg3,\arg4
 445	movel	\arg1,%sp@-
 446.endif
 447.endm
 448
 449.macro	func_define	name,nr=0
 450.macro	\name	arg1,arg2,arg3,arg4
 451	move_stack	\nr,\arg1,\arg2,\arg3,\arg4
 452	func_call	\name
 453.if	\nr
 454	lea	%sp@(\nr*4),%sp
 455.endif
 456.endm
 457.endm
 458
 459func_define	mmu_map,4
 460func_define	mmu_map_tt,4
 461func_define	mmu_fixup_page_mmu_cache,1
 462func_define	mmu_temp_map,2
 463func_define	mmu_engage
 464func_define	mmu_get_root_table_entry,1
 465func_define	mmu_get_ptr_table_entry,2
 466func_define	mmu_get_page_table_entry,2
 467func_define	mmu_print
 468func_define	get_new_page
 469#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
 470func_define	set_leds
 471#endif
 472
 473.macro	mmu_map_eq	arg1,arg2,arg3
 474	mmu_map	\arg1,\arg1,\arg2,\arg3
 475.endm
 476
 477.macro	get_bi_record	record
 478	pea	\record
 479	func_call	get_bi_record
 480	addql	#4,%sp
 481.endm
 482
 483func_define	serial_putc,1
 484func_define	console_putc,1
 485
 486func_define	console_init
 487func_define	console_put_stats
 488func_define	console_put_penguin
 489func_define	console_plot_pixel,3
 490func_define	console_scroll
 491
 492.macro	putc	ch
 493#if defined(CONSOLE) || defined(SERIAL_DEBUG)
 494	pea	\ch
 495#endif
 496#ifdef CONSOLE
 497	func_call	console_putc
 498#endif
 499#ifdef SERIAL_DEBUG
 500	func_call	serial_putc
 501#endif
 502#if defined(CONSOLE) || defined(SERIAL_DEBUG)
 503	addql	#4,%sp
 504#endif
 505.endm
 506
 507.macro	dputc	ch
 508#ifdef DEBUG
 509	putc	\ch
 510#endif
 511.endm
 512
 513func_define	putn,1
 514
 515.macro	dputn	nr
 516#ifdef DEBUG
 517	putn	\nr
 518#endif
 519.endm
 520
 521.macro	puts		string
 522#if defined(CONSOLE) || defined(SERIAL_DEBUG)
 523	__INITDATA
 524.Lstr\@:
 525	.string	"\string"
 526	__FINIT
 527	pea	%pc@(.Lstr\@)
 528	func_call	puts
 529	addql	#4,%sp
 530#endif
 531.endm
 532
 533.macro	dputs	string
 534#ifdef DEBUG
 535	puts	"\string"
 536#endif
 537.endm
 538
 539#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
 540#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
 541#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
 542#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
 543#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
 544#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
 545#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
 546#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
 547#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
 548#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
 549#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
 550#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
 551#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
 
 552
 553#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
 554			jeq 42f; \
 555			cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
 556			jne lab ;\
 557		42:\
 558
 559#define is_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
 560#define is_not_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
 561#define is_040(lab)		btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
 562#define is_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
 563#define is_not_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
 564#define is_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
 565#define is_not_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
 566
 567/* On the HP300 we use the on-board LEDs for debug output before
 568   the console is running.  Writing a 1 bit turns the corresponding LED
 569   _off_ - on the 340 bit 7 is towards the back panel of the machine.  */
 570.macro	leds	mask
 571#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
 572	hasnt_leds(.Lled\@)
 573	pea	\mask
 574	func_call	set_leds
 575	addql	#4,%sp
 576.Lled\@:
 577#endif
 578.endm
 579
 580__HEAD
 581ENTRY(_stext)
 582/*
 583 * Version numbers of the bootinfo interface
 584 * The area from _stext to _start will later be used as kernel pointer table
 585 */
 586	bras	1f	/* Jump over bootinfo version numbers */
 587
 588	.long	BOOTINFOV_MAGIC
 589	.long	MACH_AMIGA, AMIGA_BOOTI_VERSION
 590	.long	MACH_ATARI, ATARI_BOOTI_VERSION
 591	.long	MACH_MVME147, MVME147_BOOTI_VERSION
 592	.long	MACH_MVME16x, MVME16x_BOOTI_VERSION
 593	.long	MACH_BVME6000, BVME6000_BOOTI_VERSION
 594	.long	MACH_MAC, MAC_BOOTI_VERSION
 595	.long	MACH_Q40, Q40_BOOTI_VERSION
 596	.long	MACH_HP300, HP300_BOOTI_VERSION
 597	.long	0
 5981:	jra	__start
 599
 600.equ	kernel_pg_dir,_stext
 601
 602.equ	.,_stext+PAGESIZE
 603
 604ENTRY(_start)
 605	jra	__start
 606__INIT
 607ENTRY(__start)
 608/*
 609 * Setup initial stack pointer
 610 */
 611	lea	%pc@(_stext),%sp
 612
 613/*
 614 * Record the CPU and machine type.
 615 */
 616	get_bi_record	BI_MACHTYPE
 617	lea	%pc@(m68k_machtype),%a1
 618	movel	%a0@,%a1@
 619
 620	get_bi_record	BI_FPUTYPE
 621	lea	%pc@(m68k_fputype),%a1
 622	movel	%a0@,%a1@
 623
 624	get_bi_record	BI_MMUTYPE
 625	lea	%pc@(m68k_mmutype),%a1
 626	movel	%a0@,%a1@
 627
 628	get_bi_record	BI_CPUTYPE
 629	lea	%pc@(m68k_cputype),%a1
 630	movel	%a0@,%a1@
 631
 632	leds	0x1
 633
 634#ifdef CONFIG_MAC
 635/*
 636 * For Macintosh, we need to determine the display parameters early (at least
 637 * while debugging it).
 638 */
 639
 640	is_not_mac(L(test_notmac))
 641
 642	get_bi_record	BI_MAC_VADDR
 643	lea	%pc@(L(mac_videobase)),%a1
 644	movel	%a0@,%a1@
 645
 646	get_bi_record	BI_MAC_VDEPTH
 647	lea	%pc@(L(mac_videodepth)),%a1
 648	movel	%a0@,%a1@
 649
 650	get_bi_record	BI_MAC_VDIM
 651	lea	%pc@(L(mac_dimensions)),%a1
 652	movel	%a0@,%a1@
 653
 654	get_bi_record	BI_MAC_VROW
 655	lea	%pc@(L(mac_rowbytes)),%a1
 656	movel	%a0@,%a1@
 657
 658#ifdef MAC_SERIAL_DEBUG
 659	get_bi_record	BI_MAC_SCCBASE
 660	lea	%pc@(L(mac_sccbase)),%a1
 661	movel	%a0@,%a1@
 662#endif /* MAC_SERIAL_DEBUG */
 663
 664#if 0
 665	/*
 666	 * Clear the screen
 667	 */
 668	lea	%pc@(L(mac_videobase)),%a0
 669	movel	%a0@,%a1
 670	lea	%pc@(L(mac_dimensions)),%a0
 671	movel	%a0@,%d1
 672	swap	%d1		/* #rows is high bytes */
 673	andl	#0xFFFF,%d1	/* rows */
 674	subl	#10,%d1
 675	lea	%pc@(L(mac_rowbytes)),%a0
 676loopy2:
 677	movel	%a0@,%d0
 678	subql	#1,%d0
 679loopx2:
 680	moveb	#0x55, %a1@+
 681	dbra	%d0,loopx2
 682	dbra	%d1,loopy2
 683#endif
 684
 685L(test_notmac):
 686#endif /* CONFIG_MAC */
 687
 
 
 
 
 
 
 
 
 688
 689/*
 690 * There are ultimately two pieces of information we want for all kinds of
 691 * processors CpuType and CacheBits.  The CPUTYPE was passed in from booter
 692 * and is converted here from a booter type definition to a separate bit
 693 * number which allows for the standard is_0x0 macro tests.
 694 */
 695	movel	%pc@(m68k_cputype),%d0
 696	/*
 697	 * Assume it's an 030
 698	 */
 699	clrl	%d1
 700
 701	/*
 702	 * Test the BootInfo cputype for 060
 703	 */
 704	btst	#CPUB_68060,%d0
 705	jeq	1f
 706	bset	#CPUTYPE_060,%d1
 707	bset	#CPUTYPE_0460,%d1
 708	jra	3f
 7091:
 710	/*
 711	 * Test the BootInfo cputype for 040
 712	 */
 713	btst	#CPUB_68040,%d0
 714	jeq	2f
 715	bset	#CPUTYPE_040,%d1
 716	bset	#CPUTYPE_0460,%d1
 717	jra	3f
 7182:
 719	/*
 720	 * Test the BootInfo cputype for 020
 721	 */
 722	btst	#CPUB_68020,%d0
 723	jeq	3f
 724	bset	#CPUTYPE_020,%d1
 725	jra	3f
 7263:
 727	/*
 728	 * Record the cpu type
 729	 */
 730	lea	%pc@(L(cputype)),%a0
 731	movel	%d1,%a0@
 732
 733	/*
 734	 * NOTE:
 735	 *
 736	 * Now the macros are valid:
 737	 *	is_040_or_060
 738	 *	is_not_040_or_060
 739	 *	is_040
 740	 *	is_060
 741	 *	is_not_060
 742	 */
 743
 744	/*
 745	 * Determine the cache mode for pages holding MMU tables
 746	 * and for supervisor mode, unused for '020 and '030
 747	 */
 748	clrl	%d0
 749	clrl	%d1
 750
 751	is_not_040_or_060(L(save_cachetype))
 752
 753	/*
 754	 * '040 or '060
 755	 * d1 := cacheable write-through
 756	 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
 757	 * but we have been using write-through since at least 2.0.29 so I
 758	 * guess it is OK.
 759	 */
 760#ifdef CONFIG_060_WRITETHROUGH
 761	/*
 762	 * If this is a 68060 board using drivers with cache coherency
 763	 * problems, then supervisor memory accesses need to be write-through
 764	 * also; otherwise, we want copyback.
 765	 */
 766
 767	is_not_060(1f)
 768	movel	#_PAGE_CACHE040W,%d0
 769	jra	L(save_cachetype)
 770#endif /* CONFIG_060_WRITETHROUGH */
 7711:
 772	movew	#_PAGE_CACHE040,%d0
 773
 774	movel	#_PAGE_CACHE040W,%d1
 775
 776L(save_cachetype):
 777	/* Save cache mode for supervisor mode and page tables
 778	 */
 779	lea	%pc@(m68k_supervisor_cachemode),%a0
 780	movel	%d0,%a0@
 781	lea	%pc@(m68k_pgtable_cachemode),%a0
 782	movel	%d1,%a0@
 783
 784/*
 785 * raise interrupt level
 786 */
 787	movew	#0x2700,%sr
 788
 789/*
 790   If running on an Atari, determine the I/O base of the
 791   serial port and test if we are running on a Medusa or Hades.
 792   This test is necessary here, because on the Hades the serial
 793   port is only accessible in the high I/O memory area.
 794
 795   The test whether it is a Medusa is done by writing to the byte at
 796   phys. 0x0. This should result in a bus error on all other machines.
 797
 798   ...should, but doesn't. The Afterburner040 for the Falcon has the
 799   same behaviour (0x0..0x7 are no ROM shadow). So we have to do
 800   another test to distinguish Medusa and AB040. This is a
 801   read attempt for 0x00ff82fe phys. that should bus error on a Falcon
 802   (+AB040), but is in the range where the Medusa always asserts DTACK.
 803
 804   The test for the Hades is done by reading address 0xb0000000. This
 805   should give a bus error on the Medusa.
 806 */
 807
 808#ifdef CONFIG_ATARI
 809	is_not_atari(L(notypetest))
 810
 811	/* get special machine type (Medusa/Hades/AB40) */
 812	moveq	#0,%d3 /* default if tag doesn't exist */
 813	get_bi_record	BI_ATARI_MCH_TYPE
 814	tstl	%d0
 815	jbmi	1f
 816	movel	%a0@,%d3
 817	lea	%pc@(atari_mch_type),%a0
 818	movel	%d3,%a0@
 8191:
 820	/* On the Hades, the iobase must be set up before opening the
 821	 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
 822	moveq	#0,%d0
 823	cmpl	#ATARI_MACH_HADES,%d3
 824	jbne	1f
 825	movel	#0xff000000,%d0		/* Hades I/O base addr: 0xff000000 */
 8261:	lea     %pc@(L(iobase)),%a0
 827	movel   %d0,%a0@
 828
 829L(notypetest):
 830#endif
 831
 832#ifdef CONFIG_VME
 833	is_mvme147(L(getvmetype))
 834	is_bvme6000(L(getvmetype))
 835	is_not_mvme16x(L(gvtdone))
 836
 837	/* See if the loader has specified the BI_VME_TYPE tag.  Recent
 838	 * versions of VMELILO and TFTPLILO do this.  We have to do this
 839	 * early so we know how to handle console output.  If the tag
 840	 * doesn't exist then we use the Bug for output on MVME16x.
 841	 */
 842L(getvmetype):
 843	get_bi_record	BI_VME_TYPE
 844	tstl	%d0
 845	jbmi	1f
 846	movel	%a0@,%d3
 847	lea	%pc@(vme_brdtype),%a0
 848	movel	%d3,%a0@
 8491:
 850#ifdef CONFIG_MVME16x
 851	is_not_mvme16x(L(gvtdone))
 852
 853	/* Need to get the BRD_ID info to differentiate between 162, 167,
 854	 * etc.  This is available as a BI_VME_BRDINFO tag with later
 855	 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
 856	 */
 857	get_bi_record	BI_VME_BRDINFO
 858	tstl	%d0
 859	jpl	1f
 860
 861	/* Get pointer to board ID data from Bug */
 862	movel	%d2,%sp@-
 863	trap	#15
 864	.word	0x70		/* trap 0x70 - .BRD_ID */
 865	movel	%sp@+,%a0
 8661:
 867	lea	%pc@(mvme_bdid),%a1
 868	/* Structure is 32 bytes long */
 869	movel	%a0@+,%a1@+
 870	movel	%a0@+,%a1@+
 871	movel	%a0@+,%a1@+
 872	movel	%a0@+,%a1@+
 873	movel	%a0@+,%a1@+
 874	movel	%a0@+,%a1@+
 875	movel	%a0@+,%a1@+
 876	movel	%a0@+,%a1@+
 877#endif
 878
 879L(gvtdone):
 880
 881#endif
 882
 883#ifdef CONFIG_HP300
 884	is_not_hp300(L(nothp))
 885
 886	/* Get the address of the UART for serial debugging */
 887	get_bi_record	BI_HP300_UART_ADDR
 888	tstl	%d0
 889	jbmi	1f
 890	movel	%a0@,%d3
 891	lea	%pc@(L(uartbase)),%a0
 892	movel	%d3,%a0@
 893	get_bi_record	BI_HP300_UART_SCODE
 894	tstl	%d0
 895	jbmi	1f
 896	movel	%a0@,%d3
 897	lea	%pc@(L(uart_scode)),%a0
 898	movel	%d3,%a0@
 8991:
 900L(nothp):
 901#endif
 902
 903/*
 904 * Initialize serial port
 905 */
 906	jbsr	L(serial_init)
 907
 908/*
 909 * Initialize console
 910 */
 911#ifdef CONFIG_MAC
 912	is_not_mac(L(nocon))
 913#ifdef CONSOLE
 914	console_init
 915#ifdef CONSOLE_PENGUIN
 916	console_put_penguin
 917#endif	/* CONSOLE_PENGUIN */
 918	console_put_stats
 919#endif	/* CONSOLE */
 920L(nocon):
 921#endif	/* CONFIG_MAC */
 922
 923
 924	putc	'\n'
 925	putc	'A'
 926	leds	0x2
 927	dputn	%pc@(L(cputype))
 928	dputn	%pc@(m68k_supervisor_cachemode)
 929	dputn	%pc@(m68k_pgtable_cachemode)
 930	dputc	'\n'
 931
 932/*
 933 * Save physical start address of kernel
 934 */
 935	lea	%pc@(L(phys_kernel_start)),%a0
 936	lea	%pc@(_stext),%a1
 937	subl	#_stext,%a1
 938	addl	#PAGE_OFFSET,%a1
 939	movel	%a1,%a0@
 940
 941	putc	'B'
 942
 943	leds	0x4
 944
 945/*
 946 *	mmu_init
 947 *
 948 *	This block of code does what's necessary to map in the various kinds
 949 *	of machines for execution of Linux.
 950 *	First map the first 4 MB of kernel code & data
 951 */
 952
 953	mmu_map	#PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
 
 
 
 
 
 
 
 
 
 
 
 
 954		%pc@(m68k_supervisor_cachemode)
 955
 956	putc	'C'
 957
 958#ifdef CONFIG_AMIGA
 959
 960L(mmu_init_amiga):
 961
 962	is_not_amiga(L(mmu_init_not_amiga))
 963/*
 964 * mmu_init_amiga
 965 */
 966
 967	putc	'D'
 968
 969	is_not_040_or_060(1f)
 970
 971	/*
 972	 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
 973	 */
 974	mmu_map		#0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
 975	/*
 976	 * Map the Zorro III I/O space with transparent translation
 977	 * for frame buffer memory etc.
 978	 */
 979	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
 980
 981	jbra	L(mmu_init_done)
 982
 9831:
 984	/*
 985	 * 030:	Map the 32Meg range physical 0x0 up to logical 0x8000.0000
 986	 */
 987	mmu_map		#0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
 988	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
 989
 990	jbra	L(mmu_init_done)
 991
 992L(mmu_init_not_amiga):
 993#endif
 994
 995#ifdef CONFIG_ATARI
 996
 997L(mmu_init_atari):
 998
 999	is_not_atari(L(mmu_init_not_atari))
1000
1001	putc	'E'
1002
1003/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
1004   the last 16 MB of virtual address space to the first 16 MB (i.e.
1005   0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
1006   needed. I/O ranges are marked non-cachable.
1007
1008   For the Medusa it is better to map the I/O region transparently
1009   (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
1010   accessible only in the high area.
1011
1012   On the Hades all I/O registers are only accessible in the high
1013   area.
1014*/
1015
1016	/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1017	moveq	#0,%d0
1018	movel	%pc@(atari_mch_type),%d3
1019	cmpl	#ATARI_MACH_MEDUSA,%d3
1020	jbeq	2f
1021	cmpl	#ATARI_MACH_HADES,%d3
1022	jbne	1f
10232:	movel	#0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
10241:	movel	%d0,%d3
1025
1026	is_040_or_060(L(spata68040))
1027
1028	/* Map everything non-cacheable, though not all parts really
1029	 * need to disable caches (crucial only for 0xff8000..0xffffff
1030	 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1031	 * isn't really used, except for sometimes peeking into the
1032	 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1033	 * this. */
1034	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1035
1036	jbra	L(mmu_init_done)
1037
1038L(spata68040):
1039
1040	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1041
1042	jbra	L(mmu_init_done)
1043
1044L(mmu_init_not_atari):
1045#endif
1046
1047#ifdef CONFIG_Q40
1048	is_not_q40(L(notq40))
1049	/*
1050	 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1051	 * non-cached serialized etc..
1052	 * this includes master chip, DAC, RTC and ISA ports
1053	 * 0xfe000000-0xfeffffff is for screen and ROM
1054	 */
1055
1056	putc    'Q'
1057
1058	mmu_map_tt	#0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1059	mmu_map_tt	#1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1060
1061	jbra	L(mmu_init_done)
1062
1063L(notq40):
1064#endif
1065
1066#ifdef CONFIG_HP300
1067	is_not_hp300(L(nothp300))
1068
1069	/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1070	 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1071	 * The ROM mapping is needed because the LEDs are mapped there too.
1072	 */
1073
1074	is_040(1f)
1075
1076	/*
1077	 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1078	 */
1079	mmu_map	#0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1080
1081	jbra	L(mmu_init_done)
1082
10831:
1084	/*
1085	 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1086	 */
1087	mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1088
1089	jbra	L(mmu_init_done)
1090
1091L(nothp300):
1092#endif /* CONFIG_HP300 */
1093
1094#ifdef CONFIG_MVME147
1095
1096	is_not_mvme147(L(not147))
1097
1098	/*
1099	 * On MVME147 we have already created kernel page tables for
1100	 * 4MB of RAM at address 0, so now need to do a transparent
1101	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1102	 * so we can access on-board i/o areas.
1103	 */
1104
1105	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1106
1107	jbra	L(mmu_init_done)
1108
1109L(not147):
1110#endif /* CONFIG_MVME147 */
1111
1112#ifdef CONFIG_MVME16x
1113
1114	is_not_mvme16x(L(not16x))
1115
1116	/*
1117	 * On MVME16x we have already created kernel page tables for
1118	 * 4MB of RAM at address 0, so now need to do a transparent
1119	 * mapping of the top of memory space.  Make it 0.5GByte for now.
1120	 * Supervisor only access, so transparent mapping doesn't
1121	 * clash with User code virtual address space.
1122	 * this covers IO devices, PROM and SRAM.  The PROM and SRAM
1123	 * mapping is needed to allow 167Bug to run.
1124	 * IO is in the range 0xfff00000 to 0xfffeffff.
1125	 * PROM is 0xff800000->0xffbfffff and SRAM is
1126	 * 0xffe00000->0xffe1ffff.
1127	 */
1128
1129	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1130
1131	jbra	L(mmu_init_done)
1132
1133L(not16x):
1134#endif	/* CONFIG_MVME162 | CONFIG_MVME167 */
1135
1136#ifdef CONFIG_BVME6000
1137
1138	is_not_bvme6000(L(not6000))
1139
1140	/*
1141	 * On BVME6000 we have already created kernel page tables for
1142	 * 4MB of RAM at address 0, so now need to do a transparent
1143	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1144	 * so we can access on-board i/o areas.
1145	 * Supervisor only access, so transparent mapping doesn't
1146	 * clash with User code virtual address space.
1147	 */
1148
1149	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1150
1151	jbra	L(mmu_init_done)
1152
1153L(not6000):
1154#endif /* CONFIG_BVME6000 */
1155
1156/*
1157 * mmu_init_mac
1158 *
1159 * The Macintosh mappings are less clear.
1160 *
1161 * Even as of this writing, it is unclear how the
1162 * Macintosh mappings will be done.  However, as
1163 * the first author of this code I'm proposing the
1164 * following model:
1165 *
1166 * Map the kernel (that's already done),
1167 * Map the I/O (on most machines that's the
1168 * 0x5000.0000 ... 0x5300.0000 range,
1169 * Map the video frame buffer using as few pages
1170 * as absolutely (this requirement mostly stems from
1171 * the fact that when the frame buffer is at
1172 * 0x0000.0000 then we know there is valid RAM just
1173 * above the screen that we don't want to waste!).
1174 *
1175 * By the way, if the frame buffer is at 0x0000.0000
1176 * then the Macintosh is known as an RBV based Mac.
1177 *
1178 * By the way 2, the code currently maps in a bunch of
1179 * regions.  But I'd like to cut that out.  (And move most
1180 * of the mappings up into the kernel proper ... or only
1181 * map what's necessary.)
1182 */
1183
1184#ifdef CONFIG_MAC
1185
1186L(mmu_init_mac):
1187
1188	is_not_mac(L(mmu_init_not_mac))
1189
1190	putc	'F'
1191
1192	is_not_040_or_060(1f)
1193
1194	moveq	#_PAGE_NOCACHE_S,%d3
1195	jbra	2f
11961:
1197	moveq	#_PAGE_NOCACHE030,%d3
11982:
1199	/*
1200	 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1201	 *	     we simply map the 4MB that contains the videomem
1202	 */
1203
1204	movel	#VIDEOMEMMASK,%d0
1205	andl	%pc@(L(mac_videobase)),%d0
1206
1207	mmu_map		#VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1208	/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1209	mmu_map_eq	#0x40000000,#0x02000000,%d3
1210	/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1211	mmu_map_eq	#0x50000000,#0x03000000,%d3
1212	/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1213	mmu_map_tt	#1,#0xf8000000,#0x08000000,%d3
1214
1215	jbra	L(mmu_init_done)
1216
1217L(mmu_init_not_mac):
1218#endif
1219
1220#ifdef CONFIG_SUN3X
1221	is_not_sun3x(L(notsun3x))
1222
1223	/* oh, the pain..  We're gonna want the prom code after
1224	 * starting the MMU, so we copy the mappings, translating
1225	 * from 8k -> 4k pages as we go.
1226	 */
1227
1228	/* copy maps from 0xfee00000 to 0xff000000 */
1229	movel	#0xfee00000, %d0
1230	moveq	#ROOT_INDEX_SHIFT, %d1
1231	lsrl	%d1,%d0
1232	mmu_get_root_table_entry	%d0
1233
1234	movel	#0xfee00000, %d0
1235	moveq	#PTR_INDEX_SHIFT, %d1
1236	lsrl	%d1,%d0
1237	andl	#PTR_TABLE_SIZE-1, %d0
1238	mmu_get_ptr_table_entry		%a0,%d0
1239
1240	movel	#0xfee00000, %d0
1241	moveq	#PAGE_INDEX_SHIFT, %d1
1242	lsrl	%d1,%d0
1243	andl	#PAGE_TABLE_SIZE-1, %d0
1244	mmu_get_page_table_entry	%a0,%d0
1245
1246	/* this is where the prom page table lives */
1247	movel	0xfefe00d4, %a1
1248	movel	%a1@, %a1
1249
1250	movel	#((0x200000 >> 13)-1), %d1
1251
12521:
1253	movel	%a1@+, %d3
1254	movel	%d3,%a0@+
1255	addl	#0x1000,%d3
1256	movel	%d3,%a0@+
1257
1258	dbra	%d1,1b
1259
1260	/* setup tt1 for I/O */
1261	mmu_map_tt	#1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1262	jbra	L(mmu_init_done)
1263
1264L(notsun3x):
1265#endif
1266
 
 
 
 
 
 
 
1267#ifdef CONFIG_APOLLO
1268	is_not_apollo(L(notapollo))
1269
1270	putc	'P'
1271	mmu_map         #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1272
1273L(notapollo):
1274	jbra	L(mmu_init_done)
1275#endif
1276
1277L(mmu_init_done):
1278
1279	putc	'G'
1280	leds	0x8
1281
1282/*
1283 * mmu_fixup
1284 *
1285 * On the 040 class machines, all pages that are used for the
1286 * mmu have to be fixed up. According to Motorola, pages holding mmu
1287 * tables should be non-cacheable on a '040 and write-through on a
1288 * '060. But analysis of the reasons for this, and practical
1289 * experience, showed that write-through also works on a '040.
1290 *
1291 * Allocated memory so far goes from kernel_end to memory_start that
1292 * is used for all kind of tables, for that the cache attributes
1293 * are now fixed.
1294 */
1295L(mmu_fixup):
1296
1297	is_not_040_or_060(L(mmu_fixup_done))
1298
1299#ifdef MMU_NOCACHE_KERNEL
1300	jbra	L(mmu_fixup_done)
1301#endif
1302
1303	/* first fix the page at the start of the kernel, that
1304	 * contains also kernel_pg_dir.
1305	 */
1306	movel	%pc@(L(phys_kernel_start)),%d0
1307	subl	#PAGE_OFFSET,%d0
1308	lea	%pc@(_stext),%a0
1309	subl	%d0,%a0
1310	mmu_fixup_page_mmu_cache	%a0
1311
1312	movel	%pc@(L(kernel_end)),%a0
1313	subl	%d0,%a0
1314	movel	%pc@(L(memory_start)),%a1
1315	subl	%d0,%a1
1316	bra	2f
13171:
1318	mmu_fixup_page_mmu_cache	%a0
1319	addw	#PAGESIZE,%a0
13202:
1321	cmpl	%a0,%a1
1322	jgt	1b
1323
1324L(mmu_fixup_done):
1325
1326#ifdef MMU_PRINT
1327	mmu_print
1328#endif
1329
1330/*
1331 * mmu_engage
1332 *
1333 * This chunk of code performs the gruesome task of engaging the MMU.
1334 * The reason its gruesome is because when the MMU becomes engaged it
1335 * maps logical addresses to physical addresses.  The Program Counter
1336 * register is then passed through the MMU before the next instruction
1337 * is fetched (the instruction following the engage MMU instruction).
1338 * This may mean one of two things:
1339 * 1. The Program Counter falls within the logical address space of
1340 *    the kernel of which there are two sub-possibilities:
1341 *    A. The PC maps to the correct instruction (logical PC == physical
1342 *       code location), or
1343 *    B. The PC does not map through and the processor will read some
1344 *       data (or instruction) which is not the logically next instr.
1345 *    As you can imagine, A is good and B is bad.
1346 * Alternatively,
1347 * 2. The Program Counter does not map through the MMU.  The processor
1348 *    will take a Bus Error.
1349 * Clearly, 2 is bad.
1350 * It doesn't take a wiz kid to figure you want 1.A.
1351 * This code creates that possibility.
1352 * There are two possible 1.A. states (we now ignore the other above states):
1353 * A. The kernel is located at physical memory addressed the same as
1354 *    the logical memory for the kernel, i.e., 0x01000.
1355 * B. The kernel is located some where else.  e.g., 0x0400.0000
1356 *
1357 *    Under some conditions the Macintosh can look like A or B.
1358 * [A friend and I once noted that Apple hardware engineers should be
1359 * wacked twice each day: once when they show up at work (as in, Whack!,
1360 * "This is for the screwy hardware we know you're going to design today."),
1361 * and also at the end of the day (as in, Whack! "I don't know what
1362 * you designed today, but I'm sure it wasn't good."). -- rst]
1363 *
1364 * This code works on the following premise:
1365 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1366 * then create a mapping for the kernel at logical 0x8000.0000 to
1367 * the physical location of the pc.  And, create a transparent
1368 * translation register for the first 16 Meg.  Then, after the MMU
1369 * is engaged, the PC can be moved up into the 0x8000.0000 range
1370 * and then the transparent translation can be turned off and then
1371 * the PC can jump to the correct logical location and it will be
1372 * home (finally).  This is essentially the code that the Amiga used
1373 * to use.  Now, it's generalized for all processors.  Which means
1374 * that a fresh (but temporary) mapping has to be created.  The mapping
1375 * is made in page 0 (an as of yet unused location -- except for the
1376 * stack!).  This temporary mapping will only require 1 pointer table
1377 * and a single page table (it can map 256K).
1378 *
1379 * OK, alternatively, imagine that the Program Counter is not within
1380 * the first 16 Meg.  Then, just use Transparent Translation registers
1381 * to do the right thing.
1382 *
1383 * Last, if _start is already at 0x01000, then there's nothing special
1384 * to do (in other words, in a degenerate case of the first case above,
1385 * do nothing).
1386 *
1387 * Let's do it.
1388 *
1389 *
1390 */
1391
1392	putc	'H'
1393
1394	mmu_engage
1395
1396/*
1397 * After this point no new memory is allocated and
1398 * the start of available memory is stored in availmem.
1399 * (The bootmem allocator requires now the physicall address.)
1400 */
1401
1402	movel	L(memory_start),availmem
1403
1404#ifdef CONFIG_AMIGA
1405	is_not_amiga(1f)
1406	/* fixup the Amiga custom register location before printing */
1407	clrl	L(custom)
14081:
1409#endif
1410
1411#ifdef CONFIG_ATARI
1412	is_not_atari(1f)
1413	/* fixup the Atari iobase register location before printing */
1414	movel	#0xff000000,L(iobase)
14151:
1416#endif
1417
1418#ifdef CONFIG_MAC
1419	is_not_mac(1f)
1420	movel	#~VIDEOMEMMASK,%d0
1421	andl	L(mac_videobase),%d0
1422	addl	#VIDEOMEMBASE,%d0
1423	movel	%d0,L(mac_videobase)
1424#if defined(CONSOLE)
1425	movel	%pc@(L(phys_kernel_start)),%d0
1426	subl	#PAGE_OFFSET,%d0
1427	subl	%d0,L(console_font)
1428	subl	%d0,L(console_font_data)
1429#endif
1430#ifdef MAC_SERIAL_DEBUG
1431	orl	#0x50000000,L(mac_sccbase)
1432#endif
14331:
1434#endif
1435
1436#ifdef CONFIG_HP300
1437	is_not_hp300(2f)
1438	/*
1439	 * Fix up the iobase register to point to the new location of the LEDs.
1440	 */
1441	movel	#0xf0000000,L(iobase)
1442
1443	/*
1444	 * Energise the FPU and caches.
1445	 */
1446	is_040(1f)
1447	movel	#0x60,0xf05f400c
1448	jbra	2f
1449
1450	/*
1451	 * 040: slightly different, apparently.
1452	 */
14531:	movew	#0,0xf05f400e
1454	movew	#0x64,0xf05f400e
14552:
1456#endif
1457
1458#ifdef CONFIG_SUN3X
1459	is_not_sun3x(1f)
1460
1461	/* enable copro */
1462	oriw	#0x4000,0x61000000
14631:
1464#endif
1465
1466#ifdef CONFIG_APOLLO
1467	is_not_apollo(1f)
1468
1469	/*
1470	 * Fix up the iobase before printing
1471	 */
1472	movel	#0x80000000,L(iobase)
14731:
1474#endif
1475
1476	putc	'I'
1477	leds	0x10
1478
1479/*
1480 * Enable caches
1481 */
1482
1483	is_not_040_or_060(L(cache_not_680460))
1484
1485L(cache680460):
1486	.chip	68040
1487	nop
1488	cpusha	%bc
1489	nop
1490
1491	is_060(L(cache68060))
1492
1493	movel	#CC6_ENABLE_D+CC6_ENABLE_I,%d0
1494	/* MMU stuff works in copyback mode now, so enable the cache */
1495	movec	%d0,%cacr
1496	jra	L(cache_done)
1497
1498L(cache68060):
1499	movel	#CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1500	/* MMU stuff works in copyback mode now, so enable the cache */
1501	movec	%d0,%cacr
1502	/* enable superscalar dispatch in PCR */
1503	moveq	#1,%d0
1504	.chip	68060
1505	movec	%d0,%pcr
1506
1507	jbra	L(cache_done)
1508L(cache_not_680460):
1509L(cache68030):
1510	.chip	68030
1511	movel	#CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1512	movec	%d0,%cacr
1513
1514	jra	L(cache_done)
1515	.chip	68k
1516L(cache_done):
1517
1518	putc	'J'
1519
1520/*
1521 * Setup initial stack pointer
1522 */
1523	lea	init_task,%curptr
1524	lea	init_thread_union+THREAD_SIZE,%sp
1525
1526	putc	'K'
1527
1528	subl	%a6,%a6		/* clear a6 for gdb */
1529
1530/*
1531 * The new 64bit printf support requires an early exception initialization.
1532 */
1533	jbsr	base_trap_init
1534
1535/* jump to the kernel start */
1536
1537	putc	'\n'
1538	leds	0x55
1539
1540	jbsr	start_kernel
1541
1542/*
1543 * Find a tag record in the bootinfo structure
1544 * The bootinfo structure is located right after the kernel bss
1545 * Returns: d0: size (-1 if not found)
1546 *          a0: data pointer (end-of-records if not found)
1547 */
1548func_start	get_bi_record,%d1
1549
1550	movel	ARG1,%d0
1551	lea	%pc@(_end),%a0
15521:	tstw	%a0@(BIR_TAG)
1553	jeq	3f
1554	cmpw	%a0@(BIR_TAG),%d0
1555	jeq	2f
1556	addw	%a0@(BIR_SIZE),%a0
1557	jra	1b
15582:	moveq	#0,%d0
1559	movew	%a0@(BIR_SIZE),%d0
1560	lea	%a0@(BIR_DATA),%a0
1561	jra	4f
15623:	moveq	#-1,%d0
1563	lea	%a0@(BIR_SIZE),%a0
15644:
1565func_return	get_bi_record
1566
1567
1568/*
1569 *	MMU Initialization Begins Here
1570 *
1571 *	The structure of the MMU tables on the 68k machines
1572 *	is thus:
1573 *	Root Table
1574 *		Logical addresses are translated through
1575 *	a hierarchical translation mechanism where the high-order
1576 *	seven bits of the logical address (LA) are used as an
1577 *	index into the "root table."  Each entry in the root
1578 *	table has a bit which specifies if it's a valid pointer to a
1579 *	pointer table.  Each entry defines a 32KMeg range of memory.
1580 *	If an entry is invalid then that logical range of 32M is
1581 *	invalid and references to that range of memory (when the MMU
1582 *	is enabled) will fault.  If the entry is valid, then it does
1583 *	one of two things.  On 040/060 class machines, it points to
1584 *	a pointer table which then describes more finely the memory
1585 *	within that 32M range.  On 020/030 class machines, a technique
1586 *	called "early terminating descriptors" are used.  This technique
1587 *	allows an entire 32Meg to be described by a single entry in the
1588 *	root table.  Thus, this entry in the root table, contains the
1589 *	physical address of the memory or I/O at the logical address
1590 *	which the entry represents and it also contains the necessary
1591 *	cache bits for this region.
1592 *
1593 *	Pointer Tables
1594 *		Per the Root Table, there will be one or more
1595 *	pointer tables.  Each pointer table defines a 32M range.
1596 *	Not all of the 32M range need be defined.  Again, the next
1597 *	seven bits of the logical address are used an index into
1598 *	the pointer table to point to page tables (if the pointer
1599 *	is valid).  There will undoubtedly be more than one
1600 *	pointer table for the kernel because each pointer table
1601 *	defines a range of only 32M.  Valid pointer table entries
1602 *	point to page tables, or are early terminating entries
1603 *	themselves.
1604 *
1605 *	Page Tables
1606 *		Per the Pointer Tables, each page table entry points
1607 *	to the physical page in memory that supports the logical
1608 *	address that translates to the particular index.
1609 *
1610 *	In short, the Logical Address gets translated as follows:
1611 *		bits 31..26 - index into the Root Table
1612 *		bits 25..18 - index into the Pointer Table
1613 *		bits 17..12 - index into the Page Table
1614 *		bits 11..0  - offset into a particular 4K page
1615 *
1616 *	The algorithms which follows do one thing: they abstract
1617 *	the MMU hardware.  For example, there are three kinds of
1618 *	cache settings that are relevant.  Either, memory is
1619 *	being mapped in which case it is either Kernel Code (or
1620 *	the RamDisk) or it is MMU data.  On the 030, the MMU data
1621 *	option also describes the kernel.  Or, I/O is being mapped
1622 *	in which case it has its own kind of cache bits.  There
1623 *	are constants which abstract these notions from the code that
1624 *	actually makes the call to map some range of memory.
1625 *
1626 *
1627 *
1628 */
1629
1630#ifdef MMU_PRINT
1631/*
1632 *	mmu_print
1633 *
1634 *	This algorithm will print out the current MMU mappings.
1635 *
1636 *	Input:
1637 *		%a5 points to the root table.  Everything else is calculated
1638 *			from this.
1639 */
1640
1641#define mmu_next_valid		0
1642#define mmu_start_logical	4
1643#define mmu_next_logical	8
1644#define mmu_start_physical	12
1645#define mmu_next_physical	16
1646
1647#define MMU_PRINT_INVALID		-1
1648#define MMU_PRINT_VALID			1
1649#define MMU_PRINT_UNINITED		0
1650
1651#define putZc(z,n)		jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1652
1653func_start	mmu_print,%a0-%a6/%d0-%d7
1654
1655	movel	%pc@(L(kernel_pgdir_ptr)),%a5
1656	lea	%pc@(L(mmu_print_data)),%a0
1657	movel	#MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1658
1659	is_not_040_or_060(mmu_030_print)
1660
1661mmu_040_print:
1662	puts	"\nMMU040\n"
1663	puts	"rp:"
1664	putn	%a5
1665	putc	'\n'
1666#if 0
1667	/*
1668	 * The following #if/#endif block is a tight algorithm for dumping the 040
1669	 * MMU Map in gory detail.  It really isn't that practical unless the
1670	 * MMU Map algorithm appears to go awry and you need to debug it at the
1671	 * entry per entry level.
1672	 */
1673	movel	#ROOT_TABLE_SIZE,%d5
1674#if 0
1675	movel	%a5@+,%d7		| Burn an entry to skip the kernel mappings,
1676	subql	#1,%d5			| they (might) work
1677#endif
16781:	tstl	%d5
1679	jbeq	mmu_print_done
1680	subq	#1,%d5
1681	movel	%a5@+,%d7
1682	btst	#1,%d7
1683	jbeq	1b
1684
16852:	putn	%d7
1686	andil	#0xFFFFFE00,%d7
1687	movel	%d7,%a4
1688	movel	#PTR_TABLE_SIZE,%d4
1689	putc	' '
16903:	tstl	%d4
1691	jbeq	11f
1692	subq	#1,%d4
1693	movel	%a4@+,%d7
1694	btst	#1,%d7
1695	jbeq	3b
1696
16974:	putn	%d7
1698	andil	#0xFFFFFF00,%d7
1699	movel	%d7,%a3
1700	movel	#PAGE_TABLE_SIZE,%d3
17015:	movel	#8,%d2
17026:	tstl	%d3
1703	jbeq	31f
1704	subq	#1,%d3
1705	movel	%a3@+,%d6
1706	btst	#0,%d6
1707	jbeq	6b
17087:	tstl	%d2
1709	jbeq	8f
1710	subq	#1,%d2
1711	putc	' '
1712	jbra	91f
17138:	putc	'\n'
1714	movel	#8+1+8+1+1,%d2
17159:	putc	' '
1716	dbra	%d2,9b
1717	movel	#7,%d2
171891:	putn	%d6
1719	jbra	6b
1720
172131:	putc	'\n'
1722	movel	#8+1,%d2
172332:	putc	' '
1724	dbra	%d2,32b
1725	jbra	3b
1726
172711:	putc	'\n'
1728	jbra	1b
1729#endif /* MMU 040 Dumping code that's gory and detailed */
1730
1731	lea	%pc@(kernel_pg_dir),%a5
1732	movel	%a5,%a0			/* a0 has the address of the root table ptr */
1733	movel	#0x00000000,%a4		/* logical address */
1734	moveql	#0,%d0
173540:
1736	/* Increment the logical address and preserve in d5 */
1737	movel	%a4,%d5
1738	addil	#PAGESIZE<<13,%d5
1739	movel	%a0@+,%d6
1740	btst	#1,%d6
1741	jbne	41f
1742	jbsr	mmu_print_tuple_invalidate
1743	jbra	48f
174441:
1745	movel	#0,%d1
1746	andil	#0xfffffe00,%d6
1747	movel	%d6,%a1
174842:
1749	movel	%a4,%d5
1750	addil	#PAGESIZE<<6,%d5
1751	movel	%a1@+,%d6
1752	btst	#1,%d6
1753	jbne	43f
1754	jbsr	mmu_print_tuple_invalidate
1755	jbra	47f
175643:
1757	movel	#0,%d2
1758	andil	#0xffffff00,%d6
1759	movel	%d6,%a2
176044:
1761	movel	%a4,%d5
1762	addil	#PAGESIZE,%d5
1763	movel	%a2@+,%d6
1764	btst	#0,%d6
1765	jbne	45f
1766	jbsr	mmu_print_tuple_invalidate
1767	jbra	46f
176845:
1769	moveml	%d0-%d1,%sp@-
1770	movel	%a4,%d0
1771	movel	%d6,%d1
1772	andil	#0xfffff4e0,%d1
1773	lea	%pc@(mmu_040_print_flags),%a6
1774	jbsr	mmu_print_tuple
1775	moveml	%sp@+,%d0-%d1
177646:
1777	movel	%d5,%a4
1778	addq	#1,%d2
1779	cmpib	#64,%d2
1780	jbne	44b
178147:
1782	movel	%d5,%a4
1783	addq	#1,%d1
1784	cmpib	#128,%d1
1785	jbne	42b
178648:
1787	movel	%d5,%a4			/* move to the next logical address */
1788	addq	#1,%d0
1789	cmpib	#128,%d0
1790	jbne	40b
1791
1792	.chip	68040
1793	movec	%dtt1,%d0
1794	movel	%d0,%d1
1795	andiw	#0x8000,%d1		/* is it valid ? */
1796	jbeq	1f			/* No, bail out */
1797
1798	movel	%d0,%d1
1799	andil	#0xff000000,%d1		/* Get the address */
1800	putn	%d1
1801	puts	"=="
1802	putn	%d1
1803
1804	movel	%d0,%d6
1805	jbsr	mmu_040_print_flags_tt
18061:
1807	movec	%dtt0,%d0
1808	movel	%d0,%d1
1809	andiw	#0x8000,%d1		/* is it valid ? */
1810	jbeq	1f			/* No, bail out */
1811
1812	movel	%d0,%d1
1813	andil	#0xff000000,%d1		/* Get the address */
1814	putn	%d1
1815	puts	"=="
1816	putn	%d1
1817
1818	movel	%d0,%d6
1819	jbsr	mmu_040_print_flags_tt
18201:
1821	.chip	68k
1822
1823	jbra	mmu_print_done
1824
1825mmu_040_print_flags:
1826	btstl	#10,%d6
1827	putZc(' ','G')	/* global bit */
1828	btstl	#7,%d6
1829	putZc(' ','S')	/* supervisor bit */
1830mmu_040_print_flags_tt:
1831	btstl	#6,%d6
1832	jbne	3f
1833	putc	'C'
1834	btstl	#5,%d6
1835	putZc('w','c')	/* write through or copy-back */
1836	jbra	4f
18373:
1838	putc	'N'
1839	btstl	#5,%d6
1840	putZc('s',' ')	/* serialized non-cacheable, or non-cacheable */
18414:
1842	rts
1843
1844mmu_030_print_flags:
1845	btstl	#6,%d6
1846	putZc('C','I')	/* write through or copy-back */
1847	rts
1848
1849mmu_030_print:
1850	puts	"\nMMU030\n"
1851	puts	"\nrp:"
1852	putn	%a5
1853	putc	'\n'
1854	movel	%a5,%d0
1855	andil	#0xfffffff0,%d0
1856	movel	%d0,%a0
1857	movel	#0x00000000,%a4		/* logical address */
1858	movel	#0,%d0
185930:
1860	movel	%a4,%d5
1861	addil	#PAGESIZE<<13,%d5
1862	movel	%a0@+,%d6
1863	btst	#1,%d6			/* is it a table ptr? */
1864	jbne	31f			/* yes */
1865	btst	#0,%d6			/* is it early terminating? */
1866	jbeq	1f			/* no */
1867	jbsr	mmu_030_print_helper
1868	jbra	38f
18691:
1870	jbsr	mmu_print_tuple_invalidate
1871	jbra	38f
187231:
1873	movel	#0,%d1
1874	andil	#0xfffffff0,%d6
1875	movel	%d6,%a1
187632:
1877	movel	%a4,%d5
1878	addil	#PAGESIZE<<6,%d5
1879	movel	%a1@+,%d6
1880	btst	#1,%d6			/* is it a table ptr? */
1881	jbne	33f			/* yes */
1882	btst	#0,%d6			/* is it a page descriptor? */
1883	jbeq	1f			/* no */
1884	jbsr	mmu_030_print_helper
1885	jbra	37f
18861:
1887	jbsr	mmu_print_tuple_invalidate
1888	jbra	37f
188933:
1890	movel	#0,%d2
1891	andil	#0xfffffff0,%d6
1892	movel	%d6,%a2
189334:
1894	movel	%a4,%d5
1895	addil	#PAGESIZE,%d5
1896	movel	%a2@+,%d6
1897	btst	#0,%d6
1898	jbne	35f
1899	jbsr	mmu_print_tuple_invalidate
1900	jbra	36f
190135:
1902	jbsr	mmu_030_print_helper
190336:
1904	movel	%d5,%a4
1905	addq	#1,%d2
1906	cmpib	#64,%d2
1907	jbne	34b
190837:
1909	movel	%d5,%a4
1910	addq	#1,%d1
1911	cmpib	#128,%d1
1912	jbne	32b
191338:
1914	movel	%d5,%a4			/* move to the next logical address */
1915	addq	#1,%d0
1916	cmpib	#128,%d0
1917	jbne	30b
1918
1919mmu_print_done:
1920	puts	"\n\n"
1921
1922func_return	mmu_print
1923
1924
1925mmu_030_print_helper:
1926	moveml	%d0-%d1,%sp@-
1927	movel	%a4,%d0
1928	movel	%d6,%d1
1929	lea	%pc@(mmu_030_print_flags),%a6
1930	jbsr	mmu_print_tuple
1931	moveml	%sp@+,%d0-%d1
1932	rts
1933
1934mmu_print_tuple_invalidate:
1935	moveml	%a0/%d7,%sp@-
1936
1937	lea	%pc@(L(mmu_print_data)),%a0
1938	tstl	%a0@(mmu_next_valid)
1939	jbmi	mmu_print_tuple_invalidate_exit
1940
1941	movel	#MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1942
1943	putn	%a4
1944
1945	puts	"##\n"
1946
1947mmu_print_tuple_invalidate_exit:
1948	moveml	%sp@+,%a0/%d7
1949	rts
1950
1951
1952mmu_print_tuple:
1953	moveml	%d0-%d7/%a0,%sp@-
1954
1955	lea	%pc@(L(mmu_print_data)),%a0
1956
1957	tstl	%a0@(mmu_next_valid)
1958	jble	mmu_print_tuple_print
1959
1960	cmpl	%a0@(mmu_next_physical),%d1
1961	jbeq	mmu_print_tuple_increment
1962
1963mmu_print_tuple_print:
1964	putn	%d0
1965	puts	"->"
1966	putn	%d1
1967
1968	movel	%d1,%d6
1969	jbsr	%a6@
1970
1971mmu_print_tuple_record:
1972	movel	#MMU_PRINT_VALID,%a0@(mmu_next_valid)
1973
1974	movel	%d1,%a0@(mmu_next_physical)
1975
1976mmu_print_tuple_increment:
1977	movel	%d5,%d7
1978	subl	%a4,%d7
1979	addl	%d7,%a0@(mmu_next_physical)
1980
1981mmu_print_tuple_exit:
1982	moveml	%sp@+,%d0-%d7/%a0
1983	rts
1984
1985mmu_print_machine_cpu_types:
1986	puts	"machine: "
1987
1988	is_not_amiga(1f)
1989	puts	"amiga"
1990	jbra	9f
19911:
1992	is_not_atari(2f)
1993	puts	"atari"
1994	jbra	9f
19952:
1996	is_not_mac(3f)
1997	puts	"macintosh"
1998	jbra	9f
19993:	puts	"unknown"
20009:	putc	'\n'
2001
2002	puts	"cputype: 0"
2003	is_not_060(1f)
2004	putc	'6'
2005	jbra	9f
20061:
2007	is_not_040_or_060(2f)
2008	putc	'4'
2009	jbra	9f
20102:	putc	'3'
20119:	putc	'0'
2012	putc	'\n'
2013
2014	rts
2015#endif /* MMU_PRINT */
2016
2017/*
2018 * mmu_map_tt
2019 *
2020 * This is a specific function which works on all 680x0 machines.
2021 * On 030, 040 & 060 it will attempt to use Transparent Translation
2022 * registers (tt1).
2023 * On 020 it will call the standard mmu_map which will use early
2024 * terminating descriptors.
2025 */
2026func_start	mmu_map_tt,%d0/%d1/%a0,4
2027
2028	dputs	"mmu_map_tt:"
2029	dputn	ARG1
2030	dputn	ARG2
2031	dputn	ARG3
2032	dputn	ARG4
2033	dputc	'\n'
2034
2035	is_020(L(do_map))
2036
2037	/* Extract the highest bit set
2038	 */
2039	bfffo	ARG3{#0,#32},%d1
2040	cmpw	#8,%d1
2041	jcc	L(do_map)
2042
2043	/* And get the mask
2044	 */
2045	moveq	#-1,%d0
2046	lsrl	%d1,%d0
2047	lsrl	#1,%d0
2048
2049	/* Mask the address
2050	 */
2051	movel	%d0,%d1
2052	notl	%d1
2053	andl	ARG2,%d1
2054
2055	/* Generate the upper 16bit of the tt register
2056	 */
2057	lsrl	#8,%d0
2058	orl	%d0,%d1
2059	clrw	%d1
2060
2061	is_040_or_060(L(mmu_map_tt_040))
2062
2063	/* set 030 specific bits (read/write access for supervisor mode
2064	 * (highest function code set, lower two bits masked))
2065	 */
2066	orw	#TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2067	movel	ARG4,%d0
2068	btst	#6,%d0
2069	jeq	1f
2070	orw	#TTR_CI,%d1
2071
20721:	lea	STACK,%a0
2073	dputn	%d1
2074	movel	%d1,%a0@
2075	.chip	68030
2076	tstl	ARG1
2077	jne	1f
2078	pmove	%a0@,%tt0
2079	jra	2f
20801:	pmove	%a0@,%tt1
20812:	.chip	68k
2082	jra	L(mmu_map_tt_done)
2083
2084	/* set 040 specific bits
2085	 */
2086L(mmu_map_tt_040):
2087	orw	#TTR_ENABLE+TTR_KERNELMODE,%d1
2088	orl	ARG4,%d1
2089	dputn	%d1
2090
2091	.chip	68040
2092	tstl	ARG1
2093	jne	1f
2094	movec	%d1,%itt0
2095	movec	%d1,%dtt0
2096	jra	2f
20971:	movec	%d1,%itt1
2098	movec	%d1,%dtt1
20992:	.chip	68k
2100
2101	jra	L(mmu_map_tt_done)
2102
2103L(do_map):
2104	mmu_map_eq	ARG2,ARG3,ARG4
2105
2106L(mmu_map_tt_done):
2107
2108func_return	mmu_map_tt
2109
2110/*
2111 *	mmu_map
2112 *
2113 *	This routine will map a range of memory using a pointer
2114 *	table and allocating the pages on the fly from the kernel.
2115 *	The pointer table does not have to be already linked into
2116 *	the root table, this routine will do that if necessary.
2117 *
2118 *	NOTE
2119 *	This routine will assert failure and use the serial_putc
2120 *	routines in the case of a run-time error.  For example,
2121 *	if the address is already mapped.
2122 *
2123 *	NOTE-2
2124 *	This routine will use early terminating descriptors
2125 *	where possible for the 68020+68851 and 68030 type
2126 *	processors.
2127 */
2128func_start	mmu_map,%d0-%d4/%a0-%a4
2129
2130	dputs	"\nmmu_map:"
2131	dputn	ARG1
2132	dputn	ARG2
2133	dputn	ARG3
2134	dputn	ARG4
2135	dputc	'\n'
2136
2137	/* Get logical address and round it down to 256KB
2138	 */
2139	movel	ARG1,%d0
2140	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2141	movel	%d0,%a3
2142
2143	/* Get the end address
2144	 */
2145	movel	ARG1,%a4
2146	addl	ARG3,%a4
2147	subql	#1,%a4
2148
2149	/* Get physical address and round it down to 256KB
2150	 */
2151	movel	ARG2,%d0
2152	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2153	movel	%d0,%a2
2154
2155	/* Add page attributes to the physical address
2156	 */
2157	movel	ARG4,%d0
2158	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2159	addw	%d0,%a2
2160
2161	dputn	%a2
2162	dputn	%a3
2163	dputn	%a4
2164
2165	is_not_040_or_060(L(mmu_map_030))
2166
2167	addw	#_PAGE_GLOBAL040,%a2
2168/*
2169 *	MMU 040 & 060 Support
2170 *
2171 *	The MMU usage for the 040 and 060 is different enough from
2172 *	the 030 and 68851 that there is separate code.  This comment
2173 *	block describes the data structures and algorithms built by
2174 *	this code.
2175 *
2176 *	The 040 does not support early terminating descriptors, as
2177 *	the 030 does.  Therefore, a third level of table is needed
2178 *	for the 040, and that would be the page table.  In Linux,
2179 *	page tables are allocated directly from the memory above the
2180 *	kernel.
2181 *
2182 */
2183
2184L(mmu_map_040):
2185	/* Calculate the offset into the root table
2186	 */
2187	movel	%a3,%d0
2188	moveq	#ROOT_INDEX_SHIFT,%d1
2189	lsrl	%d1,%d0
2190	mmu_get_root_table_entry	%d0
2191
2192	/* Calculate the offset into the pointer table
2193	 */
2194	movel	%a3,%d0
2195	moveq	#PTR_INDEX_SHIFT,%d1
2196	lsrl	%d1,%d0
2197	andl	#PTR_TABLE_SIZE-1,%d0
2198	mmu_get_ptr_table_entry		%a0,%d0
2199
2200	/* Calculate the offset into the page table
2201	 */
2202	movel	%a3,%d0
2203	moveq	#PAGE_INDEX_SHIFT,%d1
2204	lsrl	%d1,%d0
2205	andl	#PAGE_TABLE_SIZE-1,%d0
2206	mmu_get_page_table_entry	%a0,%d0
2207
2208	/* The page table entry must not no be busy
2209	 */
2210	tstl	%a0@
2211	jne	L(mmu_map_error)
2212
2213	/* Do the mapping and advance the pointers
2214	 */
2215	movel	%a2,%a0@
22162:
2217	addw	#PAGESIZE,%a2
2218	addw	#PAGESIZE,%a3
2219
2220	/* Ready with mapping?
2221	 */
2222	lea	%a3@(-1),%a0
2223	cmpl	%a0,%a4
2224	jhi	L(mmu_map_040)
2225	jra	L(mmu_map_done)
2226
2227L(mmu_map_030):
2228	/* Calculate the offset into the root table
2229	 */
2230	movel	%a3,%d0
2231	moveq	#ROOT_INDEX_SHIFT,%d1
2232	lsrl	%d1,%d0
2233	mmu_get_root_table_entry	%d0
2234
2235	/* Check if logical address 32MB aligned,
2236	 * so we can try to map it once
2237	 */
2238	movel	%a3,%d0
2239	andl	#(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2240	jne	1f
2241
2242	/* Is there enough to map for 32MB at once
2243	 */
2244	lea	%a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2245	cmpl	%a1,%a4
2246	jcs	1f
2247
2248	addql	#1,%a1
2249
2250	/* The root table entry must not no be busy
2251	 */
2252	tstl	%a0@
2253	jne	L(mmu_map_error)
2254
2255	/* Do the mapping and advance the pointers
2256	 */
2257	dputs	"early term1"
2258	dputn	%a2
2259	dputn	%a3
2260	dputn	%a1
2261	dputc	'\n'
2262	movel	%a2,%a0@
2263
2264	movel	%a1,%a3
2265	lea	%a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2266	jra	L(mmu_mapnext_030)
22671:
2268	/* Calculate the offset into the pointer table
2269	 */
2270	movel	%a3,%d0
2271	moveq	#PTR_INDEX_SHIFT,%d1
2272	lsrl	%d1,%d0
2273	andl	#PTR_TABLE_SIZE-1,%d0
2274	mmu_get_ptr_table_entry		%a0,%d0
2275
2276	/* The pointer table entry must not no be busy
2277	 */
2278	tstl	%a0@
2279	jne	L(mmu_map_error)
2280
2281	/* Do the mapping and advance the pointers
2282	 */
2283	dputs	"early term2"
2284	dputn	%a2
2285	dputn	%a3
2286	dputc	'\n'
2287	movel	%a2,%a0@
2288
2289	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a2
2290	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a3
2291
2292L(mmu_mapnext_030):
2293	/* Ready with mapping?
2294	 */
2295	lea	%a3@(-1),%a0
2296	cmpl	%a0,%a4
2297	jhi	L(mmu_map_030)
2298	jra	L(mmu_map_done)
2299
2300L(mmu_map_error):
2301
2302	dputs	"mmu_map error:"
2303	dputn	%a2
2304	dputn	%a3
2305	dputc	'\n'
2306
2307L(mmu_map_done):
2308
2309func_return	mmu_map
2310
2311/*
2312 *	mmu_fixup
2313 *
2314 *	On the 040 class machines, all pages that are used for the
2315 *	mmu have to be fixed up.
2316 */
2317
2318func_start	mmu_fixup_page_mmu_cache,%d0/%a0
2319
2320	dputs	"mmu_fixup_page_mmu_cache"
2321	dputn	ARG1
2322
2323	/* Calculate the offset into the root table
2324	 */
2325	movel	ARG1,%d0
2326	moveq	#ROOT_INDEX_SHIFT,%d1
2327	lsrl	%d1,%d0
2328	mmu_get_root_table_entry	%d0
2329
2330	/* Calculate the offset into the pointer table
2331	 */
2332	movel	ARG1,%d0
2333	moveq	#PTR_INDEX_SHIFT,%d1
2334	lsrl	%d1,%d0
2335	andl	#PTR_TABLE_SIZE-1,%d0
2336	mmu_get_ptr_table_entry		%a0,%d0
2337
2338	/* Calculate the offset into the page table
2339	 */
2340	movel	ARG1,%d0
2341	moveq	#PAGE_INDEX_SHIFT,%d1
2342	lsrl	%d1,%d0
2343	andl	#PAGE_TABLE_SIZE-1,%d0
2344	mmu_get_page_table_entry	%a0,%d0
2345
2346	movel	%a0@,%d0
2347	andil	#_CACHEMASK040,%d0
2348	orl	%pc@(m68k_pgtable_cachemode),%d0
2349	movel	%d0,%a0@
2350
2351	dputc	'\n'
2352
2353func_return	mmu_fixup_page_mmu_cache
2354
2355/*
2356 *	mmu_temp_map
2357 *
2358 *	create a temporary mapping to enable the mmu,
2359 *	this we don't need any transparation translation tricks.
2360 */
2361
2362func_start	mmu_temp_map,%d0/%d1/%a0/%a1
2363
2364	dputs	"mmu_temp_map"
2365	dputn	ARG1
2366	dputn	ARG2
2367	dputc	'\n'
2368
2369	lea	%pc@(L(temp_mmap_mem)),%a1
2370
2371	/* Calculate the offset in the root table
2372	 */
2373	movel	ARG2,%d0
2374	moveq	#ROOT_INDEX_SHIFT,%d1
2375	lsrl	%d1,%d0
2376	mmu_get_root_table_entry	%d0
2377
2378	/* Check if the table is temporary allocated, so we have to reuse it
2379	 */
2380	movel	%a0@,%d0
2381	cmpl	%pc@(L(memory_start)),%d0
2382	jcc	1f
2383
2384	/* Temporary allocate a ptr table and insert it into the root table
2385	 */
2386	movel	%a1@,%d0
2387	addl	#PTR_TABLE_SIZE*4,%a1@
2388	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2389	movel	%d0,%a0@
2390	dputs	" (new)"
23911:
2392	dputn	%d0
2393	/* Mask the root table entry for the ptr table
2394	 */
2395	andw	#-ROOT_TABLE_SIZE,%d0
2396	movel	%d0,%a0
2397
2398	/* Calculate the offset into the pointer table
2399	 */
2400	movel	ARG2,%d0
2401	moveq	#PTR_INDEX_SHIFT,%d1
2402	lsrl	%d1,%d0
2403	andl	#PTR_TABLE_SIZE-1,%d0
2404	lea	%a0@(%d0*4),%a0
2405	dputn	%a0
2406
2407	/* Check if a temporary page table is already allocated
2408	 */
2409	movel	%a0@,%d0
2410	jne	1f
2411
2412	/* Temporary allocate a page table and insert it into the ptr table
2413	 */
2414	movel	%a1@,%d0
2415	/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2416	   alignment restriction for pointer tables on the '0[46]0.  */
2417	addl	#512,%a1@
2418	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2419	movel	%d0,%a0@
2420	dputs	" (new)"
24211:
2422	dputn	%d0
2423	/* Mask the ptr table entry for the page table
2424	 */
2425	andw	#-PTR_TABLE_SIZE,%d0
2426	movel	%d0,%a0
2427
2428	/* Calculate the offset into the page table
2429	 */
2430	movel	ARG2,%d0
2431	moveq	#PAGE_INDEX_SHIFT,%d1
2432	lsrl	%d1,%d0
2433	andl	#PAGE_TABLE_SIZE-1,%d0
2434	lea	%a0@(%d0*4),%a0
2435	dputn	%a0
2436
2437	/* Insert the address into the page table
2438	 */
2439	movel	ARG1,%d0
2440	andw	#-PAGESIZE,%d0
2441	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2442	movel	%d0,%a0@
2443	dputn	%d0
2444
2445	dputc	'\n'
2446
2447func_return	mmu_temp_map
2448
2449func_start	mmu_engage,%d0-%d2/%a0-%a3
2450
2451	moveq	#ROOT_TABLE_SIZE-1,%d0
2452	/* Temporarily use a different root table.  */
2453	lea	%pc@(L(kernel_pgdir_ptr)),%a0
2454	movel	%a0@,%a2
2455	movel	%pc@(L(memory_start)),%a1
2456	movel	%a1,%a0@
2457	movel	%a2,%a0
24581:
2459	movel	%a0@+,%a1@+
2460	dbra	%d0,1b
2461
2462	lea	%pc@(L(temp_mmap_mem)),%a0
2463	movel	%a1,%a0@
2464
2465	movew	#PAGESIZE-1,%d0
24661:
2467	clrl	%a1@+
2468	dbra	%d0,1b
2469
2470	lea	%pc@(1b),%a0
2471	movel	#1b,%a1
2472	/* Skip temp mappings if phys == virt */
2473	cmpl	%a0,%a1
2474	jeq	1f
2475
2476	mmu_temp_map	%a0,%a0
2477	mmu_temp_map	%a0,%a1
2478
2479	addw	#PAGESIZE,%a0
2480	addw	#PAGESIZE,%a1
2481	mmu_temp_map	%a0,%a0
2482	mmu_temp_map	%a0,%a1
24831:
2484	movel	%pc@(L(memory_start)),%a3
2485	movel	%pc@(L(phys_kernel_start)),%d2
2486
2487	is_not_040_or_060(L(mmu_engage_030))
2488
2489L(mmu_engage_040):
2490	.chip	68040
2491	nop
2492	cinva	%bc
2493	nop
2494	pflusha
2495	nop
2496	movec	%a3,%srp
2497	movel	#TC_ENABLE+TC_PAGE4K,%d0
2498	movec	%d0,%tc		/* enable the MMU */
2499	jmp	1f:l
25001:	nop
2501	movec	%a2,%srp
2502	nop
2503	cinva	%bc
2504	nop
2505	pflusha
2506	.chip	68k
2507	jra	L(mmu_engage_cleanup)
2508
2509L(mmu_engage_030_temp):
2510	.space	12
2511L(mmu_engage_030):
2512	.chip	68030
2513	lea	%pc@(L(mmu_engage_030_temp)),%a0
2514	movel	#0x80000002,%a0@
2515	movel	%a3,%a0@(4)
2516	movel	#0x0808,%d0
2517	movec	%d0,%cacr
2518	pmove	%a0@,%srp
2519	pflusha
2520	/*
2521	 * enable,super root enable,4096 byte pages,7 bit root index,
2522	 * 7 bit pointer index, 6 bit page table index.
2523	 */
2524	movel	#0x82c07760,%a0@(8)
2525	pmove	%a0@(8),%tc	/* enable the MMU */
2526	jmp	1f:l
25271:	movel	%a2,%a0@(4)
2528	movel	#0x0808,%d0
2529	movec	%d0,%cacr
2530	pmove	%a0@,%srp
2531	pflusha
2532	.chip	68k
2533
2534L(mmu_engage_cleanup):
2535	subl	#PAGE_OFFSET,%d2
2536	subl	%d2,%a2
2537	movel	%a2,L(kernel_pgdir_ptr)
2538	subl	%d2,%fp
2539	subl	%d2,%sp
2540	subl	%d2,ARG0
2541
2542func_return	mmu_engage
2543
2544func_start	mmu_get_root_table_entry,%d0/%a1
2545
2546#if 0
2547	dputs	"mmu_get_root_table_entry:"
2548	dputn	ARG1
2549	dputs	" ="
2550#endif
2551
2552	movel	%pc@(L(kernel_pgdir_ptr)),%a0
2553	tstl	%a0
2554	jne	2f
2555
2556	dputs	"\nmmu_init:"
2557
2558	/* Find the start of free memory, get_bi_record does this for us,
2559	 * as the bootinfo structure is located directly behind the kernel
2560	 * and and we simply search for the last entry.
2561	 */
2562	get_bi_record	BI_LAST
2563	addw	#PAGESIZE-1,%a0
2564	movel	%a0,%d0
2565	andw	#-PAGESIZE,%d0
2566
2567	dputn	%d0
2568
2569	lea	%pc@(L(memory_start)),%a0
2570	movel	%d0,%a0@
2571	lea	%pc@(L(kernel_end)),%a0
2572	movel	%d0,%a0@
2573
2574	/* we have to return the first page at _stext since the init code
2575	 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2576	 * page is used for further ptr tables in get_ptr_table.
2577	 */
2578	lea	%pc@(_stext),%a0
2579	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2580	movel	%a0,%a1@
2581	addl	#ROOT_TABLE_SIZE*4,%a1@
2582
2583	lea	%pc@(L(mmu_num_pointer_tables)),%a1
2584	addql	#1,%a1@
2585
2586	/* clear the page
2587	 */
2588	movel	%a0,%a1
2589	movew	#PAGESIZE/4-1,%d0
25901:
2591	clrl	%a1@+
2592	dbra	%d0,1b
2593
2594	lea	%pc@(L(kernel_pgdir_ptr)),%a1
2595	movel	%a0,%a1@
2596
2597	dputn	%a0
2598	dputc	'\n'
25992:
2600	movel	ARG1,%d0
2601	lea	%a0@(%d0*4),%a0
2602
2603#if 0
2604	dputn	%a0
2605	dputc	'\n'
2606#endif
2607
2608func_return	mmu_get_root_table_entry
2609
2610
2611
2612func_start	mmu_get_ptr_table_entry,%d0/%a1
2613
2614#if 0
2615	dputs	"mmu_get_ptr_table_entry:"
2616	dputn	ARG1
2617	dputn	ARG2
2618	dputs	" ="
2619#endif
2620
2621	movel	ARG1,%a0
2622	movel	%a0@,%d0
2623	jne	2f
2624
2625	/* Keep track of the number of pointer tables we use
2626	 */
2627	dputs	"\nmmu_get_new_ptr_table:"
2628	lea	%pc@(L(mmu_num_pointer_tables)),%a0
2629	movel	%a0@,%d0
2630	addql	#1,%a0@
2631
2632	/* See if there is a free pointer table in our cache of pointer tables
2633	 */
2634	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2635	andw	#7,%d0
2636	jne	1f
2637
2638	/* Get a new pointer table page from above the kernel memory
2639	 */
2640	get_new_page
2641	movel	%a0,%a1@
26421:
2643	/* There is an unused pointer table in our cache... use it
2644	 */
2645	movel	%a1@,%d0
2646	addl	#PTR_TABLE_SIZE*4,%a1@
2647
2648	dputn	%d0
2649	dputc	'\n'
2650
2651	/* Insert the new pointer table into the root table
2652	 */
2653	movel	ARG1,%a0
2654	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2655	movel	%d0,%a0@
26562:
2657	/* Extract the pointer table entry
2658	 */
2659	andw	#-PTR_TABLE_SIZE,%d0
2660	movel	%d0,%a0
2661	movel	ARG2,%d0
2662	lea	%a0@(%d0*4),%a0
2663
2664#if 0
2665	dputn	%a0
2666	dputc	'\n'
2667#endif
2668
2669func_return	mmu_get_ptr_table_entry
2670
2671
2672func_start	mmu_get_page_table_entry,%d0/%a1
2673
2674#if 0
2675	dputs	"mmu_get_page_table_entry:"
2676	dputn	ARG1
2677	dputn	ARG2
2678	dputs	" ="
2679#endif
2680
2681	movel	ARG1,%a0
2682	movel	%a0@,%d0
2683	jne	2f
2684
2685	/* If the page table entry doesn't exist, we allocate a complete new
2686	 * page and use it as one continues big page table which can cover
2687	 * 4MB of memory, nearly almost all mappings have that alignment.
2688	 */
2689	get_new_page
2690	addw	#_PAGE_TABLE+_PAGE_ACCESSED,%a0
2691
2692	/* align pointer table entry for a page of page tables
2693	 */
2694	movel	ARG1,%d0
2695	andw	#-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2696	movel	%d0,%a1
2697
2698	/* Insert the page tables into the pointer entries
2699	 */
2700	moveq	#PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
27011:
2702	movel	%a0,%a1@+
2703	lea	%a0@(PAGE_TABLE_SIZE*4),%a0
2704	dbra	%d0,1b
2705
2706	/* Now we can get the initialized pointer table entry
2707	 */
2708	movel	ARG1,%a0
2709	movel	%a0@,%d0
27102:
2711	/* Extract the page table entry
2712	 */
2713	andw	#-PAGE_TABLE_SIZE,%d0
2714	movel	%d0,%a0
2715	movel	ARG2,%d0
2716	lea	%a0@(%d0*4),%a0
2717
2718#if 0
2719	dputn	%a0
2720	dputc	'\n'
2721#endif
2722
2723func_return	mmu_get_page_table_entry
2724
2725/*
2726 *	get_new_page
2727 *
2728 *	Return a new page from the memory start and clear it.
2729 */
2730func_start	get_new_page,%d0/%a1
2731
2732	dputs	"\nget_new_page:"
2733
2734	/* allocate the page and adjust memory_start
2735	 */
2736	lea	%pc@(L(memory_start)),%a0
2737	movel	%a0@,%a1
2738	addl	#PAGESIZE,%a0@
2739
2740	/* clear the new page
2741	 */
2742	movel	%a1,%a0
2743	movew	#PAGESIZE/4-1,%d0
27441:
2745	clrl	%a1@+
2746	dbra	%d0,1b
2747
2748	dputn	%a0
2749	dputc	'\n'
2750
2751func_return	get_new_page
2752
2753
2754
2755/*
2756 * Debug output support
2757 * Atarians have a choice between the parallel port, the serial port
2758 * from the MFP or a serial port of the SCC
2759 */
2760
2761#ifdef CONFIG_MAC
 
 
 
2762
 
 
2763L(scc_initable_mac):
2764	.byte	9,12		/* Reset */
2765	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2766	.byte	3,0xc0		/* receiver: 8 bpc */
2767	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2768	.byte	9,0		/* no interrupts */
2769	.byte	10,0		/* NRZ */
2770	.byte	11,0x50		/* use baud rate generator */
2771	.byte	12,10,13,0	/* 9600 baud */
2772	.byte	14,1		/* Baud rate generator enable */
2773	.byte	3,0xc1		/* enable receiver */
2774	.byte	5,0xea		/* enable transmitter */
2775	.byte	-1
2776	.even
2777#endif
 
2778
2779#ifdef CONFIG_ATARI
2780/* #define USE_PRINTER */
2781/* #define USE_SCC_B */
2782/* #define USE_SCC_A */
2783#define USE_MFP
2784
2785#if defined(USE_SCC_A) || defined(USE_SCC_B)
2786#define USE_SCC
2787/* Initialisation table for SCC */
2788L(scc_initable):
2789	.byte	9,12		/* Reset */
2790	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2791	.byte	3,0xc0		/* receiver: 8 bpc */
2792	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2793	.byte	9,0		/* no interrupts */
2794	.byte	10,0		/* NRZ */
2795	.byte	11,0x50		/* use baud rate generator */
2796	.byte	12,24,13,0	/* 9600 baud */
2797	.byte	14,2,14,3	/* use master clock for BRG, enable */
2798	.byte	3,0xc1		/* enable receiver */
2799	.byte	5,0xea		/* enable transmitter */
2800	.byte	-1
2801	.even
2802#endif
2803
2804#ifdef USE_PRINTER
2805
2806LPSG_SELECT	= 0xff8800
2807LPSG_READ	= 0xff8800
2808LPSG_WRITE	= 0xff8802
2809LPSG_IO_A	= 14
2810LPSG_IO_B	= 15
2811LPSG_CONTROL	= 7
2812LSTMFP_GPIP	= 0xfffa01
2813LSTMFP_DDR	= 0xfffa05
2814LSTMFP_IERB	= 0xfffa09
2815
2816#elif defined(USE_SCC_B)
2817
2818LSCC_CTRL	= 0xff8c85
2819LSCC_DATA	= 0xff8c87
2820
2821#elif defined(USE_SCC_A)
2822
2823LSCC_CTRL	= 0xff8c81
2824LSCC_DATA	= 0xff8c83
2825
2826#elif defined(USE_MFP)
2827
2828LMFP_UCR     = 0xfffa29
2829LMFP_TDCDR   = 0xfffa1d
2830LMFP_TDDR    = 0xfffa25
2831LMFP_TSR     = 0xfffa2d
2832LMFP_UDR     = 0xfffa2f
2833
2834#endif
2835#endif	/* CONFIG_ATARI */
2836
2837/*
2838 * Serial port output support.
2839 */
2840
2841/*
2842 * Initialize serial port hardware for 9600/8/1
2843 */
2844func_start	serial_init,%d0/%d1/%a0/%a1
2845	/*
2846	 *	Some of the register usage that follows
2847	 *	CONFIG_AMIGA
2848	 *		a0 = pointer to boot info record
2849	 *		d0 = boot info offset
2850	 *	CONFIG_ATARI
2851	 *		a0 = address of SCC
2852	 *		a1 = Liobase address/address of scc_initable
2853	 *		d0 = init data for serial port
2854	 *	CONFIG_MAC
2855	 *		a0 = address of SCC
2856	 *		a1 = address of scc_initable_mac
2857	 *		d0 = init data for serial port
2858	 */
2859
2860#ifdef CONFIG_AMIGA
2861#define SERIAL_DTR	7
2862#define SERIAL_CNTRL	CIABBASE+C_PRA
2863
2864	is_not_amiga(1f)
2865	lea	%pc@(L(custom)),%a0
2866	movel	#-ZTWOBASE,%a0@
2867	bclr	#SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2868	get_bi_record	BI_AMIGA_SERPER
2869	movew	%a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2870|	movew	#61,CUSTOMBASE+C_SERPER-ZTWOBASE
28711:
2872#endif
 
2873#ifdef CONFIG_ATARI
2874	is_not_atari(4f)
2875	movel	%pc@(L(iobase)),%a1
2876#if defined(USE_PRINTER)
2877	bclr	#0,%a1@(LSTMFP_IERB)
2878	bclr	#0,%a1@(LSTMFP_DDR)
2879	moveb	#LPSG_CONTROL,%a1@(LPSG_SELECT)
2880	moveb	#0xff,%a1@(LPSG_WRITE)
2881	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
2882	clrb	%a1@(LPSG_WRITE)
2883	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
2884	moveb	%a1@(LPSG_READ),%d0
2885	bset	#5,%d0
2886	moveb	%d0,%a1@(LPSG_WRITE)
2887#elif defined(USE_SCC)
2888	lea	%a1@(LSCC_CTRL),%a0
2889	lea	%pc@(L(scc_initable)),%a1
 
 
 
 
 
 
 
 
 
 
 
 
28902:	moveb	%a1@+,%d0
2891	jmi	3f
2892	moveb	%d0,%a0@
2893	moveb	%a1@+,%a0@
2894	jra	2b
28953:	clrb	%a0@
2896#elif defined(USE_MFP)
2897	bclr	#1,%a1@(LMFP_TSR)
2898	moveb   #0x88,%a1@(LMFP_UCR)
2899	andb	#0x70,%a1@(LMFP_TDCDR)
2900	moveb   #2,%a1@(LMFP_TDDR)
2901	orb	#1,%a1@(LMFP_TDCDR)
2902	bset	#1,%a1@(LMFP_TSR)
2903#endif
2904	jra	L(serial_init_done)
29054:
2906#endif
 
2907#ifdef CONFIG_MAC
2908	is_not_mac(L(serial_init_not_mac))
2909#ifdef MAC_SERIAL_DEBUG
2910#if !defined(MAC_USE_SCC_A) && !defined(MAC_USE_SCC_B)
2911#define MAC_USE_SCC_B
2912#endif
2913#define mac_scc_cha_b_ctrl_offset	0x0
2914#define mac_scc_cha_a_ctrl_offset	0x2
2915#define mac_scc_cha_b_data_offset	0x4
2916#define mac_scc_cha_a_data_offset	0x6
2917
 
 
 
 
 
 
 
 
 
 
 
 
2918#ifdef MAC_USE_SCC_A
2919	/* Initialize channel A */
2920	movel	%pc@(L(mac_sccbase)),%a0
2921	lea	%pc@(L(scc_initable_mac)),%a1
29225:	moveb	%a1@+,%d0
2923	jmi	6f
2924	moveb	%d0,%a0@(mac_scc_cha_a_ctrl_offset)
2925	moveb	%a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2926	jra	5b
29276:
2928#endif	/* MAC_USE_SCC_A */
2929
2930#ifdef MAC_USE_SCC_B
2931	/* Initialize channel B */
2932#ifndef MAC_USE_SCC_A	/* Load mac_sccbase only if needed */
2933	movel	%pc@(L(mac_sccbase)),%a0
2934#endif	/* MAC_USE_SCC_A */
2935	lea	%pc@(L(scc_initable_mac)),%a1
29367:	moveb	%a1@+,%d0
2937	jmi	8f
2938	moveb	%d0,%a0@(mac_scc_cha_b_ctrl_offset)
2939	moveb	%a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2940	jra	7b
29418:
2942#endif	/* MAC_USE_SCC_B */
2943#endif	/* MAC_SERIAL_DEBUG */
2944
2945	jra	L(serial_init_done)
2946L(serial_init_not_mac):
2947#endif	/* CONFIG_MAC */
2948
2949#ifdef CONFIG_Q40
2950	is_not_q40(2f)
2951/* debug output goes into SRAM, so we don't do it unless requested
2952   - check for '%LX$' signature in SRAM   */
2953	lea	%pc@(q40_mem_cptr),%a1
2954	move.l	#0xff020010,%a1@  /* must be inited - also used by debug=mem */
2955	move.l	#0xff020000,%a1
2956	cmp.b	#'%',%a1@
2957	bne	2f	/*nodbg*/
2958	addq.w	#4,%a1
2959	cmp.b	#'L',%a1@
2960	bne	2f	/*nodbg*/
2961	addq.w	#4,%a1
2962	cmp.b	#'X',%a1@
2963	bne	2f	/*nodbg*/
2964	addq.w	#4,%a1
2965	cmp.b	#'$',%a1@
2966	bne	2f	/*nodbg*/
2967	/* signature OK */
2968	lea	%pc@(L(q40_do_debug)),%a1
2969	tas	%a1@
2970/*nodbg: q40_do_debug is 0 by default*/
29712:
2972#endif
2973
 
 
 
 
 
 
 
 
 
2974#ifdef CONFIG_APOLLO
2975/* We count on the PROM initializing SIO1 */
2976#endif
2977
2978#ifdef CONFIG_HP300
2979/* We count on the boot loader initialising the UART */
2980#endif
2981
2982L(serial_init_done):
2983func_return	serial_init
2984
2985/*
2986 * Output character on serial port.
2987 */
2988func_start	serial_putc,%d0/%d1/%a0/%a1
2989
2990	movel	ARG1,%d0
2991	cmpib	#'\n',%d0
2992	jbne	1f
2993
2994	/* A little safe recursion is good for the soul */
2995	serial_putc	#'\r'
29961:
2997
2998#ifdef CONFIG_AMIGA
2999	is_not_amiga(2f)
3000	andw	#0x00ff,%d0
3001	oriw	#0x0100,%d0
3002	movel	%pc@(L(custom)),%a0
3003	movew	%d0,%a0@(CUSTOMBASE+C_SERDAT)
30041:	movew	%a0@(CUSTOMBASE+C_SERDATR),%d0
3005	andw	#0x2000,%d0
3006	jeq	1b
3007	jra	L(serial_putc_done)
30082:
3009#endif
3010
3011#ifdef CONFIG_MAC
3012	is_not_mac(5f)
3013
3014#ifdef MAC_SERIAL_DEBUG
3015
3016#ifdef MAC_USE_SCC_A
3017	movel	%pc@(L(mac_sccbase)),%a1
30183:	btst	#2,%a1@(mac_scc_cha_a_ctrl_offset)
3019	jeq	3b
3020	moveb	%d0,%a1@(mac_scc_cha_a_data_offset)
3021#endif	/* MAC_USE_SCC_A */
3022
3023#ifdef MAC_USE_SCC_B
3024#ifndef MAC_USE_SCC_A	/* Load mac_sccbase only if needed */
3025	movel	%pc@(L(mac_sccbase)),%a1
3026#endif	/* MAC_USE_SCC_A */
30274:	btst	#2,%a1@(mac_scc_cha_b_ctrl_offset)
3028	jeq	4b
3029	moveb	%d0,%a1@(mac_scc_cha_b_data_offset)
3030#endif	/* MAC_USE_SCC_B */
3031
3032#endif	/* MAC_SERIAL_DEBUG */
3033
3034	jra	L(serial_putc_done)
30355:
3036#endif	/* CONFIG_MAC */
3037
3038#ifdef CONFIG_ATARI
3039	is_not_atari(4f)
3040	movel	%pc@(L(iobase)),%a1
3041#if defined(USE_PRINTER)
30423:	btst	#0,%a1@(LSTMFP_GPIP)
3043	jne	3b
3044	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
3045	moveb	%d0,%a1@(LPSG_WRITE)
3046	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
3047	moveb	%a1@(LPSG_READ),%d0
3048	bclr	#5,%d0
3049	moveb	%d0,%a1@(LPSG_WRITE)
3050	nop
3051	nop
3052	bset	#5,%d0
3053	moveb	%d0,%a1@(LPSG_WRITE)
3054#elif defined(USE_SCC)
30553:	btst	#2,%a1@(LSCC_CTRL)
3056	jeq	3b
3057	moveb	%d0,%a1@(LSCC_DATA)
3058#elif defined(USE_MFP)
30593:	btst	#7,%a1@(LMFP_TSR)
3060	jeq	3b
3061	moveb	%d0,%a1@(LMFP_UDR)
3062#endif
3063	jra	L(serial_putc_done)
30644:
3065#endif	/* CONFIG_ATARI */
3066
3067#ifdef CONFIG_MVME147
3068	is_not_mvme147(2f)
30691:	btst	#2,M147_SCC_CTRL_A
3070	jeq	1b
3071	moveb	%d0,M147_SCC_DATA_A
3072	jbra	L(serial_putc_done)
30732:
3074#endif
3075
3076#ifdef CONFIG_MVME16x
3077	is_not_mvme16x(2f)
3078	/*
3079	 * If the loader gave us a board type then we can use that to
3080	 * select an appropriate output routine; otherwise we just use
3081	 * the Bug code.  If we have to use the Bug that means the Bug
3082	 * workspace has to be valid, which means the Bug has to use
3083	 * the SRAM, which is non-standard.
3084	 */
3085	moveml	%d0-%d7/%a2-%a6,%sp@-
3086	movel	vme_brdtype,%d1
3087	jeq	1f			| No tag - use the Bug
3088	cmpi	#VME_TYPE_MVME162,%d1
3089	jeq	6f
3090	cmpi	#VME_TYPE_MVME172,%d1
3091	jne	5f
3092	/* 162/172; it's an SCC */
30936:	btst	#2,M162_SCC_CTRL_A
3094	nop
3095	nop
3096	nop
3097	jeq	6b
3098	moveb	#8,M162_SCC_CTRL_A
3099	nop
3100	nop
3101	nop
3102	moveb	%d0,M162_SCC_CTRL_A
3103	jra	3f
31045:
3105	/* 166/167/177; it's a CD2401 */
3106	moveb	#0,M167_CYCAR
3107	moveb	M167_CYIER,%d2
3108	moveb	#0x02,M167_CYIER
31097:
3110	btst	#5,M167_PCSCCTICR
3111	jeq	7b
3112	moveb	M167_PCTPIACKR,%d1
3113	moveb	M167_CYLICR,%d1
3114	jeq	8f
3115	moveb	#0x08,M167_CYTEOIR
3116	jra	7b
31178:
3118	moveb	%d0,M167_CYTDR
3119	moveb	#0,M167_CYTEOIR
3120	moveb	%d2,M167_CYIER
3121	jra	3f
31221:
3123	moveb	%d0,%sp@-
3124	trap	#15
3125	.word	0x0020	/* TRAP 0x020 */
31263:
3127	moveml	%sp@+,%d0-%d7/%a2-%a6
3128	jbra	L(serial_putc_done)
31292:
3130#endif /* CONFIG_MVME16x */
3131
3132#ifdef CONFIG_BVME6000
3133	is_not_bvme6000(2f)
3134	/*
3135	 * The BVME6000 machine has a serial port ...
3136	 */
31371:	btst	#2,BVME_SCC_CTRL_A
3138	jeq	1b
3139	moveb	%d0,BVME_SCC_DATA_A
3140	jbra	L(serial_putc_done)
31412:
3142#endif
3143
3144#ifdef CONFIG_SUN3X
3145	is_not_sun3x(2f)
3146	movel	%d0,-(%sp)
3147	movel	0xFEFE0018,%a1
3148	jbsr	(%a1)
3149	addq	#4,%sp
3150	jbra	L(serial_putc_done)
31512:
3152#endif
3153
3154#ifdef CONFIG_Q40
3155	is_not_q40(2f)
3156	tst.l	%pc@(L(q40_do_debug))	/* only debug if requested */
3157	beq	2f
3158	lea	%pc@(q40_mem_cptr),%a1
3159	move.l	%a1@,%a0
3160	move.b	%d0,%a0@
3161	addq.l	#4,%a0
3162	move.l	%a0,%a1@
3163	jbra    L(serial_putc_done)
31642:
3165#endif
3166
3167#ifdef CONFIG_APOLLO
3168	is_not_apollo(2f)
3169	movl    %pc@(L(iobase)),%a1
3170	moveb	%d0,%a1@(LTHRB0)
31711:      moveb   %a1@(LSRB0),%d0
3172	andb	#0x4,%d0
3173	beq	1b
3174	jbra	L(serial_putc_done)
31752:
3176#endif
3177
3178#ifdef CONFIG_HP300
3179	is_not_hp300(3f)
3180	movl    %pc@(L(iobase)),%a1
3181	addl	%pc@(L(uartbase)),%a1
3182	movel	%pc@(L(uart_scode)),%d1	/* Check the scode */
3183	jmi	3f			/* Unset? Exit */
3184	cmpi	#256,%d1		/* APCI scode? */
3185	jeq	2f
31861:      moveb   %a1@(DCALSR),%d1	/* Output to DCA */
3187	andb	#0x20,%d1
3188	beq	1b
3189	moveb	%d0,%a1@(DCADATA)
3190	jbra	L(serial_putc_done)
31912:	moveb	%a1@(APCILSR),%d1	/* Output to APCI */
3192	andb	#0x20,%d1
3193	beq	2b
3194	moveb	%d0,%a1@(APCIDATA)
3195	jbra	L(serial_putc_done)
31963:
3197#endif
3198
 
 
 
 
 
 
 
 
3199L(serial_putc_done):
3200func_return	serial_putc
3201
3202/*
3203 * Output a string.
3204 */
3205func_start	puts,%d0/%a0
3206
3207	movel	ARG1,%a0
3208	jra	2f
32091:
3210#ifdef CONSOLE
3211	console_putc	%d0
3212#endif
3213#ifdef SERIAL_DEBUG
3214	serial_putc	%d0
3215#endif
32162:	moveb	%a0@+,%d0
3217	jne	1b
3218
3219func_return	puts
3220
3221/*
3222 * Output number in hex notation.
3223 */
3224
3225func_start	putn,%d0-%d2
3226
3227	putc	' '
3228
3229	movel	ARG1,%d0
3230	moveq	#7,%d1
32311:	roll	#4,%d0
3232	move	%d0,%d2
3233	andb	#0x0f,%d2
3234	addb	#'0',%d2
3235	cmpb	#'9',%d2
3236	jls	2f
3237	addb	#'A'-('9'+1),%d2
32382:
3239#ifdef CONSOLE
3240	console_putc	%d2
3241#endif
3242#ifdef SERIAL_DEBUG
3243	serial_putc	%d2
3244#endif
3245	dbra	%d1,1b
3246
3247func_return	putn
3248
3249#ifdef CONFIG_MAC
3250/*
3251 *	mac_serial_print
3252 *
3253 *	This routine takes its parameters on the stack.  It then
3254 *	turns around and calls the internal routine.  This routine
3255 *	is used until the Linux console driver initializes itself.
3256 *
3257 *	The calling parameters are:
3258 *		void mac_serial_print(const char *str);
3259 *
3260 *	This routine does NOT understand variable arguments only
3261 *	simple strings!
3262 */
3263ENTRY(mac_serial_print)
3264	moveml	%d0/%a0,%sp@-
3265#if 1
3266	move	%sr,%sp@-
3267	ori	#0x0700,%sr
 
 
 
 
 
 
3268#endif
3269	movel	%sp@(10),%a0		/* fetch parameter */
3270	jra	2f
32711:	serial_putc	%d0
32722:	moveb	%a0@+,%d0
 
 
3273	jne	1b
3274#if 1
3275	move	%sp@+,%sr
3276#endif
3277	moveml	%sp@+,%d0/%a0
3278	rts
3279#endif /* CONFIG_MAC */
3280
3281#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3282func_start	set_leds,%d0/%a0
3283	movel	ARG1,%d0
3284#ifdef CONFIG_HP300
3285	is_not_hp300(1f)
3286	movel	%pc@(L(iobase)),%a0
3287	moveb	%d0,%a0@(0x1ffff)
3288	jra	2f
3289#endif
32901:
3291#ifdef CONFIG_APOLLO
3292	movel   %pc@(L(iobase)),%a0
3293	lsll    #8,%d0
3294	eorw    #0xff00,%d0
3295	moveb	%d0,%a0@(LCPUCTRL)
3296#endif
32972:
3298func_return	set_leds
3299#endif
3300
3301#ifdef CONSOLE
3302/*
3303 *	For continuity, see the data alignment
3304 *	to which this structure is tied.
3305 */
3306#define Lconsole_struct_cur_column	0
3307#define Lconsole_struct_cur_row		4
3308#define Lconsole_struct_num_columns	8
3309#define Lconsole_struct_num_rows	12
3310#define Lconsole_struct_left_edge	16
3311#define Lconsole_struct_penguin_putc	20
3312
3313func_start	console_init,%a0-%a4/%d0-%d7
3314	/*
3315	 *	Some of the register usage that follows
3316	 *		a0 = pointer to boot_info
3317	 *		a1 = pointer to screen
3318	 *		a2 = pointer to Lconsole_globals
3319	 *		d3 = pixel width of screen
3320	 *		d4 = pixel height of screen
3321	 *		(d3,d4) ~= (x,y) of a point just below
3322	 *			and to the right of the screen
3323	 *			NOT on the screen!
3324	 *		d5 = number of bytes per scan line
3325	 *		d6 = number of bytes on the entire screen
3326	 */
3327
3328	lea	%pc@(L(console_globals)),%a2
3329	movel	%pc@(L(mac_videobase)),%a1
3330	movel	%pc@(L(mac_rowbytes)),%d5
3331	movel	%pc@(L(mac_dimensions)),%d3	/* -> low byte */
3332	movel	%d3,%d4
3333	swap	%d4		/* -> high byte */
3334	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3335	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3336
3337	movel	%d5,%d6
3338|	subl	#20,%d6
3339	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3340	divul	#8,%d6		/* we'll clear 8 bytes at a time */
3341	moveq	#-1,%d0		/* Mac_black */
3342	subq	#1,%d6
3343
3344L(console_clear_loop):
3345	movel	%d0,%a1@+
3346	movel	%d0,%a1@+
3347	dbra	%d6,L(console_clear_loop)
3348
3349	/* Calculate font size */
3350
3351#if   defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3352	lea	%pc@(font_vga_8x8),%a0
3353#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3354	lea	%pc@(font_vga_8x16),%a0
3355#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3356	lea	%pc@(font_vga_6x11),%a0
3357#elif defined(CONFIG_FONT_8x8) /* default */
3358	lea	%pc@(font_vga_8x8),%a0
3359#else /* no compiled-in font */
3360	lea	0,%a0
3361#endif
3362
3363	/*
3364	 *	At this point we make a shift in register usage
3365	 *	a1 = address of console_font pointer
3366	 */
3367	lea	%pc@(L(console_font)),%a1
3368	movel	%a0,%a1@	/* store pointer to struct fbcon_font_desc in console_font */
3369	tstl	%a0
3370	jeq	1f
3371	lea	%pc@(L(console_font_data)),%a4
3372	movel	%a0@(FONT_DESC_DATA),%d0
3373	subl	#L(console_font),%a1
3374	addl	%a1,%d0
3375	movel	%d0,%a4@
3376
3377	/*
3378	 *	Calculate global maxs
3379	 *	Note - we can use either an
3380	 *	8 x 16 or 8 x 8 character font
3381	 *	6 x 11 also supported
3382	 */
3383		/* ASSERT: a0 = contents of Lconsole_font */
3384	movel	%d3,%d0				/* screen width in pixels */
3385	divul	%a0@(FONT_DESC_WIDTH),%d0	/* d0 = max num chars per row */
3386
3387	movel	%d4,%d1				/* screen height in pixels */
3388	divul	%a0@(FONT_DESC_HEIGHT),%d1	/* d1 = max num rows */
3389
3390	movel	%d0,%a2@(Lconsole_struct_num_columns)
3391	movel	%d1,%a2@(Lconsole_struct_num_rows)
3392
3393	/*
3394	 *	Clear the current row and column
3395	 */
3396	clrl	%a2@(Lconsole_struct_cur_column)
3397	clrl	%a2@(Lconsole_struct_cur_row)
3398	clrl	%a2@(Lconsole_struct_left_edge)
3399
3400	/*
3401	 * Initialization is complete
3402	 */
34031:
3404func_return	console_init
3405
3406func_start	console_put_stats,%a0/%d7
3407	/*
3408	 *	Some of the register usage that follows
3409	 *		a0 = pointer to boot_info
3410	 *		d7 = value of boot_info fields
3411	 */
3412	puts	"\nMacLinux\n\n"
3413
3414#ifdef SERIAL_DEBUG
3415	puts	" vidaddr:"
3416	putn	%pc@(L(mac_videobase))		/* video addr. */
3417
3418	puts	"\n  _stext:"
3419	lea	%pc@(_stext),%a0
3420	putn	%a0
3421
3422	puts	"\nbootinfo:"
3423	lea	%pc@(_end),%a0
3424	putn	%a0
3425
3426	puts	"\ncpuid:"
3427	putn	%pc@(L(cputype))
3428	putc	'\n'
3429
3430#ifdef MAC_SERIAL_DEBUG
3431	putn	%pc@(L(mac_sccbase))
3432	putc	'\n'
3433#endif
3434#  if defined(MMU_PRINT)
3435	jbsr	mmu_print_machine_cpu_types
3436#  endif /* MMU_PRINT */
3437#endif /* SERIAL_DEBUG */
3438
3439func_return	console_put_stats
3440
3441#ifdef CONSOLE_PENGUIN
3442func_start	console_put_penguin,%a0-%a1/%d0-%d7
3443	/*
3444	 *	Get 'that_penguin' onto the screen in the upper right corner
3445	 *	penguin is 64 x 74 pixels, align against right edge of screen
3446	 */
3447	lea	%pc@(L(mac_dimensions)),%a0
3448	movel	%a0@,%d0
3449	andil	#0xffff,%d0
3450	subil	#64,%d0		/* snug up against the right edge */
3451	clrl	%d1		/* start at the top */
3452	movel	#73,%d7
3453	lea	%pc@(L(that_penguin)),%a1
3454L(console_penguin_row):
3455	movel	#31,%d6
3456L(console_penguin_pixel_pair):
3457	moveb	%a1@,%d2
3458	lsrb	#4,%d2
3459	console_plot_pixel %d0,%d1,%d2
3460	addq	#1,%d0
3461	moveb	%a1@+,%d2
3462	console_plot_pixel %d0,%d1,%d2
3463	addq	#1,%d0
3464	dbra	%d6,L(console_penguin_pixel_pair)
3465
3466	subil	#64,%d0
3467	addq	#1,%d1
3468	dbra	%d7,L(console_penguin_row)
3469
3470func_return	console_put_penguin
3471
3472/* include penguin bitmap */
3473L(that_penguin):
3474#include "../mac/mac_penguin.S"
3475#endif
3476
3477	/*
3478	 * Calculate source and destination addresses
3479	 *	output	a1 = dest
3480	 *		a2 = source
3481	 */
3482
3483func_start	console_scroll,%a0-%a4/%d0-%d7
3484	lea	%pc@(L(mac_videobase)),%a0
3485	movel	%a0@,%a1
3486	movel	%a1,%a2
3487	lea	%pc@(L(mac_rowbytes)),%a0
3488	movel	%a0@,%d5
3489	movel	%pc@(L(console_font)),%a0
3490	tstl	%a0
3491	jeq	1f
3492	mulul	%a0@(FONT_DESC_HEIGHT),%d5	/* account for # scan lines per character */
3493	addal	%d5,%a2
3494
3495	/*
3496	 * Get dimensions
3497	 */
3498	lea	%pc@(L(mac_dimensions)),%a0
3499	movel	%a0@,%d3
3500	movel	%d3,%d4
3501	swap	%d4
3502	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3503	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3504
3505	/*
3506	 * Calculate number of bytes to move
3507	 */
3508	lea	%pc@(L(mac_rowbytes)),%a0
3509	movel	%a0@,%d6
3510	movel	%pc@(L(console_font)),%a0
3511	subl	%a0@(FONT_DESC_HEIGHT),%d4	/* we're not scrolling the top row! */
3512	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3513	divul	#32,%d6		/* we'll move 8 longs at a time */
3514	subq	#1,%d6
3515
3516L(console_scroll_loop):
3517	movel	%a2@+,%a1@+
3518	movel	%a2@+,%a1@+
3519	movel	%a2@+,%a1@+
3520	movel	%a2@+,%a1@+
3521	movel	%a2@+,%a1@+
3522	movel	%a2@+,%a1@+
3523	movel	%a2@+,%a1@+
3524	movel	%a2@+,%a1@+
3525	dbra	%d6,L(console_scroll_loop)
3526
3527	lea	%pc@(L(mac_rowbytes)),%a0
3528	movel	%a0@,%d6
3529	movel	%pc@(L(console_font)),%a0
3530	mulul	%a0@(FONT_DESC_HEIGHT),%d6	/* scan line bytes x font height */
3531	divul	#32,%d6			/* we'll move 8 words at a time */
3532	subq	#1,%d6
3533
3534	moveq	#-1,%d0
3535L(console_scroll_clear_loop):
3536	movel	%d0,%a1@+
3537	movel	%d0,%a1@+
3538	movel	%d0,%a1@+
3539	movel	%d0,%a1@+
3540	movel	%d0,%a1@+
3541	movel	%d0,%a1@+
3542	movel	%d0,%a1@+
3543	movel	%d0,%a1@+
3544	dbra	%d6,L(console_scroll_clear_loop)
3545
35461:
3547func_return	console_scroll
3548
3549
3550func_start	console_putc,%a0/%a1/%d0-%d7
3551
3552	is_not_mac(L(console_exit))
3553	tstl	%pc@(L(console_font))
3554	jeq	L(console_exit)
3555
3556	/* Output character in d7 on console.
3557	 */
3558	movel	ARG1,%d7
3559	cmpib	#'\n',%d7
3560	jbne	1f
3561
3562	/* A little safe recursion is good for the soul */
3563	console_putc	#'\r'
35641:
3565	lea	%pc@(L(console_globals)),%a0
3566
3567	cmpib	#10,%d7
3568	jne	L(console_not_lf)
3569	movel	%a0@(Lconsole_struct_cur_row),%d0
3570	addil	#1,%d0
3571	movel	%d0,%a0@(Lconsole_struct_cur_row)
3572	movel	%a0@(Lconsole_struct_num_rows),%d1
3573	cmpl	%d1,%d0
3574	jcs	1f
3575	subil	#1,%d0
3576	movel	%d0,%a0@(Lconsole_struct_cur_row)
3577	console_scroll
35781:
3579	jra	L(console_exit)
3580
3581L(console_not_lf):
3582	cmpib	#13,%d7
3583	jne	L(console_not_cr)
3584	clrl	%a0@(Lconsole_struct_cur_column)
3585	jra	L(console_exit)
3586
3587L(console_not_cr):
3588	cmpib	#1,%d7
3589	jne	L(console_not_home)
3590	clrl	%a0@(Lconsole_struct_cur_row)
3591	clrl	%a0@(Lconsole_struct_cur_column)
3592	jra	L(console_exit)
3593
3594/*
3595 *	At this point we know that the %d7 character is going to be
3596 *	rendered on the screen.  Register usage is -
3597 *		a0 = pointer to console globals
3598 *		a1 = font data
3599 *		d0 = cursor column
3600 *		d1 = cursor row to draw the character
3601 *		d7 = character number
3602 */
3603L(console_not_home):
3604	movel	%a0@(Lconsole_struct_cur_column),%d0
3605	addql	#1,%a0@(Lconsole_struct_cur_column)
3606	movel	%a0@(Lconsole_struct_num_columns),%d1
3607	cmpl	%d1,%d0
3608	jcs	1f
3609	console_putc	#'\n'	/* recursion is OK! */
36101:
3611	movel	%a0@(Lconsole_struct_cur_row),%d1
3612
3613	/*
3614	 *	At this point we make a shift in register usage
3615	 *	a0 = address of pointer to font data (fbcon_font_desc)
3616	 */
3617	movel	%pc@(L(console_font)),%a0
3618	movel	%pc@(L(console_font_data)),%a1	/* Load fbcon_font_desc.data into a1 */
3619	andl	#0x000000ff,%d7
3620		/* ASSERT: a0 = contents of Lconsole_font */
3621	mulul	%a0@(FONT_DESC_HEIGHT),%d7	/* d7 = index into font data */
3622	addl	%d7,%a1			/* a1 = points to char image */
3623
3624	/*
3625	 *	At this point we make a shift in register usage
3626	 *	d0 = pixel coordinate, x
3627	 *	d1 = pixel coordinate, y
3628	 *	d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3629	 *	d3 = font scan line data (8 pixels)
3630	 *	d6 = count down for the font's pixel width (8)
3631	 *	d7 = count down for the font's pixel count in height
3632	 */
3633		/* ASSERT: a0 = contents of Lconsole_font */
3634	mulul	%a0@(FONT_DESC_WIDTH),%d0
3635	mulul	%a0@(FONT_DESC_HEIGHT),%d1
3636	movel	%a0@(FONT_DESC_HEIGHT),%d7	/* Load fbcon_font_desc.height into d7 */
3637	subq	#1,%d7
3638L(console_read_char_scanline):
3639	moveb	%a1@+,%d3
3640
3641		/* ASSERT: a0 = contents of Lconsole_font */
3642	movel	%a0@(FONT_DESC_WIDTH),%d6	/* Load fbcon_font_desc.width into d6 */
3643	subql	#1,%d6
3644
3645L(console_do_font_scanline):
3646	lslb	#1,%d3
3647	scsb	%d2		/* convert 1 bit into a byte */
3648	console_plot_pixel %d0,%d1,%d2
3649	addq	#1,%d0
3650	dbra	%d6,L(console_do_font_scanline)
3651
3652		/* ASSERT: a0 = contents of Lconsole_font */
3653	subl	%a0@(FONT_DESC_WIDTH),%d0
3654	addq	#1,%d1
3655	dbra	%d7,L(console_read_char_scanline)
3656
3657L(console_exit):
3658func_return	console_putc
3659
3660	/*
3661	 *	Input:
3662	 *		d0 = x coordinate
3663	 *		d1 = y coordinate
3664	 *		d2 = (bit 0) 1/0 for white/black (!)
3665	 *	All registers are preserved
3666	 */
3667func_start	console_plot_pixel,%a0-%a1/%d0-%d4
3668
3669	movel	%pc@(L(mac_videobase)),%a1
3670	movel	%pc@(L(mac_videodepth)),%d3
3671	movel	ARG1,%d0
3672	movel	ARG2,%d1
3673	mulul	%pc@(L(mac_rowbytes)),%d1
3674	movel	ARG3,%d2
3675
3676	/*
3677	 *	Register usage:
3678	 *		d0 = x coord becomes byte offset into frame buffer
3679	 *		d1 = y coord
3680	 *		d2 = black or white (0/1)
3681	 *		d3 = video depth
3682	 *		d4 = temp of x (d0) for many bit depths
3683	 */
3684L(test_1bit):
3685	cmpb	#1,%d3
3686	jbne	L(test_2bit)
3687	movel	%d0,%d4		/* we need the low order 3 bits! */
3688	divul	#8,%d0
3689	addal	%d0,%a1
3690	addal	%d1,%a1
3691	andb	#7,%d4
3692	eorb	#7,%d4		/* reverse the x-coordinate w/ screen-bit # */
3693	andb	#1,%d2
3694	jbne	L(white_1)
3695	bsetb	%d4,%a1@
3696	jbra	L(console_plot_pixel_exit)
3697L(white_1):
3698	bclrb	%d4,%a1@
3699	jbra	L(console_plot_pixel_exit)
3700
3701L(test_2bit):
3702	cmpb	#2,%d3
3703	jbne	L(test_4bit)
3704	movel	%d0,%d4		/* we need the low order 2 bits! */
3705	divul	#4,%d0
3706	addal	%d0,%a1
3707	addal	%d1,%a1
3708	andb	#3,%d4
3709	eorb	#3,%d4		/* reverse the x-coordinate w/ screen-bit # */
3710	lsll	#1,%d4		/* ! */
3711	andb	#1,%d2
3712	jbne	L(white_2)
3713	bsetb	%d4,%a1@
3714	addq	#1,%d4
3715	bsetb	%d4,%a1@
3716	jbra	L(console_plot_pixel_exit)
3717L(white_2):
3718	bclrb	%d4,%a1@
3719	addq	#1,%d4
3720	bclrb	%d4,%a1@
3721	jbra	L(console_plot_pixel_exit)
3722
3723L(test_4bit):
3724	cmpb	#4,%d3
3725	jbne	L(test_8bit)
3726	movel	%d0,%d4		/* we need the low order bit! */
3727	divul	#2,%d0
3728	addal	%d0,%a1
3729	addal	%d1,%a1
3730	andb	#1,%d4
3731	eorb	#1,%d4
3732	lsll	#2,%d4		/* ! */
3733	andb	#1,%d2
3734	jbne	L(white_4)
3735	bsetb	%d4,%a1@
3736	addq	#1,%d4
3737	bsetb	%d4,%a1@
3738	addq	#1,%d4
3739	bsetb	%d4,%a1@
3740	addq	#1,%d4
3741	bsetb	%d4,%a1@
3742	jbra	L(console_plot_pixel_exit)
3743L(white_4):
3744	bclrb	%d4,%a1@
3745	addq	#1,%d4
3746	bclrb	%d4,%a1@
3747	addq	#1,%d4
3748	bclrb	%d4,%a1@
3749	addq	#1,%d4
3750	bclrb	%d4,%a1@
3751	jbra	L(console_plot_pixel_exit)
3752
3753L(test_8bit):
3754	cmpb	#8,%d3
3755	jbne	L(test_16bit)
3756	addal	%d0,%a1
3757	addal	%d1,%a1
3758	andb	#1,%d2
3759	jbne	L(white_8)
3760	moveb	#0xff,%a1@
3761	jbra	L(console_plot_pixel_exit)
3762L(white_8):
3763	clrb	%a1@
3764	jbra	L(console_plot_pixel_exit)
3765
3766L(test_16bit):
3767	cmpb	#16,%d3
3768	jbne	L(console_plot_pixel_exit)
3769	addal	%d0,%a1
3770	addal	%d0,%a1
3771	addal	%d1,%a1
3772	andb	#1,%d2
3773	jbne	L(white_16)
3774	clrw	%a1@
3775	jbra	L(console_plot_pixel_exit)
3776L(white_16):
3777	movew	#0x0fff,%a1@
3778	jbra	L(console_plot_pixel_exit)
3779
3780L(console_plot_pixel_exit):
3781func_return	console_plot_pixel
3782#endif /* CONSOLE */
3783
3784#if 0
3785/*
3786 * This is some old code lying around.  I don't believe
3787 * it's used or important anymore.  My guess is it contributed
3788 * to getting to this point, but it's done for now.
3789 * It was still in the 2.1.77 head.S, so it's still here.
3790 * (And still not used!)
3791 */
3792L(showtest):
3793	moveml	%a0/%d7,%sp@-
3794	puts	"A="
3795	putn	%a1
3796
3797	.long	0xf0119f15		| ptestr	#5,%a1@,#7,%a0
3798
3799	puts	"DA="
3800	putn	%a0
3801
3802	puts	"D="
3803	putn	%a0@
3804
3805	puts	"S="
3806	lea	%pc@(L(mmu)),%a0
3807	.long	0xf0106200		| pmove		%psr,%a0@
3808	clrl	%d7
3809	movew	%a0@,%d7
3810	putn	%d7
3811
3812	putc	'\n'
3813	moveml	%sp@+,%a0/%d7
3814	rts
3815#endif	/* 0 */
3816
3817__INITDATA
3818	.align	4
3819
 
 
 
3820#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3821    defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3822L(custom):
3823L(iobase):
3824	.long 0
3825#endif
3826
3827#if defined(CONSOLE)
3828L(console_globals):
3829	.long	0		/* cursor column */
3830	.long	0		/* cursor row */
3831	.long	0		/* max num columns */
3832	.long	0		/* max num rows */
3833	.long	0		/* left edge */
3834	.long	0		/* mac putc */
3835L(console_font):
3836	.long	0		/* pointer to console font (struct font_desc) */
3837L(console_font_data):
3838	.long	0		/* pointer to console font data */
3839#endif /* CONSOLE */
3840
3841#if defined(MMU_PRINT)
3842L(mmu_print_data):
3843	.long	0		/* valid flag */
3844	.long	0		/* start logical */
3845	.long	0		/* next logical */
3846	.long	0		/* start physical */
3847	.long	0		/* next physical */
3848#endif /* MMU_PRINT */
3849
3850L(cputype):
3851	.long	0
3852L(mmu_cached_pointer_tables):
3853	.long	0
3854L(mmu_num_pointer_tables):
3855	.long	0
3856L(phys_kernel_start):
3857	.long	0
3858L(kernel_end):
3859	.long	0
3860L(memory_start):
3861	.long	0
3862L(kernel_pgdir_ptr):
3863	.long	0
3864L(temp_mmap_mem):
3865	.long	0
3866
3867#if defined (CONFIG_MVME147)
3868M147_SCC_CTRL_A = 0xfffe3002
3869M147_SCC_DATA_A = 0xfffe3003
3870#endif
3871
3872#if defined (CONFIG_MVME16x)
3873M162_SCC_CTRL_A = 0xfff45005
3874M167_CYCAR = 0xfff450ee
3875M167_CYIER = 0xfff45011
3876M167_CYLICR = 0xfff45026
3877M167_CYTEOIR = 0xfff45085
3878M167_CYTDR = 0xfff450f8
 
3879M167_PCSCCTICR = 0xfff4201e
 
3880M167_PCTPIACKR = 0xfff42025
3881#endif
3882
3883#if defined (CONFIG_BVME6000)
3884BVME_SCC_CTRL_A	= 0xffb0000b
3885BVME_SCC_DATA_A	= 0xffb0000f
3886#endif
3887
3888#if defined(CONFIG_MAC)
3889L(mac_booter_data):
3890	.long	0
3891L(mac_videobase):
3892	.long	0
3893L(mac_videodepth):
3894	.long	0
3895L(mac_dimensions):
3896	.long	0
3897L(mac_rowbytes):
3898	.long	0
3899#ifdef MAC_SERIAL_DEBUG
3900L(mac_sccbase):
3901	.long	0
3902#endif /* MAC_SERIAL_DEBUG */
3903#endif
3904
3905#if defined (CONFIG_APOLLO)
3906LSRB0        = 0x10412
3907LTHRB0       = 0x10416
3908LCPUCTRL     = 0x10100
3909#endif
3910
3911#if defined(CONFIG_HP300)
3912DCADATA	     = 0x11
3913DCALSR	     = 0x1b
3914APCIDATA     = 0x00
3915APCILSR      = 0x14
3916L(uartbase):
3917	.long	0
3918L(uart_scode):
3919	.long	-1
3920#endif
3921
3922__FINIT
3923	.data
3924	.align	4
3925
3926availmem:
3927	.long	0
3928m68k_pgtable_cachemode:
3929	.long	0
3930m68k_supervisor_cachemode:
3931	.long	0
3932#if defined(CONFIG_MVME16x)
3933mvme_bdid:
3934	.long	0,0,0,0,0,0,0,0
3935#endif
3936#if defined(CONFIG_Q40)
3937q40_mem_cptr:
3938	.long	0
3939L(q40_do_debug):
3940	.long	0
3941#endif