Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _ASM_IA64_PROCESSOR_H
  3#define _ASM_IA64_PROCESSOR_H
  4
  5/*
  6 * Copyright (C) 1998-2004 Hewlett-Packard Co
  7 *	David Mosberger-Tang <davidm@hpl.hp.com>
  8 *	Stephane Eranian <eranian@hpl.hp.com>
  9 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
 10 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
 11 *
 12 * 11/24/98	S.Eranian	added ia64_set_iva()
 13 * 12/03/99	D. Mosberger	implement thread_saved_pc() via kernel unwind API
 14 * 06/16/00	A. Mallick	added csd/ssd/tssd for ia32 support
 15 */
 16
 17
 18#include <asm/intrinsics.h>
 19#include <asm/kregs.h>
 20#include <asm/ptrace.h>
 21#include <asm/ustack.h>
 22
 23#define IA64_NUM_PHYS_STACK_REG	96
 24#define IA64_NUM_DBG_REGS	8
 25
 26#define DEFAULT_MAP_BASE	__IA64_UL_CONST(0x2000000000000000)
 27#define DEFAULT_TASK_SIZE	__IA64_UL_CONST(0xa000000000000000)
 28
 29/*
 30 * TASK_SIZE really is a mis-named.  It really is the maximum user
 31 * space address (plus one).  On IA-64, there are five regions of 2TB
 32 * each (assuming 8KB page size), for a total of 8TB of user virtual
 33 * address space.
 34 */
 35#define TASK_SIZE       	DEFAULT_TASK_SIZE
 36
 37/*
 38 * This decides where the kernel will search for a free chunk of vm
 39 * space during mmap's.
 40 */
 41#define TASK_UNMAPPED_BASE	(current->thread.map_base)
 42
 43#define IA64_THREAD_FPH_VALID	(__IA64_UL(1) << 0)	/* floating-point high state valid? */
 44#define IA64_THREAD_DBG_VALID	(__IA64_UL(1) << 1)	/* debug registers valid? */
 45#define IA64_THREAD_PM_VALID	(__IA64_UL(1) << 2)	/* performance registers valid? */
 46#define IA64_THREAD_UAC_NOPRINT	(__IA64_UL(1) << 3)	/* don't log unaligned accesses */
 47#define IA64_THREAD_UAC_SIGBUS	(__IA64_UL(1) << 4)	/* generate SIGBUS on unaligned acc. */
 48#define IA64_THREAD_MIGRATION	(__IA64_UL(1) << 5)	/* require migration
 49							   sync at ctx sw */
 50#define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6)	/* don't log any fpswa faults */
 51#define IA64_THREAD_FPEMU_SIGFPE  (__IA64_UL(1) << 7)	/* send a SIGFPE for fpswa faults */
 52
 53#define IA64_THREAD_UAC_SHIFT	3
 54#define IA64_THREAD_UAC_MASK	(IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
 55#define IA64_THREAD_FPEMU_SHIFT	6
 56#define IA64_THREAD_FPEMU_MASK	(IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
 57
 58
 59/*
 60 * This shift should be large enough to be able to represent 1000000000/itc_freq with good
 61 * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
 62 * (this will give enough slack to represent 10 seconds worth of time as a scaled number).
 63 */
 64#define IA64_NSEC_PER_CYC_SHIFT	30
 65
 66#ifndef __ASSEMBLY__
 67
 68#include <linux/cache.h>
 69#include <linux/compiler.h>
 70#include <linux/threads.h>
 71#include <linux/types.h>
 72#include <linux/bitops.h>
 73
 74#include <asm/fpu.h>
 75#include <asm/page.h>
 76#include <asm/percpu.h>
 77#include <asm/rse.h>
 78#include <asm/unwind.h>
 79#include <linux/atomic.h>
 80#ifdef CONFIG_NUMA
 81#include <asm/nodedata.h>
 82#endif
 83
 84/* like above but expressed as bitfields for more efficient access: */
 85struct ia64_psr {
 86	__u64 reserved0 : 1;
 87	__u64 be : 1;
 88	__u64 up : 1;
 89	__u64 ac : 1;
 90	__u64 mfl : 1;
 91	__u64 mfh : 1;
 92	__u64 reserved1 : 7;
 93	__u64 ic : 1;
 94	__u64 i : 1;
 95	__u64 pk : 1;
 96	__u64 reserved2 : 1;
 97	__u64 dt : 1;
 98	__u64 dfl : 1;
 99	__u64 dfh : 1;
100	__u64 sp : 1;
101	__u64 pp : 1;
102	__u64 di : 1;
103	__u64 si : 1;
104	__u64 db : 1;
105	__u64 lp : 1;
106	__u64 tb : 1;
107	__u64 rt : 1;
108	__u64 reserved3 : 4;
109	__u64 cpl : 2;
110	__u64 is : 1;
111	__u64 mc : 1;
112	__u64 it : 1;
113	__u64 id : 1;
114	__u64 da : 1;
115	__u64 dd : 1;
116	__u64 ss : 1;
117	__u64 ri : 2;
118	__u64 ed : 1;
119	__u64 bn : 1;
120	__u64 reserved4 : 19;
121};
122
123union ia64_isr {
124	__u64  val;
125	struct {
126		__u64 code : 16;
127		__u64 vector : 8;
128		__u64 reserved1 : 8;
129		__u64 x : 1;
130		__u64 w : 1;
131		__u64 r : 1;
132		__u64 na : 1;
133		__u64 sp : 1;
134		__u64 rs : 1;
135		__u64 ir : 1;
136		__u64 ni : 1;
137		__u64 so : 1;
138		__u64 ei : 2;
139		__u64 ed : 1;
140		__u64 reserved2 : 20;
141	};
142};
143
144union ia64_lid {
145	__u64 val;
146	struct {
147		__u64  rv  : 16;
148		__u64  eid : 8;
149		__u64  id  : 8;
150		__u64  ig  : 32;
151	};
152};
153
154union ia64_tpr {
155	__u64 val;
156	struct {
157		__u64 ig0 : 4;
158		__u64 mic : 4;
159		__u64 rsv : 8;
160		__u64 mmi : 1;
161		__u64 ig1 : 47;
162	};
163};
164
165union ia64_itir {
166	__u64 val;
167	struct {
168		__u64 rv3  :  2; /* 0-1 */
169		__u64 ps   :  6; /* 2-7 */
170		__u64 key  : 24; /* 8-31 */
171		__u64 rv4  : 32; /* 32-63 */
172	};
173};
174
175union  ia64_rr {
176	__u64 val;
177	struct {
178		__u64  ve	:  1;  /* enable hw walker */
179		__u64  reserved0:  1;  /* reserved */
180		__u64  ps	:  6;  /* log page size */
181		__u64  rid	: 24;  /* region id */
182		__u64  reserved1: 32;  /* reserved */
183	};
184};
185
186/*
187 * CPU type, hardware bug flags, and per-CPU state.  Frequently used
188 * state comes earlier:
189 */
190struct cpuinfo_ia64 {
191	unsigned int softirq_pending;
192	unsigned long itm_delta;	/* # of clock cycles between clock ticks */
193	unsigned long itm_next;		/* interval timer mask value to use for next clock tick */
194	unsigned long nsec_per_cyc;	/* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
195	unsigned long unimpl_va_mask;	/* mask of unimplemented virtual address bits (from PAL) */
196	unsigned long unimpl_pa_mask;	/* mask of unimplemented physical address bits (from PAL) */
197	unsigned long itc_freq;		/* frequency of ITC counter */
198	unsigned long proc_freq;	/* frequency of processor */
199	unsigned long cyc_per_usec;	/* itc_freq/1000000 */
200	unsigned long ptce_base;
201	unsigned int ptce_count[2];
202	unsigned int ptce_stride[2];
203	struct task_struct *ksoftirqd;	/* kernel softirq daemon for this CPU */
204
205#ifdef CONFIG_SMP
206	unsigned long loops_per_jiffy;
207	int cpu;
208	unsigned int socket_id;	/* physical processor socket id */
209	unsigned short core_id;	/* core id */
210	unsigned short thread_id; /* thread id */
211	unsigned short num_log;	/* Total number of logical processors on
212				 * this socket that were successfully booted */
213	unsigned char cores_per_socket;	/* Cores per processor socket */
214	unsigned char threads_per_core;	/* Threads per core */
215#endif
216
217	/* CPUID-derived information: */
218	unsigned long ppn;
219	unsigned long features;
220	unsigned char number;
221	unsigned char revision;
222	unsigned char model;
223	unsigned char family;
224	unsigned char archrev;
225	char vendor[16];
226	char *model_name;
227
228#ifdef CONFIG_NUMA
229	struct ia64_node_data *node_data;
230#endif
231};
232
233DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
234
235/*
236 * The "local" data variable.  It refers to the per-CPU data of the currently executing
237 * CPU, much like "current" points to the per-task data of the currently executing task.
238 * Do not use the address of local_cpu_data, since it will be different from
239 * cpu_data(smp_processor_id())!
240 */
241#define local_cpu_data		(&__ia64_per_cpu_var(ia64_cpu_info))
242#define cpu_data(cpu)		(&per_cpu(ia64_cpu_info, cpu))
243
244extern void print_cpu_info (struct cpuinfo_ia64 *);
245
246typedef struct {
247	unsigned long seg;
248} mm_segment_t;
249
250#define SET_UNALIGN_CTL(task,value)								\
251({												\
252	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK)			\
253				| (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK));	\
254	0;											\
255})
256#define GET_UNALIGN_CTL(task,addr)								\
257({												\
258	put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT,	\
259		 (int __user *) (addr));							\
260})
261
262#define SET_FPEMU_CTL(task,value)								\
263({												\
264	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK)		\
265			  | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK));	\
266	0;											\
267})
268#define GET_FPEMU_CTL(task,addr)								\
269({												\
270	put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT,	\
271		 (int __user *) (addr));							\
272})
273
274struct thread_struct {
275	__u32 flags;			/* various thread flags (see IA64_THREAD_*) */
276	/* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
277	__u8 on_ustack;			/* executing on user-stacks? */
278	__u8 pad[3];
279	__u64 ksp;			/* kernel stack pointer */
280	__u64 map_base;			/* base address for get_unmapped_area() */
281	__u64 rbs_bot;			/* the base address for the RBS */
282	int last_fph_cpu;		/* CPU that may hold the contents of f32-f127 */
283
284#ifdef CONFIG_PERFMON
285	void *pfm_context;		     /* pointer to detailed PMU context */
286	unsigned long pfm_needs_checking;    /* when >0, pending perfmon work on kernel exit */
287# define INIT_THREAD_PM		.pfm_context =		NULL,     \
288				.pfm_needs_checking =	0UL,
289#else
290# define INIT_THREAD_PM
291#endif
292	unsigned long dbr[IA64_NUM_DBG_REGS];
293	unsigned long ibr[IA64_NUM_DBG_REGS];
294	struct ia64_fpreg fph[96];	/* saved/loaded on demand */
295};
296
297#define INIT_THREAD {						\
298	.flags =	0,					\
299	.on_ustack =	0,					\
300	.ksp =		0,					\
301	.map_base =	DEFAULT_MAP_BASE,			\
302	.rbs_bot =	STACK_TOP - DEFAULT_USER_STACK_SIZE,	\
303	.last_fph_cpu =  -1,					\
304	INIT_THREAD_PM						\
305	.dbr =		{0, },					\
306	.ibr =		{0, },					\
307	.fph =		{{{{0}}}, }				\
308}
309
310#define start_thread(regs,new_ip,new_sp) do {							\
311	regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL))		\
312			 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS));		\
313	regs->cr_iip = new_ip;									\
314	regs->ar_rsc = 0xf;		/* eager mode, privilege level 3 */			\
315	regs->ar_rnat = 0;									\
316	regs->ar_bspstore = current->thread.rbs_bot;						\
317	regs->ar_fpsr = FPSR_DEFAULT;								\
318	regs->loadrs = 0;									\
319	regs->r8 = get_dumpable(current->mm);	/* set "don't zap registers" flag */		\
320	regs->r12 = new_sp - 16;	/* allocate 16 byte scratch area */			\
321	if (unlikely(get_dumpable(current->mm) != SUID_DUMP_USER)) {	\
322		/*										\
323		 * Zap scratch regs to avoid leaking bits between processes with different	\
324		 * uid/privileges.								\
325		 */										\
326		regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0;					\
327		regs->r1 = 0; regs->r9  = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0;	\
328	}											\
329} while (0)
330
331/* Forward declarations, a strange C thing... */
332struct mm_struct;
333struct task_struct;
334
335/*
336 * Free all resources held by a thread. This is called after the
337 * parent of DEAD_TASK has collected the exit status of the task via
338 * wait().
339 */
340#define release_thread(dead_task)
341
342/* Get wait channel for task P.  */
343extern unsigned long get_wchan (struct task_struct *p);
344
345/* Return instruction pointer of blocked task TSK.  */
346#define KSTK_EIP(tsk)					\
347  ({							\
348	struct pt_regs *_regs = task_pt_regs(tsk);	\
349	_regs->cr_iip + ia64_psr(_regs)->ri;		\
350  })
351
352/* Return stack pointer of blocked task TSK.  */
353#define KSTK_ESP(tsk)  ((tsk)->thread.ksp)
354
355extern void ia64_getreg_unknown_kr (void);
356extern void ia64_setreg_unknown_kr (void);
357
358#define ia64_get_kr(regnum)					\
359({								\
360	unsigned long r = 0;					\
361								\
362	switch (regnum) {					\
363	    case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break;	\
364	    case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break;	\
365	    case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break;	\
366	    case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break;	\
367	    case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break;	\
368	    case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break;	\
369	    case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break;	\
370	    case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break;	\
371	    default: ia64_getreg_unknown_kr(); break;		\
372	}							\
373	r;							\
374})
375
376#define ia64_set_kr(regnum, r) 					\
377({								\
378	switch (regnum) {					\
379	    case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break;	\
380	    case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break;	\
381	    case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break;	\
382	    case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break;	\
383	    case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break;	\
384	    case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break;	\
385	    case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break;	\
386	    case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break;	\
387	    default: ia64_setreg_unknown_kr(); break;		\
388	}							\
389})
390
391/*
392 * The following three macros can't be inline functions because we don't have struct
393 * task_struct at this point.
394 */
395
396/*
397 * Return TRUE if task T owns the fph partition of the CPU we're running on.
398 * Must be called from code that has preemption disabled.
399 */
400#define ia64_is_local_fpu_owner(t)								\
401({												\
402	struct task_struct *__ia64_islfo_task = (t);						\
403	(__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id()				\
404	 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER));	\
405})
406
407/*
408 * Mark task T as owning the fph partition of the CPU we're running on.
409 * Must be called from code that has preemption disabled.
410 */
411#define ia64_set_local_fpu_owner(t) do {						\
412	struct task_struct *__ia64_slfo_task = (t);					\
413	__ia64_slfo_task->thread.last_fph_cpu = smp_processor_id();			\
414	ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task);		\
415} while (0)
416
417/* Mark the fph partition of task T as being invalid on all CPUs.  */
418#define ia64_drop_fpu(t)	((t)->thread.last_fph_cpu = -1)
419
420extern void __ia64_init_fpu (void);
421extern void __ia64_save_fpu (struct ia64_fpreg *fph);
422extern void __ia64_load_fpu (struct ia64_fpreg *fph);
423extern void ia64_save_debug_regs (unsigned long *save_area);
424extern void ia64_load_debug_regs (unsigned long *save_area);
425
426#define ia64_fph_enable()	do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
427#define ia64_fph_disable()	do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
428
429/* load fp 0.0 into fph */
430static inline void
431ia64_init_fpu (void) {
432	ia64_fph_enable();
433	__ia64_init_fpu();
434	ia64_fph_disable();
435}
436
437/* save f32-f127 at FPH */
438static inline void
439ia64_save_fpu (struct ia64_fpreg *fph) {
440	ia64_fph_enable();
441	__ia64_save_fpu(fph);
442	ia64_fph_disable();
443}
444
445/* load f32-f127 from FPH */
446static inline void
447ia64_load_fpu (struct ia64_fpreg *fph) {
448	ia64_fph_enable();
449	__ia64_load_fpu(fph);
450	ia64_fph_disable();
451}
452
453static inline __u64
454ia64_clear_ic (void)
455{
456	__u64 psr;
457	psr = ia64_getreg(_IA64_REG_PSR);
458	ia64_stop();
459	ia64_rsm(IA64_PSR_I | IA64_PSR_IC);
460	ia64_srlz_i();
461	return psr;
462}
463
464/*
465 * Restore the psr.
466 */
467static inline void
468ia64_set_psr (__u64 psr)
469{
470	ia64_stop();
471	ia64_setreg(_IA64_REG_PSR_L, psr);
472	ia64_srlz_i();
473}
474
475/*
476 * Insert a translation into an instruction and/or data translation
477 * register.
478 */
479static inline void
480ia64_itr (__u64 target_mask, __u64 tr_num,
481	  __u64 vmaddr, __u64 pte,
482	  __u64 log_page_size)
483{
484	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
485	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
486	ia64_stop();
487	if (target_mask & 0x1)
488		ia64_itri(tr_num, pte);
489	if (target_mask & 0x2)
490		ia64_itrd(tr_num, pte);
491}
492
493/*
494 * Insert a translation into the instruction and/or data translation
495 * cache.
496 */
497static inline void
498ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
499	  __u64 log_page_size)
500{
501	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
502	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
503	ia64_stop();
504	/* as per EAS2.6, itc must be the last instruction in an instruction group */
505	if (target_mask & 0x1)
506		ia64_itci(pte);
507	if (target_mask & 0x2)
508		ia64_itcd(pte);
509}
510
511/*
512 * Purge a range of addresses from instruction and/or data translation
513 * register(s).
514 */
515static inline void
516ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
517{
518	if (target_mask & 0x1)
519		ia64_ptri(vmaddr, (log_size << 2));
520	if (target_mask & 0x2)
521		ia64_ptrd(vmaddr, (log_size << 2));
522}
523
524/* Set the interrupt vector address.  The address must be suitably aligned (32KB).  */
525static inline void
526ia64_set_iva (void *ivt_addr)
527{
528	ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
529	ia64_srlz_i();
530}
531
532/* Set the page table address and control bits.  */
533static inline void
534ia64_set_pta (__u64 pta)
535{
536	/* Note: srlz.i implies srlz.d */
537	ia64_setreg(_IA64_REG_CR_PTA, pta);
538	ia64_srlz_i();
539}
540
541static inline void
542ia64_eoi (void)
543{
544	ia64_setreg(_IA64_REG_CR_EOI, 0);
545	ia64_srlz_d();
546}
547
548#define cpu_relax()	ia64_hint(ia64_hint_pause)
549
550static inline int
551ia64_get_irr(unsigned int vector)
552{
553	unsigned int reg = vector / 64;
554	unsigned int bit = vector % 64;
555	u64 irr;
556
557	switch (reg) {
558	case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
559	case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
560	case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
561	case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
562	}
563
564	return test_bit(bit, &irr);
565}
566
567static inline void
568ia64_set_lrr0 (unsigned long val)
569{
570	ia64_setreg(_IA64_REG_CR_LRR0, val);
571	ia64_srlz_d();
572}
573
574static inline void
575ia64_set_lrr1 (unsigned long val)
576{
577	ia64_setreg(_IA64_REG_CR_LRR1, val);
578	ia64_srlz_d();
579}
580
581
582/*
583 * Given the address to which a spill occurred, return the unat bit
584 * number that corresponds to this address.
585 */
586static inline __u64
587ia64_unat_pos (void *spill_addr)
588{
589	return ((__u64) spill_addr >> 3) & 0x3f;
590}
591
592/*
593 * Set the NaT bit of an integer register which was spilled at address
594 * SPILL_ADDR.  UNAT is the mask to be updated.
595 */
596static inline void
597ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
598{
599	__u64 bit = ia64_unat_pos(spill_addr);
600	__u64 mask = 1UL << bit;
601
602	*unat = (*unat & ~mask) | (nat << bit);
603}
604
605static inline __u64
606ia64_get_ivr (void)
607{
608	__u64 r;
609	ia64_srlz_d();
610	r = ia64_getreg(_IA64_REG_CR_IVR);
611	ia64_srlz_d();
612	return r;
613}
614
615static inline void
616ia64_set_dbr (__u64 regnum, __u64 value)
617{
618	__ia64_set_dbr(regnum, value);
619#ifdef CONFIG_ITANIUM
620	ia64_srlz_d();
621#endif
622}
623
624static inline __u64
625ia64_get_dbr (__u64 regnum)
626{
627	__u64 retval;
628
629	retval = __ia64_get_dbr(regnum);
630#ifdef CONFIG_ITANIUM
631	ia64_srlz_d();
632#endif
633	return retval;
634}
635
636static inline __u64
637ia64_rotr (__u64 w, __u64 n)
638{
639	return (w >> n) | (w << (64 - n));
640}
641
642#define ia64_rotl(w,n)	ia64_rotr((w), (64) - (n))
643
644/*
645 * Take a mapped kernel address and return the equivalent address
646 * in the region 7 identity mapped virtual area.
647 */
648static inline void *
649ia64_imva (void *addr)
650{
651	void *result;
652	result = (void *) ia64_tpa(addr);
653	return __va(result);
654}
655
656#define ARCH_HAS_PREFETCH
657#define ARCH_HAS_PREFETCHW
658#define ARCH_HAS_SPINLOCK_PREFETCH
659#define PREFETCH_STRIDE			L1_CACHE_BYTES
660
661static inline void
662prefetch (const void *x)
663{
664	 ia64_lfetch(ia64_lfhint_none, x);
665}
666
667static inline void
668prefetchw (const void *x)
669{
670	ia64_lfetch_excl(ia64_lfhint_none, x);
671}
672
673#define spin_lock_prefetch(x)	prefetchw(x)
674
675extern unsigned long boot_option_idle_override;
676
677enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT,
678			 IDLE_NOMWAIT, IDLE_POLL};
679
680void default_idle(void);
681
682#endif /* !__ASSEMBLY__ */
683
684#endif /* _ASM_IA64_PROCESSOR_H */